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Università degli Studi di Trento

February 2014
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Abstract

The development of computer graphics technologies has been bringing

realism to computer generated multimedia data, e.g., scenes, human char-

acters and other objects, making them achieve a very high quality level.

However, these synthetic objects may be used to create situations which

may not be present in real world, hence raising the demand of having ad-

vance tools for differentiating between real and artificial data. Indeed, since

2005 the research community on multimedia forensics has started to develop

methods to identify computer generated multimedia data, focusing mainly

on images. However, most of them do not achieved very good performances

on the problem of identifying CG characters.

The objective of this doctoral study is to develop efficient techniques to dis-

tinguish between computer generated and natural human faces. We focused

our study on geometric-based forensic techniques, which exploit the struc-

ture of the face and its shape, proposing methods both for image and video

forensics. Firstly, we proposed a method to differentiate between computer

generated and photographic human faces in photos. Based on the estimation

of the face asymmetry, a given photo is classified as computer generated

or not. Secondly, we introduced a method to distinguish between computer

generated and natural faces based on facial expressions analysis. In par-

ticular, small variations of the facial shape models corresponding to the

same expression are used as evidence of synthetic characters. Finally, by

exploiting the differences between face models over time, we can identify

synthetic animations since their models are usually recreated or performed

in patterns, comparing to the models of natural animations.

Keywords:

[Computer Generated versus Natural Data Discrimination, Digital Image Forensics, Digital

Video Forensics, Facial Animations Analysis]
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Chapter 1

Introduction

This chapter overviews the research field investigated in this doctoral study.

In particular, we describe computer generated versus natural multimedia

data discrimination techniques, focusing on human faces. The main objec-

tives and the novel contributions of this thesis are also presented. Finally,

we describe the organization of this document.

“A journey of a thousand miles must begin with a single step”

Lao Tzu

People have been attempting to represent the real world since ancient

times. A version of an oft-told Greek story in around 450BC concerns

two painters Parrhasius and Zeuxis. Parrhasius asked Zeuxis to judge one

of his paintings that was behind a pair of curtains. Zeuxis was asked to

pulled back the curtains, but when he tried, he could not, as the curtains

were Parrhasius’s painting. That was one of the first stories of Trompe

loeil, literally means ‘deceiving the eye’ or often called ‘trick of the eye’, an

art technique that uses realistic imagery to create the optical illusion that

depicted objects. For example, a painting by Jacopo de’ Barbari in 1504
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1. INTRODUCTION

of a partridge, gauntlets, and crossbow bolt (see Figure 1.1(a)), which is

considered as the first small scale Trompe l’oeil painting since antiquity.

Another example is shown in Figure 1.1(b) from a painting of Henry Fuseli

(1750).

(a) Jacopo de’ Barbari, 1504. (b) Trompe loeil by Henry Fuseli, 1750.

Figure 1.1: Examples of Trompe loeil paintings.

In modern day, Trompe loeil artists create their art by combining tra-

ditional techniques with the modern technologies to create more types of

illusions. For example, while the house on 39 George V street, Paris was

being renovated, they printed and hung an interesting artwork on the scaf-

folding to shelter the rehabilitation, which is shown in Figure 1.2(a). An-

other modern Trompe loeil can be seen in Figure 1.2(b), created by Pierre

Delavie on facade of the Palais de la Bourse, Marseille, which shows the

Canebière - the historic high street in the old quarter of Marseille.
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(a) The 39GeorgeV building in Paris. (b) Modern Trompe loeil on facade of
the Palais de la Bourse, Marseille.

Figure 1.2: Examples of modern Trompe loeil paintings.

Trompe loeil not only makes a painting more realistic, but also exploits

the techniques that can attack the weaknesses of human visual system,

which can be applied to digital image forensics. Using modern computer

graphics technologies, synthetic scenes, human characters or objects can

be easily created with a very high quality level, which could take years to

artists in classic Trompe loeil. Some examples of computer graphics images

are shown in Figure 1.3, in which most of the images are very realistic.

However, these synthetic objects may be used to create situations which

may not be present in real world, and hence raising security risks. For

example in the US, possession of child pornography is illegal since it im-

plies abuse of minors. However, establishing the presence of minors from

the child pornography is challenging on legal ground, as owners of child

pornography can declare the images to be computer generated [36]. This

raise a need of tools able to automatically and reliably discriminate be-

tween CG and natural images in this particular case, and in multimedia

data in general. Hence, many techniques have been proposed to deal with

this problem. A big picture is shown in the next section while the literature

will be detailed in Chapter 2.
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1. INTRODUCTION

Figure 1.3: Examples of realistic CG photos.

1.1 CG versus Natural Multimedia Data Discrimina-

tion

Detecting computer graphics images has been studied in decades, starting

with classification methods on the type of images [2], mostly for differen-

tiation between graphics and photographs. However, these methods only

targeted to simple graphics images, e.g., cartoons, clip arts or drawing,

which are very different from the photographs. An example of the two

kind of images are shown in Figure 1.4 (a) and (c). Shown in Figure (b) is

an example of a photorealistic CG image, which is almost indistinguishable

by human perception. Only since 2005, with the raising of digital image

forensics, identifying photorealistic computer graphics became attractive

to the multimedia forensic community with many studies on this problem.

We can group these studies into 4 categories:

4



1.1. CG VERSUS NATURAL MULTIMEDIA DATA DISCRIMINATION

(a) A natural photograph. (b) A photorealistic CG image. (c) A graphic image.

Figure 1.4: Examples of a photorealistic CG image, a photograph and a graphic image.

• Methods using Recording Devices properties: Photographic

images are created in general by a camera, or a scanner. These devices

have various of characteristics that computer could not reproduce in

CG images. Some studies have proposed solutions by analyzing phys-

ical variances in the image (e.g., local patch statistics, fractal and

quadratic geometry, surface gradient) as introduced by Ng. et al. [18]

in 2005. Dehni et al. in 2006 and Khanna et al. in 2008 proposed

methods for solving this problem by evaluating the noise introduced

by the recording device, presented in [9] and [15], respectively. Dirik

et al. [10] and Gallager and Chen [21] introduced methods to discrim-

inate images created by the computer from the ones captured by the

camera by detecting traces of demosaicing and chromatic abberation.

• Methods from Natural Image Statistics: Natural images have

some special properties different from the other types of images. One

of it is the sparse distribution of the wavelet coefficients which are

suitably modeled by a generalized Laplacian density [37]. Hence, in

2005, Lyu and Farid proposed a method in [36] to differentiate between

CG and photographic images by estimating statistical differences in

wavelet-based decomposition, which can be considered as one of the

5



1. INTRODUCTION

first approaches to this problem. Another method working on wavelet

domain was proposed by Wang and Moulin [56] in 2006, where they

discovered that the characteristic function of the coefficient histogram

of wavelet sub-bands is different for CG and natural images. In 2007,

Chen et al. [5] applied an idea from steganalysis to deal with this

problem on wavelet domain. Another method based on the Benford’s

law on Discrete Cosine Transform is proposed by Xu et al. [58] in

2011.

• Methods using Visual Features: Visual descriptors refer to fea-

tures motivated by visual appearance such as color, texture, edge

properties, and surface smoothness [40]. These kind of methods were

used mostly to compared between simple CG with photograph, but

some of them are able to used in detecting highly realistic CG images.

In 2006, Wu et al. [57] proposed a method using several visual clues,

e.g., the number of unique colors, local spatial variation of color and

obtained highly performance on classification. In 2007 Ladonde and

Efros [28] proposed an method based on an assumption that color

composition of natural images is not random, and some compositions

appear more likely than the others. Hence, color compatibility can be

used as discriminate features to distinguish computer graphics from

photographic images. The other method in this group is proposed by

Pan et al. [41] in 2009, in which they used fractal dimension to detect

CG images on the Internet.

• Hybrid and other methods: Sutthiwan et al. proposed two dif-

ferent methods in [49, 50] using high dimension feature vectors to

differentiate CG and natural images. Sankar et al. [47] in 2009 intro-

duced a method by simply combine the features from various previous

state-of-the-art methods. In 2011, a method solving this problem by

6



1.1. CG VERSUS NATURAL MULTIMEDIA DATA DISCRIMINATION

combining various data in a hybrid approach was proposed by Conot-

ter et al. [8]. Recently, Wand and Double [55] and Kee and Farid

[26] proposed methods to measure visual photorealism, which can be

applied to measure the degree of photorealism in an image. However,

such measure is still weak and thus a better measure is required to be

able to differentiate between CG and natural data.

Although many interesting methods have been proposed, most of these

methodologies do not achieve satisfactory performance in the detection of

CG characters. Some examples of human characters are shown in Figure

1.5 where CG and natural faces are almost perceptually indistinguishable.

As a matter of fact, generic methods able to recognize synthetic images

cannot cope with the complexity of this specific problem, which requires

the use of specialized models.

(a) (b) (c) (d)

Figure 1.5: Examples of highly realistic CG characters.

Only the right-most picture is photographic while the first 3 pictures are computer generated.

People are, in many cases, a crucial target for computer graphics com-

munity, hence designers often try their best to create realistic virtual char-

acters. Indeed, computer generated (CG) characters are increasingly used

in many applications such as talking-faces, e-learning, virtual meeting and

7



1. INTRODUCTION

especially video games. Since the first virtual newsreader Ananova1 intro-

duced in 2000, significant improvements have been achieved in both quality

and realism of CG characters, which are nowadays often very difficult to

be distinguished from real ones. Therefore, we consider critical to be able

to distinguish between computer generated and photographic faces in mul-

timedia data. This is the objective of this doctoral study. In the next

section, our proposed solutions and innovation are briefly reported.

1.2 Proposed Solutions and Innovation

The objective of this doctoral study is to develop efficient techniques to dis-

tinguish between computer generated and natural human faces, which can

be used in various contexts, i.e., in both still images and videos, with differ-

ent face poses or in complex situations, e.g., occlusions, different lightning

conditions or varying facial animations.

Given such requirements, during this doctoral research we contributed

in each application scenario proposing the following approaches :

• Discrimination based on Asymmetry Information (AsymMethod)

Usually, when creating a human face, designers only create a half of the

face, then replicate it to form the other half. Based on that idea, we

proposed a geometric approach supporting the distinction of CG and

real human faces, which exploits face asymmetry as a discriminative

feature. This method can be used without requiring classification tools

and training or combined with existing approaches to improve their

performances.

1http://news.bbc.co.uk/2/hi/entertainment/718327.stm
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1.2. PROPOSED SOLUTIONS AND INNOVATION

• Discrimination through Facial Expressions Analysis (Express-

Method)

As mentioned, we aim at developing methods not only for still images,

but also for discriminating between CG versus natural subjects in

video sequences. The first method can work also on a single shot,

but when a video source is available, much more information can be

extracted from the data. For instance, CG and real characters can

be discriminated by analyzing the variation of facial expressions in

a video. The underlying idea here is that humans can produce a

large variety of facial expressions with a high range of intensities.

For example, the way a person smiles changes depending on his/her

mood, and hence the same expression is usually produced in similar

but not equal ways. Computer generated faces, instead, typically

follow repetitive patterns, coded into pre-defined models. Therefore,

their variations are not as wide as in real faces. Consequently, a CG

character can be theoretically identified by analyzing the diversity

of facial expressions, through appropriated models. In this method,

face and expression models are created through sets of feature points

identified in critical areas of the face.

To the best of our knowledge, this is the first multimedia forensics

approach that aims at discriminating between CG versus natural mul-

timedia data in video sequences.

• Identifying synthetic facial animations through 3D face mod-

els (ModelMethod)

The last method is aim at even more complicated situations, where

characters are moving and turning their faces. The analysis of the 3D

model allows to deal more easily with human faces, which are various,

deformable and can occur in multi ways depending on expression,

9



1. INTRODUCTION

lightning condition, poses, etc. Therefore, we propose to study the

evolution in chronological order of the 3D model of the analysed char-

acter, assuming that its variations allow to reveal synthetic animation.

Indeed, facial animation following fixed patterns can be distinguished

from natural ones which follow much more complicated and various

geometric distortion, i.e., bigger variations in the 3D model deforma-

tion.

To summarize, we primarily studied geometric-based techniques, which

make use of measurements on human faces. We investigated both image

and video CG versus natural discrimination methods, exploiting knowledge

of objects in the world and of the process of image formation. All of the

proposed methods can be used as standalone methods or combined with

existing approaches.

Following, we briefly present our main contribution to this field:

• CG versus natural human faces: To the best of our knowledge, in

the context of Multimedia Forensics, we proposed first approaches to

deal with the problem of differentiate between CG and natural human

faces. This is also the first time the problem of discrimination of CG

versus natural data in videos are considered.

• Geometric-based techniques: the modeling and estimation of ge-

ometry is less sensitive to resolution and compression that can easily

confound statistical properties of images and video, i.e., our proposed

methods are robust with different situations.

• Model-based techniques: analyzing through 3D models better fits

the analysis of human faces, taking into account their variety, deforma-

bility, diversity of expressions, different poses, as well as the external

factors such as illumination conditions and framing, etc.

10



1.3. THESIS STRUCTURE

1.3 Thesis Structure

The thesis is organized in 5 chapters describing the research field together

with the main objectives of this doctoral study.

Chapter 2 presents an overview on visual realism of computer graphics

and the way synthetic facial animations are created. CG versus Natural

Data Discrimination methods are also deeply reviewed in this chapter.

In Chapter 3, the details of our proposed approaches are presented and

discussed.

Chapter 4 discusses about datasets used in our experiments together

with the experimental results.

Finally, Chapter 5 collects some concluding remarks and discusses the

open issues related to CG versus natural multimedia data discrimination.

11



1. INTRODUCTION
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Chapter 2

State of the Art

This chapter presents a concise overview about discrimination between

computer generated and natural multimedia data. We also focus our at-

tention on visual realism of computer graphics and the way that synthetic

facial animations are created.

“Study the past, if you would divine the future.”

Confucius

2.1 Visual Realism of Computer Graphics

Since the level of photorealism of a CG product is considered as a value of

success, computer graphics community aware of the important of photore-

alism and its perception. Such studies on perception of photorealism offer

some hints about the perceptual differences between natural and artificial

multimedia data.

In 1986, Meyer et al. [39] showed to 20 people pairs of CG/natural

images and asked them to label the images. 9 over 20 people who joined

13



2. STATE OF THE ART

Figure 2.1: Examples of the pictures tested from [20].

For each pair of image, the left picture is computer generated while the right one is natural.
Figure source: [20].

that test selected the wrong answer.

McNamara [38] in 2005 carried a similar experiment with more complex

CG images. They invited 20 people and show them randomly 10 images,

and asked them to label which images are CG, which are natural. The

results showed that some high quality CG images are undistinguishable

under some conditions of lighting.

More recently, in 2012, Farid and Bravo [20] conducted some experi-

ments that used human face images in different resolution, JPEG com-

pression qualities, and color to explore the ability of human to distinguish

computer generated faces from the natural ones. The CG images are down-

loaded from the Internet. The experiments provided a probability that an

image that is judged to be a photograph is indeed a true photograph,

which has 85% reliability for color images with medium resolution (be-

tween 218× 218 and 436× 436 pixels in size) and high JPEG quality. The

reliability drops for lower resolution and grayscale images. This work shows

that the CG faces from the Internet are quite distinguishable for human.

However, not all of the selected CG images from this study are highly re-

alistic, for example the CG faces shown in Figure 2.1 are less realistic than

the ones from Figure 1.5.

14



2.2. CG VERSUS NATURAL DATA DISCRIMINATION METHODS

2.2 CG versus Natural Data Discrimination methods

As mentioned in Chapter 1, since about 10 years, the research on multime-

dia forensics have started developing methods to identify photorealistic CG

data, mainly focusing on still pictures. These methods can be grouped into

4 categories, illustrated in Figure 2.2. Details of these groups are presented

in the following sections.

Figure 2.2: State-of-the-art approaches on still images.

The first group uses the recording device properties, mostly by analyzing the noises from the
camera sensor, to identify natural images. Second group differentiates the two types of images
based on natural image statistics like wavelet coefficients while third group investigates informa-
tion from the visual features of the image. The last group contains other and hybrid methods
from the first three groups.

2.2.1 Methods from Recording Devices properties

Characteristics of the recording devices and the processing from the manu-

facturer software are often presented in the images, e.g., chromatic aberra-

tion or distortions (see Figure 2.2). Further more, most of digital camera

now are using charge-coupled device (CCD) or metal-oxide-semiconductor

(CMOS) sensors, which contain imperfect patterns such as pattern noise,

dark current noise, shot noise, and thermal noise [22]. Such noises are typ-

ical for natural images and do not exist in most of the CG images. Hence,

15



2. STATE OF THE ART

natural images can be detected based on the analysis on these character-

istics.

In 2005, Ng et al. [18] identified three differences between photographic

images and CG images:

1. Natural images are subject to the typical concave response function

of cameras.

2. Colors of natural images are normally represented as continuous spec-

trum while in CG the color channels are often rendered independently.

3. Natural objects are more complicated while CG objects are normally

modelled by simple and coarse polygon meshes.

Hence, the authors proposed a method using image gradient, Beltrami

flow vectors, and principal curvatures to analyze the three mentioned dif-

ferences, which is summarized in Figure 2.3. Using SVM classification on

the Columbia open data set [17], they achieved an average classification

accuracy of 83.5%.

Dehnie et al. [9] in 2006 indicated that noise patterns, extracted by a

wavelet denoising filter, of natural images is different from the ones in CG

images. Hence, an input image can be classified as CG or natural based

on its correlation to the reference noise patterns. On their own data set,

the method achieved an average accuracy of about 72%.

In 2007, Dirik et al. [10] proposed a method to detect natural images by

analyzing the traces of demosaicking and chromatic aberration. According

to them, in natural images, the changes of the color filter array (CFA) is

smaller, comparing to CG images, when an input image is re-interpolated.

The authors also combined their proposed features with wavelet-based fea-

tures from the method of [36] to obtain a better performance. Their method

achieved an average classification accuracy of about 90% on their own data

set.
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Figure 2.3: Schema of the method in [18].

Figure source: [40].
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Based on the estimation of the noise pattern of the devices, in 2008,

Khanna et al. presented in [15] a method for discriminating between

scanned, non-scanned, and computer generated images. In this study, the

basic idea is analyzing noises of the scanner from row to row and column to

column, and then combining them with the noise of the camera, calculated

as difference between the de-noised image and the input one. Their idea is

summarized in Figure 2.4. On their own data set, the method achieved an

average accuracy of 85.9%.

Image De-noise filter – Noise pattern 

•  Mean 
•  Variance 
•  Skewness 
•  Kurtosis 

Estimate 
Correlations 

Figure 2.4: Schema of the method in [15].

Gallagher and Chen [21] in 2008 demonstrated that the CFA in original-

size natural images can be detected. Firstly, they use a high-pass filter to

highlight the observation that interpolated pixels have a smaller variance

than the original ones. Then, they analyze the variance on green color

channel from the diagonal scan lines since interpolated and original pixels

respectively occupy the alternate diagonal lines. Their method achieved

an average classification accuracy of 98.4% on the Columbia open dataset

[17].
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2.2.2 Methods from Natural Image Statistics

Natural images have some particular statistical properties that do not ap-

pears frequently in other types of images (computer generated, microscopic,

aerial, or X-ray images). One of the important natural image statistics is

the sparse distribution of the wavelet coefficients: natural images that are

suitably modeled by a generalized Laplacian density [37]. Shown in Figure

2.5 is the wavelet coefficient distributions of the second-level horizontal

subbands, respectively, for a photograph and a computer graphics. Based

on these statistical differences, some methods have been developed to dis-

tinguish CG images from the natural ones.

Figure 2.5: The log-histogram of the first level detail wavelet coefficients.

The wavelet coefficients are computed using Daubechies filters. Dash-line is the least squared
fitted generalized Laplacian density. Figure source: [40].

The first approach in this group was introduced in 2005 by Lyu and Farid

[36], which is normally considered as one of the first forensics approaches

in this problem. In this study, the authors use a statistical model on 216-

dimensional feature vectors calculated from the first four order statistics of

the wavelet decomposition. The idea of this method is summarized in Fig-

ure 2.6, where input image is first decomposed into three levels, then four

moments (mean, variance, skewness, and kurtosis) of the wavelet coefficient
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distribution and the linear prediction error distribution are computed for

each subband as features, finally a classic Support Vector Machine classifier

is applied.

They obtained classification rate of 66.8% on the photographic images,

with a false-negative rate of 1.2%. Datasets were collected from the Inter-

net.

12 

Linear 
Predictor 

Error statistic (108) Marginal statistic 
(108) 

H D V 

1 

2 

3 

Figure 2.6: Schema of the method in [36].

In a similar way, in 2006, Wang and Moulin [56] used a statistical model

with only 144-dimensional feature vectors achieving slightly better results

with respect to [36]. With less number of features, the computation speed

is about four times faster than that of Lyu and Farid [36]. They also com-

pared indirectly with the method in [18] and the obtained computational

is 70 times faster.

In 2007, Chen et al. [5] applied an idea from steganalysis, in which

they compute three levels of wavelet decomposition on the original and the

prediction images for each of the HSV color channels. The first three sta-
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tistical moments were computed for each subband which gave 234 features

in total. On a data set expanded from the Columbia open data set [17],

they achieved a classification accuracy of 82.1%.

Xu et al. [58] proposed a method in 2011 based on Benford’s law to

identify natural images. According to the authors, statistics of the most

significant digits extracted from Discrete Cosine Transform (DCT) coeffi-

cients and magnitudes of the gradient image of natural images are different

from CG images. They achieved an accuracy of 91.6% on their own dataset.

2.2.3 Methods from Visual Features

In 2006, Wu et al. [57] used the number of unique colors, local spatial

variation of color, ratio of saturated pixels, and ratio of intensity edges as

discriminative features and used k-NN to classify CG and natural images.

On their own dataset, they achieved an average accuracy of 95%.

In 2007, Lalonde and Efros [28] proposed a method that can identify

composite images by compare the color distribution between the back-

ground and the foreground objects. Their idea is based on an assumption

that color composition of natural images is not random, and some com-

positions appear more likely than the others. This idea can be apply to

differentiate natural images from CG images where color compatibility can

be used as discriminate features. Figure 2.7 illustrates the idea of this

method.

Pan et al. [41] in 2009 proposed a method that use fractal dimension

to analyze the differences between CG and natural images. In particular,

they computed the simple fractal dimensions on the Hue and Saturation

components of an image in the HSV color space as discriminative features.

On their own data set, they achieved an average accuracy of 91.2%, while

the method by Lyu and Farid [36] achieved 92.7% on the same data set.
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Background Color Distribution 

Object Color Distribution 

Distribution 
Comparison 

Realism score 

Figure 2.7: Idea of the method in [28].

2.2.4 Hybrid and Other Methods

In 2009, Sutthiwan et al. [49] considered the JPEG horizontal and vertical

difference images as first-order 2D Markov processes and used transition

probability matrices to model their statistical properties [40]. On their

data set, they achieved the average accuracy of 94.0% by using SVM with

the 324 dimensional feature vectors. An improvement was proposed by

using Adaboost: the number of features is reduced to 150 and the accuracy

increased to 94.2%. In [50], they extended the work by Chen et al. [5].

In this study, they computed the features on the original image, its JPEG

coefficient magnitude image and the residual error. On the same dataset,

they achieved an accuracy of 92.7% by using Adaboost on 450 dimensional

feature vectors.

Sankar et al. [47] in 2009 proposed a hybrid method, in which they

combined all the features from Ianeva et al. [23], Chen et al. [5], Ng et

al. [18], and Popescu and Farid [42]. On the Columbia open data set [17],

they achieved an average accuracy of 90%.

In 2011, Wang and Doube [55] proposed a method to measure visual

realism based on the following characteristics of natural images: surface
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2.2. CG VERSUS NATURAL DATA DISCRIMINATION METHODS

roughness, shadow softness, and color variance. However, they evaluated

the realism by comparing the new video games to the old ones, hence such

measure is considered week and better measures are needed.

In 2011, Conotter and Cordin in [8] developed an hybrid method, which

not only exploits the higher-order statistics of [36] but also uses the in-

formation from the image noise pattern (36-dimensional feature vectors

calculated from the PRNU [33] and used also for source identification [7]).

Figure 2.8 illustrate the idea of this method.

Image De-noise filter –

Noise pattern 

•  Mean 
•  Variance 
•  Skewness 
•  Kurtosis 

Wavelet-based 
features 

Figure 2.8: Schema of the method in [8].

We introduced a series of State-of-the-Art methods so far together with

their performances, however, it is not easy to have a direct comparison

since most of the methods were tested on different datasets. Thus, to

summarize all of them, we reported their performance together with the

datasets in Table 2.1.
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2.3 Generating Synthetic Facial Animations

Understanding how synthetic faces are generated and animated is the basis

for defining suitable algorithms to model them and to discriminate them

for natural images.

There are studies dating back to the 70s that analyse facial animations

(see for instance [12]). The Facial Action Coding System (FACS) by Ekman

[13] (updated in 2002 [11]) and the MPEG-4 standard [25] are the basis

for most algorithms generating synthetic facial animations. According to

FACS, face muscles are coded as Action Units (AUs) while expressions

are represented as AUs combination. In MPEG-4, explicit movements

of each face point are defined by Facial Animation Parameters (FAPs).

These parameters (FACS of FAPs) make the existed physically-constructed

model more realistic. Thus, synthesis of facial animations is performed

by modeling the facial animations and controlling parameters (Lee and

Elgammal [29]). Linear models, e.g., PCA by Blanz et al. [3] in 1999 and

Chen et al. [4] in 2012, and bilinear models [6][59] have been used for facial

expression analysis and synthesis.

In 2000, Seung et al. [48] discovered that a facial expression sequence lies

on a low-dimensional manifold. Thus, based on that inference, nonlinear

algorithms (e.g., local linear embedding (LLE) proposed by Roweis et al.

[46]) have been applied to find manifold from face datasets. However, these

data-driven approaches fail to find manifold representations where there are

large variations in the expression data by different type of expression and

different style of people [30].
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Chapter 3

CG versus Natural Human Faces

In this chapter, we focus on the specific class of images and videos con-

taining faces, since we consider critical to be able to discriminate between

photographic faces and the photorealistic ones. To this aim, we present new

geometric-based approaches relying on face asymmetry information and the

repetitive pattern from CG animations. These methods are able to detect

CG characters in both still images and videos with high performances.

“Who sees the human face correctly:

the photographer, the mirror, or the painter?”

Pablo Picasso

As mentioned in Chapters 1 and 2, we primarily studied geometric-

based techniques, which make use of measurements on human faces, to

discriminate between CG and natural faces. We investigated both image

and video CG versus natural discrimination methods, exploiting knowl-

edge of how synthetic animations are created and performed. One of the

advantages of geometric-based techniques is that the modeling and estima-

tion of geometry is less sensitive to resolution and compression that can
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3. CG VERSUS NATURAL HUMAN FACES

easily confound statistical properties of images and video. Furthermore,

all of these methods can be used as standalone methods or combined with

existing approaches. In the next sections, details of these methods are

introduced.

3.1 Discrimination based on Asymmetry Information

To the best of our knowledge, when creating synthetic human faces, design-

ers, in most cases, just make a haft of a face and then duplicate it to create

the other one. Then, they often apply post processing to achieve photore-

alistic results but usually not modifying the geometry of the model. Hence,

if a given face present a high symmetric structure, this could be considered

as a hint that it is generated via computer. On the other hand, although

human faces are symmetric, there does not exist a perfectly symmetrical

face, as confirmed by Penton-Voak et al. in [14]. The combination of such

two hints allow us to make the following assumption: the more asymmetric

a human face, the lower its probability to be computer generated. Based

on this assumption, we have developed a method (named AsymMethod) to

compute asymmetry information and thus discriminate between computer

generated and photographic human faces.

Our method contains three main steps as detailed in Figure 3.1: shape

normalization, illumination normalization and asymmetry estimation. First,

in shape normalization step, the input image is transformed into the ‘stan-

dard’ shape, i.e. is normalized into the same coordinate system for every

face, in order to make the measurements comparable. Then, in illumination

normalization step, unexpected shadows, which could affect the accuracy

of the measurements, are removed from the normalized face. Asymmetry

measurements which are stable under different face expressions are then

calculated in asymmetry estimation step. Finally, based on these measure-
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3.1. DISCRIMINATION BASED ON ASYMMETRY INFORMATION

ments, we assign to the given face a probability whether it is computer

generated or not.

Figure 3.1: Schema of AsymMethod.

An example of the process is shown in Figure 3.2, where a) represents

the input image, b) the normalized face, and e) the result after illumination

normalization.

3.1.1 Shape Normalization

We apply the traditional approach from [32] to normalize a shape of a face

in order to have a common coordinate system. This normalization is not

only making the measurements easier, but allows to combine them with

other facial features (e.g., EigenFace or Fisher Face). In particular, two

inner eye-corners, denoted as C1 and C2 and the filtrum, denoted as C3 of

a face are chosen. The given face is then normalized by moving [C1, C2,

C3] into the normalized positions, by the following three steps as follows:

• Step 1. Rotate (C1, C2) into a horizontal line segment.

• Step 2. Apply the shearing transformation that make the philtrum be

on the perpendicular line through the middle point of (C1, C2).

• Step 3. Scale the image that (C1, C2) has the length a and the distance

from C3 to (C1, C2) is b. See Figure 3.3 for example.

We used the same normalized values as mentioned in [32], which used

the fix values of the special points: C1 = (40, 48), C2 = (88, 48), and C3 =

(64, 84). The (0, 0) is the top-left corner. Figure 3.2 b) shows an example

of this step applied to Figure 3.2 a).
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(a) (b)

(c) (d)

(e)

(f) (g)

Figure 3.2: Face asymmetry estimation.

(a) input photo; (b) normalized photo; (c), (d) components of illumination normalization step;
(e) result after illumination normalization; (f), (g) sub-results of asymmetry evaluation step.
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Figure 3.3: Face normalization via inner eye-corners and a philtrum.

Figure source: [32]

3.1.2 Illumination Normalization

Illumination causes most challenging problems in facial analysis. Asym-

metry measure is calculated based on the intensity of the face image, thus,

the shadows, which are usually quantized as low value regions, play an

important role. However, what we need is the information of the face

structure, without any effects from shadows or unexpected lighting illumi-

nation. Hence, illumination normalization is required in order to enhance

the accuracy of the asymmetry measurements.

We apply the approach presented by Xie et al. in [19]. The basic idea is

to use the albedo of large scale skin and background, denoted as Rl(x, y)

to split the face image I into large-scale and small-scale components.

Based on Lambertian theory, we have:

I(x, y) = R(x, y)L(x, y) (3.1)

where R is the albedo of the face and L is the illumination. Estimating

this information consists of as an ill-posed problem, hence Xie et al. in [19]
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apply a transformation to overcome this issue as follows:

I(x, y) = R(x, y)L(x, y)

=

(
R(x, y)

Rl(x, y))

)
(Rl(x, y)L(x, y)) (3.2)

= ρ(x, y)S(x, y)

where ρ contains the intrinsic structure of a face image, and S contains

the extrinsic illumination and the shadows, as well as the facial structure. ρ

and S are called small-scale features and large-scale features, respectively.

In order to split the image into large-scale and small-scale, the Log-

arithm Total Variance (LTV) estimation is used. This estimation is in-

troduced in [16] and is the best method to extract illumination-invariant

features so far. After splitting the image I into ρ and S, smoothing filter,

which is also introduced in [19], are required to be applied on ρ in order to

remove unexpected effects from the decomposition in (3.2).

An example of this step is shown in Figure 3.2 where c) and d) represent

the large-scale and small scale components, respectively, after applying

LTV on the image b). The illumination normalized result is shown in e).

3.1.3 Asymmetry Evaluation

In order to estimate asymmetry, we use the measure introduced by Liu

et al. in [32], which is less depend on face expressions. Let us denote

the density of the image with I, and the vertically reflected of I with I ′.

The edges of the densities I and I ′ are extracted and stored in Ie and

I ′e, respectively. Two measurements for the asymmetry are introduced as

follows:

Density Difference (D-Face):

d(x, y) = ‖I(x, y)− I ′(x, y)‖ (3.3)
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Edge orientation Similarity (S-Face):

s(x, y) = cos
(
θIe(x,y),I ′e(x,y)

)
(3.4)

where θIe(x,y),I ′e(x,y) is the angle between the two edge orientations of

images Ie and I ′e, at position (x, y). Figure 3.2 (e) shows the estimated

frontal face resulting from the illumination normalization step. In Figure

3.2 (f) and (g) the D-Face and S-Face are shown, respectively.

Based on these measurements, we can estimate the asymmetry of a given

face photo since the higher the value of D-Face, the more asymmetric is the

face, and the higher the value of S-face, the more symmetric the face. The

total difference of D-Face and total dissimilarity of S-Face are calculated

as follows:

D =

∑
x,y∈Ω d(x, y)

η1
; (3.5)

S = 1−
∑

x,y∈Ω s(x, y)

η2
(3.6)

where η1, and η2 are the normalized thresholds, which scale D and S

into (0; 1), and Ω is the estimated region. Since our images are normalized

to the fixed size 128 × 128, and Ω is fixed as in [32], both thresholds η1,

and η2 are fixed.

Finally, we assign to image I an exponential probability to be computer

generated, as follows:

P = λe−λ
√
D2+S2

(3.7)

where λ is a constant (we use λ = 1.0). If P is over a threshold τ , I is

classified as a computer generated human face (we use τ = 0.5).

The results, which are introduced in details in Chapter 4, show that

AsymMethod can be used as a stand alone method or in combination with

other information to improve state-of-the-art techniques for still images.
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In the next section, ExpressMethod, which discriminate between CG and

natural faces in videos or sequences of faces, is presented.

3.2 Discrimination through Facial Expressions Anal-

ysis

In order to deal with more complicated situations in videos or sequences

of images, we proposed a second method, namely ExpressMethod, to dis-

tinguish between CG and real characters by analysing facial expressions.

The underlying idea is that facial expressions in CG human characters

follow a repetitive pattern, while in natural faces the same expression is

usually produced in similar but not equal ways (e.g., human beings do not

always smile in the same way). Our forensic technique take as input var-

ious instances of the same character expression (extracting corresponding

frames of the video sequences) and determine whether the character is CG

or natural based on the analysis of the corresponding variations. We show

that CG faces often replicate the same expression exactly in the same way,

i.e., the variations is smaller than the natural ones, and can therefore be

automatically detected.

Our method contains five steps as detailed in Figure 3.4:

• From a given video sequence, frames that contain human faces are

extracted in the first step A.

• Then, in step B, facial expression recognition is applied in order to

recognize the expressions of the faces. Six types of facial expressions

are used in this step, following the six universal expressions of Ekman

(happiness, sadness, disgust, surprise, anger, and fear) [13] plus a

‘neutral’ one. Based on the recognition results, faces corresponding

to a particular expression (e.g., happiness) are selected for the next
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steps. Notice that the ‘neutral’ expressions are not considered, i.e.,

faces showing no expression are not taken into account for further

processing.

• In the next step C the Active Shape Model (ASM), which represents

the shape of a face, is extracted from each face. In order to measure

their variations, all shapes have to be comparable.

• In step D, each extracted ASM is then normalized to a standard shape.

After this step, all ASM shapes are normalized and are comparable.

• Finally, in step E, differences between normalized shapes are anal-

ysed, and based on the variation analysis results, the given sequence

is confirmed to be CG or natural.

The right part of Figure 3.4 shows an illustration of the analysis pro-

cedure on happiness expression. Seven frames that contain faces are ex-

tracted in step A. Then, facial expression recognition is applied in step B

and three happy faces are kept. For each face, the corresponding ASM

model, which is represented by a set of reference points, is extracted in

step C. Then, each model is normalized to a standard shape, step D. All

normalized shapes are then compared together in step E, and based on the

analysis results the given character is confirm as computer generated since

the differences between the normalized shapes are small (details about the

variation analysis are given in the following Subsection 3.2.5).

3.2.1 Human Faces Extraction

Face detection problem has been solved with the Viola-Jones method [54],

which can be applied in real-time applications with a high accuracy. In

this step, we reuse this approach to detect faces from video frames, and

frames that contain faces are extracted. More details about this well-known
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Figure 3.4: Schema of ExpressMethod.

A. Human faces are extracted from the video sequence(s). B. Facial expressions are recognized
(in the example 3 happy, 2 disgust, 1 surprise and 1 neutral). C. Faces with the same expression
are selected (in this example only happy faces) and their active shape models are extracted. D.
The extracted models are normalized. E. Differences on the normalized models are analysed to
determine whether the character is CG.
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method can be found in [53] and [54]. It is worth mentioning that in this

first work we do not face the problem of face recognition, thus assuming

to have just a single person per video sequence (the analysed character).

3.2.2 Facial Expression Recognition

Facial expression recognition is a nontrivial problem in facial analysis. In

this study, we applied an EigenFaces-based application [45] developed by

Rosa for facial expression recognition. The goal of this step is to filter

out the outlier expressions and keep the recognized ones for further steps.

Notice that this application associates an expression to a given face without

requiring any detection of reference points. In Figure 3.4 an example of

results of this application is shown with 7 faces (3 happy, 2 disgust, 1

surprise and 1 neutral).

3.2.3 Active Shape Model Extraction

Input images for this step are confirmed to have the same facial expression

of the same person, thanks to the preprocessing in the first two steps. In

order to extract face shapes, which are used in our analysis, an alignment

method is applied. In this step, we follow the Component-based Discrim-

inative Search approach [31], proposed by Liang et al. The general idea

of this approach is to find the best matching from the mode candidates,

where modes are important predefined points on face images (e.g., eyes,

nose, mouth) and are detected from multiple component positions [31].

Given a face image, the result of this step is a set of reference points,

representing the detected face. In Figure 3.6 (a) an example of this step

is shown, where the right image shows reference points representing the

face in the left image. In this method, the authors exploit the so called

ASM, which contains 87 reference points as shown in Figure 3.5. Another
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Figure 3.5: The 87 points of Active Shape Model (ASM).

Figure source: Microsoft Research Face SDK.

example of this step on a CG face is also reported in Figure 3.6 (c), where

the left image shows the synthetic facial image and the right one shows the

corresponding ASM.

3.2.4 Normalized Face Computation

ASM models precisely and suitably represent faces, but they are incom-

parable since faces could be different in sizes or orientations. They need

to be normalized in order to be comparable. In this step, we apply the

traditional approach from [32] to normalize a shape of a face in order to

have a common coordinate system. This normalization is an affine trans-

formation used to transform the reference points into fixed positions. Since

eye inner corners and the philtrum are stable under different expressions,

these points have been chosen as reference points. Shown in Figure 3.5,

the reference points number 0 and 8 are two inner eye corners. The last

reference point, the philtrum, can be computed via the top point of outer

lip and two nostrils (point 51 and 41, 42 on the ASM model, respectively),
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3.2. DISCRIMINATION THROUGH FACIAL EXPRESSIONS ANALYSIS

as follows:

pphiltrum =
p41+p42

2 + p51

2
(3.8)

where p41, p42, and p51 are the reference points on the extracted ASM.

After computing the three reference points, each ASM model is nor-

malized by moving {p41, p42, pphitrum} into their normalized positions, as

follows: (i) rotate the segment [p41, p42] into an horizontal line segment;

(ii) shear the philtrum to be on the perpendicular line through the middle

point of [p41, p42]; and finally (iii) scale the image so that the length of seg-

ment [p41, p42] and the distance from pphiltrum to [p41, p42] have predefined

fixed values (see [32] for more details). An illustration of this normalization

is shown in Figure 3.3 in Section 3.1.

Shown in Figure 3.6 (b) and (d) are examples of the normalized faces

after Face Normalization step. The left images show the normalized faces

and the right ones show the normalized reference points.

3.2.5 Variation Analysis

In this step, differences among normalized ASM models are analysed in

order to determine if a given character (and therefore the corresponding

set of faces) is CG or real. We analyse the differences as described in the

following paragraphs.

First, the distance di,p of each reference point p on a model i to the

average of all points p of all models is calculated as:

di,p = ‖(x, y)i,p − (x, y)p‖ (3.9)

where (x, y)i,p is the position of the reference point p on the model i;

(x, y)p = 1
N

N∑
i=1

(x, y)i,p, where N is the number of normalized ASM models;

and ‖·‖ is Euclidean distance.
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Figure 3.6: Examples of computed ASM and normalized ASM.

(a) and (c) show a photographic and a computer generated happy face, respectively, and their
corresponding ASM points; (b) and (d) show the normalized images of (a) and (c), respectively,
and their corresponding normalized points.
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3.2. DISCRIMINATION THROUGH FACIAL EXPRESSIONS ANALYSIS

Depending on the facial expression ξ (among six universal expressions),

a subset Sξ of reference points (not all 87 points) are selected for the anal-

ysis. For example, with the happy facial expression (ξ = 1) only reference

points from 0 to 15 and from 48 to 67, which represent the eyes and the

mouth, are considered, i.e., S1 = {0, 1, 2..15, 48, 49, .., 67}. The subsets are

selected based on our experiments and suggestions from EMFACS [13], in

which a facial expression is represented by a combination of AUs codes.

Shown in Table 3.1 are the reference points selected in our method and the

correspondent AUs codes from EMFACS. Some explanations of the AUs

codes are also listed in Table 3.2. Full codes in EMFACS could be seen in

[13].

Table 3.1: Expressions with Action Units and correspondent ASM points

ξ Expression Action Units (AUs) Reference Points (Sξ)

1 Happiness 6+12 S1 = {0− 15, 48− 67}
2 Sadness 1+4+15 S2 = {0− 35, 48− 57}
3 Surprise 1+2+5B+26 S3 = {16− 35, 48− 67}
4 Fear 1+2+4+5+20+26 S4 = {16− 35, 48− 57}
5 Anger 4+5+7+23 S5 = {0− 64}
6 Disgust 9+15+16 S6 = {0− 15, 48− 67}

Two main properties are taken into account in this analysis: mean and

variance, calculated as their traditional definitions:

µp =
1

N

N∑
i=1

di,p, and σp =
1

N

N∑
i=1

||di,p − µp||2 (3.10)

where µp and σp are the mean and variance of all distances di,p at reference

point p over all models.

The given set of models on expression ξ is confirmed to be CG or natural

by comparing the Expression Variation Value EV Vξ to the threshold τξ.

15B mean slight intensity of AU 5, i.e., the upper lid slightly raises.
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Table 3.2: Meaning of the AUs.

AU Number FACS name

1 Inner Brow Raiser
2 Outer Brow Raiser
4 Brow Lowerer
5 Upper Lid Raiser1

6 Cheek Raiser
7 Lid Tightener
9 Nose Wrinkler
12 Lip Corner Puller
15 Lip Corner Depressor
16 Lower Lip Depressor
20 Lip Stretcher
23 Lip Tightener
26 Jaw Drop

The value of EV Vξ is computed as follows:

EV Vξ = αξ

1
|Sξ|
∑
p
µp

λ1,ξ
+ (1− αξ)

maxp{σp}
λ2,ξ

(3.11)

where αξ is a weighted constant, αξ ∈ [0; 1]; λ1,ξ and λ2,ξ are the normaliza-

tion values used to normalize the numerators into [0; 1]. In our experiments

αξ are set to 0.7 for ξ = 1, ..., 6.

EV Vξ is then compared with τξ, recognizing the character corresponding

to the set of faces as CG if EV Vξ < τξ, natural otherwise.

Shown in Figure 3.7 are the mean values, corresponding to all 87 ASM

points, for the sadness expression (ξ = 2) analysed on the two set of images

shown in Figures 3.7(a) and 3.7(b). The horizontal axis represents p, from

1 to 87, while the vertical axis shows the value of µp. Since the facial

expression is sadness (ξ = 2), only the values from µ0 to µ35 and from

µ48 to µ57 are considered (see the selected reference points in Table 3.1).

In this example, the Expression Variation Value EV V2 of the CG face is

0.35 comparing to 0.74 of the natural one (τ2 = 0.6). Another example on
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(a) Sadness human faces.

(b) Sadness CG faces.
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Differences on the mean of ASM points between (a) and (b).

Figure 3.7: Example of differences on the mean of ASM points on sadness expression.

happiness faces is shown in Figure 3.8.

Values of the thresholds τξ(ξ=1..6) are manually set based on experiments,
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(a) Happiness human faces.

(b) Happiness CG faces.

Differences on the mean of ASM points between (a) and (b).

Figure 3.8: Example of differences on the mean of ASM points on happiness expression.
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with the goal of keeping the miss classification as small as possible.

In the next section, our last proposed method is presented, which can be

applied to more complex situations and animations without using different

configurations while ExpressMethod requires the analysis of different sets

of points for each single expression.

3.3 Identifying Synthetic Facial Animations through

3D Face Models

ModelMethod is a model-based method which allow to deal with natural

behaviours of represented facial animation, where characters are moving

and turning their faces. Computer generated facial animations are usually

created by deforming a face model according to given rules or patterns.

Typically, the deformation patterns are pre-defined and contain some pa-

rameters to rule the intensity of the expression. Also natural expressions

are similar to one each other to some extent, due to physical limitations

and personal attitudes, although in this case the variety of the expressions

is much higher, taking into account asymmetries, different grades, bland

of various sentiments, context, and so on.

What we propose here is to define a metric which we can be used to

measure the diversity in animation patterns, in order to assess if the rel-

evant video shows a synthetic characters or a human being. The idea is

that a high regularity of the animations suggests that the face is computer

generated, while a high variety is typically associated to natural images.

The proposed method associates a 3D model to the face to be analyzed

and maps the various instances of the face in the video to the model, ap-

plying appropriate deformations. Then, it computes a set of parameters

associated to the relevant deformation patterns. Finally, it estimates the

variation of the parameters along time to achieve a measure of the diversity,
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thus leading to the classification of the face in synthetic or natural.

The choice of using a face model instead of working directly on the

image is motivated as follows:

• The face model is less dependent on changes of the pose;

• Meaningful information about the whole face is taken into account

instead of separate feature points;

• The face model reconstruction does not require all facial feature points,

which are not always available due to occlusion or lighting condition,

and can be computed for many more instances of the face within the

video.

The proposed method, illustrated in Figure 3.9, consists of 3 main steps

as below:

• (A) Video normalization: the video sequence is brought to stan-

dard parameters in terms of resolution and framerate, so as to min-

imize possible alterations of the model caused by different video for-

mats;

• (B) Face model reconstruction: facial feature points, which rep-

resent the face shape, are extracted via Active Shape Model (ASM)

and a face form in 3D is reconstructed by modelling a neutral shape

to best approximate the extracted ASM;

• (C) CG characters identification: the sequence of actualized 3D

face models is represented by applying a Principle Component Analy-

sis (PCA), and the variations of the obtained feature vectors are used

to classify the face.
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Figure 3.9: Schema of ModelMethod.

Step (A), the same amount of frames of are extracted every second. Step (B), based on the
extracted ASM points, the face model is reconstructed for the face in each frame. Step (C),
analyze the variations of the models in time order to identify the synthetic animation.
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3.3.1 Video Normalization

Since the proposed method applies to any kind of video source, first of all

we normalize the source to a standard format to avoid variations in the

model due to the characteristics of the video. The frame rate is therefore

reported in the range 10-12 frames/second, which are largely sufficient to

capture all the significant expression variations in a human face (noticed

that the human visual system can process 10 to 12 separate images per

second [43]).

To perform this operation, a distance measure Df(Fi, Fj) between face

models in frame Fi and frame Fj is defined and computed by exploiting

three special feature points:

Df(Fi, Fj) =
1

3

∑
k∈K

||ρki − ρkj || (3.12)

where || · || is Euclidean distance, ρki and ρkj are the spatial coordinates

of point k on the face in frame Fi and frame Fj and K = {left-eye inner

corner, right-eye inner corner, philtrum} (see these points in Figure 3.3).

For every second, i.e., for every i and j such that ||i − j|| = 1 second,

if Df(Fi, Fj) is smaller or equal to a threshold T , M frames between Fi

and Fj are grabbed. In our experiments, with T equal 8, 10, and 12, the

number of frames grabbed M are 10, 11, and 12, respectively. Notice that

there are no videos with Df(Fi, Fj) > 12 in our experimental datasets. As

to the spatial resolution, each face is analyzed in a resolution of 400× 400.

We choose two inner corners and a philtrum due to their stability under

different expressions and lighting conditions [32]. Therefore, distances of

these points can be considered as a measure of speed of the head movement.

This step helps to convert an input video into a homogeneous series of

face instances of the same person in chronological order (see Figure 3.9).
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3.3.2 Face Model Reconstruction

In order to reconstruct the face model from a 2D input image, we apply the

method from [4]. After building a reference 3D model, this method adapt

this reference model to the 2D image through an optimization procedure.

To build the reference 3D model, Algorithm 1 is applied on a training

set of 3D images, to construct a normalized mean shape S
3D

which can be

considered as a general 3D face model, and the corresponding eigenvectors

matrix ϕ3D, which can be used to transform a given 3D shape into the 3D

face model. This normalized mean shape S
3D

and the eigenvectors matrix

ϕ3D are called 3D Point Distribution Model (PDM). Notice that the PDM

is built only once and can be applied to different faces in different videos.

By using the PCA, new shapes can be expressed by linear combinations

of the training shapes [27], hence the normalized mean shape S
3D

can be

deformed (larger eyes, wider chin, longer nose, etc.) to best fits the input

faces.

Given a PDM, we now have to approximate it to all instances of faces

output of step (A). In order to reconstruct the face model from a 2D input

image, we have to project the 3D PDM into 2D space. This could be done

through an optimization procedure, which is summarized as Algorithm 2.

The main idea is to perform the optimization process on a single instance

each time: face pose is estimated based on the generated shape, then

based on the new computed pose, the new face shape is re-estimated, and

so on, i.e., either shape or pose is estimated each time based on the other

information. Thus, step (B) will produce all the information needed to

map the set of 2D faces into the corresponding set of 3D face models.

Notice that differently from [4], the ASM points for each 2D face s2D

are extracted by using Luxand FaceSDK [34], which able to extract 66

ASM points for each face in still images. Camera intrinsic parameters (f ,
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Algorithm 1 Compute 3D Point Distribution Model (PDM)

Input: n different shapes of faces {s3D1 , s3D2 , . . . , s3Dn }, where s3Di =
{x1i , y1i , z1i , x2i , y2i , z2i , . . . , xdi , ydi , zdi }, where d is the number of ASM points and
(xki , y

k
i , z

k
i ) is the spatial position of point kth on face ith.

Output: A normalized mean shape S
3D

and the corresponding eigenvectors matrix ϕ3D

of the training faces. Method: (inspired from [4])

1: Normalize all face shapes: all the points are scaled into [-1, 1]:
S3D
i ← Normalize3D(s3Di ), i = 1, 2, ..., n.

2: Compute the mean shape: S
3D ← 1

n

∑n
i=1 S

3D
i

3: repeat
4: for each normalized shape S3D

i do

5: Find rotation matrix Ri and translation vector ti to transform S3D
i into S

3D
.

6: S3D
i ← Ri(S

3D
i ) + ti.

7: end for
8: Re-compute the mean shape: S

3D ← 1
n

∑n
i=1 S

3D
i

9: until convergence.
10: Apply Principal Component Analysis (PCA) to all normalized shapes S3D

i , i =
1, 2, ..., n to have the eigenvectors matrix ϕ3D.

(ox, oy)), the rotation matrix R and the translation vector t in equation

(3.13) and (3.14), are represented as a single camera projection matrix,

and hence can be jointly approximated. They can be decomposed from

the camera projection matrix by using the method in chapter 6, section

6.3.2 in [52].

Given the 3D PDM defined exploiting Algorithm 1, we report in Figure

3.10 an example 3D face reconstruction (step B). The left picture shows

an example of 2D facial features extraction using Luxand FaceSDK [34].

Algorithm 2 is then applied to the extracted 2D points, and the 3D shape

and model are reconstructed, as shown in the right picture.

The accuracy of step (B) is critical for the following step (C) and will

be demonstrated in the experiments (Section 4.5).
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Algorithm 2 Extract pose and face parameters (from [4])

Input:

• A shape in 2D: s2D = {x1, y1, x2, y2, . . . , xd, yd}, where d is the number of ASM
points and (xk, yk) is the spatial position of point kth on the input face.

• A PDM (S
3D

and ϕ3D).

Output: The face model p3D, rotation matrix R and translation vector t.
Method:

1: Normalize the face shape: all the points are scaled into [-1, 1]: S2D ←
Normalize2D(s2D)

2: p3D ← 0.
3: while p3D, R, and t do not converge do
4: Compute R and t by solving

Err =
∣∣∣∣∣∣S2D − P (R(S

3D
+ ϕ3Dp3D) + t)

∣∣∣∣∣∣
2

(3.13)

using Zhang’s method [60], P is the projection transformation. A 3D point
(xi, yi, zi)

T is projected by P into 2D space as follows:

P

xiyi
zi

 =
f

zi

(
xi
yi

)
+

(
ox
oy

)
(3.14)

where f is the focal length, and (ox, oy) is the principal point location on 2D image.

5: Compute the new face: S∗3D ← R(S
3D

+ ϕ3Dp3D) + t
6: Generate the ideal 3D shape S

′3D: S
′3D ← x and y values from S2D and z values

from S∗3D.
7: Recompute p3D from S

′3D:

p3D = (ϕ3D)T (R−1(S
′3D − t)− S3D

).
8: end while
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Figure 3.10: An example of step (B): face model reconstruction.

Left picture: the extracted ASM feature points. Right picture: A reconstructed 3D face shape.
The computed pose is (roll = −15.55o, yaw = −0.45o, pitch = −2.97o), the translation vector is
t = [−0.0217,−0.0042,−0.0478]T , and the focal length f = 0.0478.

3.3.3 Computer Generated Character Identification

Step (B) outputs p3D, R and t for each analyzed 2D face representation.

Based on this information, step (C) analyzes the evolution of such 3D face

model p3D along the video. Thanks to PCA, exploiting the face model p3D

allows us to work on a space where the information about the whole face

is encoded but also compressed in a limited number of coefficients, which

contain the most discriminative components of the signal.

Figure 3.11 shows various 3D shapes generated from different values of

the first component of the face model of the mean shape S
3D

(note that

S
3D

has p3D =
−→
0 ). Hence, differences of a face in an animation can be

analyzed based on the first components instead of all feature points.

Furthermore, we study the evolution of the model not only during the

whole video, but also on non-overlapping windows (see Figure ??) that can

highlight particular animations and expressions of the represented charac-

ter (e.g., two or more different animations in a same video can be better
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Figure 3.11: The role of face models.

Various 3D shapes generated from different values of the first component p1 of the face model

p3D of the mean shape S
3D

. Notice that small differences in p1 lead to visible differences in the
3D face shapes.
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analyzed using small windows).

Let us assume each window Wj of length of l, and a face model p3D
i

extracted and encoded using PCA as p3D
i = (p1

i , p
2
i , ..., p

m
i ) for each frame i

in Wj. Hence each window Wj is encoded as a matrix l ×m:
p1

1 p2
1 · · · pm1

p1
2 p2

2 · · · pm2
...

... . . . ...

p1
l p2

l · · · pml

 (3.15)

Notice that m = 3d, where d is the number of feature points in Algo-

rithm 2. In order to study how the 3D face model evolves in Wj and thus to

measure the complexity of the geometric distortion during the animation,

we extract the following properties:

1. The mean values µcj, c ≤ m, in Wj.

µcj = mean(||pc2 − pc1||, ||pc3 − pc1||, ..., ||pcl − pc1||) (3.16)

2. The standard deviations of differences σcj , c ≤ m, in Wj.

σcj = sdv(||pc2 − pc1||, ||pc3 − pc1||, ..., ||pcl − pc1||) (3.17)

3. The average lengths of the trajectories τ cj , c ≤ m, in the first compo-

nents.
τ cj =

1

l − 1

l∑
i=2

||pci − pci−1|| (3.18)

4. The average length of the combination of trajectories T cj , c ≤ m, of

the first components (note that T 1
j = τ 1

j ).

T cj =
1

l − 1

l∑
i=2

√√√√ c∑
k=1

||pki − pki−1||2 (3.19)
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Here, µcj contains the mean of the differences between the models and σcj
measures the spread of the models (from µcj), while τ cj and T cj evaluate the

amount of changes of the models over time. Considering this problem as

the analysis of a point moving in the space, Equation (3.16) and Equation

(3.17) represent the mean position and variance, while Equation (3.18) and

Equation (3.19) describe the length of the path of the moving point (see

Figure 3.12 for a graphical explanation).

Figure 3.12: Graphical explanation of the chosen properties.

Each face is transformed as a point in PCA space, hence the analysis of the evolution of a face
over time can be done by study the trajectory of the corresponding moving point in PCA space.
Giving the correspoding ‘sphere’ where the points are moving, Equation (3.16) and Equation
(3.17) correspond to its center and its size, while Equation (3.18) and Equation (3.19) are related
with the length of the trajectory.

We have then a set of features extracted from each window Wj, and
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another set of features extracted in the same way over the whole video,

i.e., l = N , where N is the number of frames. The features computed

on the whole video are fundamental for videos containing a main single

expression, while the average computed on sets corresponding to Wj, ∀j
is critical when we deal with more complicated videos containing complex

animations. Both properties are then important to take final decision.

Shown in Figure 3.13 is an example on videos of a CG characters (panel

(a)) and a real human (panel (b)) changing the animations from talking

to smiling. Panel (c) shows the mean values over the whole video, in this

case, the average difference on the first component between the CG and

natural video is 0.0019, and panel (d) shows the same mean values, but on

non-overlapping windows, and in this case, the difference is 0.0038.

The last step is a binary classifier that differentiates between CG and

natural face animations. To this purpose we use a support vector machine

(SVM) fed with the above features. A polynomial kernel is used with

Sequential Minimal Optimization (SMO) method.

3.4 Discussions

In the previous sections, we presented novel ways to tackle the problem of

differentiating between computer generated and photographic human faces.

Based on the characteristics of these methods, ModelMethod, which analy-

ses the evolution of face models over time, seems to be the best solution for

most of the cases. However, there are situations that using AsymMethod

and ExpressMethod is more suitable. Hence, in this section, we give some

discussions on advantages and disadvantages of each method in order to

complete our solutions to this problem. This could be considered as a strat-

egy for differentiate between CG and natural human faces in multimedia

data.
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3. CG VERSUS NATURAL HUMAN FACES

• AsymMethod:

– Advantages: this method is easy to implement and can be com-

bined with other state-of-the-art methods on still images, or ap-

plied to frontal faces in ExpressMethod and ModelMethod.

– Disadvantages: this approach only works only with frontal faces

so far, since the normalization step can only normalize rotated

faces, but not the turned ones; moreover it is very sensitive to the

normalization step. Although this is a geometric-based method,

the D−face is computed based on the intensity of the face, hence

it is dependent on the resolution and quality of the input image.

– Best situations: this method can work on a single photo, espe-

cially when combined with other natural images statistic method,

e.g., the method in [36].

• ExpressMethod:

– Advantages: this method can work not only on a video but

also on a set of images (of a same person on a same expression).

Furthermore, there is no machine learning required to used in

order to detect the computer generated character.

– Disadvantages: The major drawback of this method is in the

fact that differences in facial expressions are difficult to be mod-

eled and may be sensitive to the limited set of expressions available

on the video. For instance, the displacement of the points located

on the lips in a sad expression is not comparable to the displace-

ment of the same points in a happy expression, thus requiring

the analysis of different sets of points for each single expression.

Moreover, this requires the availability of multiple instances of

the same (or similar) expression, which is not often the case in
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3.4. DISCUSSIONS

real videos. Finally, since the method works in 2D, it is able to

manage only on frames where the face appears in nearly frontal

view, which again reduces the information that can be extracted

from a video clip.

– Best situations: on the set of images of a same person on a

same expression, especially on happiness expression since most of

the expression recognition methods work well on happiness.

• ModelMethod:

– Advantages: ModelMethod is developed from limitations of the

previous approaches, hence it covers a larger variety of situations

and can model in a more dependable way the characters’ be-

haviours, even when the subject is moving and turning the face.

The proposed model better fits the analysis of human faces, taking

into account their variety, deformability, diversity of expressions,

different poses, as well as the external factors such as illumination

conditions and framing.

– Disadvantages: ModelMethod requires machine learning sys-

tems and has a complex installation. It also requires a very good

PDM, which must be computed from a large dataset of 3D facial

images.

To summarize, ModelMethod could be applied to differentiate between

CG and natural human faces in a general way. However, when working

with a set of faces without any knowledge about the chronological order of

the faces, ExpressMethod could be used instead of ModelMethod. Further-

more, when lacking of training datasets or working with video of happiness

faces, ExpressMethod can be a good solution. Finally, only AsymMethod

can deal with the problem in still images, hence fusing it with other method
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3. CG VERSUS NATURAL HUMAN FACES

can significantly increase the performance of the discrimination method.

Table 3.3 summarizes all of the characteristics of the proposed methods.

Table 3.3: Summary of the proposed methods.

AsymMethod ExpressMethod ModelMethod

Implementation level 1 ms/image 1 s/frame 30 s/frame
Works on a single photo Yes No No
Works on videos No Yes Yes
Independent on resolution No Yes Yes
and format
Poses 0 degree Up to 5 degrees Up to 30 degrees
Require ML No No Yes
Expression independent No No Yes
Works with partial of a face No No Yes
Times constraint No No Yes

Notice that with the implementation level, we measured the computa-

tional from experiments. With a PC of CPU Core 2 3.06GHz, 8GB RAM,

running Windows 7 and the experiments were performed by Matlab 2010b,

AsymMethod requires less than 1 millisecond to compute asymmetry level

of an input image, ExpressMethod takes around 1 second on each image in-

stances after the ASM points were extracted, while ModelMethod requires

in average 30s from each frame for reconstructing 3D model and analyzing

the evolution. The details of all experiments will be introducted in the

next chapter.
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Chapter 4

Experimental Results

In this chapter, we present experimental results on the proposed methods,

which show that using these methods, CG faces can be detected from both

still images and videos in reliable and accurate ways. The organization of

the collected datasets and evaluation metrics are also introduced.

However beautiful the strategy, you should occasionally look at the results.

Winston Churchill
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4. EXPERIMENTAL RESULTS

4.1 Datasets

In order to evaluate the performance of the proposed methods, various

sources have been collected and created to have a complete evaluation.

The datasets are grouped into two categories:

• Benchmark datasets: these are the common datasets which are used

in other studies.

• Collected datasets: we also created and collected other images and

videos for our simulations on the situations which are not available in

the benchmark datasets, e.g., faces with different poses or photoreal-

istic human faces in high quality.

In the next sections, details of these datasets are introduced.

4.1.1 Benchmark Datasets

We used several common datasets in facial analysis together with multi-

media forensics for our evaluation:

4.1.1.1 BUHMAP-DB

Boğaziçi University Head Motion Analysis Project Database (BUHMAP-

DB) [1] contains 440 videos of 11 people (6 female, 5 male) performing 5

repetitions on 8 different gestures. BUHMAP-DB is used in experiments

of both Method 2 and Method 3. Shown in Figure 4.1 are two examples

of the faces extracted from BUHMAP-DB.

4.1.1.2 JAFFE

The Japanese Female Facial Expression Database (JAFFE)[35] contains

213 images of 7 facial expressions posed by 10 Japanese female models.
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4.1. DATASETS

(a) Happiness

(b) Sadness

Figure 4.1: Examples of extracted faces from BUHMAP-DB.

This dataset is used in both Method 2 and Method 3. Shown in Figure 4.2

are some examples of the faces extracted from this dataset.

4.1.1.3 CASIA-3D FaceV1

Casia-3D FaceV1 [51] consists of 4624 scans of 123 people using the non-

contact 3D digitizer. For each person, they collected 37 - 38 images, both

in 3D and 2D, in different poses, expressions, and lighting conditions. The

3D-PDM reference model of Method 3 is built based on this dataset. Shown

in Figure 4.3 are some examples of the faces from this dataset.

63



4. EXPERIMENTAL RESULTS

(a) Happiness

(b) Sadness

(c) Surprised

Figure 4.2: Examples of faces from JAFFE.
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4.1. DATASETS

Figure 4.3: Sample images from CASIA-3D FaceV1 dataset.

4.1.1.4 Star Trek

We collected Star Trek Aurora1 movie, a fully-animated product, and Star

Trek Odyssey, a live action movie from Star Trek: Hidden Frontier series2

in order to test Method 2. In Star Trek Aurora, two graphics applications,

namely Poser and Cinema 4D, are used to create the entire 3D world and

characters while Star Trek Odyssey is a normal movies perform by real

actress. Some examples of these two movies are shown in Figure 4.4

4.1.2 Collected Datasets

We created and collected other images and videos for our simulations on

the situations which are not available in the benchmark datasets, e.g., faces

with different poses or photorealistic human faces in high quality. In the

following sections, details of these datasets are presented.

1http://auroratrek.com
2http://www.hiddenfrontier.com
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4. EXPERIMENTAL RESULTS

(a) Star Trek Aurora, a fully-animated movie.

(b) Star Trek Odyssey, a live action movie.

Figure 4.4: Examples of human happiness faces extracted from Star Trek movies.

4.1.2.1 D1. Synthetic Human Faces

We have collected the computer generated images from the Society of Dig-

ital Artist3 and downloaded football player face images from the database

of Faces for Pro Evolution Soccer 2012 (PES 2012)4. All of the computer

generated images are confirmed that they are purely created by computer.

We have also collected other images from Karolinska5 database, which con-

tains hundreds of frontal face images. For the natural images, real people

and football players images were collected from various sources on the in-

ternet. From these images, we grouped them into two sub-datasets:

• Dataset D1.1 contains very realistic CG images, which are almost

undetectable by human, together with other natural images;

• Dataset D1.2 contains more images of the football players from PES

2012, and real faces as described above.

The number of images from these two subsets are reported in Table 4.1

while some examples are shown in Figure 4.5.

3http://CGSociety.org
4http://www.pesfaces.co.uk/
5http://webscript.princeton.edu/˜tlab/databases/database-2-karolinska-dataset/
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4.1. DATASETS

(a) CG faces of Dataset D1.1, downloaded from CGSociety.org.

(b) Real faces of Dataset D1.1

(c) CG faces of Dataset D1.2, downloaded from PES 2012 faces database

(d) Real faces of Dataset D1.2.

Figure 4.5: Examples of images in dataset D1.
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4. EXPERIMENTAL RESULTS

Table 4.1: Number of images in Dataset D1

Computer Generated Photographics

Dataset D1.1 40 40
Dataset D1.2 200 200

4.1.2.2 D2. Synthetic Expression

The experiments of Method 2 are performed on expressions, hence starting

from the 11 people of BUHMAP-DB, we created 11 CG characters by using

FaceGen [24] and morphed all of them into both happy and sad faces.

FaceGen is a powerful tool which can be used in building complex face

structures from one to three images. In our case, we pass a ‘neutral’ image

to FaceGen in order to build the face structure, then we use Morph options

to generate happiness and sadness expressions on the new generated face.

Thus, we obtained 110 sets of happy and sad faces, where each model has

55 sets corresponding to happiness and 55 sets corresponding to sadness.

Shown in Figure 4.6 are two examples of the CG versions and the original

faces from BUHMAP-DB.

The same process is applied on JAFFE datasets to have 6 models with

all types of expressions (see examples in Figure 4.7).

4.1.2.3 D3. Synthetic Animations

For this dataset, we created face models in 3D then create synthetic ani-

mations based on those models. We also collected videos from Internet for

the most realistic characters. These videos are used in the experiments of

Method 3.

• Set D3.1: 10 face models in 3D, rotated with different poses and

stored in 2D to have 60 images in total. See examples in Figure 4.8.

• Set D3.2: 60 sets of synthetic characters performing different ani-

mations, (5 males and 5 females with 6 animations for each person).
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4.1. DATASETS

(a) Happiness

(b) Sadness

Figure 4.6: Examples of faces from BUHMAP-DB and the corresponding CG faces gen-
erated via FaceGen.
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4. EXPERIMENTAL RESULTS

(a) Happiness

(b) Sadness

(c) Surprised

Figure 4.7: Examples of faces from JAFFE and the corresponding CG faces generated
via FaceGen.
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4.2. EVALUATION METRICS

Figure 4.8: Examples of images from dataset D3.1.

For each set, 100 images has been created as a video of 10 seconds

with the frame rate of 10 fps. Figure 4.9 shows some example of the

images, exacted from each second. The model are built based on real

people from BUHMAP-DB.

• Set D3.3: We collected videos from Internet for the most realistic

characters (see the list in Appendix A) and extracted 24 short anima-

tions from those videos for our experiments, each animation last from

6 to 10 seconds. Shown in Figure 4.10 are some examples of this set.

Datasets information are summarized in Table 4.2, while in the next

sections, details of the experiments on these datasets are introduced.

4.2 Evaluation Metrics

In this section, we present the common metrics that used in most of the

work in this field, which is based on the typical precision/recall and confu-

sion matrix. In particular, the current works mainly consider the problem
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4. EXPERIMENTAL RESULTS

(a) Happiness.

(a) Sadness.

Figure 4.9: Examples of frames extracted from dataset D3.2.
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4.2. EVALUATION METRICS

(a) A complex expression performing by a real female.

(b) OnLive’s MOVA Geni4, a CG female character.

(c) Paul Ekman talks about his work on the human face.

(d) A CG character from Activision R&D realtime demo.

Figure 4.10: Samples of real videos from dataset D3.
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4. EXPERIMENTAL RESULTS

Table 4.2: Summary of datasets used in this doctoral thesis.

Dataset CG Images Natural Images CG Videos Natural Videos

BUHMAP-
DB

440 short videos of 11 peo-
ple perform 5 times repeti-
tive 8 animations.

JAFFE 213 images of fe-
male in 6 expres-
sions

CASIA-3D
FaceV1

4624 from non-
contact 3D digi-
tizer

StarTrek 1 full movie 1 full movie

D1.1 40 40
D1.2 200 200
D2 116 setsa 116 sets
D3.1 60 in

different
poses

D3.2 60 from 10
people

60 from 10 models

D3.3 24 24 highly realistic

a110 sets extracted from BUHMAP-DB videos, 6 sets from JAFFE.
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4.3. RESULTS OF EXPERIMENTS ON ASYMMETHOD

of distinguishing between photorealistic CG multimedia data and the nat-

ural ones. This is a typical binary classification problem. The performance

of a binary classifier can be measured by a classification confusion matrix

at an operating point of the classifier as follows:[
p(C = positive|L = positive) p(C = negative|L = positive)

p(C = positive|L = negative) p(C = negative|L = negative)

]
(4.1)

where the two classes are respectively identified as positive and negative

while C and L respectively represent the assigned label (by the classifier)

and the true label. The probability p(C = positive|L = negative) is known

as false positive rate, and p(C = negative|L = positive) false negative rate.

The averaged classification accuracy can be computed as

p(C = positive|L = positive) + p(C = negative|L = negative)

2
(4.2)

The operating point of a classifier can be adjusted by shifting the de-

cision boundary or threshold values which in turn adjust the balance of

the false positive and false negative rates. Equal error rate is often used

for evaluating a biometric system [40]. Equal error rate refers to the false

positive rate or the false negative rate of a classifier when it functions at

an operating point where the two rates are equal.

To have a deeper analysis on this type of result, the area under curve

(AoC) of the ROC curve of true positive and true negative are often ana-

lyzed in recent works.

4.3 Results of Experiments on AsymMethod

In order to evaluate AsymMethod, we performed three experiments on

dataset D1 and compared the results with the state-of-the-art method in

[36], [15], and [8].
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4. EXPERIMENTAL RESULTS

In our first experiment, we analyze the proposed approach using only

asymmetry information achieving 67.5% of accuracy on dataset D1.1 and

89.25% on dataset D1.2. Shown in Figures 4.11 and 4.12 are the ROC chart

of False Positive and True Positive rates on Dataset 1 and 2, respectively,

while in Tables 4.3 and 4.4 corresponding confusion matrices are reported.

These results show that geometry information, in this case the asymmetry

of human faces, can be effectively used to discriminate computer generated

from the natural faces.
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Figure 4.11: ROC curve of AsymMethod on dataset D1.1.

Table 4.3: Confusion matrix on dataset D1.1.

Computer Generated Photographics

CG 0.75 0.25
Photographics 0.4 0.6
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Figure 4.12: ROC curve of AsymMethod on dataset D1.2.

Table 4.4: Confusion matrix on dataset D1.2.

Computer Generated Photographics

CG 0.92 0.08
Photographics 0.135 0.865

In the second experiment, we compared our method with three state-

of-the-art approaches, namely, [36], [15], and [8]. Here, we consider asym-

metry information as a feature, and then use Support Vector Machine

(SVM) for training and solving the binary classification problem. Shown

in Figure 4.13 are results of comparing these methods using leave-one-out

(LLO) cross validation method. It can be noticed that on the challenging

dataset D1.1, the proposed approach achieves the best performances, while

on dataset D1.2, there is not much difference among all approaches.

In the last experiment, we use asymmetry information as an additional
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Figure 4.13: Performance of AsymMethod vs. SoA approaches.
.

Comparison of results of AsymMethod with [36], [15], and [8] on dataset D1.
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Figure 4.14: Results on the fusion of approaches on dataset D1.1

feature to [36], [15], and [8] and compare results using SVM binary clas-

sification (LLO validation). Figure 4.14 and 4.15 show results on dataset

D1.1 and dataset D1.2, respectively. Performances of state-of-the-art ap-

proaches increase on average by 16.25% on the more challenging dataset

D1.1 when fusing their features with the proposed asymmetry features.

These experimental results confirmed that AsymMethod can be used as

a stand alone method or in combination with other information to improve

state-of-the-art techniques on the problem of discrimination between CG

and natural frontal human faces. In the next section, experiments on

ExpressMethod is reported.

4.4 Results of Experiments on ExpressMethod

In order to evaluate ExpressMethod, several experiments were performed

on BUHMAP-DB, JAFFE, Star Trek, and D2 datasets (see Section 4.1 for
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Figure 4.15: Results on the fusion of approaches on dataset D1.2

details).

The goal of the first experiment is to analyse the differences from CG

models with the natural faces in order to confirm the idea of the proposed

method. The analysis is performed as follows: for each video sequence in

BUHMAP-DB, 10 frames are uniformly extracted and similarly for each

CG model in D2, 10 images are selected. Then, the sets of images are

analysed and the corresponding Expression Variation Values computed as

described in Section 3.2.5. In this case since the expressions are already

known, we implement the method from step C. In this step, we use Mi-

crosoft Face SDK [44] to extract the ASM models. Finally, we apply step

D and E to get the results.

Shown in Figure 4.16 are EV V1 values computed on the 55 sets of CG

and the 55 sets of natural happy faces. These values are well separated

between CG and natural. There is only one miss classification using the

threshold τ1 = 0.45. The accuracy, therefore, is 99% (equals 109/110).
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Figure 4.16: Facial Expression Values computed on happiness expression.

The threshold value τ1 is 0.45. The separation between CG and natural EV V1 is clearly visual-
ized with only one miss classification.

On sadness expression, the result is even better, with 100% of accu-

racy using the threshold τ2 = 0.6. The EV V2 values for CG and natural

characters are perfectly separated, as shown in Figure 4.17.

Our second experiment is performed on the JAFFE dataset, which con-

tains all six expressions. Also in this case we used FaceGen [24] to create

the CG models reproducing the JAFFE models (see Figure 4.7 for some

examples). For each model in this dataset (dataset D2, in particular),

we reproduced all 6 expressions. Therefore, we perform the second test

on 120 sets of images, 60 sets of CG and 60 sets of JAFEE real faces.

The complete proposed approach described in Section 3.2 is applied as a

classification approach on these sets.

Shown in Figure 4.18 is the average EV Vξ for each expression (ξ =

1, ..., 6). The inner blue boundary represents the EV Vξ computed from

CG sets of images, and the outer red boundary represents the natural
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Figure 4.17: Facial Expression Values computed on sadness expression.

The threshold value τ2 is 0.6. CG and natural EV V2 are clearly separated.

EV Vξ. Results show that CG and natural Expression Variation Values

can be differentiated by using and comparing with a set of thresholds τξ,

visualized by the green boundary. The classification performance of this

experiment is in average 96.67%. Details for each expression are reported

in the confusion matrices, Table 4.5.

The last experiment is performed by comparing two movies in Star

Trek datasets. We extracted 4 female characters in each movie and se-

lected frames that contain happy expression of those characters. Happy

faces are then confirmed by using Rosa application [45]. Some examples of

two characters in happy emotion are shown in Figure 4.4. Finally, EV V s

are computed and compared. Using the same threshold as in the first ex-

periment (τ1 = 0.45), all EV V1 calculated for the 4 characters of Star Trek

Aurora are smaller than τ1 while all of the EV V1 from Star Trek Odyssey

are over τ1, i.e., the CG characters can be recognized and separated from
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Figure 4.18: Average of Expression Variation Values analysed for all expressions.

CG and natural EV Vξ are separated for all ξ = 1, ..., 6.

Table 4.5: Confusion matrices on CG and Natural faces

ξ Expression CG Natural

1 Happiness CG 100% 0%
Natural 0% 100%

2 Sadness CG 100% 0%
Natural 0% 100%

3 Surprise CG 100% 0%
Natural 0% 100%

4 Fear CG 90% 10%
Natural 0% 100%

5 Anger CG 100% 0%
Natural 0% 100%

6 Disgust CG 80% 20%
Natural 10% 90%

The results are computed on JAFFE and D2 datasets.
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4. EXPERIMENTAL RESULTS

the natural ones.

In the next section, experimental results of our last proposed method is

presented.

4.5 Results of Experiments on ModelMethod

Three different groups of experiment were performed in order to evaluate

ModelMethod. The first group was performed to measure the accuracy of

the reconstruction step (step B, see Section 3.3.2). Using the best con-

figuration obtained from these experiments, we ran our method on CG

facial expression identification problem and compared the performance to

ExpressMethod. Finally, in the last group of experiment, we applied our

method on more challenging videos to evaluate the efficiency when it is

applied to identify synthetic animations. BUHMAP, JAFFE, CASIA-3D

FaceV1 and D3 datasets were used in these experiments.

4.5.1 3D Face Reconstruction

The first experiment is performed to measure the accuracy of the recon-

struction step (step B) of the proposed method. We used a commercial

software, namely Luxand FaceSDK [34], to extract 2D ASM feature points.

In order to compute 3D PDM, we used 20 models in 3D of each person from

30 people from CASIA-3D FaceV1. Shown in Figure 4.3 some examples

of images of CASIA-3D FaceV1. Algorithm 1 in Section 3.3.2 is applied

to build the 3D PDM, i.e., S
3D

and ϕ3D. Notice that the angel pose for

all faces are smaller than 30 degrees, which is the limitation of Luxand

FaceSDK.

Given a 2D input facial image, 2D ASM is extracted on each image, then

Algorithm 2 is applied to estimate the 3D shape S3D. Finally, the error
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4.5. RESULTS OF EXPERIMENTS ON MODELMETHOD

err between the estimated shape and the referenced shape is computed:

err =
1

d

d∑
i=1

||ρestimatedi − ρrefi || (4.3)

where ρestimatedi ∈ S3D and ρrefi are manually marked and d is the number

of feature points, which is mentioned in equation (??).

We used another 30 people from CASIA-3D FaceV1, 20 images on each

person for testing. The result was obtained with the average difference of

5.83 pixels. Notice that face resolution is scaled into 400× 400, hence the

error is less than 1.5%.

Since CASIA-3D FaceV1 does not contain images of all poses (the poses

are in the ranges of 0 - 15 degree or 80 - 90 degree), a test on a wider range

of poses is necessary. Thus, we ran a second test on dataset D3.1 where

images ranging from 0 to 30 degree. Shown in Table 4.6 are the results

using 66 facial feature points, extracted by [34]. Notice that all poses are

computed in Euler angles. It shows that yaw angle affects more than pitch

angle. In the range of angle from 0 to 15, the average error on each pixels

is 5.5915 (notice that for each face, the 2D image is scale into 400× 400).

Some examples are also illustrated in Figure 4.19. The third experiment

Table 4.6: Average errors err on different face poses.

PPPPPPPPPpitch
yaw

0 - 15 15 - 20 20 - 25 25 - 30

0 - 15 5.5915 7.8925 10.3567 15.3425
15 - 20 5.7617 7.9667 10.4215 15.5142
20 - 25 6.7624 9.3415 10.7141 17.1251
25 - 30 7.3215 9.1524 12.5214 25.1481

The errors are computed based on 66 points.

is performed to measure the accuracy with different setups of landmarks.

The 2D facial features extraction returns 66 points for each input image.
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However, the position of points at eyebrows or chin is often not very accu-

rate due to occlusion or illumination conditions. Therefore, reducing the

number of selected points usually allows to improve the performance of the

reconstruction step.

We used 30 people (20 images for each person) from CASIA-3D FaceV1

dataset to test some different setups, ranging from 66 points to 18 points.

An illustration of all setups is shown in Figure 4.20 which also shows that

setup f with 25 points provides the best solution with an average error

of 4.1986 pixels (approximately 1%). This setup also provides the best

solution on synthetic faces from set D3.1 with an average error of 4.142

pixels. Hence we used this configuration for all following experiments.

pitch = -14.37

yaw = 0.13

roll = 0.82

pitch = -15.13

yaw = 17.08

roll = 5.79

pitch = 10.03

yaw = 1.08

roll = 0.38

pitch = 0.07

yaw = -29.18

roll = -1.70

Figure 4.19: Samples of different poses for face reconstruction.

4.5.2 Computer Generated Facial Expression Identification

We ran our method on the BUHMAP-DB and JAFFE datasets and com-

pare the results with ExpressMethod. Notice that in this case animations

will be mainly consist of single expressions like happiness or sadness. In

ExpressMethod, we compared different state of an expression of the same

person, and the chronological order does not play any role in the method.

Thus, we ran our proposed method with the windows size l in equation
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(a) 66 points
Error: 5.832

(b) 49 points
Error: 5.602

(c) 45 points
Error: 4.987

(d) 37 points
Error: 4.821

(e) 33 points
Error: 4.749

(f) 25 points
Error: 4.199

(g) 23 points
Error: 4.869

(h) 18 points
Error: 5.2055

Figure 4.20: Different setups of facial landmark positions.

In our evaluations, setup (f) with 25 points provides the more accurate solution.
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(3.15) equal |V |, where V is the input video, and | · | is the cardinal num-

ber of a set, i.e., extract features on the whole video.

We obtained an interesting result, in which the performance of the pro-

posed approach was comparable with ExpressMethod only using value of

σ2 (see Section 3.3.3), i.e., without any support from machine learning

models. Shown in Figure 4.21 (a) and (b) are sample results of σ2 val-

ues on BUHMAP-DB happiness and sadness and on all expressions on

JAFFE (Figure 4.21 (c)). Table 4.7 shows the explicit results on the whole

BUHMAP-DB and JAFFE datasets.

Table 4.7: ModelMethod with σ2 versus ExpressMethod

Happiness Sadness

ExpressMethod 67.5 72.5
ModelMethod with only σ2 71.82 69.09

Accuracies are displayed in percentage.

The last experiment in this section is performed by using the full con-

figuration of the proposed method, i.e., all properties mentioned in section

3.3.3 are extracted. Windows size l = 4 and number of components c = 3

were chosen. Support vector machine was used as a binary classification

and LOO (Leave one out) cross validation was applied in the test. The

achieved accuracy outperformed results in ExpressMethod, as shown in

Table 4.8.

Table 4.8: Comparing between ModelMethod and ExpressMethod.

Happiness Sadness

ExpressMethod 67.5 72.5
ModelMethod 97.5 87.5

Accuracies are displayed in percentage.

To summarize, ModelMethod outperformed ExpressMethod when us-

ing machine learning model. Without machine learning model, compara-
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ble results are obtained with a single threshold for all expressions, while

ExpressMethod requires different thresholds for different expressions. An-

other advantages of the proposed approach is that no analysis of expressions

is required, hence it can be used in the analysis of more general animations

as tested in the last set of experiments.

4.5.3 Synthetic Animation Identification

In this experiment, we used 60 animations from BUHMAP-DB and 60

synthetic animations, reported as dataset D3.2 in Section 4.1. Notice that

in this case, animations are more complicated since they consist of both

expressions and other gestures of the faces.

We ran our proposed approach with different sets of features, i.e., dif-

ferent values of l and c, in order to determine the best configuration. SVM

is used as a binary classification and LOO cross validation is applied in the

test. The proposed method obtained the best result with the accuracy of

91.93% on the windows length l = 4 with the features extracted from the

first 3 components, i.e., c = 3. The details are shown in Table 4.9 where

columns are the numbers of components c and rows are the length l of the

analyzed windows.

Table 4.9: Accuracy performance of ModelMethod on different configurations.

@
@
@l
c

1 2 3 4 5 6

2 66.57 76.08 73.54 69.37 45.81 49.11
3 75.36 84.93 90.40 74.65 65.00 49.82
4 70.20 88.19 91.93 85.25 62.29 54.25
5 73.32 88.15 90.27 70.12 61.05 52.59

Columns are the numbers of components and rows are the length of the analyzed windows.
Accuracies are displayed in percentage.

The last experiment is performed to test the proposed method on more

challenging videos, where we extracted 24 animations from 8 highly realistic
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computer generated characters and collected another 24 animations from

real persons (Dataset D3.3 in 4.1). Shown in Figure 4.10 are some examples

of the realistic CG animations and the videos of real persons.

The same 3D PDM, which is computed as described in section 4.5.1, is

used to extract 3D models. The configuration of l = 4 and c = 3 is used.

SVM is again used as a binary classification. Using K-fold cross validation

(K = 6 in the experiment) the achieved accuracy is 60.42% while with

LOO validation is 72.9%.
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Chapter 5

Conclusions

With the development of innovative multimedia technologies, the realism of

computer generated characters has achieved a very high quality level. Non-

existing subjects or situations can be easily generated. Thus, in a daily

life context, it raises the need of advance tools supporting users in the

identification of artificial data which may not represent reality. Although

many interesting methods have been proposed to discriminate between CG

and natural multimedia data, most of these methodologies do not achieve

satisfactory performance in the detection of CG characters. Hence, in this

doctoral study, we proposed efficient techniques to distinguish between

CG and natural on this special kind object. Our methods are developed

based on geometric-based forensic techniques, which exploit the measure

on facial shapes formation and the evolution of facial animations. These

solutions can be applied both for images and videos, in a wide situations

and contexts.

In this document, our proposed methods were presented in Chapter 3,

in which three methods are fully explained and discussed in details.

For the evaluation, we ran our experiments on various public datasets

together with our own data, which are highly realistic CG characters from

the computer graphics society and synthetic characters from advance ap-
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plications for designers. Experiments were ran in different situations, from

still images to video, from neutral expression to complex animations (see

details in Chapter 4). The results confirmed that our methods performed

highly accurately for distinguishing between CG and natural characters.

The methods are not only work with both still pictures and video but

also can overcome the difficulties in facial analysis caused by different face

poses, occlusions, or lighting inconsistencies.

We also presented a complete picture of the State-of-the-Art approaches

in this problem in Chapter 2. An overview on visual realism of computer

graphics and the way that synthetic facial animations are created were also

introduced in this chapter.

Since each proposed method can be applied in different situations, fu-

ture work should consider the problem of fusing the three methods together.

Automatic threshold selection is also a problem that could be taken into

account. Extensions of these methods can be applied on other similar ‘ob-

jects’, which are deformable and are created by following rules or patterns,

for example to the whole body of the human characters. The interval

between transitions of expression could be also a promising discrimina-

tive feature. Computer graphics community can also gain some knowledge

based on the proposed methods, hence they can create more complicated

synthetic characters. In further work, the speech of the characters should

be considered as mutual information. Other biological information, which

are not presented in CG characters are also taken into account for future

work.
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Appendix A

Realistic Computer Generated

Characters Sources

Here are the list of realistic CG videos used in our experiments.

1. OnLive’s MOVA - Geni4

http://www.youtube.com/watch?v=0fF2pAsaaiw, April 2013.

2. Activision R&D - Realtime Demo (Nvidia Face Works Tech Demo)

http://www.youtube.com/watch?v=CvaGd4KqlvQ, June 2013.

3. Janimation technology and IGN

http://www.youtube.com/watch?v=5oqxH7ut8hU, April 2013.

4. Pendulum Studio - Alter Ego Facial Animations

http://www.youtube.com/watch?v=-wtv4bsLWvw, April 2013.

5. Gravity Design Studio - Virtual 3D Avatar, Spokesperson, 3D

http://www.youtube.com/watch?v=nX8KitVCcZM, April 2013.
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6. Image Metrics - Emily CG Facial Animation is Too Real

http://www.youtube.com/watch?v=UYgLFt5wfP4, April 2013.

7. CG facial animation (unknown authors)

http://www.youtube.com/watch?v=2WOQ8UEE6as, April 2013.

8. Faceware Tech - Demonstration and Overview in GDC 2011

http://www.youtube.com/watch?v=WO9W56KcCb8, June 2013.
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