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Abstract

We present a di�use-interface model for the solid-state dewetting problem with anisotropic
surface energies in Rd for d ∈ {2, 3}. The introduced model consists of the anisotropic
Cahn�Hilliard equation, with either a smooth or a double-obstacle potential, together with
a degenerate mobility function and appropriate boundary conditions on the wall. Upon
regularizing the introduced di�use-interface model, and with the help of suitable asymptotic
expansions, we recover as the sharp-interface limit the anisotropic surface di�usion �ow for
the interface together with an anisotropic Young's law and a zero-�ux condition at the contact
line of the interface with a �xed external boundary. Furthermore, we show the existence of
weak solutions for the regularized model, for both smooth and obstacle potential. Numerical
results based on an appropriate �nite element approximation are presented to demonstrate
the excellent agreement between the proposed di�use-interface model and its sharp-interface
limit.

Key words. Solid-state dewetting, Cahn�Hilliard equation, anisotropy, sharp-interface limit,
weak solutions, �nite element method.

1 Introduction

Deposited solid thin �lms are unstable and could dewet to form isolated islands on the substrate
in order to minimize the total surface energy [53, 70]. This phenomenon is known as solid-state
dewetting (SSD), since the thin �lms remain in a solid state during the process. SSD has attracted
a lot of attention recently, and is emerging as a promising route to produce patterns of arrays of
particles used in sensor technology, optical and magnetic devices, and catalyst formations, see
e.g. [6, 7, 19,23,65,67].

The dominant mass transport mechanism in SSD is surface di�usion [68]. This evolu-
tion law was �rst introduced by Mullins [57] to describe the mass di�usion within interfaces
in polycrystalline materials. For surface di�usion, the normal velocity of the interface is pro-
portional to the surface Laplacian of the mean curvature. In the case of SSD the evolution of
the interface that separates the thin �lm from the surrounding vapor also involves the motion
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of the contact line, i.e., the region where the �lm/vapor interface meets the substrate. The
equilibrium contact angle is given by Young's law which prescribes a force balance along the
substrate. Many e�orts have been devoted to SSD problems in recent years. For example, a
large body of experiments have revealed that the pattern formations could depend highly on
the crystallographic alignments, the �lm sizes and shapes, as well as the substrate topology, see
e.g. [5, 23, 59, 70, 76]. In addition, mathematical studies based on di�erent models have been
considered in [22,24,34,36,40,46�48,59,68,73].

In this work, we aim to study the SSD problem with anisotropic surface energies in the
di�use-interface framework. In the isotropic case, di�use-interface models are based on the
Ginzburg�Landau energy

Eiso(φ) =
∫
Ω

ε

2
|∇φ|2 + ε−1F (φ) dx, (1.1)

where Ω ⊂ Rd is a given domain with d ∈ {2, 3}, φ : Ω → R is the order parameter, ε > 0 is a
small parameter proportional to the thickness of the interfacial layer, and F (φ) is the free energy
density. The following three choices for F are mainly used in the literature:

(i) the smooth double-well potential [69]

F (φ) =
1

2
(1− φ2)2, (1.2a)

which has two global minimum points at φ = ±1 and a local maximum point at φ = 0;

(ii) the logarithmic potential [27]

F (φ) =
1

2
θ [(1 + φ) log(1 + φ) + (1− φ) log(1− φ)] +

1

2
(1− φ2), (1.2b)

where θ > 0 is the absolute temperature. This potential has two minima φ = ±(1− k̃(θ)),
where k̃(θ) is a small positive real number satisfying k̃(θ) → 0 as θ → 0, and its usage
enforces φ to attain values within (−1, 1);

(iii) the double-obstacle potential [21]

F (φ) =


1
2(1− φ2) if |φ| ≤ 1,

∞ otherwise.
(1.2c)

It can be characterized via the deep quench limit of the logarithmic potential, i.e., the limit
of (1.2b) as θ → 0.

The (isotropic) Cahn�Hilliard equation can be interpreted as a weighted H−1-gradient �ow of
the free energy (1.1). It reads as

∂tφ = ∇ · (m(φ)∇µ), µ = −ε∆φ+ ε−1F ′(φ), (1.3)

where m(φ) is a mobility function, together with Neumann boundary conditions for µ and φ.
The Cahn�Hilliard equation was �rst introduced to study the spinodal decomposition in binary
alloys [25,27] and has since then been used to model many other phenomenon, e.g., [1,20,41,49].
We note that the double-obstacle potential is not di�erentiable at φ = ±1, and the de�nition of
the generalized chemical potential in this case becomes

µ ∈ −ε∆φ+ ε−1∂F (φ), (1.4)
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where ∂F (φ) is the Fréchet sub-di�erential of F at φ and ∆φ has to be understood in a weak
sense, see [14, 21]. In the case of a constant mobility m(φ) ≡ 1, (1.3) converges to the Mullins�
Sekerka problem [58] as ε → 0 [3, 61]. In order to obtain the surface di�usion equation in the
sharp-interface limit, a degenerate mobility needs to be chosen. For example, it was shown in [26]
by a formal asymptotic analysis that the surface di�usion �ow is recovered by considering a slow
time scale τ = O(ε−1t) of (1.3) with m(φ) = (1−φ2)+ and with the potential F (φ) either chosen
as in (1.2c), or as in (1.2b) with θ = O(εξ), ξ > 0. When using the smooth double-well potential
(1.2a) the situation is less clear. While the limiting motion of surface di�usion is obtained with
the choice m(φ) = (1−φ2)2 [30,46,63,72], using the less degenerate mobility m(φ) = (1−φ2)+
may not lead to pure surface di�usion in the limit ε → 0, since an additional bulk di�usion
term is conjectured to be present due to the non-zero �ux contributions [30, 51, 52]. However,
in all these cases, no rigorous proof for the sharp-interface limit or the presence of non-zero �ux
contributions are available so far.

A natural generalization of the free energy (1.1) to the case of anisotropic surface energies
is given by

Eγ(φ) =
∫
Ω

ε

2
|γ(∇φ)|2 + ε−1F (φ) dx =

∫
Ω
εA(∇φ) + ε−1F (φ) dx, (1.5)

see e.g. [37, 50]. Here, γ : Rd → [0,∞) is the anisotropic density function, which is positively
homogeneous of degree one, and A := 1

2γ
2. This then gives rise to the anisotropic Cahn�Hilliard

equation
∂tφ = ∇ · (m(φ)∇µ), µ = −ε∇ ·A′(∇φ) + ε−1F ′(φ), (1.6)

where A′ represents the gradient of the map A : Rd → [0,∞). In contrast to the isotropic case,
di�use-interface models based on (1.5) result in a nonuniform asymptotic interface thickness,
which in fact depends on the anisotropic density function γ(∇φ), see [2,18,39,74,75]. To remedy
this issue, an alternative energy of the form

Ẽγ(φ) =
∫
Ω
|∇φ|−1γ(∇φ)

(ε
2
|∇φ|2 + ε−1F (φ)

)
dx (1.7)

can be considered, see [64,71], so that a constant thickness of the asymptotic interface is achieved.
However, the resulting di�use-interface models based on (1.7) become more nonlinear and are
singular at ∇φ = 0, which poses great challenges in the mathematical analysis and the stable
numerical approximation. Therefore, in this work, we will restrict ourselves to the classical
energy in (1.5). We also note that to guarantee that (1.6) converges to the anisotropic surface
di�usion �ow as ε→ 0, a rescaled anisotropic coe�cient needs to be introduced to the degenerate
mobility [54,63]. We refer to Section 2 below for the precise details.

Figure 1: Sketch of the structure for SSD near the contact line (green point), where the vapor, �lm and
substrate phases meet.
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When it comes to SSD, as shown in Fig. 1, the total surface energy of the system consists
of the �lm/vapor interface energy Einf and the substrate energy Esub,

Einf =

∫
Γ(t)

γ(ν) dS, Esub = γFS

∫
ΓFS

dS + γV S

∫
ΓV S

dS, (1.8)

where Γ(t) is the dynamic �lm/vapor interface with ν being the interface normal pointing into
the vapor phase, ΓFS and ΓV S are the interfaces between �lm/substrate and vapor/substrate,
respectively, and γFS and γV S are the corresponding surface energy densities. In order to model
SSD by the di�use-interface approach, we associate the vapor phase with φ ≈ 1 and the �lm
phase with φ ≈ −1. Then the Ginzburg�Landau type energy (1.5), up to a multiplicative
constant, will approximate the sharp interface energy Einf . Moreover, the contribution to the
wall energy Esub can be approximated by

Ew(φ) =
∫
ΓFS∪ΓV S

γV S + γFS

2
+ (γV S − γFS)G(φ) dS, (1.9)

where G(φ) is a smooth function satisfying G(±1) = ±1
2 , see [7, 36, 44, 46] for SSD and [45, 62]

for moving contact lines in �uid mechanics.

There are several results on the existence of weak solutions for the degenerate Cahn�Hilliard
equation (1.3) with homogeneous boundary conditions or its variants with inhomogeneous bound-
ary conditions, see [31, 38, 77]. However, little is known about the anisotropic case except the
work in [35] which focuses on a particular n-fold anisotropy in two space dimensions.

The main aim of this work is to develop a di�use-interface approach to SSD in the case
of anisotropic surface energies based on the energy contributions (1.5) and (1.9). The obtained
di�use-interface model consists of a degenerate anisotropic Cahn�Hilliard equation with appro-
priate boundary conditions. We study the sharp-interface limit and show the existence of weak
solutions to the di�use-interface model.

The rest of the paper is organized as follows. In Section 2, we review a sharp-interface model
for SSD and then introduce a di�use-interface model based on a gradient �ow approach. We then
derive the sharp-interface limit from a regularized model with the help of asymptotic expansions
in Section 3. In Section 4, we prove the existence of weak solutions to the di�use-interface
model. Numerical tests are presented in Section 5, where a comparison between sharp-interface
approximations and di�use-interface approximations is made.

2 Modeling aspects

In this section, we �rst review a sharp-interface model for SSD with anisotropic surface energies
in two or three space dimensions. Then, we propose a suitable di�use-interface model to approx-
imate this sharp-interface model. Here we note that there exist several works on the modelling
of SSD using a di�use-interface approach in the literature. However, these works consider either
the isotropic case, e.g., [7, 47], or the anisotropic case in 2d, e.g., [36].

2.1 The sharp-interface model

We consider the dewetting of a solid thin �lm on a �at substrate in Rd with d ∈ {2, 3}, as shown
in Fig. 1. We parameterize the interface of Γ(t) over the initial interface as follows

x(·, t) : Γ(0)× [0, T ] → Rd,
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where T > 0 is a prescribed �nal time. The induced velocity is then given by

V(x(q, t), t) = ∂tx(q, t) for all q ∈ Γ(0), t ∈ [0, T ],

where Γ(0) is a smooth hypersurface with boundary. The sharp-interface model for SSD (cf.
[12, 28,48,69]) reads as:

V = −∇s · (D(ν)∇sκγ), (2.1a)

κγ = −∇s · γ′(ν), (2.1b)

which has to hold for all t ∈ [0, T ] and all points on Γ(t). Here, V = V ·ν is the normal velocity,
ν is the unit normal to Γ(t) pointing into the vapor, and ∇s is the surface gradient operator
on Γ(t). Besides, D(ν) is an orientation dependent mobility (cf. [69]). The function D needs
to be de�ned for unit vectors, but here we extend its domain to Rd such that it is positively
homogeneous of degree one. The term κγ represents the anisotropic mean curvature, and γ′(ν) is
the Cahn�Ho�man vector, where γ′ denotes the gradient of γ (cf. [43]). The above equations are
subject to the following boundary conditions at the contact line, where the �lm/vapor interface
Γ(t) meets the substrate:

� attachment condition
V · nw = 0, (2.2a)

� contact angle condition
γ′(ν) · nw + σ = 0, (2.2b)

� zero-�ux condition
D(ν)∇sκγ · nc = 0, (2.2c)

where
σ = γV S − γFS (2.3)

denotes the di�erence of the substrate energy densities across the contact line. Here, nw is the
unit normal to the substrate and points in the direction of the substrate, and nc is the conormal
vector of Γ(t), i.e., it is the outward unit normal to ∂Γ(t) and it lies within the tangent plane
of Γ(t). We observe that (2.2b) enforces an angle condition between the Cahn�Ho�man vector
γ′(ν) and the substrate unit normal nw. For example, in the isotropic case, γ(p) = |p|, the
Cahn�Ho�man vector reduces to the normal ν, and so if σ = 0 the condition (2.2b) encodes a
90◦ contact angle between the �lm/vapor interface and the substrate.

We assume that the anisotropy function γ belongs to C2
(
Rd \ {0}

)
∩C(Rd,R≥0), is convex

and satis�es γ > 0 on Rd \ {0}. We further assume that γ is positively homogeneous of degree
one, meaning that

γ(λp) = λγ(p) for all λ > 0, p ∈ Rd.

This immediately implies γ(0) = 0 and the gradient of γ(p) satis�es

γ′(p) · p = γ(p) for all p ∈ Rd \ {0}. (2.4)

Similarly, the orientation dependent mobility function D ∈ C2
(
Rd\{0}

)
∩C(Rd,R≥0) is assumed

to satisfy D > 0 on Rd \ {0} and

D(λp) = λD(p) for all λ > 0, p ∈ Rd.
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Consequently, for the map

A : Rd → R, p 7→ 1
2γ

2(p) (2.5)

introduced in (1.5), we have A ∈ C2
(
Rd \ {0}

)
∩ C(Rd,R≥0). It also follows directly from (2.4)

that the relations

A(λp) = λ2A(p), A′(p) = γ(p)γ′(p), A′(p) · p = 2A(p), (2.6a)

A′(λp) = λA′(p), A′′(λp) = A′′(p), A′′(p)p = A′(p) (2.6b)

hold for all p ∈ Rd \ {0} and all λ > 0. Here, A′ and A′′ denote the gradient and the Hessian of
A, respectively.

2.2 The di�use-interface model

Thin film

Vapor

Figure 2: Geometric setup for SSD in a bounded domain Ω with Ω = Ω−(t) ∪ Ω+(t), where Ω−(t) :=
{x ∈ Ω : φ(x, t) < 0} and Ω+(t) := {x ∈ Ω : φ(x, t) > 0}.

Let φ : Ω× [0, T ] → R be an order parameter such that the zero level set {x ∈ Ω : φ(x, t) =
0} approximates the �lm/vapor interface Γ(t), {x ∈ Ω : φ(x, t) < 0} corresponds to the region
occupied by the thin �lm at time t, whereas {x ∈ Ω : φ(x, t) > 0} represents the region occupied
by the vapor at time t (see Fig. 2). In addition, Γw ⊂ ∂Ω models the boundary of the substrate.
As a combination of (1.5) and (1.9), the total free energy of the system is given by

E(φ) := 1

cF
Eγ(φ) + Ew(φ)− γV S |Γw|

=
1

cF

∫
Ω
εA(∇φ) + ε−1F (φ) dx+ σ

∫
Γw

G(φ) dS − σ

2
|Γw|, (2.7)

where cF =
∫ 1
−1

√
2F (s) ds and |Γw| =

∫
Γw

dS. This choice of cF ensures that

1

cF
Eγ(φ) ≈

∫
Γ(t)

γ(ν) dS

for su�ciently small ε > 0. Besides, the constant term −γV S |Γw| was added to the total energy
such that E(φ) now only depends on the single parameter σ (see (2.3)) instead of on γV S and
γFS . We next derive the di�use-interface model. To this end, we use the smooth double-well
potential

F (φ) =
1

2
(1− φ2)2. (2.8)
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This implies

cF =

∫ 1

−1

√
2F (s) ds =

4

3
.

We further choose

G(φ) =
1

4
(3φ− φ3), (2.9)

which yields G(±1) = ±1
2 and G′(±1) = 0. Let ψ : Ω → R be a su�ciently smooth function.

Then the �rst variation of the total free energy (2.7) in the direction of ψ can be computed as

lim
δ→0

E(φ+ δψ)− E(φ)
δ

=
1

cF

∫
Ω
εA′(∇φ) · ∇ψ + ε−1F ′(φ)ψ dx+ σ

∫
Γw

G′(φ)ψ dS

=
1

cF

∫
Ω
[ε−1F ′(φ)− ε∇ ·A′(∇φ)]ψ dx+

1

cF

∫
∂Ω\Γw

εA′(∇φ) · nψ dS

+
1

cF

∫
Γw

[
εA′(∇φ) · nw + cF σG

′(φ)
]
ψ dS, (2.10)

where n is the outward unit normal to ∂Ω \ Γw and nw is the outward unit normal to Γw,
as de�ned previously. The following di�use-interface model for SSD can be interpreted as a
weighted H−1-gradient �ow of the energy functional (2.7):

α∂tφ = ε−1∇ · (m(φ)β(∇φ)∇µ) , in Q = Ω× (0, T ], (2.11a)

µ = −ε∇ ·A′(∇φ) + ε−1F ′(φ), in Q. (2.11b)

Here, α > 0 is a time scaling coe�cient, m(φ) is the degenerate mobility given by

m(φ) = (1− φ2)2+ =

 2F (φ) if |φ| ≤ 1,

0 otherwise,
(2.12)

and β(∇φ) is de�ned as

β(∇φ) = D(∇φ)
γ(∇φ)

, (2.13)

and so is positively homogeneous of degree zero.

We now write Σ = ∂Ω × (0, T ] and Σw = Γw × (0, T ]. On Σw, we impose the boundary
conditions

m(φ)β(∇φ)∇µ · nw = 0, εA′(∇φ) · nw + cF σG
′(φ) = 0. (2.14a)

Here the �rst equation is the zero-�ux condition on the boundary, whereas the second equation
guarantees the integral over Γw in (2.10) vanishes. Moreover, on Σ \Σw, we impose the natural
boundary conditions

m(φ)β(∇φ)∇µ · n = 0, A′(∇φ) · n = 0. (2.14b)

Remark 2.1. It is also possible to consider the double-obstacle potential (1.2c) along with the
mobility m(φ) = (1 − φ2)+. Then the corresponding di�use-interface model consists of (2.11a)
and the variational inclusion

µ ∈ −ε∇ ·A′(∇φ) + ε−1∂F (φ). (2.15)

instead of (2.11b).
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3 The sharp-interface limit

We consider the smooth double-well potential introduced in (2.8) and regularize the coe�cients
m(φ) and β(∇φ) of the di�use-interface model (2.11) with the help of the interfacial parameter
ε by de�ning

mε(φ) := εr +m(φ) = εr + (1− φ2)2+, (3.1)

βε(∇φ) :=

√
d21ε

r +D2(∇φ)
γ20ε

r + γ2(∇φ)
, (3.2)

where r ≥ 2. The regularized di�use-interface model is then given by

α∂tφ
ε = ε−1∇ · (mε(φε)βε(∇φε)∇µε) in Q, (3.3a)

µε = −ε∇ ·A′(∇φε) + ε−1F ′(φε) in Q, (3.3b)

mε(φε)βε(∇φε)∇µε · nw = 0 on Σw, (3.3c)

εA′(∇φε) · nw + cF σG
′(φε) = 0 on Σw, (3.3d)

mε(φε)βε(∇φε)∇µε · n = 0 on Σ \ Σw, (3.3e)

εA′(∇φε) · n = 0 on Σ \ Σw. (3.3f)

We note that the introduction of the three regularization terms εr in (3.1) and (3.2) allows for
a mathematical analysis of (3.3) in Section 4 below. In fact, on de�ning

γ0 := min
|p|=1

γ(p) > 0, γ1 := max
|p|=1

γ(p) > 0,

d0 := min
|p|=1

D(p) > 0, d1 := max
|p|=1

D(p) > 0,

we have

εr ≤ mε(φ) ≤ εr + 1 and
d0
γ1

≤ βε(∇φ) ≤ d1
γ0
.

Moreover, by choosing r ≥ 2 we ensure that the sharp interface limit of (3.3) is unchanged
compared to the limit of (2.11).

We now formally derive the sharp-interface limit of the regularized model (2.11) via the
method of matched asymptotic expansions. We suppose that for ε > 0, (φε, µε) is the solution
of the regularized di�use-interface model (3.3). Then we write

Γε(t) :=
{
x ∈ Ω | φε(x, t) = 0

}
and Λε(t) := Γε(t) ∩ Γw (3.4)

to denote the interface and the contact line, respectively. We further assume that their limits as
ε → 0 are given by Γ(t) and Λ(t), respectively. We introduce a local parameterization for Γ(t)
on an open subset O ⊂ Rd−1 by

r(s, t) : O × [0, T ] → Rd. (3.5)

Our asymptotic analysis for the interface dynamics will follow similar techniques in the literature
for degenerate Cahn-Hilliard equations, see e.g. [26,30] for the isotropic case and [36,63] for the
anisotropic case in 2d.
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3.1 Outer expansions

Away from the interface and the contact line, we assume that the following ansatz holds

φε(x, t) = φ0(x, t) + εφ1(x, t) + ε2φ2(x, t) + · · · , (3.6a)

µε(x, t) = ε−1 µ−1(x, t) + µ0(x, t) + εµ1(x, t) + ε2µ2(x, t) + · · · . (3.6b)

Moreover, in view of (3.1) and (3.2), we know that

mε(φε) = m(φ0) + εm′(φ0)φ1 +O(ε2), (3.7a)

βε(∇φε) = β(∇φ0) + ε β′(∇φ0) · ∇φ1 +O(ε2), (3.7b)

since r ≥ 2 and βε(p) = β(p) + O(εr), where β′ denotes the gradient of β. Plugging the
expansions (3.6) and (3.7) into (3.3a) and (3.3b) gives

0 = ∇ · (β(∇φ0)m(φ0)∇µ−1), µ−1 = F ′(φ0).

As the energy (1.5) is expected to be bounded at leading order, it needs to hold F (φ0) = 0. This
means that φ0 attains only the values −1 and 1. Hence, µ−1 = 0. We now de�ne

Ω+(t) :=
{
x ∈ Ω | φ0(x, t) = 1

}
, Ω−(t) :=

{
x ∈ Ω | φ0(x, t) = −1

}
,

as the outer regions, meaning that φ0 = ±1 in Ω±(t).

3.2 Inner expansions

In the inner region near the interface Γ(t), we introduce the annular neighbourhood

N (t) :=
{
x ∈ Ω : |d(x, t)| < δ

}
, δ > 0,

where d(x, t) represents the signed distance of x to Γ(t), de�ned to be positive in Ω+(t). Assuming
Γ(t) to be su�ciently smooth, we �nd a δ > 0 such that for every x ∈ N (t), there exist unique
vectors r(x, t) and s(x, t) such that

x = r(s(x, t), t) + d(x, t)ν(s(x, t), t). (3.8)

Here ν(s, t) is the unit normal vector on Γ(t) at r(s, t) pointing into Ω+(t).

Due to rapid changes of φε in normal direction, we introduce the stretched variable ρ(x, t) =
ε−1d(x, t). Any scalar function b(x, t) can be expressed in the new coordinate system as b(x, t) =
b(s(x, t), ρ(x, t), t). For any vector �eld b(x, t), we use an analogous notation. Without loss of
generality, we assume that {t1, t2, · · · , td−1} forms an orthonormal basis of the tangent space
of Γ(t) at the point r(s, t) such that

ti · tj = δij , tj = ∂sjr, ∂sjtj = −κj ν for s = (s1, s2, · · · , sd−1)
T ,

where κj is the principal curvature of Γ(t) at the point r(s, t) in the direction of tj . As in [30],
we obtain the identities

∇d = ε∇ρ = ν(s, t) and ∇sj =
1

1 + ε ρ κj(s, t)
tj(s, t), 1 ≤ j ≤ d− 1, in N (t).
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Therefore, using the new coordinates, we calculate

∂tb = ∂tb+
d−1∑
j=1

∂sjb ∂tsj + ∂ρb ∂tρ = ∂Γt b− ε−1V ∂ρb, (3.9a)

∇b = ∇ρ ∂ρb+
d−1∑
j=1

∂sjb∇ sj = ε−1 ν ∂ρb+∇sb+O(ε), (3.9b)

∇ · b = ∇ρ · ∂ρb+
d−1∑
j=1

∂sjb · ∇ sj = ε−1ν · ∂ρb+∇s · b+O(ε), (3.9c)

where ∇s =
∑d−1

j=1 tj ∂sj denotes the surface gradient operator on Γ(t),

∂Γt b = ∂tb+

d−1∑
j=1

∂sjb ∂tsj ,

and V is the velocity of Γ(t) in the direction of ν, i.e., V = −∂td = −ε ∂tρ.
In the inner region, we assume the following expansions

φε = Φ0(s, ρ, t) + εΦ1(s, ρ, t) + ε2Φ2(s, ρ, t) + · · · , (3.10a)

µε = ε−1M−1(s, ρ, t) +M0(s, ρ, t) + εM1(s, ρ, t) + ε2M2(s, ρ, t) + · · · . (3.10b)

In particular, on assuming ∂ρΦ0 > 0, we have, similarly to (3.7), that

mε(∇φε) = m(Φ0) + εm′(Φ0) Φ1 +O(ε2), (3.11a)

βε(∇φε) = β(ν) + ε β′(ν) · ∇sΦ0 +O(ε2), (3.11b)

where we have used the fact that β is positively homogeneous of order zero.

Plugging (3.10) and (3.11) into (3.3a), we obtain the leading order term

0 = ∂ρ
(
β(ν)m(Φ0)∂ρM−1

)
, (3.12)

which implies that m(Φ0)∂ρM−1 is independent of ρ, i.e., it can be expressed as

m(Φ0) ∂ρM−1 = J(s, t).

In addition, using the matching condition

lim
ρ→±∞

Φ0(ρ) = ±1, (3.13)

we infer J(s, t) = 0 due to the degenerate mobility m(Φ0). Since m(s) > 0 if s ∈ (−1, 1), we thus
conclude that M−1 is independent of ρ. By the matching condition limρ→±∞M−1(s, t) = µ−1,
we obtain

M−1 =M−1(s, t) ≡ 0.

For the terms of order O( 1
ε3
), we obtain

0 = ∂ρ (β(ν)m(Φ0)∂ρM0) .

10



Repeating the above line of argument, we deduce

∂ρM0 = 0, M0 =M0(s, t). (3.14)

Using the fact that M−1 = 0 and ∂ρM0 = 0, we then have the following expansions

∇ · (βε(∇φε)mε(φε)∇µε)

=
1

ε
∂ρ(β(ν)m(Φ0) ∂ρM1)

+ ∂ρ(β
′(ν) · ∇sΦ0m(Φ0) ∂ρM1 + β(ν)m′(Φ0)Φ1 ∂ρM1)

+ ∂ρ(β(ν)m(Φ0) ∂ρM2) +∇s · (β(ν)m(Φ0)∇sM0) +O(ε). (3.15)

Considering the order O( 1
ε2
) of (3.3a), we obtain that

0 = ∂ρ (β(ν)m(Φ0) ∂ρM1) . (3.16)

Similarly, by using the matching conditions we arrive at

M1 =M1(s, t). (3.17)

At O(1ε ), using ∂ρM1 = 0 and (3.15), we have

−αV∂ρΦ0 = ∂ρ (β(ν)m(Φ0) ∂ρM2) +∇s · (β(ν)m(Φ0)∇sM0) . (3.18)

We next consider the expansion of (3.3b). Using the identities in (2.6) and assuming
∂ρΦ0 > 0, we expand the anisotropic term A′(∇Φε) as follows:

A′(∇Φε) = A′
(
1

ε
∂ρΦ

ε ν +∇sΦ
ε +O(ε)

)
=

1

ε
∂ρΦ

εA′(ν) +A′′(ν)∇sΦ
ε +O(ε).

This then yields

∇ ·A′(∇Φε) =
1

ε
∂ρ[A

′(∇Φε)] · ν +∇s ·A′(∇Φε)

=
1

ε
∂ρ

(
1

ε
∂ρΦ

ε 2A(ν) +A′(ν) · ∇sΦ
ε

)
+∇s ·

(
1

ε
∂ρΦ

εA′(ν) +A′′(ν)∇sΦ
ε

)
+O(ε)

=
2

ε2
∂ρρΦ

εA(ν) +
1

ε

(
A′(ν) · ∂ρ(∇sΦ

ε) +∇s · (∂ρΦεA′(ν))
)
+O(1).

Now, plugging (3.10) into (3.3b), we obtain for the leading order term that

2A(ν)∂ρρΦ0 − F ′(Φ0) =M−1 = 0. (3.19)

Using the translation identity Φ0(0) = 0, we then obtain

Φ0(ρ) = tanh

(
ρ

γ(ν)

)
, −∞ < ρ < +∞. (3.20)

Similarly, the O(1) term resulting from (3.3b) implies

2A(ν)∂ρρΦ1 +A′(ν) · ∂ρ(∇sΦ0) +∇s · (∂ρΦ0A
′(ν))− F ′′(Φ0)Φ1 = −M0(s, t). (3.21)
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Multiplying (3.21) by ∂ρΦ0 and then integrating from −∞ to ∞ with respect to ρ yields∫ +∞

−∞

(
A′(ν) · ∂ρ(∇sΦ0) +∇s · (∂ρΦ0A

′(ν))
)
∂ρΦ0 dρ

+

∫ +∞

−∞

(
2A(ν)∂ρρΦ1∂ρΦ0 − F ′′(Φ0)Φ1∂ρΦ0

)
dρ = −M0

∫ +∞

−∞
∂ρΦ0 dρ. (3.22)

Di�erentiating (3.19) with respect to ρ gives

2A(ν)∂ρρρΦ0 − F ′′(Φ0)∂ρΦ0 = 0.

Therefore, since limρ→±∞ ∂ρΦ0 = 0 and limρ→±∞Φ1 = 0, we compute∫ +∞

−∞

(
2A(ν)∂ρρΦ1∂ρΦ0 − F ′′(Φ0)Φ1∂ρΦ0

)
dρ

=

∫ +∞

−∞
(2A(ν)∂ρρρΦ0 − F ′′(Φ0)∂ρΦ0) Φ1 dρ = 0

via integration by parts. Then, using (3.20) and the matching condition in (3.13), we can
reformulate (3.22) as∫ +∞

−∞

(
A′(ν) · ∂ρ(∇sΦ0) +∇s · (∂ρΦA′(ν))

)
∂ρΦ0 dρ = −2M0(s, t). (3.23)

It further follows from (3.20) that ∂ρ(∇sΦ0) = ∇s(∂ρΦ0). We thus have∫ +∞

−∞
∇s · [A′(ν)(∂ρΦ0)

2] dρ = −2M0(s, t),

which yields

M0(s, t) = −1

2
∇s ·

(
A′(ν)

∫ +∞

−∞
(∂ρΦ0)

2 dρ

)
= −1

2
cF∇s · γ′(ν) =

1

2
cFκγ , (3.24)

where κγ = −∇s · γ′(ν) is the weighted mean curvature de�ned in (2.1b).

We now return to (3.18) and integrate it with respect to ρ from −∞ to +∞. Using the fact
that limρ→±∞m(Φ0)∂ρM2 = 0, we get

−2αV = ∇s ·
(
β(ν)

∫ ∞

−∞
m(Φ0) dρ∇sM0

)
= cF∇s · [D(ν)∇sM0],

where we recall (3.20) and also use the identities

β(ν) =
D(ν)

γ(ν)
and

∫ +∞

−∞
m(Φ0) dρ =

∫ +∞

−∞
2F (Φ0(ρ)) dρ = cF γ(ν).

We thus obtain

V = −
c2
F

4α
∇s · [D(ν)∇sκγ ] with κγ = −∇s · γ′(ν). (3.25)
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3.3 Expansions near the intersection with the substrate

We next study the expansions near the intersection with the substrate using the technique
discussed in [36,60].

3.3.1 The boundary layer near the wall

In the boundary layer near Γw, we �rst introduce the variable η = ε−1 dw(x), where dw(x)
represents the distance from x to the wall Γw. Then for a scalar function b(x, t), we can write
it as b(x, t) = b̂(η,y, t), where y is the (d− 1)-dimensional coordinate system that is orthogonal
to η. This implies

∇b = ∇yb̂− ε−1∂η b̂nw.

We consider the expansions

φε = φ̂0(η,y, t) + εφ̂1(η,y, t) + ε2φ̂2(η,y, t) + · · · , (3.26)

µε = µ̂0(η,y, t) + εµ̂1(η,y, t) + ε2µ̂2(η,y, t) + · · · , (3.27)

and plug them into (3.3a) and (3.3b). The leading order terms yield

∂η

(
β̂0m(φ̂0) ∂ηµ̂0

)
= 0, (3.28a)

∂η[A
′(−∂ηφ̂0 nw)] · nw + F ′(φ̂0) = 0, (3.28b)

where β̂0 = β(−∂ηφ̂0 nw). At the boundary η = 0, it holds

−A′(−∂ηφ̂0 nw) · nw + cF σG
′(φ̂0) = 0, (3.29a)

β̂0m(φ̂0)∂ηµ̂0 = 0. (3.29b)

Thus from (3.28a) and (3.29b) we obtain

m(φ̂0)∂ηµ̂0 = 0.

Multiplying (3.28b) by ∂ηφ̂0 and using the identities in (2.6), we arrive at

0 = −∂ηη φ̂0 nw ·A′′(−∂ηφ̂0 nw) ∂ηφ̂0 nw + F ′(φ̂0)∂ηφ̂0

= ∂ηηφ̂0 nw ·A′(−∂ηφ̂0 nw) + F ′(φ̂0)∂ηφ̂0. (3.30)

Integrating (3.30) over η leads to

F (φ̂0) = A(−∂ηφ̂0 nw) + c(y, t) = (∂ηφ̂0)
2A(−nw), (3.31)

where c(y, t) = 0 due to the matching condition when η → ∞. This implies

∂ηφ̂0 =

 −
√

F (φ̂0)
A(−nw) if ∂ηφ̂0 < 0,

+
√

F (φ̂0)
A(−nw) if ∂ηφ̂0 > 0.

(3.32)
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3.3.2 The inner layer near the contact line

We assume that a local parameterization of the contact line Λ(t) is given by

rw(sw, t) : Ow × [0, T ] → Rd, (3.33)

where in the case d = 2, we simply set Ow = {0}. For a contact point xc ∈ Λ(t), we then
introduce an interior layer near it. Precisely, for any x in the plane that contains xc and is
spanned by ns and nw, we write

ξ = ε−1 (x− xc) · ns, η = −ε−1 (x− xc) · nw,

where ns is the unit normal to Λ(t) on the wall Γw and pointing into Ω+(t). For a scalar function
b(x, t), we can rewrite it as b(x, t) = b̃(sw, ξ, η, t). In a similar manner to (3.9), we compute

∂tb = −ε−1∂ξ b̃ (∂txc · ns) + ∂Λt b̃, (3.34)

∇b = ε−1 (∂ξ b̃ns − ∂η b̃nw) +∇sw b̃+O(ε), (3.35)

∇ · b = ε−1 (∂ξb̃ · ns − ∂ηb̃ · nw) +∇sw · b̃+O(ε), (3.36)

where ∇Λ
t b̃ = ∂tb̃+ ∂tsw · ∇sw b̃. We then consider the expansions

φε = φ̃0(sw, ξ, η, t) + εφ̃1(sw, ξ, η, t) + ε2φ̃2(sw, ξ, η, t) + · · · , (3.37)

µε = µ̃0(sw, ξ, η, t) + εµ̃1(sw, ξ, η, t) + ε2µ̃2(sw, ξ, η, t) + · · · , (3.38)

and plug them into (3.3a) and (3.3b). By de�ning ∇c = ns ∂ξ − nw ∂η, the leading order term
yields

∇c ·
(
β̃0m(φ̃0)∇cµ̃0

)
= 0, (3.39a)

∂ξ
(
A′(∇cφ̃0) · ns

)
− ∂η

(
A′(∇cφ̃0) · nw

)
= F ′(φ̃0), (3.39b)

where β̃0 = β(∇cφ̃0). Similarly, the leading order terms of the boundary conditions (3.3c) and
(3.3d) give

β̃0m(φ̃0)∂ηµ̃0 = 0, (3.40a)

A′(∇cφ̃0) · nw + cF σG
′(φ̃0) = 0. (3.40b)

Besides, we have the matching condition

lim
ξ→±∞

φ̃0 = lim
y→y(x±

c )
φ̂0(y, η) = φ̂±

0 . (3.41)

Now, multiplying (3.39b) by ∂ξφ̃0 and integrating the resulting equation in a box R := [−ξ1, ξ1]×
[0, η1], we get∫ ξ1

−ξ1

∫ η1

0
∂ξφ̃0

[
∂ξ
(
A′(∇cφ̃0) · ns

)
− ∂η

(
A′(∇cφ̃0) · nw

)]
dηdξ =

∫ ξ1

−ξ1

∫ η1

0
∂ξφ̃0 F

′(φ̃0) dηdξ,

which can be rewritten as∫ η1

0

∫ ξ1

−ξ1

∂ξ
[
F (φ̃0) +A(∇cφ̃0)− ∂ξφ̃0A

′(∇cφ̃0) · ns

]
dξdη

+

∫ ξ1

−ξ1

∫ η1

0
∂η
[
∂ξφ̃0A

′(∇cφ̃0) · nw

]
dηdξ = 0, (3.42)
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by using the identity

−∂ξφ̃0 ∂ξ[A
′(∇cφ̃0) · ns]− ∂ξ∂ηφ̃0A

′(∇cφ̃0) · nw = ∂ξ
[
A(∇cφ̃0)− ∂ξφ̃0A

′(∇cφ̃0) · ns

]
.

For the �rst integral in (3.42), applying Gauss's theorem and using the matching condition
in (3.41) as well as the fact limξ→+∞ ∂ξφ̃0 = 0, we have

lim
ξ1,η1→+∞

∫ η1

0

[
F (φ̃0) +A(∇cφ̃0)− ∂ξφ̃0A

′(∇cφ̃0) · ns

]ξ1
−ξ1

dη

=

∫ +∞

0
F (φ̂+

0 ) +A(−∂ηφ̂+
0 nw) dη −

∫ +∞

0
F (φ̂−

0 ) +A(−∂ηφ̂−
0 nw) dη

= 2

∫ +∞

0
F (φ̂+

0 ) dη − 2

∫ +∞

0
F (φ̂−

0 ) dη

= 2
√
A(−nw)

(∫ +∞

0

√
F (φ̂+

0 )∂ηΦ
+
0 dη +

∫ +∞

0

√
F (φ̂−

0 )∂ηΦ
−
0 dη

)
= 0, (3.43)

where we have used (3.31) and (3.32).

We then apply Gauss's theorem to the second integral in (3.42). Recalling the boundary
condition (3.40b), we obtain∫ ξ1

−ξ1

[
∂ξφ̃0A

′(∇cφ̃0) · nw

]∣∣
η1
dξ −

∫ ξ1

−ξ1

[
∂ξφ̃0A

′(∇cφ̃0) · nw

]∣∣
0
dξ

=

∫ ξ1

−ξ1

[
∂ξφ̃0A

′(∇cφ̃0) · nw

]∣∣
η1
dξ + cF σ

∫ ξ1

−ξ1

∂ξφ̃0G
′(φ̃0) dξ = I + II. (3.44)

Sending ξ1 → +∞ and recalling (2.9), we obtain

lim
ξ1→+∞

II = lim
ξ1→+∞

cF σ

∫ ξ1

−ξ1

∂ξφ̃0 g(φ̃0) dξ = cF σ (G(1)−G(−1)) = cF σ. (3.45)

η1

−ξ1

θd

xc ξ1

ηζ

ρ

ξΓw

Figure 3: Sketch of the local coordinates (ξ, η) and (ρ, ζ) at a contact point xc, where θd ∈ (0, π) is the
contact angle.

Next we rewrite the term I in terms of the new coordinate system (ρ, ζ), which can be
regarded as a transformation from (η, ξ) with a counterclockwise rotation of θd in the plane (see
Fig. 3). Precisely, it holds that

ρ = ξ sin θd + η cos θd, ζ = −ξ cos θd + η sin θd, (3.46a)
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and thus

∂ξ = ∂ρ sin θd − ∂ζ cos θd, ∂η = ∂ρ cos θd + ∂ζ sin θd. (3.46b)

Moreover, we have

∇c = ns ∂ξ − nw ∂η = ν ∂ρ − nc ∂ζ , nc = sin θd nw + cos θd ns, (3.46c)

where nc is the conormal vector of Γ(t) at xc. By (3.46), we can recast the term I as

I =

∫ ξ1 sin θd+η1 cos θd

−ξ1+η1 cos θd

[
∂ρφ̃0 − ∂ζφ̃0 cot θd

]
A′(∂ρφ̃0ν − ∂ζφ̃0 nc) · nw dρ. (3.47)

By the matching condition limζ→+∞ φ̃0 = Φ0(ρ), we have limζ→+∞ ∂ζφ̃0 = 0. Then it follows
directly that

lim
ξ1,η1→+∞

I =

∫ +∞

−∞
(∂ρΦ0)

2A′(ν) · nw dρ =
cF A

′(ν) · nw

γ(ν)
= cF γ

′(ν) · nw. (3.48)

Collecting the results in (3.43), (3.45) and (3.48) yields that

γ′(ν) · nw + σ = 0, (3.49)

which is exactly the anisotropic Young's law in (2.2b).

We next derive the zero-�ux condition. Similarly to the above, we integrate (3.39a) over
the box R. Applying Gauss's theorem and using the boundary condition (3.40a) gives rise to

0 =

∫ η1

0

∫ ξ1

−ξ1

∂ξ[β̃0m(φ̃0) ∂ξµ̃0] + ∂η[β̃0m(φ̃0) ∂ηµ̃0] dξdη

=

∫ η1

0

[
β̃0m(φ̃0) ∂ξµ̃0

] ∣∣ξ1
−ξ1

dη +

∫ ξ1

−ξ1

[
β̃0m(φ̃0) ∂ηµ̃0

] ∣∣
η1
dξ = III + IV. (3.50)

Taking ξ1 → ∞ and using fact limξ→±∞ φ̃0 = ±1 as well as m(φ̃0) = 0, we get III = 0. On
recalling (3.46) as well as the matching conditions

lim
ζ→+∞

φ̃0 = Φ0(ρ) = tanh
( ρ

γ(ν)

)
, lim

ζ→+∞
µ̃0 =M0(s, t) = κγ , lim

ζ→+∞
∂ζφ̃0 = 0,

we get in the case of ξ1, η1 → ∞ that

0 =

∫ ∞

−∞
[m(Φ0)β(ν)∂ζκγ ] dρ = −β(ν)

∫ ∞

−∞
m(Φ0) dρ nc · ∇sκγ .

This yields the zero-�ux condition

D(ν)nc · ∇sκγ = 0. (3.51)

In addition, the attachment condition in (2.2a) follows naturally.

In summary, we thus obtain the following system of equations as the sharp-interface limit
of the regularized di�use interface model (3.3):

V = −
c2
F

4α
∇s · [D(ν)∇sκγ ] with V = V · ν and κγ = −∇s · γ′(ν) on Γ(t), (3.52a)

V · nw = 0, γ′(ν) · nw + σ = 0, D(ν)nc · ∇sκγ = 0 on Λ(t). (3.52b)
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Remark 3.1. In the case of the double-obstacle potential (1.2c) and the degenerate mobility
m(φ) = (1 − φ2)+, we could obtain (3.52a) in a similar manner. But the leading order inner
solution (3.20) should be replaced by

Φ0(ρ) =


sin( ρ

γ(ν)) if ρ ∈ [−π
2γ(ν),

π
2γ(ν)],

−1 if ρ < −π
2γ(ν),

1 if ρ > π
2γ(ν).

(3.53)

This yields cF = π
2 in (3.52a). The boundary conditions in (3.52b) can be derived similarly. It

is also possible to consider the logarithmic potential (see (1.2b)) along with the mobility m(φ) =
(1 − φ2)+. If θ = O(εξ) for some ξ > 0, it can be shown by means of the techniques from [26]
that the same desired sharp interface limit is obtained.

4 Analysis of the di�use interface model

In this section, we analyze a general class of di�use interface models of the type

α∂tφ = ∇ ·
(
M(∇φ,φ)∇µ

)
in Q, (4.1a)

µ = −ε∇ ·A′(∇φ) + ε−1F ′(φ) in Q, (4.1b)

∇µ · n = 0 on Σ, (4.1c)

εA′(∇φ) · n+ cF σG
′(φ) = 0 on Σw, (4.1d)

εA′(∇φ) · n = 0 on Σ \ Σw, (4.1e)

φ|t=0 = φ0 in Ω, (4.1f)

where α, ε, cF ∈ R>0 and σ ∈ R are given constants. In contrast to the previous sections, the
potential F : R → R as well as G : R → R, A : Rd → R and M : Rd × R → R are general
functions satisfying certain conditions that will be speci�ed in Subsection 4.1. If A, F , G, mε

and βε are chosen as in (2.5), (2.8), (2.9), (3.1) and (3.2), respectively, and if M is de�ned by
M(p, s) := βε(p)mε(s) for all p ∈ Rd and s ∈ R, then the system (4.1) is exactly the model (3.3)
that was introduced in Section 3. The total free energy functional E : H1(Ω) → R associated
with the system (4.1), up to an additive constant, reads as

E(φ) := 1

cF

∫
Ω
εA(∇φ) + ε−1F (φ) dx+ σ

∫
Γw

G(φ) dS. (4.2)

It is also possible to consider the system (4.1) for F being the double-obstacle potential, which
can be expressed as

F : R → [0,∞], F (s) = F0(s) + I[−1,1](s), (4.3)

where the function

F0 : R → [0,∞), F0(s) =
1
2(1− φ2), (4.4)

represents its regular part, and

I : R → [0,∞], I[−1,1](s) =

{
0 if |s| ≤ 1,

+∞ if |s| > 1
(4.5)

denotes the indicator functional of the interval [−1, 1]. In this case, (4.1b) needs to be represented
by a variational inequality, see (4.18b).
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4.1 Notation and preliminaries

Notation. In this section, we use the following notation: For any 1 ≤ p ≤ ∞ and k ≥ 0, the
standard Lebesgue and Sobolev spaces on Ω are denoted by Lp(Ω) and W k,p(Ω). Their standard
norms are written as ∥ · ∥Lp(Ω) and ∥ · ∥Wk,p(Ω). In the case p = 2, these spaces are Hilbert spaces,

and we write Hk(Ω) = W k,2(Ω). Here, we identify H0(Ω) with L2(Ω). For the Lebesgue and
Sobolev spaces on ∂Ω, we use an analogous notation. For any Banach space X, its dual space is
denoted by X ′, and the associated duality pairing by ⟨· , ·⟩X . If X is a Hilbert space, we write
(·, ·)X to denote its inner product. We further de�ne

⟨f⟩Ω :=
1

|Ω|
⟨f , 1⟩H1(Ω) for f ∈ H1(Ω)′

as the generalized spatial mean of f , where |Ω| denotes the d-dimensional Lebesgue measure of
Ω. With the usual identi�cation L1(Ω) ⊂ H1(Ω)′ it holds that ⟨f⟩Ω = 1

|Ω|
∫
Ω f dx if f ∈ L1(Ω).

In addition, we introduce

H1
(m)(Ω) :=

{
u ∈ H1(Ω)

∣∣ ⟨u⟩Ω = m
}

for any m ∈ R,

H−1
(0) (Ω) :=

{
f ∈

(
H1(Ω)

)′ ∣∣ ⟨f⟩Ω = 0
}
.

We point out that for every m ∈ R, H1
(m)(Ω) is an a�ne subspace of the Hilbert space H1(Ω).

In the case m = 0, it is even a closed linear subspace, meaning that H1
(0)(Ω) is also a Hilbert

space.

General assumptions. We make the following general assumptions that are supposed to hold
throughout this section.

A1 The set Ω ⊂ Rd with d ∈ {2, 3} is a bounded Lipschitz domain. Moreover, T > 0 denotes
an arbitrary �nal time.

A2 The function G : R → R is non-negative and twice continuously di�erentiable. Moreover,
there exists an exponent q ∈ [2, 4) as well as positive constants CG and CG′ such that

G(s) ≤ CG(1 + |s|q) and
∣∣G′(s)

∣∣ ≤ CG′(1 + |s|q−1)

for all s ∈ R.

A3 The function A : Rd → R is continuously di�erentiable and there exist constants A0, A1 ∈ R
with 0 < A0 ≤ A1 such that

A0 |p|2 ≤ A(p) ≤ A1 |p|2 for all p ∈ Rd.

The gradient A′ : Rd → Rd is strongly monotone, i.e., there exists a constant a0 > 0 such
that (

A′(p)−A′(q)
)
· (p− q) ≥ a0 |p− q|2 for all p,q ∈ Rd,

which implies that A is strongly convex and thus strictly convex. Moreover, there exists a
constant a1 > 0 such that ∣∣A′(p)

∣∣ ≤ a1 |p| for all p ∈ Rd.
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A4 The function M : Rd × R → R is continuous and there exist constants M0,M1 ∈ R with
0 < M0 ≤M1 such that

M0 ≤M(p, s) ≤M1 for all p ∈ Rd and s ∈ R.

Remark 4.1. (a) We point out that the choices

G(s) :=
1

4
(3s− s3) for all s ∈ R

(
cf. (2.9)

)
,

M(p, s) := βε(p)mε(s)

with

mε(s) := εr + (1− s2)2+ for all s ∈ R
(
cf. (3.1)

)
,

βε(p) :=

√
d21 ε

2r +D2(p)

γ20ε
2r + γ2(p)

for all p ∈ Rd
(
cf. (3.2)

)
,

are admissible as they satisfy the conditions imposed in A2 (with q = 3) and A4.

(b) Suppose that the function γ that was introduced in Subsection 2.1 additionally satis�es the
following convexity condition: There exists a constant α0 > 0 such that

γ′′(p)q · q ≥ α0|q|2 for all p,q ∈ Rd with |p| = 1 and p · q = 0, (4.6)

where γ′′ represents the Hessian of γ. Thus, the function

A : Rd → R, A(p) = 1
2γ

2(p)

is admissible as it satis�es all conditions imposed in assumption A3. In particular, as
shown in [42], the convexity condition (4.6) ensures that A′ is strongly monotone.

A special inner product on H−1
(0) (Ω). We now introduce a certain inner product on the

function space H−1
(0) (Ω) based on the solution operator of a suitable elliptic problem. Therefore,

let a ∈ L∞(Ω) be a uniformly positive function, i.e., there exist a0, a1 ∈ R with 0 < a0 < a1 such
that

a0 ≤ a ≤ a1 a.e. in Ω.

Then, for every f ∈ H−1
(0) (Ω), there exists a unique weak solution uf ∈ H1

(0)(Ω) of the elliptic
boundary value problem

−∇ ·
(
a∇u

)
= f in Ω, (4.7a)

∇u · n = 0 on ∂Ω, (4.7b)

meaning that ∫
Ω
a∇uf · ∇ζ dx =

〈
f , ζ

〉
H1 for all ζ ∈ H1(Ω). (4.8)
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We can thus de�ne a solution operator

Sa : H−1
(0) (Ω) → H1

(0)(Ω), f 7→ Sa(f) := uf . (4.9)

We next de�ne the bilinear form(
· , ·

)
Sa

: H−1
(0) (Ω)×H−1

(0) (Ω) → R,
(
f , g

)
Sa

:=

∫
Ω
a ∇Sa(f) · ∇Sa(g) dx, (4.10)

which de�nes an inner product on H−1
(0) (Ω) since a is uniformly positive and ∇Sa(f) = 0 a.e. in

Ω already implies f = 0 a.e. in Ω. Its induced norm is given by

∥ · ∥Sa
: H−1

(0) (Ω) → R, ∥f∥Sa
:=
(
f , f

)1/2
Sa
. (4.11)

We point out that on the space H−1
(0) (Ω), the norm ∥ · ∥Sa

is equivalent to the standard operator

norm ∥ · ∥(H1(Ω))′ . The bilinear form (· , ·)Sa
also de�nes an inner product on the space H1

(0)(Ω).

Moreover, ∥ · ∥Sa
is also a norm on H1

(0)(Ω) but the space is not complete with respect to this
norm.

4.2 Existence of weak solutions

For ease of presentation, in what follows we simply �x α = ε = σ = cF = 1, since the precise
choice of these values has no impact on the mathematical analysis.

4.2.1 Weak solutions for smooth potentials

In this subsection, we make the following assumption on the potential F :

F1 The potential F : R → R is continuously di�erentiable. Moreover, there exists an exponent
p ∈ [2, 6) as well as non-negative constants BF , CF and CF ′ such that

−BF ≤ F (s) ≤ CF (1 + |s|p) and
∣∣F ′(s)

∣∣ ≤ CF ′(1 + |s|p−1).

for all s ∈ R.

Obviously, the smooth double-well potential introduced in (1.2a) ful�lls F1 with p = 4. However,
the logarithmic potential (see (1.2b)) and the double-obstacle potential (see (1.2c)) do not satisfy
this assumption.

A weak solution of the general di�use interface model (4.1) is then de�ned as follows.

De�nition 4.2. Suppose that the assumptions A1�A4 and F1 are ful�lled, and let φ0 ∈ H1(Ω)
be any initial datum. Then, the pair (φ, µ) is called a weak solution to system (4.1) if the following
properties hold:

(i) The functions φ and µ have the following regularity:

φ ∈ C0,1/4
(
[0, T ];L2(Ω)

)
∩ L∞(0, T ;H1(Ω)

)
∩H1

(
0, T ;H1(Ω)′

)
,

µ ∈ L2
(
0, T ;H1(Ω)

)
.
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(ii) The pair (φ, µ) satis�es the weak formulations〈
∂tφ , ζ

〉
H1(Ω)

= −
∫
Ω
M(∇φ,φ)∇µ · ∇ζ dx, (4.12a)∫

Ω
µ η dx =

∫
Ω
A′(∇φ) · ∇η + F ′(φ) η dx+

∫
Γw

G′(φ) η dS (4.12b)

a.e. on [0, T ] for all test functions ζ, η ∈ H1(Ω). Moreover, φ satis�es the initial condition

φ(0) = φ0 a.e. in Ω. (4.13)

(iii) The pair (φ, µ) satis�es the weak energy dissipation law

E
(
φ(t)

)
+

1

2

∫ t

0

∫
Ω
M(∇φ,φ) |∇µ|2 dx dt ≤ E(φ0) for almost all t ∈ [0, T ]. (4.14)

The existence of such a weak solution is ensured by the following theorem.

Theorem 4.3. Suppose that the assumptions A1�A4 and F1 are ful�lled, and let φ0 ∈ H1(Ω)
be any initial datum. Then there exists a weak solution (φ, µ) to the system (4.1) in the sense of
De�nition 4.2.

The proof of this theorem is presented in Section 4.3.

In the next subsection, we intend to prove the existence of a weak solution to the di�use-
interface model (4.1) for the double-obstacle potential (1.2c). Our strategy is to approximate
the double-obstacle potential by a sequence of regular potentials. To this end, in Corollary 4.4,
we will present an additional uniform estimate for F ′(φ), where (φ, µ) is a weak solution to (4.1)
with a regular potential F satisfying the following assumption:

F2 The potential F : R → R is twice continuously di�erentiable and there exist constants
c0, c1 ≥ 0 such that

−c0 ≤ F ′′(s) ≤ c1 for all s ∈ R. (4.15)

We point out that if F2 is ful�lled, then F1 holds with p = 2.

Corollary 4.4. Suppose that the assumptions A1�A4 and F2 are ful�lled. Let φ0 ∈ H1(Ω) be
any initial datum satisfying |⟨φ0⟩Ω| ≤ 1−κ for some κ ∈ (0, 1], and let (φ, µ) be a corresponding
weak solution. Then there exists a constant c > 0 depending only on φ0, E(φ0), c0 and the
constants in A1�A4, but not on c1, such that∥∥F ′(φ)

∥∥2
L2(Q)

≤ c

κ2
(
1 + ∥F∥2L∞([−R,R])

)
, (4.16)

where R := |⟨φ0⟩Ω|+
κ
2 < 1.

Remark 4.5. In Corollary 4.4, the assumption |⟨φ0⟩Ω| ≤ 1 − κ is made in order to ensure
R ≤ 1, which is crucial for later use. However, without this assumption a similar estimate can
be derived if R > 1 is allowed. For instance, choosing R := |⟨φ0⟩Ω|+ 1, we obtain the estimate∥∥F ′(φ)

∥∥2
L2(Q)

≤ c
(
1 + ∥F∥2L∞([−R,R])

)
(4.17)

instead of (4.16) even without the mean value assumption.
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4.2.2 Weak solutions for the double-obstacle potential

In this subsection, we assume that F = F0+I[−1,1] is the double-obstacle potential as introduced
in (4.3). Then a weak solution of the general di�use interface model (4.1) is de�ned as follows.

De�nition 4.6. Suppose that the assumptions A1�A4 are ful�lled, and let φ0 ∈ H1(Ω) be any
initial datum satisfying |φ0| ≤ 1 a.e. in Ω. Then, the pair (φ, µ) is called a weak solution to
system (4.1) if the following properties hold:

(i) The functions φ and µ have the following regularity:

φ ∈ C0,1/4
(
[0, T ];L2(Ω)

)
∩ L∞(0, T ;H1(Ω)

)
∩H1

(
0, T ;H1(Ω)′

)
,

µ ∈ L2
(
0, T ;H1(Ω)

)
.

(ii) It holds that |φ| ≤ 1 a.e. in Q and the pair (φ, µ) satis�es the weak formulation

〈
∂tφ , ζ

〉
H1(Ω)

= −
∫
Ω
M(∇φ,φ)∇µ · ∇ζ dx, (4.18a)

for all ζ ∈ H1(Ω) as well as the variational inequality∫∫
Q
µ (φ− η) dx dt ≥

∫∫
Q
A′(∇φ) · (∇φ−∇η) + F ′

0(φ)(φ− η) dx dt

+

∫∫
Σw

G′(φ) (φ− η) dS dt (4.18b)

for all η ∈ L2(0, T ;H1(Ω)) with |η| ≤ 1 a.e. in Q. Moreover, φ satis�es the initial condition

φ(0) = φ0 a.e. in Ω. (4.19)

(iii) The pair (φ, µ) satis�es the weak energy dissipation law

E
(
φ(t)

)
+

1

2

∫ t

0

∫
Ω
M(∇φ,φ) |∇µ|2 dx dt ≤ E(φ0) for almost all t ∈ [0, T ]. (4.20)

The existence of such a weak solution is ensured by the following theorem.

Theorem 4.7. Suppose that the assumptions A1�A4 are ful�lled, and let φ0 ∈ H1(Ω) be any
initial datum satisfying |φ0| ≤ 1 a.e. in Ω and |⟨φ0⟩Ω| ≤ 1− κ for some κ ∈ (0, 1]. Then, there
exists a weak solution (φ, µ) to the system (4.1) in the sense of De�nition 4.6.

The idea behind the proof of Theorem 4.7 is to approximate the double-obstacle potential
by a sequence (Fn)n∈N of regular potentials where for each n ∈ N, Fn is a regular potential
ful�lling the condition F2. Therefore, Corollary 4.4 can be applied to derive a suitable uniform
bound on the terms involving F ′

n. We point out that the same strategy could be used to construct
a weak solution to the di�use-interface model (4.1) in the case that F is the logarithmic potential
(1.2b).
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4.3 Proofs

4.3.1 Proof of Theorem 4.3

The proof is divided into �ve steps.

Step 1: Implicit time discretization. Let N ∈ N be arbitrary. We de�ne τ := T/N as
our time step size. Let now n ∈ {0, ..., N − 1} be arbitrary. We now de�ne functions φn with
n = 0, ..., N by the following recursion:

� The zeroth iterate is de�ned as the initial datum, i.e., φ0 := φ0.

� If for some n ∈ {0, ..., N−1} the n-th iterate φn is already constructed, we choose φn+1 ∈ H1
(m)

as a minimizer of the functional

Jn : H1
(m)(Ω) → R, Jn(φ) :=

1

2τ
∥φ− φn∥2Sa

+ E(φ). (4.21)

Here, E is the energy functional de�ned in (4.2), with ε = σ = cF = 1, and ∥·∥Sa
is the norm

de�ned in (4.11) with a being chosen as

a :=M(∇φn, φn). (4.22)

This choice is actually possible since the function M is assumed to be bounded and uniformly
positive (see A4). The existence of a minimizer of the functional Jn will be established in
Step 2.

The idea behind this construction is that the �rst variation of the functional Jn at the point
φn+1 is zero since φn+1 is a minimizer of Jn. This means that(

φn+1 − φn

τ
, η

)
Sa

+

∫
Ω
A′(∇φn+1) · ∇η + F ′(φn+1) η dx+

∫
Γw

G′(φn+1) η dS = 0 (4.23)

for all test functions η ∈ H1
(0)(Ω). We now de�ne

µn+1 := Sa

(
−φ

n+1 − φn

τ

)
+ cn+1 ∈ H1(Ω), (4.24)

with

cn+1 :=
1

|Ω|

(∫
Ω
F ′(φn+1) dx+

∫
Γw

G′(φn+1) dS

)
(4.25)

and a being chosen as in (4.22). Recalling the de�nition of the inner product (· , ·)Sa
(see (4.10)),

we infer from (4.23) that∫
Ω
µn+1 η dx =

∫
Ω
A′(∇φn+1) · ∇η + F ′(φn+1) η dx+

∫
Γw

G′(φn+1) η dS (4.26)

for all η ∈ H1
(0)(Ω). Due to the choice of the constant cn+1, a straightforward computation

reveals that (4.26) remains true even for all test functions η ∈ H1(Ω). This means that for every
n ∈ {0, ..., N − 1}, the pair (φn+1, µn+1) satis�es the equations〈

φn+1 − φn

τ
, ζ

〉
H1(Ω)

= −
∫
Ω
M(∇φn, φn)∇µn+1 · ∇ζ dx, (4.27a)

∫
Ω
µn+1 η dx =

∫
Ω
A′(∇φn+1) · ∇η + F ′(φn+1) η dx+

∫
Γw

G′(φn+1) η dS (4.27b)
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for all test functions ζ, η ∈ H1(Ω). Here, (4.27a) follows directly from the construction of µn+1

in (4.24) and the de�nition of the solution operator Sa (see (4.9)). The system (4.27) can be
interpreted as a time-discrete approximation of the weak formulation (4.12).

The time-discrete approximate solution now needs to be extended onto the whole time
interval [0, T ]. The piecewise constant extension (φN , µN ) is de�ned as

(
φN , µN

)
(·, t) :=

{
(φ0, µ0) if t ≤ 0,

(φn, µn) if t ∈
(
(n− 1)τ, nτ

]
, n ∈ {1, ..., N},

(4.28)

whereas the piecewise linear extension (φN , µN ) is de�ned as

(φN , µN )(·, t) := λ(φn, µn) + (1− λ)(φn−1, µn−1) (4.29)

for t = λnτ + (1− λ)(n− 1)τ with n ∈ {1, ..., N} and λ ∈ [0, 1].

Henceforth, the letter C will denote generic positive constants that may depend only on φ0

and the constants introduced in A2�A4 and F1 but not on n, N or τ . These constants may
also change their value from line to line.

Step 2: Existence of a minimizer to the functional Jn. We now prove that the
functional Jn introduced in (4.21) actually possesses a minimizer. Therefore, we employ the
direct method of the calculus of variations.

For any φ ∈ H1
(m)(Ω), we obtain

∥φ∥L2(Ω) ≤ ∥⟨φ⟩Ω∥L2(Ω) + ∥φ− ⟨φ⟩Ω∥L2(Ω) ≤ C
(
1 + ∥∇φ∥L2(Ω)

)
by means of Poincaré's inequality. This directly implies

∥φ∥H1(Ω) ≤ c∗
(
1 + ∥∇φ∥L2(Ω)

)
for all φ ∈ H1

(m)(Ω) (4.30)

for some positive constant c∗ depending only on m and Ω. Recalling the assumptions on A (see
A3), that F ≥ −BF (see F1) and that G ≥ 0 (see A2), we use Poincaré's inequality to derive
the estimate

Jn(φ) ≥
∫
Ω
A(∇φ) dx−BF |Ω| ≥ A0 ∥∇φ∥2L2(Ω) −BF |Ω|

≥ A0

c2∗
∥φ∥2H1(Ω) −A0 −BF |Ω| (4.31)

for all φ ∈ H1
(m)(Ω). This means that Jn is coercive and bounded from below. Hence, the

in�mum

I := inf
H1

(m)
(Ω)

Jn

exists, and consequently, there also exists a corresponding minimizing sequence (φk)k∈N with

Jn(φk) → I as k → ∞ and Jn(φk) ≤ I + 1 for all k ∈ N.

Now, (4.31) directly implies that (φk)k∈N is bounded in H1
(m)(Ω). Using the Banach�Alaoglu

theorem, the compact embeddings H1
(m)(Ω) ↪→ Lp(Ω) and H1

(m)(Ω) ↪→ Lq(∂Ω), we infer that

there exists a function φ ∈ H1
(m)(Ω) such that

φk → φ weakly in H1
(m)(Ω), strongly in Lp(Ω) and in Lq(∂Ω),

pointwise a.e. in Ω, and pointwise a.e. on ∂Ω
(4.32)
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along a non-relabeled subsequence. Since A is continuous and convex (see A3), we infer∫
Ω
A(∇φ) dx ≤ lim inf

k→∞

∫
Ω
A(∇φk) dx (4.33)

due to weak lower semicontinuity. Recalling the growth conditions on F and G (see F1 and
A2) and the convergences in (4.32), we apply Lebesgue's general convergence theorem (see [4,
Section 3.25]) to conclude∫

Ω
F (φk) dx→

∫
Ω
F (φ) dx and

∫
Γw

G(φk) dS →
∫
Γw

G(φ) dS (4.34)

as k → ∞. Combining (4.33) and (4.34), we obtain

Jn(φ) ≤ lim inf
k→∞

Jn(φk) = I.

This proves that φ is a minimizer of the functional Jn.

Step 3: A priori estimates for the piecewise constant extension. We now claim
that the piecewise constant extension (φN , µN ) ful�lls the uniform priori estimate

∥φN∥L∞(0,T ;H1(Ω)) + ∥µN∥L2(0,T ;H1(Ω)) ≤ C. (4.35)

To prove (4.35), we exploit the recursive construction of the time-discrete approximate
solution. Since for any n ∈ {0, ..., N − 1}, φn+1 was chosen to be a minimizer of the functional
Jn, we have

1

2τ

∥∥φn+1 − φn
∥∥2
Sa

+ E(φn+1) = Jn(φ
n+1) ≤ Jn(φ

n) = E(φn) (4.36)

for all n ∈ {0, ..., N − 1}. By a simple induction, we thus infer

E(φn) ≤ E(φ0) for all n ∈ {0, ..., N − 1}. (4.37)

Recalling the assumptions on A (see A3) and that the potentials F and G are bounded from
below (see A2 and F1), we use estimate (4.30) and (4.37) to obtain∥∥φn+1

∥∥2
H1(Ω)

≤ C + C
∥∥∇φn+1

∥∥2
L2(Ω)

≤ C + C

∫
Ω
A(∇φn+1) ≤ C + CE(φn+1) ≤ C (4.38)

for all n ∈ {0, ..., N − 1}. By the de�nition of φN , this directly implies

∥φN∥L∞(0,T ;H1(Ω)) ≤ C. (4.39)

For any n ∈ {1, ..., N}, we now set tn := nτ . By the de�nition of the piecewise constant extension,
we have

φN (t) = φ(tn) = φn and µN (t) = µ(tn) = µn (4.40)

for all t ∈ (tn−1, tn]. Recalling the priori estimate (4.36) and the de�nition of µn (see (4.24)), we
obtain

E
(
φN (tn)

)
+

1

2

∫ tn

tn−1

∫
Ω
M
(
∇φN (s− τ), φN (s− τ)

)
|∇µN (s)|2 dx ds

= E
(
φN (tn)

)
+

1

2τ2

∫ tn

tn−1

∥φN (s)− φN (s− τ)∥2Sa
ds

= E
(
φN (tn)

)
+

1

2τ
∥φN (tn)− φN (tn − τ)∥2Sa

≤ E
(
φN (tn−1)

)
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for all n ∈ {0, ..., N − 1}. Hence, by induction, we get

E
(
φN (tn)

)
+

1

2

∫ tn

0

∫
Ω
M
(
∇φN (s− τ), φN (s− τ)

)
|∇µN (s)|2 dx ds ≤ E(φ0)

for all n ∈ {0, ..., N − 1}. Now, for any t ∈ (0, T ] we �nd an index n ∈ {0, ..., N − 1} such that
t ∈ (tn−1, tn]. Recalling (4.40), we eventually conclude that

E
(
φN (t)

)
+

1

2

∫ t

0

∫
Ω
M
(
∇φN (s− τ), φN (s− τ)

)
|∇µN (s)|2 dx ds ≤ E(φ0) (4.41)

for all t ∈ [0, T ]. In particular, choosing t = T , we obtain the uniform bound

∥∇µN∥2L2(0,T ;L2(Ω)) ≤ C. (4.42)

We now test (4.27b) with the constant function η ≡ 1/ |Ω|. Using the growth assumptions from
F1, the continuous embeddings H1(Ω) ↪→ L5(Ω) and H1(Ω) ↪→ L3(∂Ω) as well as the uniform
bound (4.39), we derive the estimate

|⟨µN (t)⟩Ω| ≤
1

|Ω|

(∫
Ω

∣∣F ′(φN (t)
)∣∣ dx+

∫
Γw

∣∣G′(φN (t)
)∣∣ dS)

≤ C
(
1 + ∥φN (t)∥5L5(Ω) + ∥φN (t)∥3L3(∂Ω)

)
≤ C

(
1 + ∥φN∥5L∞(0,T ;H1(Ω)) + ∥φN∥3L∞(0,T ;H1(Ω))

)
≤ C.

Applying Poincaré's inequality, we thus obtain

∥µN (t)∥L2(Ω) ≤ ∥⟨µN (t)⟩Ω∥L2(Ω) + ∥µN − ⟨µN (t)⟩Ω∥L2(Ω)

≤ C
(
1 + ∥∇µN (t)∥L2(Ω)

)
. (4.43)

Combining (4.42) and (4.43), this yields

∥µN∥L2(0,T ;H1(Ω)) ≤ C. (4.44)

Due to (4.39) and (4.44), the a priori estimate (4.35) is now established.

Step 4: A priori estimate for the piecewise linear extension. We next claim that
for all s, t ∈ [0, T ],

∥φN (t)− φN (s)∥L2(Ω) ≤ C |t− s|
1
4 , (4.45a)

∥φN (t)− φN (t)∥L2(Ω) ≤ Cτ
1
4 , (4.45b)

∥∂tφN∥L2(0,T ;H1(Ω)′) ≤ C. (4.45c)

In particular, the �rst estimate means that the piecewise linear extension φN is Hölder continuous
in time.

To prove these inequalities, we �rst infer from (4.27a) and the de�nition of the piecewise
linear extension (see (4.29)) that

⟨∂tφN (τ) , ζ⟩H1(Ω) = −
∫
Ω
∇µN (τ) · ∇ζ dx (4.46)
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for almost all τ ∈ [0, T ] and all ζ ∈ H1(Ω). Let now ξ ∈ L2(0, T ;H1(Ω)) be arbitrary. We test
(4.46) with ξ(τ) and integrate the resulting equation with respect to τ from 0 to T . Then, using
Hölder's inequality as well as the a priori estimate (4.35), we obtain∣∣∣∣∫ T

0
⟨∂tφN (τ) , ξ⟩H1(Ω) dt

∣∣∣∣ ≤ ∥µN∥L2(0,T ;H1(Ω)) ∥ξ∥L2(0,T ;H1(Ω)) ≤ C ∥ξ∥L2(0,T ;H1(Ω)) . (4.47)

Taking the supremum over all ξ ∈ L2(0, T ;H1(Ω)) with ∥ξ∥L2(0,T ;H1(Ω)) ≤ 1, this proves estimate
(4.45c).

Next, let s, t ∈ [0, T ] be arbitrary. Without loss of generality, we assume s < t. Integrating
(4.46) with respect to τ from s to t, choosing ζ = φN (t)− φN (s), and using Hölder's inequality,
we derive the estimate

∥φN (t)− φN (s)∥2L2(Ω) ≤ ∥∇φN (t)−∇φN (s)∥L2(Ω)

∫ t

s
∥∇µN (τ)∥L2(Ω) dτ

≤ 2 ∥φN∥L∞(0,T ;H1(Ω)) ∥µN∥L2(0,T ;L2(Ω)) |s− t|
1
2 . (4.48)

In view of the a priori estimate (4.35), this proves (4.45a).

Let now t ∈ [0, T ] be arbitrary. Then, we �nd λ ∈ [0, 1] and n ∈ {1, ..., N} such that
t = λnτ + (1− λ)(n− 1)τ . We thus obtain

∥φN (t)− φN (t)∥L2(Ω) =
∥∥λφn + (1− λ)φn−1 − φn

∥∥
L2(Ω)

= (1− λ)
∥∥φn − φn−1

∥∥
L2(Ω)

= (1− λ)
∥∥φN

(
nτ
)
− φN

(
(n− 1)τ

)∥∥
L2(Ω)

.

Applying (4.45a) with t = nτ and s = (n − 1)τ , we conclude (4.45b). This means that all
estimates in (4.45) are established.

Step 5: Convergence to a weak solution. In view of the uniform a priori estimate
(4.35), the Banach�Alaoglu theorem implies the existence of functions φ ∈ L∞(0, T ;H1(Ω)) and
µ ∈ L2(0, T ;H1(Ω)) such that

φN → φ weakly-∗ in L∞(0, T ;H1(Ω)), (4.49)

µN → µ weakly in L2(0, T ;H1(Ω)), (4.50)

as N → ∞, along a non-relabeled subsequence. We further know that

∥φN∥L∞(0,T ;H1(Ω)) ≤ ∥φN∥L∞(0,T ;H1(Ω)) ≤ C.

In combination with the uniform estimate (4.45c), we use the Banach�Alaoglu theorem to infer
φ ∈ H1(0, T ;H1(Ω)′) with

φN → φ weakly in H1(0, T ;H1(Ω)′) (4.51)

as N → ∞, up to subsequence extraction. Moreover, due to the compact embeddings H1(Ω) ↪→
Lp(Ω) and H1(Ω) ↪→ Lq(∂Ω), we apply the Aubin�Lions lemma to obtain

φN → φ strongly in C([0, T ];Lp(Ω)) ∩ C([0, T ];Lq(∂Ω)). (4.52)
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By passing to the limit in estimate (4.45a), we conclude φ ∈ C0,1/4([0, T ], L2(Ω)). This means
that the functions φ and µ satisfy the regularity conditions of De�nition 4.2(i). Using the
estimate (4.45b), we directly deduce from (4.52) that

φN → φ strongly in L∞(0, T ;Lp(Ω)) ∩ L∞(0, T ;Lq(∂Ω)),

a.e. in Ω, and a.e. on ∂Ω,
(4.53)

as N → ∞, after another subsequence extraction.

From the time-discrete weak formulation (4.27), we infer that the piecewise constant ex-
tension (φN , µN ) and the piecewise linear extension (φN , µN ) satisfy the approximate weak
formulation∫ T

0
⟨∂tφN (t) , ξ⟩H1(Ω) dt = −

∫∫
Q
M
(
∇φN (t− τ), φN (t− τ)

)
∇µN (t) · ∇ξ dx dt, (4.54a)∫∫

Q
µN ϑ dx dt =

∫∫
Q
A′(∇φN ) · ∇ϑ+ F ′(φN )ϑ dx dt+

∫∫
Σw

G′(φN )ϑ dS dt (4.54b)

for all test functions ξ, ϑ ∈ L2(0, T ;H1(Ω)). Recalling the growth conditions on F ′ and G′ from
F1 and A2 as well as the priori estimate (4.35), we infer that the sequence (F ′(φN ))N∈N is
bounded in L∞(0, T ;L6/5(Ω)) and the sequence (G′(φN ))N∈N is bounded in L∞(0, T ;L4/3(∂Ω)).
Hence, according to the Banach�Alaoglu theorem, there exist functions f∗ ∈ L∞(0, T ;L6/5(Ω))
and g∗ ∈ L∞(0, T ;L4/3(∂Ω)) such that

F ′(φN ) → f∗ weakly-∗ in L∞(0, T ;L6/5(Ω)),

G′(φN ) → g∗ weakly-∗ in L∞(0, T ;L4/3(∂Ω)),

as N → ∞, along a non-relabeled subsequence. Moreover, the convergences in (4.53) directly
imply F ′(φN ) → F ′(φ) a.e. in Ω and G′(φN ) → G′(φ) a.e. on ∂Ω. By a convergence principle
based on Egorov's theorem (see [33, Proposition 9.2c]), we now infer f∗ = F ′(φ) a.e. in Ω and
g∗ = G′(φ) a.e. on ∂Ω. This means that

F ′(φN ) → F ′(φ) weakly-∗ in L∞(0, T ;L6/5(Ω)), (4.55)

G′(φN ) → G′(φ) weakly-∗ in L∞(0, T ;L4/3(∂Ω)), (4.56)

as N → ∞. Testing the approximate weak formulation (4.54b) with ϑ = φN −φ and employing
the strong monotonicity condition on A′ from A3, we obtain

a0 ∥∇φN −∇φ∥2L2(Q) ≤
∫∫

Q

(
A′(∇φN )−A′(∇φ)

)
·
(
∇φN −∇φ

)
dx dt

=

∫∫
Q
µN (φN − φ) dx dt−

∫∫
Q
F ′(φN ) (φN − φ) dx dt

−
∫∫

Σw

G′(φN ) (φN − φ) dS dt−
∫∫

Q
A′(∇φ) ·

(
∇φN −∇φ

)
dx dt. (4.57)

Using the convergences (4.50), (4.53), (4.55) and (4.56) along with the weak-strong convergence
principle, we infer that the right-hand side of the above estimate tends to zero. We thus conclude
that

∇φN → ∇φ strongly in L2(Q) and a.e. in Ω (4.58)
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as N → ∞, up to subsequence extraction. In view of the growth condition on A′ from A3,
Lebesgue's general convergence theorem further reveals that

A′(∇φN ) → A′(∇φ) strongly in L2(Q;Rd). (4.59)

Due to the convergences (4.50), (4.55), (4.56) and (4.59), we can now pass to the limit in (4.54b)
to conclude that∫∫

Q
µϑdx dt =

∫∫
Q
A′(∇φ) · ∇ϑ+ F ′(φ)ϑ dx dt+

∫∫
Σw

G′(φ)ϑ dS dt (4.60)

holds for all ϑ ∈ L2(0, T ;H1(Ω)).

We now �x an arbitrary time t0 ∈ (0, T ]. Since τ = T/N → 0 as N → ∞, we may assume
(without loss of generality) that N is chosen large enough to ensure t−τ ∈ [0, T ] for all t ∈ [t0, T ].
We have

∥∇φN (t− τ)−∇φ(t)∥2L2(t0,T ;L2(Ω))

≤ C ∥∇φN (t− τ)−∇φ(t− τ)∥2L2(t0,T ;L2(Ω)) + C ∥∇φ(t− τ)−∇φ(t)∥2L2(t0,T ;L2(Ω))

≤ C ∥∇φN (t)−∇φ(t)∥2L2(0,T ;L2(Ω)) + C ∥∇φ(t− τ)−∇φ(t)∥2L2(t0,T ;L2(Ω)) (4.61)

for almost all t ∈ [t0, T ]. Here, from the second to the third line, we used the change of variables
s = t−τ and the fact that [t0−τ, T−τ ] ⊂ [0, T ] to estimate the �rst summand. Now, as N → ∞,
the �rst summand in the third line of (4.61) tends to zero because of (4.58), whereas the second
summand tends to zero since due to mean-continuity in Lp(Q) (see, e.g., [4, Section 4.15]). This
proves

∇φN ( · , · − τ) → ∇φ strongly in L2(Ω× [t0, T ]) (4.62)

as N → ∞. Since t0 ∈ (0, T ] was arbitrary, we deduce

∇φN ( · , · − τ) → ∇φ a.e. in Q (4.63)

as N → ∞, after extracting a subsequence. Proceeding similarly, and using the strong conver-
gence φN → φ in L2(Q) (which directly follows from (4.53)), we further obtain

φN ( · , · − τ) → φ a.e. in Q (4.64)

as N → ∞. Using (4.63) and (4.64) along with Lebesgue's dominated convergence theorem, we
infer

M
(
∇φN ( · , · − τ), φN ( · , · − τ)

)
∇ζ → M(∇φ,φ)∇ζ (4.65)

strongly in L2(Q), as N → ∞, up to subsequence extraction. Employing the weak-strong
convergence principle, we can thus pass to the limit N → ∞ in the approximate weak formulation
(4.54a) to obtain ∫ T

0
⟨∂tφ , ζ⟩H1(Ω) dt = −

∫∫
Q
M(∇φ,φ)∇µ · ∇ζ dx dt (4.66)

for all ζ ∈ L2(0, T ;H1(Ω)). Combining (4.60) and (4.66), we eventually conclude that the pair
(φ, µ) satis�es the weak formulation (4.12). Moreover, as a direct consequence of the convergence
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(4.52), φ satis�es the initial condition (4.13). This means that all conditions of De�nition 4.2(ii)
are ful�lled.

Recalling the growth conditions on F and G from F1 and A2 as well as the convergences
in (4.53), we apply Lebesgue's general convergence theorem (see [4, Section 3.25]) to conclude

F (φN ) → F (φ) strongly in L1(Q), (4.67)

G(φN ) → G(φ) strongly in L1(Q). (4.68)

Then, from the convergences (4.58),(4.67) and (4.68), we infer that

E
(
φN (t)

)
→ E

(
φ(t)

)
for almost all t ∈ [0, T ], (4.69)

as N → ∞. Recalling (4.50) and (4.65), we use the weak-strong convergence principle to infer√
M
(
∇φN ( · , · − τ), φN ( · , · − τ)

)
∇µN →

√
M(∇φ,φ) ∇µ weakly in L2(Q) (4.70)

as N → ∞. We now use the convergences (4.69) and (4.70), the weak lower semicontinuity of
the L2(Q)-norm as well as the discrete energy inequality (4.41) to derive the estimate

E
(
φ(t)

)
+

1

2

∫ t

0

∫
Ω
M
(
∇φ(s), φ(s)

)
|∇µ(s)|2 dx ds

≤ lim inf
N→∞

E
(
φN (t)

)
+ lim inf

N→∞

1

2

∫ t

0

∫
Ω
M
(
∇φN (s− τ), φN (s− τ)

)
|∇µN (s)|2 dx ds

≤ lim inf
N→∞

[
E
(
φN (t)

)
+

1

2

∫ t

0

∫
Ω
M
(
∇φN (s− τ), φN (s− τ)

)
|∇µN (s)|2 dx ds

]
≤ E(φ0) (4.71)

for almost all t ∈ [0, T ]. This proves the weak energy dissipation law (4.14) and thus, the
condition in De�nition 4.2(iii) is ful�lled.

We eventually conclude that the pair (φ, µ) is a weak solution to system (4.1) in the sense
of De�nition 4.2. Hence, the proof is complete. □

4.3.2 Proof of Corollary 4.4

Let (φ, µ) be a weak solution to the system (4.1), whose existence is guaranteed by Theorem 4.3.
By a straightforward computation, we notice that

∥∥F ′(φ)
∥∥2
L2(Q)

=

∫ T

0

∫
Ω
(F ′(φ))2 dx dt ≤ 2I1 +

2

|Ω|
I2, (4.72)

where

I1 :=

∫ T

0

∫
Ω

(
F ′(φ)−

〈
F ′(φ)

〉
Ω

)2
dx dt and I2 :=

∫ T

0

(∫
Ω

∣∣F ′(φ)
∣∣ dx)2

dt.

Hence, in the following, we intend to prove (4.16) by deriving suitable bounds on the terms I1
and I2. The letter C will denote generic positive constants depending only on φ0, E(φ0), c0 and
the constants in A1�A4, but not on c1.

30



Let η ∈ H1(Ω) be arbitrary. Since A is convex (see A3), we know that

A′(∇φ) · ∇(η − φ) ≤ A(∇η)−A(∇φ) a.e. in Q.

Testing the weak formulation (4.12b) with η − φ instead of η and using the above estimate, we
thus infer that the variational inequality∫

Ω
F ′(φ)(φ− η) dx ≤

∫
Ω
µ(φ− η) dx+

∫
Ω
A(∇η)−A(∇φ) dx−

∫
Γw

G′(φ)(φ− η) dS (4.73)

holds a.e. in [0, T ] for all η ∈ H1(Ω). Moreover, since (φ, µ) is a weak solution of (4.1), it satis�es
the weak energy inequality (4.14). Using Poincaré's inequality, we infer

∥φ∥L∞(0,T ;H1(Ω)) + ∥µ∥L2(0,T ;H1(Ω)) ≤ C. (4.74)

Step 1: We �rst derive an estimate for the term I1. Therefore, we choose

η := φ− δ
(
F ′(φ)−

〈
F ′(φ)

〉
Ω

)
(4.75)

for su�ciently small δ > 0 which ensures 1 − δF ′′(φ) > 0. Since F ′(φ) ∈ L∞(0, T ;H1(Ω)) due
to (4.15), we know that η ∈ L∞(0, T ;H1(Ω)). Recalling that A is positively homogeneous of
degree 2, we obtain

A
(
∇η
)
−A(∇φ) = A

(
∇φ− δF ′′(φ)∇φ

)
−A(∇φ)

=
(
1− δF ′′(φ)

)2
A(∇φ)−A(∇φ) =

(
− 2F ′′(φ) + δ2F ′′(φ)2

)
A(∇φ) (4.76)

a.e. in Q. We now test the variational inequality (4.73) with η. After dividing the resulting
inequality by δ, we use (4.76) to deduce∫

Ω

(
F ′(φ)−

〈
F ′(φ)

〉
Ω

)2
dx =

∫
Ω
F ′(φ)

(
F ′(φ)−

〈
F ′(φ)

〉
Ω

)
dx

≤
∫
Ω

(
µ− ⟨µ⟩Ω

)(
F ′(φ)−

〈
F ′(φ)

〉
Ω

)
dx−

∫
Γw

G′(φ)
(
F ′(φ)−

〈
F ′(φ)

〉
Ω

)
dS

+

∫
Ω

(
− 2F ′′(φ) + δ2F ′′(φ)2

)
A(∇φ) dx

a.e. in [0, T ]. Recalling that F2 implies that F1 holds with p = 2, we derive the estimate∣∣〈F ′(φ)
〉
Ω

∣∣ ≤ C + C

∫
Ω
|φ| dx ≤ C + C ∥φ∥L∞(0,T ;L1(Ω)) ≤ C

a.e. in [0, T ]. Hence, using the growth condition on G′ from A2 and the continuous embedding
H1(Ω) ↪→ L4(∂Ω), we deduce∣∣∣∣∫

Γw

G′(φ)
(
F ′(φ)−

〈
F ′(φ)

〉
Ω

)
dS

∣∣∣∣ ≤ ∫
Γw

∣∣G′(φ)
∣∣ ( ∣∣F ′(φ)

∣∣+ C
)
dS

≤
∫
Γw

(
C + C |φ|3

)(
C + C |φ|

)
dS ≤ C + C

∫
Γw

|φ|4 dS

≤ C + C ∥φ∥4L4(∂Ω) ≤ C + C ∥φ∥4H1(Ω) (4.77)
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a.e. in [0, T ]. Sending δ → 0 and using the growth condition from A3, the condition −F ′′ ≤ c0
(cf. (4.15)) as well as Poincaré's inequality and Young's inequality, we infer∫

Ω

(
F ′(φ)−

〈
F ′(φ)

〉
Ω

)2
dx ≤ C

(
1 + ∥φ∥4H1(Ω) + ∥µ∥2H1(Ω)

)
a.e. in [0, T ]. Integrating this inequality with respect to time from 0 to T , and using estimate
(4.74), we eventually conclude the bound

I1 ≤ C. (4.78)

Step 2: We now derive a suitable estimate for the term I2. Let λ ∈ L∞([0, T ]) be any
function that will be �xed later. We set

η := φ− δ(φ− ⟨φ⟩Ω) (4.79)

for some δ > 0. Testing the variational formulation with this η, dividing the resulting equation
by δ, and recalling that A is positively homogeneous of degree 2, we derive the estimate∫

Ω
F ′(φ)(λ− ⟨φ⟩Ω) dx

=

∫
Ω
F ′(φ)(λ− φ) dx+

∫
Ω
F ′(φ)(φ− ⟨φ⟩Ω) dx

≤
∫
Ω
F ′(φ)(λ− φ) dx+

∫
Ω
(µ− ⟨µ⟩Ω)φdx−

∫
Γw

G′(φ)(φ− ⟨φ⟩Ω) dS

+ δ(δ − 2)

∫
Ω
A(∇φ) dx. (4.80)

Since F ′′+ c0 ≥ 0 due to (4.15), we know that the function s 7→ F (s)+ 1
2c0s

2 is convex. We thus
have

F (λ) + 1
2c0λ

2 ≥ F (φ) + 1
2c0φ

2 +
(
F ′(φ) + c0φ

)
(λ− φ)

≥
(
F ′(φ) + c0φ

)
(λ− φ)

a.e. in Q. Using this estimate as well as Young's inequality, we now get∫
Ω
F ′(φ)(λ− φ) dx ≤

∫
Ω
F (λ) dx+

∫
Ω

3
2c0φ

2 + c0λ
2 dx (4.81)

almost everywhere in [0, T ]. Sending δ → 0 in (4.80) and using the above estimate, the growth
conditions from A2 and A3, the continuous embedding H1(Ω) ↪→ L4(∂Ω) as well as Poincaré's
inequality, we infer∫

Ω
F ′(φ)(λ− ⟨φ⟩Ω) dx ≤ C ∥F (λ)∥L∞([0,T ]) + C

(
1 + ∥φ∥4H1(Ω) + ∥µ∥H1(Ω) ∥φ∥H1(Ω)

)
. (4.82)

We now �x λ as

λ(t) :=

{
⟨φ(t)⟩Ω + κ

2 if
〈
F ′(φ(t))〉

Ω
≥ 0,

⟨φ(t)⟩Ω − κ
2 if

〈
F ′(φ(t))〉

Ω
< 0.

(4.83)
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for all t ∈ [0, T ]. Testing (4.12a) with ζ ≡ 1 and integrating the resulting equation with respect
to time, we infer ⟨φ(t)⟩Ω = ⟨φ0⟩Ω for all t ∈ [0, T ]. In view of (4.82), we thus get

κ

2

∫
Ω

∣∣F ′(φ)
∣∣ dx ≤ C ∥F (λ)∥L∞([0,T ]) + C

(
1 + ∥φ∥4H1(Ω) + ∥µ∥H1(Ω) ∥φ∥H1(Ω)

)
. (4.84)

a.e. in [0, T ]. We now multiply this estimate by 2
κ and take the square on both sides. Integrating

the resulting inequality with respect to time and using the uniform estimate (4.74), we eventually
conclude

I2 ≤ Cκ−2 ∥F∥2L∞([−R,R]) + Cκ−2
(
1 + ∥φ∥8H1(Ω) + ∥µ∥2H1(Ω) ∥φ∥

2
H1(Ω)

)
≤ Cκ−2 ∥F∥2L∞([−R,R]) + C. (4.85)

We �nally plug the estimates (4.78) for I1 and (4.85) for I2 into (4.72). This proves (4.16)
and thus, the proof of Corollary 4.4 is complete. □

4.3.3 Proof of Theorem 4.7

The proof is split into three steps.

Step 1: Approximation of the double-obstacle potential by smooth potentials.

To prove the assertion, we approximate the double-obstacle potential F by a sequence of regular
potentials (Fn)n∈N. Therefore, we de�ne the function

J : R → [0,∞), s 7→



6s2 + 20s+ 17 if s ≤ −2,

(s+ 1)4 if −2 < s < −1,

0 if −1 ≤ s ≤ 1,

(s− 1)4 if 1 < s < 2,

6s2 − 20s+ 17 if s ≥ 2,

and for any n ∈ N, we set

Fn : R → [0,∞), s 7→ F0(s) + nJ(s). (4.86)

By this construction, we have J ∈ C2(R; [0,∞)), J is convex, and Fn = F0 on [−1, 1] for all
n ∈ N. It is straightforward to check that for all n ∈ N, the approximate potential Fn satis�es
the assumption F2 with c0 = 1 and c1 = 12n. It thus follows that F1 is satis�ed with p = 2
and BF = 3

2 . In the remainder of this proof it will be crucial that the constants BF and c0 are
independent of n. For any n ∈ N we further de�ne the approximate energy functional by

En : H1(Ω) → R, En(φ) :=
∫
Ω
A(∇φ) + Fn(φ) dx+

∫
Γw

G(φ) dS. (4.87)

Step 2: A priori estimates for the sequence of approximate solutions. We now
conclude from Theorem 4.3 that for every n ∈ N, there exists a weak solution (φn, µn) of the
system (4.1) to the potential Fn in the sense of De�nition 4.2. In the following, the letter C will
denote generic positive constants that may depend on φ0, κ and the constants in A1�A4 but
not on the approximation index n.
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As the weak solutions (φn, µn) satisfy the weak energy dissipation law (4.14) written for
En, we deduce the estimate

1

2

∫
Ω
|∇φn(t)|2 dx−BF |Ω|+

1

2
M0

∫ t

0

∫
Ω
|∇µn(s)|2 dx ds

≤ En
(
φn(t)

)
+

1

2

∫ t

0

∫
Ω
M
(
∇φn(s), φn(s)

)
|∇µn(s)|2 dx ds

≤ En(φ0) ≤ C ∥∇φ0∥2L2(Ω) + C ∥F0∥L∞([−1,1]) ≤ C

for almost all t ∈ [0, T ] and all n ∈ N. As BF is independent of n, we use Poincaré's inequality
to conclude the uniform bound

∥φn∥L∞(0,T ;H1(Ω)) + ∥µn∥L2(0,T ;H1(Ω)) ≤ C. (4.88)

Integrating the weak formulation (4.12a) written for (φn, µn) with respect to time from 0 to T ,
we now use (4.88) to derive the uniform estimate

∥∂tφn∥L2(0,T ;H1(Ω)′) ≤ C. (4.89)

Furthermore, Corollary 4.4 provides the estimate∥∥F ′
n(φ)

∥∥2
L2(Q)

≤ c

κ2
(
1 + ∥Fn∥2L∞([−R,R])

)
, (4.90)

where R = |⟨φ0⟩Ω| +
κ
2 < 1. Here the constant c depends only on φ0, En(φ0), c0 = 1 and the

constants in A1�A4. Since Fn = F0 on [−1, 1], we know that Fn(φ0) = F0(φ0) for all n ∈ N.
Consequently, En(φ0) does not depend on n and thus, c is independent of n. We infer the uniform
bound ∥∥F ′

n(φn)
∥∥2
L2(Q)

≤ c

κ2
(
1 + ∥F0∥2L∞([−1,1])

)
≤ C. (4.91)

Using (4.88), we further get∥∥F ′
0(φn)

∥∥
L2(Q)

= ∥φn∥L2(Q) ≤ C ∥φn∥L∞(0,T ;L2(Ω)) ≤ C. (4.92)

Combining (4.91) and (4.92), we now conclude∥∥J ′(φn)
∥∥
L2(Q)

≤ 1

n

( ∥∥F ′
0(φn)

∥∥
L2(Q)

+
∥∥F ′

n(φn)
∥∥
L2(Q)

)
≤ C

n
. (4.93)

Step 3: Convergence to a weak solution. In view of the uniform estimates (4.88) and
(4.89), we now use the continuous embedding H1(Ω) ↪→ L4(∂Ω), the Banach�Alaoglu theorem,
and the Aubin�Lions lemma along with the compact embeddings H1(Ω) ↪→ L2(Ω) and H1(Ω) ↪→
Lr(∂Ω) for r ∈ [1, 4) to conclude the existence of functions φ and µ such that

∂tφn → ∂tφ weakly in L2(0, T ;H1(Ω)′), (4.94)

φn → φ weakly-∗ in L∞(0, T ;H1(Ω)) and in L∞(0, T ;L4(∂Ω)),

strongly in C([0, T ];L2(Ω)), a.e. in Q,

strongly in C([0, T ];Lr(∂Ω)) and a.e. on Σ, (4.95)

µn → µ weakly in L2(0, T ;H1(Ω)), (4.96)
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for all r ∈ [1, 4) as n → ∞, after extraction of a subsequence. Using the uniform bound (4.93)
along with the Banach�Alaoglu theorem as well as the pointwise�a.e. convergence stated in
(4.95), we deduce

J ′(φn) → 0 strongly in L2(Q), (4.97a)

J ′(φn) → J ′(φ) a.e. in Q, (4.97b)

as n → ∞. As the strong limit in L2(Q) and the pointwise limit coincide, we have J ′(φ) = 0
a.e. in Q. Since J ′(s) = 0 if |s| ≤ 1 and |J ′(s)| > 0 if |s| > 1, we conclude

|φ| ≤ 1 a.e. in Q.

As F ′
0(φn) = −φn, the convergence

F ′
0(φn) → F ′

0(φ) weakly in L2(Q) and a.e. in Q, (4.98)

follows directly from (4.95). Moreover, using the growth condition on G′ (see A2), (4.95) and
Lebesgue's general convergence theorem (see [4, Section 3.25]), we obtain

G′(φn) → G′(φ) strongly in L4/3(Σ) and a.e. on Σ, (4.99)

as n → ∞, after another subsequence extraction. Arguing as in the proof of Theorem 4.3, we
exploit the strong monotonicity condition on A′ from A3 to further derive the convergences

∇φn → ∇φ strongly in L2(Q) and a.e. in Q, (4.100)

A′(∇φn) → A′(∇φ) strongly in L2(Q;Rd), (4.101)

as n→ ∞, up to subsequence extraction. Combining (4.95) and (4.100), we eventually get

M(∇φn, φn) →M(∇φ,φ) a.e. in Q. (4.102)

Let now n ∈ N be arbitrary and let ζ ∈ H1(Ω) and η ∈ L2(0, T ;H1(Ω)) with |η| ≤ 1 a.e. in
Q be an arbitrary test functions. This already implies that J ′(η) = 0 a.e. in Q. Moreover, since
J is convex its derivative J ′ is monotonically increasing. We thus have

J ′(φn)(φn − η) ≥ J ′(η)(φn − η) = 0 a.e. in Q. (4.103)

We now recall that the weak solution (φn, µn) satis�es the weak formulation (4.12) written for
(φn, µn) instead of (φ, µ). The weak formulation (4.12a) written for (φn, µn) and tested with ζ
reads as 〈

∂tφn , ζ
〉
H1(Ω)

= −
∫
Ω
M(∇φn, φn)∇µ · ∇ζ dx. (4.104)

Testing the weak formulation (4.12b) written for (φn, µn) with φn − η, integrating with respect
to time from 0 to T , and employing estimate (4.103), we obtain∫∫

Q
µn (φn − η) dx dt ≥

∫∫
Q
A′(∇φn) · (∇φn −∇η) + F ′

0(φn) (φn − η) dx dt

+

∫∫
Σw

G′(φn) (φn − η) dS dt. (4.105)
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Using the convergences (4.94)�(4.102), Lebesgue's dominated convergence theorem as well as
the weak-strong convergence principle, we pass to the limit n→ ∞ in (4.104) and (4.105). This
proves that the pair (φ, µ) satis�es the weak formulation (4.18a) for all ζ ∈ H1(Ω) as well as
the variational inequality (4.18b) for all η ∈ L2(0, T ;H1(Ω)) with |η| ≤ 1 a.e. in Q. Moreover,
(4.95) directly implies that φ satis�es the initial condition (4.19). This means that all conditions
of De�nition 4.6(ii) are veri�ed.

Proceeding similarly as in Step 4 of the proof of Theorem 4.3, and using the weak formu-
lation (4.18a), we can show a posteriori that φ is Hölder continuous in time in the sense that
φ ∈ C0,1/4([0, T ];L2(Ω)). In combination with (4.94)�(4.96), this proves that all conditions of
De�nition 4.6(i) are ful�lled.

Recalling that |φ| ≤ 1 a.e. in Q, we use (4.95) along with Lebesgue's general convergence
theorem (see [4, Section 3.25]) to conclude∫

Ω
F (φ) dx =

∫
Ω
F0(φ) dx = lim

n→∞

∫
Ω
F0(φn) dx ≤ lim inf

n→∞

∫
Ω
Fn(φn) dx

a.e. in [0, T ]. Using the convergences (4.95), (4.96), (4.100) and (4.102), we now proceed similarly
as in Step 5 of the proof of Theorem 4.3 (cf. (4.71)) to verify that the pair (φ, µ) satis�es the
weak energy dissipation law (4.20). This means that De�nition 4.6(iii) is also ful�lled.

In summary, we conclude that the pair (φ, µ) is a weak solution to system (4.1) (with F being
the double-obstacle potential) in the sense of De�nition 4.6. Hence, the proof of Theorem 4.7 is
complete. □

5 Numerical results

In this section, we present numerical comparisons between the di�use-interface model (3.3) and
its sharp-interface limit (3.52).

For the sharp-interface computations, (SI), we employ the parametric �nite element approx-
imation from [8], which uses piecewise linear �nite elements and relies crucially on the stable
approximation of the anisotropy introduced in [10, 11], see also [9]. Here, we recall that this
stable approximation is designed for anisotropy functions of the form

γ(p) =

L∑
ℓ=1

√
Λℓp · p, (5.1)

where Λℓ, ℓ = 1, . . . , L are symmetric and positive de�nite matrices. We refer to [8�11, 13] for
details. Clearly, for (5.1) the assumption A3 is satis�ed, recall Remark 4.1.

For the di�use-interface approximations, (DI), we adapt the �nite element discretizations
from [15] to the system (3.3). To this end, we assume that Ω is a polyhedral domain and let Th
be a regular triangulation of Ω into disjoint open simplices. Associated with Th is the piecewise
linear �nite element space

Sh =
{
ζ ∈ C0(Ω) : ζ|o ∈ P1(o) ∀o ∈ Th

}
,

where we denote by P1(o) the set of all a�ne linear functions on o, cf. [29]. We also let (·, ·)
denote the L2-inner product on Ω, and let (·, ·)h be the usual mass lumped L2-inner product
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on Ω associated with Th. In a similar fashion, we let ⟨·, ·⟩hΓw
denote the mass lumped L2-inner

product on Γw. Finally, ∆t denotes a chosen uniform time step size.

Our fully discrete �nite element approximation of (3.3) is then given as follows. For n ≥ 0,
let φn

h ∈ Sh be given. Then �nd (φn+1
h , µn+1

h ) ∈ Sh × Sh such that

α

(
φn+1
h − φn

h

∆t
, χ

)h

+ ε−1
(
mε(φn

h)β
ε(∇φn

h)∇µn+1
h ,∇χ

)
= 0, (5.2a)

ε
(
B(∇φn

h)∇φn+1
h ,∇η

)
+ ε−1

(
F ′(φn+1

h ), η
)h

+ cF σ⟨G
′(φn+1

h ), η⟩hΓw
= (µn+1

h , η)h (5.2b)

for all (χ, η) ∈ Sh × Sh. The above scheme utilizes the linearization B(p)p = A′(p) for
anisotropies of the form (5.1), which was �rst introduced in [14]. In particular, the symmet-
ric positive de�nite matrices B are de�ned by

B(p) =


γ(p)

L∑
ℓ=1

Λℓ√
Λℓp · p

p ̸= 0,

L

L∑
ℓ=1

Λℓ p = 0.

(5.3)

We stress that the induced semi-implicit discretization of A′(∇φ) in (5.2b) ensures that our
numerical method is stable. In fact, using the techniques in [14, 15], and on employing semi-
implicit approximations of F ′(φ) and G′(φ) based on convex/concave splittings of F and G, an
unconditional stability result can be shown. However, for the purposes of this paper we prefer
the simpler approximation (5.2). We also note that extending the scheme (5.2) to the case of the
double-obstacle potential (1.2c), when (5.2b) needs to be replaced with a variational inequality,
is straightforward. We refer to [14,15] for the precise details.

We implemented the scheme (5.2), and its obstacle potential variant, with the help of the
�nite element toolbox ALBERTA, see [66]. To increase computational e�ciency, we employ

adaptive meshes, which have a �ner mesh size hf =
√
2

Nf
within the di�use interfacial regions

and a coarser mesh size hc =
√
2

Nc
away from them, with Nf , Nc ∈ N, see [16, 17] for a more

detailed description. The nonlinear systems of equations arising from (5.2) at each time step are
solved with a Newton method, where we employ the sparse factorization package UMFPACK,
see [32], for the solution of the linear systems at each iteration. In the case of the double-obstacle
potential, we employ the solution method from [15,17].

In all our computations we �x the mobility D(ν) = 1 and, up to possible rotations, use the
anisotropy

γ(p) =
d∑

ℓ=1

√
(1− δ2)p2ℓ + δ2|p|2, p = (p1, · · · , pd)T , (5.4)

which can be regarded as a smoothed ℓ1-norm, with a small regularization parameter δ > 0.
Note that (5.4) is a special case of (5.1). For the (DI) computations we choose for the potential
F either (1.2a), so that cF = 4

3 , or (1.2c), so that cF = π
2 . We let G be de�ned by (2.9), while

the regularized mobility functions are de�ned via (3.1) and (3.2), with r = 2 and γ0 = d1 = 1.

We also choose α =
c2
F
4 so that (3.25) is consistent with (2.1a). Finally, unless otherwise stated

we use the smooth potential (1.2a) for our (DI) computations.
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Figure 4: Evolution of small island �lms towards the equilibrium (red line) for the SI approximations.
(a) Plots at t = 0, 0.002, 0.01, 0.02, 0.030878, 0.0319, 0.0339, 0.1, where the island occurs pinch-o� at t =
0.030878; (b), (c) and (d) are the plots at t = 0, 0.01, 0.02, · · · , 0.1.

5.1 2d results

In numerical simulations of solid-state dewetting problems it is often of interest whether a thin
�lm of material breaks up into islands. For example, in two space dimensions and in the isotropic
case with a 90◦ contact angle condition it has been observed that elongated �lms undergo pinch-
o� once the aspect ratio of length versus height goes beyond a critical value R0 ≈ 127.9, [34,73].
For nonzero values of σ, the critical value behaves like R0 ≈ 96.6/ sin(12 arccosσ)− 8.66, [34].

It turns out that the anisotropy γ can have a dramatic in�uence on the critical value R0.
To investigate this numerically, we simulate the evolution of small thin �lms, starting from an
initial interface in the form of the upper half of a tube with aspect ratio R = L/H, and �x
H = 0.3. We consider the following four example situations:

(a) an island of R = 15 with anisotropy γ(R(π4 )p) and σ = cos 5π
6 ;

(b) an island of R = 15 with anisotropy γ(p) and σ = cos 5π
6 ;

(c) an island of R = 15 with anisotropy γ(R(π4 )p) and σ = cos π
2 ;

(d) an island of R = 13 with anisotropy γ(R(π4 )p) and σ = cos 5π
6 ,

where R(θ) is the rotation matrix with an angle θ, and γ(p) is given by (5.4) with d = 2, δ = 0.1.
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We note that anisotropies with a four-fold symmetry like our choices above are often used in
two-dimensional models for materials with a cubic crystalline surface energy [55,56,78].

Plots of the interface pro�les for the SI approximations are presented in Fig. 4(a)-(d) for
the four examples, respectively, where the approximated polygonal curve consists of 2048 line
segments, and the time step size is �xed as 10−6. From these �gures, we can observe the in�uence
of the anisotropy γ, the contact energy density di�erence σ, and the aspect ratio R of the thin
�lm on the evolution. In particular, comparing the evolutions in Fig. 4(a) and (d) we see that the
critical value R0 for break-up to occur appears to satisfy 13 < R0 ≤ 15, which is much smaller
than in the isotropic case. Moreover, we see that either rotating the anisotropy, Fig. 4(b), or
changing the contact angle, Fig. 4(c), ensures that no break-up occurs, meaning that R0 > 15 in
both cases.

Let us remark that the pinch-o� observed in Fig. 4(a) represents a singularity for the
parametric description on which the SI approximations are based. Hence we perform a heuristical
topological change, from a single curve to two separate curves, once an inner vertex of the
polygonal curve touches the substrate. In what follows we will use the computations in Fig. 4
as reference solutions for our DI approximations, in order to empirically con�rm our theoretical
results from Section 3.
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Figure 5: The time history of the energy for the DI and SI approximations in the four di�erent examples
using the double smooth potential.

For our DI approximations we consider the computational domain Ω = [0, 3] × [0, 1], on
which for symmetry reasons we only compute the right half of the evolving thin �lm. As in-
terfacial parameters we consider ε = 1/(24+iπ), for i = 0, . . . , 2, and choose the discretization
parameters as Nf = 28+i, Nc = 25+i, ∆t = 10−3/24+2i. These spatial adaptive discretization
parameters allow for a su�cient resolution of the di�use interface, while the temporal discretiza-
tion parameters yield an excellent agreement with the SI approximations. In fact, in Fig. 5

39



0 0.02 0.04 0.06 0.08 0.1

3

4

5

6

7

8

9

10

(d) SI
ε = 1/(16π)
ε = 1/(32π)
ε = 1/(64π)

0.018 0.02 0.022

5.2

5.3

5.4

ε

0.005 0.01 0.015 0.02 0.025 0.03

E
∆

10−4

10−3

10−2

10−1

100

101

(a)-smooth

(b)-smooth

(c)-smooth

(d)-smooth

(d)-obstacle

O(ε)

Figure 6: Left panel: The time history of the energy for the DI and SI approximations in Example (d)
using the obstacle potential (1.2c). Right panel: The errors E∆ of the energy at the �nal time T = 0.1
between the SI and DI approximations plotted against ε. Here �(d)-obstacle� refers to Example (d) with
the obstacle potential, while the remaining graphs are for Examples (a)�(d) with the smooth potential.

we show the energy plots of the DI approximations and compare them with the corresponding
SI approximations for the four di�erent examples from Fig. 4. We observe that for su�ciently
small values of ε there is excellent agreement between the SI and DI evolutions, in line with
our asymptotic analysis in Section 3. What is interesting to note is that for Example (a) the
pinch-o� time predicted by the DI computations is too early when ε is not small, and this can be
explained by the fact that the wider interfacial region �sees� contact with the substrate earlier,
leading to the break-up into two islands. For the same reason, in Examples (c) and (d) the DI
computations for ε = 1/(16π) erroneously predict a pinch-o�, leading to a larger �nal energy.
But once ε is su�ciently small, no pinch-o� occurs, in agreement with the SI evolutions.

We note that using the double-obstacle potential (1.2c) leads to very similar results. As an
example we show the evolution of the discrete energies for Example (d) in Fig. 6. In addition, in
order to also have a quantitative comparison between our SI and DI computations, in the same
�gure we also present plots of the energy di�erence E∆ between the �nal SI and DI solutions
against ε. The presented results suggest that the DI energies of the �nal states approach the
corresponding SI energy with O(ε). Note that the three instances where E∆ ≥ 10−1 correspond to
cases where the DI computations wrongly predict a pinch-o�. Moreover, in practice, we observe
that the contact angles between DI and SI at the �nal time agree very well, with the error being
of order 10−3 throughout.

The qualitative behaviour of the DI and SI approximations is compared in Figs. 7�10. In
all four examples we note an excellent agreement between the two di�erent approaches. This
is particularly noteworthy in Example (a) with the occurrence of a topological change, which is
not covered by our asymptotic analysis.

5.2 3d results

In 3d, we compare our SI and DI approximations for the evolution of an initially spherical island
for the anisotropy γ(Rx(

π
4 )Ry(

π
4 )p), where γ(p) is given by (5.4) with d = 3, δ = 0.1, and where

Rx(θ),Ry(θ) are rotation matrices which rotate a vector through an angle θ within the (y, z)-
and (x, z)-planes, respectively. The initial interface is chosen to be a semisphere of radius 0.4,
attached to the (x, y)-plane, and we let σ = cos(5π6 ).

For the SI computation, we consider a polyhedral surface with 8256 triangles and 4225
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Figure 7: [ Example (a) ] Interface pro�les at times t = 0, 0.01, 0.02, 0.03, 0.04, 0.1 for the DI approxi-
mations with ε = 1/(64π), and the red dash line represents the SI approximations.
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Figure 8: [ Example (b) ] Interface pro�les at times t = 0, 0.01, 0.02, 0.03, 0.04, 0.1 for the DI approxi-
mations with ε = 1/(64π), and the red dash line represents the SI approximations.
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Figure 9: [ Example (c) ] Interface pro�les at times t = 0, 0.01, 0.02, 0.03, 0.04, 0.1 for the DI approxi-
mations with ε = 1/(64π), and the red dash line represents the SI approximations.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 10: [ Example (d) ] Interface pro�les at times t = 0, 0.01, 0.02, 0.03, 0.04, 0.1 for the DI approxi-
mations with ε = 1/(64π), and the red dash line represents the SI approximations.
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vertices, and a time step size 10−4. For our DI approximations, on the other hand, we consider
the computational domain Ω = [−1

2 ,
1
2 ]

3 and as interfacial parameters consider ε = 1/(22+iπ),
for i = 0, . . . , 2, with the corresponding discretization parameters Nf = 25+i, Nc = 22+i, ∆t =
10−3/22i. In Fig. 11 we show the energy plots of the DI approximations and compare them with
the corresponding SI simulation, noting once again an excellent agreement when ε is su�ciently
small. We also present a plot of the error in the energy between the DI and SI approximations
against ε. Note that the large error for ε = 1/(4π) is due to that DI simulation wrongly predicting
a pinch-o�.

Moreover, a qualitative comparison between the evolutions of the interface for both ap-
proaches is shown in Fig. 12. In particular, at the bottom of Fig. 12 we see that the sharp
interface approximation agrees very well with the zero level set from the DI computation, un-
derlining once more our asymptotic analysis in Section 3.

t

0 0.005 0.01 0.015 0.02 0.025 0.03

E
(ϕ

)

1

1.2

1.4

1.6

1.8

2

2.2

SI
ε = 1/(4π)
ε = 1/(8π)
ε = 1/(16π)

ε

0.005 0.01 0.015 0.02 0.025 0.03

E
∆

10
-2

10
-1

10
0

O(ε)

Figure 11: Left panel: The time history of the energy for the DI and SI approximations for the semisphere
experiment in 3d. Right panel: The error E∆ of the energy at the �nal time between the DI and SI
approximations plotted against ε.
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