ON REGULAR HARMONICS OF
ONE QUATERNIONIC VARIABLE

ALESSANDRO PEROTTI

ABSTRACT. We prove some results about the Fueter-regular homogeneous polyno-
mials, which appear as components in the power series of any quaternionic regular
function. Let B denote the unit ball in C? ~ H and S = 8B the group of unit quater-
nions. In §2.1 we obtain a differential condition that characterize the homogeneous
polynomials whose restrictions to S extend as a regular polynomial. This result gen-
eralizes a similar characterization for holomorphic extensions of polynomials proved
by Kytmanov.

In §2.2 we show how to define an injective linear operator R : Hy(S) — U;f
between the space of complex-valued spherical harmonics and the H-module of regular
homogeneous polynomials of degree k. In particular, we show how to construct bases
of the module of regular homogeneous polynomials of a fixed degree starting from
any choice of C-bases of the spaces of complex harmonic homogeneous polynomials.

1. NOTATIONS AND PRELIMINARIES

1.1. Let Q = {2z € C?: p(2) < 0} be a bounded domain in C? with smooth bound-
ary. Let v denote the outer unit normal to 9 and 7 = iv. For every F € C1(Q),
let 0, F = % (2£ 4 i25) be the normal component of OF (see [K]|§§3.3 and 14.2).
It can be expressed by means of the Hodge x-operator and the Lebesgue surface
measure as O, fdo = 0 f oo+ I aneighbourhood of 92 we have the decomposition

of OF in the tangential and the normal parts: OF = Oy F + E”FI%ZI' We denote by
1

L the tangential Cauchy-Riemann operator L = Bl (8—226—21 — 671872> .

Let H be the algebra of quaternions ¢ = xg+ix1 + jxo + kxz, where xqg, 1, 2, T3
are real numbers and i, j, k denote the basic quaternions. We identify the space C?2
with the set H by means of the mapping that associates the quaternion ¢ = z1 + 227
to (z1,22) = (zo +ix1,x2 +ix3). We refer to [S] for the basic facts of quaternionic
analysis. We will denote by D the left Cauchy-Riemann-Fueter operator

g .0 e, 0
D_aifto—i_laim—’_jai@—’_kaixg

A quaternionic C! function f = f1 + faj, is (left-)reqular on a domain Q C H
if Df =0 on 2. We prefer to work with another class of regular functions, which
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is more explicitely connected with the hyperkéahler structure of H. It is defined
by the Cauchy-Riemann-Fueter operator associated to the structural vector ¢ =

{17i>j)_k}:

A quaternionic C! function f = f; + foj, is called (left- )ip-regular on a domain €,
if D'f =0 on €. This condition is equivalent to the following system of complex
differential equations:

oh _0fz 0L _ _0f
621 822’ 822 82’1 '

The identity mapping is t-regular, and any holomorphic mapping (fi, f2) on
Q defines a 1-regular function f = fi + foj. This is no more true if we replace
-regularity with regularity. Moreover, the complex components of a i-regular
function are either both holomorphic or both not-holomorphic (cf. [VS], [MS] and
[P]). Let 7 be the transformation of C? defined by «(z1, 22) = (21,22). Then a C!
function f is regular on the domain € if, and only if, f o is 1-regular on v~ 1(Q).

1.2. The two-dimensional Bochner-Martinelli form U((, z) is the first complex com-
ponent of the Cauchy-Fueter kernel G'(p — ¢) associated to i-regular functions (cf.
[F], [VS], [MS]). Let g = 21425, p = G +Caj 0(q) = da(0] —ida[1] + jd[2] + k3],
where dz[k] denotes the product of dxg,dzr1,dzs,drs with dzj deleted. Then
G'(p—q)o(p) =U((,2) + w(C, 2)j, where w((, z) is the complex (1, 2)-form

w(¢,z) = —ﬁK — 2|7 (G — 21)dG + (G — 22)d2) A dC.

Here d¢ = d(; A @and | we choose the orientation of C? given by the volume
form idzl A dzo A dzy A dzy. Given g((,z) = ﬁ\g — 2|72, we can also write

U(Ca Z) = —2x 8(9({, Z) and w(Ca Z) = _aC(g(Ca Z)d7<)
2. REGULAR POLYNOMIALS

2.1. In this section we will obtain a differential condition that characterizes the
homogeneous polynomials whose restrictions to the unit sphere extend regularly or
y-regularly. We will use a computation made by Kytmanov in [K1] (cf. also [K]
Corollary 23.4), where the analogous result for holomorphic extensions is proved.

Let Q be the unit ball B in C2, S = 0B the unit sphere. In this case the
operators 0,, and L have the following forms:

82

_o? ian in C2
5505 T 32,05, Pe the Laplacian in C

and they preserve harmonicity. Let A =
and D, the differential operator

(k—20— Q- D, s
Dy = 2'AME
¥ 2 k(1 +1)!

0<I<k/2—1
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Theorem 1. Let f = f1 + foj be a H-valued, homogeneous polynomial of degree
k. Then its restriction to S extends as a -regular function into B if, and only if,

(gn —Di)fi+L(f2) =0 onS.

Proof. In the first part we can proceed as in [K1]. The harmonic extension fi
of f1\s into B is given by Gauss’s formula: f1 = Zs>o Jk—2s, Where gi_os is the
homogeneous harmonic polynomial of degree k — 2s defined by

k: 28+1 —2s)!

(*) Jr—2s = 2|27 AT £

Then 8, f; = nfl Dy fron S (cf. [K]§23). Let f» be the harmonic extension of
fo into B and f = fi + foj. Then (8, — Dp)f1 + L(f2) = 0 on S is equivalent to
Onf1 + L(f2) =0 on S. We now show that this implies the t-regularity of f. Let
F* and F~ be the ¢-regular functions defined respectively on B and on C2\ B by

the Cauchy-Fueter integral of f:

() = f w(C, 2)5F(C).
) = [ U070 + [ w62
From the equalities U((, 2) = —2x9:9((, 2), w((, 2) = —0:(9(¢, 2)dC), we get that
() = =2 [ (R0 + £20d)calc.2) = [ 0cla(¢ )i = o)

for every z ¢7§~ From the complex Green formula and Stokes’ Theorem and from
the equality 0f2 A d(js = 2L(f2)do on S, we get that the first complex component
of F~(z) is

—2[9f18ngd0+/gﬁ8<gAcK: —2/Sg8nf1da—/sg8<f2/\d§: —Q/Sg(anfleL( 2))do

and then it vanishes on C? \ B. Therefore, F~ = Fyj, with I, a holomorphic
function that can be holomorphically continued to the whole space. Let F'~ = Fyj
be such extension. Then F = F* — F|73 is a 1-regular function on B (indeed a

polynomial of the same degree k), continuous on B, such that Fis = fis. The
converse is immediate from the equations of -regularity.

Let N and T be the differential operators

+226 T222i—218

0
N= Zl aZQ 821 8722

0z,

T is a tangential operator w.r.t. S, while N is non-tangential, such that N(p) =
\5p|2, Re(N) = |0p|Re(0,), where p = |21]% + |22/ — 1. Let v be the reflection
introduced at the end of §1.1. The operator Dy is y-invariant, i.e. Dg(f o~) =
Dy(f) o, since A is invariant. It follows a criterion for regularity of homogeneous
polynomials.
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Corollary 1. Let f = f1 + faj be a H-valued, homogeneous polynomial of degree
k. Then its restriction to S extends as a reqular function into B if, and only if,

(N=D)fi+T(f2) =0 onS.

Remark. Let g = 3, g" be the homogeneous decomposition of a polynomial g.
After replacing Dyg by >, Dyg", we can extend the preceding results also to non-
homogeneous polynomials.

2.2. Let Py denote the space of homogeneous complex-valued polynomials of degree
k on C?, and Hj, the space of harmonic polynomials in Pj. The space Hj, is the
sum of the pairwise L?(S)-orthogonal spaces H, , (p + g = k), whose elements are
the harmonic homogeneous polynomials of degree p in z1, 25 and ¢ in z1, Z5 (cf. for
example [R]§12.2). The spaces Hj, and H, , can be identified with the spaces of
the restrictions of their elements to S (spherical harmonics). These spaces will be
denoted by Hy,(S) and H,, 4(S) respectively.

Let U,j’ be the right H-module of (left)y-regular homogeneous polynomials of
degree k. The elements of the modules U, ;f can be identified with their restrictions
to S, which we will call reqular harmonics.

Theorem 2. For every fi € Py, there exists fo € Py such that the trace of f =
f1+ foj on S extends as a p-regular polynomial of degree at most k on H. If
f1 € My, then fo € Hy and f = fi + f25 € UY.

Proof. We can suppose that fi has degree p in 2z and ¢ in z, p+ ¢ = k, and then
extend by linearity. Let fi = > o, gp—s,q—s be the harmonic extension of f; into
B, where gp—s4—s € Hp—s.q—s is given by formula (*). Then 0,L(gp—sq—s) =
(p—5+1)L(gp—s,q—s). We set

jz ::EE:])__i_+1 gp $,q— s E£>7{k 2s-

520 5>0

Then 0 f2 = L(f1) on S and we can conclude as in the proof of Theorem 1 that
f = fi+ f2j is a ¢-regular polynomial of degree at most k. Now it suffices to define
‘23

P
f2= Z mL(gp—s,q—s) € P

s>0

to get a homogeneous polynomial f = fi + fa2j, of degree k, that has the same
restriction to S as f. If fi € Hg, then f; = f1, fo = fo and therefore f € Uk

Let C : U,? — Hi(S) be the complex-linear operator that associates to f =
f1 + f2j the restriction to S of its first complex component f;. The function f in
the preceding proof gives a right inverse R : Hy(S) — U ;f) of the operator C'. The
function R(f1) is uniquely determined by the orthogonality condition with respect
to the functions holomorphic on a neighbourhood of B:

/(R(fl) — fi)hdo =0 Yh e O(B).
S
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Corollary 2. (i) The restriction operator C' defined on Ug’ induces isomorphisms
of real vector spaces

Uilg) ~ 'Hk(S) U;cp ~ Hk(S)
Hiod ’ Hio + Hiol  HiolS)

(ii) UL has dimension 2(k+1)(k +2) over H.

Proof. The first part follows from ker C' = {f = f1 + foj € UY : fi =0on S} =
Hp0j. Part (ii) can be obtained from any of the above isomorphisms, since Hy, o (as
every space Hp 4,p + ¢ = k) and Hj(S) have real dimensions respectively 2(k + 1)
and 2(k + 1)2.

As an application of Corollary 2, we have another proof of the known result (see
[S] Theorem 7) that the right H-module Uy, of left-regular homogeneous polynomials
of degree k has dimension §(k + 1)(k + 2) over H.

2.3. The operator R : Hy(S) =D, 1, Hp,q(S) — UY can also be used to obtain

H-bases for U;f starting from bases of the complex spaces H,, 4(S). On H, 4(S5), R
acts in the following way:

1 -
R(h) =h+ M(h)j, where M(h) = 2mL(h) €EHog—1pr1 (hEHp,)

Note that M = 0 on H(S). If ¢ > 0, M?> = —Id on H, ,(S), since gh = d,,h =

—L(M(h)) on S, and therefore

1 1 )
h= = LM = — 5 L) = =M ().

If K =2m + 1 is odd, then M is a complex conjugate isomorphism of H, m+1(.5).
Then M induces a quaternionic structure on this space, which has real dimension
4(m + 1). We can find complex bases of H,, m+1(S) of the form

{hi, M(h1), ... hipg1, M (Bing1) }
Theorem 3. Let B, , denote a complex base of the space Hy (S) (p+q = k).
Then:
(i) if k = 2m is even, a basis of U,f over H is given by the set

B, ={R(h):heByqp+q=Fk0<qg<p<k}.
(ii) if k = 2m + 1 is odd, a basis of U,f over H is given by
B, ={R(h):heBpgyp+q=k0<qg<p<k}U{R(h),...,R(hms1)},

where hy,... ,hymi1 are chosen such that the set

{hh M(hl)a s 7hm+17 M(hm+1)}

forms a complez basis of Hym m+1(5).
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If the bases By, are orthogonal in L*(S) and hi,... , hmi1 € Hmm+1(S) are
mutually orthogonal, then By is orthogonal, with norms

p+qg+1

1/2
D) Wil (he By

|mwmmm=(

w.r.t. the scalar product of L*(S,H).

Proof. From dimension count, it suffices to prove that the sets By are linearly
independent. When ¢ < p, ¢’ < p', p+q = p' + ¢ = k, the spaces H, , and
Hg —1,+1 are distinct. Since R(h) = h+M(h)j € Hp,¢®Hq—1,p+1J, this implies the
independence over H of the images {R(h) : h € B, 4}. It remains to consider the case
when k =2m+1is odd. If h € Hyy m+1(5), the complex components h and M (h)
of R(h) belong to the same space. The independence of {R(hy),... , R(hm41)} over
H follows from the particular form of the complex basis chosen in H,, m+1(S).
The scalar product of L(h) and L(h') in H, 4(S5) is

(L(h), L(W)) = (h, L*L(K)) = —(h, LL(K')) = q(p + 1) (R, h'),

since the adjoint L* is equal to —L (cf. [R]§18.2.2) and LL = q(p + 1)M? =
—q(p+ 1)Id. Therefore, if h,h’ are orthogonal, M (h) and M (h’) are orthogonal in
Hy—1,p+1 and then also R(h) and R(h’). Finally, the norm of R(h), h € H,, 4(5), is

p+qg+1

Rh2:h2+Mh2:h2+ r 4 -
[R(R)(IZ = [[Rl" + M (R)]|" = [[A] b1

ZIL(W)* =

- 2
sy I

and this concludes the proof.

Remark. From Theorem 3 it is immediate to obtain also bases of the right H-module
Uy of left-regular homogeneous polynomials of degree k.

Examples. (i) The case & = 2. Starting from the orthogonal bases By =
{23,22129,23} of Hopo and Bi1 = {2122, |21]% — |22]%, 2221} of Hi11 we get the
orthogonal basis of regular harmonics

_ 1.,. o 1.,.
By = {21,22129, 23,2172 — §Z%Ja |21|% = |22 + 2122, 2021 + 5233}

of the six-dimensional right H-module U;f’ .

(ii) The case k = 3. From the orthogonal bases
Bso = {zf,Bz%ZQ,Szlzg,zg’}, By = {zfég,22’1\22]2—,21\21]2,222|z1\2—22|z2\2,z§21},

_ _ 52 _ 227 o= 2, = 2 _ 9= 2., - 2
81,2 = {hl = leQ,M(hl) = —Zgzl,hg = —22’2‘2’1‘ +22‘Z2‘ ,M(hg) = —221’22| —|—Zl|2’1‘ },
we get the orthogonal basis of regular harmonics

1_5. o . _ .
Bs = {zi’,Sz%zz,3,212%,zg’,2322752:{’],221]22|2721|zl|272%22j,222\z1|2—22]22|2+21,2§j,

1 .. _ 9. _ _ _ _ .
2371 + gzé)’], 2125 — 2021, —2%| 21> + 22|20 + (21]21)° — 221 |22)4) 5}
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of the ten-dimensional right H-module Ug’ .

In general, for any k, an orthogonal basis of H, , (p + ¢ = k) is given by the
polynomials {P[i 1 Hi=o,... & defined by formula (6.14) in [S]. The basis of U obtained
from these bases by means of Theorem 3 and applying the reflection ~ is essentially
the same given in Proposition 8 of [S].

Another spanning set of the space H, 4 is given by the functions

9P U(z1,29) = (21 + @22)P(Z2 —az1)? (e € C)

(cf. [RI§125.1). Since M(gp?) = U9 ga 004 for o £ 0 and M(gh?) =
—#zg*?{ 1 where we set g24 = 0 if p < 0, from Theorem 3 we get that Uy is
spanned over H by the polynomials

gg:q + (—1)9gaPta g‘J*lyIH*lj for o 7& 0

R(g?) = e (0 €C, p+q=k)
Pzl 4 a7 leptls g0 — 0
172 ~ p3i”2 A1 J
Any choice of k + 1 distinct numbers «q, a1, ... , oy gives rise to a basis of U,f’ .

The results obtained in this paper enabled the writing of a Mathematica pack-
age [P1], named RegularHarmonics, which implements efficient computations with
regular and t-regular functions and with harmonic and holomorphic functions of
two complex variables.
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