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a b s t r a c t 

We introduce a simple and general framework for the construction of thermodynamically 

compatible schemes for the numerical solution of overdetermined hyperbolic PDE systems 

that satisfy an extra conservation law . As a particular example in this paper, we consider 

the general Godunov-Peshkov-Romenski (GPR) model of continuum mechanics that de- 

scribes the dynamics of nonlinear solids and viscous fluids in one single unified mathe- 

matical formalism. 

A main peculiarity of the new algorithms presented in this manuscript is that the en- 

tropy inequality is solved as a primary evolution equation instead of the usual total energy 

conservation law, unlike in most traditional schemes for hyperbolic PDE. Instead, total en- 

ergy conservation is obtained as a mere consequence of the proposed thermodynamically 

compatible discretization. The approach is based on the general framework introduced in 

Abgrall (2018) [1]. In order to show the universality of the concept proposed in this pa- 

per, we apply our new formalism to the construction of three different numerical meth- 

ods. First, we construct a thermodynamically compatible finite volume (FV) scheme on 

collocated Cartesian grids, where discrete thermodynamic compatibility is achieved via an 

edge/face-based correction that makes the numerical flux thermodynamically compatible. 

Second, we design a first type of high order accurate and thermodynamically compatible 

discontinuous Galerkin (DG) schemes that employs the same edge/face-based numerical 

fluxes that were already used inside the finite volume schemes. And third, we introduce a 

second type of thermodynamically compatible DG schemes, in which thermodynamic com- 

patibility is achieved via an element-wise correction, instead of the edge/face-based correc- 

tions that were used within the compatible numerical fluxes of the former two methods. 

All methods proposed in this paper can be proven to be nonlinearly stable in the energy 

norm and they all satisfy a discrete entropy inequality by construction . We present numeri- 

cal results obtained with the new thermodynamically compatible schemes in one and two 

space dimensions for a large set of benchmark problems, including inviscid and viscous 

fluids as well as solids. An interesting finding made in this paper is that, in numerical ex- 

periments, one can observe that for smooth isentropic flows the particular formulation of 

the new schemes in terms of entropy density, instead of total energy density, as primary 
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state variable leads to approximately twice the convergence rate of high order DG schemes 

for the entropy density. 

© 2022 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The seminal paper An interesting class of quasilinear systems published by Godunov in 1961 established for the first time 

the connection between symmetric hyperbolicity in the sense of Friedrichs [2] and thermodynamic compatibility, see [3] . 

Godunov showed that, for hyperbolic systems which have an underlying variational formulation, the total energy conserva- 

tion law is an extra conservation law that can be obtained as a consequence of all the other equations via their suitable linear

combination at the aid of the so-called thermodynamic dual variables, which are the partial derivatives of the total energy 

potential with respect to the conservative variables. The formalism introduced by Godunov was rediscovered independently 

10 years later by Friedrichs and Lax [4] . Important contributions to the subject were also made by Boillat [5] and Ruggeri

[6] . In [6] the thermodynamic dual variables were denoted as the so-called main field , while other works refer to them as

the Godunov variables , see e.g. [7] . 

The results obtained in the original paper of Godunov [3] apply to the Euler equations of gas dynamics, to the shallow

water equations and other simple inviscid hyperbolic systems in conservation form and without involution constraints. In 

subsequent work Godunov and Romenski extended the theory of symmetric hyperbolic and thermodynamically compatible 

(SHTC) systems to a much wider class of mathematical models, including magnetohydrodynamics [8] , nonlinear hyperelas- 

ticity [9] , compressible multi-phase flows [10,11] and even relativistic fluid and solid mechanics, see [12,13] . An extension to

continuum mechanics with torsion was made in Peshkov et al. [14] , while a connection of SHTC systems with Hamiltonian

continuum mechanics was recently established in [15] . A rather general presentation of the overall formalism can be found

in [16] , and [17] . 

Usually in SHTC systems the entropy density is the primary evolution variable , while the conservation law for the total

energy density is the extra conservation law , since it can be obtained as a consequence by a suitable linear combination of

all the other evolution equations. The total energy potential has a privileged role in SHTC systems, because it is used in

the Lagrangian of the underlying variational principle from which all SHTC systems can be derived. For other recent and 

very interesting hyperbolic and thermodynamically compatible systems based on an augmented Lagrangian approach for 

the derivation of hyperbolic models of dispersive systems via variational principles, see e.g. [18,19] . 

Most of the existing entropy preserving and entropy-stable schemes are built on the seminal ideas of Tadmor [20] . They

discretize the total energy conservation directly and obtain a discrete compatibility with the entropy inequality as a con- 

sequence, mimicking the ideas of Friedrichs and Lax [4] on the discrete level. Also numerical schemes which are discretely 

compatible with kinetic energy preservation for the Euler equations fall into the larger class of schemes that satisfy addi- 

tional extra conservation laws of the governing PDE system at the discrete level. Important contributions to the development 

of kinetic energy compatible and entropy compatible finite difference schemes for hyperbolic PDE that make use of skew 

symmetric forms and/or a discrete summation by parts (SBP) property can be found, for example, in the papers of Ducros

et al. [21,22] , Fisher et al. [23,24] , Carpenter and Nordström et al. [25–28] , Pirozzoli [29,30] , Sjögreen and Yee [31–33] and

in Reiss and Sesterhenn [34] . Without pretending completeness of the following overview, important recent developments 

on high order entropy-compatible schemes can be found, for example, in the work of Mishra and collaborators [35–37] ,

Gassner et al., [38–42] , Shu and collaborators [43,44] and in Chandrashekar and Klingenberg [45] , Ray et al. [46] , Ray and

Chandrashekar [47] , Chan and Taylor [48] , Chan et al. [49] , Gaburro et al. [50] , while entropy-compatible schemes for non-

conservative hyperbolic systems were presented in Fjordholm and Mishra [51] . 

A simple and general framework for the construction of compatible numerical methods which satisfy extra conservation 

laws at the discrete level was very recently put forward by Abgrall and collaborators in [1 , 52–55] and will also be the basis

of the schemes presented in this paper. 

In Lagrangian hydrodynamics thermodynamically compatible schemes have been developed in order to obtain the total 

energy conservation as a consequence of a compatible discretization of the equations of continuity, momentum and inter- 

nal energy, see Caramana and R.Loubère [56] , Bauera et al. [57] , Maire et al. [58] . However, these schemes apply only to

hydrodynamics and not to the GPR model of continuum mechanics treated in this paper. 

Up to now, finite volume and discontinuous Galerkin methods that discretize directly the entropy inequality and which 

are able to obtain the total energy conservation law as a consequence of the compatible discretization of all the other equa-

tions are still quite rare. First progress in this direction has been recently made in Busto et al. [59–61] , where a novel family

of thermodynamically compatible finite volume schemes was introduced for turbulent shallow water flows, for the Euler 

and MHD equations, as well as for the GPR model of continuum mechanics. In [60,61] the entropy density was solved as

primary evolution variable and the total energy conservation law was obtained as a consequence. These ideas have recently 

also been extended to high order discontinuous Galerkin finite element schemes, see [62] . A common building block in all
2 

http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Abgrall, S. Busto and M. Dumbser Applied Mathematics and Computation 440 (2023) 127629 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

methods presented in [59–62] is the use of a path integral in order to obtain a thermodynamically compatible numerical 

flux for the underlying inviscid Euler or shallow water subsystem. This path integral was discretized at the aid of suitable

numerical quadrature formulas, which, however, can lead to a small source of total energy conservation errors if the num- 

ber of quadrature points was not large enough, see [61] for a detailed analysis. It is therefore the main objective of the

present paper to construct thermodynamically compatible finite volume and discontinuous Galerkin schemes for the Euler 

equations and for the GPR model of continuum mechanics that do not need the approximate computation of a path inte-

gral in order to obtain a thermodynamically compatible flux. In this paper, we make use of the new concept of a direct

discretization of the entropy inequality with appropriate non-negative production term in order to obtain the discrete total 

energy conservation law as a consequence. Our method can therefore be seen as a dual scheme with respect to traditional

entropy-conserving and entropy-stable methods, where total energy is discretized and the entropy inequality is obtained as 

a consequence. A major innovation and special property of the new family of schemes presented in this paper is that they

do not need the Godunov parametrization of the flux of the underlying Euler subsystem in terms of a generating potential,

in contrast to the methods presented previously in Busto et al. [59–62] , which were all explicitly relying on the Godunov

parametrization in terms of a generating potential. 

The rest of this paper is organized as follows: in Section 2 , we present the governing PDE system treated in this

manuscript, namely the first order hyperbolic GPR model of continuum mechanics supplemented with a thermodynam- 

ically compatible parabolic vanishing viscosity regularization. The next three sections are devoted to the introduction of 

three different but related thermodynamically compatible numerical schemes for the discretization of the GPR model. To 

facilitate the reader, the presentation of the three different schemes is organized in increasing level of complexity: 

1. In Section 3 a new thermodynamically compatible cell centered finite volume method is presented. The readers who are 

only interested in FV schemes are invited to focus on this section. 

2. In Section 4 we introduce a first DG scheme (DG scheme of type I) that employs the same thermodynamically compatible

edge/face-based fluxes for the Euler subsystem as the one used in the finite volume method presented in Section 3 . As

such, the FV method and the DG schemes of type I are related to each other. The readers who are interested in a

straightforward extension of finite volume schemes to the DG framework are invited to focus on Sections 3 and 4 . 

3. In Section 5 we propose a second DG scheme (DG scheme of type II) which is completely different from the previous two

methods as it establishes thermodynamic compatibility directly in a genuinely multi-dimensional fashion via a suitable 

element-wise correction. 

For all schemes presented in this paper, a cell entropy inequality and nonlinear stability in the energy norm can be proven

for the semi-discrete case. In Section 6 , numerical results are shown for a set of different test cases, ranging from the fluid

to the solid limit of the GPR model. The conclusions are presented together with an outlook to future work in Section 7 . 

2. Governing partial differential equations 

This paper is concerned with a new family of thermodynamically compatible schemes for the unified first order hyper- 

bolic model of continuum mechanics of Godunov, Peshkov and Romenski (GPR model) see [3,9,16,17,63,64] . The governing 

PDE system, which in this paper has been regularized via appropriate thermodynamically compatible parabolic vanishing 

viscosity terms, reads as follows: 

∂ρ

∂t 
+ 

∂(ρv k ) 
∂x k 

− ∂ 

∂x m 

(
ε

∂ρ

∂x m 

)
= 0 , (1a) 

∂ρv i 
∂t 

+ 

∂ ( ρv i v k + p δik + σik + ω ik ) 

∂x k 
− ∂ 

∂x m 

(
ε
∂ρv i 
∂x m 

)
= 0 , (1b) 

∂ρS 

∂t 
+ 

∂ ( ρSv k + βk ) 

∂x k 
− ∂ 

∂x m 

(
ε
∂ρS 

∂x m 

)
= 	+ 

αik αik 

θ1 (τ1 ) T 
+ 

βi βi 

θ2 (τ2 ) T 
≥ 0 , (1c) 

∂A ik 

∂t 
+ 

∂(A im 

v m 

) 

∂x k 
+ v m 

(
∂A ik 

∂x m 

− ∂A im 

∂x k 

)
− ∂ 

∂x m 

(
ε
∂A ik 

∂x m 

)
= − αik 

θ1 (τ1 ) 
, (1d) 

∂ J k 
∂t 

+ 

∂ ( J m 

v m 

+ T ) 

∂x k 
+ v m 

(
∂ J k 
∂x m 

− ∂ J m 

∂x k 

)
− ∂ 

∂x m 

(
ε

∂ J k 
∂x m 

)
= − βk 

θ2 (τ2 ) 
, (1e) 

∂E 
∂t 

+ 

∂ ( v k ( E 1 +E 2 + E 3 + E 4 ) + v i (p δik + σik + ω ik ) + h k ) 

∂x k 
− ∂ 

∂x m 

(
ε

∂E 
∂x m 

)
= 0 . (1f) 

with the state vector q = { q i } = (ρ, ρv i , ρS, A ik , J k ) 
T and the total energy density E = ρE = E 1 + E 2 + E 3 + E 4 with E i = ρE i .

Throughout this paper the tensor indices i , k and m run from 1 to 3, i.e. we always consider the full equations written for
3 
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the three-dimensional case, independently of the actual number of space dimensions considered in the numerical scheme. 

The system above belongs to the class of overdetermined hyperbolic systems. The vanishing viscosity parameter is denoted 

by ε > 0 and the entropy production term associated with the vanishing viscosity regularization reads 

	 = 

ε

T 
∂ x m q i ∂ 

2 
q i q j 

E ∂ x m q j ≥ 0 , (2) 

where the nonnegativity is obtained by assuming ε > 0 , T > 0 and that the Hessian of the total energy potential is

at least positive semi-definite, i.e. H i j := ∂ 2 q i q j 
E ≥ 0 . In the following, we will make use of the notations ∂ p = ∂ /∂ p and

∂ 2 pq = ∂ 2 / (∂ p∂ q ) for the first and second partial derivatives with respect to the quantities p and q . We will also assume

the Einstein summation convention over repeated indices and we will make use bold symbols for vectors and matrix, for 

example q = { q i } and A = { A ik } . In this paper, we write the total energy density as a sum of four contributions given by 

E 1 = 

ργ

γ − 1 

e S/c v , E 2 = 

1 

2 

ρv i v i , E 3 = 

1 

4 

ρc 2 s G̊ i j G̊ i j , E 4 = 

1 

2 

c 2 h ρJ i J i , (3)

where G is a metric tensor defined as G ik = A ji A jk . Its trace-free part, or deviator, is denoted by G̊ and reads G̊ ik = G ik −
1 
3 G mm 

δik . The main field or so-called thermodynamic dual variables are denoted by p = ∂ q E = { p i } = ( r, v i , T , αik , βk ) 
T 

and

are defined as 

r = ∂ ρE, v i = ∂ ρv i E, T = ∂ ρS E, αik = ∂ A ik E, βk = ∂ J k E . (4)

The hydrodynamic pressure p is given by p = ρ ∂ ρE + ρv i ∂ ρv i E + ρS ∂ ρS E − E = ρ2 ∂ ρE, while the shear stress tensor and the

thermal stress tensor read 

σik = A ji ∂ A jk E = A ji α jk = ρc 2 s G i j G̊ jk , ω ik = J i ∂ J k E = J i βk = ρc 2 h J i J k , (5)

respectively. In the above model the heat flux is defined as 

h k = ∂ ρS E ∂ J k E = T βk = ρc 2 h T J k . (6) 

The total energy flux F k in (1f) is the sum of two fluxes, F k = F 12 
k 

+ F 34 
k 

, where F 12 
k 

is related to the Euler subsystem and F 34 
k 

contains the work of the stress tensors σik and ω ik as well as the heat flux h k , i.e. 

F 12 
k = v k ( E 1 + E 2 ) + v i δik p, F 34 

k = v k ( E 3 + E 4 ) + v i ( σik + ω ik ) + h k . (7) 

Furthermore, θ1 (τ1 ) > 0 and θ2 (τ2 ) > 0 are functions that depend on q and on the relaxation times τ1 > 0 and τ2 > 0 as

follows: 

θ1 = 

1 

3 

ρz 1 τ1 c 
2 
s | A | − 5 

3 , θ2 = ρz 2 τ2 c 
2 
h , z 1 = 

ρ0 

ρ
, z 2 = 

ρ0 T 0 
ρ T 

. (8) 

Here, ρ0 and T 0 are a reference density and a reference temperature, respectively. After some calculations one can verify 

that (1f) is a consequence of (1a) –(1e) since the following identity holds: 

(1f) = r · (1a) + v i · (1b) + T · (1c) + αik · (1d) + βk · (1e) . (9) 

The above relation is directly related to the Gibbs identity 

1 · dE = r · dρ + v i · d(ρv i ) + T · d(ρS) + αik · dA ik + βk · dJ k = p · dq . (10)

Note that in the above identity the factor in front of the total energy differential is simply unity . This not only highlights

the privileged role that the total energy potential has in SHTC systems, but it also substantially eases the calculations when

the PDE for E is taken as the consequence of all other equations, instead of the PDE for the entropy density. The factor T in

front of the entropy differential can become rather complex for general EOS or for more complicated PDE systems. Instead, 

the factor of unity in front of the total energy differential is always trivial and is independent of the equation of state and

even of the mechanical system under consideration. For other HTC systems with the same property, the reader is referred 

to Romenski et al. [11] , Romenski [16] , Favrie and Gavrilyuk [18] , Dhaouadi et al. [19] , Busto et al. [59] , Busto and Dumbser

[60] , Dhaouadi and Dumbser [65] . 

A formal asymptotic analysis of the model (1) was presented in [64] . It is shown that for small relaxation times, τ1 and

τ2 , the Navier–Stokes–Fourier limit is obtained, i.e. the stress tensor σik and the heat flux h k tend to 

σik = −1 

6 

ρ0 c 
2 
s τ1 

(
∂ k v i + ∂ i v k −

2 

3 

( ∂ m 

v m 

) δik 

)
, h k = −ρ0 T 0 c 

2 
h τ2 ∂ k T . (11) 

In this case one can relate the viscosity coefficient to the relaxation time τ1 and the shear sound speed c s as μ = 

1 
6 ρ0 c 

2 
s τ1 ,

while the thermal conductivity coefficient is related to the relaxation time τ2 and the heat wave speed c h by κ = ρ0 T 0 c 
2 
h 
τ2 . 

In this paper, we will also make use of the following more compact formulation of the above PDE system, casting it into

the general form 

∂ t q + ∂ k f k (q ) + ∂ k h k (q ) + B k (q ) ∂ k q − ∂ m 

( ε∂ m 

q ) = P + S (q ) (12) 
4 
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with the extra conservation law for the total energy density 

∂E 
∂t 

+ ∂ k F k (q ) − ∂ m 

( ε∂ m 

E ) = 0 . (13) 

Here, the flux f k (q ) is associated with the inviscid Euler subsystem (black terms), the flux h k (q ) and the non-conservative

product B k (q ) ∂ k q include the terms related to the distorsion field and the thermal impulse (red terms), the parabolic dissi-

pation terms are ∂ m 

( ε∂ m 

q ) with the associated entropy production P (blue terms) and the algebraic relaxation source terms, 

which are potentially stiff, are denoted by S (q ) (green). In the extra conservation law (13) the total energy flux is given by

F k (q ) . Since p = ∂ q E and therefore p · ∂ t q = ∂ q E · ∂ t q = ∂ t E , for thermodynamic compatibility of system (12) with the extra

conservation law (13) the following identities must be satisfied, in particular the compatibility of the conservative flux terms 

and of the non-conservative products with the total energy flux, 

p · ( ∂ k f k (q ) + ∂ k h k (q ) + B k (q ) ∂ k q ) = ∂ k F k . (14) 

More specifically, the flux of the Euler subsystem f k must be compatible with the energy flux F 12 
k 

p · ∂ k f k (q ) = ∂ k F 
12 

k (15) 

and the remaining terms must be compatible with the energy flux F 34 
k 

, i.e. 

p · ( ∂ k h k (q ) + B k (q ) ∂ k q ) = ∂ k F 
34 

k . (16) 

Furthermore, one has the compatibility of the entropy production term with the parabolic dissipation terms 

p · P + p · ∂ m 

( ε∂ m 

q ) = ∂ m 

( ε∂ m 

E ) , (17) 

and the compatibility of the algebraic relaxation source terms 

p · S (q ) = 0 . (18) 

As already stated previously, the main peculiarity of the new algorithms presented in this manuscript is that the entropy 

inequality is solved as a primary evolution equation instead of the total energy conservation law, unlike in most traditional 

schemes for hyperbolic systems of conservation laws. Instead, in our framework, the total energy conservation is obtained 

as a consequence of the proposed thermodynamically compatible discretization. 

3. Thermodynamically compatible finite volume schemes on collocated meshes 

In favor of clarity and in order to ease the reading, we start presenting the construction of our thermodynamically 

compatible schemes step by step in one space dimension only, using the different colours in (1) as guidance. We start with

the discretization of the inviscid Euler subsystem (black terms), then including the viscous terms (blue) and finally adding 

the distortion field and the specific thermal impulse (red terms). Throughout this paper, we use lower case subscripts, i, j, k ,

for tensor indices, while lower case superscript, � , refer to the spatial discretization index. We denote the spatial control

volumes in 1D by �� = [ x � −
1 
2 , x � + 

1 
2 ] and �x = x � + 

1 
2 − x � −

1 
2 is the uniform mesh spacing. 

3.1. Compatible discretization of the Euler subsystem in 1D 

The inviscid Euler subsystem with the related extra conservation law for the total energy density reads 

∂ t q + ∂ x f 1 (q ) = 0 , (19) 

∂ t E 12 + ∂ x F 
12 

1 = 0 . (20) 

A semi-discrete finite volume scheme for (19) is thus given by 

d 

dt 
q 

� = −F 

� + 1 2 − F 

� − 1 
2 

�x 
= −

(
F 

� + 1 2 − f � 
)

−
(
F 

� − 1 
2 − f � 

)
�x 

= −D 

� + 1 2 − + D 

� − 1 
2 + 

�x 
, (21) 

with f � = f 1 (q 

� ) to ease notation, f 1 (q ) = (ρv 1 , ρv i v 1 + pδi 1 , ρSv 1 , 0 , 0 ) T the fluxes of the Euler subsystem and the associated

total energy flux of the Euler subsystem F 12 
1 

= v 1 (E 1 + E 2 + p) and the numerical flux F 

� + 1 
2 . The fluctuations D 

� + 1 
2 − and D 

� − 1 
2 + 

are related to the numerical fluxes via the relations 

D 

� + 1 2 − = F 

� + 1 2 − f � , D 

� − 1 
2 + = f � − F 

� − 1 
2 . (22) 

To obtain a discrete total energy conservation law as a consequence of the discretization of (19) , see (9) , we compute the

dot product of the discrete dual variables, p 

� = ∂ q E(q 

� ) , with the semi-discrete scheme (21) , 

p 

� · d 
q 

� = 

d E � = −p 

� ·
(
F 

� + 1 2 − f � 
)

+ 

(
f � − F 

� − 1 
2 

)
= −D 

� + 1 2 

E, − + D 

� − 1 
2 

E, + = −F 
12 ,� + 1 2 

1 
− F 

12 ,� − 1 
2 

1 . (23) 

dt dt �x �x �x 

5 
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We now look for a suitable numerical flux F 

� + 1 
2 that achieves thermodynamic compatibility of the finite volume scheme 

(21) with the discrete form of the total energy conservation law (23) . For that purpose we define the right and left energy

fluctuations as 

D 

� + 1 2 

E, − = p 

� · D 

� + 1 2 − = p 

� · (F 

� + 1 2 − f � ) , D 

� − 1 
2 

E, + = p 

� · D 

� − 1 
2 + = p 

� · (f � − F 

� − 1 
2 ) , (24)

which must satisfy the consistency property 

D 

� + 1 2 

E, − + D 

� + 1 2 

E, + = p 

� · D 

� + 1 2 − + p 

� +1 · D 

� + 1 2 + = p 

� · (F 

� + 1 2 − f � ) + p 

� +1 · (f � +1 − F 

� + 1 2 ) = F 12 ,� +1 
1 

− F 12 ,� 
1 

(25)

in order to obtain a conservative discretization of the extra conservation law (20) . The numerical total energy fluxes F 
12 ,� ± 1 

2 
1 

appearing in (23) are related to the energy fluctuations via 

D 

� + 1 2 

E, − = F 
12 ,� + 1 2 

1 
− F 12 ,� 

1 
, D 

� − 1 
2 

E, + = F 12 ,� 
1 

− F 
12 ,� − 1 

2 

1 
, (26) 

with F 12 ,� 
1 

= F 12 
1 (q 

� ) the discrete total energy flux related to the Euler subsystem evaluated in cell �� . Following the ideas

outlined in the general framework [1] , in the following we assume the thermodynamically compatible numerical flux F 

� + 1 
2 

to have the rather general form 

F 

� + 1 2 = 

˜ F 

� + 1 2 − α� + 1 2 

(
p 

� +1 − p 

� 
)

= 

(
F 

� + 1 2 
ρ , F 

� + 1 2 
ρv i , F 

� + 1 2 

ρS 
, 0 , 0 

)T 

, (27) 

where ˜ F 

� + 1 
2 could be in principle any central numerical flux that does not necessarily guarantee discrete thermodynamic 

compatibility of the system of conservation laws (19) with the extra conservation law (20) and which is then corrected via

a suitable scalar parameter α� + 1 
2 in order to achieve discrete thermodynamic compatibility. Imposing the condition (25) on 

the flux (27) we obtain 

p 

� · ( ̃  F 

� + 1 2 − f � ) + p 

� +1 · (f � +1 − ˜ F 

� + 1 2 ) − α� + 1 2 p 

� ·
(
p 

� +1 − p 

� 
)

+ α� + 1 2 p 

� +1 ·
(
p 

� +1 − p 

� 
)

= F 12 ,� +1 
1 

− F 12 ,� 
1 

. (28) 

Rearranging terms in the above equation yields 

−˜ F 

� + 1 2 ·
(
p 

� +1 − p 

� 
)

+ p 

� +1 · f � +1 − p 

� · f � + α� + 1 2 

(
p 

� +1 − p 

� 
)2 = F 12 ,� +1 

1 
− F 12 ,� 

1 
, (29) 

from which we can obtain the scalar correction factor α� + 1 
2 

α� + 1 2 = 

F 12 ,� +1 
1 

− F 12 ,� 
1 

+ 

˜ F 

� + 1 2 ·
(
p 

� +1 − p 

� 
)

−
(
p 

� +1 · f � +1 − p 

� · f � 
)(

p 

� +1 − p 

� 
)2 

(30) 

that guarantees the discrete thermodynamic compatibility of the scheme (21) with the discrete extra conservation law (23) . 

In the case of a vanishing denominator, 
(
p 

� +1 − p 

� 
)2 = 0 , we set α� + 1 

2 = 0 . Throughout this paper we simply choose the

dissipationless central flux as underlying numerical flux ˜ F 

� + 1 
2 , i.e. 

˜ F 

� + 1 2 = 

1 

2 

(
f � + f � +1 

)
, (31) 

since suitable numerical dissipation terms that are compatible with the first and second law of thermodynamics will be 

provided in the next section. We stress that the numerical flux (27) with (30) does not need the Godunov parametrization

of the flux f 1 = ∂ p (v 1 L ) in terms of a generating potential L , unlike the HTC finite volume schemes presented in [59–61] .

Note that this part of the scheme is only related to the reversible (inviscid) terms of the governing equations, hence it

is sufficient to consider the simple central flux (31) in (27) . A proper thermodynamically compatible discretization of the 

viscous terms, which mimics the parabolic vanishing viscosity regularization of the governing PDE system, including the 

non-negative entropy production term, is done separately and will be presented later in the next section. 

3.2. Thermodynamically compatible discretization of the viscous terms in 1D 

In the end we are interested in constructing a dissipative scheme for (1) that is thermodynamically compatible. For this 

purpose, and since the compatible numerical flux (27) with (31) and (30) developed in the previous section is dissipationless,

we now still need to add a thermodynamically compatible numerical viscosity in order to get a dissipative scheme that 

also works in the presence of shock waves and other discontinuities. Hence, the flux (27) is extended by a dissipative

contribution and a corresponding non-negative entropy production term, which mimic the vanishing viscosity regularization 

introduced in the governing PDE system (1) at the discrete level: 

d 
q 

� + 

F 

� + 1 2 − F 

� − 1 
2 = 

G � + 1 2 − G � − 1 
2 + P 

� . (32) 

dt �x �x 
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The dissipative numerical flux is chosen as 

G � + 1 2 = ε� + 1 2 
�q 

� + 1 2 

�x 
, �q 

� + 1 2 = q 

� +1 − q 

� , (33) 

with a scalar numerical viscosity coefficient that can be either chosen to be constant, i.e. ε� + 1 
2 = ε, or which is chosen as

follows, 

ε� + 1 2 = 

1 

2 

(
1 − φ� + 1 2 

)
�x s 

� + 1 2 
max ≥ 0 , (34) 

where s 
� + 1 

2 
max according to the Rusanov or local Lax-Friedrichs flux is chosen as the maximum signal speed arising at the

cell interface and φ� + 1 
2 is a flux limiter allowing to reduce the numerical viscosity regions where the numerical solution is 

smooth. In the following, and if not stated otherwise, we will employ the minbee flux limiter given by 

φ� + 1 2 = min 

(
φ

� + 1 2 − , φ
� + 1 2 + 

)
, with φ

� + 1 2 ± = max 

(
0 , min 

(
1 , h 

� + 1 2 ±
))

, (35) 

where the ratios of total energy slopes, similar to the SLIC scheme of Toro [66] , read 

h 

� + 1 2 − = 

E � − E � −1 

E � +1 − ρ� 
, and h 

� + 1 2 + = 

E � +2 − E � +1 

E � +1 − ρ� 
. (36) 

The final thermodynamically compatible dissipative Rusanov flux, which includes both the convective and the diffusive 

terms, is given by 

F 

� + 1 2 + G � + 1 2 = 

1 

2 

(
f � +1 + f � 

)
− α� + 1 2 

(
p 

� +1 − p 

� 
)

− ε� + 1 2 

�x 

(
q 

� +1 − q 

� 
)
, (37) 

where we have used our choice (31) and where α� + 1 
2 is given by (30) . Unlike in [59 , 61] the flux (37) does not require

the evaluation of path integrals in phase space and is therefore computationally much more efficient, as shown later by 

numerical experiments. 

Taking the dot product of Eq. (32) with the dual variables p 

� yields 

dE � 
dt 

+ 

1 

�x 

(
F 

12 ,� + 1 2 

1 
− F 

12 ,� − 1 
2 

1 

)
= 

1 

�x 
p 

� ·
(
G � + 1 2 − G � − 1 

2 

)
+ p 

� · P 

� . (38) 

The thermodynamic compatibility of the inviscid part on the left hand side of (38) is obvious since it was already shown in

the previous section. Therefore, we can now simply focus on the terms appearing on the right hand side of (38) . After some

calculations we obtain 

p 

� · P 

� + p 

� · G 
� + 1 2 − G � − 1 

2 

�x 

= p 

� · P 

� + 

1 

�x 

(
1 

2 

p 

� · G � + 1 2 + 

1 

2 

p 

� +1 · G � + 1 2 + 

1 

2 

p 

� · G � + 1 2 − 1 

2 

p 

� +1 · G � + 1 2 

)
− 1 

�x 

(
1 

2 

p 

� · G � − 1 
2 + 

1 

2 

p 

� −1 · G � − 1 
2 + 

1 

2 

p 

� · G � − 1 
2 − 1 

2 

p 

� −1 · G � − 1 
2 

)
= p 

� · P 

� + 

1 

2 

p 

� +1 + p 

� 

�x 
· ε� + 1 2 

�q 

� + 1 2 

�x 
− 1 

2 

p 

� + p 

� −1 

�x 
· ε� − 1 

2 
�q 

� − 1 
2 

�x 

−1 

2 

p 

� +1 − p 

� 

�x 
· ε� + 1 2 

�q 

� + 1 2 

�x 
− 1 

2 

p 

� − p 

� −1 

�x 
· ε� − 1 

2 
�q 

� − 1 
2 

�x 
. (39) 

Because of the relation 

q � +1 ∫ 
q � 

p · d q = 

q � +1 ∫ 
q � 

∂ q E · d q = E � +1 − E � = �E � + 1 2 , (40) 

one may interpret the term 

1 
2 (p 

� +1 + p 

� ) · �q 

� + 1 
2 as an approximation of the total energy density difference �E � + 

1 
2 , with an

approximation of the path integral via the simple trapezoidal rule. Due to (39) and (40) , the energy flux including convective

and diffusive terms is 

F 
� + 1 2 

d 
= F 

12 ,� + 1 2 

1 
− 1 

2 

(p 

� +1 + p 

� ) · ε� + 1 2 
�q 

� + 1 2 

�x 
≈ F 

12 ,� + 1 2 

1 
− ε� + 1 2 

�E � + 1 2 

�x 
. (41) 

In order to control the sign of the entropy production, we now rewrite the jump terms in the dual p variables as jumps in

the conservative q variables. To this end, we make use of a Roe-type matrix ∂ 2 qq ̃
 E � + 

1 
2 that verifies the Roe property 

∂ 2 qq ̃
 E � + 1 2 · (q 

� +1 − q 

� ) = p 

� +1 − p 

� . (42) 
7 
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The simple segment path 

˜ ψ in the conservative q variables, 

˜ ψ (s ) = q 

� + s 
(
q 

� +1 − q 

� 
)
, 0 ≤ s ≤ 1 , (43) 

allows us to construct the Roe matrix that we are looking for: 

∂ 2 qq ̃
 E � + 1 2 = 

1 ∫ 
0 

∂ 2 qq E 
(

˜ ψ (s ) 
)

ds =: 

(
∂ 2 pp ̃

 L � + 
1 
2 

)−1 

, (44) 

which satisfies (42) and allows to rewrite (38) , after substitution of (39) , as 

d 

dt 
E � + 

F 
� + 1 2 

d 
− F 

� − 1 
2 

d 

�x 
= p 

� · P 

� − 1 

2 

ε� + 1 2 
q 

� +1 − q 

� 

�x 
· ∂ 2 qq ̃

 E � + 1 2 
q 

� +1 − q 

� 

�x 
− 1 

2 

ε� − 1 
2 

q 

� − q 

� −1 

�x 
· ∂ 2 qq ̃

 E � − 1 
2 

q 

� − q 

� −1 

�x 
. (45) 

The only equation in the governing PDE system (1) that admits the addition of a non-negative production term on the right

hand side is obviously the entropy inequality given by (1c) . Hence, in order to obtain discrete total energy conservation

(1f) as a consequence of all other equations, we need to balance all contributions due to the discretization of the dissipative

terms by defining the production term P 

� = (0 , 0 , 	� , 0 , 0 ) T as 

p 

� · P 

� = T � 	� = 

1 

2 

ε� + 1 2 
�q 

� + 1 2 

�x 
· ∂ 2 qq ̃

 E � + 1 2 
�q 

� + 1 2 

�x 
+ 

1 

2 

ε� − 1 
2 
�q 

� − 1 
2 

�x 
· ∂ 2 qq ̃

 E � − 1 
2 
�q 

� − 1 
2 

�x 
. (46) 

This choice leads to the sought semi-discrete total energy conservation law 

d 

dt 
E � + 

F 
� + 1 2 

d 
− F 

� − 1 
2 

d 

�x 
= 0 . (47) 

3.3. Thermodynamically compatible discretization of the remaining terms in 1D 

We now take into account also the remaining terms of the governing PDE system (1) , i.e. the red and green terms. The

thermodynamically compatible finite volume scheme in 1D reads 

d 

dt 
q 

� + 

F 

� + 1 2 − F 

� − 1 
2 

�x 
+ 

R 

� + 1 2 − + R 

� − 1 
2 + 

�x 
= 

G � + 1 2 − G � − 1 
2 

�x 
+ P 

� + S 
(
q 

� 
)
. (48) 

According to the detailed derivation provided in Busto et al. [61] , the thermodynamically compatible discretization of the 

fluctuations R 

� + 1 
2 − and R 

� + 1 
2 + in 1D is 

R 

� + 1 2 − = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

σ
� + 1 2 

i 1 
− σ � 

i 1 
+ ω 

� + 1 2 

i 1 
− ω 

� 
i 1 

1 
2 

(
β� +1 

1 
− β� 

1 

)
1 
2 

A 

� + 1 2 

im 

(
v � +1 

m 

− v � m 

)
n k + 

1 
2 ̃

 u 

� + 1 2 

A 

(
A 

� +1 
ik 

− A 

� 
ik 

)
1 
2 

J 
� + 1 2 
m 

(
v � +1 

m 

− v � m 

)
n k + 

1 
2 ̃

 u 

� + 1 2 

J 

(
J � +1 
k 

− J � 
k 

)
+ 

1 
2 

(
T � +1 − T � 

)
n k 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (49) 

and 

R 

� + 1 2 + = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

σ � +1 
i 1 

− σ
� + 1 2 

i 1 
+ ω 

� +1 
i 1 

− ω 

� + 1 2 

i 1 
1 
2 

(
β� +1 

1 
− β� 

1 

)
1 
2 

A 

� + 1 2 

im 

(
v � +1 

m 

− v � m 

)
n k + 

1 
2 ̃

 u 

� + 1 2 

A 

(
A 

� +1 
ik 

− A 

� 
ik 

)
1 
2 

J 
� + 1 2 
m 

(
v � +1 

m 

− v � m 

)
n k + 

1 
2 ̃

 u 

� + 1 2 

J 

(
J � +1 
k 

− J � 
k 

)
+ 

1 
2 

(
T � +1 − T � 

)
n k 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (50) 

with the normal n = (1 , 0 , 0) for this one-dimensional case, the compatible discretization of the stress tensors 

σ
� + 1 2 

ik 
= 

1 

2 

(
A 

� +1 
mi 

+ A 

� 
mi 

)1 

2 

(
α� +1 

mk 
+ α� 

mk 

)
, ω 

� + 1 2 

ik 
= 

1 

2 

(
J � +1 
i 

+ J � i 

)1 

2 

(
β� +1 

k 
+ β� 

k 

)
(51) 

and 

A 

� + 1 2 

im 

= 

1 

2 

(
A 

� +1 
im 

+ A 

� 
im 

)
, ˜ u 

� r 
A = 

F 

� + 1 2 
ρ

(
E � +1 

3 
− E � 3 

)
1 
2 

(
α� +1 

ik 
+ α� 

ik 

)(
A 

� +1 
ik 

− A 

� 
ik 

) , (52) 

J 
� + 1 2 

i 
= 

1 

2 

(
J � i + J � +1 

i 

)
, ˜ u 

� + 1 2 

J 
= 

F 

� + 1 2 
ρ

(
E � +1 

4 
− E � 4 

)
1 
2 

(
β� +1 

k 
+ β� 

k 

)(
J � +1 
k 

− J � 
k 

) , (53) 
8 
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while the discrete algebraic source term simply reads 

S 
(
q 

� 
)

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

α� 
ik 
α� 

ik 

θ� 
1 
(τ1 ) T � 

+ 

β� 
k 
β� 

k 

θ� 
2 
(τ2 ) T � 

− α� 
ik 

θ� 
1 
(τ1 ) 

− β� 
i 

θ� 
2 
(τ2 ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (54) 

Following [61] one can check that the fluctuations satisfy the compatibility relation with the total energy flux related to the

red terms in (1) : 

p 

� · R 

� + 1 2 − + p 

� +1 · R 

� + 1 2 + = F 34 ,� +1 
1 

− F 34 ,� 
1 

. (55) 

The thermodynamic compatibility of the algebraic source term, 

p 

� · S 
(
q 

� 
)

= 0 , (56) 

is obvious, since it is clearly the pointwise discrete analogue of (18) . 

3.4. Thermodynamically compatible finite volume scheme in multiple space dimensions 

In multiple space dimensions the construction of the thermodynamically compatible semi-discrete cell centered finite 

volume scheme is completely analogous to the one shown for the one-dimensional case illustrated in the previous section, 

making use of fluxes and fluctuations in the normal direction across the cell boundaries. In what follows, we will provide

the precise expressions of the final scheme and prove the cell entropy inequality and the marginal nonlinear stability in the

energy norm, which is a consequence of the discrete thermodynamic compatibility. We consider the spatial control volume 

�� with circumcenter x � , one of its neighbors �r and the common edge ∂�� r , n 

� r = (n � r 
1 

, n � r 
2 

, n � r 
3 
) T being the outward unit

normal vector to the face ∂�� r pointing from element �� to �r , with the property n r � 
k 

= −n � r 
k 

and N � being the set of

neighbors of cell �� . Note that in two space dimensions n � r 
3 

= 0 . The mesh spacing in direction k is denoted by �x k . The

semi-discrete finite volume scheme in multiple space dimensions reads 

∂q 

� 

∂t 
= − 1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(F 

(
q 

� , q 

r 
)

· n 

� r + R 

(
q 

� , q 

r 
)

· n 

� r − G 
(
q 

� , q 

r 
)

· n 

� r − P 

(
q 

� , q 

r 
))

+ S (q 

� ) (57) 

with the thermodynamically compatible flux in normal direction 

F 

� r = F 

(
q 

� , q 

r 
)

· n 

� r = 

˜ F 

� r − α� r 
(
p 

r − p 

� 
)

= 

(
F 

� r 
ρ , F 

� r 
ρv i , F 

� r 
ρS , 0 , 0 

)T 
, ˜ F 

� r = 

1 

2 

(
f � k + f r k 

)
n 

� r 
k , (58) 

α� r = 

F 12 , r 
k 

− F 12 ,� 
k 

+ 

1 
2 

(
f � 

k 
+ f r 

k 

)
·
(
p 

r − p 

� 
)

−
(
p 

r · f r 
k 
− p 

� · f � 
k 

)
( p 

r − p 

� ) 
2 

· n 

� r 
k , (59) 

the numerical flux for the viscous terms 

G 
(
q 

� , q 

r 
)

= ε� r q 

r − q 

� 

δ� r 
= ε� r �q 

� r 

δ� r 
, δ� r = 

∥∥x 

r − x 

� 
∥∥ = �x k n 

� r 
k , (60) 

and the fluctuations and entropy production term related to the viscosity 

R 

(
q 

� , q 

r 
)

· n 

� r = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 (
σ � r 

ik 
− σ � 

ik 

)
· n 

� r 
k 

+ 

(
ω 

� r 
ik 

− ω 

� 
ik 

)
· n 

� r 
k 

1 
2 

(
β r 

k 
− β� 

k 

)
· n 

� r 
k 

1 
2 

A 

� r 
im 

(
v r m 

− v � m 

)
n 

� r 
k 

+ 

1 
2 ̃

 u 

� r 
A 

(
A 

r 
ik 

− A 

� 
ik 

)
1 
2 

J � r m 

(
v r m 

− v � m 

)
n 

� r 
k 

+ 

1 
2 ̃

 u 

� r 
J 

(
J r 
k 
− J � 

k 

)
+ 

1 
2 

(
T r − T � 

)
n 

� r 
k 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, P 

(
q 

� , q 

r 
)

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

	� r 

0 

0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (61) 

where 

σ � r 
jk = 

1 

2 

(
A 

� 
i j + A 

r 
i j 

)1 

2 

(
α� 

ik + αr 
ik 

)
, ω 

� r 
ik = 

1 

2 

(
J � i + J r i 

)1 

2 

(
β� 

k + β r 
k 

)
, (62) 

A 

� r 
im 

= 

1 

2 

(
A 

� 
im 

+ A 

r 
im 

)
, ˜ u 

� r 
A = 

F 

� r 
ρ

(
E r 3 − E � 3 

)
1 
2 

(
α� 

ik 
+ αr 

ik 

)(
A 

r 
ik 

− A 

� 
ik 

) , (63) 
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J � r i = 

1 

2 

(
J � i + J r i 

)
, ˜ u 

� r 
J = 

F 

� r 
ρ

(
E r 4 − E � 4 

)
1 
2 

(
β� 

k 
+ β r 

k 

)(
J r 
k 
− J � 

k 

) , (64) 

	� r = 

1 

2 

ε� r �q 

� r 

T � 
· ∂ 2 qq ̃

 E � r �q 

� r 

δ� r 
, T � = 

(
ρ� 

)γ −1 

( γ − 1 ) c v 
e 

S � 

c v . (65) 

The Roe matrix of the Hessian of the energy potential reads 

∂ 2 qq ̃
 E � r = 

1 ∫ 
0 

∂ 2 qq E 
(

˜ ψ (s ) 
)

ds =: 
(
∂ 2 pp ̃

 L � r 
)−1 

, (66) 

and is based on the simple straight line segment path in q variables 

˜ ψ (s ) = q 

� + s 
(
q 

r − q 

� 
)
, 0 ≤ s ≤ 1 . (67) 

By construction, the Roe matrix ∂ 2 qq ̃
 E � r satisfies the Roe property 

∂ 2 qq ̃
 E � r ·

(
q 

r − q 

� 
)

= 

(
p 

r − p 

� 
)
, (68) 

which allows to convert jumps in the conservative variables into jumps of the thermodynamic dual variables, i.e. into jumps 

in the main field. Throughout this paper the path integral in (66) is calculated numerically with a Gauss-Legendre quadrature

formula using three quadrature points. However, we stress that in the theoretical analysis of the schemes presented later, we 

assume that the quadrature is exact . For a detailed analysis on the influence of the quadrature error the reader is referred to

[61] . Finally, the algebraic source terms are defined according to (54) . It is easy to check that, by construction, the numerical

flux, the fluctuations and the source terms verify the compatibility conditions: 

p 

� ·
(
F 

� r − f � k n 

� r 
k 

)
+ p 

r ·
(
f r k n 

� r 
k − F 

� r 
)

= 

(
F 12 , r 

k 
− F 12 ,� 

k 

)
n 

� r 
k ; (69) 

p 

� · R 

(
q 

� , q 

r 
)

· n 

� r + p 

r · R 

(
q 

r , q 

� 
)

· n 

r � = 

(
F 34 , r 

k 
− F 34 ,� 

k 

)
n 

� r 
k ; (70) 

p 

� · S 
(
q 

� 
)

= 0 . (71) 

It is also obvious that the following identity holds, ∑ 

r ∈ N � 

∣∣∂�� r 
∣∣n 

� r = 0 , (72) 

since the integral of the normal vector over a closed surface vanishes. 

Theorem 3.1 (Cell entropy inequality) . The HTC FV scheme (57) satisfies the following cell entropy inequality: 

∂ ρS � 

∂t 
+ 

1 

| �� | 
∑ 

r ∈ N � 

∣∣�� r 
∣∣(F ρS 

(
q 

� , q 

r 
)
n 

� r + 

1 

2 

(
β r 

k + β� 
k 

)
· n 

� r 
k − G ρS 

(
q 

� , q 

r 
)

· n 

� r 

)
≥ 0 . (73) 

Proof. Taking the discrete equation for the entropy density from (57) , substituting (61), (65) and (54) , and using the fact

that the integral of the normal vector over a closed surface vanishes ∑ 

r ∈ N � 

∣∣∂�� r 
∣∣n 

� r 
k = 0 

multiplied by β� 
k 
, we obtain 

∂ ( ρS ) 
� 

∂t 
+ 

1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(F ρS 

(
q 

� , q 

r 
)

· n 

� r + 

1 

2 

(
β r 

k + β� 
k 

)
· n 

� r 
k − G ρS 

(
q 

� , q 

r 
)

· n 

� r 

)
= 

1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣1 

2 

ε� r �q 

� r 

T � 
· ∂ 2 qq ̃

 E � r �q 

� r 

δ� r 
+ 

α� 
ik 
α� 

ik 

θ� 
1 
(τ1 ) T � 

+ 

β� 
k 
β� 

k 

θ� 
2 
(τ2 ) T � 

≥ 0 , 

where the positivity of the right hand side is obtained thanks to θ� 
1 

, θ� 
2 

and T � being positive and due to the positive

semi-definiteness of the Hessian ∂ 2 qq E . �
10 
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Theorem 3.2 (Nonlinear stability in the energy norm) . The scheme (57) with the numerical flux, the viscous and source terms

defined in (58) –(65) is nonlinearly stable in the energy norm in the sense that, for vanishing boundary fluxes, we have ∫ 
�

∂E 
∂t 

dx = 0 . (74) 

Proof. To demonstrate non-linear stability in the energy norm, we first compute the semi-discrete energy conservation law 

resulting from the dot product of the thermodynamically dual variables p 

� with the semi-discrete scheme (57) : 

p 

� · ∂q 

� 

∂t 
= − 1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� · F 

(
q 

� , q 

r 
)

· n 

� r + p 

� · R 

(
q 

� , q 

r 
)

· n 

� r 
)

+ 

1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� · G 
(
q 

� , q 

r 
)

· n 

� r + p 

� · P 

(
q 

� , q 

r 
))

+ p 

� · S (q 

� ) . 

From (71) the source terms in the former equation cancel. Moreover, adding and subtracting the terms corresponding to 
1 
2 p 

r · R 

(
q 

r , q 

� 
)

· n 

r � , 1 
2 p 

r · F 

� r and 

1 
2 p 

r · G 
(
q 

� , q 

r 
)

· n 

� r , we get 

∂E � 
∂t 

= − 1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(1 

2 

(
p 

� + p 

r 
)

· F 

� r 

)
− 1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(1 

2 

(
p 

� − p 

r 
)

· F 

� r 

)
− 1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(1 

2 

p 

� · R 

(
q 

� , q 

r 
)

· n 

� r + 

1 

2 

p 

r · R 

(
q 

r , q 

� 
)

· n 

r � 

)
− 1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(1 

2 

p 

� · R 

(
q 

� , q 

r 
)

· n 

� r − 1 

2 

p 

r · R 

(
q 

r , q 

� 
)

· n 

r � 

)
+ 

1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(1 

2 

(
p 

� + p 

r 
)

· G 
(
q 

� , q 

r 
)

· n 

� r + 

1 

2 

(
p 

� − p 

r 
)

· G 
(
q 

� , q 

r 
)

· n 

� r + p 

� · P 

(
q 

� , q 

r 
))

. 

The compatibility conditions (69) and (70) and n 

r � = −n 

� r yield 

∂E � 
∂t 

= − 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(F 12 , r 

k 
− F 12 ,� 

k 

)
n 

� r 
k 

− 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� · f � k − p 

r · f r k 
)
n 

� r 
k −

1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� + p 

r 
)

· F 

� r 

− 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(F 34 , r 

k 
− F 34 ,� 

k 

)
n 

� r 
k −

1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� · R 

(
q 

� , q 

r 
)

+ p 

r · R 

(
q 

r , q 

� 
))

· n 

� r 

+ 

1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(1 

2 

(
p 

� + p 

r 
)

· G 
(
q 

� , q 

r 
)

· n 

� r + 

1 

2 

(
p 

� − p 

r 
)

· G 
(
q 

� , q 

r 
)

· n 

� r + p 

� · P 

(
q 

� , q 

r 
))

. 

Adding p 

� · f � 
k 

multiplied by (72) and using (60) and (65) , we get 

∂E � 
∂t 

= − 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(F r k + F � k 

)
n 

� r 
k + 

1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

r · f r k + p 

� · f � k 

)
n 

� r 
k 

− 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� + p 

r 
)

· F 

� r − 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� · R 

(
q 

� , q 

r 
)

+ p 

r · R 

(
q 

r , q 

� 
))

· n 

� r 

+ 

1 

| �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(1 

2 

(
p 

� + p 

r 
)

· G 
(
q 

� , q 

r 
)

· n 

� r + 

1 

2 

(
p 

� − p 

r 
)

· ε� r �q 

� r 

δ� r 
+ 

1 

2 

ε� r �q 

� r · ∂ 2 qq ̃
 E � r �q 

� r 

δ� r 

)
. 

Since the last two terms cancel due to the Roe property (68) of the Roe matrix of the Hessian of the total energy potential,

we finally obtain the discrete energy conservation law in terms of a sum of numerical total energy fluxes as 

∂E � 
∂t 

= − 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(F r k + F � k 

)
n 

� r 
k + 

1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

r · f r k + p 

� · f � k 

)
n 

� r 
k 

− 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� + p 

r 
)

·
(
F 

� r − G 
(
q 

� , q 

r 
)

· n 

� r 
)

− 1 

2 | �� | 
∑ 

r ∈ N � 

∣∣∂�� r 
∣∣(p 

� · R 

(
q 

� , q 

r 
)

+ p 

r · R 

(
q 

r , q 

� 
))

· n 

� r . 
11 
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As a consequence we obtain the sought nonlinear stability in the energy norm ∫ 
�

∂E 
∂t 

dx = 

∑ 

� 

∂E � 
∂t 

= 0 

by assuming the fluxes to be zero at the boundary and after applying the telescopic sum of the fluxes at the interfaces. �

4. Thermodynamically compatible discontinuous Galerkin finite element schemes of type I 

The first kind of HTC DG schemes proposed in this manuscript is built by simply using the numerical HTC flux for the

inviscid part developed for the HTC finite volume scheme described previously. Like in the FV case, we will first detail the

derivation of such DG type I scheme in 1D and we will then move to the multi-dimensional case. 

4.1. One dimensional case 

To introduce a first HTC DG scheme for the discretization of (1) , called HTC DG scheme of type I in the following, we

start defining a one dimensional cell as T � = [ x � −
1 
2 , x � + 

1 
2 ] . We also introduce a DG approximation space with spatial basis

functions, ϕ m 

(x ) , given by the Lagrange interpolation polynomials of degree N passing through the N + 1 Gauss-Legendre

quadrature points in each element and which are allowed to jump at the element boundaries. Thus, we assume that the

solution q (x, t) can be expressed as a linear combination of a set of spatial basis functions as 

q h (x, t) = 

N ∑ 

m =0 

ϕ m 

(x ) ̂  q 

� 
m 

(t) , (75) 

where ˆ q 

� 
m 

(t) are the time dependent degrees of freedom and N denotes the polynomial approximation degree. Accordingly, 

one could also write the thermodynamic dual variables, p , as a linear combination of basis functions as 

p h (x, t) = 

N ∑ 

m =0 

ϕ m 

(x ) ̂  p 

� 
m 

(t ) , ˆ p 

� 
m 

(t ) = p 

(
ˆ q 

� 
m 

(t) 
)
, (76) 

as well as the total energy, E , 

E h (x, t) = 

N ∑ 

m =0 

ϕ m 

(x ) ̂  E � m 

(t ) , ˆ E � m 

(t ) = E 
(

ˆ q 

� 
m 

(t) 
)
. (77) 

Besides, in the following, we will denote 

ϕ 

� − 1 
2 

k 
= ϕ k 

(
x 

� − 1 
2 + 
)
, ϕ 

� + 1 2 

k 
= ϕ k 

(
x 

� + 1 2 −
)
, ∂ x ϕ 

� − 1 
2 

k 
= ∂ x ϕ k 

(
x 

� − 1 
2 + 
)
, ∂ x ϕ 

� + 1 2 

k 
= ∂ x ϕ k 

(
x 

� + 1 2 −
)
. 

We now substitute (75) in (1a) –(1e) multiply by a test function ϕ k , integrate on a cell T � and apply integration by parts to

the convective and viscous terms obtaining 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

ϕ k ∂ t q h dx + ϕ 

� + 1 2 

k 
F 

� + 1 2 − ϕ 

� − 1 
2 

k 
F 

� − 1 
2 −

x 
� + 1 

2 −∫ 
x 

� − 1 
2 + 

∂ x ϕ k f 1 (q h ) dx 

+ ϕ 

� + 1 2 

k 
R 

� + 1 2 − + ϕ 

� − 1 
2 

k 
R 

� − 1 
2 + + 

x 
� + 1 

2 −∫ 
x 

� − 1 
2 + 

ϕ k ( ∂ x h 1 (q h ) + B 1 (q h ) ∂ x q h ) d x = 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

ϕ k S (q h ) d x 

+ ϕ 

� + 1 2 

k 
G � + 1 2 − ϕ 

� − 1 
2 

k 
G � − 1 

2 + ∂ x ϕ 

� + 1 2 

k 
V � + 1 2 + ∂ x ϕ 

� − 1 
2 

k 
V � − 1 

2 −
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x ϕ k ε∂ x q h dx + P k . (78) 

In the former equation, the thermodynamically compatible flux is chosen exactly as in the finite volume case (27) and

therefore reads 

F 

� + 1 2 = F 

(
q 

� + 1 2 − , q 

� + 1 2 + 
)

= 

˜ F 

� + 1 2 − α� + 1 2 

(
p 

� +1 
− − p 

� 
+ 
)

= 

(
F 

� + 1 2 
ρ , F 

� + 1 2 
ρv i , F 

� + 1 2 

ρS 
, 0 , 0 

)
, (79) 

with the central flux, which is in general not compatible, 

˜ F 

� + 1 2 = 

1 

2 

(
f 1 

(
q 

� + 1 2 −
)

+ f 1 

(
q 

� + 1 2 + 
))

, (80) 
12 
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and the scalar correction factor 

α� + 1 2 = 

F 12 
1 

(
q 

� + 1 2 −
)

− F 12 
1 

(
q 

� + 1 2 + 
)

+ 

˜ F 

� + 1 2 ·
(

p 

� + 1 2 + − p 

� + 1 2 −
)

−
(

p 

� + 1 2 + · f 
� + 1 2 + − p 

� + 1 2 − · f 
� + 1 2 −

)
(

p 

� + 1 2 + − p 

� + 1 2 −
)2 

. (81) 

In the case of vanishing denominator, the correction factor is set to zero. The numerical flux can be rewritten in terms of

fluctuations as follows, 

D 

� + 1 2 − = F 

� + 1 2 − f 

(
q 

� + 1 2 −
)

and D 

� + 1 2 + = f 

(
q 

� + 1 2 + 
)

− F 

� + 1 2 . (82) 

Thanks to the particular construction of the numerical flux, the fluctuations satisfy the following compatibility relation, 

corresponding to (15) on the discrete level: 

p 

� + 1 2 − · D 

� + 1 2 − + p 

� + 1 2 + · D 

� + 1 2 + = F 12 
1 

(
q 

� + 1 2 + 
)

− F 12 
1 

(
q 

� + 1 2 −
)
, (83) 

similar to the compatibility relation (25) of the finite volume scheme presented previously. We stress again that our ther- 

modynamically compatible numerical flux does not rely on an underlying Godunov parametrization of the physical flux as 

f k = ∂ p (v k L ) in terms of a generating potential L , unlike the schemes presented in Busto et al. [59–62] . Moreover, we have

the viscous numerical flux G � + 
1 
2 = 

(
G � + 

1 
2 

ρ , G � + 
1 
2 

ρv i , G � + 
1 
2 

ρS 
, G � + 

1 
2 

A ik 
, G � + 

1 
2 

J k 

)
given by 

G � + 1 2 = 

1 

2 

ε ∂ 2 pp ̃
 L � + 

1 
2 

(
∂ x p 

� + 1 2 − + ∂ x p 

� + 1 2 + 
)

+ η� + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
)
, η� + 1 2 = 

1 

2 

s 
� + 1 2 
max + 

2 N + 1 

�x 
ε (84) 

following the seminal ideas of Gassner et al. [67] . The jump terms related to the viscous terms read 

V � + 1 2 = 

1 

2 

ε
(

q 

� + 1 2 + − q 

� + 1 2 −
)
, (85) 

and the discrete entropy production term related to the viscous terms P k = (0 , 0 , 	k , 0 , 0 ) 
T with 

	k = 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

ϕ k 

ε

T 
∂ x q h · ∂ 2 qq E ∂ x q h dx + ϕ 

� − 1 
2 

k 

η� − 1 
2 

2 T 
� − 1 

2 + 

(
q 

� − 1 
2 + − q 

� − 1 
2 −
)

· ∂ 2 qq ̃
 E � − 1 

2 

(
q 

� − 1 
2 + − q 

� − 1 
2 −
)

+ ϕ 

� + 1 2 

k 

η� + 1 2 

2 T 
� + 1 2 −

(
q 

� + 1 2 + − q 

� + 1 2 −
)

· ∂ 2 qq ̃
 E � + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
)
. (86) 

Alternatively, to ease calculations in the proofs shown later, we can also use a one sided production term, i.e., 

	
� + 1 2 

k 
= 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

ϕ k 

ε

T 
∂ x q h · ∂ 2 qq E ∂ x q h dx + ϕ 

� + 1 2 

k 

η� + 1 2 

T 
� + 1 2 −

(
q 

� + 1 2 + − q 

� + 1 2 −
)

· ∂ 2 qq ̃
 E i + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
)
. (87) 

Finally, the fluctuations R 

� + 1 
2 ± = 

(
R 

� + 1 
2 

ρ , R 

� + 1 
2 

ρv i , ±, R 

� + 1 
2 

ρS 
, R 

� + 1 
2 

A ik 
, R 

� + 1 
2 

J k 

)
are given by 

R 

� + 1 2 − = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

σ
� + 1 2 

i 1 
− σ

� + 1 2 , −
i 1 

+ ω 

� + 1 2 

i 1 
− ω 

� + 1 2 , −
i 1 

1 
2 

(
β

� + 1 2 , + 
1 

− β
� + 1 2 , −
1 

)
1 
2 

A 

� + 1 2 

im 

(
v � + 

1 
2 , + 

m 

− v � + 
1 
2 , −

m 

)
n k + 

1 
2 ̃

 u 

� + 1 2 

A 

(
A 

� + 1 2 , + 
ik 

− A 

� + 1 2 , −
ik 

)
1 
2 

J 
� + 1 2 
m 

(
v � + 

1 
2 , + 

m 

− v � + 
1 
2 , −

m 

)
n k + 

1 
2 ̃

 u 

� + 1 2 

J 

(
J 
� + 1 2 , + 
k 

− J 
� + 1 2 , −
k 

)
+ 

1 
2 

(
T � + 

1 
2 , + − T � + 

1 
2 , −

)
n k 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(88) 

and 

R 

� + 1 2 + = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

σ
� + 1 2 , + 
i 1 

− σ
� + 1 2 

i 1 
+ ω 

� + 1 2 , + 
i 1 

− ω 

� + 1 2 

i 1 

1 
2 

(
β

� + 1 2 , + 
1 

− β
� + 1 2 , −
1 

)
1 
2 

A 

� + 1 2 

im 

(
v � + 

1 
2 , + 

m 

− v � + 
1 
2 , −

m 

)
n k + 

1 
2 ̃

 u 

� + 1 2 

A 

(
A 

� + 1 2 , + 
ik 

− A 

� + 1 2 , −
ik 

)
1 
2 

J 
� + 1 2 
m 

(
v � + 

1 
2 , + 

m 

− v � + 
1 
2 , −

m 

)
n k + 

1 
2 ̃

 u 

� + 1 2 

J 

(
J 
� + 1 2 , + 
k 

− J 
� + 1 2 , −
k 

)
+ 

1 
2 

(
T � + 

1 
2 , + − T � + 

1 
2 , −

)
n k 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(89) 
13 
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with the compatible discretization of the stress tensors 

σ
� + 1 2 

ik 
= 

1 

2 

(
A 

� + 1 2 , + 
mi 

+ A 

� + 1 2 , −
mi 

)
1 

2 

(
α

� + 1 2 , + 
mk 

+ α
� + 1 2 , −
mk 

)
, ω 

� + 1 2 

ik 
= 

1 

2 

(
J 
� + 1 2 , + 
i 

+ J 
� + 1 2 , −
i 

)
1 

2 

(
β

� + 1 2 , + 
k 

+ β
� + 1 2 , −
k 

)
, (90) 

where 

A 

� + 1 2 

im 

= 

1 

2 

(
A 

� + 1 2 , + 
im 

+ A 

� + 1 2 , −
im 

)
, ˜ u 

� + 1 2 

A 
= 

F 

� + 1 2 
ρ

(
E 

� + 1 2 , + 
3 

− E 
� + 1 2 , −
3 

)
1 
2 

(
α

� + 1 2 , + 
ik 

+ α
� + 1 2 , −
ik 

)(
A 

� + 1 2 , + 
ik 

− A 

� + 1 2 , −
ik 

) , (91) 

J 
� + 1 2 

i 
= 

1 

2 

(
J 
� + 1 2 , + 
i 

+ J 
� + 1 2 , −
i 

)
, ˜ u 

� + 1 2 

J 
= 

F 

� + 1 2 
ρ

(
E 

� + 1 2 , + 
4 

− E 
� + 1 2 , −
4 

)
1 
2 

(
β

� + 1 2 , + 
k 

+ β
� + 1 2 , −
k 

)(
J 
� + 1 2 , + 
k 

− J 
� + 1 2 , −
k 

) , (92) 

and n = (1 , 0 , 0) in the 1D case. As for the finite volume scheme, the fluctuations satisfy the compatibility relation (16) at

the discrete level: 

p 

� + 1 2 − · R 

� + 1 2 − + p 

� + 1 2 + · R 

� + 1 2 + = F 34 
1 

(
q 

� + 1 2 + 
)

− F 34 
1 

(
q 

� + 1 2 −
)
. (93) 

Theorem 4.1 (Cell entropy inequality) . The HTC DG scheme of type I (78) satisfies the following cell entropy inequality: 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t (ρS) h dx + F 

� + 1 2 

ρS 
− F 

� − 1 
2 

ρS 
+ β

� + 1 2 

1 
− β

� − 1 
2 

2 
− G � + 

1 
2 

ρS 
+ G � −

1 
2 

ρS 
≥ 0 . (94) 

Proof. Choosing as test function the constant function ϕ k = 1 inside a cell, we obtain the evolution equation for the cell

average of the entropy density ρS according to the HTC DG scheme of type I (78) as follows: 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t (ρS) h dx + F 

� + 1 2 

ρS 
− F 

� − 1 
2 

ρS 
+ R 

� + 1 2 

ρS 
+ R 

� − 1 
2 

ρS 
+ 

x 
� + 1 

2 −∫ 
x 

� − 1 
2 + 

∂ x β1 d x = 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

π d x 

+ G � + 
1 
2 

ρS 
− G � −

1 
2 

ρS 
+ 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

ε

T 
∂ x q h · ∂ 2 qq E ∂ x q h dx + 

η� + 1 2 

T 
� + 1 2 −

(
q 

� + 1 2 + − q 

� + 1 2 −
)

· ∂ 2 qq ̃
 E i + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
)
, (95) 

where we have introduced the abbreviation 

π = 

αik αik 

θ1 (τ1 ) T 
+ 

βi βi 

θ2 (τ2 ) T 
≥ 0 . (96) 

Since the red terms reduce to a flux difference 

R 

� + 1 2 

ρS 
+ R 

� − 1 
2 

ρS 
+ 

x 
� + 1 

2 −∫ 
x 

� − 1 
2 + 

∂ x β1 dx = 

1 

2 

(
β

� + 1 2 , + 
1 

− β
� + 1 2 , −
1 

)
+ 

1 

2 

(
β

� − 1 
2 , + 

1 
− β

� − 1 
2 , −

1 

)
+ β

� + 1 2 , −
1 

− β
� − 1 

2 , + 
1 

= 

1 

2 

(
β

� + 1 2 , + 
1 

+ β
� + 1 2 , −
1 

)
− 1 

2 

(
β

� − 1 
2 , + 

1 
+ β

� − 1 
2 , −

1 

)
:= β

� + 1 2 

1 
− β

� − 1 
2 

1 

we can rewrite (95) as 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t (ρS) h dx + F 

� + 1 2 

ρS 
− F 

� − 1 
2 

ρS 
+ β

� + 1 2 

1 
− β

� − 1 
2 

1 
− G � + 

1 
2 

ρS 
+ G � −

1 
2 

ρS 
= 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

π dx + 

+ 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

ε

T 
∂ x q h · ∂ 2 qq E ∂ x q h dx + 

η� + 1 2 

T 
� + 1 2 −

(
q 

� + 1 2 + − q 

� + 1 2 −
)

· ∂ 2 qq ̃
 E i + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
)

≥ 0 , (97) 

which concludes the proof, since we are assuming the Hessian of the total energy potential to be at least positive semi-

definite and all the terms on the right hand side of (97) are quadratic forms and are thus non-negative. �
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Theorem 4.2 (Nonlinear stability in the energy norm) . The scheme (78) with the numerical flux, the fluctuations, the viscous

flux and the source terms defined in (79) –(89) is nonlinearly stable in the energy norm in the sense that, for vanishing boundary

fluxes, we have ∫ 
�

∂E 
∂t 

dx = 0 . (98) 

Proof. To show that the proposed scheme is thermodynamically compatible, we take the dot product of p h with (78) , apply

(77) and integrate by parts the volume integral of the physical flux, getting 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

p h · ∂ t q h dx + p 

� + 1 2 − · F 

� + 1 2 − p 

� − 1 
2 + · F 

� − 1 
2 −

(
p 

� + 1 2 − · f 
� + 1 2 − − p 

� − 1 
2 + · f 

� − 1 
2 + 
)

+ p 

� + 1 2 − · R 

� + 1 2 − + p 

� − 1 
2 + · R 

� − 1 
2 + + 

x 
� + 1 

2 −∫ 
x 

� − 1 
2 + 

p h · ( ∂ x f + ∂ x h 1 (q h ) + B 1 (q h ) ∂ x q h ) dx = 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

p h · S (q h ) dx 

+ p 

� + 1 2 − · G � + 1 2 − p 

� − 1 
2 + · G � − 1 

2 + ∂ x p 

� + 1 2 − · V � + 1 2 + ∂ x p 

� − 1 
2 + · V � − 1 

2 −
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x p h · ε∂ x q h dx + P k · ˆ p 

� 
k . (99) 

Next, adding and subtracting p 

� + 1 
2 + · F 

� + 1 
2 , p 

� + 1 
2 + · f 

� + 1 
2 + and p 

� + 1 
2 + · R 

� + 1 
2 + and rearranging terms yields 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t E h dx + 

(
p 

� + 1 2 + ·
(
F 

� + 1 2 − f 
� + 1 2 + 

)
− p 

� − 1 
2 + ·

(
F 

� − 1 
2 − f 

� − 1 
2 + 
))

+ 

(
p 

� − 1 
2 + · R 

� − 1 
2 + − p 

� + 1 2 + · R 

� + 1 2 + 
)

+ p 

� + 1 2 − ·
(
F 

� + 1 2 − f 
� + 1 2 −

)
+ p 

� + 1 2 + ·
(

f 
� + 1 2 + − F 

� + 1 2 

)
+ 

(
p 

� + 1 2 − · R 

� + 1 2 − + p 

� + 1 2 + · R 

� + 1 2 + 
)

+ 

x 
� + 1 

2 −∫ 
x 

� − 1 
2 + 

p h · ( ∂ x f + ∂ x h 1 (q h ) + B 1 (q h ) ∂ x q h ) dx 

= p 

� + 1 2 − · G � + 1 2 − p 

� − 1 
2 + · G � − 1 

2 + ∂ x p 

� + 1 2 − · V � + 1 2 + ∂ x p 

� − 1 
2 + · V � − 1 

2 

−
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x p h · ε∂ x q h dx + P k · ˆ p 

� 
k + 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

p h · S (q h ) dx. 

Applying the compatibility Eqs. (83) and (93) and using (14) leads to 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t E h dx + 

(
p 

� + 1 2 + ·
(
F 

� + 1 2 − f 
� + 1 2 + 

)
− p 

� − 1 
2 + ·

(
F 

� − 1 
2 − f 

� − 1 
2 + 
))

+ 

(
p 

� − 1 
2 + · R 

� − 1 
2 + − p 

� + 1 2 + · R 

� + 1 2 + 
)

+ F 1 

(
q 

� + 1 2 + 
)

− F 1 

(
q 

� + 1 2 −
)

+ F 1 

(
q 

� + 1 2 −
)

− F 1 

(
q 

� − 1 
2 + 
)

= p 

� + 1 2 − · G � + 1 2 − p 

� − 1 
2 + · G � − 1 

2 + ∂ x p 

� + 1 2 − · V � + 1 2 + ∂ x p 

� − 1 
2 + · V � − 1 

2 

−
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x p h · ε∂ x q h dx + P k · ˆ p 

� 
k + 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

p h · S (q h ) dx 

which, taking into account (18) , is equivalent to 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t E h dx + 

[ 
F 1 

(
q 

� + 1 2 + 
)

+ p 

� + 1 2 + ·
(
F 

� + 1 2 − f 
� + 1 2 + − R 

� + 1 2 + 
)

− F 1 

(
q 

� − 1 
2 + 
)

− p 

� − 1 
2 + ·

(
F 

� − 1 
2 − f 

� − 1 
2 + − R 

� − 1 
2 + 
)] 
15 
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= p 

� + 1 2 − · G � + 1 2 − p 

� − 1 
2 + · G � − 1 

2 + ∂ x p 

� + 1 2 − · V � + 1 2 + ∂ x p 

� − 1 
2 + · V � − 1 

2 −
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x p h · ε∂ x q h dx + P k · ˆ p 

� 
k . 

We now focus on the terms related to dissipation. Adding and subtracting p 

� + 1 
2 + G � + 

1 
2 and ∂p 

� + 1 
2 + V � + 

1 
2 we get 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t E h dx + 

[ 
F 1 

(
q 

� + 1 2 + 
)

+ p 

� + 1 2 + ·
(
F 

� + 1 2 − f 
� + 1 2 + − R 

� + 1 2 + 
)

− F 1 

(
q 

� − 1 
2 + 
)

− p 

� − 1 
2 + ·

(
F 

� − 1 
2 − f 

� − 1 
2 + − R 

� − 1 
2 + 
)] 

= p 

� + 1 2 + · G � + 1 2 − p 

� − 1 
2 + · G � − 1 

2 + ∂ x p 

� − 1 
2 + · V � − 1 

2 − ∂ x p 

� + 1 2 + · V � + 1 2 

+ 

(
p 

� + 1 2 − − p 

� + 1 2 + 
)

· G � + 1 2 + 

(
∂ x p 

� + 1 2 − + ∂ x p 

� + 1 2 + 
)

· V � + 1 2 −
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x p h · ε∂ x q h dx + P k · ˆ p 

� 
k . 

The first four terms related to the viscosity are the sought viscous terms that lead to the numerical viscosity flux in the

energy equation, while the remaining terms vanish: 

(
p 

� + 1 2 − − p 

� + 1 2 + 
)

· G � + 1 2 + 

(
∂ x p 

� + 1 2 − + ∂ x p 

� + 1 2 + 
)

· V � + 1 2 −
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x p h · ε∂ x q h dx + P k · ˆ p 

� 
k 

= −
(

p 

� + 1 2 + − p 

� + 1 2 −
)

·
(

1 

2 

ε ∂ 2 pp ̃
 L � + 

1 
2 

(
∂ x p 

� + 1 2 − + ∂ x p 

� + 1 2 + 
)

+ η� + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
))

+ 

(
∂ x p 

� + 1 2 − + ∂ x p 

� + 1 2 + 
)

·
(

1 

2 

ε
(

q 

� + 1 2 + − q 

� + 1 2 −
))

−
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x p h · ε∂ x q h dx + P k · ˆ p 

� 
k = 0 

since due to the Roe property of matrix ∂ 2 pp ̃
 L � + 

1 
2 and by the definition of the production term, we have 

−
(

p 

� + 1 2 + − p 

� + 1 2 −
)

· η� + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
)

−
x 

� + 1 
2 −∫ 

x 
� − 1 

2 + 

∂ x p h · ε∂ x q h dx + 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

ε∂ x q h · ∂ 2 qq E ∂ x q h dx 

+ η� + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
)

· ∂ 2 qq ̃
 E i + 1 2 

(
q 

� + 1 2 + − q 

� + 1 2 −
)

= 0 . 

Finally, we get the discrete total energy conservation law: 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t E h dx + 

[ 
F 1 

(
q 

� + 1 2 + 
)

+ p 

� + 1 2 + ·
(
F 

� + 1 2 − f 
� + 1 2 + − R 

� + 1 2 + 
)

− F 1 

(
q 

� − 1 
2 + 
)

− p 

� − 1 
2 + ·

(
F 

� − 1 
2 − f 

� − 1 
2 + − R 

� − 1 
2 + 
)] 

= p 

� + 1 2 + · G � + 1 2 − p 

� − 1 
2 + · G � − 1 

2 + ∂ x p 

� − 1 
2 + · V � − 1 

2 − ∂ x p 

� + 1 2 + · V � + 1 2 . 

Summing over all elements and assuming the boundary fluxes to vanish, we get the sought result 

∫ 
�

∂ t E h dx = 

∑ 

� 

x 
� + 1 

2 ∫ 
x 

� − 1 
2 

∂ t E h dx = 0 , 

since the internal fluxes cancel. �

4.2. HTC DG scheme of type I in multiple space dimensions 

For the 2D case we define a Cartesian cell as T i = [ x 
i 1 − 1 

2 
1 

, x 
i 1 + 1 2 
1 

] × [ x 
i 2 − 1 

2 
2 

, x 
i 2 + 1 2 
2 

] , while in 3D it reads T i = [ x 
i 1 − 1 

2 
1 

, x 
i 1 + 1 2 
1 

] ×
[ x 

i 2 − 1 
2 

2 
, x 

i 2 + 1 2 
2 

] × [ x 
i 3 − 1 

2 
3 

, x 
i 3 + 1 2 
3 

] with multi-index i and we assume that the solution q (x , t) can be expressed as a linear com-
16 
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bination of a set of spatial basis functions ϕ m 

as 

q h (x , t) = 

N ∑ 

m =0 

ϕ m 

(x ) ̂  q 

i 
m 

(t) , 

where ˆ q 

i 
m 

(t) are the time dependent degrees of freedom and N = (N + 1) d is the total number of degrees of freedom in

d space dimensions, related to the polynomial approximation degree. Moreover, we consider nodal basis functions com- 

puted from the Lagrange interpolation polynomials passing through the Gauss-Legendre quadrature points. Like in the one- 

dimensional case, we now compute the product of (1a) –(1e) by a test function ϕ k , we integrate on the spacial control

volume T i and we apply integration by parts obtaining ∫ 
T i 

ϕ k ∂ t q dx + 

∫ 
∂T i 

ϕ k F(q 

� 
h , q 

r 
h ) · n dS −

∫ 
T ◦

i 

∂ m 

ϕ k f m 

(q h ) dx 

+ 

∫ 
∂T i 

ϕ k R (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
T ◦

i 

ϕ k ( ∂ m 

h m 

(q h ) + B m 

(q h ) ∂ m 

q h ) d x 

= 

∫ 
∂T i 

ϕ k G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

ϕ k V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

ϕ k ( ε∂ m 

q h ) dx + P k + 

∫ 
T i 

ϕ k S (q h ) dx . (100) 

Let us note that, within this section, q 

� 
h 
, q 

r 
h 

denote the boundary extrapolated values of the discrete solution at the left

and the right sides of the element boundary, respectively. Then, in the DG scheme of type I we can directly employ the

edge/face-based numerical fluxes and fluctuations already introduced for the finite volume case (57) –(59) and (61) –(65) . On

the other hand, the viscous fluxes are computed according to 

G 
(
q 

� , q 

r 
)

· n = 

1 

2 

ε ∂ 2 pp ̃
 L � r 
(
∂ k p 

� + ∂ k p 

r 
)
n k + η� r 

(
q 

r − q 

� 
)
, η� r = 

1 

2 

s � r max + 

2 N + 1 

δ� r 
ε� r , (101) 

the jump terms read 

V 
(
q 

� , q 

r 
)

= 

1 

2 

ε� r 
(
q 

r − q 

� 
)
, (102) 

and the discretization of the non-negative entropy production term, P k = (0 , 0 , 	k , 0 , 0 ) 
T , is 

	k = 

∫ 
T ◦

i 

ϕ k 

ε

T 
∂ k q h · ∂ 2 qq E ∂ k q h d x + 

∫ 
∂T i 

ϕ k 

η� r 

2 T � 

(
q 

r − q 

� 
)

· ∂ 2 qq ̃
 E � r 
(
q 

r − q 

� 
)
d S. (103) 

Theorem 4.3 (Cell entropy inequality) . The HTC DG scheme of type I (100) satisfies the following cell entropy inequality: ∫ 
T i 

∂ t (ρS) h dx + 

∫ 
∂T i 

F ρS (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
β� 

m 

+ β r 
m 

)
· n m 

dS −
∫ 
∂T i 

G ρS (q 

� 
h , q 

r 
h ) · n dS ≥ 0 . (104)

Proof. Setting the test function ϕ k = 1 in (100) and notation (96) together with (103) , we have ∫ 
T i 

∂ t ρSdx + 

∫ 
∂T i 

F ρS (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

R ρS (q 

� 
h , q 

r 
h ) · n dS 

+ 

∫ 
T ◦

i 

( ∂ m 

h m 

(q h ) + B m 

(q h ) ∂ m 

q h ) dx −
∫ 
∂T i 

G ρS (q 

� 
h , q 

r 
h ) · n dS = 

∫ 
T i 

πdx 

+ 

∫ 
T ◦

i 

ε

T 
∂ k q h · ∂ 2 qq E ∂ k q h dx + 

∫ 
∂T i 

η� r 

2 T � 

(
q 

r − q 

� 
)

· ∂ 2 qq ̃
 E � r 
(
q 

r − q 

� 
)
dS. 

Using (61) , we get 
17 
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∫ 
T i 

∂ t ρSdx + 

∫ 
∂T i 

F ρS (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
β r 

k − β� 
k 

)
· n k dS + 

∫ 
T ◦

i 

∂ m 

βm 

dx −
∫ 
∂T i 

G ρS (q 

� 
h , q 

r 
h ) · n dS 

= 

∫ 
T i 

πdx + 

∫ 
T ◦

i 

ε

T 
∂ k q h · ∂ 2 qq E ∂ k q h d x + 

∫ 
∂T i 

η� r 

2 T � 

(
q 

r − q 

� 
)

· ∂ 2 qq ̃
 E � r 
(
q 

r − q 

� 
)
d S. 

Finally, applying Gauss’ theorem results in ∫ 
T i 

∂ t ρSdx + 

∫ 
∂T i 

F ρS (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
β r 

k + β� 
k 

)
· n k dS −

∫ 
∂T i 

G ρS (q 

� 
h , q 

r 
h ) · n dS 

= 

∫ 
T i 

πdx + 

∫ 
T ◦

i 

ε

T 
∂ k q h · ∂ 2 qq E ∂ k q h d x + 

∫ 
∂T i 

η� r 

2 T � 

(
q 

r − q 

� 
)

· ∂ 2 qq ̃
 E � r 
(
q 

r − q 

� 
)
d S ≥ 0 , 

where the positivity of the right hand side comes from π ≥ 0 and ∂ 2 qq E ≥ 0 . So we have obtained the sought cell entropy

inequality. �

Theorem 4.4 (Nonlinear stability in the energy norm) . The scheme (100) with the flux, viscous and source terms defined in

(57) –(59) , (61) –(65) and (101) –(103) is nonlinearly stable in the energy norm in the sense that, for vanishing boundary fluxes,

we have ∫ 
�

∂E 
∂t 

dx = 0 . (105) 

Proof. Similarly to what has been done in the one dimensional case we multiply scheme (100) by ˆ p 

i 
m 

and sum up all

equations, leading to ∫ 
T i 

p h · ∂ t q h dx + 

∫ 
∂T i 

p 

� 
h · F(q 

� 
h , q 

r 
h ) · n dS −

∫ 
T ◦

i 

∂ m 

p h · f m 

(q h ) dx 

+ 

∫ 
∂T i 

p 

� 
h · R (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
T ◦

i 

p h · ( ∂ m 

h m 

(q h ) + B m 

(q h ) ∂ m 

q h ) dx 

= 

∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) d x + P k · ˆ p 

i 
k + 

∫ 
T i 

p h ·S (q h ) d x . 

Applying integration by parts, we get ∫ 
T i 

p h · ∂ t q h dx + 

∫ 
∂T i 

p 

� 
h ·

(
F(q 

� 
h , q 

r 
h ) · n − f m 

(q 

� 
h ) n m 

)
dS 

+ 

∫ 
∂T i 

p 

� 
h · R (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
T ◦

i 

p h · ( ∂ m 

f m 

(q h ) + ∂ m 

h m 

(q h ) + B m 

(q h ) ∂ m 

q h ) dx 

= 

∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k . 

Using (14) , the notation F 

� r = F(q 

� 
h 
, q 

r 
h 
) · n and adding and subtracting 1 

2 

∫ 
∂T i 

p 

r 
h 

· f m 

(q 

r 
h 
) n m 

dS, we obtain 

∫ 
T i 

∂ t E h dx + 

1 

2 

∫ 
∂T i 

p 

� 
h ·

(
F 

� r − f m 

(q 

� 
h ) n m 

)
dS + 

1 

2 

∫ 
∂T i 

p 

� 
h ·

(
F 

� r − f m 

(q 

� 
h ) n m 

)
dS 

+ 

1 

2 

∫ 
∂T i 

p 

r 
h ·

(
f m 

(q 

r 
h ) n m 

− F 

� r 
)
dS − 1 

2 

∫ 
∂T i 

p 

r 
h ·

(
f m 

(q 

r 
h ) n m 

− F 

� r 
)
dS 

+ 

∫ 
∂T i 

p 

� 
h · R (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
T ◦

i 

∂ m 

F m 

dx 

= 

∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k . 
18 
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Rearranging terms and adding and subtracting 
∫ 
∂T i 

1 
2 p 

r 
h 

· R (q 

r 
h 
, q 

� 
h 
) · (−n ) dS, yields 

∫ 
T i 

∂ t E h dx + 

1 

2 

∫ 
∂T i 

(
p 

� 
h + p 

r 
h 

)
· F 

� r dS − 1 

2 

∫ 
∂T i 

(
p 

r 
h · f m 

(q 

r 
h ) + p 

� 
h · f m 

(q 

� 
h ) 

)
n m 

dS 

+ 

∫ 
T ◦

i 

∂ m 

F m 

dx + 

1 

2 

∫ 
∂T i 

(
F 12 , r 

m 

− F 12 ,� 
m 

)
n m 

dS 

+ 

∫ 
∂T i 

1 

2 

(
p 

� 
h · R (q 

� 
h , q 

r 
h ) − p 

r 
h · R (q 

r 
h , q 

� 
h ) 

)
· n d S + 

∫ 
∂T i 

1 

2 

(
p 

� 
h · R (q 

� 
h , q 

r 
h ) + p 

r 
h · R (q 

r 
h , q 

� 
h ) 

)
· n d S 

= 

∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k . 

Applying Gauss’ theorem and taking into account (70) with n 

r � = −n 

� r , we have ∫ 
T i 

∂ t E h dx + 

1 

2 

∫ 
∂T i 

[(
p 

� 
h + p 

r 
h 

)
· F 

� r −
(
p 

r 
h · f m 

(q 

r 
h ) + p 

� 
h · f m 

(q 

� 
h ) 

)
n m 

]
dS + 

∫ 
∂T i 

F � m 

n m 

dS 

+ 

1 

2 

∫ 
∂T i 

(
F 12 , r 

m 

− F 12 ,� 
m 

)
n m 

d S + 

1 

2 

∫ 
∂T i 

(
F 34 , r 

m 

− F 34 ,� 
m 

)
n m 

d S + 

∫ 
∂T i 

1 

2 

(
p 

� 
h · R (q 

� 
h , q 

r 
h ) + p 

r 
h · R (q 

r 
h , q 

� 
h ) 

)
· n d S 

= 

∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k . 

We now put together the contribution relations to the fluxes F : ∫ 
T i 

∂ t E h dx + 

1 

2 

∫ 
∂T i 

[(
p 

� 
h + p 

r 
h 

)
· F 

� r −
(
p 

r 
h · f m 

(q 

r 
h ) + p 

� 
h · f m 

(q 

� 
h ) 

)
n m 

]
dS + 

1 

2 

∫ 
∂T i 

(
F r m 

+ F � m 

)
n m 

dS 

+ 

∫ 
∂T i 

1 

2 

(
p 

� 
h · R (q 

� 
h , q 

r 
h ) + p 

r 
h · R (q 

r 
h , q 

� 
h ) 

)
· n dS 

= 

∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k . (106) 

Finally, we analyse the terms related to dissipation. To this end, we add and subtract 1 
2 

∫ 
∂T i 

p 

r 
h 

· G(q 

� 
h 
, q 

r 
h 
) · n dS and

1 
2 

∫ 
∂T i 

∂ m 

p 

r 
h 

· V(q 

� 
h 
, q 

r 
h 
) · n m 

dS, obtaining 

∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k 

= 

∫ 
∂T i 

1 

2 

(
p 

� 
h + p 

r 
h 

)
· G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
p 

� 
h − p 

r 
h 

)
· G(q 

� 
h , q 

r 
h ) · n dS 

+ 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h + ∂ m 

p 

r 
h 

)
· V(q 

� 
h , q 

r 
h ) · n m 

dS + 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h − ∂ m 

p 

r 
h 

)
· V(q 

� 
h , q 

r 
h ) · n m 

dS 

−
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k . 

Taking into account the definition of the dissipative terms (101) and (102) , yields ∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k 

= 

∫ 
∂T i 

1 

2 

(
p 

� 
h + p 

r 
h 

)
· G(q 

� 
h , q 

r 
h ) · n dS 
19 
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−
∫ 
∂T i 

1 

2 

(
p 

r 
h − p 

� 
h 

)
·
[ 

1 

2 

ε� r ∂ 2 pp ̃
 L � r 
(
∂ k p 

� 
h + ∂ k p 

r 
h 

)
n k + η� r 

(
q 

r 
h − q 

� 
h 

)] 
dS 

+ 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h + ∂ m 

p 

r 
h 

)
· 1 

2 

ε� r 
(
q 

r 
h − q 

� 
h 

)
· n m 

dS + 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h − ∂ m 

p 

r 
h 

)
· V(q 

� 
h , q 

r 
h ) · n m 

dS 

−
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k . 

Introducing the production term, (103) , and using the definition of Roe matrix of the Hessian and which makes the first

term in the second integral and the third one cancel, we get ∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k 

= 

∫ 
∂T i 

1 

2 

(
p 

� 
h + p 

r 
h 

)
· G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h − ∂ m 

p 

r 
h 

)
· V(q 

� 
h , q 

r 
h ) · n m 

dS 

−
∫ 
∂T i 

1 

2 

(
p 

r 
h − p 

� 
h 

)
·
[
η� r 

(
q 

r 
h − q 

� 
h 

)]
dS −

∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx 

+ 

∫ 
T ◦

i 

ε∂ k q h · ∂ 2 qq E ∂ k q h dx + 

∫ 
∂T i 

1 

2 

η� r 
(
q 

r − q 

� 
)

· ∂ 2 qq ̃
 E � r 
(
q 

r − q 

� 
)
dS 

= 

∫ 
∂T i 

1 

2 

(
p 

� 
h + p 

r 
h 

)
· G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h − ∂ m 

p 

r 
h 

)
· V(q 

� 
h , q 

r 
h ) · n m 

dS. 

Substituting the fluxes obtained into (106) yields the discrete total energy conservation law ∫ 
T i 

∂ t E h dx + 

∫ 
∂T i 

1 

2 

[(
p 

� 
h + p 

r 
h 

)
· F 

� r −
(
p 

r 
h · f m 

(q 

r 
h ) + p 

� 
h · f m 

(q 

� 
h ) 

)
n m 

]
dS 

+ 

∫ 
∂T i 

1 

2 

(
F r m 

+ F � m 

)
n m 

d S + 

∫ 
∂T i 

1 

2 

(
p 

� 
h · R (q 

� 
h , q 

r 
h ) + p 

r 
h · R (q 

r 
h , q 

� 
h ) 

)
· n d S 

= 

∫ 
∂T i 

1 

2 

(
p 

� 
h + p 

r 
h 

)
· G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h − ∂ m 

p 

r 
h 

)
· V(q 

� 
h , q 

r 
h ) · n m 

dS. 

Let us note that, when the states coincide then the second, fourth and sixth integrals above cancel remaining only the third

and fifth integrals which correspond to the central part of the total energy flux. 

Finally, integrating in the whole domain and assuming vanishing boundary fluxes, we obtain nonlinear stability in the 

energy norm: ∫ 
�

∂E h 
∂t 

dx = 

∑ 

T i 

∫ 
T i 

∂ t E h dx = 0 , 

since the sum of all internal fluxes cancels. �

5. Thermodynamically compatible discontinuous Galerkin finite element schemes of type II 

The second type of HTC DG schemes proposed in this paper ensures the HTC compatibility of the entire inviscid part

of the GPR model (black and red terms) using a element-wise correction, thus making the approach genuinely multi- 

dimensional. As before, we start presenting the derivation of the HTC DG type II scheme in 1D and then we provide the

numerical scheme for the 2D case together with the theoretical results proving the nonlinear stability of the scheme in the

energy norm and the verification of a discrete cell entropy inequality. 

5.1. One dimensional case 

Here we use a genuinely multi-dimensional correction relying entirely on fluctuations, similar to the one developed in 

the framework of residual distribution (RD) schemes, Abgrall [1] , Abgrall et al. [53] . Again, we assume the discrete solution
20 
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in cell T i = [ x i −
1 
2 , x i + 

1 
2 ] to be defined as a sum of spatial basis functions ϕ l (x ) and time dependent degrees of freedom 

ˆ q 

i 
l 
(t)

q (x, t) = 

N ∑ 

l=0 

ϕ l (x ) ̂  q 

i 
l (t) , (107) 

with N the polynomial approximation degree and the nodal basis functions ϕ l (x ) given by the Lagrange interpolation poly- 

nomials passing through the Gauss–Legendre quadrature points. Hence, by construction, the chosen basis functions ϕ l (x ) 

satisfy the partition of unity property. The semi-discrete DG scheme applied to (12) can be derived by multiplication of

(12) with a spatial test function ϕ k (x ) by integrating the term including the divergence of the fluxes f and h by parts and

by adding a boundary jump term related to the red terms contained in the non-conservative product, 

x 
i + 1 

2 ∫ 
x 

i − 1 
2 

ϕ k ∂ t q h dx + ϕ 

i + 1 2 

k 

(˜ F 

i + 1 2 + H 

i + 1 2 

)
− ϕ 

i − 1 
2 

k 

(˜ F 

i − 1 
2 + H 

i − 1 
2 

)
−

x 
i + 1 

2 −∫ 
x 

i − 1 
2 + 

∂ x ϕ k ( f 1 (q h ) + h 1 (q h ) ) dx 

+ ϕ 

i + 1 2 

k 
D 

i + 1 2 + ϕ 

i − 1 
2 

k 
D 

i − 1 
2 + 

x 
i + 1 

2 −∫ 
x 

i − 1 
2 + 

ϕ k ( B 1 (q h ) ∂ x q h ) d x = 

x 
i + 1 

2 ∫ 
x 

i − 1 
2 

ϕ k S (q h ) d x + 

x 
i + 1 

2 −∫ 
x 

i − 1 
2 + 

ϕ k ∂ x ( ε∂ x q h ) d x + P k , (108) 

where ˜ F 

i + 1 2 = 

˜ F 

i + 1 2 

(
q 

i + 1 2 − , q 

i + 1 2 + 
)

= 

1 

2 

(
f 1 

(
q 

i + 1 2 −
)

+ f 1 

(
q 

i + 1 2 + 
))

(109) 

and 

H 

i + 1 2 = H 

i + 1 2 

(
q 

i + 1 2 − , q 

i + 1 2 + 
)

= 

1 

2 

(
h 1 

(
q 

i + 1 2 −
)

+ h 1 

(
q 

i + 1 2 + 
))

(110) 

are two simple central numerical fluxes related to the conservative part of the system and 

D 

i + 1 2 = D 

i + 1 2 

(
q 

i + 1 2 − , q 

i + 1 2 + 
)

= 

1 

2 

B 1 

(
q̄ 

i + 1 2 

)(
q 

i + 1 2 + − q 

i + 1 2 −
)
, q̄ 

i + 1 2 = 

1 

2 

(
q 

i + 1 2 + + q 

i + 1 2 −
)
, (111) 

is a simple central approximation of the jump term related to the non-conservative product. The discretization of the viscous 

terms is identical to the one of HTC DG schemes of type I discussed before, hence 

x 
i + 1 

2 ∫ 
x 

i − 1 
2 

ϕ k ∂ t q h dx + ϕ k (x i + 
1 
2 ) 

(˜ F 

i + 1 2 + H 

i + 1 2 

)
− ϕ k (x i −

1 
2 ) 

(˜ F 

i − 1 
2 + H 

i − 1 
2 

)
+ 

+ ϕ 

i + 1 2 

k 
D 

i + 1 2 + ϕ 

i − 1 
2 

k 
D 

i − 1 
2 −

x 
i + 1 

2 −∫ 
x 

i − 1 
2 + 

∂ x ϕ k ( f 1 (q h ) + h 1 (q h ) ) dx + 

x 
i + 1 

2 −∫ 
x 

i − 1 
2 + 

ϕ k ( B 1 (q h ) ∂ x q h ) dx 

= ϕ 

i + 1 2 

k 
G i + 1 2 − ϕ 

i − 1 
2 

k 
G i − 1 

2 + ∂ x ϕ 

i + 1 2 

k 
V i + 1 2 + ∂ x ϕ 

i − 1 
2 

k 
V i − 1 

2 −
x 

i + 1 
2 ∫ 

x 
i − 1 

2 

∂ x ϕ k ε∂ x q h dx 

+ P k + 

x 
i + 1 

2 ∫ 
x 

i − 1 
2 

ϕ k S (q h ) dx, (112) 

with the thermodynamically compatible numerical viscosity flux 

G i + 1 2 = 

1 

2 

ε ∂ 2 pp ̃
 L i + 

1 
2 

(
∂ x p 

i + 1 2 − + ∂ x p 

i + 1 2 + 
)

− ηi + 1 2 

(
q 

i + 1 2 + − q 

i + 1 2 −
)
, ηi + 1 2 = 

1 

2 

s 
i + 1 2 
max + 

2 N + 1 

�x 
ε, (113) 

the jump terms 

V i + 1 2 = 

1 

2 

ε
(

q 

i + 1 2 + − q 

i + 1 2 −
)
, (114) 

and the discrete entropy production term related to the viscous terms P k = (0 , 0 , 	k , 0 , 0 ) 
T with 

	k = 

x 
i + 1 

2 ∫ 
x 

i − 1 
2 

ϕ k 

ε

T 
∂ x q h · ∂ 2 qq E ∂ x q h dx + ϕ k (x i −

1 
2 ) 

ηi − 1 
2 

2 T 
i − 1 

2 + 

(
q 

i − 1 
2 + − q 

i − 1 
2 −
)

· ∂ 2 qq ̃
 E i − 1 

2 

(
q 

i − 1 
2 + − q 

i − 1 
2 −
)
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+ ϕ k (x i + 
1 
2 ) 

ηi + 1 2 

2 T 
i + 1 2 −

(
q 

i + 1 2 + − q 

i + 1 2 −
)

· ∂ 2 qq ̃
 E i + 1 2 

(
q 

i + 1 2 + − q 

i + 1 2 −
)
. (115) 

Defining the total fluctuation of the DG discretization of the inviscid part of the PDE system (12) in cell T i = [ x i −
1 
2 , x i + 

1 
2 ] as 

˜ �
i 

k = ϕ 

i + 1 2 

k 

(
F 

i + 1 2 + H 

i + 1 2 

)
− ϕ 

i − 1 
2 

k 

(
F 

i − 1 
2 + H 

i − 1 
2 

)
+ ϕ 

i + 1 2 

k 
D 

i + 1 2 + ϕ 

i − 1 
2 

k 
D 

i − 1 
2 

−
x 

i + 1 
2 ∫ 

x 
i − 1 

2 

∂ x ϕ k ( f 1 (q ) + h 1 (q ) ) dx + 

x 
i + 1 

2 −∫ 
x 

i − 1 
2 + 

ϕ k ( B 1 (q ) ∂ x q ) dx, (116) 

and with the thermodynamically compatible discretization of the viscous terms from the DG scheme type I 

�i 
k = ϕ 

i + 1 2 

k 
G i + 1 2 − ϕ 

i − 1 
2 

k 
G i − 1 

2 + ∂ x ϕ 

i + 1 2 

k 
V i + 1 2 + ∂ x ϕ 

i − 1 
2 

k 
V i − 1 

2 

−
x 

i + 1 
2 ∫ 

x 
i − 1 

2 

∂ x ϕ k ε∂ x q h dx + P k + 

x 
i + 1 

2 ∫ 
x 

i − 1 
2 

ϕ k S (q h ) dx, (117) 

the DG scheme (108) for cell T i can be rewritten in a more compact way as ⎛ ⎝ 

x 
i + 1 

2 ∫ 
x 

i − 1 
2 

ϕ k ϕ l dx 

⎞ ⎠ 

∂ ̂  q 

i 
l 

∂t 
+ 

˜ �
i 

k = 

˜ �
i 

k . (118) 

The total fluctuations related to the inviscid terms ˜ �k are not necessarily compatible with the extra conservation law (20) ,

since no special care was taken in a proper compatible discretization of the numerical fluxes and of the jump terms, unlike

in the previous DG schemes of type I. The total fluctuations are now corrected according to the following ansatz: 

�i 
k = 

˜ �
i 

k + αi 
(

ˆ p 

i 
k − p̄ 

i 
)
, p̄ 

i = 

1 

N + 1 

N ∑ 

l=0 

ˆ p 

i 
l . (119) 

It is easy to check that the proposed correction is conservative, i.e. that 

N ∑ 

k =0 

�i 
k = 

N ∑ 

k =0 

˜ �
i 

k (120) 

since obviously 

N ∑ 

k =0 

(
ˆ p 

i 
k − p̄ 

i 
)

= 0 . (121) 

The scalar correction factor αi for each element T i is now simply computed by imposing thermodynamic compatibility with 

the extra conservation law as follows: 

N ∑ 

k =0 

ˆ p 

i 
k · �i 

k = 

N ∑ 

k =0 

(
ˆ p 

i 
k · ˜ �

i 

k + αi ˆ p 

i 
k ·

(
ˆ p 

i 
k − p̄ 

i 
))

= F 
i + 1 2 

1 
− F 

i − 1 
2 

1 
. (122) 

It is easy to check that 

N ∑ 

k =0 

ˆ p 

i 
k ·

(
ˆ p 

i 
k − p̄ 

i 
)

= 

N ∑ 

k =0 

(
ˆ p 

i 
k − p̄ 

i 
)2 ≥ 0 , (123) 

hence the discrete compatibility condition (122) allows to calculate the scalar correction factor αi as 

αi = 

F 
i + 1 2 

1 
− F 

i − 1 
2 

1 
−

N ∑ 

k =0 

ˆ p 

i 
k 
· ˜ �

i 

k 

N ∑ 

k =0 

(
ˆ p 

i 
k 
− p̄ 

i 
)2 

. (124) 

In those cases where the denominator vanishes, we simply set αi = 0 . The thermodynamically compatible DG scheme of 

type II therefore becomes ⎛ ⎝ 

x 
i + 1 

2 ∫ 
x 

i − 1 
2 

ϕ k ϕ l dx 

⎞ ⎠ 

∂ ̂  q 

i 
l 

∂t 
= − ˜ �

i 

k − αi 
(

ˆ p 

i 
k − p̄ 

i 
)

+ �i 
k , (125) 
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with αi given by (124) . We stress that the proposed correction only applies to the inviscid part of the system. The parabolic

viscous terms and the entropy production term must still be discretized in a thermodynamically compatible manner, exactly 

as in the case of the DG schemes of type I. Since the correction factor in DG schemes of type II is element-wise, the schemes

are formally identical in one and multiple space dimensions. Also the proofs of entropy inequality and energy conservation 

are the same. For this reason, the proofs will be presented only in the multi-dimensional case in the next section. 

5.2. Multi-dimensional case 

The multi-dimensional extension of the DG schemes of type II is straightforward. The computational domain � is sup- 

posed to be divided into non-overlapping cells T i and the discrete solution reads as 

q h (x , t) = 

N ∑ 

l=1 

ϕ l (x ) ̂  q 

i 
l (t) , (126) 

where N is again the polynomial approximation degree, the basis functions ϕ l (x ) are assumed to be nodal basis functions

that satisfy the partition of unity property 
∑ 

l ϕ l (x ) = 1 and N is the number of degrees of freedom per cell. Multiplying

(12) with ϕ k (x ) , integration by parts of the flux divergence terms and introducing a numerical flux and jump terms on the

boundary of T i leads to ∫ 
T i 

ϕ k ∂ t q dx + 

∫ 
∂T i 

ϕ k 

(
F(q 

� 
h , q 

r 
h ) + H(q 

� 
h , q 

r 
h ) 

)
· n dS + 

∫ 
∂T i 

ϕ k D(q 

� 
h , q 

r 
h ) · n dS 

−
∫ 
T i 

∂ m 

ϕ k ( f m 

(q h ) + h m 

(q h ) ) dx + 

∫ 
T i 

ϕ k B m 

(q h ) ∂ m 

q h dx 

= 

∫ 
∂T i 

ϕ k G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

ϕ k V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T i 

∂ m 

ϕ k ( ε∂ m 

q h ) dx + P k + 

∫ 
T i 

ϕ k S (q h ) dx , (127) 

with the central fluxes in normal direction 

F(q 

� 
h , q 

r 
h ) · n = 

1 

2 

(
f m 

(
q 

� 
h 

)
+ f m 

(
q 

r 
h 

))
n m 

(128) 

and 

H(q 

� 
h , q 

r 
h ) · n = 

1 

2 

(
h m 

(
q 

� 
h 

)
+ h m 

(
q 

r 
h 

))
n m 

, (129) 

as in the one-dimensional case, the fluctuation 

D(q 

� 
h , q 

r 
h ) · n = 

1 

2 

( B m 

n m 

) ( ̄q ) 
(
q 

r 
h − q 

� 
h 

)
, q̄ = 

1 

2 

(
q 

� 
h + q 

r 
h 

)
, (130) 

the viscous flux 

G(q 

� 
h , q 

r 
h ) · n = 

1 

2 

ε ∂ 2 pp ̃
 L 
(
∂ m 

p 

� 
h + ∂ m 

p 

r 
h 

)
n m 

− η
(
q 

r 
h − q 

� 
h 

)
, η = 

1 

2 

s max + 

2 N + 1 

δ� r 
ε, (131) 

with s max = max (| λk (q 

� 
h 
) | , | λk (q 

r 
h 
) | ) the maximum signal speed at the interface and the jump term 

V(q 

� 
h , q 

r 
h ) = 

1 

2 

ε
(
q 

r 
h − q 

� 
h 

)
. (132) 

The non-negative entropy production term reads P k = (0 , 0 , 	k , 0 , 0 ) 
T with 

	k = 

∫ 
T i 

ϕ k 

ε

T 
∂ m 

q h · ∂ 2 qq E ∂ m 

q h dx + 

∫ 
∂T i 

ϕ k 

η

2 T � 
h 

(
q 

r 
h − q 

� 
h 

)
· ∂ 2 qq ̃

 E � r 
(
q 

r 
h − q 

� 
h 

)
dS ≥ 0 . (133) 

Also in the multi-dimensional case, we introduce the total fluctuation of the DG discretization related to the inviscid part in

cell T i as 

˜ �
i 

k = 

∫ 
∂T i 

ϕ k 

(
F(q 

� 
h , q 

r 
h ) + H(q 

� 
h , q 

r 
h ) 

)
· n dS + 

∫ 
∂T i 

ϕ k D(q 

� 
h , q 

r 
h ) · n dS 

−
∫ 
T i 

∂ m 

ϕ k · ( f m 

(q ) + h m 

(q ) ) dx + 

∫ 
T i 

ϕ k ( B m 

(q ) ∂ m 

q ) dx (134) 

and the thermodynamically compatible viscous fluctuations 

�i 
k = 

∫ 
∂T i 

ϕ k G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

ϕ k V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T i 

∂ m 

ϕ k ( ε∂ m 

q h ) dx + P k + 

∫ 
T i 

ϕ k S (q h ) dx , (135) 
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which allow to rewrite the previous DG scheme for cell T i as ⎛ ⎝ 

∫ 
T i 

ϕ k ϕ l dx 

⎞ ⎠ 

∂ ̂  q 

i 
l 

∂t 
+ 

˜ �
i 

k = �i 
k . (136) 

Note that the inviscid part of scheme (136) is not thermodynamically compatible yet. The total fluctuations of the inviscid

part are therefore corrected , as in the one-dimensional case, as 

�i 
k = 

˜ �
i 

k + αi 
(

ˆ p 

i 
k − p̄ 

i 
)
, p̄ 

i = 

1 

N 

N ∑ 

l=1 

ˆ p 

i 
l . (137) 

In multiple space dimensions the thermodynamic compatibility property with the extra conservation law reads 

N ∑ 

k =0 

ˆ p 

i 
k · �i 

k = 

N ∑ 

k =0 

(
ˆ p 

i 
k · ˜ �

i 

k + αi ˆ p 

i 
k ·

(
ˆ p 

i 
k − p̄ 

i 
))

= 

∫ 
∂T i 

1 

2 

(
F � k + F r k 

)
n k dS, (138) 

which allows to compute the scalar correction factor αi in multiple space dimensions in a way that is totally analogous to

the 1D case: 

αi = 

∫ 
∂T i 

1 

2 

(
F � k + F r k 

)
n k dS −

N ∑ 

k =1 

ˆ p 

i 
k · ˜ �

i 

k 

N ∑ 

k =1 

(
ˆ p 

i 
k 
− p̄ 

i 
)2 

. (139) 

We again set αi = 0 when the denominator vanishes. The final thermodynamically compatible DG scheme of type II in 

multiple space dimensions becomes ⎛ ⎝ 

∫ 
T i 

ϕ k ϕ l dx 

⎞ ⎠ 

∂ ̂  q 

i 
l 

∂t 
= − ˜ �

i 

k − αi 
(

ˆ p 

i 
k − p̄ 

i 
)

+ �i 
k , (140) 

with αi computed according to (139) . Note that the scalar correction factor is computed in a genuinely multi-dimensional 

manner, since it couples all degrees of freedom and all thermodynamically dual variables with each other in one single 

scalar. 

Theorem 5.1 (Cell entropy inequality) . The HTC DG scheme of type II (127) satisfies the following cell entropy inequality: ∫ 
T i 

∂ t (ρS) h dx + 

∫ 
∂T i 

F ρS (q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

H ρS (q 

� 
h , q 

r 
h ) · n dS −

∫ 
∂T i 

G ρS (q 

� 
h , q 

r 
h ) · n dS ≥ 0 . (141) 

Proof. We start by summing up (140) over k . Since we use a nodal basis that must satisfy the partition of unity property, 

N ∑ 

m =1 

ϕ m 

(x ) = 1 , (142) 

this corresponds to taking the test function ϕ k = 1 . We now consider only the discretization for the entropy density for

which the non-conservative term B m 

(q h ) ∂ m 

q h disappears and consider the correction term given in (140) with (139) . We

then have ∫ 
T i 

∂ t (ρS) dx + 

∫ 
∂T i 

(
F ρS (q 

� 
h , q 

r 
h ) + H ρS (q 

� 
h , q 

r 
h ) 

)
· n dS + 

∫ 
∂T i 

D ρS (q 

� 
h , q 

r 
h ) · n d S = 

∫ 
T i 

πd x 

+ 

∫ 
∂T i 

G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
T ◦

i 

ε

T 
∂ k q h · ∂ 2 qq E ∂ k q h dx + 

∫ 
∂T i 

η� r 

2 T � 

(
q 

r − q 

� 
)

· ∂ 2 qq ̃
 E � r 
(
q 

r − q 

� 
)
dS 

−
N ∑ 

k =1 

αi 
(̂ T i k − T̄ i 

)
. 

Since D ρS (q 

� 
h 
, q 

r 
h 
) · n = 0 and 

N ∑ 

k =1 

αi 
(̂ T i k − T̄ i 

)
= αi 

N ∑ 

k =1 ̂

 T i k − αi 
N ∑ 

k =1 

T̄ i = αi 
N ∑ 

k =1 ̂

 T i k − αi 
N ∑ 

k =1 

( 

1 

N 

N ∑ 

l=1 

ˆ T i l 

) 

= 0 
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we get the sought cell entropy inequality (141) ∫ 
T i 

∂ t (ρS) dx + 

∫ 
∂T i 

(
F ρS (q 

� 
h , q 

r 
h ) + H ρS (q 

� 
h , q 

r 
h ) 

)
· n dS −

∫ 
∂T i 

G(q 

� 
h , q 

r 
h ) · n dS 

= 

∫ 
T i 

πdx + 

∫ 
T ◦

i 

ε

T 
∂ k q h · ∂ 2 qq E ∂ k q h dx + 

∫ 
∂T i 

η� r 

2 T � 

(
q 

r − q 

� 
)

· ∂ 2 qq ̃
 E � r 
(
q 

r − q 

� 
)
dS ≥ 0 , 

where the right hand side is positive due to π ≥ 0 and because the Hessian of the energy potential is at least positive

semi-definite. �

Theorem 5.2 (Nonlinear stability in the energy norm) . The scheme (127) which takes the form (140) 

with the fluxes, fluctuations, jump, production and source terms given by (54) , (128) –(133) , is nonlinearly stable in the energy

norm in the sense that, for vanishing boundary fluxes, we have ∫ 
�

∂E 
∂t 

dx = 0 . (143) 

Proof. Multiplying (140) by ˆ p 

i 
k 

and using (137) yields 

ˆ p 

i 
k ·

⎛ ⎝ 

∫ 
T i 

ϕ k ϕ l dx 

⎞ ⎠ 

∂ ̂  q 

i 
l 

∂t 
= − ˆ p 

i 
k · �i 

k + 

ˆ p 

i 
k · �i 

k , 

Using the definition of the discrete solution and the property (138) , we get ∫ 
T i 

p h ·
∂q h 

∂t 
dx + 

∫ 
∂T i 

1 

2 

(
F � k + F r k 

)
n k dS = 

ˆ p 

i 
k · �i 

k . (144) 

Besides, from the DG schemes of type I, we have 

ˆ p 

i 
k · �i 

k = 

∫ 
∂T i 

p 

� 
h · G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

∂ m 

p 

� 
h · V(q 

� 
h , q 

r 
h ) · n m 

dS −
∫ 
T ◦

i 

∂ m 

p h · ( ε∂ m 

q h ) dx + P k · ˆ p 

i 
k 

−
∫ 
T i 

p h · S (q h ) dx = 

∫ 
∂T i 

1 

2 

(
p 

� 
h + p 

r 
h 

)
· G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h − ∂ m 

p 

r 
h 

)
· V(q 

� 
h , q 

r 
h ) · n m 

dS. (145) 

Gathering (144) and (145) , we obtain ∫ 
T i 

∂ t E h dx + 

1 

2 

∫ 
∂T i 

(
F r m 

+ F � m 

)
n m 

dS 

= 

∫ 
∂T i 

1 

2 

(
p 

� 
h + p 

r 
h 

)
· G(q 

� 
h , q 

r 
h ) · n dS + 

∫ 
∂T i 

1 

2 

(
∂ m 

p 

� 
h − ∂ m 

p 

r 
h 

)
· V(q 

� 
h , q 

r 
h ) · n m 

dS. 

Finally, integrating over the whole domain and assuming vanishing boundary fluxes, we obtain nonlinear stability in the 

energy norm also for the DG schemes of type II, (143) . �

We would like to conclude this section with the following important remark. In all proofs above we have so far assumed

the calculation of all integrals to be exact, see also [68] . However, a very important difference between DG schemes of type

I and II is the following: in the DG schemes of type II, the numerical scheme is aware of the quadrature errors in the sense

that all quadrature errors are automatically absorbed into the element-wise correction factor αi , so that the thermodynamic 

compatibility condition (138) always holds, also in the presence of numerical quadrature errors. 

6. Numerical results 

If not specified otherwise, in all test cases for fluids the relaxation time τ1 is computed from the dynamic viscosity μ
and the shear sound speed c s according to the relation μ = 

1 
6 ρ0 c 

2 
s τ1 . If not explicitly stated otherwise we set ε = 0 , γ = 1 . 4 ,

c v = 1 and ρ0 = 1 for all test cases presented. The classical fourth order Runge–Kutta method is used as time integrator for

all test problems, but also any other high order time integrator could be used, such as SSP Runge–Kutta schemes [69] . In all

cases the time step size was chosen small enough to allow for an explicit discretization of the viscous terms and to allow

the semi-discrete framework used in this paper to hold, with Courant numbers ranging from 0.1 to 0.5. For the numerical

results presented in this section, we restrict ourselves to one and two space dimensions only. However, we always considers 

all variables of the PDE system for the general three-dimensional case, i.e. three components for the velocity v i and the

thermal impulse J i and nine components of the distorsion field A ik . 
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Table 1 

Numerical convergence results at time t = 0 . 25 in L 2 norm for density ρ , momentum 

density ρv 1 and entropy density ρS using HTC cell centered FV and HTC DG schemes 

of type I applied to the Euler subsystem (black terms in (1) ). 

N x ρ ρv 1 ρS O(ρ) O(ρv 1 ) O(ρS) 

HTC CC FV 

64 5.1870E −03 1.8351E −03 3.1355E −04 

128 1.2747E −03 4.6020E −04 8.0154E −05 2.0 2.0 2.0 

256 3.1726E −04 1.1516E −04 2.0144E −05 2.0 2.0 2.0 

512 7.9226E −05 2.8847E −05 5.0427E −06 2.0 2.0 2.0 

HTC DG type I - N = 1 

32 5.1870E −03 6.1093E −03 7.9857E −05 

64 1.2747E −03 1.4483E −03 1.1197E −05 2.0 2.1 2.8 

128 3.1726E −04 3.5728E −04 1.4880E −06 2.0 2.0 2.9 

256 7.9226E −05 8.9128E −05 1.9172E −07 2.0 2.0 3.0 

HTC DG type I - N = 2 

16 2.9753E −03 4.7954E −03 1.6074E −05 

32 5.0543E −04 8.5266E −04 7.7748E −07 2.6 2.5 4.4 

64 7.2395E −05 1.5411E −04 3.0162E −08 2.8 2.5 4.7 

128 9.4557E −06 2.7237E −05 1.0471E −09 2.9 2.5 4.8 

HTC DG type I - N = 3 

8 3.6067E −03 6.2320E −03 2.3026E −05 

16 2.4324E −04 6.9778E −04 4.6458E −07 3.9 3.2 5.6 

32 1.2749E −05 2.7087E −05 2.7667E −09 4.3 4.7 7.4 

48 2.3053E −06 6.7687E −06 1.4757E −10 4.2 3.4 7.2 

HTC DG type I - N = 4 

8 6.8664E −04 1.8162E −03 3.9238E −06 

12 1.0909E −04 1.6206E −04 7.6967E −08 4.5 6.0 9.7 

16 2.2145E −05 3.9053E −05 4.4581E −09 5.5 4.9 9.9 

20 7.4773E −06 1.8647E −05 9.0447E −10 4.9 3.3 7.1 

HTC DG type I - N = 5 

6 8.5757E −04 1.5182E −03 1.9402E −06 

8 1.3355E −04 3.0442E −04 1.3112E −07 6.5 5.6 9.4 

12 1.6464E −05 6.1433E −05 3.7147E −09 5.2 3.9 8.8 

16 2.6318E −06 1.5658E −05 1.9870E −10 6.4 4.8 10.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Numerical convergence study 

In order to verify the order of accuracy of the new HTC schemes proposed in this paper, we simulate the isentropic

vortex problem, see [70] , of the pure inviscid Euler equations, i.e. we apply the numerical schemes only to the black terms

in (1) . The model parameters are γ = 1 . 4 , c s = 0 , c h = 0 and the artificial viscosity is set to ε = 0 . The computational domain

is the square � = [0 , 10] 2 . All boundary conditions are periodic. The analytical expression of the initial condition in terms

of primitive variables reads 

(ρ, v 1 , v 2 , v 3 , p) = (δρ, δu, δv , 0 , δp) (146) 

with the radius r 2 = (x − 5) 2 + (y − 5) 2 , the vortex strength ε = 5 , the entropy fluctuation δS = 0 and the velocity, temper-

ature, density and pressure profiles given by (
δu 

δv 

)
= 

ε 

2 π
e 

1 −r 2 

2 

(
5 − y 
x − 5 

)
, δT = − (γ − 1) ε 2 

8 γπ2 
e 1 −r 2 , δρ = (1 + δT ) 

1 
γ −1 , δp = (1 + δT ) 

γ
γ −1 . (147)

Since the vortex is stationary, the exact solution is the initial condition for all times. Simulations are run with all HTC

schemes until time t = 0 . 25 using an equidistant Cartesian mesh composed of N x × N y elements. It is important to highlight

that in this test case the artificial viscosity is set to ε = 0 . The L 2 errors together with the corresponding convergence rates

obtained for the density ρ , the momentum density ρv 1 and the entropy density ρS are reported at the final time in Tables 1

and 2 . One can observe that all proposed HTC schemes reach their nominal order of accuracy. More precisely, the HTC finite

volume scheme is second order accurate in all variables, while the HTC DG schemes of type I and II in general reach their

designed order of accuracy of N + 1 in density, and momentum density, while the entropy density reaches orders between

2 N + 1 and 2 N + 2 . This can be explained by the fact that the present test problem is isentropic and since for ε = 0 the

only entropy generation mechanism in both HTC DG schemes is the jump term 

1 
2 s max (q 

r 
h 

− q 

� 
h 
) in the numerical viscosity

flux G. But because the jumps tend to zero with order between N + 

1 
2 to N + 1 and the related entropy production term

	k in the entropy inequality is quadratic in the jump, we indeed expect twice the convergence order for entropy in this

test case. For isentropic flows this seems to be indeed a very interesting feature of our new HTC DG schemes that are

based on the direct discretization of the entropy inequality in contrast to standard DG schemes which discretize the total 

energy conservation law. One remarkable difference between the HTC schemes proposed in this paper with respect to the 

original HTC schemes proposed in Busto et al. [61] , Busto and Dumbser [62] is that we avoid the use of path integrals in
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Table 2 

Numerical convergence results at time t = 0 . 25 in L 2 norm for density ρ , momentum 

density ρv 1 and entropy density ρS using HTC cell centered FV and HTC DG schemes 

of type II applied to the Euler subsystem (black terms in (1) ). 

N x ρ ρv 1 ρS O(ρ) O(ρv 1 ) O(ρS) 

HTC CC FV 

64 5.1870E −03 1.8351E −03 3.1355E −04 

128 1.2747E −03 4.6020E −04 8.0154E −05 2.0 2.0 2.0 

256 3.1726E −04 1.1516E −04 2.0144E −05 2.0 2.0 2.0 

512 7.9226E −05 2.8847E −05 5.0427E −06 2.0 2.0 2.0 

HTC DG type II - N = 1 

32 5.1979E −03 6.1038E −03 1.4077E −04 

64 1.2754E −03 1.4475E −03 2.0503E −05 2.0 2.1 2.8 

128 3.1731E −04 3.5722E −04 2.7459E −06 2.0 2.0 2.9 

256 7.9228E −05 8.9124E −05 3.5363E −07 2.0 2.0 3.0 

HTC DG type II - N = 2 

16 2.9760E −03 4.8004E −03 1.9130E −05 

32 5.0550E −04 8.5273E −04 8.0526E −07 2.6 2.5 4.4 

64 7.2396E −05 1.5411E −04 3.0200E −08 2.8 2.5 4.7 

128 9.4557E −06 2.7238E −05 1.0519E −09 2.9 2.5 4.8 

HTC DG type II - N = 3 

8 3.6075E −03 6.2317E −03 2.5859E −05 

16 2.4324E −04 6.9776E −04 5.2706E −07 3.9 3.2 5.6 

32 1.2747E −05 2.7086E −05 7.7266E −09 4.3 4.7 6.1 

48 2.3053E −06 6.7687E −06 6.4886E −10 4.2 3.4 6.1 

HTC DG type II - N = 4 

8 6.8652E −04 1.8158E −03 5.6567E −06 

12 1.0909E −04 1.6204E −04 1.3708E −07 4.5 6.0 9.2 

16 2.2144E −05 3.9052E −05 7.5439E −09 5.5 4.9 10.1 

20 7.4773E −06 1.8647E −05 1.5860E −09 4.9 3.3 7.0 

HTC DG type II - N = 5 

6 8.5757E −04 1.5181E −03 3.0778E −06 

8 1.3355E −04 3.0442E −04 1.4965E −07 6.5 5.6 10.5 

12 1.6465E −05 6.1433E −05 3.9483E −09 5.2 3.9 9.0 

16 2.6318E −06 1.5658E −05 2.0594E −10 6.4 4.8 10.3 

Table 3 

Computational time (s) employed to complete the 

isentropic vortex problem up to time t = 0 . 25 using 

the new HTC FV method proposed in this article (HTC 

CC FV) and the HTC FV method [61] based on path- 

integrals (HTC PI FV) applied to the Euler subsystem 

(black terms in (1) ). 

N x HTC CC FV HTC PI FV Ratio (t PI /t CC ) 

16 0.00697 0.01264 1.81 

32 0.02049 0.05664 2.77 

64 0.09889 0.35564 3.60 

128 0.68748 2.73660 3.98 

256 5.33787 21.45535 4.02 

512 41.71814 169.38102 4.06 

 

 

 

 

 

 

 

 

 

 

the compatible numerical flux of the underlying Euler subsystem. As a consequence, the computational cost of the resulting 

algorithms is greatly reduced as it can be observed in Table 3 , where both HTC FV schemes are analysed in terms of the

CPU time needed to run the isentropic vortex test case up to t = 0 . 25 with four processes on an Intel® Core TM i9-10980XE.

6.2. Shear motion in solids and fluids 

In the following, we consider the evolution of an isolated shear layer in the domain � = [ −0 . 5 , +0 . 5] in one space

dimension. The initial conditions are set as v 1 = v 3 = 0 , J = 0 , ρ = 1 , p = 1 , A = I and v 2 = −v 0 for x < 0 and v 2 = + v 0 for

x ≥ 0 with v 0 = 0 . 1 . We furthermore set γ = 1 . 4 , c v = 1 , ρ0 = 1 , c s = 1 and c h = 1 . The numerical simulations are run until

t = 0 . 4 for different relaxation times using the new thermodynamically compatible HTC schemes developed in this paper,

i.e. the compatible cell centered finite volume scheme as well as the thermodynamically compatible discontinuous Galerkin 

schemes of type I and II, for which we choose a polynomial approximation degree of N = 5 . In order to obtain the same

number of degrees of freedom we use 1024 elements for the DG schemes with N = 5 and 6144 control volumes in case of

the finite volume method. For fluids we furthermore set κ = μ. In the stiff relaxation limit of the GPR model, i.e. for τ1 � 1 ,

the exact solution of the first problem of Stokes for the incompressible Navier–Stokes equations, see e.g. [64,71–73] , can be
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Fig. 1. Simple shear motion in an ideal elastic solid and in viscous fluids. Numerical solution of the GPR model at time t = 0 . 4 obtained with the new HTC 

finite volume scheme (6144 cells) and the new HTC DG schemes of type I and II (1024 elements, polynomial approximation degree N = 5 ). Top left: results 

for the solid setting τ1 = τ2 = 10 20 . From top right to bottom right: results for fluids with viscosities: μ = 10 −2 , μ = 10 −3 and μ = 10 −4 , respectively. 

 

 

 

 

 

 

 

 

 

 

used as reference solution for v 2 : 

v 2 (x, t) = v 0 erf 

(
1 

2 

x √ 

νt 

)
, (148) 

with ν = μ/ρ0 . For the solid limit of the model, a reference solution is obtained by using a second order TVD finite volume

scheme of the MUSCL-Hancock type, see [66] , on 10,0 0 0 cells. In the solid limit of the GPR model the artificial viscosity

is set to ε = 10 −6 . The obtained numerical results are depicted in Fig. 1 , where an excellent agreement of all numerical

solutions with the reference solutions can be observed. 

6.3. Riemann problems 

Next, we analyse a set of five Riemann problems with the left and right initial states and the location of the initial

discontinuity x c given in Table 4 . The one-dimensional domain is � = [ −0 . 5 , +0 . 5] . We consider the Euler subsystem (i.e.

only the black terms in (1) ), as well as the full GPR model (1) . The exact solution of the Riemann problem for the Euler

equations can be found in the textbook of Toro [66] , while for the full GPR model a numerical reference solution is obtained

by solving (1) at the aid of a second order MUSCL-Hancock method on a very fine mesh of 128,0 0 0 control volumes, solving

the total energy Eq. (1f) instead of the entropy inequality (1c) . The Riemann problems contain three test cases for the pure

Euler equations, RP1, RP2, RP3, and two test problems for the fluid and solid limit of the GPR model, RP4 and RP5. For
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Table 4 

Left (L) and right (R) initial states for density, velocity, with v = (u, v , 0) , and pressure p and location of 

the initial discontinuity x c for five Riemann problems solved with the new HTC finite volume and discon- 

tinuous Galerkin schemes of type I and II proposed in this paper. 

RP ρL u L v L p L ρR u R v R p R x c 

RP1 1.0 0.0 0.0 1.0 0.125 0.0 0.0 0.1 0.0 

RP2 5.99924 19.5975 0.0 460.894 5.99242 −6.19633 0.0 46.095 −0.2 

RP3 1.0 −2.0 0.0 0.4 1.0 + 2.0 0.0 0.4 0.0 

RP4 1.0 0.0 −0.2 1.0 0.5 0.0 + 0.2 0.5 0.0 

RP5 1.0 0.0 −0.2 1.0 0.5 0.0 + 0.2 0.5 0.0 

Fig. 2. Results of the density for Riemann problems RP1 (left) and RP2 (right) at times t = 0 . 2 and t = 0 . 035 , respectively, obtained using the new thermo- 

dynamically compatible cell-centered HTC FV scheme (1536 cells for RP1, 6144 cells for RP2) and the HTC DG schemes of type I and II ( N = 5 , 256 elements 

for RP1, 1024 elements for RP2) applied to the compressible Euler equations. The exact solution, see [66] , is represented with a black solid line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RP4 and RP5 we set the initial conditions for A and J to A = I and J = 0 . Furthermore, we choose c s = c h = 1 and γ = 1 . 4 .

For RP4 we choose the relaxation times so that μ = κ = 10 −5 and for RP5 we set τ1 = τ2 = 10 20 . In all cases the artificial

viscosity is set to a constant value of ε = 10 −5 . The numerical results obtained with the new HTC schemes proposed in this

paper are compared against the reference solution in Figs. 2–5 . The employed mesh resolution is provided for each test case

in the corresponding figure caption and the polynomial approximation degree for the HTC DG schemes of type I and II is

set to N = 5 . In all cases an excellent agreement between numerical solution and reference solution can be observed. In

particular, we can observe that there is no spurious glitch in the temperature of the 123 problem (RP3) for both types of

HTC DG schemes, unlike in the corresponding HTC FV method. 

6.4. Viscous shock wave 

The next test case is a stationary viscous shock with a characteristic shock Mach number of M s = 2 and a Prandtl number

in the fluid of Pr = 0 . 75 , so that an exact solution of the compressible Navier–Stokes equations exists, see e.g. [74,75] and

[64] for the details on the computation of the exact solution. The problem is solved in the one-dimensional domain � =
[ −0 . 5 , +0 . 5] with the shock wave centered at x = 0 and the fluid moving into the shock from the left to the right. The data

in front of the shock are ρ0 = 1 , v 0 
1 

= 2 , v 0 
2 

= v 3 = 0 and p 0 = 1 /γ , hence the sound speed in front of the shock is c 0 = 1 .

The Reynolds number based on the reference length L = 1 is Re s = ρ0 c 0 M s L μ−1 . The remaining parameters of the GPR

model are chosen as γ = 1 . 4 , c v = 2 . 5 , c h = c s = 50 , μ = 2 × 10 −2 and κ = 9 1 3 × 10 −2 , hence the shock Reynolds number is

Re s = 100 . The initial condition for J and A is J = 0 and A = 

3 
√ 

ρ I . The comparison of the solution obtained with the novel

thermodynamically compatible HTC schemes applied to (1) and the exact solution obtained for the compressible Navier–

Stokes equations is depicted in Fig. 6 . For the HTC finite volume scheme we employ 1024 equidistant cells, while the HTC

DG schemes of type I and II use 256 cells with polynomial approximation degree N = 9 . For all quantities an excellent

agreement is achieved. 
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Fig. 3. Results for the 123 problem, RP3, at time t = 0 . 15 , obtained using the new thermodynamically compatible cell-centered HTC FV scheme (6144 cells) 

and the HTC DG schemes of type I and II ( N = 5 , 1024 elements) applied to the compressible Euler equations. Density (top panel), velocity (central panel), 

temperature (bottom panel). The exact solution, see [66] , is represented with a black solid line. 
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Fig. 4. Results for the density for Riemann problem RP4 at time t = 0 . 2 , obtained using the new thermodynamically compatible cell-centered HTC FV 

scheme (6144 cells) and the HTC DG schemes of type I and II ( N = 5 , 1024 elements) applied to the GPR model in the stiff relaxation limit ( μ = κ = 10 −5 ). 

The exact solution of the compressible Euler equations, see [66] , is represented with a black solid line as a reference solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5. Double shear layer 

The double shear layer test was proposed in Bell et al. [76] and was subsequently used in Busto et al. [61] , Dumbser

et al. [64] , Boscheri et al. [71] , Bermúdez et al. [72] , Busto et al. [73] , Tavelli and Dumbser [77] , 78 ] to assess the behaviour

of compressible flow solvers in the weakly compressible regime, including applications to the GPR model (1) . The two-

dimensional domain is the unit square � = [0 , 1] 2 with periodic boundaries everywhere. The initial condition is given by

v 1 = 

{
tanh 

(
˜ ρ(y − 1 

4 
) 
)
, y ≤ 1 

2 
, 

tanh 

(
˜ ρ( 3 

4 
− y ) 

)
, y > 

1 
2 
, 

v 2 = δ sin (2 πx ) , 

v 3 = 0 , ρ = ρ0 = 1 , p = 10 2 /γ , A = I and J = 0 , with δ = 0 . 05 and ˜ ρ = 30 . The remaining parameters of the model are ν =
μ/ρ0 = 2 × 10 −3 , ρ0 = 1 , c v = 1 , c s = 8 , c h = 2 and τ2 = 4 × 10 −3 . The characteristic Mach number of the flow resulting

from this setup is M = 0 . 1 . The numerical simulations are carried out with all new HTC schemes proposed in this paper

until t = 1 . 8 . The HTC finite volume scheme is run on a computational grid of 40 0 0 × 40 0 0 elements, while the HTC DG

schemes of type I and II use a coarser mesh of 1024 × 1024 control volumes with a polynomial approximation degree of

N = 3 . The numerical viscosity is set to ε = 1 × 10 −6 in all cases. In Fig. 7 the results obtained with the new HTC FV scheme

for the time evolution of the distortion field component A 12 are shown. The results agree very well with those reported in

Busto et al. [61] , where also a validation against an incompressible Navier–Stokes solver [72,79] was provided. The initial

shear layers develop into several vortices, as already described in more detail in Dumbser et al. [64] , Boscheri et al. [71] ,

Bermúdez et al. [72] , Busto et al. [73] , Bell et al. [76] . Almost identical results are obtained for this test problem also with

the HTC DG schemes of type I and II, see Figs. 8 and 9 . Overall, we can therefore conclude that the methods proposed in

this paper allow the reliable simulation of complex flows in the fluid limit of the GPR model, leading to numerical results

that are essentially independent of the underlying mesh and numerical method, once a sufficiently fine mesh has been used. 

6.6. Solid rotor 

Here, we apply our new thermodynamically compatible schemes to the solid rotor problem proposed in Busto et al. [61] ,

Boscheri et al. [71] . Choosing τ1 = τ2 = 10 20 the governing PDE system (1) describes the dynamics of a nonlinear hyperelastic

solid. We define the two-dimensional domain as � = [ −1 , +1] 2 with transmissive boundary conditions everywhere. As initial

conditions for density, pressure, distortion field and thermal impulse we set ρ = 1 , p = 1 , A = I and J = 0 , the initial velocity

field is given by v 1 = −y/R , v 2 = + x/R and v 3 = 0 within the circle ‖ x ‖ ≤ R of radius R = 0 . 2 , while for r > R the velocity is

v = 0 . The remaining parameters of the model are γ = 1 . 4 , c s = 1 . 0 and c h = 1 . 0 . The final simulation time is set to t = 0 . 3 in

all cases. We run this test using the HTC finite volume scheme on 512 × 512 control volumes as well as the HTC DG schemes

of type I and II with 128 × 128 elements and a polynomial approximation degree of N = 5 . In all cases the artificial viscosity

is set to ε = 5 × 10 −4 . The reference solution is provided by a second order MUSCL-Hancock scheme on 512 × 512 control

volumes, solving the total energy conservation law (1f) rather than the entropy inequality (1c) , as also done in Dumbser
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Fig. 5. Results for the density for Riemann problem RP5 ( x c = 0 ) at time t = 0 . 2 , obtained using the new thermodynamically compatible cell-centered HTC 

FV scheme (6144 cells) and the HTC DG schemes of type I and II ( N = 5 , 1024 elements) applied to the GPR model in the solid limit ( τ1 = τ2 = 10 20 ). 

Fig. 6. Viscous shock at Re s = 100 , M s = 2 and Pr = 0 . 75 . Numerical solution obtained with the new thermodynamically compatible cell-centered HTC FV 

scheme (1536 cells) and the new HTC DG schemes of type I and II (256 elements, N = 5 ) applied to the GPR model. Comparison with the exact solution 

from the compressible Navier–Stokes equations. Density (left), stress σ11 (center) and heat flux h 1 (right) at time t = 0 . 25 . 
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Fig. 7. Numerical solution obtained for the double shear layer problem with the new thermodynamically compatible cell-centered HTC finite volume 

scheme applied to the GPR model with μ = 2 · 10 −3 . Distortion field component A 12 at times t = 0 . 4 (top left), t = 0 . 8 (top right), t = 1 . 2 (bottom left) and 

t = 1 . 8 (bottom right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

et al. [64] . In Fig. 10 the computational results of the HTC schemes are compared with each other and with the reference

solution, obtaining an excellent agreement among all of them. 

6.7. Lid-driven cavity 

The final test problem is the lid-driven cavity benchmark, see [80] , which is also well-suited to validate numerical

schemes in the low Mach number limit of the compressible Navier–Stokes equations, see e.g. [72,73,78] . This test case was

already successfully solved with different numerical schemes applied to the GPR model in Busto et al. [61] , Dumbser et al.

[64] , Boscheri et al. [71] . The two-dimensional computational domain is the unit square � = [0 , 1] × [0 , 1] and the initial

condition reads ρ = 1 , v = 0 , p = 10 2 , A = I and J = 0 . According to Busto et al. [61] the remaining model parameters are

γ = 1 . 4 , c v = 1 , c s = 8 , ρ0 = 1 and c h = 2 , τ2 = 10 −2 and μ = 10 −2 , hence the characteristic Reynolds number of the flow

based on the lid velocity v = (1 , 0 , 0) is Re = 100 . Apart from the lid, all boundaries are no-slip wall boundaries with zero

velocity. The characteristic Mach number of this test problem based on the lid velocity is about M = 0 . 08 . All HTC schemes

use a mesh composed of 256 × 256 elements and the HTC DG schemes of type I and II employ a polynomial approximation

degree of N = 3 . The final time for all simulations is t = 10 . We have always used a constant artificial viscosity of ε = 10 −3 ,

apart from the DG scheme of type II, for which we set ε = 1 . 5 × 10 −3 . All numerical results are summarized in Fig. 11 and

compared against the reference solution available in Ghia et al. [80] . We can observe an excellent agreement between the
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Fig. 8. Numerical solution obtained for the double shear layer problem with the new HTC DG scheme of type I applied to the GPR model with μ = 2 · 10 −3 . 

Distortion field component A 12 at times t = 0 . 4 (top left), t = 0 . 8 (top right), t = 1 . 2 (bottom left) and t = 1 . 8 (bottom right). 

 

 

 

 

 

 

 

 

 

solution approximated by solving the GPR model with the new HTC schemes and the reference solution for the incompress- 

ible Navier–Stokes equations. 

In order to obtain stable results for the DG schemes of type II the artificial viscosity needed to be increased in this

test problem compared to the other two schemes. The authors conjecture that the problem is related to the no-slip wall

boundary conditions, which are non-trivial for the lid driven cavity in general, due to the discontinuous velocity field on the

boundary, and for the GPR model in particular, see [71] for a detailed discussion. The lid-driven cavity generates pressure

peaks in the upper corners of the domain, which may require more limiting in the case of DG schemes of type II compared

to the other two methods. Further and more detailed investigations on the behaviour of DG schemes of type II in the

presence of no-slip wall boundaries are needed in the future. 

7. Conclusions 

In this paper we have presented three new semi-discrete thermodynamically compatible schemes for the GPR model 

of continuum mechanics: one scheme of the cell-centered finite volume type and two different high order DG schemes. 

All three methods have in common that they discretize the entropy density as a primary evolution quantity, in contrast to

standard methods for hyperbolic systems, while total energy conservation is obtained as a mere consequence of the ther- 

modynamically compatible discretization. All methods satisfy a discrete cell entropy inequality by construction and can be 

proven to be nonlinearly stable in the energy norm. For all schemes we have shown numerical results for several bench-

marks in both the solid and fluid limit of the GPR model. In all cases a very good agreement with exact or numerical
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Fig. 9. Numerical solution obtained for the double shear layer problem with the new HTC DG scheme of type II applied to the GPR model with μ = 2 · 10 −3 . 

Distortion field component A 12 at times t = 0 . 4 (top left), t = 0 . 8 (top right), t = 1 . 2 (bottom left) and t = 1 . 8 (bottom right). 

 

 

 

 

 

 

 

 

 

 

 

reference solutions was obtained. Compared to previous work on similar schemes presented in Busto et al. [59] , Busto and

Dumbser [60] , Busto et al. [61] , Busto and Dumbser [62] the new numerical methods introduced in this paper were shown

to be computationally more efficient and simpler to implement, since no path-integrals need to be computed in order to 

obtain a thermodynamically compatible flux for the inviscid Euler subsystem. Furthermore, the new family of numerical 

schemes discussed in this paper does not require an underlying Godunov parametrization of the physical flux in terms of a

generating potential, unlike the thermodynamically compatible schemes forwarded in Busto et al. [59] , Busto and Dumbser 

[60] , Busto et al. [61] , Busto and Dumbser [62] . The finite volume schemes are clearly the most simple schemes presented

in this paper. They only only require the calculation of compatible fluxes and jump terms. DG methods of type I are simple

straightforward extensions of the former to the DG framework. The new DG schemes of type II proposed in this paper do

not need a special compatible discretization of terms related to the distortion field A and to the specific thermal impulse

J . Simple arithmetic averages are enough to construct a baseline scheme and subsequently the entire correction leading 

to thermodynamic compatibility, including numerical quadrature errors, is achieved in the calculation of the element-wise 

scalar correction factor αi . 

Future work will consider an extension of the approach proposed in this paper to the MHD equations, to turbulent shal-

low water flows [81,82] and to the conservative SHTC system of compressible two-fluid flows proposed by Romenski et al. in

Romenski et al. [10] , 11 ], which was already studied numerically and analytically in Lukácová-Medvidóvá et al. [83] , Thein

et al. [84] . In the future, we also plan an extension of the methodology outlined in this paper to the fully discrete case

as well as to staggered Cartesian and unstructured meshes, in order to combine it with involution-preserving semi-implicit 

discretizations [71,85] and semi-implicit hybrid finite-volume / finite-element schemes [72,73,79] on staggered meshes. All 
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Fig. 10. Contour colours of the velocity component v 1 for the solid rotor problem obtained solving the GPR model in the solid limit up to time t = 0 . 3 . 

Thermodynamically compatible HTC FV scheme (top left), HTC DG scheme of type I (top right), HTC DG scheme of type II (bottom left) and reference 

solution obtained with a classical second order MUSCL-Hancock scheme (bottom right). 

 

 

 

 

 

 

 

 

 

schemes presented in this paper have been analyzed in the semi discrete setting. For a possible extension to the fully dis-

crete case, at least for the Euler subsystem, see e.g. [61,86–88] . We will also consider the use of conservative and symplectic

time integrators, such as those forwarded in Brugnano and Iavernaro [89] , 90 ], in order to preserve the conservation of

total energy of our semi-discrete schemes exactly also in a fully discrete setting. The incorporation of limiters in the DG

scheme was out of scope of this work. We will therefore also consider proper limiters for DG schemes in the future, such

as slope and moment limiters [91,92] , positivity preserving limiters [93] , or the use of the cell-centered thermodynamically

compatible finite volume schemes presented in this paper as a posteriori subcell FV limiter of the DG schemes of type I and

II, following the ideas on subcell limiting for DG schemes outlined in Rueda-Ramírez et al. [41] , Sonntag and Munz [94] ,

Dumbser et al. [95] , Sonntag and Munz [96] . 

Dedication 

The new numerical methods introduced in this paper are dedicated to Prof. Eleuterio Francisco Toro at the occasion of his

75th birthday and in honor of his groundbreaking scientific contributions to the field of numerical methods for hyperbolic 

PDE. 
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Fig. 11. Results for the lid-driven cavity test at Re = 100 using the first order hyperbolic GPR model in entropy formulation. Results obtained at time t = 10 

on 256 × 256 elements using the new thermodynamically compatible cell-centered HTC finite volume scheme (top row), the HTC DG scheme of type I 

(middle row) and the HTC DG scheme of type II (bottom row). Left column: colour contours of the velocity component v 1 . Right column: comparison of v 1 
and v 2 along the 1D cuts x = 0 . 5 and y = 0 . 5 with the reference solution provided in Ghia et al. [80] . 
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