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Abstract

The need for accurate 3D reconstructions of complex and large environments
or structures has risen dramatically in recent years. In this context, devices
known as portable mobile mapping systems have lately emerged as fast and
accurate reconstruction solutions. While most of the research and commer-
cial works have relied so far on laser scanners, solutions solely based on cam-
eras and photogrammetry are attracting an increasing interest for the minor
costs, size and power consumption of cameras. This thesis presents a novel
handheld mobile mapping system based on stereo vision and image-based 3D
reconstruction techniques. The main novelty of the system is that it lever-
ages Visual Simultaneous Localization And Mapping (V-SLAM) technology
to support and control the acquisition of the images. The real-time estimates
of the system trajectory and 3D structure of the scene are used not only to
enable a live feedback of the mapped area, but also to optimize the saving of
the images, provide geometric and radiometric quality measures of the im-
agery, and robustly control the acquisition parameters of the cameras. To the
best of authors’ knowledge, the proposed system is the first handheld mobile
mapping system to offer these features during the acquisition of the images,
and the results support its advantages in enabling accurate and controlled
visual mapping experiences even in complex and challenging scenarios.

Keywords
[Portable mobile mapping, photogrammetry, V-SLAM, stereo vision, real-
time, quality control]
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Chapter 1

Introduction

Three-dimensional (3D) mapping / reconstruction is defined as the process
of deriving shape and appearance of real objects from multiple sensor mea-
surements. When the sensor data is collected from a moving system and
typically in an automatic fashion, we talk about mobile 3D mapping. This
technique is becoming more and more crucial today for the 3D reconstruction
of complex and extended structures or environments, where static acquisi-
tion techniques, e.g. terrestrial laser scanning or close range photogramme-
try, would be highly inefficient in terms of time. This thesis is positioned in
the context of portable mobile 3D mapping, which comprises all the systems
intended to be carried and used by a walking person.

1.1 Context and Motivations

Portable mobile 3D mapping systems, or simply portable mobile mapping
systems (PMMSs), were mainly born for the rapid and agile 3D mapping of
those environments or structures that are not easily accessible by vehicles or
drones. Common examples include rugged outdoor scenarios, indoor or un-
derground structures, with frequent applications comprising inspection and
monitoring, digitization of heritage assets, forestry mapping, soil analysis, or
the generation of 3D models for virtual and augmented reality applications.
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The PMMS context has drawn a lot of research and commercial attention
since the first experimental systems were introduced roughly ten years ago
[1]. So far, for 3D mapping, the vast majority of the works have relied on
Light Detection And Ranging (LIDAR) sensors and laser scanner systems
[2]. Although the latter have undoubted advantages in terms of accuracy,
immediacy of the 3D result, acquisition frequency and capability to work
effectively on different surfaces and environmental conditions, their costs are
very high. Moreover, LIDAR technology alone does not provide color and
texture information, necessitating the use of integrative photographic acquisi-
tion when the latter are required. This lately has motivated a strong interest
towards the research and development of alternative and low-cost solutions.

Purely visual systems based on standard cameras and image-based 3D
reconstruction techniques [3] are among the most interesting alternatives.
Cameras are substantially simpler than laser scanners, resulting in lower
prices, weight and power consumption as well as in less working range lim-
itations due to the absence of emitters. Furthermore, thanks to remarkable
advances in algorithms and computational capabilities of commodity hard-
ware, image-based 3D reconstruction methods have improved dramatically
in the previous decade [4], and can provide both geometric and color/texture
information using a single sensor. Still, the visual and portable mobile map-
ping has several important and open challenges to address:

• Sensor challenges. Cameras are primarily light acquisition devices,
so they require a sufficiently and possibly evenly lit scene to produce
acceptable results. Unfortunately, this is not always the case, and the
real world often presents strong illumination variations. In these cases,
the dynamic range of the cameras might not be sufficiently wide to cor-
rectly expose all the scene elements, and the images are likely to con-
tain burned/overexposed and/or extremely dark/underexposed regions
(Figure 1.1a). Another important problem of moving visual systems
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is motion-blur. This blur effect occurs when the camera moves signifi-
cantly during the exposure phase of the sensor (Figure 1.1b). Exposure
and blur issues cause considerable information and quality losses in the
images [5, 6], which can have a significant impact on the correctness and
completeness of the reconstruction.

• Algorithm challenges. While sensor measurements of LIDAR sys-
tems, e.g. laser scanners or ToF cameras, are already three-dimensional,
visual systems require extra algorithmic steps and mathematical models
to convert multiple overlapped images to three-dimensional estimates.
This makes the visual mapping significantly more complicated and com-
putationally demanding than the LIDAR counterpart. Furthermore,
there are still situations where the current algorithms fail to deliver ac-
curate and complete results, like for example when working with poorly-
textured (Figure 1.1c) and/or highly reflective (Figure 1.1d) surfaces
[7, 8].

• Practical challenges. Due to the limited computational capabilities
of existing portable hardware, the mapping process of visual systems is
practically carried out in post-acquisition today [9, 10], typically lever-
aging the computational resources of powerful workstations. This im-
practical separation between acquisition and estimation phases currently
makes a predictable use of visual systems an open problem [11, 12].
Without a real-time feedback on the mapping results, it is almost im-
possible for an operator to determine the correctness and completeness
of the image acquisition, and possible areas of the environment could be
missed or not sufficiently covered.
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(a) (b) (c) (d)

Figure 1.1: Some of the open challenges of portable visual mobile 3D mapping. (a)
Strong illumination variations. (b) Motion-blur. (c) Poorly-textured environments. (d)
Reflective surfaces.

1.2 Contributions and Outline

Motivated by the above observations, this thesis presents a novel visual
portable (handheld) mobile mapping system. The key innovation of the
system is to support and control the image acquisition with a real-time and
sparse three-dimensional reconstruction of the acquired environment. The
proposed system leverages a Visual Simultaneous Localization And Mapping
(V-SLAM) algorithm, based on the open-source OpenVSLAM [13], to have
continuous and real-time estimates of its local position and attitude in the
environment as well as of the three-dimensional structure of the surround-
ing scene. This provides several advantages. As a starting point, the user
can leverage the real-time 3D reconstruction to assess the overall progress of
the acquisition and check that all the target areas are well covered by the
images. Besides, the estimates of the system position and scene structure
can be leveraged to optimally control the acquisition of the images, provide
quality indicators of the acquisition distance and speed, and control robustly
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the camera exposure also in presence of challenging illumination conditions.
To the best of the authors’ knowledge, this is the first example of a visual
handheld mobile mapping system that provides real-time feedback and assis-
tance during the acquisition of the images, which cover both geometric and
radiometric aspects of the imagery. Summarizing, the main contributions of
this thesis work are:

• A novel visual handheld mobile 3D mapping system, named GuPho
(Guided Photogrammetric (system)), that leverages a real-time and
sparse reconstruction of the scene to assist and guide the image acqui-
sition process.

• Different methods for controlling the acquisition of the images that con-
sider the pose of the system and the three-dimensional structure of the
scene, which can ensure proper image overlap and an optimized amount
of images.

• Methods for monitoring the acquisition distance and speed, and help the
user to achieve a better positioning while avoiding, at the same time,
important motion-blur problems.

• A novel camera exposure control and metering method that exploits
the known structure and depth of the scene to perform an object-based
exposure control, which can significantly help in situations of strong
illumination variations.

• A Low-cost, lightweight and modular system design based on stereo-
vision that can be easily adapted to different working scenarios.

The material presented in this thesis is the result of several own scientific
publications. While [14] laid some of the system foundations, in particular
regarding the acquisition control methods, the first version of the system
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Figure 1.2: Some views of the proposed system during field operations.
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was presented and evaluated in [15]. A second and improved iteration of
the system was considered in [16], where different handheld mobile mapping
solutions were tested and compared in an underground built heritage context.
In Figure 1.2 it is possible to see some views of the system during various
test operations in the field.

The remainder of the thesis is structured as follows. Chapter 2 presents
the state of the art in the PMMS context. Both LIDAR and visual systems
are covered and discussed. Chapter 3 summarizes the main concepts and
principles related to camera geometry and Visual Simultaneous Localization
And Mapping (V-SLAM) algorithms that the reader might need to better
follow and understand the next parts. The chapter also reports the main
motivations behind the choice of OpenVSLAM and briefly describes its ar-
chitecture and stereo pipeline. Chapter 4 presents in details the proposed
system and methods. Chapter 5 proposes an extensive evaluation of the pro-
posed solutions, consider also multiple scenarios with available laser scanner
ground truth. Finally, Chapter 6 draws the conclusions and hints at possible
future research directions.
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Chapter 2

State of the Art

In this chapter the current state of the art in the portable mobile mapping
context is presented and discussed. First, a brief overview of portable mobile
mapping systems is given in Section 2.1. Then, Section 2.2 covers the solu-
tions based on LIDAR technology, using either laser scanners (Section 2.2.1)
or scanner-less sensors (Section 2.2.2). Camera-based devices are finally pre-
sented in Section 2.3, where they are conveniently divided between systems
based on existing platforms like smartphones or tablets (Section 2.3.1) and
systems based on dedicated hardware (Section 2.3.2).

2.1 Overview

A portable mobile mapping system can be defined as one that possesses the
following characteristics: (i) during the use, it is carried by a person; (ii) it is
equipped with sensors that can enable three-dimensional measurements (iii)
the sensor data is acquired automatically without requiring stop-and-acquire
actions. Existing solutions can be divided in two main categories:

• LIDAR-based systems: they leverage LIDAR sensors to obtain the
3D measurements of the environment. LIDAR is a ranging technique
that use collimated laser beams and photodetectors to measure the dis-
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tance between the instrument and the target hit by the laser pulse.
Depending on how the laser beams are emitted, existing sensors can be
classified as scanner or scanner-less [17]. The former, generally known
as laser scanners, employ rotating mirrors to diverge the laser beams in
multiple directions, and their working range can extend up to several
hundred of meters. The latter, also known as ToF (Time of Flight)
cameras, can illuminate a large portion of the scene without the need
of rotating mechanisms, but the working range is usually limited to
a few meters. Finally, the acquired laser measurements are typically
aligned and merged into a consistent 3D reconstruction using Simulta-
neous Localization And Mapping (SLAM) [18, 19, 20] algorithms and/or
volumetric approaches [21].

• Camera-based systems: they use cameras and image-based 3D recon-
struction algorithms to reconstruct in 3D the scene. In this category fall
systems based on existing platforms, like smartphones or tablets, as well
as dedicated solutions. Generally, the former can offer greater portabil-
ity, but usually lack camera quality, e.g. rolling shutter or reduced
dynamic range, and the possibility to use different lenses or multiple-
camera configurations. The latter are typically bulkier but can gener-
ally rely on better cameras and optics, as well as on the ability to use
multiple camera configurations to increase the covered area and reduce
the acquisition times. Rarely, in current portable visual systems, the
3D reconstruction is performed during the acquisition of the images.
The computational capability of portable hardware is still largely insuf-
ficient to allow for highly accurate and dense reconstructions of large
environments. Nevertheless, there has recently been a surge in interest
towards hybrid approaches, where the final 3D reconstruction is still
done in post-acquisition, leveraging powerful workstation and robust
algorithms known as Structure from Motion (SfM) [9] and Multi View
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Stereo (MVS) [10], but the field operations are supported with real-time
and low-resolution reconstructions. The system proposed in this thesis
belongs to this novel category of solutions.

2.2 LIDAR-based systems

2.2.1 Scanner

The Akhka-Backpack from the Finnish Geodetic Institute [22] and the hand-
held Zebedee from the CSIRO ICT centre of Brisbane [23] are among the first
portable systems based on laser scanners. The Akhka-Backpack is essentially
a portable adaptation of a vehicle-based system [24], from which it inherited
the same GNSS/INS positioning approach for direct geo-referencing of the
laser scans. Hence, its use was practically limited to outdoor scenarios. The
Zebedee was one of the first portable systems to use an online SLAM-based
alignment [25] of the laser scans, and it proposes a peculiar combination of
a 2D laser scanner with spring mechanism, that, by swinging, extends the
field of view of the scanner. The Zebedee was later commercialized by the
company GeoSLAM [26] under the name of ZEB1. In the successive years,
new versions have been proposed with improvements in the SLAM imple-
mentation, rotating mechanism (ZEB Go [27]) and laser technology (ZEB
Horizon [28]). In the commercial domain, another relevant system is the
Kaarta Stencil 2 [29]. The employed SLAM algorithm combines LIDAR,
inertial and visual data and it is based on the following research work [30].
Recently, the same company released a new system called Countour [31],
adding an integrated display and an additional camera to colorize the point
cloud. Other important commercial players in the portable field are Leica
and Gexcel, with products like the Leica BLK2GO [32], the Leica Pegasus
backpack [33] or the GEXCEL Heron systems [34]. Moving back to the aca-
demic works, it is worth mentioning also the systems of Nüchter et al. [35]

11



and Blaser et al. (BIMAGE backpack [36]). The former combines a 2D laser
scanner for planar (3 Dof) motion estimation with a high-quality 3D laser
scanner for the actual 3D mapping and full (6 Dof) motion estimation. The
aligned laser scans and the system trajectory can be visualized in real-time
on a connected laptop. The BIMAGE backpack is composed of two Velodyne
VLP-16 laser scanners, an industrial-grade IMU and a Ladybug panorama
camera. The system exploits the Robot Operating System (ROS) [37] to
manage the data acquisition, and the Cartographer SLAM [38] to compute
online the system trajectory. To achieve more accurate trajectory estimates,
the images acquired by the Ladybug camera are finally used to refine the
SLAM poses with SfM techniques. The interested reader may refer to these
excellent reviews [1, 2] for a deeper reading on the topic.

2.2.2 Scanner-less

In the context of portable mobile mapping, scanner-less LIDAR systems are
relatively new entrants. Although popular examples of scanner-less sensors
like the second version of the Microsoft Kinect are around since some time,
the use of TOF cameras in portable systems has just lately increased. In the
latest years, companies like Microsoft and Apple started to equip some of
their devices with scanner-less LIDAR sensors. These includes the latest pro
versions of the iPhone or iPad as well as the second version of the HoloLens
mixed reality headset. Since then, different real-time 3D reconstruction ap-
plications have been developed, both in the research [39] and commercial
domains [40, 41, 42]. These works typically combines visual-inertial pose
estimation algorithms with techniques to fuse interactively multiple depth
images into volumetric representations, often relying also on augmented re-
ality to display in real-time the reconstructed model to the user. Although
large-scale applicability remains prohibitive, mainly due to the high com-
putational cost of volumetric approaches and the reduced working range of
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Year Device Format Sensor type Domain

2012 Akhka-Backpack [22] Backpack Scanner Research

2012 Zebedee [23] Handheld Scanner Research

2013 GeoSLAM Zeb1 Handheld Scanner Commercial

2015 Nüchter et al. [35] Backpack Scanner Reserach

2017 GEXCEL HERON Lite [34] Handheld Scanner Commercial

2018 BIMAGE backpack [36] Backpack Scanner Research

2018 GeoSLAM Zeb Horizon [28] Handheld Scanner Commercial

2018 Kaarta Stencil 2 [29] Handheld Scanner Commercial

2019 Karam et al. [46] Backpack Scanner Research

2019 Kaarta Contour [31] Handheld Scanner Commercial

2019 Leica BLK2GO [32] Handheld Scanner Commercial

2019 Microsoft HoloLens 2 [47] Headset Scanner-less Commercial

2020 Apple iPhone/iPad pro Handheld Scanner-less Commercial

Table 2.1: List of relevant academic and commercial portable LIDAR-based mobile map-
ping systems.

ToF sensors, these solutions are already able to deliver quite impressive and
promising results [43, 44, 45], also considering the compact size of the devices
and the real-time reconstruction process.

2.3 Camera-based systems

2.3.1 Existing platforms

Schöps et al. [48] proposed a 3D reconstruction system based a Project
Tango Development Kit tablet. Leveraging GPU acceleration (Nvidia Tegra
K1 chipset), a visual-inertial odometry algorithm, and a TSDF volumetric
approach, they were able to compute in real-time dense 3D models of large-
scale outdoor scenes from the tablet monochrome fisheye camera. Nocerino
et al. [49] proposed a collaborative cloud-based solution where different users
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Year Device Type Camera conf. Domain
2017 Schöps et al. [48] Tablet Monocular Research
2017 Holdener et al. [52] Dedicated Five cameras Research
2017 Nocerino et al. [49] Smartphone Monocular Research
2018 Nawaf et al. [53] Dedicated Stereo Research
2019 Hasler et al. [50] Smartphone Monocular Research

2020
Ortiz-Coder and
Sánchez-Ríos [54]

Dedicated Two cameras Research

2020 Pix4DCatch [51] Smartphone Monocular Commercial
2021 Mokroš et al. [45] Dedicated Four cameras Research
2022 Perfetti and Fassi [55] Dedicated Five cameras Research

Table 2.2: List of relevant academic and commercial portable camera mobile mapping 3D
systems.

can use their smartphone to scan the environment/object and automatically
upload the images to a server. Here, incremental sparse 3D reconstructions
are estimated and returned, close to real-time, to the users’ smartphones.
Hasler et al. [50] investigated the use of smartphone-based indoor mobile
mapping. In particular, they exploited augmented reality frameworks to
locally track the user trajectory and allow him/her to take in real-time mea-
surements of the environment. Following the same idea, in 2020 the company
Pix4D released Pix4DCatch [51] which takes advantage of mobile augmented
reality frameworks to assist the user during the image acquisition. The app
allows the user to see in real-time the locations of the acquired images and
the sparse point cloud of the acquired scene. This is the most similar work
to the system proposed in this thesis. Nevertheless, the app does not cover
aspects related to ground sample distance or motion-blur issues and, being
based on smartphones, the optical quality and flexibility is limited.
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2.3.2 Dedicated platforms

Holdener et al. [52] presented a low-cost device for indoor mapping with
a circular five-camera arrangement. The cameras mount fisheye lenses to
provide a 360° coverage of the scene, and are triggered by a Raspberry Pi
3. The system proposed by Ortiz-Coder and Sánchez-Ríos [54] combines a
laptop and two cameras with different resolutions. The low-resolution one
is used to estimate the acquisition trajectory and select the most important
frames from those acquired by the high-resolution camera. Nawaf et al.
[53] proposed a handheld underwater stereo system that leverages an own
developed visual odometry algorithm, running on a remote laptop, to provide
approximate estimates of the covered area. Mokroš et al. [45] proposed a
device for forestry mapping that combines four cameras, two looking towards
the walking direction and two at the sides. The camera are triggered once
every second with a TriggerBox. Perfetti and Fassi [55] proposed a handheld
system composed of five fisheye cameras for the 3D mapping of environments
with narrow passages.
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Chapter 3

Background

This chapter lays the groundwork for a number of concepts and principles
that are necessary for a better understanding of the proposed solution. First,
some geometry basics regarding the modeling of the imaging process and of
the camera motion are given. Then, the V-SLAM problem is introduced
and the main approaches outlined. Finally, the chapter is concluded with a
section dedicated to OpenVSLAM, including the motivation behind its choice
and a brief description of its stereo pipeline.

Notation. In this and following sections, scalar number are denoted by
italic lowercase letters (for example s), vectors by bold lowercase letters (for
example v) and matrices by bold uppercase letters (for example M).

3.1 Geometry basics

In order to use the images acquired by a camera, we need to know how to
relate them to the real world and the measurement process. This involves
the definition of different mathematical models.
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Figure 3.1: Two-dimensional illustration of the pinhole camera model. For convenience,
often the image plane is placed in front of the camera center to avoid the mirroring effect.

3.1.1 Camera model

The camera model describes the relationship between a 3D point seen by the
camera and its 2D projection on the image, and can be modelled as function
π : R3 → Ω. A common and practical camera model is the Pinhole camera
model, that assumes that the camera has no lenses and all the light rays
pass through a single point, called the camera center, optical center or the
pinhole. The image plane is assumed to face perpendicularly the camera
center, whose relative distance is known as focal length f . An illustration of
the Pinhole model is shown in Figure 3.1.

Given a 3D point in the camera coordinate system p := (x, y, z)T ∈
R3, and a unit focal length, the projection of p on the image plane can be
computed as

π(p) =

uv
1

 :=
1

z

xy
z

 (3.1)

The obtained coordinates (u, v)T are relative to the image sensor. To com-
pute their corresponding pixel coordinates we should apply the so called
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Camera Matrix K which is defined as:

K :=

fx 0 cx

0 fy cy

0 0 1

 (3.2)

where fx, fy are the focal lengths expressed in pixels and cx, cy the coordi-
nates of the principal point again expressed in pixel units. These parameters
are also known as camera intrinsic parameters. The pixel coordinates of the
projected point π(p) can then be computed asuv

1

 = Kπ(p) (3.3)

The Pinhole projection does not take in account possible distortions caused
by the fact the real-cameras use lenses. To account for this problem, it is
common to apply a non-linear function τ : R2 → R2 to the projected coor-
dinates to correct possible lens distortion effectsuv

1

 = Kτ(π(p)) (3.4)

The Radio-Tangential Model [56] is a widely used polynomial model for ap-
proximating the distortion parameters of camera lenses. The OpenCV im-
plementation, used in this thesis, has 8 parameters (6 for radial distortion
k1, . . . , k6 and 2 for tangential distortion p1 and p2). The distortion function
τ can then defined as[

uu

vu

]
:=

[
ud

1+k1r
2+k2r

4+k3r6
1+k4r2K4r2+k5r4+k6r6

+ 2p1udvd + p2(r
2 + 2u2d)

vd
1+k1r

2+k2r
4+k3r6

1+k4r2K4r2+k5r4+k6r6
+ p1(r

2 + 2v2d) + 2p2udvd

]
(3.5)

where (ud, vd) are the measured distorted point coordinates, and (uu, vu) are
the undistorted point coordinates after applying τ .
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3.1.2 Camera poses

The camera pose, or camera extrinsic parameters, describes the position and
attitude of the camera when an image was taken. Assuming the existence
of a world coordinate system W , the pose of a camera can be represented
in two ways: either as a transformation from W to the camera coordinate
system C, or its inverse. In both cases, the transformation is a rigid 3D
transformation involving a translation (3 degree of freedom) and a rotation
(3 degree of freedom) component, and it is an element of the special Euclidean
group SE(3). This kind of transformations are usually expressed as 4 x 4
matrices. The left 3 x 3 part of the matrix is the rotation matrix (R) and the
right 3 x 1 column vector is the translation vector (t). The rotation matrices
are orthogonal, so the inverse and the transpose operations return the same
result (R−1 = RT ). Given a point p and a transformation T, the new point
coordinates pn are computed as follows

pn = T · p := Rp + t (3.6)

The inverse transformation T−1 := (RT ,−RT t) brings back pn to p

p = T−1 · pn := RTpn − RT t (3.7)

A graphical representation of the transformation between a world and camera
coordinate systems is shown in Figure 3.2.

3.1.3 Stereo rectification

The estimation of the three-dimensional position of the same scene point
observed in two different images is known as triangulation. In the case of a
stereo system, this process involves first the identification of corresponding
pixels in the left and right images, and then, for each associated pair of pixels,
the computation of the respective three-dimensional point. This problem
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Figure 3.2: Illustration of SE(3) transformations between a world coordinate system (W )
and a camera (C) coordinate system. TW

C transform points expressed in C to points
expressed in W . TC

W transform points expressed in W to points expressed in C. Note
that these transformations do no change the locations of the points, just how they are
expressed.

becomes significantly easier when the cameras are coplanar, that is when the
right camera has only an horizontal offset with respect to the left camera or,
equivalently, when the cameras’ optical axes are parallel to each other and
orthogonal to the baseline of the stereo camera. In practice, this property
rarely holds, so a procedure known as stereo rectification [57] is commonly
used to remap, through projective transformations, the left and right images
as if they were acquired by two perfectly aligned cameras with the same
intrinsic parameters (Figure 3.3). During this process, known the distortion
parameters, the lens distortion can be removed from the images as well.
Once the images are correctly rectified, corresponding stereo pixels will have
a displacement only along the x axis, as all the epipolar lines are parallel to
the stereo baseline. Given two corresponding stereo pixels pl := (xl, yl) and
pr := (xr, yr), with yl = yr, their associated 3D point p = (x, y, z) can then
be simply computed as

z =
f b

xl − xr
y = yl

z

f
x = xl

z

f
(3.8)
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Figure 3.3: Epipolar geometry and stereo rectification.

where b is the baseline between the left and right cameras and f the focal
length of the cameras.

3.2 V-SLAM

The problem of estimating in real-time the 3D structure of an unknown en-
vironment (Mapping) and the trajectory of one or more moving cameras
(Localization or Tracking) is known today as Visual Simultaneous And Map-
ping (V-SLAM). Born initially in the robotic community, it rapidly spread
also to other contexts, like real-time 3D reconstructions, augmented reality
applications and autonomous driving. What makes V-SLAM so attractive
is its very basic hardware requirements, as a simple camera can be the only
required sensor. In this section we briefly describe the main existing ap-
proaches, motivate the choice of using OpenVSLAM in the proposed system,
and outline the main steps of the OpenVSLAM pipeline. We refer the reader
to these reviews [20, 58] for a deeper and more complete description of the
topic.
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3.2.1 Main approaches

Existing V-SLAM algorithm (Table 3.1) can be categorized in the following
three groups:

• Indirect: indirect methods convert the images into a sparse set of dis-
tinctive image locations known as image features, and use them to per-
form the tracking and the mapping operations. They share a lot of
concepts with the well-known Structure from Motion problem [9], such
as feature extraction and matching, and the minimization of the ge-
ometric error (also called re-projection error) with bundle adjustment
(BA) techniques. For real-time purposes, however, they usually use
faster and less accurate binary features like ORB [59] or BRISK [60],
and perform the geometric optimizations in local windows of selected im-
ages (keyframes). Relevant indirect works include PTAM [61], the three
published versions of ORB-SLAM [62, 63, 64], and OPEN-V-SLAM [13].

• Direct: direct methods do not require image features to perform track-
ing and mapping operations. Instead of working on geometric errors,
direct methods use formulations based on photometric errors which are
computed directly on the pixels intensities. In this category fall im-
portant implementations like DTAM [65], LSD-SLAM [66] and DSO
[67]. The former considers all the available pixels in the image, all the
available pixels of the image while the latter restrict the tracking and
mapping operations on selected pixels having high intensity gradient.

• Semi-direct: semi-direct methods combine together indirect and direct
elements. SVO [68], for example, perform tracking using a fast direct
approach based on image intensities, while features are extracted only
for keyframes to initialize and expand the sparse 3D map.

In the above-argumentation, we slightly abused, for simplicity, the termi-
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Year Algorithm Class Loop closure Re-localization

2007 MonoSLAM [69] Indirect No No

2007 PTAM [61] Indirect No No

2011 DTAM [65] Direct No No

2014 LSD-SLAM [66] Direct Yes Yes

2014 SVO [68] Semi-direct No No

2015 ORB-SLAM [62] Indirect Yes Yes

2017 DSO [67] Direct No No

2017 ORB-SLAM2 [63] Indirect Yes Yes

2018 LDSO [70] Direct Yes No

2019 OPEN-V-SLAM [13] Indirect Yes Yes

2020 KIMERA [71] Indirect Yes No

2021 ORB-SLAM3 [64] Indirect Yes Yes

Table 3.1: List of relevant academic V-SLAM and VO algorithms.

nology. We did not make a distinction between V-SLAM and visual odometry
(VO) algorithms. The primary distinction is that the former perform addi-
tional operations known as loop closure and re-localization. Loop closure is
a technique for detecting previously-visited locations, while re-localization
is a recovery procedure than happens when the tracking fails. While these
operations lead to increased computational loads, and hence are sometimes
emitted, they bring important advantages. Loop closure can significantly
reduce tracking errors, especially in long trajectories that start and end from
the same position. After some track failures, for example due to abrupt mo-
tions or fast illumination changes, re-localization can restore the tracking,
which would otherwise be unrecoverable. As a summary, we collected in
Table 3.1 some of the most important V-SLAM and VO works.
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3.2.2 OpenVSLAM

3.2.2.1 Motivation

At the time when the development the system began, the choice of using
OpenVSLAM was made for a variety of reasons. First and foremost, Open-
VSLAM is based on ORB-SLAM2, a complete V-SLAM algorithm with loop
closure and re-localization capabilities that is still one of the best perform-
ing algorithms available [64]. Besides, OpenVSLAM includes a number of
additional features that were judged important for the specific use case of
the proposed system. In addition to the standard pinhole camera model for
conventional lenses, OpenVSLAM supports also a wide-angle camera model
[72] for fisheye lenses. This gives the system the flexibility to work both with
rectilinear and fisheye lenses. Secondly, OpenVSLAM includes a web-based
viewer and a data exchange system based on the WebSocket [73] protocol.
The visualization of the V-SLAM output can be easily done in this way on a
separate device and, as better explained in the next chapter, this feature is
leveraged to better distribute the computation load inside the system.

3.2.2.2 Stereo pipeline

In this section we briefly describe the stereo pipeline of OpenVSLAM. A V-
SLAM method is a complex combination of different algorithms and coding
architectures. Here, we aim to outline the essential elements.

• System calibration. The geometric properties of the cameras (Sec-
tion 3.1.1), i.e. the intrinsic and distortion parameters, and the relative
pose between the left and right cameras (Section 3.1.2) must be known
in advance. These parameters can be accurately estimated using cali-
bration fields with known sizes and self-calibration bundle adjustment
techniques [74, 75]. A more detailed description of the calibration pro-
cedure is given in Section A.3.
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• Stereo rectification. Before being processed, the stereo images must
be stereo-rectified (Section 3.1.3). In this way, the lens distortion is
removed, and both the matching of the image features, which are ORB
features in the case of OpenVSLAM, and their stereo triangulation are
significantly simplified and faster to compute. The stereo-rectification
requires an accurate system calibration to produce satisfactory results.

• Initialization. Initialization sets the world coordinate system and cre-
ates the first set of triangulated features of the map. The coordinate
system is set equal to the pose of the left camera. The right camera
is assumed rigid and simply translated with respect to the left one ac-
cording to the given calibration and stereo-rectification information. If
enough stereo matches can be successfully triangulated, the initializa-
tion phase is concluded and the algorithm is ready to start performing
tracking and mapping operations and the subsequent images.

• Tracking. The process of estimating the current pose of the camera
against the current map is called tracking. First, a set of matches be-
tween the triangulated features, also known as landmarks in the SLAM
terminology, and the image features are obtained. Then, starting from
an initial approximation, the pose is computed using a simplified BA
formulation where the landmarks are kept fixed. Mur-Artal et al. [62]
named this technique motion-only BA. If the optimization converges
and a valid pose if found, the algorithm moves to the keyframe selection
phase, otherwise the re-localization module is called into play. As op-
timization framework, OpenVSLAM uses the open-source G2O library
[76].

• Keyframe selection. The keyframe selection decides which images
(or frames) should be passed to the mapping module to update and
expand the map (or sparse point cloud). The mapping operations are
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computationally expensive so they are limited on selected frames, the
so-called keyframes. In OpenVSLAM, the selection essentially considers
the number of matches between the current stereo frame and the visible
map. If this number falls below a certain threshold, a new keyframe is
selected and passed to the mapping module.

• Mapping. The mapping module runs on separate thread and its role
is to keep the map updated and optimized, so that the tracking can
accurately localize the camera. When a new keyframe is selected, new
features are triangulated with the neighbouring keyframes, which are
obtained using a graph structure called co-visibility graph, and the ex-
isting ones are jointly optimized together with the camera poses using
local BA iterations. When a keyframe was processed, it is then passed
to the loop closure module to check eventual loop closure events.

• Loop closure. The loop closure module runs on a third separate thread
and basically performs three steps: (i) candidate retrieval; (ii) geometric
verification; (iii) global correction. The first step retrieves the most
similar keyframes to the considered one. The similarity is computed
using visual bag of words [77] representations of the keyframes, and
OpenVSLAM leverages the open-source DBow2 [78] library for this task.
A similarity transform, which incorporates the scale and so has seven
degrees of freedom, is then computed for each candidate keyframe using
a RANSAC scheme and the Horn method [79]. If enough inliers are
detected, the loop candidate is accepted and the third step begins. The
global correction phase finally update the connections in the co-visibility
graph and performs a global optimization on the whole trajectory using
similarities transforms [80].

• Re-localization. Similarly to the loop closure case, the re-localization
procedure is divided into two steps: (i) candidate retrieval and (ii) ge-
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ometric verification. The candidate retrieval leverages again visual bag
of words vectors to return the most similar keyframes, which are then
used, in the geometric verification step, to try to compute a valid cam-
era pose with RANSAC and the EPnP [81] algorithm. If a pose with
enough matches is found, the re-localization terminates and the tracking
can be normally resumed.

We refer the reader to the OpenVSLAM [13] and ORB-SLAM2 [63] papers
for a more detailed description of the pipeline.
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Chapter 4

Proposed Solution

This chapter presents the proposed solution. The chapter begins with a brief
and high-level overview of the system (Section 4.1), which is followed by a
detailed description of its hardware (Section 4.2) and software (Section 4.3)
components.

4.1 Overview

A high-level overview of the proposed system is shown in Figure 4.1. The
device is composed of an imaging part, a computing unit and a visualiza-
tion unit. The imaging part (Section 4.2.1) is controlled by the computing
unit (Section 4.2.2), to which it provides synchronized stereo pairs at every
received triggering command. The stereo images are first pre-processed (Sec-
tion 4.3.1) and then used by the computing unit to continuously estimate in
real-time the pose of the system and a three-dimensional reconstruction of the
environment in the form of a sparse point cloud (Section 4.3.2). These esti-
mates are then exploited by four different modules to control the saving of the
images (Section 4.3.3), provide feedback on the acquisition distance (Section
4.3.4) and speed (Section 4.3.5), and update the camera acquisition parame-
ters (Section 4.3.6). The sparse three-dimensional reconstruction, the poses
of the saved images and the quality control feedback are instantly and incre-
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Figure 4.1: High-level overview of the proposed system.

mentally made available to the user through the visualization unit (Section
4.2.3) and a custom viewer (Section 4.3.7). After the acquisition, the saved
images are finally processed with SfM and MVS pipelines commonly avail-
able today in many photogrammetric software applications. In this phase,
the already-computed real-time sparse reconstruction is leveraged to simplify
and speed up the computations and assign a prior to the initial poses of the
images.

4.2 Hardware

The hardware was chosen looking for the right balance between quality and
flexibility of the cameras, and overall weight and cost of the device. The main
components of the system are rigidly attached to an empty aluminium bar
and consist of two cameras, a microcomputer, a smartphone and powerbank.
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Figure 4.2: Pictures of GuPho showing two different versions and camera configurations.
On the left the first version of the system, with rectilinear lenses and convergent cameras;
on the right the newer version of the system, with fisheye lenses and a parallel-axes camera
configuration. In the newer version we moved the Raspberry inside the case to avoid being
imaged when using fisheye lenses. We also added a physical support for a LED light panel
to illuminate the scene.

The microcomputer is connected to the cameras with USB3 cables, and to
the smartphone with an Ethernet cable. The 5V/3A 10400 mAh powerbank
is placed inside the bar and guarantees approximately two hours of working
activity. Optionally, a LED light panel can be added in case of poorly illumi-
nated environments. The following sections discuss and motivate the chosen
components, while Figure 4.2 shows some pictures of the system. The overall
hardware cost of the system is around 1000 Euros and the weight, without
light panel, is 1.4 kilograms.

4.2.1 Imaging

The imaging system is composed of two global shutter color cameras placed
in stereo configuration, whose acquisition is synchronized by software trig-
gers (Section 4.3.1). This choice is motivated by several reasons. First, since
the system is meant to be used in motion, rolling shutter cameras are in-
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convenient because the sensor array is exposed at different times and this
may introduce significant geometric distortions in the images [82]. While
there exist methods to correct the rolling-shutter distortion [83, 84], they
add additional complexity to the problem that it is preferable to avoid. Sec-
ondly, the synchronization and stereo configuration, combined with a system
calibration, allow OpenVSLAM to be executed in stereo mode which, in ad-
dition of being more robust that monocular pipelines [64], permits to perform
tracking and mapping operations with a metric scale. Moreover, the relative
transformation between the cameras can be leveraged during the offline 3D
reconstruction to impose a scale without the need of ground control points.
Finally, as industrial cameras, they come with rich software development kit
(SDK) that allow for a fine and detailed management of the camera acquisi-
tion parameters. The cameras currently used by the system are produced by
Daheng Imaging (model MER-131-210U3C), have a resolution of 1280x1024
pixels, a pixel size of 4.8 µm, and can be configured with different lenses.
The latter are usually chosen based on the working scenarios. Rectilinear
lenses are more common outdoor while in indoor contexts it may favourable
to use fisheye ones to maximise the view coverage [85]. In the experimen-
tal section, both rectilinear (focal length 4.0mm) and fisheye (focal length
1.85mm) lenses will be employed.

4.2.2 Computing unit

Weight and size are crucial properties for a handheld device, so the system
main computing unit is based on a microcomputer. In the latest years, the
computational capabilities of microcomputers like the Raspberry Pi or the
Nvidia Jetson increased remarkably, offering today incredible performances
for their cost, size and power consumption. Moreover, unlike smartphones or
tables, they offer both an open and flexible development environment and a
vast selection of ports and general input/output interfaces. Both the Rasp-
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berry Pi 4 and the Nvidia Jeston Nano seemed like good options. Both are
new, and their size and weight are suitable for a handheld device. Regard-
less, the system currently uses a Raspberry Pi 4. Compared to the Jetson
Nano, it supports more RAM (8 GB) and has a faster and newer CPU. The
Jetson Nano’s actual benefit is its CUDA-compatible GPU, which is also
substantially more powerful than the Raspberry’s. However, since the sys-
tem software pipeline does not use GPU-accelerated tasks, the Raspberry
appeared like a better choice overall.

4.2.3 Visualization unit

The purpose of the visualisation unit is to allow the user to send control
commands to the system and display and interact in real-time with the sparse
3D reconstruction and quality feedback. A tiny touch display might have
been connected to the Raspberry Pi as an option. However, the Raspberry
Pi can only run a limited number of threads concurrently, and OpenVSLAM
already consumes the majority of the available resources. Consequently, it
is preferable to manage the visualization on a separate device. Smartphones
and tablets are ideal for this purpose because they are compact, contain
a reasonable amount of computational power, and can easily register user
inputs using touch screens. The system currently utilizes a Samsung S9 plus
and a web browser-based system interface (Section 4.3.7). The advance of
this choice is that any device with a modern web browser can serve as the
visualization unit, being it a smartphone, a tablet or a remotely-connected
computer.
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IMAGING

Model Resolution Shutter type Pixel size

2 x Daheng Imaging MER-131-210U3C 1280x1024 Global 4.8uM

COMPUTING DEVICE

Model CPU Memory Disk

Raspberry Pi 4 model B Cortex-A72 1.5GHz 8 GB 128 GB (SD)

VISUALIZATION DEVICE

Model CPU GPU Memory Screen

Samsung s9 Qualcomm 845 Adreno 630 6 GB 6.2 inches

MISCELLANEOUS

Power bank Light panel Total weight

5V/3A 10400 mAh Variable 1.4 Kg without light panel

Table 4.1: Hardware summary of the proposed system.

4.3 Software

From a software perspective, the system can be logically divided into three
main parts (Figure 4.3). One part deals with the camera triggering, image
retrieval and pre-processing. The second, and core part, performs the map-
ping and tracking operations as well as the proposed acquisition, distance,
motion-blur and camera controls. The third and final part manages the visu-
alization and the handling of the user commands. Hereafter, the three parts
and the relative sub-modules are accurately described.

4.3.1 Triggering and pre-processing

In the current implementation of the system, the acquisition of the stereo
image pair is synchronized with software triggers, although hardware trig-
gers are possible. The maximum synchronization error between the left and
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Figure 4.3: Software pipeline. See text for a detailed description.

the right image is about 1 millisecond (Appendix A.1), which is accept-
able for a walking speed. At every new acquisition, the trigger order is
flipped (left-right, right-left) to better distribute and thus compensate the
synchronization errors. The triggering happens within the tracking thread
of OpenVSLAM (Section 3.2.2.2), so the image stream frequency depends
on the current tracking time. After sending the triggers, the availability of
the images in a common shared buffer is checked at regular intervals, shortly
sleeping the thread in between to avoid occupying unnecessary system re-
sources. Once available, the images are then converted to single channel,
down-scaled, and stereo-rectified (Figure 4.4) as part of the pre-processing
procedure. Single channel images are required for the extraction of ORB fea-
tures [59] used by OpenVSLAM for tracking and mapping operations. The
down-scaling reduces the resolution of the images from 1280x1024 to 640x512,
a value that allows the system to perform tracking at roughly 5 Hz. We be-
lieve that this a good compromise between frame rate and tracking/mapping
accuracy, considering also that the device will be moved carefully by a walk-
ing person and fast and abrupt motions are unlikely to happen. Finally the
images are stereo-rectified as required by OpenVSLAM to reduce the com-
plexity of the feature matching and triangulation operations. The described
pre-processing operations are done on a separate copy of the images. The
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Figure 4.4: An example of input stereo images and effects of the pre-processing step. Note
how in the rectified images corresponding scene elements lie on the same horizontal line.

high-resolution and colored images remain available to be eventually saved
by the acquisition control (Section 4.3.3) and successively used for the final
offline photogrammetric 3D reconstruction.

4.3.2 Tracking and mapping

Once that OpenVSLAM has successfully initialized the first set of sparse
features (the initial map), the system starts to track the stereo camera and
map the surrounding environment. For every new stereo pair, OpenVSLAM
returns the poses of the left and right cameras as well as the set of features of
the map that were matched during the pose estimation process. If the user
returns to a previously visited location, such as when closing the acquisition
loop or when re-visiting common areas, the loop closure module of Open-
VSLAM might eventually detect it and perform a global optimization of the
acquisition trajectory. In case the tracking is lost due to an expected event
like a sudden change of light, an abrupt movement or a difficult area, the
user can return to a previously visited location to perform a re-localization.
We refer the reader to Section 3.2.2.2 for a more detailed description of the
OpenVSLAM pipeline.

36



(a) (b)

Figure 4.5: Two-dimensional and monocular representation of the two acquisition control
methods based on image (a) and map (b) overlap.

4.3.3 Acquisition control

This module controls the saving of the high-resolution and colored images
on the SD card. In the literature, it is common to do this operation using
fixed time intervals, e.g. saving the images with regular frequencies like 1
Hz. The problem is that such approaches do not consider the scene, nor
the relative position of the camera. The overlap among subsequent images
may be excessive and poorly optimized or, worse, not sufficient to ensure a
strong feature matching. While the latter case is clearly problematic, also an
excessive acquisition of images should be avoided because the processing time
of photogrammetric software massively increases with the number of images.
Finally, another aspect to consider is that the process of saving the images
is a costly operation in term of execution time, so it should be minimized in
a real-time system already put under significant stress. Consequently, it is
preferable to use methods that can optimize the saving of the images without
however risking to compromise the image overlap. The proposed system aims
to do this by leveraging the available tracking and mapping information, and
supports two acquisition modes hereafter described.
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4.3.3.1 Image overlap

This acquisition mode assumes that the environment is composed mainly of
planar surfaces and the user is performing standard photogrammetric acqui-
sitions keeping the cameras mostly parallel to the object surface. Under these
assumptions, the following algorithm maintains constant the overlap among
subsequent saved images taking advantage of the real-time estimates of the
camera pose and the median depth of the scene. The control of the overlap
is done considering a single moving camera, and the left camera is arbitrary
chosen for this purpose. Let Is be the last selected and saved image pair and
Ts the corresponding estimated (left) pose. A new image pair It and associ-
ated (left) pose Tt is selected and saved if the baseline between the camera
center of Tt and the camera center of Ts is bigger than a target baseline bt,
function of the image overlap along the trajectory. The value of bt is updated
in real-time according to the median depth of the environment, the internal
properties of the camera, and a target image overlap value. More precisely,
bt is computed as

bt =


w dt

f (1−Ox), if movement along camera X axis

hdt
f (1−Oy), if movement along camera Y axis

k, if movement along camera Z axis

(4.1)

where w and h are, respectively, the width and height of the camera sensor,
dt the median depth of the scene (computed taking the median depth of the
matched features), f the focal length of the camera, Ox and Oy the target
image overlaps in decimals along the X and Y axis, and k and constant.
The different cases ensure that the same image overlap is enforced when the
movement occurs along the shortest or the longest dimension of the image
sensor (Figure 4.5a). The movement direction is detected in real-time from
the largest direction cosine between the camera axes and the displacement
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vector between the camera centers of Tt and Tt−1. The movement along the
Z axis (forward, backward) is less common in these types of acquisitions,
so it is managed with a simple constant baseline that can be adapted to
the specific scenario. When a new image is saved, its pose is visualized in
the viewer, and the actual saving operation happens on a separate thread to
avoid slowing down the tracking operations.

4.3.3.2 Map overlap

The following acquisition mode does not make assumptions on the properties
of the scene or on the acquisition modality. The saving of the images is
controlled in this case by the amount of feature overlap between the current
image pair and the estimated map of the environment (Figure 4.5b). This
is essentially the same principle used by the keyframe selection procedure
of OpenVSLAM (Section 3.2.2.2), so the two operations was conveniently
merged. In other words, at every keyframe selection corresponds an image
saving. However, a modified keyframe selection criteria is here proposed
which is driven by an absolute feature overlap threshold. Given a new image
pair I and a number n of feature matches against the sparse point cloud
(or map), the original keyframe selection of OpenVSLAM considered I as a
keyframe if n < p, where p is the number of feature matches against the
sparse point cloud of the last selected keyframe. The proposal is substitute
p with a constant value m. This has several advantages. First, it is possible
to control the desired target overlap, as increasing (resp. decreasing) m will
result in an increased (resp. decreased) number of saved images. Secondly,
it enables a denser saving of the images when the scene presents challenging
situations like homogenous or reflective surfaces as well as strong illumination
variations, so that the successive dense reconstruction stage can have more
data to cope with problematic textures. At the used image resolution of
640x512 and a limit of 1000 ORB features per image, a suitable value of m
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was empirically determined to be between 100 and 200 point cloud matches.

4.3.4 Ground sample distance control

The ground sample distance (GSD) is the leading acquisition parameter of
a photogrammetric survey [86]. It theoretically determines the size of the
pixel in the object space and, consequently, its value is related to accuracy
and level of resolution of the three-dimensional reconstruction [87]. Given
a generic pixel p and a corresponding depth value d, the GSD of p can be
computed as

GSD(p) =
s d

f w
(4.2)

where s is the sensor size, f the focal length of the camera, and w the
number of image columns (or equivalently the width of the image in pixels).
In the proposed system it is possible to configure a target GSD range [δm, δM ]

and take advantage of a real-time GSD control during the acquisition of the
images. Usually, the GSD is not uniform in an image because the imaged
scene may present elements at different depths. Areas lying closer to the
camera will have a smaller GSD than areas lying farther away. To properly
manage these situations, the GSD is computed in multiple image locations
leveraging the pixel coordinates of the image features having a known depth
value. The latter are visualized over the live image in the system interface
(Section 4.3.7), where colors are used to indicate their GSD. Red pixels have
a GSD bigger than δM , blue pixels have GSD smaller than δm, while green
pixels have a GSD bounded in the target range. This simple feedback can
be easily visualized even on a small display, and can be exploited to check
whether the current acquisition distance satisfies the target ground sample
distance in the different areas of the image. Moreover, when a new image pair
I is saved by the acquisition control (Section 4.3.3), the average GSD of map
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Figure 4.6: Exemplification of the GSD feedback.

features (or landmarks) observed by I (Figure 4.6) is updated. In this way,
using the same color scheme as above, it is possible to visualize the average
GSD of the overall image acquisition directly on the sparse reconstruction,
and eventually detect the areas of the environment where the target GSD
was not respected.

4.3.5 Motion blur control

Motion blur can significantly worsen the quality of image acquisitions per-
formed in motion. It occurs when the camera, or the scene objects, move
significantly during the exposure phase. The exposure time, i.e., the time
interval during which the camera sensor is exposed to the light, is usually
adjusted, either manually or automatically, during the acquisition. This is
done to compensate for different lighting conditions and avoid under/over-
exposed images. Consequently, also the acquisition speed should be adapted,
especially when the scene is not well illuminated, and the exposure time is
relatively long. Rather than detecting motion-blur with image analysis tech-
niques [88], the proposed approach tries to prevent it by monitoring the
acquisition speed and raise slow-down warnings when dangerous situations
are detected. At a generic time t, the acquisition speed vt of the cameras is
computed as:
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vt =
∥ct − ct−1∥2

tt − tt−1
(4.3)

where ct and ct−1, and tt and tt−1 are respectively the left camera centers and
the timestamps of the current and last image pair, and ∥∥2 the Euclidean
norm. A speed warning is raised when

∆x ≥ max(δmin, δs) (4.4)

where ∆x is the space travelled by the cameras at speed vt during the known
exposure time of the cameras, and δs is the ground sample distance of image
feature with the smallest depth. To avoid considering outliers, δs is chosen
as the 5-th percentile of all the features with a valid depth. The logic behind
this control is that, to ensure that the details remain sharp, the camera
should move, during the exposure time, less than the target GSD. The max
function is used to avoid false warnings when the closest element in the scene
is farther than the minimum GSD. A main assumption and simplification is
here made that the imaging sensor is mostly parallel to the imaged surface.

4.3.6 Camera control

The literature of automatic exposure (AE) algorithms is quite rich [6, 89],
and each solution has been usually conceived to fit a particular scenario. In
the case of the proposed system, the image acquisition is presumably done
at a known distance from the environment, according to the acquisition re-
quirements and the specified ground sample distance settings (Section 4.3.4).
Hence, it would be convenient to exploit this prior knowledge to perform an
exposure control that gives higher priority to the imaged areas of the en-
vironment that are in the target acquisition range. A common strategy to
automatically adjust the exposure time is to use the average gray value of
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Figure 4.7: Representation of the proposed camera exposure control.

the image brightness histogram [90], lowering (resp. increasing) the expo-
sure when the measured gray value is higher (resp. lower) than a target gray
value. Instead of using the whole image, the proposed algorithm computes
the brightness histogram considering some specific image regions, selected in
the proximity of the location of the image features having depth values within
the target acquisition range (Figure 4.7). For each valid image feature, an
area of 5x5 pixels is considered around it. If not enough valid features are
found, the whole image is instead considered. The camera exposure e is then
adjusted according to obtained average gray value g and a target gray value
h using a proportional controller

e = e+ (h− g) kp (4.5)

where kp is the proportional gain. The sensitivity to light of the camera sen-
sor, also known as gain or ISO, is not taken in consideration by the presented
camera control. The adjustment of the ISO is left to the user preferences,
and, at that purpose, specific control buttons are present in the system in-
terface (Section 4.3.7).

4.3.7 System interface

The interface of the system builds upon the web-viewer of OpenVSLAM,
and therefore runs inside a web browser. The communication between the
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Figure 4.8: Graphical interface of the system during a live execution. In this example,
the target GSD range was set between three and ten millimeters.

interface, which runs on the smartphone (Section 4.2.3), and the V-SLAM
algorithm, which runs on the Raspberry (Section 4.2.2), is managed by a
Node.js [91] server running on the Raspberry. The data is exchanged us-
ing the WebSockets [73] and Google Protocol Buffers [92]. The developed
interface is composed of several parts (Figure 4.8):

(a) The live stream of the left camera image with overlaid image features
matched with the map. The latter are color-coded based on their esti-
mated ground sample distance (Section 4.3.4). Some statistics on the
tracking and rendering frame rates are given as well.

(b) The command section where the user can start and stop the tracking and
mapping operations, adjust the gain of the camera sensors, and change
some properties of the rendering camera of the three-dimensional viewer
(see point (d)).

(c) The statistics section where are displayed live information of the acqui-
sition speed and distance, exposure and gain settings of the cameras,
movement direction of the camera (Section 4.3.3), and number of image
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featured matched with the map (or sparse point cloud). The acquisition
distance and speed are colored in red (not ok) or green (ok) according
to the ground sample distance (Section 4.3.4) and motion-blur (Section
4.3.5) controls.

(d) The live sparse reconstruction (Section 4.3.2) of the environment. The
Tree.js library [93] is used for the 3D rendering of the point cloud. Each
3D point is colored with its average ground sample distance (Section
4.3.4).

(e) The current pose of the system, the overall acquisition trajectory and
the camera poses of the saved images (Section 4.3.3). The camera poses
are rendered with Tree.js as oriented image pyramids.
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Chapter 5

Experiments

This chapter proposes several experimental evaluations of the system in dif-
ferent indoor and outdoor environments, considering both controlled and
real-case scenarios. The experiments are organized as follows. First, the main
system modules are tested individually, i.e. the acquisition control (Section
5.2.1), the ground sample distance control (Section 5.2.2), the motion-blur
control (Section 5.2.2), and the camera control (Section 5.2.3). Finally, the
system as a whole is evaluated in multiple real-case and complex scenarios.

5.1 Testing environments

The experiments were carried out in multiple testing environments. For con-
venience and a better organization of the document, this section introduces
the environments that were used in more than one experiment, leaving the
description of the more specific cases in the respective sections.

5.1.1 FBK building

This environment represents the typical outdoor scenario where the object
to reconstruct is a building. Unnamed aerial vehicles (UAV) are commonly
used in these cases to acquire imagery also from above, but in our case the
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tests were limited to the areas reachable by a walking person. The considered
building is inside the FBK headquarters of Povo (Trento - Italy) and spans
approximately 40 × 60 meters (Figure 5.1a - left). The structure presents
challenging elements like poorly-textured and metallic surfaces, glasses, and
some vegetation (Figure 5.1a - right). A ground truth 3D reconstruction
of the building is available by means of terrestrial laser scanning. A Leica
HSD7000 [94] (angular accuracy 125 µrad, range noise 0.4 mm RMS at 10
m) was used to scan the building from 21 stations along the perimeters at an
approximate distance of 10 meters. All the scans were manually cleaned from
the vegetation, converted to a 3D model and co-registered with the global
iterative closest point (ICP) algorithm offered by MeshLab [95]. The final
median RMS of the residuals from the alignment transformation was about
4 mm. Some views of the ground truth model are shown in Figure 5.1b.

5.1.2 Camerano caves

This environment is completely different than the previous one, and repre-
sents an underground built heritage site. These are common working scenar-
ios for portable 3D mapping systems because of their geometrical complexity
and extension. Specifically, some portions of the Camerano caves in Ancona
(Italy) are taken into consideration here. The caves consist of a tangled com-
bination of halls and tunnels located below the city. For visual systems, this
environment poses several challenges for the poor and uneven illumination,
and the variable size of the spaces. More precisely, the proposed experiments
are carried out in two areas of the site (Figure 5.2a) comprising a narrow
tunnel and domed room (box "A" - span 41 × 11 meters), and a large hall
with two floors characterized by many niches (box "B" - span 25 × 8 meters).
Some images of the areas of interest are shown in the figure as well. All the
areas were previously mapped with terrestrial laser scanning, so ground truth
models (Figure 5.2b) are available for accuracy and comparison tests.
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(a)

(b)

Figure 5.1: The FBK building environment. (a) Aerial (Google Earth) and close range
views of the building. (b) Laser scanning ground truth mesh model.

(a)

(b)

Figure 5.2: The Camerano caves environment. (a) Areas considered in the experiments
and some area views. (b) Laser scanning ground truth mesh models.
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5.2 Module tests

5.2.1 Acquisition control

The aim of this section is to evaluate the acquisition control module (Section
4.3.3), and, more precisely, it compares the proposed methods based on the
image and map overlap against timed selections, currently very common in
the literature. The system was used to record several dataset at 5Hz, on
which the different image selection methods are then applied. The selected
images are then processed withing a photogrammetric pipeline to obtain
the dense point clouds that are evaluated against the ground truth models.
The evaluation reports the number of selected images n, the 3D reconstruc-
tion time t, the average observation multiplicity γ, the ICP alignment error
against the ground truth e, and the mean µ and standard deviation σ of the
signed Euclidean distances between the dense point clouds and the ground
truth mesh model.

Experiment A. This experiment takes place in the south-east corner of the
FBK building environment (Section 5.1.1). The dataset has an approximate
length of 60 meters, in which the cameras were kept mostly parallel to the
building facade (Figure 5.3a). The acquisition lasted around 200 seconds
so, at 5Hz, the system recorded 1000 stereo pairs. Three image selection
procedures were then applied. A trivial time-based approach (T) with a se-
lection frequency of 1Hz, which selected 200 image pairs (Figure 5.3b). The
proposed image overlap selection (IO) with a target image overlap of 80%,
which selected 64 image pairs (Figure 5.3c). The proposed map overlap se-
lection (MO) with a target map overlap of 200 matches, which selected 70
image pairs (Figure 5.3d). Each selected set of image pairs was then pro-
cessed with Agisoft Metashape [96] to retrieve the corresponding dense point
clouds. The cameras intrinsic, distortion parameters and stereo baseline ob-
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(a) (b) (c) (d)

Figure 5.3: Experiment A. (a) Top view of the dataset trajectory. Top view of the
positions of the selected image pairs with the time (b), image overlap (c) and map overlap
(d) methods. Colors encode image index where blue and red correspond respectively to
the start and end of the trajectory.

tained from the system calibration (Table A.1) were kept fixed during the
bundle adjustment. Regarding the feature matching strategy, the generic pre-
selection was used in all the three cases. This strategy avoids to compute the
feature matching across all the input images, which are instead pre-selected
according the results of a brute force matching done at low image resolutions
[97]. In the cases of the images selected by the image (IO) and map (MO)
overlap methods, the generic pre-selection could have been replaced by the
reference pre-selection, which instead considers a prior information of the
image poses to select the matching pairs. The latter are indeed known from
the trajectory estimates of OpenVSLAM. However, for the sake of compa-
rability of the results, the generic pre-selection was used also in the IO and
MO cases. The obtained dense point clouds were then cleaned from noisy
estimations using the confidence scalar value provided by Metashape, and
aligned with the ground truth data using the iterative closest point (ICP)
implementation of CloudCompare [98]. The scale option was disabled and
the algorithm was configured to remove the furthest point at every iteration.
Finally, signed Euclidean distances were computed between the estimated
dense point clouds and the ground truth model. Table 5.1 and Figure 5.4
summarize the obtained results.
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Method n t (s) γ e (m) µ (m) σ (m)

T (1 Hz) 200 933 4.6052 0.0351 -0.0002 0.0142
IO 64 185 3.4899 0.0358 -0.0005 0.0151
MO 70 179 3.4727 0.0350 -0.0001 0.0141

Table 5.1: Experiment A. Summary of the results.

(a) Time selection at 1Hz (T)

(b) Image overlap selection (IO)

(c) Map overlap selection (MO)

Figure 5.4: Experiment A. Dense point clouds obtained with the different selection meth-
ods with color-coded signed Euclidean distances (meters) against the ground truth model.
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Method n t (s) γ e (m) µ (m) σ (m)

T (1 Hz) 400 2487 3.7022 0.0513 0.0001 0.0457
T (1.6 Hz) 666 4946 4.2544 0.0521 0.0003 0.0510

MO 632 6029 4.4400 0.0412 -0.0059 0.0306

Table 5.2: Experiment B - Summary of the results.

Experiment B. This experiment was carried out in the part A of the Cam-
erano caves environment (Section 5.1.2). The dataset trajectory is around
104 meters long, lasted approximately 400 seconds, and, at 5 Hz, 2000 image
pairs were acquired in total. In this case, the acquisition started and ended
from the same positions and traversed twice a narrow tunnel and a domed
room (Figure 5.5a). A light panel was used to compensate the otherwise
too dark environment. Taking advantage of the fisheye setup, the cameras
pointed in the walking direction for most of the time. Consequently, the im-
age overlap selection is not applicable here, and the evaluation will consider
only the time and map overlap selections. The time selection was performed
at two different frequencies: one at 1Hz, which selected 400 image pairs,
and one at 1.6 Hz which selected 666 image pairs. Finally, the map over-
lap approach, with 200 matches overlap, selected 632 image pairs. As in the
previous experiment, the selected pairs were processed with Metashape lever-
aging the generic pre-selection feature matching strategy, and the intrinsic,
distortion, and stereo baseline parameters obtained with a previous system
calibration (Table A.2). The latter were kept fixed during the processing.
The obtained dense points clouds were then filtered, aligned with the ground
truth, and used to compute the signed Euclidean distances against the TLS
mesh model. The results are shown in Table 5.2 and Figure 5.6.
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(a)

(b)

(c)

(d)

Figure 5.5: Experiment B. (a) Top view of the system trajectory. Top view of the positions
of the images selected by the time (1 Hz (b), 1.6 Hz (c)) and map overlap (d) methods.
Colors encode image index where blue and red correspond respectively to the start and
end of the trajectory.
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(a) Time selection at 1Hz

(b) Time selection at 1.6Hz

(c) Map overlap selection

Figure 5.6: Experiment B - Dense point clouds obtained with the different selection
methods with color-coded signed Euclidean distances (meters) against the ground truth
model.
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5.2.1.1 Discussion

The experiments show that the proposed acquisition control methods per-
form generally better than common time-based approaches. In experiment
A, the methods were able to significantly reduce the number of saved images
while practically retaining the same accuracy performances (Table 5.1 and
Figure 5.4). Differently than the time selection (Figure 5.3b), the image over-
lap and the map overlap methods nicely adapted the acquisition frequency
to actual distance to the building. This is clearly visible in Figures 5.3c and
5.3d, especially in the proximity of the corner and towards the end of the
trajectory. Thanks to the reduced number of images, the speedup in the
reconstruction times is massive (∼421%) and, although in this experiment
the difference is measured in terms of minutes, larger dataset may experience
differences of hours or days. The experiment B depicts a completely different
scenario. The time selection (1 Hz) selected here less images then the map
overlap approach but resulted in significantly higher 3D reconstruction errors
(Table 5.2 and Figures 5.6a and 5.6c). To investigate if this was related to a
problem of insufficient selection frequency, the second time-based experiment
used a higher selection frequency (1.6 Hz) yielding a number of images more
in line with the map overlap approach. Nevertheless, the reconstruction re-
sults shows a deterioration of the performances (Figure 5.6b) and a higher
standard deviation error (Table 5.2). This suggests that, for the same num-
ber of images, the map overlap approach provides a significant better image
selection and, consequently, more accurate 3D reconstructions. Although it
is very complex to rigorously demonstrate it, the better results of the map
overlap selection are likely due to the fact that the acquisition frequency was
adapted to the actual scene geometry and camera distance. As shown in
Figure 5.5d, the latter used different acquisition frequencies in the narrow
tunnel and in the wider rooms at the tunnel ends, while time methods did
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not (Figures 5.5b and 5.5c). Of course, one may manually select different fre-
quencies for different parts of the scene, but this would require to invest time
to find the most appropriate frequency for each portion of the dataset. The
proposed acquisition controls methods do no require any parameter tuning,
and the results show that the map selection approach performed very well in
two very different situations.

5.2.2 Ground sample distance and motion-blur controls

This section presents the tests on the ground sample distance (GSD) (Section
4.3.4) and motion-blur (Section 4.3.5) controls. The reported experiments
took place in the 3DOM laboratory and leveraged a small calibration field
(Figure A.3a) placed on the ground and composed of several markers with
known resolutions. The system was previously calibrated (Table A.2), and,
to enable a more precise GSD control, the actual power resolution of the
lenses was measured using a Modulation Transfer Function (MTF) analysis
(Section A.2). The target GSD range of the system was set between one
and two millimeters. The experiment was then structured as follows: (i)
start the acquisition significantly outside of the target range; (ii) move closer
to the calibration field until the system notifies that we reached the target
acquisition distance; (iii) start doing different strips over the calibration field,
keeping the distance constant and alternating between strips predicted in the
speed range with strips predicted out of the speed range.

Ground sample distance part. Figure 5.7a shows the system interface at
the beginning of the test. All the GSD indicators, i.e. the sparse point cloud,
the features of the live image stream and the median distance box are all red,
indicating that we are out of the target GSD range. Figure 5.7b confirms
the system prediction. The thickest lines of the displayed resolution chart
are two and half millimeters thick but they are not clearly visible. Figure
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(a) (b)

(c) (d)

Figure 5.7: Ground sample distance control test. See text for a detailed explanation.

5.7c displays the system interface upon reaching, according to the system
prediction, the target acquisition range. All the GSD indicators are indeed
green, and Figure 5.7d confirms again the correct prediction of the system:
details of two millimeters can be clearly distinguished.

Motion-blur part. Keeping the reached distance, the system was then
moved over the calibration field following several horizontal strips, alternat-
ing between strips predicted in the speed range with strips predicted outside
the maximum allowed speed range. Figure 5.8 shows on top the estimated
movement speed (blue) and the maximum allowed speed (orange) considering
the current exposure time of the cameras and the desired two milliliter res-
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olution. It is possible to notice four different strips, two in the speed range
(frame indexes 0-50 and 80-175) and two outside the speed range (frame
indexes 50-80, 175-200). Below the graph are shown some of the images
acquired by the system during the strips, where border colors indicate the
strip class (green means in the speed range, red means outside the speed
range). A closer inspection of the resolution charts, visible at the bottom of
the figure, reveals that only the images taken considering the speed feedback
maintained a clear two milliliter resolution. The others, despite being taken
at the same distance, present significant motion blur along the movement
direction which made details at even two millimeter and half hardly visible.

5.2.2.1 Discussion

The presented experiment validated the correctness of the proposed approach
to control the ground sample distance and motion-blur. Simply following
the feedback of the system interface, we were able to achieve the desired
image resolution of two millimeters (Figures 5.7c and 5.7d) and avoid motion-
blur issues (Figure 5.8 - green strips). The results are also confirmed in the
opposite direction. The target two millimeter resolution was not respected
when the ground sampling distance (Figures 5.7a and 5.7b) and motion-blur
controls (Figure 5.8 - red strips) returned negative results.
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Figure 5.8: Motion-blur control test. See text for a detailed explanation.
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5.2.3 Camera control

The proposed exposure control algorithm (Section 4.3.6) is here evaluated
in scenarios characterized by challenging lighting conditions. These happen
typically when the scene presents strong illumination variations that cannot
be managed, due to the limited dynamic range of the cameras, with a single
exposure time. We evaluate here two specific situations. One with the target
object imaged against a brighter background, and one with the target object
imaged against a darker background. For each experiment, the same scene is
acquired twice following the same trajectory and using two different exposure
control algorithms: the integrated automatic exposure control of the cameras
and the proposed exposure control method.

Experiment A. This experiment took place in the north part of the FBK
building environment (Section 5.1.1). The building was recorded with the
system in two consecutive runs, keeping roughly the same trajectory. Since
the sky was brighter than the building, this case represents a typical situation
of brighter background. The two runs differed from each other by a few
minutes, so the scene illumination practically remained the same. In the first
run, the cameras used their integrated exposure control, while in the second
run the camera exposure was controlled by the proposed algorithm. The
system target ground sample distance was configured in such a way that the
building resulted in range for the computation of the optimal exposure time.
The obtained results are shown Figure 5.9.

Experiment B. This experiment considers instead a situation of darker
background and was carried out in the 3DOM lab. The subject of the ac-
quisition is in this case a white statue made of plastic material, which was
illuminated by different LED light panels positioned around it. This cre-
ates a situation of darker background because the statue is more illuminated
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(a)

(b)

(c)

Figure 5.9: Experiment A - Some of the images acquired with integrated camera exposure
control (a) and the proposed exposure control (b). (c) Examples of key-point locations
used to mask the image .
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than the surrounding areas. Two roughly identical acquisitions were then
performed around the object, where the first acquisition used the integrated
exposure control of the cameras and the second one the proposed algorithm.
As in the previous experiment, the target ground sampling distance of the
system was configured in such a way that the statue appears within the
acquisition range while the background regions do not. The results of the
experiment are shown in Figure 5.10.

5.2.3.1 Discussion

The experiments highlight the advantages of the proposed camera exposure
control in conditions of challenging illumination. In experiment A, the sys-
tem was able to correctly expose the building despite the presence of the
strong back light of the sky (Figure 5.9b). As shown in Figure 5.9c, the
optimal exposure time was computed on the key-points distributed over the
building neglecting the sky contribution in the computations. On the other
hand, the integrated exposure control of the cameras was negatively influ-
enced by the sky and significantly underexposed the building (Figure 5.9a).
Also the experiment B confirms the better results of the proposed method.
Due to the darker background, the statue often resulted overexposed when
using the camera exposure control (Figure 5.10a). Conversely, the statue
does not present burned or missing information when the system used the
proposed exposure control (Figure 5.10c). Two three-dimensional models of
the statue were then computed from the two sets of images. The 3D model
estimated from the overexposed images (integrated camera exposure control)
presents holes in the dense 3D reconstruction (Figure 5.10b - left) as well as
deformations and burned textures in the final textured 3D model (Figure
5.10b - right). On the other hand, the 3D model estimated from the images
acquired with the proposed exposure control presents a much more complete
dense reconstruction (Figure 5.10d - left) and a significantly more accurate
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(a)

(b)

(c)

(d)

Figure 5.10: Experiment B - (a) Examples of images acquired with the integrated camera
exposure control and (b) corresponding dense point cloud (left) and textured 3D model.
(c) Examples of images acquired with the proposed exposure control and (d) corresponding
dense point cloud (left) and textured 3D model.
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and well-textured 3D model (Figure 5.10d - right). These results underline
once more the importance of a correct object exposure in the context of
three-dimensional reconstructions.

5.3 System tests

The aim of this section is to present several tests where the system and all its
modules were used in extended and challenging scenarios, hence simulating
real use case applications of 3D mobile mapping.

5.3.1 FBK building

The scenario of this test is the entire perimeter of the FBK building (Sec-
tion 5.1.1). The system was configured with rectilinear lenses and it was
calibrated before doing the test (Table A.3). The acquisition control was
managed by the image overlap (IO) method (target overlap of 80%), while
the target ground sample distance range was set between three and thirty
millimeters. The exposure time of the cameras was automatically managed
by the proposed exposure control.

5.3.1.1 Data acquisition

The acquisition started and ended from the same position along the west
side of the building, and it was performed keeping the camera sensors mostly
parallel to the building facades. The real-time sparse reconstruction was used
to continuously check that the whole building was correctly captured, follow-
ing also the GSD and speed feedback to avoid problems related to distance
and motion-blur. Along a trajectory of about 315 meters, the acquisition
control selected and saved 271 image pairs. At the end of the acquisition,
upon revisiting the starting area, OpenVSLAM correctly detected the loop
and applied a global trajectory optimization. The whole acquisition lasted
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approximately 18 minutes. Figure 5.11 summarizes the acquisition phase. In
Figure 5.11c are shown the positions of the saved images and the real-time
sparse reconstruction, color-coded with the acquisition GSD. Some areas of
the building, such as 1 and 2 in Figure 5.11c, were not acquired at the target
distance due to physical limitations to reach closer positions while walking.
In area 3 of the same figure, a van parked at the middle of the street that
forced a slight trajectory variation. This unexpected event was automatically
managed by the acquisition control that adapted the baseline considering the
shorted distance from the building. Finally, figure 5.11d displays some live
screenshots of the viewer showing the real-time sparse reconstruction and the
poses of the saved images.

5.3.1.2 Data processing

The acquired stereo pairs were then processed with Agisoft Metashape to
obtain the dense reconstruction of the building. This process was carried out
following two different approaches:

• Approach 1: the dense reconstruction (MVS) is computed directly from
the camera poses estimated in real-time by the system during the ac-
quisition of the images. The intrinsic and distortion parameters of the
cameras are kept fixed and set equal to those obtained during the cali-
bration (Table A.3 and Section A.3).

• Approach 2: the camera poses are re-estimated from scratch using an
offline SfM pipeline before computing the dense reconstruction (MVS).
The real-time pose estimates are imported as initial approximations to
enable a faster location-based feature matching (reference pre-selection
in Metashape [97]), and later reset in the bundle adjustment phase.
Leveraging the known baseline between the cameras, scale constraints,
also known as scale bars in the software, are inserted between each stereo
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(a) (b)

(c)

(d)

Figure 5.11: Data acquisition summary of the FBK building system test. (a) A view of
the acquisition phase. (b) Examples of acquired images. (c) Positions of the acquired
image pairs (white dots) and real-time sparse reconstruction with colors indicating the
average acquisition GSD (meters). (c) Some live captures of the smartphone viewer.
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pair. As in the first approach, the intrinsic and distortion parameters
of the cameras are imported from the calibration results and kept fixed
during the all process.

The first approach can provide an indirect evaluation of the tracking accu-
racy of the system, given that the accuracy of the dense point cloud is deeply
related to that of the camera poses. Furthermore, because the camera poses
are already known, this approach results quicker to complete. This can be a
valuable choice in time-constrained scenarios where long offline computations
cannot be afforded. On the other hand, in the second approach, the camera
poses are recomputed using full image resolution and offline and robust com-
putations. As a result, the latter approach should represent theoretically the
most accurate reconstruction pipeline. In both cases, we fixed the values of
the intrinsic, distortion, and baseline parameters with those obtained with
the system calibration (Table A.1). The two reconstructions took respec-
tively 21 and 30 minutes to correctly terminate on a powerful workstation
(Intel i7-6800k, 24 GB RAM, NVIDIA 1070).

5.3.1.3 Evaluation

The two estimated dense point clouds were then filtered from noise using the
confidence scalar and aligned with the laser ground truth using five selected
and distributed areas of the building. The alignment was done using the
iterative closest point algorithm of CloudCompare [98], disabling the scale
adjustment and enabling the removal of the furthest point at every iteration.
The final alignment errors were 0.02 meters (Approach 1) and 0.019 meters
(Approach 2). Signed Euclidean distances were computed between the dense
point clouds and the ground truth model. Figure 5.12 shows the obtained
results. In both cases, the errors range from a few centimeters in the south
and east part of the building, to some 20 centimeters in the north and west
ones. The distribution of the signed distances of the first approach (Figures
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Pair Laser [m] Dense [m] LME [m] RLME [%]
1 4.7766 4.7508 0.0258 -0.5401
2 2.3843 2.3701 0.0142 -0.5956
3 3.5795 3.5854 0.0059 0.1648
4 0.4948 0.4901 0.0047 -0.9498
5 2.3888 2.3433 0.0455 -1.9047
6 2.3730 2.3840 0.011 0.4635
7 4.7647 4.7838 0.0191 0.4009

Median 0.0142 -0.5401

Table 5.3: LME and RLME results on the selected segments (Figure 5.14).

5.12a and 5.13a) has a mean of 0.003 meters and a standard deviation of
0.07 meters, with 95% of the differences bounded in bounded in the interval
[-0.159, 0,166] meters. The second approach returned a slightly better error
distribution (Figures 5.12b and 5.13b), with a mean value of -0.009 meters,
a standard deviation of 0.054 meters and 95% of the differences falling in
the interval [-0.144, 0.114] meters. Additionally, the local accuracy of the
reconstruction was analyzed as well. Seven segments were selected from the
the dense (Approach 1 - Figure 5.14) and ground truth point clouds, and their
length measured in the three-dimension space. The length measurements
were then compared using common metrics used in the literature [99] like the
LME (length measurement error) and RLME (relative length measurement
error) [99]. The results are reported in Table 5.3.

5.3.2 Camerano

The system is here tested in the part B of the Camerano environment (Sec-
tion 5.1.2). The environment is characterized by narrow passages and poorly
and unevenly illuminated sections, so fisheye lenses and a LED light panel
were employed in this experiment. The system was calibrated the day before
the test (Table A.4). The acquisition control was here based on the map over-
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(a) Approach 1

(b) Approach 2

Figure 5.12: FBK system test. Signed Euclidean distances (meters) between the evaluated
dense point clouds and the ground truth model.
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(a) Approach 1 (b) Approach 2

Figure 5.13: Distribution of the signed Euclidean errors shown in Figure 5.12

Figure 5.14: Segments considered in the LME and RLME analyses (Table 5.3).
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lap method, and the target ground sample distance range was set between
one and six millimeters. As in the previous test, the control of the cam-
era exposure time was handled by the proposed method. In addition to the
terrestrial laser scanner ground truth, the area was also previously mapped
with a GeoSLAM ZEB Horizon (Section 2.2.1). This handheld device repre-
sents today the state-of-the-art in the commercial domain of handheld mobile
laser-scanner systems. Therefore, this section presents also a comparison be-
tween the two systems, considering acquisition and processing times as well
as quantitative and qualitative evaluations against the available TLS ground
truth.

5.3.2.1 Data acquisition

The data acquisition was carried out in a closed-loop trajectory, so the start-
ing and ending points coincide and correspond to the beginning of the narrow
stairs leading to the church. During the acquisition, the real-time 3D recon-
struction was leveraged to incrementally check that all the areas of the hall,
including the multiple and complex niches, were covered by the images and
imaged at the target resolution. Despite the LED light panel, a high camera
exposure time was necessary in many parts of the hall, so a very conservative
average movement speed of 0.15 meters/second was kept to avoid warnings
from the motion-blur control. The acquisition lasted in total around 24 min-
utes, the trajectory was estimated, after the loop closure, approximately 223
meters long, and the acquisition control saved in total 1208 image pairs.
The acquisition process is summarized in Figure 5.15. The same place was
then immediately mapped with the GeoSLAM ZEB Horizon. An operator
with previous working experience with the device carried out the acquisition
process, which took approximately 7 minutes to be completed.
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(a)

(b)

(c)

Figure 5.15: Data acquisition summary of the Camerano system test. (a) Some views of
the acquisition phase. (b) Positions of the saved image pairs (white dots) and real-time
sparse reconstruction with colors indicating the average acquisition GSD (meters). (c)
Examples of acquired images.
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Figure 5.16: Acquisition trajectory color-coded with the camera exposure time (us).

5.3.2.2 Data processing

As in the previous experiment (Section 5.3.1), two different reconstruction
approaches were followed to estimate, in Metashape and from the acquired
images, the dense point clouds. In the first approach, the dense reconstruc-
tion was obtained directly from the poses estimated in real-time by the sys-
tem, while, in the second approach, the camera poses were re-estimated with
an offline SfM pipeline before running the dense reconstruction. The intrin-
sic, distortion and baseline parameters, obtained with the system calibration
(Table A.4), were kept fixed during the estimation. Using the same work-
station of the previous experiment, the two reconstructions took respectively
246 and 276 minutes to be successfully completed. The data acquired with
the GeoSLAM ZEB Horizon was processed with the proprietary GeoSLAM
Hub software. The software performs an offline optimization of the acquisi-
tion trajectory and returns the optimized point cloud. This operation was
performed on the proprietary cloud service and lasted around 15 minutes.

5.3.2.3 Evaluation

The alignment of the evaluated point clouds, namely the two photogrammet-
ric dense point clouds (P1 - first approach and P2 - second approach) and
the GeoSLAM laser point cloud (L), with the ground truth (GT) was done
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System
Acquisition

time
Processing

time
Signed distances

[m]
GuPho (P1)

24 minutes
236 minutes -0.007 ± 0.0522

GuPho (P2) 276 minutes -0.006 ± 0.0299
GeoSLAM ZEB Horizon (L) 7 minutes 15 minutes 0.0039 ± 0.0331

Table 5.4: Summary of the Camerano system test.

with ICP and CloudCompare. The scale option was unchecked and at every
iteration the furthest point was removed from the computations. The final
alignment error, in meters, was 0.0045 for P1, 0.0043 for P2 and 0.0366 for
L. Signed Euclidean distances were then computed between the evaluated
P1, P2 and L point clouds and the ground truth mesh model. The results
are shown in Figure 5.17. The photogrammetric reconstructions P1 and P2
returned respectively signed distances with an average of -0.007 and -0.006
meters, a standard deviation of 0.0522 and 0.0299 meters, and 90% of the
values bounded in the intervals [-0.0788, 0.0793] and [-0.0278, 0.0125] meters.
The L point cloud distances has an average value of 0.0039 meters, a stan-
dard deviation of 0.0331 meters, and 90% of the values fall in the interval
[-0.008, 0.0203] meters. In addition to this quantitative evaluation, Figure
5.18 proposes also a qualitative comparison of the optimized P2 and L point
clouds, showing several profiles selected in geometrically complex areas of the
hall.

5.3.3 Other tests

This section collects some of the tests done with the system during the various
development phases. In the following scenarios the TLS ground truth was
not available, so metric evaluations are not reported here. Still, the presented
results can be useful to have further proofs of the flexibility of the proposed
system. The results are shown in Tables 5.5 and 5.6. Tests with a rectilinear
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(a) GuPho (P1)

(b) GuPho (P2)

(c) GeoSLAM ZEB Horizon (L)

Figure 5.17: Camerano system test. Signed Euclidean distances (meters) between the
evaluated point clouds and the ground truth model.
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Figure 5.18: Qualitative evaluation of the Camerano system test.
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system configuration are reported in the first table, whereas tests with a
fisheye configuration are shown in the second table. For each test, the rows
display in order some of the acquired images, the real-time and GSD color-
coded sparse 3D reconstruction and positions of the saved images, and the
corresponding dense offline 3D reconstruction.

5.3.4 Discussion

The experiments presented in this section demonstrated how the proposed
system and modules can enable good reconstruction results in complicated
and extended environments, with results that are sometimes comparable to
far more expensive systems. In the FBK building system test, the areas that
were properly reachable on foot presents a reconstruction error of few cen-
timeters (Figures 5.12 and 5.13) and RLME values of around 0.5% against
the laser ground truth (Table 5.3 and Figure 5.14). These are, in my opinion,
very good results considering the low cost of the device, the short acquisi-
tion time, and the challenging properties of the building in terms of size and
surface type. Although it is difficult to quantify the contribution of each
module to the final result, it is possible to notice their positive effects. The
real-time feedback about the image coverage, object resolution and motion-
blur (Figure 5.11d) greatly helped to ensure the building was acquired, where
possible, entirely, at the target distance, and without significant motion blur.
The acquisition control properly optimized the acquisition frequency consid-
ering the target overlap and the distance from the building (Figure 5.11c),
handling also effectively unexpected environmental situations. The camera
control module handled successfully the situations of high contrast, e.g. in
the images shown in Figure 5.11b, and correctly exposed the building despite
the sky back-light. Furthermore, we showed how it is possible to directly com-
pute the dense reconstruction on the real-time camera poses returned by our
system, achieving results that do not differ much from those obtained with
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Forte Batteria di Mezzo (Riva del Garda, Trento, Italy)

Trajectory length: 286m, Acquisition time: 15min, Number of images: 380

Sentiero dei Cento Scalini (Celva, Trento, Italy)

Trajectory length: 147m, Acquisition time: 19min, Number of images: 1102

Table 5.5: Other system tests, rectilinear configuration.

79



Tunnel (Doss Trent, Trento, Italy)

Trajectory length: 584m, Acquisition time: 27min, Number of images: 1382

Forest (Celva, Trento, Italy)

Trajectory length: 154m, Acquisition time: 9min, Number of images: 678

Table 5.6: Other system tests, fisheye configuration.
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more time-consuming SfM pipelines (Figures 5.12a and 5.13a). The Camer-
ano system test confirms the good results of the previous test and highlights
how the system can successfully handle very different environments. Here,
the real-time sparse reconstruction and GSD feedback were even more impor-
tant than in the previous experiment because of the significant complexity
of the scene. Thanks to the live feedback (Figures 5.15a and 5.15b), it was
possible to effectively check that all the areas of the hall, including the mul-
tiple narrow niches, were correctly acquired. Also in this case, it is possible
to see how the acquisition control adapted the acquisition frequency to the
observed scene (Figure 5.15b), yielding higher values in the narrow parts and
lower values in the larger sections. This experiment was also very challenging
from an illumination point of view. Despite the LED light panel, the large
areas of the hall required often a high exposure time, which was anyway
limited to 30 milliseconds to avoid unpractical movement speeds. However,
when the system approached narrow passages, like the niches or other small
apertures, the scene in the proximity was strongly illuminated and the expo-
sure time had to be rapidly dropped to avoid overexposure problems. These
strong variations of the exposure time can be seen distinctly in Figure 5.16,
where it is also possible to spot the locations where they occurred. Anyway,
the proposed camera control module handled these situations very well, as it
can been seen in Figure 5.15c. Considering the short focal length (1.8 mil-
limeters) of the lenses and the target GSD set to 6 millimeters, the optimal
exposure was computed on the image locations having a depth of approxi-
mately 1 meter. This helped particularly in situations like those shown in
Figure 5.15c, second image from left, where the darker room in the back-
ground could have caused problems but was ignored by the our exposure
control. The final reconstruction confirms the good performances of the sin-
gle modules and presents errors bounded in the order of few centimeters
(Figures 5.17a and 5.17b). Similarly to the FBK system test (Section 5.3.1),
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the dense reconstruction computed from the real-time camera poses yielded
satisfactory results (Figure 5.17a and Table 5.4), despite the fact that, unlike
the other two reconstructions (P2 and L), no offline optimization of the tra-
jectory was performed in this case. Very interesting is also the comparison
between the optimized reconstructions obtained with the proposed system
(P2) and the significantly more expensive GeoSLAM device (L). The latter
presents evident noise (Figure 5.18 - L labels) and the Euclidean distances
(Figure 5.17c) are characterized by a higher standard deviation (0.0331 me-
ters) than that obtained with our system (0.0299 meters). This are in my
opinion very promising results that underline the capabilities of the proposed
system. Nevertheless, as shown in Table 5.4, the acquisition and processing
times are significantly in favour of the GeoSLAM device. Laser scanner sys-
tems offer incredibly high acquisition rates in multiple directions, and can
maintain sustained movement speeds even in poorly illuminated scenarios.
Moreover, lasers can directly measure the scene geometry without requiring
complex and computationally-intensive algorithms, so the processing times
are generally much shorter. Still, I believe that the presented results are
very promising and highlight the advantages in terms of costs, flexibility,
acquisition assistance and accuracy of the system.
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Chapter 6

Conclusions

This thesis presented a novel visual portable 3D mapping system that com-
bines low-cost and flexible hardware with an assisted and optimized acqui-
sition of the images. Unlike most of existing handheld visual solutions,
the proposed system supports the image acquisition with a real-time and
low-resolution three-dimensional reconstruction of the acquired scene and a
dedicated quality control feedback. The advantages of this approach were
extensively and clearly demonstrated in chapter 5. On the one hand, the ac-
quisition of complex environments is massively simplified, because the user
can leverage the real-time reconstruction to monitor the progress, and assess
that all the target areas are covered by the images. The experiments done in
large-scale and geometrically complex environment demonstrated how cru-
cial is this feedback to obtain a complete and accurate coverage of the scene.
On the other hand, it was shown how the knowledge of the system pose
and scene structure can be also exploited to actively control the acquisition
parameters and provide quality measures of the acquired images. The exper-
iments showed the effectiveness of adapting the acquisition frequency to the
observed scene, providing better results than common time-based methods,
both in terms of number of saved images and final reconstruction accuracy.
This aspect is often scarcely considered in current systems but the exper-

83



iments show how a smarter image selections can improve dramatically the
processing times providing, at the same time, and improvement of the recon-
struction accuracy. It was also demonstrated how to use the scene structure
and a prior information of the acquisition settings to produce more accurate
camera exposure results, even in situations of difficult illumination condi-
tions. Although the exposure control cannot overcome the sensor limitations
of the cameras, significant improvements were achieved by better guiding
the algorithm attention and binding the exposure metering to the feature
points distributed over the object of interest. It was also demonstrated how
the estimates of the scene geometry and system poses can be used to pre-
vent situations of motion-blur, and enable a precise and easy to understand
feedback of the acquisition ground sample distance. This feedback can play
a fundamental role in those applications that have strict object resolution
requirements, like for example monitoring or inspection tasks. Furthermore,
the real-time estimates of the camera poses provided by our system can
be directly used, with satisfactory results, in dense reconstruction pipelines
without needing time-consuming offline optimizations. Time-constrained ap-
plications, such as disaster management activities, can benefit greatly from
this capability. Finally, the various system tests conducted in complex and
heterogeneous environments proved the flexibility of the hardware choices
and the efficacy of the proposed assistance methods. The combination of
a small and power-efficient embedded architecture with industrial cameras
with configurable optics and position allow the system to be easily employed
in a variety of contexts, potentially including, for the reduced weight and size,
even its application onboard of small robotic platforms in case of dangerous
and/or very narrow environments. In the proposed system tests, the 3D re-
constructions obtained from the images acquired by our system proved to be
satisfactory in terms of accuracy and completeness, with results sometimes
comparable with those obtained with significantly more expensive systems.

84



These are remarkable results that would have been difficult to achieve with-
out the assistance and the features provided by the proposed system.

6.1 Outlook

While I hope that the contribution presented in this thesis may represent
a step towards a highly assisted, rapid and accurate visual and portable 3D
mapping, much work is still needed to achieve this goal. Hereafter, I collected
some possible future research directions.

Real-time dense reconstruction. Although the sparse reconstruction
provided in real-time by the proposed system can outline the main structure
of the acquired scene and provide an important feedback of the acquisition
progress, a dense reconstruction would be more effective and detailed (Figure
6.1). Furthermore, if accurate enough, it could represent the final result of the
acquisition without the need for further time-consuming offline computations.
The proposed experiments already demonstrated that the real-time camera
poses computed by the system are sufficiently good to enable satisfactory
offline dense reconstructions. Nevertheless, estimating dense and accurate
three-dimensional reconstruction in real-time and on portable and power-
constrained devices remain a major challenge today. Despite in the latest
years some works were able to achieve it [48, 100], important compromises
on the image resolutions, maximum scene size and reconstruction accuracy
are still necessary.

Semantics. The combination of geometric and semantic understanding of
the scene can potentially lead to important improvements. For example,
leveraging the latest advances of convolutional neural networks (CNNs) [101]
and pixel-wise image semantic segmentation [102], the system may under-
stand what is the subject of the acquisition and prioritize it when computing
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(a) (b)

Figure 6.1: Visual comparison of the level of detail between (a) the sparse reconstruction
obtained in real-time with our system and (b) the dense reconstruction estimated after
hours of processing on powerful hardware (b).

the geometrical structure of the scene or when adjusting the acquisition pa-
rameters. Another interesting application could be the detection of poorly
textured areas, e.g. white walls, where geometric primitives could be lever-
aged to compensate for the notoriously bad performance, in this cases, of
dense reconstruction algorithms [103]. Semantics could be exploited to gen-
erate on-the-fly labelled point clouds as well, which can be interesting for
many applications in the context of monitoring/inspection or cultural her-
itage documentation.

Image enhancement. Another interesting research direction is in my opin-
ion the employment of image enhancement techniques, as they can mitigate
some important limitations of the sensors [104]. For example, in poorly il-
luminated environments it may be preferable to leverage some enhancement
algorithms rather than using high exposure times. The latter would require
slow movement speeds to avoid destructive motion blur issues, which might
be undesired when the scene to acquire is large and the acquisition times
should be optimized. Another situation where image enhancement could
provide important improvements is when the scene presents large illumina-
tion variations that cannot be correctly captured by the cameras. In these
cases, the enhancement could to be useful to extract more information from
the wrongly-exposed areas, potentially enabling, in turn, more accurate and
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complete reconstructions. First steps in this direction have been already
done by the authors [105], nevertheless the integration of the algorithms in
the system as well as an in-depth analysis of the enhancement effect in the
three-dimensional space still needs to be done.

Hardware improvements. One further significant research direction of
the system is the investigation of different hardware configurations. An im-
portant add-on could be an Inertial Measurement Unit (IMU). In addition
to providing the direction of gravity, which can be leveraged to express more
conveniently the reconstruction orientation, it could be used to improve the
visual pose estimation, especially when the scene is difficult and contains
few visual features [106]. Another important question is how to increase
the computational capability of the system without sacrificing too much the
portability. The potential inclusion of dense reconstruction, semantics or im-
age enhancement algorithms would require more computational power. An
interesting option could be to use multiple computational units for different
tasks, taking in consideration also Nvidia Jetson devices for GPU-related
computations. Finally, the cameras can be upgraded to have higher resolu-
tion. This could significantly improve the acquisition times and the number
of images as the same object resolution (GSD) can be achieved from a greater
distance.
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Appendix A

Camera synchronization and calibration

A.1 Triggering

In the current implementation of the system, the acquisition of the stereo
image pair is synchronized with software triggers, although hardware triggers
are possible. We have measured a maximum synchronization error between
the left and the right image of 1 ms. This has been tested recording for several
minutes the display of a simple self-built chronometer based on Arduino that
can measure up to 1/10 of a millisecond. Figure A.1 shows some of the stereo
images of the chronometer acquired over different runs. The chronometer
shows the current millisecond digit on the display, which corresponds to a
difference of maximum one millisecond between the left and right images.
The images were acquired with a shutter speed of half millisecond.

A.2 Modulation transfer function

To enable a more accurate ground sampling distance (GSD) control (Section
4.3.4), we measured the actual modulation transfer function (MTF) of the
lens using an ad-hoc test chart [107]. The chart includes photogrammetric
targets that allow the relative pose of the camera to be determined with re-
spect to the chart plane and, consequently, a better estimation of the actual
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Figure A.1: Synchronisation test and self-built chronometer.

GSD as well as other optical characteristics such as the depth of field. The
test chart uses slant-edges according to the ISO 12233 standard. Moreover,
it includes resolution wedges along the diagonals with metric scale that allow
a direct visual estimation of the limiting resolution of the lens. In our ex-
periment we compared the expected nominal GSD at the measured distance
from the chart against the worst of radially and tangentially resolved pat-
terns along the diagonals of the chart as shown in Figure A.2. We estimated
a ratio of about 2 considering both left and right cameras.

A.3 Calibration

The calibration of the system involves the estimation of the intrinsic param-
eters of the cameras and distortion coefficients of the lenses (Section 3.1.1),
together with the relative SE(3) transformation (Section 3.1.2) between the
stereo cameras. The calibration procedure employed in this thesis relies on
the use of coded targets with known coordinates and accuracy, and it is
largely based on that described by Nocerino and Menna [75].
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(a) (b)

Figure A.2: (a) Resolution chart used to experimentally estimate the modulation transfer
function of the used lenses. (b) Examples of the expected resolution patches (top), at the
center (left) and 2/3 of the diagonal (right) against the imaged ones from the left camera
(bottom).

The procedure can be summarised as follows:

1. Acquire a sequence of N stereo images of the calibration test field.

2. Orient each image separately using bundle adjustment optimisation with
self calibration. The estimation of the intrinsic and distortion parame-
ters is shared among all the images acquired by a single camera. This
produces 2N camera poses and 2 sets of intrinsic and distortion pa-
rameters, one related to the left camera and one related to the right
camera.

3. Detect the coded targets in the images and leverage their known distance
to impose a metric scale to the estimated camera poses.

4. Express all the right camera poses in terms of the corresponding left
ones, convert them to quaternion and translation vectors, and compute
their average values among all the corresponding stereo pairs.

The two sets of intrinsic and distortion parameters estimated at step 2, and
the average transformation between the stereo cameras estimated at step
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(a) (b)

Figure A.3: Some images of the small (a) and big (b) test fields used to calibrate the sys-
tem. Random patterns were placed alongside the targets to provide a more discriminative
texture and improve the number and reliability of automatically-extracted tie points for
the system calibration.

4 will represent the final outcome of the system calibration. Steps 2 and
3 are performed in Agisoft Metashape [96], while step 4 is done with an
own-developed Python script. Two different calibration fields were used to
calibrate the system. The small test field (Figure A.3a) was mostly used
when the cameras were focused at close values, while the big one (Figure
A.3b) was used in all the other cases. The targets were measured with
an expected accuracy of 0.05 millimetres in the small test field, and 0.1
millimetres in the big test field. At every calibration procedure, the test
fields are imaged from many positions (more than one hundred images) and

106



Figure A.4: Usage of the system calibration in the various working stages.

orientations (portrait, landscape) to ensure an optimal intersection geometry
and reduce the risk of parameter correlations. Random patterns were also
placed alongside the targets to ensure an increased and distributed number
of stable features during the bundle adjustment iterations.

A.3.1 Usage

The results of the calibration are not only necessary for the real-time opera-
tions of the system, but are also exploited later during the offline processing
steps. Figure A.4 helps to visualise how the calibration is leveraged in the
different working stages. During the field work, the intrinsic and distortion
parameters of the cameras, together with their relative SE(3) transforma-
tion, are used in real-time to stereo-rectify the images and perform trajectory
and map estimations with a metric scale (Sections 4.3.1 and 4.3.2). Succes-
sively, the offline processing also makes use of the calibration. At this stage
different processing approaches are possible. One possibility is to perform
the dense reconstruction directly from the V-SLAM poses; in this case only
the calibrated intrinsic and distortion parameters are required. The second
option is to use the V-SLAM poses only as initial approximations and carry
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out an offline bundle adjustment optimisation before computing the dense
point cloud. Also in this case the processing uses the calibrated intrinsic
and distortion parameters, but additionally the calibrated stereo baseline is
required to constraint, during the optimisation, the distance between the in-
put stereo pairs. The offline processing is managed with Agisoft Metashape
[97] in this thesis. The import of the V-SLAM poses in Metashape is done
through scripting and the Python Application Programming Interface (API)
provided by the software [108].

Rectilinear - Big calibration field
b(mm) σb(mm) ω(deg) σω(deg) ϕ(deg) σϕ(deg) κ(deg) ωκ(deg)

245.2239 0.3749 -0.0902 0.0113 -22.1633 0.0089 -0.0107 0.0142

Table A.1: Stereo system calibration 1.
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Rectilinear - Small calibration field
b(mm) σb(mm) ω(deg) σω(deg) ϕ(deg) σϕ(deg) κ(deg) ωκ(deg)

245.3167 0.1099 -0.0935 0.0394 -22.1123 0.0121 -0.0239 0.0341

Table A.2: Stereo system calibration 2.

Rectilinear - Big calibration field
b(mm) σb(mm) ω(deg) σω(deg) ϕ(deg) σϕ(deg) κ(deg) ωκ(deg)

244.9946 0.2387 -0.0941 0.0136 -22.4721 0.0079 -0.0120 0.0055

Table A.3: Stereo system calibration 3.

Fisheye - Big calibration field
b(mm) σb(mm) ω(deg) σω(deg) ϕ(deg) σϕ(deg) κ(deg) ωκ(deg)
305.928 0.1686 0.40515 0.0126 1.9697 0.0161 0.0424 0.007

Table A.4: Stereo system calibration 4.
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