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Abstract— State-of-the-art methods in the image-to-image
translation are capable of learning a mapping from a source
domain to a target domain with unpaired image data. Though
the existing methods have achieved promising results, they
still produce visual artifacts, being able to translate low-level
information but not high-level semantics of input images. One
possible reason is that generators do not have the ability to
perceive the most discriminative parts between the source and
target domains, thus making the generated images low quality.
In this article, we propose a new Attention-Guided Generative
Adversarial Networks (AttentionGAN) for the unpaired image-
to-image translation task. AttentionGAN can identify the most
discriminative foreground objects and minimize the change of the
background. The attention-guided generators in AttentionGAN
are able to produce attention masks, and then fuse the generation
output with the attention masks to obtain high-quality target
images. Accordingly, we also design a novel attention-guided
discriminator which only considers attended regions. Extensive
experiments are conducted on several generative tasks with
eight public datasets, demonstrating that the proposed method
is effective to generate sharper and more realistic images com-
pared with existing competitive models. The code is available
at https://github.com/Ha0Tang/AttentionGAN.

Index Terms— Attention guided, generative adversarial net-
works (GANs), unpaired image-to-image translation.

I. INTRODUCTION

RECENTLY, Generative Adversarial Networks
(GANs) [1] in various fields such as computer vision

and image processing have produced powerful translation
systems with supervised settings such as Pix2pix [2], where
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Fig. 1. Comparison with existing unpaired image-to-image translation
methods (e.g., CycleGAN [3] and GANimorph [6]) with an example of horse-
to-zebra translation. We are interested in transforming horses into zebras.
In this case we should be agnostic to the background. However, methods such
as CycleGAN and GANimorph will transform the background in a nonsensical
way, in contrast to our attention-based method (the generated attention masks
are shown in the last column).

paired training images are required. However, paired data are
usually difficult or expensive to be obtained. The input-output
pairs for tasks such as artistic stylization could be even
more difficult to be acquired since the desired output is quite
complex, typically requiring artistic authoring. To tackle this
problem, CycleGAN [3], DualGAN [4] and DiscoGAN [5]
provide a new insight, in which the GAN models can learn
the mapping from a source domain to a target one with
unpaired image data.

Despite these efforts, unpaired image-to-image translation
remains a challenging problem. Most existing models change
unwanted parts in the translation and can also be easily
affected by background changes (see Fig. 1). In order to
address these limitations, Liang et al. [7] propose Contrast-
GAN, which uses object-mask annotations provided by the
dataset to guide the generation, first cropping the unwanted
parts in the image based on the masks, and then pasting
them back after the translation. While the generated results
are reasonable, it is hard to collect training data with object-
mask annotations. Another option is to train an extra model to
detect the object masks and then employ them for the mask-
guided generation [8], [9]. In this case, we need to significantly
increase the network capacity, which consequently raises the
training complexity in both time and space.

To overcome the aforementioned issues, we propose a novel
Attention-Guided Generative Adversarial Networks (Atten-
tionGAN) for the unpaired image-to-image translation task.
Fig. 1 shows a comparison with exiting image-to-image trans-
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Fig. 2. Framework of the proposed attention-guided generation Scheme I, which consists of two AGs G and F . We show one mapping in this figure,
i.e., x→G(x)→F(G(x))≈x . We also have the other mapping, i.e., y→F(y)→G(F(y))≈y. The AGs have a built-in attention module, which can perceive
the most discriminative content between the source and target domains. We then fuse the input image, the content mask, and the attention mask to synthesize
the final result.

lation methods using a horse-to-zebra translation example.
The most important advantage of AttentionGAN is that the
proposed generators can focus on the foreground of the target
domain and preserve the background of the source domain
effectively. Specifically, the proposed generator learns both
foreground and background attentions. It uses the foreground
attention to select from the generated output for the foreground
regions, while uses the background attention to maintain
the background information from the input image. In this
way, the proposed AttentionGAN can focus on the most
discriminative foreground and ignore the unwanted back-
ground. We observe that AttentionGAN achieves significantly
better results than both GANimorph [6] and CycleGAN [3].
As shown in Fig. 1, AttentionGAN not only produces clearer
results but also successfully maintains the little boy in the
background and only performs the translation for the horse
behind it. However, the existing holistic image-to-image trans-
lation approaches are generally interfered by irrelevant back-
ground content, thus hallucinating texture patterns of the target
objects.

We propose two different attention-guided generation
Schemes for the proposed AttentionGAN. The framework of
the proposed Scheme I is shown in Fig. 2. The proposed gen-
erators are equipped with a built-in attention module, which
can disentangle the discriminative semantic objects from the
unwanted parts via producing an attention mask and a content
mask. Then we fuse the attention and the content masks to
obtain the final generation. Moreover, we design two novel
attention-guided discriminators (ADs) which aim to consider
only the attended foreground regions. The proposed attention-
guided generators (AGs) and discriminators are trained in
an end-to-end fashion. The proposed attention-guided gener-
ation Scheme I can achieve promising results on the facial
expression translation, where the change between the source
domain and the target domain is relatively minor. However,
it performs unsatisfactorily on more challenging scenarios in
which a more complex semantic translation is required such
as horse-to-zebra translation as shown in Fig. 1. To tackle this
issue, we further propose a more advanced attention-guided
generation Scheme II, as depicted in Fig. 3. The improvement
upon the Scheme I is mainly threefold: First, in Scheme I,
the attention and the content masks are generated with the
same network. To have a more powerful generation of them,
we employ two separate subnetworks in Scheme II. Second,
in Scheme I, we only generate the foreground attention mask to

focus on the most discriminative semantic content. However,
to better learn the foreground and preserve the background
simultaneously, we produce both foreground and background
attention masks in Scheme II. Third, as the foreground genera-
tion is more complex, instead of learning a single content mask
in Scheme I, we learn a set of several intermediate content
masks, and correspondingly we also learn the same number
of foreground attention masks. The generation of multiple
intermediate content masks is beneficial for the network to
learn a more rich generation space. The intermediate content
masks are then fused with the foreground attention masks to
produce the final content masks. Extensive experiments on
several challenging public benchmarks demonstrate that the
proposed Scheme II can produce higher-quality target images
compared with existing state-of-the-art methods.

The contribution of this article is summarized as follows:
1) We propose a new AttentionGAN for the unpaired

image-to-image translation task. This framework stabi-
lizes the GANs’ training and thus improves the qual-
ity of generated images through jointly approximating
attention and content masks with several losses and
optimization methods.

2) We design two novel attention-guided generation
schemes for the proposed framework, to better perceive
and generate the most discriminative foreground parts
and simultaneously preserve well the unfocused objects
and background. Moreover, the proposed AG and dis-
criminator can be flexibly applied in other GANs to
improve the multi domain image-to-image translation
task, which we believe would also be beneficial to other
related research.

3) We conduct extensive experiments on eight popular
datasets and experimental results show that the proposed
AttentionGAN can generate photo-realistic images with
more clear details compared with existing methods.
We also established new state-of-the-art results on these
datasets.

Part of the material presented here appeared in [10]. The
current article extends [10] in several ways. 1) We propose
a more advanced attention-guided generation scheme,
i.e., Scheme II, which is a more robust and general frame-
work for both unpaired image-to-image translation and
multi domain image translation tasks. 2) We present an
in-depth description of the proposed approach, providing all
the architectural and implementation details of the method,

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on September 04,2021 at 09:02:46 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: ATTENTIONGAN: UNPAIRED IMAGE-TO-IMAGE TRANSLATION 3

Fig. 3. Framework of the proposed attention-guided generation Scheme II, which consists of two AGs G and F . We show one mapping in this figure,
i.e., x→G(x)→F(G(x))≈x . We also have the other mapping, i.e., y→F(y)→G(F(y))≈y. Each generator such as G consists of a parameter-sharing
encoder G E , an attention mask generator G A, and a content mask generator GC . G A aims to produce attention masks of both foreground and background to
attentively select the useful content from the corresponding content masks generated by GC and the input image x . The proposed model is constrained by the
cycle-consistency loss and trained in an end-to-end fashion so that each generator can benefit from each other. The symbols ⊕, ⊗ and s denote element-wise
addition, multiplication, and channel-wise Softmax, respectively.

with special emphasis on guaranteeing the reproducibility of
the experiments. The source code is also available online.
3) We extend the experimental evaluation provided in [10]
in several directions. First, we conduct extensive experiments
on eight popular datasets, demonstrating the wide application
scope of the proposed AttentionGAN. Second, we conduct
exhaustive ablation studies to evaluate each component of
the proposed method. Third, we investigate the influence of
hyperparameters on generation performance. Fourth, we pro-
vide the visualization of the learned attention masks to better
interpret our model. Fifth, we have also included more state-of-
the-art baselines, e.g., UAIT [11], U-GAT-IT [12], SAT [13],
MUNIT [14], DRIT [15], GANimorph [6], TransGaGa [16],
DA-GAN [17], and we observe that AttentionGAN achieves
better results than those. Lastly, we conduct extensive experi-
ments on the multi domain image translation task, and exper-
imental results show that AttentionGAN achieves much better
results than existing leading methods such as StarGAN [18].

II. RELATED WORK

A. Generative Adversarial Networks (GANs)

[1] are powerful generative models, which have achieved
impressive results on different computer vision tasks, e.g.,
image/video generation [19], [20]. To generate meaning-
ful images that meet user requirements, Conditional GANs
(CGANs) [21], [22] inject extra information to guide the image
generation process, which can be discrete labels [18], [23],
object keypoints [24], human skeleton [25]–[27], and semantic
maps [28]–[30].

B. Image-to-Image Translation

models learn a translation function using convolutional
neural networks (CNNs). Pix2pix [2] is a conditional

framework using a CGAN to learn a mapping function
from input to output images. Wang et al. [31] propose
Pix2pixHD for high-resolution photo-realistic image-to-image
translation, which can be used for turning semantic label
maps into photo-realistic images. Similar ideas have also
been applied to many other tasks, such as hand gesture
generation [25]. However, most of the tasks in the real world
suffer from having few or none of the paired input-output
samples available. When paired training data is not accessible,
image-to-image translation becomes an ill-posed problem.

C. Unpaired Image-to-Image Translation

To overcome this limitation, the unpaired image-to-image
translation task has been proposed. In this task, the approaches
learn the mapping function without the requirement of paired
training data. Specifically, CycleGAN [3] learns the mapping
between two image domains instead of paired images. Apart
from CycleGAN, many other GAN variants [4], [5], [18],
[32]–[35] have been proposed to tackle the cross-domain
problem. However, those models can be easily affected by
unwanted content and cannot focus on the most discriminative
semantic part of images during the translation stage.

D. Attention-Guided Image-to-Image Translation

To fix the aforementioned limitations, several works employ
an attention mechanism to help image translation. Attention
mechanisms have been successfully introduced in many appli-
cations in computer vision such as depth estimation [36],
helping the models to focus on the relevant portion of the
input.

Recent works use attention modules to attend to the region
of interest for the image translation task in an unsupervised
way, which can be divided into two categories. The first
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category is to use extra data to provide attention. For instance,
Liang et al. [7] propose ContrastGAN, which uses the object
mask annotations from each dataset as extra input data.
Moreover, Mo et al. [37] propose InstaGAN that incorporates
instance information (e.g., object segmentation masks) and
improves multi-instance transfiguration.

The second type is to train another segmentation or atten-
tion model to generate attention maps and fit them to the
system. For example, Chen et al. [8] use an extra attention
network to generate attention maps so that more attention can
be paid to objects of interest. Kastaniotis et al. [9] present
ATAGAN, which uses a teacher network to produce attention
maps. Yang et al. [13] proposed to add an attention module
to predict an attention map to guide the image translation
process. Kim et al. [12] propose to use an auxiliary classifier
to generate attention masks. Mejjati et al. [11] propose atten-
tion mechanisms that are jointly trained with the generators,
discriminators, and other two attention networks.

All these methods employ extra networks or data to obtain
attention masks, which increases the number of parameters,
training time, and storage space of the whole system. More-
over, we still observe unsatisfactory aspects in the generated
images by these methods. To fix both limitations, we propose
a novel AttentionGAN, which aims to disentangle the input
image into foreground and background by generating multiple
foreground attention masks, a background attention mask,
and multiple content masks. Then AttentionGAN learns to
attend to key parts of the image and translate the salient
objects/foreground to the target domain while keeping every-
thing else unaltered, essentially avoiding undesired artifacts
or changes. In this way, we do not need any extra models
to obtain the attention masks of objects of interest. To the
best of our knowledge, this idea has not been investigated by
existing attention-guided image-to-image translation methods.
Also, extensive experiments show that AttentionGAN achieves
significantly better results than the existing attention-guided
generation methods. Most importantly, our method can be
applied to any GAN-based framework such as unpaired,
paired, and multi domain image-to-image translation frame-
works.

III. ATTENTION-GUIDED GANS

A. Attention-Guided Generation

GANs [1] are composed of two competing modules: the
generator G and the discriminator D, which are iteratively
trained competing against each other in the manner of two-
player mini-max. More formally, let X and Y denote two
different image domains, xi ∈ X and y j ∈ Y denote the training
images in X and Y , respectively (for simplicity, we usually
omit the subscript i and j ). For most current image translation
models, e.g., CycleGAN [3] and DualGAN [4], they include
two generators G and F , and two corresponding adversarial
discriminators DX and DY . Generator G maps x from the
source domain to the generated image G(x) in the target
domain Y and tries to fool the discriminator DY , whilst
DY focuses on improving itself to be able to tell whether a
sample is a generated sample or a real data sample. Similar
to generator F and discriminator DX .

1) Attention-Guided Generation Scheme I: For the proposed
AttentionGAN, we learn two mappings between domains
X and Y via two generators with built-in attention mecha-
nism, i.e., G:x→[Ay, Cy]→G(x) and F :y→[Ax, Cx ]→F(y),
where Ax and Ay are the attention masks of images x and y,
respectively; Cx and Cy are the content masks of images x

and y, respectively; G(x) and F(y) are the generated images.
The attention masks Ax and Ay define a per pixel intensity
specifying to which extent each pixel for the content masks
Cx and Cy will contribute to the final rendered image. In this
way, the generator does not need to render static elements
(it refers to background) and can focus exclusively on the
pixels defining the domain content movements, leading to
sharper and more realistic synthetic images. After that, we fuse
the input image x , the generated attention mask Ay , and the
content mask Cy to obtain the targeted image G(x). In this
way, we can disentangle the most discriminative semantic
objects and the unwanted part of images. Take Fig. 2 as an
example, the AGs focus only on those regions of the image
that are responsible for generating the novel expression such
as eyes and mouth, and keeping the rest of the parts of the
image such as hair, glasses, and clothes untouched. The higher
intensity in the attention mask means the larger contribution
for changing the expression.

The input of each generator is a three-channel image, and
the outputs of each generator are an attention mask and
a content mask. Specifically, the input image of generator
G is x∈R

H×W×3, and the outputs are the attention mask
Ay∈{0, . . . , 1}H×W and content mask Cy∈R

H×W×3. Thus,
we use the following formula to produce the final image G(x) :

G(x) = Cy ∗ Ay + x ∗
(

1 − Ay

)

(1)

where the attention mask Ay is copied to three channels
for multiplication purpose. Intuitively, the attention mask Ay

enables some specific areas where domain changed to get more
focus and applying it to the content mask Cy can generate
images with clear dynamic area and unclear static area. The
static area should be similar between the generated image
and the original real image. Thus, we can enhance the static
area in the original real image x ∗ (1 − Ay) and merge it to
Cy∗Ay to obtain final result Cy∗Ay + x∗(1 − Ay). Similarly,
the formulation for generator F and input image y can be
expressed as F(y) = Cx ∗ Ax+y ∗ (1 − Ax).

The proposed attention-guided generation Scheme I per-
forms well on the tasks where the source domain and the
target domain have large overlap similarities, such as facial
expression-to-expression translation. However, we observe that
it cannot generate photo-realistic images on complex tasks
such as horse-to-zebra translation, as shown in Fig. 6. The
drawbacks of Scheme I are threefold: 1) The attention and
the content mask are generated by the same network, which
could degrade the quality of the generated images. 2) We
observe that the Scheme I only produces one attention mask
to simultaneously change the foreground and preserve the
background of the input images. 3) We see that Scheme I
only produces one content mask to select useful content for
generating the foreground content, which means the model
does not have enough ability to deal with complex tasks

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on September 04,2021 at 09:02:46 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: ATTENTIONGAN: UNPAIRED IMAGE-TO-IMAGE TRANSLATION 5

such as horse-to-zebra translation. To solve these limitations,
we further propose a more advanced attention-guided genera-
tion Scheme II as shown in Fig. 3.

2) Attention-Guided Generation Scheme II: Scheme I
adopts the same network to produce both attention and content
masks, and we argue that this will degrade the generation
performance. In Scheme II, the proposed generators G and
F are composed of two subnets each for generating attention
masks and content masks as shown in Fig. 3. For instance, G

is comprised of a parameter-sharing encoder G E , an attention
mask generator G A, and a content mask generator GC . G E

aims at extracting both low-level and high-level deep feature
representations. GC targets to produce multiple intermediate
content masks. G A tries to generate multiple attention masks.
By the way, both attention mask generation and content mask
generation have their own network parameters and will not
interfere with each other.

To fix the limitation (2) of Scheme I, in Scheme II, the atten-
tion mask generator G A targets to generate both n − 1 fore-
ground attention masks {A

f
y }n−1

f =1 and one background attention
mask Ab

y, as shown in Fig. 3. By doing so, the proposed
network can simultaneously learn the novel foreground and
preserve the background of input images. The key point of
success of the proposed Scheme II is the generation of both
foreground and background attention masks, which allow the
model to modify the foreground and simultaneously preserve
the background of input images. This is exactly the goal that
the unpaired image-to-image translation tasks aim to optimize.

Moreover, we observe that in some generation tasks such as
horse-to-zebra translation, the foreground generation is very
difficult if we only produce one content mask as done in
Scheme I. To fix this limitation, we use the content mask gen-
erator GC to produce n − 1 content masks {C

f
y }n−1

f =1, as shown
in Fig. 3. Then take the input image x into consideration,
we obtain n intermediate content masks. In this way, a three-
channel generation space can be enlarged to a 3n-channel
generation space, which is more suitable for learning a good
mapping for complex image translation.

Specifically, the feature map m extracted from G E is first fed
into the generator GC to generate n−1 content masks {C

f
y }n−1

f =1,
followed by a Tanh(·) activation function. This process can be
expressed as

C f
y = Tanh

(

mW
f

C + b
f

C

)

, for f = 1, . . . , n − 1 (2)

where a convolution operation is performed with n − 1 con-
volutional filters {W

f

C , b
f

C}n−1
f =1. Thus, the n − 1 content masks

and the input image x can be regarded as the candidate image
pool.

Meanwhile, the feature map m is fed into a group of filters
{W

f

A , b
f

A}n
f =1 to generate the corresponding n attention masks

A f
y = Softmax

(

mW
f

A + b
f

A

)

, for f = 1, . . . , n (3)

where Softmax(·) is a channel-wise Softmax function used
for the normalization. We then split {A

f
y }n

f =1 into n − 1

foreground attention masks {A
f
y }n−1

f =1 and one background
attention mask Ab

y along the channel dimension. Note that the
generated one background attention mask and n−1 foreground

attention masks are complementary, but the generated n − 1
foreground attention masks are not complementary to each
other. By doing so, the proposed model has a more flexible
ability to learn and translate the foreground content.

Finally, the attention masks are multiplied by the corre-
sponding content masks to obtain the final target result as
shown in Fig. 3. Formally, this is written as

G(x) =

n−1
∑

f =1

(

C f
y ∗ A f

y

)

+ x ∗ Ab
y. (4)

In this way, we can preserve the background of the input
image x , i.e., x∗Ab

y, and simultaneously generate the novel

foreground content for the input image, i.e.,
∑n−1

f =1(C
f
y ∗A

f
y ).

Then, we merge the generate foreground
∑n−1

f =1(C
f
y ∗A

f
y ) to

the background x∗Ab
y for obtaining the final result G(x). The

formulation of generator F and input image y can be expressed
as F(y) =

∑n−1
f =1(C

f
x ∗ A

f
x )+ y ∗ Ab

x , where n attention masks

[{A
f
x }n−1

f =1, Ab
x ] are also produced by a channel-wise Softmax

activation function for the normalization.

B. Attention-Guided Cycle

To further regularize the mappings, CycleGAN [3] adopts
two cycles in the generation process. The motivation of
cycle consistency is that if we translate from one domain
to the other and back again, we should arrive at where we
started. Specifically, for each image x in domain X , the image
translation cycle should be able to bring x back to the original
one, i.e., x→G(x)→F(G(x)) ≈ x . Similarly, for the image y,
we have another cycle, i.e., y→F(y)→G(F(y)) ≈ y. These
behaviors can be achieved by using a cycle-consistency loss

Lcycle(G, F) = Ex∼pdata(x)[kF(G(x)) − xk1]

+ Ey∼pdata(y)[kG(F(y)) − yk1] (5)

where the reconstructed image F(G(x)) is closely matched
to the input image x , and is similar to the generated image
G(F(y)) and the input image y. This could lead to generators
to further reduce the space of possible mappings.

We also adopt the cycle-consistency loss in the pro-
posed attention-guided generation Schemes I and II. However,
we have modified it for the proposed models.

1) Attention-Guided Generation Cycle I: For the proposed
attention-guided generation Scheme I, we should push back
the generated image G(x) in (1) to the original domain.
Thus, we introduce another generator F , which has a similar
structure to the generator G (see Fig. 2). Different from Cycle-
GAN, the proposed F tries to generate a content mask Cx

and attention mask Ax . Therefore, we fuse both masks and
the generated image G(x) to reconstruct the original input
image x . This process can be formulated as

F(G(x)) = Cx ∗ Ax + G(x) ∗ (1 − Ax) (6)

where the reconstructed image F(G(x)) should be very close
to the original one x . For image y, we can reconstruct it by
using G(F(y)) = Cy ∗ Ay+F(y)∗(1− Ay), and the recovered
image G(F(y)) should be very close to y.
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2) Attention-Guided Generation Cycle II: For the proposed
attention-guided generation Scheme II, after generating the
result G(x) by the generator G in (4), we should push G(x)

back to the original domain to reduce the space of possible
mappings. Thus, we have another generator F , which is very
different from the one in Scheme I. F has a similar structure
to the generator G and also consists of three subnets, i.e., a
parameter-sharing encoder FE , an attention mask generator
FA, and a content mask generator FC (see Fig. 3). FC tries
to generate n − 1 content masks (i.e., {C

f
x }n−1

f =1) and FA

tries to generate n attention masks of both background and
foreground (i.e., Ab

x and {A
f
x }n−1

f =1). Then we fuse these masks
and the generated image G(x) to reconstruct the original input
image x . This process can be formulated as

F(G(x)) =

n−1
∑

f =1

(

C f
x ∗ A f

x

)

+ G(x) ∗ Ab
x (7)

where the reconstructed image F(G(x)) should be very close
to the original one x . For image y, we have the cycle
G(F(y)) =

∑n−1
f =1(C

f
y ∗ A

f
y ) + F(y) ∗ Ab

y , and the recovered
image G(F(y)) should be very close to y.

C. Attention-Guided Discriminator

Equation (1) constrains the generators to act only on the
attended regions. However, the discriminators currently con-
sider the whole image. More specifically, the vanilla discrim-
inator DY takes the generated image G(x) or the real image
y as input and tries to distinguish them, this adversarial loss
can be formulated as follows:

LGAN(G, DY ) = Ey∼pdata(y)

[

log DY (y)
]

+ Ex∼pdata(x)

[

log(1 − DY (G(x)))
]

(8)

where G tries to minimize the adversarial loss LGAN(G, DY )

while DY tries to maximize it. The target of G is to generate an
image G(x) that looks similar to the images from domain Y ,
while DY aims to distinguish between the generated image
G(x) and the real one y. A similar adversarial loss of the
generator F and its discriminator DX is defined as

LGAN(F, DX ) = Ex∼pdata (x)

[

log DX (x)
]

+ Ey∼pdata(y)

[

log(1 − DX (F(y)))
]

(9)

where DX tries to distinguish between the generated image
F(y) and the real one x .

To add an attention mechanism to the discriminator, we pro-
pose two ADs. The AD is structurally the same as the vanilla
discriminator but it also takes the attention mask as input.
The AD DYA, tries to distinguish between the fake image
pairs [Ay, G(x)] and the real image pairs [Ay, y]. Moreover,
we propose the attention-guided adversarial loss for training
the ADs. The min-max game between the AD DYA and the
generator G is performed through the following objective
functions:

LAGAN(G, DYA) = Ey∼pdata(y)

[

log DYA
([

Ay, y
])]

+ Ex∼pdata(x)

[

log
(

1 − DYA
([

Ay, G(x)
]))]

(10)

where DYA aims to distinguish between the generated image
pairs [Ay, G(x)] and the real image pairs [Ay, y]. We also
have another loss LAGAN(F, DXA) for discriminator DXA and
generator F , where DXA tries to distinguish the fake image
pairs [Ax, F(y)] and the real image pairs [Ax, x]. In this way,
the discriminators can focus on the most discriminative content
and ignore the unrelated content.

Note that the proposed AD is only used in Scheme I.
In preliminary experiments, we also used the proposed AD
in Scheme II but did not observe improved performance. The
reason could be that Scheme II has enough ability to learn
the most discriminative content between the source and target
domains.

D. Optimization Objective

The optimization objective of the proposed attention-guided
generation Scheme II can be expressed as

L = LGAN + λcycle ∗ Lcycle + λid ∗ Lid (11)

where LGAN, Lcycle and Lid are GAN, cycle-consistency,
and identity preserving loss [38], respectively. λcycle and λid

are parameters controlling the relative relation of each term.
The optimization objective of the proposed attention-guided
generation Scheme I can be expressed

L = λcycle ∗ Lcycle + λpixel ∗ Lpixel

+ λgan ∗ (LGAN + LAGAN) + λtv ∗ Ltv (12)

where LGAN, LAGAN, Lcycle, Ltv and Lpixel are GAN, attention-
guided GAN, cycle-consistency, attention, and pixel loss (PL),
respectively. λgan, λcycle, λpixel and λtv are parameters control-
ling the relative relation of each term. In the following, we will
introduce attention loss (AL) and PL. Note that both losses
are only used in Scheme I since the generator needs stronger
constraints than those in Scheme II.

When training AttentionGAN, we do not have ground-truth
annotation for the attention masks. They are learned from the
resulting gradients of both AGs and discriminators and the
rest of the losses. However, the attention masks can easily
saturate to 1 causing the AGs to have no effect. To prevent
this situation, we perform a Total Variation regularization over
attention masks Ax and Ay. The AL of Ax thus can be defined
as

Ltv =

W,H
∑

w,h=1

|Ax(w + 1, h, c) − Ax(w, h, c)|

+ |Ax(w, h + 1, c) − Ax(w, h, c)| (13)

where W and H are the width and height of Ax .
Moreover, to reduce the changes and constrain the generator

in Scheme I, we adopt the PL between the input images and
the generated images. This loss can be regarded as another
form of the identity preserving loss. We express this loss as

Lpixel(G, F) = Ex∼pdata(x)[kG(x) − xk1]

+ Ey∼pdata(y)[kF(y) − yk1]. (14)

We adopt L1 distance as loss measurement in PL.
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E. Implementation Details

1) Network Architecture: For a fair comparison, we use the
generator architecture from CycleGAN [3]. We have slightly
modified it for our task. Scheme I takes a three-channel RGB
image as input and outputs a one-channel attention mask and
a three-channel content mask. Scheme II takes a three-channel
RGB image as input and outputs n attention masks and n − 1
content masks, thus we fuse all of these masks and the input
image to produce the final results. Specifically, the attention
generator in Fig. 3 consists of u128, u64, and c7s1 − 10,
where U.K . denotes a 3 × 3 fractional-strided-Convolution-
InstanceNorm-rectified linear unit (ReLU) layer with k filters
and stride 1/2; c7s1 − k denote a 7 × 7 Convolution-
InstanceNorm-ReLU layer with k filters and stride 1. The
output of the attention generator is represented by ten attention
masks; we choose the first one as the background attention
mask, and the rest as the foreground attention masks. We set
n = 10 in our experiments. For the vanilla discriminator,
we employ the discriminator architecture from [3]. We employ
the same architecture as the proposed AD except the AD
takes an attention mask and an image as input, while the
vanilla discriminator only takes an image as input.

2) Training Strategy: Our innovation lies in the structure of
the proposed model rather than the training approach. Thus,
we follow the standard optimization method from [1], [3] to
optimize the proposed AttentionGAN for fair comparisons,
i.e., we alternate between one gradient descent step on the
generators, then one step on discriminators. To slow down
the rate of discriminators relative to generators, we follow
CycleGAN [3] and divide the objective by 2 while optimizing
the discriminators. We also use a least square loss to stabilize
our model during the training procedure, which is more stable
than the negative log-likelihood objective. Moreover, we use
a history of the generated images to update discriminators
similar to CycleGAN.

IV. EXPERIMENTS

A. Experimental Setups

1) Datasets: We follow previous works [3], [10], [12],
[18] and employ eight popular datasets to evaluate the pro-
posed AttentionGAN, including four face image datasets
(i.e., CelebA [39], Radboud faces database (RaFD) [40],
AR Face [41], and Selfie2Anime [12]) and four natural image
datasets (i.e., Horse2Zebra [3], Apple2Orange [3], Maps [3],
and Style Transfer [3]). More details about these datasets
can be found in the corresponding articles. Note that these
eight datasets are widespread for evaluating unsupervised
image translation models since they contain diverse scenarios,
including natural images, face images, artistic paintings, and
aerial photographs. Therefore, it is challenging to build a
general and versatile model to handle all of these tasks on
various datasets.

2) Parameter Settings: For all datasets, images are rescaled
to 256 × 256. We do left-right flip and random crop for
data augmentation. We set the number of image buffer to
50 similar in [3]. We use the Adam optimizer [42] with
the momentum terms β1 = 0.5 and β2 = 0.999. For fair

comparisons, we follow [10] and set λcycle = 10, λgan = 0.5,
λpixel = 1 and λtv = 1e − 6 in (12). Moreover, we follow [3]
and set λcycle = 10, λid = 0.5 in (11). Previous works [3],
[10] have verified the effectiveness of these parameters in the
unsupervised image-to-image translation task.

3) Competing Models: We consider several state-of-the-art
image translation models as our baselines. 1) Unpaired image
translation methods: CycleGAN [3], DualGAN [4], DIAT [43],
DiscoGAN [5], DistanceGAN [32], Dist.+Cycle [32], Self
Dist. [32], ComboGAN [33], UNIT [44], MUNIT [14],
DRIT [15], GANimorph [6], CoGAN [45], SimGAN [46],
Feature loss+GAN [46] (a variant of SimGAN). 2) Paired
image translation methods: BicycleGAN [38], Pix2pix [2],
Encoder-Decoder [2]. 3) Class label, object mask, or
attention-guided image translation methods: IcGAN [23],
StarGAN [18], ContrastGAN [7], GANimation [47], RA [48],
UAIT [11], U-GAT-IT [12], SAT [13], TransGaGa [16],
DA-GAN [17]. 4) CGANs methods: BiGAN/ALI [49], [50].
Note that the fully supervised Pix2pix, Encoder-Decoder
(Enc.-Decoder), and BicycleGAN are trained on paired data.
Since BicycleGAN can generate several different outputs with
one single input image, we randomly select one output from
them for fair comparisons. To reimplement ContrastGAN,
we use OpenFace [51] to obtain the face masks as extra input
data.

4) Evaluation Metrics: We follow CycleGAN [3] and adopt
Amazon Mechanical Turk (AMT) perceptual studies to eval-
uate the generated images. Moreover, to seek a quantitative
measure that does not require human participation, Peak
Signal-to-Noise Ratio (PSNR), Kernel Inception Distance
(KID) [52] and Fréchet Inception Distance (FID) [53] are
employed according to different translation tasks. Specifically,
PSNR measures the pixel-level similarity between the gen-
erated image and the real one. Both KID and FID evaluate
the generated images from a high-level feature space. These
three metrics are the most mainstream methods to measure the
images generated by unsupervised image translation models.

B. Experimental Results

1) Ablation Study: We first conduct extensive ablation stud-
ies to evaluate the effectiveness of the proposed methods.

a) Analysis of Model Component: To evaluate the compo-
nents of our AttentionGAN, we first conduct extensive ablation
studies. We gradually remove components of the proposed
AttentionGAN, i.e., AD, AG, AL, and PL. The results of AMT
and PSNR on AR Face are shown in Table I. We find that
removing one of them substantially degrades the results, which
means all of them are critical to our results. We conduct more
experiments on the more challenging Horse2Zebra dataset to
validate the effectiveness of each component of the proposed
AttentionGAN. The results are shown in Table I, we can
see that the proposed method achieves similar results both
on Horse2Zebra and on AR Face datasets. We also provide
qualitative results of AR Face in Fig. 4. Note that without AG
we cannot generate both attention and content masks.

We conduct more ablation studies to verify how much of
the improvement is due to the three designs: 1) employing two
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TABLE I

ABLATION STUDY OF ATTENTIONGAN ON AR FACE AND HORSE2ZEBRA

Fig. 4. Ablation study of AttentionGAN on AR Face.

separate subnetworks to generate content mask and attention
mask. 2) producing both foreground mask and background
mask. 3) learning a set of intermediate content masks. Results
are shown in Table II and Fig. 5, where “Full” denotes our
full model, “Full-(1)’ denotes that we use a shared network
to generate both content mask and attention mask, “Full-(2)”
denotes that we only produce foreground masks, “Full-(3)”
denotes that we learn only one content mask. As can be
seen in Table II that removing one of these three designs
significantly decreases the generation performance, validating
all of them are critical to learn a better unsupervised image-to-
image translation mapping. Moreover, “Full” generates much
better results than others (see Fig. 5). Specifically, “Full-(3) ”
generates a lot of visual artifacts (shown in the red boxes),
but “Full” does not. “Full-(1)” and “Full-(2)” change the
background while translating, but “Full” does not. In addition,
both “Full-(1)” and “Full-(2)” also produce some artifacts,
which make the generated zebras look blurry (see the red
boxes near the zebras of both “Full-(1)” and “Full-(2)”).

Lastly, we observe that “Full-(1)” in Table II performs much
worse “Full-AD-AG” in Table I. “Full-(1)” denotes that we use
a shared network to generate both content mask and attention
mask. Since there is a big difference between attention mask
(i.e., grayscale image) and content mask (i.e., RGB image),
if we use one network to learn both, the two of them will
pollute each other, causing both to learn poorly. In this case,
the result of “Full-(1)” will be worse than that of “Full-
AD-AG.” This means that the design “(1)” is a prerequisite
for both designs “(2)” and “(3),” and the design “(1)” is
also the most important design among the three. In the end,
the performance will be the best when only the three are used
together (see Table II).

Fig. 5. Ablation study of AttentionGAN on Horse2Zebra.

Fig. 6. Comparison results of the proposed attention-guided generation
Schemes I and II.

TABLE II

ABLATION STUDY OF ATTENTIONGAN ON HORSE2ZEBRA

b) Attention-Guided Generation Scheme I versus II:

Moreover, we present the comparison results of the proposed
attention-guided generation Schemes I and II. Scheme I is
used in our conference paper [10]. Scheme II is a refined
version proposed in this article. Comparison results are shown
in Fig. 6. We observe that Scheme I generates good results
on facial expression transfer, however, it generates identical
images with the inputs on other tasks, e.g., horse-to-zebra
translation, apple to orange translation, and map to aerial photo
translation. However, the proposed attention-guided generation
Scheme II can handle all of these tasks, which validates the
effectiveness of the proposed Scheme II.

c) Analysis of Hyperparameters: We investigate the influ-
ence of λcycle and λid in (11) on the performance of our
method. As can be seen in Tables III and IV, when λcycle =

10 and λid = 0.5, the proposed method achieves the best
FID score on Horse2Zebra, validating the effectiveness of
our setting of hyperparameters. Moreover, to show that the
proposed framework can stabilize GAN training, we illustrate
the convergence loss of the proposed method in (11) on
Horse2Zebra (see Fig. 7). We observe that the proposed
method ensures a very fast yet stable convergence (around
the 50th epoch).

2) Experiments on Face Images: We conduct extensive
experiments on four datasets to validate AttentionGAN.
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Fig. 7. Convergence loss in (11) on Horse2Zebra.

TABLE III

INFLUENCE OF λcycle ON HORSE2ZEBRA

TABLE IV

INFLUENCE OF λid ON HORSE2ZEBRA

a) Results on AR Face: The results of neutral ↔ happy
expression translation on AR Face are shown in Fig. 8. Clearly,
the results of Dist.+Cycle and Self Dist. cannot even generate
human faces. DiscoGAN produces identical results regardless
of the input faces suffering from mode collapse. The results
of DualGAN, DistanceGAN, StarGAN, Pix2pix, Encoder–
Decoder, and BicycleGAN tend to be blurry, while Combo-
GAN and ContrastGAN produce the same identity but without
expression changing. CycleGAN generates sharper images,
but the details of the generated faces are not convincing.
Compared with all the baselines, the results of AttentionGAN
are correct, smoother, and with more details.

b) Results on CelebA: We conduct both facial expression
translation and facial attribute transfer tasks on this dataset.
The facial expression translation task on this dataset is more
challenging than the AR Face dataset since the background of
this dataset is very complicated. Note that this dataset does not
provide paired data, thus we cannot conduct experiments with
supervised methods, i.e., Pix2pix, BicycleGAN, and Encoder-
Decoder. The results compared with other baselines are shown
in Fig. 9. We observe that only the proposed AttentionGAN
produces photo-realistic faces with correct expressions. The
reason could be that methods without attention cannot learn the
most discriminative part and the unwanted part. All existing
methods failed to generate novel expressions, which means
they treat the whole image as the unwanted part, while
the proposed AttentionGAN can learn novel expressions by
distinguishing the discriminative part from the unwanted part.

Moreover, our model can be easily extended to solve
multi domain image-to-image translation problems. To control
multiple domains in one single model we employ the domain
classification loss proposed in StarGAN. Thus, we follow
StarGAN and conduct facial attribute transfer on this dataset
to evaluate the proposed AttentionGAN. The results compared
with StarGAN are shown in Fig. 10. We observe that the

Fig. 8. Results of facial expression transfer on AR Face.

Fig. 9. Results of facial expression transfer on CelebA.

Fig. 10. Results of facial attribute transfer on CelebA.

proposed AttentionGAN achieves visually better results than
StarGAN without changing the background.

c) Results on RaFD: We follow StarGAN and conduct
diverse facial expression translation on this dataset. The results
compared to the baselines DIAT, CycleGAN, IcGAN, Star-
GAN, and GANimation are shown in Fig. 11. We observe that
the proposed AttentionGAN achieves better results than DIAT,
CycleGAN, StarGAN, and IcGAN. For GANimation, we fol-
low the authors’ instructions and use OpenFace [51] to obtain
the action units of each face as extra input data. Note that the
proposed method generates competitive results compared to
GANimation but GANimation needs action units annotations
as extra training data limiting its practical application. More
importantly, GANimation cannot handle other generative tasks
such as facial attribute transfer as shown in Fig. 10.

d) Results of Selfie2Anime: We follow U-GAT-IT [12]
and conduct selfie to anime translation on the Selfie2Anime
dataset. The results compared with state-of-the-art methods are
shown in Fig. 12. We observe that the proposed AttentionGAN
achieves better results than other baselines.

We conclude that even though the subjects in these four
datasets have different races, poses, styles, skin colors, illu-
mination conditions, occlusions, and complex backgrounds,
our method consistently generates sharper images with correct
expressions/attributes than existing models. We also observe
that our AttentionGAN performs better than other baselines
when training data are limited (see Fig. 9), which also shows
that our method is very robust.

e) Quantitative Comparison: We also provide quantita-
tive results of these tasks. As shown in Table V, Atten-
tionGAN achieves the best results compared with competing
models including fully supervised methods (e.g., Pix2pix,
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Fig. 11. Results of facial expression transfer on RaFD.

Fig. 12. Different methods for mapping selfie to anime.

TABLE V

QUANTITATIVE COMPARISON ON THE FACIAL EXPRESSION TRANSLATION

TASK. FOR BOTH AMT AND PSNR, HIGH IS BETTER

Encoder-Decoder, and BicycleGAN) and mask-conditional
methods (e.g., ContrastGAN). Next, following StarGAN,
we perform a user study using AMT to assess attribute
transfer tasks on CelebA. The results comparing the state-
of-the-art methods are shown in Table VI. We observe that
AttentionGAN achieves significantly better results than all
the baselines. Moreover, we follow U-GAT-IT [12] and adopt
KID to evaluate the generated images on a selfie to anime
translation. The results are shown in Table VII, we observe
that our AttentionGAN achieves the best results compared with
baselines except for U-GAT-IT. However, U-GAT-IT needs

TABLE VI

AMT RESULTS OF THE FACIAL ATTRIBUTE TRANSFER TASK ON CELEBA.
FOR THIS METRIC, HIGHER IS BETTER

TABLE VII

KID × 100 ± STD. × 100 OF THE SELFIE TO ANIME TRANSLATION TASK.
FOR THIS METRIC, LOWER IS BETTER

TABLE VIII

OVERALL MODEL CAPACITY ON RAFD (m = 8)

to adopt two auxiliary classifiers to obtain attention makes.
Moreover, U-GAT-IT uses four discriminators (i.e., two global
discriminators and two local discriminators), while we only
use two discriminators. Both designs of U-GAT-IT signifi-
cantly increase the number of network parameters and training
time (see Table VIII). Moreover, compared with Scheme I,
Scheme II only adds a little amount of parameters (0.9M), but
the performance is significantly improved (see Fig. 6). This
indicates that the performance improvement of Scheme II does
not come from simply increasing network parameters.

f) Visualization of Learned Attention and Content Masks:

Instead of regressing a full image, our generator outputs
two masks, a content mask and an attention mask. We also
visualize both masks on RaFD and CelebA in Figs. 13 and 14,
respectively. In Fig. 13, we observe that different expres-
sions generate different attention masks and content masks.
The proposed method makes the generator focus only on
those discriminative regions of the image that are responsible
for synthesizing the novel expression. The attention masks
mainly focus on the eyes and mouth, which means these
parts are important for generating novel expressions. The
proposed method also keeps the other elements of the image
or unwanted parts untouched. In Fig. 13, the unwanted part
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Fig. 13. Attention and content masks on RaFD.

Fig. 14. Attention and content masks on CelebA.

Fig. 15. Attention mask on the selfie to anime translation task.

Fig. 16. Evolution of attention masks and content masks.

are hair, cheeks, clothes, and background, which means these
parts have no contribution in generating novel expressions.
In Fig. 14, we observe that different facial attributes also
generate different attention masks and content masks, which
further validates our initial motivations. More attention masks
generated by AttentionGAN on the facial attribute transfer task
are shown in Fig. 10. Note that the proposed AttentionGAN
can handle the geometric changes between source and tar-
get domains, such as selfie to anime translation. Therefore,
we show the learned attention masks on a selfie to anime
translation task to interpret the generation process in Fig. 15.

We also present the generation of both attention and content
masks on the AR Face dataset epoch-by-epoch in Fig. 16.
We see that with the number of training epochs increases,
the attention mask and the result become better, and the
attention masks correlate well with image quality, which
demonstrates the proposed AttentionGAN is effective.

g) Comparison of Model Parameters: The number of
models for m image domains and the number of model
parameters on RaFD are shown in Table VIII. Note that
our generation performance is much better than these base-
lines and the number of parameters is also comparable with

Fig. 17. Different methods for mapping horse to zebra.

ContrastGAN, while ContrastGAN requires object masks as
extra data.

3) Experiments on Natural Images: We also conduct exper-
iments on four datasets to evaluate AttentionGAN.

a) Results of Horse2Zebra: The results of horse-to-zebra
translation compared with CycleGAN, RA, DiscoGAN, UNIT,
DualGAN, DA-GAN, and UAIT are shown in Fig. 17.
We observe that DiscoGAN, UNIT, DualGAN generate
blurred results. CycleGAN, RA, and DA-GAN can generate
the corresponding zebras, however, the background of images
produced by these models has also been changed. Both UAIT
and the proposed AttentionGAN generate the corresponding
zebras without changing the background. By carefully exam-
ining the translated images from both UAIT and the pro-
posed AttentionGAN, we observe that AttentionGAN achieves
slightly better results than UAIT as shown in the first and the
third rows of Fig. 17. Our method produces better stripes on
the body of the lying horse than UAIT as shown in the first
row. In the third row, the proposed method generates fewer
stripes on the body of the people than UAIT.
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Fig. 18. Different methods for mapping horse to zebra.

Moreover, we compare the proposed method with Cycle-
GAN, UNIT, MUNIT, DRIT, and U-GAT-IT in Fig. 18.
We can see that UNIT, MUNIT and DRIT generate blurred
images with many visual artifacts. CycleGAN can produce
the corresponding zebras, however, the background of the
images has also been changed. U-GAT-IT and AttentionGAN
can produce better results than other approaches. However,
if we look closely at the results generated by both methods,
we observe that U-GAT-IT slightly changes the background,
while the proposed AttentionGAN perfectly keeps the back-
ground unchanged. For instance, as can be seen from the
results of the first line, U-GAT-IT produces a darker back-
ground than the background of the input image in Fig. 18.
While the background color of the generated images by
U-GAT-IT is lighter than the input images as shown in
the second and third rows in Fig. 18. Lastly, our method
behaves the same as CycleGAN and U-GAT-IT, which greatly
changes the wooden fence in the first row. The reason is that
part of the horse is occluded by the fence. Our model tries to
learn and translate a complete horse, thus it will change the
fence. A feasible solution is to introduce an additional object
mask [7] or instance mask [37] to alleviate this phenomenon,
which will be further investigated in our future work.

We also compare the proposed AttentionGAN with
GANimorph and CycleGAN in Fig. 1. We see that the
proposed AttentionGAN demonstrates a significant qualitative
improvement over both methods. Moreover, in the last row of
Fig. 1, there is some blur in the bottom right corner of our
result. The reason is that our generator regards that location
as foreground content and translates it to the target domain.
This phenomenon rarely occurs in other samples because this
sample is more difficult to learn and translate.

The results of zebra to horse translation are shown
in Fig. 19. We note that our method generates better results
than all the baselines. In summary, AttentionGAN is able
to better alter the object of interest than existing methods
by modeling attention masks in unpaired image-to-image
translation tasks without changing the background at the same
time.

b) Results of Apple2Orange: The results compared with
CycleGAN, RA, DiscoGAN, UNIT, DualGAN, TransGaGa,
and UAIT are shown in Figs. 20 and 21. We see that RA,
DiscoGAN, UNIT, and DualGAN generate blurred results with
lots of visual artifacts. CycleGAN generates better results,
however, we can see that the background and other unwanted
objects have also been changed, e.g., the banana in the second

Fig. 19. Different methods for mapping zebra to horse.

Fig. 20. Different methods for mapping apple to orange.

Fig. 21. Different methods for mapping orange to apple.

row of Fig. 20. Both UAIT and our AttentionGAN can
generate much better results than other baselines. However,
UAIT adds an attention network before each generator to
achieve the translation of the relevant parts, which increases
the number of network parameters.

c) Results of Maps: Qualitative results of both transla-
tion directions compared with existing methods are shown
in Figs. 22 and 23, respectively. We note that BiGAN,
CoGAN, SimGAN, Feature loss+GAN only generate blurred
results with lots of visual artifacts. The results generated by
our method are better than those generated by CycleGAN.
Moreover, we compare AttentionGAN with the fully super-
vised Pix2pix, we see that AttentionGAN achieves comparable
or even better results than Pix2pix as indicated in the black
boxes in Fig. 23.

d) Results of Style Transfer: We also show the generation
results of our AttentionGAN on the style transfer task. The
results compared with the leading method, i.e., CycleGAN, are
shown in Fig. 24. We observe that the proposed AttentionGAN
generates much sharper and diverse results than CycleGAN.
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Fig. 22. Different methods for mapping map to aerial photo.

Fig. 23. Different methods for mapping aerial photo to map.

TABLE IX

KID × 100 ± STD. × 100 FOR DIFFERENT METHODS. FOR THIS METRIC,
LOWER IS BETTER. ABBREVIATIONS: (H)ORSE,

(Z)EBRA (A)PPLE, (O)RANGE

TABLE X

PREFERENCE SCORE ON BOTH HORSE TO ZEBRA AND APPLE TO

ORANGE TRANSLATION TASKS. FOR THIS METRIC, HIGHER IS

BETTER. ABBREVIATIONS: (H)ORSE, (Z)EBRA (A)PPLE, (O)RANGE

e) Quantitative Comparison: We follow UAIT [11] and
adopt KID [52] to evaluate the generated images by different
methods. The results of horse ↔ zebra and apple ↔ orange are
shown in Table IX. We observe that AttentionGAN achieves
the lowest KID on H → Z, Z → H and O → A translation
tasks. We note that both UAIT and CycleGAN produce a lower
KID score on apple to orange translation (A → O) but have
poor quality image generation as shown in Fig. 20.

Moreover, following U-GAT-IT [12], we conducted a per-
ceptual study to evaluate the generated images on Horse2Zebra
and Apple2Orange. Specifically, 50 participants are shown the
generated images from different methods including Attention-
GAN with the source image, and asked to select the best
generated image to the target domain. The results are shown
in Table X. We observe that the proposed method outperforms
other baselines including U-GAT-IT on these four tasks.

Next, we follow SAT [13] and adopt FID [53] to measure
the distance between generated samples and target samples.
We compute FID for horse-to-zebra translation and the results

TABLE XI

RESULTS OF FID ON THE HORSE TO ZEBRA TRANSLATION TASK.
FOR THIS METRIC, LOWER IS BETTER

TABLE XII

AMT “REAL VERSUS FAKE” RESULTS ON MAPS ↔ AERIAL PHOTOS.
FOR THIS METRIC, HIGHER IS BETTER

Fig. 24. Different methods for style transfer.

Fig. 25. Attention masks on horse ↔ zebra translation.

Fig. 26. Attention masks on apple ↔ orange translation.

compared with SAT, CycleGAN, DA-GAN, TransGaGa, and
UNIT are shown in Table XI. We observe that the proposed
model achieves significantly better FID than all baselines.
We note that SAT with attention has worse FID than SAT
without attention, which means using attention might have
a negative effect on FID because there might be some cor-
relations between foreground and background in the target
domain when computing FID. While we did not observe such
a negative effect on AttentionGAN. Qualitative comparison
with SAT is shown in Fig. 27. We observe that the proposed
AttentionGAN achieves better results than SAT.
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Fig. 27. Attention masks compared with SAT [13] on horse-to-zebra
translation.

Fig. 28. Attention masks on aerial photo ↔ map translation.

Finally, we follow CycleGAN and adopt the AMT score
to evaluate the generated images on the map ↔ aerial photo
translation task. Participants were shown a sequence of pairs
of images, one real image and one fake generated by our
method or exiting methods, and asked to click on the image
they thought was real. Comparison results of both translation
directions are shown in Table XII. We observe that the
proposed AttentionGAN generates the best results compared
with the leading methods and can fool participants on around
1/3 of trials in both translation directions.

f) Visualization of Learned Attention Masks: The results
of both horse ↔ zebra and apple ↔ orange translations are
shown in Figs. 25 and 26, respectively. We see that our
AttentionGAN is able to learn relevant image regions and
ignore the background and other irrelevant objects. Moreover,
we also compare with the most recent method, SAT [13],
on the learned attention masks. Results are shown in Fig. 27.
We observe that the attention masks learned by our method
are much more accurate than those generated by SAT, espe-
cially in the boundary of attended objects. Thus our method
generates a more photo-realistic object boundary than SAT in
the translated images, as indicated in the red boxes in Fig. 27.

The results of map ↔ aerial photo translation are shown
in Fig. 28. Note that although images of the source and
target domains differ greatly in appearance, the images of both
domains are structurally identical. Thus the learned attention
masks highlight the shared layout and structure of both source
and target domains. Thus, we can conclude that AttentionGAN
can handle both images requiring large shape changes and
images requiring holistic changes.

V. CONCLUSION

We propose a novel AttentionGAN for both unpaired
image-to-image translation and multi domain image-to-image

translation tasks. The generators in AttentionGAN have a
built-in attention mechanism, which can preserve the back-
ground of the input images and discover the most discrimi-
native content between the source and target domains by pro-
ducing attention masks and content masks. Then the attention
masks, content masks, and the input images are combined
to generate the target images with high quality. Extensive
experimental results on several challenging tasks demonstrate
that the proposed AttentionGAN can generate better results
with more convincing details than numerous state-of-the-art
methods.
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