
University of Trento

Department of Information Engineering and Computer
Science,

Doctoral’s Degree in Information and Communication
Technology

∼ ⋅ ∼

Academic Year 2022–2023

On the Relevance of Temporal
Information in Multimedia

Forensics Applications in the Age
of A.I.

Supervisor
Prof. Giulia Boato

Co-Supervisor
Prof. Fernando Pérez-González
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poter vivere questa esperienza. La mia scelta di svolgere l’Erasmus presso l’Università di Vigo è
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fatto sentire la loro vicinanza con il loro aiuto nei vari preparativi. Ringrazio poi gli amici di
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Abstract

The proliferation of multimedia data, including digital images and videos, has led to an increase
in their misuse, such as the unauthorized sharing of sensitive content, the spread of fake news,
and the dissemination of misleading propaganda. To address these issues, the research field
of multimedia forensics has developed tools to distinguish genuine multimedia from fakes and
identify the sources of those who share sensitive content. However, the accuracy and reliabil-
ity of multimedia forensics tools are threatened by recent technological advancements in new
multimedia processing software and camera devices. For example, source attribution involves
attributing an image or video to a specific camera device, which is crucial for addressing privacy
violations, cases of revenge porn, and instances of child pornography. These tools exploit forensic
traces unique to each camera’s manufacturing process, such as Photo Response Non-Uniformity
(PRNU). Nevertheless, image and video processing transformations can disrupt the consistency
of PRNU, necessitating the development of new methods for its recovery. Conversely, to dis-
tinguish genuine multimedia from fakes, AI-based image and video forgery localization methods
have also emerged. However, they constantly face challenges from new, more sophisticated AI-
forgery techniques and are hindered by factors like AI-aided post-processing and, in the case
of videos, lower resolutions, and stronger compression. This doctoral study investigates the
relevance of exploiting temporal information during the parameters estimation used to reverse
complex spatial transformations for source attribution, and video forgery localization in low-
resolution H.264 post-processed inpainted videos. Two novel methods will be presented that
model the set of parameters involved in reversing in-camera and out-camera complex spatial
transformations applied to images and videos as time series, improving source attribution accu-
racy and computational efficiency. Regarding video inpainting localization, a novel dataset of
videos inpainted and post-processed with Temporal Consistency Networks will be introduced,
and we will present our solution to improve video inpainting localization by taking into ac-
count spatial and temporal inconsistencies at dense optical flow level. The research presented in
this dissertation has resulted in several publications that contribute to the field of multimedia
forensics, addressing challenges related to source attribution and video forgery localization.
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Introduction

Over the last few decades, the use and misuse of multimedia data, including digital images and
videos, have increased. The misuse of multimedia data includes sharing sensible contents without
the authorization of the subject, fake news and violent or misleading propaganda. For all the
aforementioned cases, it is important to develop tools capable of distinguishing real multimedia
from fakes and identifying those who share sensitive content to safeguard society.

The multimedia forensics research community provides many tools for verifying the origin or
the integrity of an image or video, by analysing residuals introduced by the camera sensor [75],
or other camera’s components [32, 58, 22, 61], through the use of multi-features classifier [58],
or by actively embedding specific patterns aimed at verifying a-posterior the presence of any
forgery [27]. In this doctoral study we will focus on algorithms aimed at identifying the source
of an image or a video, and solutions for video forgery localization.

In this manuscript, with source attribution, we refer to tasks aimed at attributing an image
or a video to a specific camera device [75] with the intent to link it to its user. In general, these
tools are employed in courtroom where an image or a video of subject A was shared by subject
B without the consent of A, including cases of general privacy violation as well as revenge porn
or child pornography [39]. The methods proposed in the literature for source attribution exploit
invisible forensics traces retrievable at residual level, and due to the manufacturing process of
the device [75], distortion introduced by its lenses [22], or other sources [58] like the dust dis-
tribution over the camera sensor [32]. Nonetheless, source attribution is mostly accomplished
using a residual introduced by the sensor of camera devices and due to its manufacturing process
called Photo Response non-Uniformity [75] (PRNU). The influence of the camera sensor manu-
facturing process allows the PRNU to be unique and being called camera fingerprint. Thus, once
estimated from an image or a video frame, the PRNU can be matched with others, presumably
belonging to the same device, to evaluate their similarity and origins [39]. Nevertheless, the
PRNU is also very sensible to any kind of transformations occurring during image or video post-
processing like radial correction [40, 43, 85, 82], High Dynamic Range (HDR) correction [41],
digital zoom [42], video stabilization [50, 78, 77, 82] and many others [49]. Every time one of the
above mentioned transformations are applied, the image or video’s pixels are displaced in their
new coordinates and with them their PRNU, decreasing its consistencies and probability to be
correctly matched with the PRNU extracted from another image or video taken with the same
device. For these motivations, a variety of new methods have been proposed, tackling specific
type of image processing, to invert them and recover the PRNU consistency.

In the last decade, methods using deep learning for source attribution have also been pre-
sented. In the work of Cozzolino et al. [29], the authors proposed Noiseprint, a siamese network
trained by feeding couples of image patches, taken or not, with the same device to estimate a
residual called noiseprint, capturing traces specifically introduced by camera models. Noiseprint
provided astonishing accuracy and versatility, also for tampering localization, being usable for
both images and videos. Similarly to Noiseprint [29], other deep neural networks for source

1



INTRODUCTION

attribution have been proposed in the literature, like MISL-Net [9] and PCN [79]. However,
MISL-Net and PCN do not produce a residual but output a score representing the similarity
between two images’ sources.

While convolutional neural networks like Noiseprint [29], MISL-Net [9] and PCN [79] cope
well with problems affecting the PRNU, nowadays they cannot be used in courtroom (the main
application field for source attribution problems) as source of proof inside the European Union
(EU). In fact, the EU legislation [52] requires forensics algorithms to be used in court to be
reproducible and explainable. In contrast, deep learning (DL) based methods are not entirely
reproducible, due to their parameters initialization, or explainable, due to the complex math
behind each of their layers.

Leaving aside applications of forensic algorithms in courtroom cases, DL-based algorithms are
successfully applied to image and video forgery localization problems by private organizations.
As described in the work of Verdoliva [108], AI-aided post-processing severely affects both DL-
based and non-DL-based multimedia forensics methods. However, while DL-based methods are
affected by the continuous evolution of AI-aided post-processing, and need to be updated to cope
with them, non-DL-based methods, with theoretical model limitations and poor generalization,
just have troubles in detecting or reverting AI-based post-processing [108].

AI forgery localization methods are trained to learn specific features in images or videos
to discriminate these features and attribute them to different classes [72] (i.e., real or fake),
visualized in forgery localization maps. For this task, simple CNNs like the one of Noiseprint
[29] can be used, as well as more complex architectures. These latter, adopt convolutional
pre-filtering modules to extract meaningful features processed by a second network (e.g., CNN,
transformer, auto-encoders, etc.) [65, 120, 9].

Although these approaches proved to be effective when applied to images, when applied to
videos, they expose a number of different new problems [81] related to stronger compression
and different coding [109], requiring suitable training procedures. Additionally, to refine the
final forgery localization output and take into account temporal information, forgery localization
methods for videos use Long-Short Term Memory (LSTM) or Gated-Recurrent Unit (GRU).
Nevertheless, while LSTM and GRU help in propagating the temporal information, they do not
explicitly model temporal inconsistencies introduced by post-processing methods in videos [120,
113], affecting the final result.

In this doctoral study, we propose contributions for source attribution and video forgery
localization that effectively exploit temporal series. The general rationale is to leverage the
temporal correlation occurring between elements of time series. As will be explained in detail, this
helps in a number of cases to both reduce mathematically complex source attribution problems,
requiring a large number of parameters, as well as those of forgery localization when applied to
videos partially generated and post-processed by AI, to enhance their quality.

To do so, we will first introduce the problem of spatially transformed images and how the
estimation of inversion parameters has become more complex in recent years due to more so-
phisticated out-camera post-processing algorithms. Thus, we will extend this problem to video
source attribution, showing how it is possible to use the GPU in a different way than for deep
learning for this task. Finally, we will explain how, in the presence of AI-aided post-processing
used to augment the visual quality of partially generated videos and reduce the quantity of
spatio-temporal inconsistencies, it is possible to target specific temporal artifacts and accurately
localize these forgeries.

The main contributions of our work are detailed as follows:

• Source Attribution of Images Spatially Transformed by Out-Camera Post-
Processing Software: Spatial transformations such as radial correction applied out-
camera by post-processing software like Adobe Lightroom, Photoshop, Gimp, and PT-Lens
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are intrinsically more complex than in-camera ones applied by camera devices. In our first
manuscript on this topic [83], we studied the impact of out-camera radial corrections, mea-
suring first the performance of the State-of-the-Art (SoA), and checking if improvements
are achievable by combining them. In our second work on this topic [85], we proposed an
efficient and adaptive method for the estimation of the parameters aimed at inverting such
transformations. Precisely, out-camera radial corrections are described by n ≫ 2 param-
eters radial distortion models, making it unfeasible to invert them using the one or two
parameters models of the SoA [40, 43]. In contrast, our method [85] divides images into a
series of concentric annuli, and inverts the radial correction locally to recover the PRNU
consistencies before performing source attribution. Our final method [85] was tested on
a large and diverse dataset composed of both in-camera and out-camera radial corrected
images while exploiting the correlation between parameters of subsequent annuli, treating
the problem as a time sequence to efficiently infer their values.

• GPU-Accelerated Source Attribution of Digitally Stabilized Videos: We ex-
tended the knowledge acquired during our research on source attribution of images spatially
transformed by out-camera post-processing software [83, 85] to efficiently estimate up to
eight parameters, and invert the video stabilization applied to video frames to recover the
PRNU consistency. Our assumptions [82] are that in videos exists at least a GOP which
frames are less stabilized than others due to lower camera motion. Furthermore, inside
this GOP, the parameters used by the homography matrix to stabilize the video should
be temporally correlated and can be predicted starting from the parameters estimated in
the precedent frames. Our algorithm [82] first detects the less stabilized GOP and then
predicts, for this GOP, the parameters used by homography matrices for video stabilization
efficiently using a SIFT-aided method. We accelerate the whole method using the GPU
for parallel processing without resorting to deep learning to preserve the explainability and
reproducibility of the method.

• Forgeries Localization of Video Inpainted by DNN Post-processed by Tem-
porally Consistency Networks: We developed a large and diverse dataset containing
13,104 videos inpainted with six State-of-the-Art (SoA) inpainting techniques [90, 59, 38,
71, 70, 112] and post-processed with two types of Temporal Consistency Networks (TCN)
[91, 64]. We evaluated the performance of SoA inpainting localization methods, noticing
that, when TCN was included in the generation pipeline of these videos, the accuracy of
SoA inpainting localization methods dropped. In fact, TCN-like post-processing severely
reduces spatial inconsistencies learned by localization methods to detect inpainting, target-
ing video flickering occurring across frames. We proposed a novel method exploiting both
spatial and temporal inconsistencies in inpainted videos. Specifically, we studied temporal
inconsistencies at dense optical flow level, which are more persistent and difficult to sup-
press by TCN. We tested this method on our dataset, outperforming the localization of
the SoA while highlighting the importance of using both spatial and temporal information
in video inpainting localization.

The results of this paragraph and the dataset will be submitted to the journal IEEE
Transactions on Information Forensics and Security (TIFS) in 2024 early Spring, while,
part of this work was already submitted to IEEE Access.
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Chapter 1

Background

1.1 Mathematical Notation

The images and frames considered in this doctoral dissertation can be either gray-scale or RGB;
however, since the processing for the latter is carried out separately for each color channel, for
notational simplicity we discuss the case of mono-channel images and later explain how the three
channels are combined in the case of RGB. Vectors will be denoted with boldface and lowercase
letters x. Bi-dimensional signals will be denoted with boldface. For every such signal, a domain
S ⊂ Z2 will be specified; for instance, a signal X with domain SX is a collection of values Xi,j ∈ R
defined for all locations (i, j) ∈ SX . For the case of images/frames of size M ×N , the original
domain is I = {1,⋯,M} × {1,⋯,N} ⊂ Z2; however, we will often find ourselves working with
domains that are subsets of I. We will denote by D2 half of the diagonal of domain I measured
in pixels. Notice that the set I can be expressed as I = B ∩Z2, with B ⊂ R2 denoting the image
bounding box.

The inner product of two signals X and Y with respective domains SX and SY can be defined
by extending the Frobenius product of matrices as ⟨X,Y⟩ ≐ ∑(i,j)∈SXi,jYi,j , where S = SX ∩SY
is assumed to be non-empty. The Frobenius norm of X with domain SX induced by this inner
product is ∣∣X∣∣ ≐ ⟨X,X⟩ = ∑(i,j)∈SX

X2
i,j . The product of signals X and Y, denoted by X ○Y, is

the element-wise product, i.e., (X ○Y)i,j = Xi,j ⋅ Yi,j and is defined for all (i, j) ∈ SX ∩ SY . The
multiplicative inverse of X is denoted by X○−1 and is such that (X○−1)i,j = X

−1
i,j . For a signal

X with domain SX , we denote by X̄ a constant signal with the same support as X and whose
value is the sample mean ∑(i,j)∈SX

Xi,j/∣SX ∣, where ∣SX ∣ denotes the cardinality of SX . The
normalized cross-correlation (NCC) between X and Y is defined as

ρ(X,Y) =
⟨X − X̄,Y − Ȳ⟩

∣∣X − X̄∣∣ ⋅ ∣∣Y − Ȳ∣∣
, (1.1)

with the inner product and norms defined as above.
Given a signal X with rectangular domain I and a vector s = (s1, s2) ∈ Z2, we denote

by C(X, s) the cyclic shift of X by vector s, so that the (i, j)th component of C(X, s) is
X(i+s1)modM,(j+s2)modN . Note that the domain of C(X, s) is also I. The all-zeros image is

denoted by 0. Finally, iteration numbers will be denoted by the superscript (i).
While we will refer to the notation in this paragraph throughout the rest of this doctoral

dissertation, greek letters, symbols, and other alphabetic characters within the chapters must be
regarded as specific and unique to those chapters
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CHAPTER 1. BACKGROUND

1.2 Related Works

Multimedia forensics applications vary across different research fields, including forgery detection
and localization [30, 34], source attribution [75, 29], data hiding [35], and security [27, 6].

Considering the growing relevance of problems related to the spread of fake contents depicting
scenes in images or videos that never happened or whose semantics were distorted (e.g., deepfake
and other AI-generated media [97, 55]), as well as the sharing of media that threatens our privacy
when captured without our consent [85], in this doctoral work, we choose to contribute to the
tasks of forgery localization and source attribution.

We refer to forgery detection [30, 34] whenever we need to determine whether a media, such
as an image or video, has been altered by software other than the one used for capturing an
image or recording a video [108]. In contrast, we define forgery localization [65] the task aimed
at localized the portion of area in an image or a video frame that was manipulated. Forgeries can
encompass changes in saturation, contrast, chroma, or other spatial characteristics of an image
or a video, often achieved through software like GIMP or other editing tools. Beyond these, other
types of forgeries may manipulate the overall semantic context of an image or a video. Theses
manipulations can involve splicing alien objects [13], copying and moving [24] objects already
present in the scene, removing them [112], or substituting or reenacting faces or subjects within
the scene [97].

In the past, this task was accomplished by analyzing inconsistencies at the Color Filter Array
(CFA) level [34], due to JPEG double-compression in the Discrete Cosine Transform (DCT)
domain [92], or residuals like the Photo Response Non-Uniformity (PRNU) [20]. Nowadays,
artificial intelligence (AI) and deep learning (DL) algorithms are used during the image and
video tampering process. Examples vary from well-known deepfakes [97] and images generated
by Generative Adversarial Networks (GANs) [55, 7], to more recent media generated by diffu-
sion models [26], or partially generated through AI-aided inpainting and outpainting algorithms
[113]. AI-aided tampered images and videos are more difficult to detect and localize due to a
lower amount of visual artifacts. Consequently, tampering detection and localization are mostly
accomplished by using deep neural networks (DNNs), which exploit their stronger perceptual
capabilities [89, 29, 65, 115, 4, 7] and are more effective in the ongoing arms race against new
and more sophisticated tampering methods [108].

In the case of source attribution, our primary goal is to determine the device used to capture
an image or record a video. This objective is crucial in cases of privacy abuse, where an image and
a video of a subject were taken without their consent. Source attribution can be accomplished by
exploiting lens artifacts [22], using a multi-camera features classifier [58], or analyzing residuals
introduced by the camera sensor [75, 32, 61]. Among these methods, Photo Response Non-
Uniformity (PRNU) [75] stands out as the most effective technique for source attribution.

However, advancements in new devices [49] and in-camera processing techniques, such as
High Dynamic Range (HDR), electronic image stabilization (EIS), radial correction, and many
others [50, 43, 41], have diminished the consistency of PRNU. This necessitates the development
of new PRNU-aided source attribution methods that can account for the impact of in-camera
and out-camera processing techniques.

An alternative to PRNU is Noiseprint [30], a PRNU-like residual estimated through a siamese
network. Noiseprint is effective for both source attribution and tampering localization and has
demonstrated greater robustness against new devices and in-camera processing.

It is worth noting that source attribution methods are frequently used in legal contexts, such
as courtrooms, where algorithms must be explainable and reproducible to be admissible as a
source of proof [52]. Unfortunately, Noiseprint [29] lacks this crucial characteristic.

As mentioned in the preceding paragraphs and in Chapter , within this doctoral dissertation,
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we will primarily focus on two sub-topics: source attribution and forgery localization. Specifically,
we will address the source attribution of images transformed by in- and out-camera editing
software, and videos stabilized using electronic image stabilization (EIS) systems. Additionally,
we will investigate forgery localization in videos inpainted using deep learning techniques.

In Section 1.2.1, we give further details on state-of-the-art methods for source attribution of
spatially transformed images and videos. In Section 1.2.3, our emphasis will be on methods for
forgery localization in inpainted videos.

1.2.1 Source Attribution of Spatially Transformed Images and Videos

Source attribution is a well-known problem, but modern solutions mostly refer to images. One
of the first approaches, proposed by Kharrazi et al. [58], selected 34 features introduced during
the camera acquisition process to feed an SVM and identify the image source. Kharrazi et al.
[58] achieved relevant results in terms of accuracy on moderate compression sources; however, it
was difficult to understand which of the 34 features was really contributing in terms of device
identification. In contrast, Choi et al. [22] exploited features introduced during the in-camera
post-processing (related to the camera firmware), like artifacts due to radial correction. Even
so, these features are not unique, as in-camera correction algorithms, leading to poor results.
Moreover, both works, [58], [22], due to the non-uniqueness of their features, are more suitable
for camera brand attribution problems (i.e., determining the brand of the device that generates
media) than for device one (i.e., determining the specific device of that media).

The first solutions for device attribution problems were proposed in the works of Kurosawa
et al. [61], Dirik et al. [32], and Lukas et al. [75]. Kurosawa et al. [61] proposed a residual
called fixed pattern noise (FPN), dark currents revealed when the sensor is underexposed or not
exposed. However, FPN can be described as an additive noise; thus, it is not very reliable and
can be easily removed with simple image processing.

To improve the robustness of source attribution methods, Dirik et al. [32] suggested using
patterns generated by the sensor’s electromagnetic fields when dust falls onto it changing the
lens. Notably, this method can only be applied to cameras with interchangeable lenses.

The first effective solution for source attribution was presented in the paper of Lukas et al.
[75], where the authors proposed to use an invisible residual introduced by the sensor of our
camera devices and related to its manufacturing process, called Photo Response Non-Uniformity
(PRNU). The PRNU is a noise-like residual estimated from an image or a video frame that can
be compared with other PRNUs in terms of Peak of Correlation Energy (PCE) [39]. Since the
PRNU is very sensitive to any kind of spatial shifts, the PCE measure has to verify that two
PRNUs are perfectly aligned, checking for any possible shifts.

Shifts may also occur when spatial transformations are applied to images or videos (i.e. shift,
scaling, rotation, radial correction, video stabilization, HDR, and many others). Indeed, spatial
transformations change pixels’ original coordinates, displacing their PRNU information. Thus, if
an image was spatially transformed and we measured the PCE between its PRNU and a second
untouched image, the result would very likely be a false negative.

False negatives due to a misalignment between two PRNUs as a consequence of spatial trans-
formation can be solved by undoing these transformations. Goljan et al. [40] proposed an
algorithm to invert simple spatial transformations, like radial corrections, using a combination
of two grid searches, iteratively refined, to maximize the final PCE value. The method down-
sampled by a factor of 2 an image to improve the overall computational efficiency; however, it
achieved poor results inverting radial corrections more complex than simple barrel or pincush-
ion [3]. Besides, due to the down-sampling applied to the PRNU before the grid searches, the
method proposed by Goljan et al. [40] struggles with low-resolution images. In the remaining of
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this doctoral dissertation, we will use the acronym G2012 to distinguish this work of Goljan et
al. [40] from a more recent one [43], to which we will refer with the acronym G2014.

In their next work, G2014, Goljan et al. [43], improved the computational efficiency of G2012
[40], while preserving the accuracy, by using the so-called linear patterns (LP) in concert with
the PRNU. In details, the energy E of the LP is estimated at every iteration as a function of a
set of parameters A, so that α∗ ∈ A is the parameter able to invert the radial correction applied
to the image when max(α∈A)E(LP (T

−1
α (W))), where W is the image PRNU and T −1α is the

inverse radial correction transformation. Once α∗ is estimated, it can be used to invert the radial
correction and compute the final PCE value that will be compared with a threshold. By doing
so, G2014 [43] lowers the computational cost of G2012 [40] by substituting the PCE with the
LP energy as optimization function for the estimation of α∗, and computing the PCE just once
after α∗ is estimated. In contrast, G2014 [43] is limited to invert just pincushion distortions by
design.

Problems related to image device attribution increase when applied to video source attribution
[81] due to stronger compression and more complex spatial transformations (i.e. Electronic Image
Stabilization (EIS)). Moreover, the literature on video source attribution is relatively less supplied
and developed, as videos have only recently became as widespread as images.

Iuliani et al. [50] proposed to invert the Electronic Image Stabilization (EIS) by checking
every possible combination of scaling, rotation, and shift parameters through a grid search applied
independently to each frame. To reduce the significant computational cost, the authors estimated
some of the parameters offline to invert the video stabilization, using them as prior knowledge.

Mandelli et al. [78] exploited genetic optimization algorithms for a faster estimation of the EIS
inversion parameters. Furthermore, in their paper [78], the authors performed source attribution
by comparing the maximum PCE value obtained from N I-frames post-EIS inversion. On the
other hand, the method of Mandelli et al. [78], to be computationally efficient, requires hardware
with the following characteristics: 2×Intel Xeon Gold 6126 2.6GHz and 377GB of RAM.

Finally, Mandelli et al. [77] proposed a second innovative method based on a modified
version of the Fourier-Mellin approach for an efficient estimation of the rotation parameter and
the inversion of the EIS. The algorithm obtained promising results in terms of accuracy and
computational cost. Nevertheless, this method, as well as those described in the preceding two
paragraphs [78, 50], does not exploit any information inheritance between parameters of neighbor
frames, nor frames different from I-frames (i.e., P, B-frames). Besides, to fully reverse the video
stabilization, the estimation of eight parameters (3.1) is required, but the just cited methods [78,
77, 50] estimate only three of them.

In conclusion, Cozzolino et al. recently introduced Noiseprint for device identification in
images [29] and videos [107]. While Noiseprint shows promising results, they are not as robust as
those achievable using PRNU when two PRNUs are aligned. Interestingly, the features extracted
by Noiseprint [29, 28] are more related with the camera brand than the device itself, resulting
in high true positive values but with a notable presence of false positives, suboptimal for source
attribution problems. Nevertheless, Noiseprint is spatial transformation and resolution agnostic,
providing a reliable alternative for clustering camera brands. However, the not full reproducibility
of deep learning-based forensics methods, makes the work proposed by Cozzolino et al. [29]
unusable in court as a source of proof but rather as a source of investigation [122].

For all the aforementioned reasons, in this doctoral work, we will first study the limitations
of PRNU methods on the inversion of complex out-camera (i.e., applied by computer software)
radial corrections using n≫ 2 parameters. Thus, we will propose a method for radial correction
inversion that exploits the correlation between these parameters, treating them as time series.
Finally, we will extend these concepts to a method for source attribution of EIS videos. More
details are provided in Chapters 2 and 3.
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1.2.2 PRNU estimation

As previously indicated, the PRNU is a multiplicative noise-like signal that serves as a sensor
fingerprint [76],[42]. Because the PRNU is a very weak signal, it is necessary to separate it from
both the true image and other noise components. If I0 denotes the image in the absence of noise,
and K is the PRNU, it is possible to derive the following simplified model [19]:

I = I0 + I0 ○K +Θ, (1.2)

where Θ is uncorrelated with both I0 and K, and summarizes noise components of different
nature, and all signals are defined over I. The fingerprint K of a camera can be extracted from
L images I(l), l = 1,⋯, L, taken with the camera under analysis. Let W(l) denote the noise
residual obtained by applying a generic denoising filter F (⋅) to the ith image I(l), as

W(l)
= I(l) − F (I(l)), l = 1,⋯, L. (1.3)

In all our reported experiments, we have used Mihcak’s wavelet-based denoiser [80] for it yields
an excellent trade-off between performance and complexity. Then, the PRNU can be estimated
as follows [19]:

K̂ = (
L

∑
l=1

I(l) ○W(l)
) ○ (

L

∑
l=1

I(l) ○ I(l))

○−1

. (1.4)

The estimate obtained is customarily post-processed to remove some systematic artifacts that
are present in most cameras. Here, we will follow the work of Chen et al. [19] and apply a mean-
removal operation by columns and rows, and a Wiener filter in the DFT aimed at removing
periodic spatial artifacts. For color images, the fingerprints are estimated separately for the
RGB channels and then linearly combined into gray-scale as in the paper of Goljan et al. [44].
Given an image under investigation I and its corresponding residual W ≐ I − F (I) a binary
hypothesis test can be formulated to decide whether I contains a certain PRNU K′ for which an

estimate K̂
′
is available. We will denote the null hypothesis of this test (i.e., I does not contain

K′) by H0 and the alternative (i.e., I contains K′) by H1.
The most popular decision statistic for the test is the Peak-to-Correlation Energy ratio (PCE)

which computes the peak cross correlation between the test image residual W and the estimated

PRNU K̂
′
from the candidate camera and normalizes it by an estimate of the correlation noise

under H0 [44].
For non-cropped images, the PCE simplifies to

PCE(K̂
′
,W) =

sgn(ρ(K̂
′
,W)) ⋅ ρ2(K̂

′
,W)

1
∣I/S∣ ∑s∈I/S ρ

2(K̂
′
,C(W, s))

, (1.5)

where following the improvement proposed by Kang et al. [53], we have included the sign of the
NCC to exclude negative values that would be never expected under H1. In (1.5) S is a cyclic
exclusion neighborhood of (0,0) of small size (e.g., 11 × 11 pixels) to avoid contamination from
cross-correlation peaks when estimating the cross-correlation noise when H1 holds. Noticing that
for every s, ∣∣C(W, s)−C(W, s)∣∣ = ∣∣W−W̄∣∣, and letting W̃ ≐W−W̄, (1.5) can be alternatively
written as

PCE(K̂
′
,W) =

ssq(⟨K̂
′
,W̃⟩)

1
∣I/S∣ ∑s∈I/S⟨K̂

′
,C(W̃, s)⟩2

, (1.6)

where we have assumed that the mean of K̂
′
is zero due to the zero-meaning operation discussed

above, and the signed-squared function ssq(⋅) is such that ssq(x) ≐ sgn(x) ⋅ x2.
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1.2.3 Video Inpainting Forgery Localization

Image or video inpainting involves the coherent removal of one or multiple objects from an
image or video, preserving spatio-temporal coherence. Techniques presented in the state of the
art (SoA) localize inpainted objects by detecting non-continuous artifacts, as discussed in the
work of Verdoliva [108], which are often left behind by deep neural networks used for inpainting.

Li et al. [65] localized inpainted objects in images using HPFCN, which is a fully convolutional
network comprising a trainable high-pass convolutional filter to enhance inpainting traces, four
ResNet blocks for feature extraction, and an up-sampling module to produce the final inpainting
localization result. HPFCN [65] achieved excellent localization results when tested on images,
providing a reliable solution for this task and serving as a decent baseline for video inpainting
localization.

Wu et al. [115] extended HPFCN [65] to enhance its robustness against resizing, additive
noise, and JPEG compression. The IID-Net architecture introduced by Wu et al. [115] consists
of three blocks. The first block enhances inpainting traces by combining RGB images with
other traces extracted through a series of Steganalysis Rich Model, Pre-Filtering, Bayar, and
convolutional layers. The extraction block is designed to retrieve features used for the localization
of inpainted objects, and the decision block produces the final localization result.

However, IID-Net [115] is computationally more expensive than HPFCN [65] and faces repro-
ducibility issues when unable to rely on at least two GPUs due to the impossibility of parallelizing
certain operations [115]. Furthermore, as demonstrated in our experiments, image inpainting lo-
calization techniques such as HPFCN [65] and IID-Net [115] lack accuracy when applied to video,
relying solely on spatial artifacts. In contrast, video inpainting techniques leverage both spatio-
temporal information during inpainting, yielding qualitatively superior results and requiring the
analysis of inconsistencies in both the spatial and temporal domains for localization.

Ding et al. [31] proposed a method for localizing inpainted objects in videos by initially
estimating spatio-temporal artifacts left by video inpainting techniques in both static and moving
objects using spatio-temporal convolutions. These artifacts are then input into a backbone
architecture similar to that of HPFCN [65], where their features are processed and up-sampled
to frame size, resulting in an initial coarse localization output. This output is subsequently
refined by a refinement module using a modified U-Net architecture [96]. The results obtained
by Ding et al. [31] are encouraging, highlighting the significance of exploiting both spatial-
temporal information for video inpainting localization and outperforming HPFCN [65] in this
task. However, it is worth noting that the dataset used by Ding et al. [31] consists of inpainted
frames with dimensions of 256 × 256, non-H.264 compressed, and does not entirely represent a
realistic scenario.

Zhou et al. [120] introduced VIDNet, an encoder-decoder architecture designed for video
inpainting localization. VIDNet takes an RGB frame at a specific timestamp, resizes it to a
resolution of 424 × 240, and calculates its Error Level Analysis (ELA) [111] to highlight incon-
sistencies resulting from video inpainting in the spatial domain. The resized RGB frame and
the ELA frame are then input into an encoder that generates multimodal features at different
levels. These features, combined with features extracted at different timestamps, are fed into a
four-layer convolutional LSTM (ConvLSTM), producing the final inpainting localization map.
VIDNet’s employment of ConvLSTM enables it to better consider temporal dependencies across
multiple frames, enhancing video inpainting localization results.

However, similar to the previous methods, the dataset used in VIDNet does not consider
H.264 data compression, and frames are stored as JPEG, which may not be representative of a
realistic video generation pipeline.

Similarly to VIDNet [120], Wei et al. [113], employed a ConvLSTM as a decoder but they
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enhanced the inpainting artifacts, left by the inpainting technique in both spatial and temporal
domains, utilizing two ResNet blocks to extract features from spatio-temporal residuals at a spe-
cific timestamp. The spatial residual was obtained using the same high-pass fully convolutional
filter of HPFCN [65], while the temporal residual was derived by co-registering a pair of frames
using their optical flow and then subtracting them. These residuals were then concatenated,
and their features extracted using two ResNet blocks. Subsequently, a ConvLSTM produced the
output localization map at the current timestamp, in concert with features extracted at different
timestamps, similar to VIDNet [120].

In the work of Wei et al. [113], inpainted videos were generated from JPEG-compressed frames
from DAVIS [17], UAV123 [88], GOT-10k [47], and VisDrone2018 [121]. However, unlike previous
methods, inpainted frames were resized to 432 × 240 and compressed using H.264, presenting a
more realistic work-case scenario. Furthermore, by testing their solution against a wide range
of SoA architectures, Wei et al. [113] demonstrated the benefits of targeting specific spatio-
temporal inconsistencies left by inpainting techniques in frame residuals. We will refer to the
method of Wei et al. [113] with the acronym DVIL.

In light of the results presented by Wei et al. [113], in our work, we propose a novel solu-
tion that exploits both spatial and temporal inconsistencies left by inpainting algorithms. We
achieve this by adapting and extending some of the main modules of RAFT [106], an architecture
designed for dense optical flow estimation.

Methods utilizing optical flow [10], whether for deep-fake detection [51, 99, 4, 21], or inpaint-
ing detection and localization [100], have been previously proposed in the literature. Deep-fake
detection methods typically employ optical flow as input for very deep CNN architectures (such
as VGG16 [102], XceptionNet [23], InceptionNet [104], and others). Conversely, Saxena et al.
[100] detected inpainted videos by measuring the Root Mean Squared Error and fitting a GM dis-
tribution on normalized Chi-Squared values of consecutive overlapping optical flow histograms.
They also localized inpainted objects by training a Support Vector Machine (SVM) on transition
probability matrices of non-overlapping optical flow blocks.

Our approach, while sharing similar intuitions with methods exploiting optical-flow artifacts
[100, 51, 99, 4, 21], is inherently different. We do not use optical flow as input for a CNN or SVM;
instead, we take inspiration from RAFT [106], a network capable of measuring both small and
large displacements in a dense optical flow. Our goal is to identify small perturbations resulting
from non-perfect reconstructions left by inpainting methods in video frames.

For this task, we created a new dataset of inpainted videos generated using clips from real
videos sourced from YouTube-8M [2], VISION [101], Socrates [36], and Sport-1m [54]. These
clips were inpainted using six recent inpainting techniques and subsequently compressed in H.264
format.

A second variant of the dataset, which underwent post-processing with techniques aimed
at reducing the artifacts introduced by inpainting, was also created. As our experiments will
demonstrate, the use of such post-processing techniques significantly compromises the accuracy
of existing methods for inpainting localization.
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Chapter 2

Source Attribution of Images
Radial Corrected by Out-Camera
Software

The aim of this chapter is to address issues related to PRNU source attribution concerning
spatially transformed images, with a specific focus on radial correction applied either in-camera by
the camera firmware or out-of-camera by third-party editing software such as Adobe Lightroom,
Photoshop, Gimp, and PT-Lens. In-camera radial corrections are generally more straightforward
to reverse, aligning the image noise residual W with the camera fingerprint PRNU K̂. However,
out-of-camera radial corrections pose a greater challenge, given their varying intensity across the
spatial domain of the image.

In the subsequent sections of this chapter, we introduce two approaches to effectively tackle
this problem. The first study [83], published at ICASSP in 2022, successfully combines two state-
of-the-art (SoA) methods, G2012 [40] and G2014 [43] (refer to Sect. 1.2.1 for acronym details), to
invert most in-camera and out-camera spatial transformations. However, it’s important to note
that out-camera radial correction may entail the estimation of L parameters, and consequently,
both methods G2012 [40] and G2014 [43], as well as our initial study published at ICASSP [83],
cannot fully reverse these transformations, leading to significant issues of mis-attribution.

In the second work presented in this chapter [85], published in the journal TIFS in 2023, we
address the challenges encountered by G2012 [40] and G2014 [43] and our precedent work [83].
We demonstrate how these issues can be effectively resolved by treating the problem of estimating
the L out-camera corrected image parameters as a time series and employing adaptive parameter
estimation techniques. Further details are provided in the upcoming sections.

2.1 Introduction to the Problem

During the past years, camera fingerprints based on the Photo Response Non-Uniformity (PRNU)
(see Sect. 1.2.2) have gained broad popularity in forensic applications thanks to their ability to
identify the device that captured a certain multimedia.

Unfortunately, the fact that the PRNU can be accurately modeled as a white random process
explains its sensitivity to geometric transformations that alter the image coordinates. Unless
those transformations are reverted, standard detection statistics will perform poorly as they are
roughly based on cross-correlations that yield very small values under grid misalignment. In
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the literature several methods have been proposed to deal with those spatial transformations,
including digital zoom [42], video stabilization [105], high dynamic range (HDR) processing [87],
and radial distortion corrections [40, 43]. It is in the context of the latter that we have developed
the methodology presented in this work.

Radial distortion correction aims at digitally removing the distortion introduced by the cam-
era lens. This kind of processing is becoming more pervasive as devices increase their computing
capabilities; in-camera correction is now common in compact models, tablets and smartphones.
On the other hand, out-camera corrections can be performed with powerful software like Adobe
Lightroom, which are able to invert distortions almost perfectly by matching the model of the
lens mounted on the camera. This is not done by applying conventional radial distortion models
such as barrel or pincushion but by making use of complex models (i.e., with a large number of
parameters). As a consequence, existing methods [40, 43] relying on models with at most two
parameters will only partially succeed in dealing with camera attribution under these complex
out-camera processing. Increasing the number of model parameters often constitutes an undesir-
able path because reverting the distortion corrections entails a grid search whose computational
load grows exponentially with the number of unknowns.

Following the results presented in our recent works [83], [85], we will first analyze the main
limitations affecting G2012 [40], and G2014 [43] when applied to modern, more sophisticated
radial correction techniques. To enhance the accuracy of G2012 [40], and G2014 [43], we will
demonstrate the effectiveness of a proper combination and computational parallelization ap-
proach. This approach includes coarse parameter estimation guided by the Peak-to-Correlation
Energy (PCE) followed by refinement based on the Linear Pattern Energy (LPE). Additionally,
we propose a novel validation procedure based on the PCE, which allows us to quickly discard
test images without waiting for the entire hypothesis test to declare a mismatch. This procedure
leverages GPU hardware for computational acceleration purposes, as demonstrated in our work
on source attribution of electronically stabilized videos [82].

However, it is important to note that our approach [83] consisting in combining G2012 [40],
and G2014 [43], does not entirely solve the issues associated with these latter for more complex
radial distortions, as it is required the estimation of several radial distortion parameters.

Consequently, we propose a novel approach [85], for PRNU-based camera attribution un-
der radial distortion corrections. This approach is capable of handling complex models without
significantly increasing the computational burden. The main idea is to adaptively predict the
L parameters used to invert the radial correction, treating them as a time-serie and dividing
the image under test and the PRNU into a series of concentric annuli. These concentric annuli
are thin enough to be locally describable with a simple (i.e., linear or cubic) distortion model,
enabling an equally simple inverse transformation. Moreover, the annuli are traversed sequen-
tially while keeping track of the cumulative peak-to-correlation energy ratio (CPCE), a statistic
introduced in our work published to the journal TIFS [85]. The CPCE is used to determine
whether the radially corrected test image contains the reference PRNU. The sequential nature
of the procedure allows for an early stopping strategy to declare a match without processing all
the annuli, thus saving computational time.

As we mentioned in the precedent paragraph, another key feature of our method is its adap-
tivity. Instead of conducting a wide-interval search for the distortion parameters describing each
annulus, the set of parameters to be estimated is treated as a time series. An adaptive Least-
Mean-Squares-like predictor updates the parameters of the previously processed annulus to nar-
row down the current parameter search. This approach significantly enhances computational
efficiency without sacrificing flexibility. To guide the search, we propose and mathematically
justify a new objective function.

Different variants of our solutions [85, 83] are evaluated in terms of accuracy and execution
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time. We compare our methods [83, 85] with G2012 [40], and G2014 [43] on a large dataset
composed of images taken with: 1) compact devices and radially corrected in-camera, and 2)
a reflex camera and radially corrected out-of-camera using different software tools. Our results
show considerable performance improvements, especially on low-resolution images and in pres-
ence of complex radial distortion corrections. We also show an application of our final solution
[85] in discovering new device attribution matches that would otherwise be assigned to the null
hypothesis in a database of smartphone images [49].

In the following sections, we will provide in Sect. 2.2 mathematical definitions in support of
this chapter, and the SoA in Sect. 2.3. Subsequently, in Sections 2.4.1 and 2.4.2, we will present
our solutions [83, 85]. Finally, we will illustrate the experimental results in Sect. 2.5 and give
our conclusions in Sect. 2.6.

2.2 Lens Distortion Models

To describe radially symmetric barrel/pincushion distortions we adopt the same models presented
by Goljan et al. [40] and explained in several related publications [48, 66, 94]. If we denote the
coordinates before and after the radial distortion by (x, y) and (x′, y′), respectively, the invertible
geometrical mapping Tα is given by

Tα ∶ R2
→ R2

(x, y) ↦ (x′, y′) (2.1)

where
x′ = xp + (x − xp)(1 + αr

2
); (2.2)

y′ = yp + (y − yp)(1 + αr
2
), (2.3)

and (xp, yp) = (M/2,N/2) is the geometric center of the image, and r2 ≐ [(x − xp)
2 + (y −

yp)
2]/D2

2 is the normalized squared radial distance from point (x, y) to the geometric center.
This normalization by D2

2 is for convenience, so that r = 1 corresponds to half of the image
diagonal [40]. Parameter α ∈ R in (2.2-2.3) models the type of radial distortion: α > 0 for
pincushion distortion, and α < 0 for barrel distortion. Alternatively, given (xp, yp) and assuming
that Tα(xp, yp) = (xp, yp), the transformation can be written in normalized polar coordinates.
Since the phase is preserved under Tα(⋅), with a slight abuse of notation we will drop the phase
component and sometimes write the radial transformation as Tα ∶ R+ ∪ {0}→ R+ ∪ {0} such that

r′ = Tα(r) = r(1 + αr
2
). (2.4)

More complex radial corrections [33], [43] can be expressed through an nth order model:

r′ = Tα(r) = r (1 +
n

∑
i=1

αir
2i
) , (2.5)

where α ≐ [α1,⋯, αn]
T is a real parameter vector. In this chapter, we consider that all radial

corrections that cannot be expressed or well approximated with less than three non-null param-
eters are “complex”. It is also important to remark that parameter vector α often depends on
the camera settings, such as the lens type or the focal distance, so images taken with the same
camera may experience different distortion corrections.

Again, with some abuse of notation, and following the work of Goljan et al. [40], given a signal
X with domain SX , the mapping Y = Tα(X) is produced as follows. Let X′ be the signal with
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domain SX′ = Tα(SX) such that, for every (u, v) ∈ SX , and with (u′, v′) = Tα(u, v), X
′
u′,v′ =Xu,v.

Then, given an ouput domain SY , the signal Y = Tα(X) is obtained by interpolating the signal
X′ defined on S ′X at the points in SY . Of course, precautions must be taken when specifying SY
so that the interpolation is computable at all points in SY . This aspect will be made clearer in
Sect. 2.4.2, when we present our final method.

2.2.1 Direct and inverse approaches to PCE computation

When the image under analysis has been subjected to a radial distortion correction, the statistic

PCE(K̂
′
,W) is expected to perform poorly under H1 in the hypothesis test, because the grids

supporting K̂
′
and W will not coincide (recall that the PRNU has a very narrow spatial auto-

correlation function [15]).
The approach explored Goljan et al. [40] in G2012 is to take into account the distortion

correction when computing the PCE. If the parameter vector α of the radial mapping is known,
there are essentially two possibilities, which we will term direct and inverse. In the direct

approach, the candidate PRNU K̂
′
is transformed in order for its grid to match that of W.

Then, the test statistic becomes

PCEdir(α) ≐ PCE(Tα(K̂
′
),W), (2.6)

where the domain IT of Tα(K̂
′
) is the largest rectangular subset of I for which the interpolation

is computable (see discussion at the end of Sect. 2.2) and, accordingly, IT replaces I in the
denominator of (1.5).

In the inverse approach W is mapped back to the original domain, so that its grid coincides

with that of K̂
′
. Then, the test statistic in this case is

PCEinv(α) ≐ PCE(K̂
′
, T −1α (W)). (2.7)

where, as above, the domain IT of T −1α (W) is the largest rectangular subset of I for which the
interpolation is computable and IT replaces I in the denominator of (1.6).

Since one is interested in finding the best possible match, the authors of G2012 [40] suggest
using the following statistic

PCEmax(α) ≐max{PCEdir(α),PCEinv(α)}. (2.8)

When the parameter vector α is not known, which is often the case in practice, it must be
estimated. In G2012 [40] this is done by maximizing the test statistic in (2.6-2.7), which makes
sense from a maximum likelihood point of view. Let A ⊂ Rn be the set of feasible vectors α;
then, the statistic used in the hypothesis test is

PCE∗max ≐max
α∈A

PCEmax(α). (2.9)

For the case of scalar α in (2.4) the inverse radial correction T −1α (W) needed in (2.7) can be
approximated via the Lagrange Inversion Theorem [1, p. 3.6.6.] which yields

r = T −1α (r
′
) = r′(1 − αr′

2
+ 3α2r′

4
+O(r′

6
)). (2.10)

Using the approach described above, the radial correction can be approximately inverted
in many practical cases by finding the optimal value of α [40]. However, when more complex
radial corrections as in (2.5) have been applied, a single parameter α may be not sufficient.
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Figure 2.1: Values of α maximizing PCEinv(α) vs inner radius of the annulus. Values are linearly
interpolated. Canon 1200D camera with EF-S 10-18mm lens, corrected with Adobe Lightroom.
Focal length: 10mm. Shutter speed: 1/100 sec. Aperture: f7.1. ISO 800. The PRNU is
estimated with 20 natural images all taken with those settings.

To illustrate this fact, we consider the example of an image of size 3456 × 5184 taken with a
Canon 1200D camera using a Canon EF-S 10-18mm as lens and radially corrected with Adobe
Lightroom (with settings for the mounted lens, using the strongest correction). We partitioned
the image into non-overlapping annuli of width 64 pixels and found for each annulus—through
exhaustive search—the value of α that maximizes PCEinv(α) in (2.7), where inversion is done
via (2.10). The result is plotted in Fig. 2.1 as a function of the inner radius of the annulus. As
it is quite apparent, there is a dependence of α with r that indicates that one parameter alone is
not sufficient to describe the radial transformation and that a more intricate relationship—even
if parametric—must be sought.

2.3 State of the Art on Method for Source Attribution of
Radial Corrected Images

The PCE is very sensitive to the correct alignment of the locations corresponding to the estimated
PRNU and the residual; this means that unless a value of α very close to the true one is used
in the mappings in (2.6) or (2.7), the resulting PCE will be very small, and hypothesis H1 is
likely to be rejected when it is in force. To illustrate this phenomenon, in Fig. 2.2 we show
the function PCEmax(α) for an image taken with a Panasonic DMC-ZS7 camera, shutter speed:
1/400 s, aperture: f4.4, focal length: 19.5 mm, and ISO 100. The step-size in α is 2 ⋅10−3. As we
can observe, under H1 the function is very spiky, with the consequence that a sufficiently dense
grid must be used; otherwise, it is easy to miss the peak. In addition, this spikiness precludes
the use of gradient-based algorithms, because they would only work in the very close vicinity of
the peak.

Therefore, any search grid in the parameter space has to be fine enough to be able to locate the
maximum. The method presented in the paper of G2012 [40] considers that the transformations
(both the direct and the inverse) are parameterized by a scalar α and starts by selecting a search
interval [−A,A] which is progressively made finer so that at each iteration k, with k = 1,⋯, kmax,
a grid with 2k + 1 points is generated. Note that at the k + 1-th iteration only 2k new points
are produced. A threshold τ1 is set so that if, after all kmax iterations, no α exists in the grid
such that PCEmax(α) > τ1, then the search is stopped and a mismatch is declared (i.e., H0 is
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Figure 2.2: PCEmax as a function of α for a Panasonic DMC-ZS7 camera.

decided). At every iteration, PCEmax is maximized over all grid points; this requires computing
it only for the new points. Let α○ denote the grid point for which the maximum is obtained;
if at some iteration PCEmax(α

○) > τ1, then the search stops and the algorithm proceeds to the
second stage in order to refine the value of α○. However, in order to speed up the process, the
maximization skips the exhaustive enumeration of all grid points provided that k > 4 whenever
α† is found such that PCEmax(α

†) > τ2 (with τ2 > τ1). In this case, the algorithm proceeds to the
second stage by searching around α†. The second stage takes the value of α with which the first
stage was exited and constructs an interval with its two neighboring points in the grid. If k∗ is
the exit value of k for the first stage, then this interval has width A/2k

∗
−1. Next, a golden search

is performed until the width of the interval is approximately 1/(8D2), with D2 the half-diagonal
of the image. Let α∗ be the value found with the golden search; then, if PCEmax(α

∗) > τ3
hypothesis H1 is accepted, else, H0 is declared. The thresholds suggested for G2012 [40] are
τ1 = 15 and τ2 = τ3 = 75, and kmax = 7. To reduce the computational complexity in G2012 [40] the
signal is downsampled by a factor of two in each dimension; since this has an impact on accuracy
in some cases, in the experimental section, we will consider both the downsampled (DS) and
non-downsampled versions.

In G2014 [43], the authors considered a different approach to perform the inversion of radially-
corrected barrel distortions by employing the so-called linear patterns that are present in the
residuals and are due to artifacts of the capturing device. These patterns are typically removed
towards source attribution, but when kept, they serve as pilot signals that may be used to infer
the radial distortion correction. The feature that is used to steer the parameter estimation is the
energy of the linear pattern, defined for a given residual W as E(W) ≐ ∣∣c∣∣2 + ∣∣r∣∣2, where c and
r are vectors containing respectively the column and row averages of W. Then, considering the
set of fourth-order transformations Tα(r) = r(1+α2r

2+α4r
4), where α = (α2, α4), the algorithm

of G2014 [43] seeks to maximize E(T −1α (W)) with respect to α, with the rationale that when the
correct inverse transformation is applied, the linear pattern is recovered; otherwise, the column
and row averages will be expected to produce low values. The fact that the transformation is now
parameterized by two variables α2 and α4 gives more flexibility in inverting the transformation,
but potentially incurs a larger computational cost. To make the optimization more manageable,
a first stage consists in fitting a second-degree polynomial on variable α2 to values of E(T −1α (W))
sampled on a grid for α2 ∈ [αmin, αmax], αmin > 0, and α4 = 0. The reason for this choice of α4

is that in practice the contribution of α4 to Tα(r) is only significant for large r, that is, far

from the image center. This first stage yields the value α
(1)
2 of α2 that maximizes the difference

from the energy of the linear pattern and its polynomial fit. The second stage employs a Nelder-
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Mead optimization (using the linear pattern energy as cost function) that is initialized with three

points derived from α
(1)
2 . This produces the two optimal radial correction parameters (α∗2 , α

∗
4).

Due to noise, the previous procedure will yield an optimum α2 ≠ 0 regardless of whether radial
correction was applied. Then, the decision is confirmed only if the cost function evaluated in a
neighborhood of (α∗2 , α

∗
4) corroborates the existence of a significant peak; otherwise, the image

is deemed to be not radially corrected.

Even though, as we will see in Sect. 2.5, the performance of the two methods outlined above
is rather good, they have two main intrinsic limitations that we aim at overcoming with our
work: 1) their corresponding first stages employ an exhaustive search on a fixed grid. This fact,
together with the high sensitivity of the PCE with respect to changes in the parameter vector α
about the correct one that results in a very spiky objective function, advise the use of a relatively
tight grid to minimize the risk of missing the optimum. Unfortunately, this tightness entails a
significant computational cost. 2) Again, due to the computational cost of an exhaustive search,
the transformations Tα and T −1α use a small number of parameters: one in G2012 [40], and two
in G2014 [43]. Therefore, these parameterization are unable to capture more complex radial
corrections, such as those employed by editing programs (cf. Fig. 2.1), a trend that is likely to
increase, as the capabilities of out-of-camera processing improve.

To address these problems, we will first examine, in Sect. 2.4.1, the complementarity of
G2012 [40], and G2014 [43], proposing a solution that efficiently combines them and alleviates
their computational complexity by leveraging GPU hardware.

Notably, this solution, exploiting the complemetarity of the SoA [83], presented in Sect. 2.4.1
only partially resolved the issues affecting the SoA methods. Therefore, in Sect. 2.4.2, we will
treat the L parameters to be estimated as a time series and adaptively estimate them. The
final method [85] proposed in Sect. 2.4.2 offers significant advantages over the SoA of G2012
[40], and G2014 [43], both in terms of accuracy and computational cost. Importantly, it achieves
these improvements without relying on GPU acceleration, used for the solution [83] proposed in
Sect. 2.4.1.

2.4 Proposed Solutions

2.4.1 Exploiting PRNU and Linear Patterns in Forensic Camera At-
tribution Under Complex Lens Distortion Correction

During our experiments, we noticed that methods of the SoA G2012 [40], and G2014 [43] per-
formed differently depending on the type of radial corrections. This is illustrated in Fig. 2.3,
where the PCE values of the two methods proposed by Goljan et al. [40],[43] are plotted against
each other for different subsets of our test database; the diagonal corresponds to equal perfor-
mance. These large deviations are due to different intrinsic features and limitations of both
methods: G2012 [40] works well when it comes to inverting both barrel and pincushion radial
corrections, but struggles when trying to invert complex radial corrections that employ more than
one parameter. In contrast, G2014 [43] performs generally better, especially when α1 ∈ [0,0.33].

This observation is key to proposing combinations of G2012 [40], and G2014 [43] using some
judicious criterion; here we will discuss MAX and OR rules. The MAX rule consists in running
the two methods in parallel (MAXpar) or in sequence (MAXseq), on the same image, taking
the maximum of both, and comparing it with a threshold experimentally set to achieve a False
Positive Rate (FPR) ≈ 0.05. In this way, we choose the parameter vector α that maximizes the
final PCE value. In contrast, the OR criterion declares a match whenever either method yields
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Figure 2.3: PCE values obtained with the two methods proposed by Goljan et al. G2012 [40],
G2014 [43] on the test dataset. Samples near the dashed line corresponds to similar output PCE
values.

a PCE value larger than its respective threshold. Both OR and MAX rules outperform G2012
[40] and G2014 [43] on low-resolution images, like those from the Panasonic ZS7 device, and
complex out-camera radial corrections like those of Adobe Lightroom, see Sec. 2.5. This further
illustrates some complementarity (to the best of our knowledge up to now untapped) of G2012
[40] and G2014 [43], which can also be appreciated in Fig. 2.3. Unfortunately, both OR and MAX
criteria increase the computational complexity of the original methods (already computationally
quite demanding); in addition, they do not fully complement each other towards an accurate
estimation of the spatial transformation parameters α1 and α2.

Alternatively, we propose a PCE-guided coarse parameter Search plus Linear Patterns-based
Refinement (PSLR), that more efficiently leverages the advantages of G2012 [40] and G2014 [43].
This approach first estimates α1, when α2 = 0, using the grid search presented in G2012 [40] but
without its early stopping conditions, which is more accurate than the one proposed in G2014
[43] and is able to cover both positive and negative values of α1. Let α̂1 denote the estimate just
described. Towards a fast detection of mismatches, the algorithm verifies the correctness of α̂1;
to that end, we do not follow the same validation procedure of G2014 [43], but we evaluate the
PCE peak obtained at α̂1 by checking that:

PCE(K̂′, T(α̂1,0)(W)) − ν > τv (2.11)

where
ν≐(PCE(K̂′, T(α̂1+Λ,0)(W))+PCE(K̂

′, T(α̂1−Λ,0)(W)))/2

for some values of Λ and τv to be discussed next. The intuition behind the proposed validation is
that the PCE exhibits a sharp peak if represented against α1 (when α2 = 0); to validate whether
α̂1 corresponds to the peak, we subtract from the PCE at α̂1 the average PCE obtained at two
points away from the presumed peak, and compare the result with a threshold. This threshold
has been experimentally set to achieve a probability of false validation of 0.01 (under both H0
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Figure 2.4: PCEinv(α) for: α = −0.01 and α = 0.05.

and H1 hypotheses) using 200 images from our database discarded from the test-set. Following
the previous discussion, we set Λ = 0.1 and τv = 10.58.

If (2.11) is satisfied, the PSLR algorithm proceeds with the estimation of α2; otherwise, a
mismatch is declared. To estimate α2, we maximize the LPE using as in G2014 [43] the Nelder-
Mead algorithm which demonstrated, during our experiments, to be very robust and reliable
if initialized using the correct value of α1. The algorithm decides H1 if, during any of its two
stages, an PCE larger than τ is retrieved, where τ is a threshold set experimentally to achieve
FPR ≈ 0.05.

To further reduce the computational cost of the PSLR algorithm, all the radial correction
operations, interpolation, re-sampling, and PCE estimation are run on a GPU, as it is done in
the work we will present in Chapter 3 [82]. By doing so, we can parallelize all those operations
that are most time-consuming when run on a CPU. However, for a fair comparison with the SoA,
we will also show the CPU run-times of PSLR. We note that PSLR uses the full-resolution noise
residual W and not its downsampled version as done for G2012 [40].

2.4.2 An Adaptive Method for Camera Attribution under Complex
Radial Distortion Corrections

In order to motivate the second solution proposed in this chapter, we will rely on an example
generated with the popular photo editing software Adobe Lightroom that will give us the nec-
essary clues. Images were taken with a Canon 1200D camera and then radially corrected with
Lightroom. In Fig. 2.4 we combined two PCEinv maps (corresponding to α = −0.01 and α = 0.05)
in which PCEinv(α) is computed using (2.7) and (2.10) for non-overlapping blocks of size 64×64.
The combination is carried out by substituting the pixels corresponding to the outermost annu-
lus (obtained for α = −0.01) into the PCEinv map obtained for α = 0.05. For mere illustrative
purposes, and in order to enhance the visibility, the (radially corrected) image under analysis

(from which W is computed) is one of the 20 flat-field images used to extract K̂
′
. As we can see,

the region where the PCE is significant is an annulus, and the position of the annulus depends
on α. This shows that if L(r) denotes the radial correction induced by the software and L−1(r)
its inverse, then for a given α = α0, T

−1
α0
(r) ≈ L−1(r) only in a small neighborhood of some r = r∗.

This experiment clearly indicates that for complex radial corrections, an approach like (2.10)
will not work. However, the fact that the inversion works locally suggests breaking the problem
into non-overlapping concentric annuli as shown in Fig. 2.5, and solving each separately.
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1

Figure 2.5: Annular partition used in the proposed method.

2.4.2.1 Set partitioning and transform computation

Let Rk, k = 1,⋯, L, be the kth annulus described by an inner radius rk (recall that radii are
scaled by D2 so that r = 1 corresponds to half of the image diagonal) and a width ∆k as follows:

Rk ≐ {(u, v) ∈ R2
∶ r2k ≤ u

2
+ v2 < (rk +∆k)

2
}. (2.12)

The inner radii are generated as rk+1 = rk+∆k, with r1 = 0, and the inner radius of the last annulus
rL is such that rL < 1 < rL +∆L (see Fig. 2.5). This definition implies that the first annulus
degenerates into a disk and the image is fully covered by annuli. Except for this degenerate
annulus, in this work we will assume that ∆k =∆ for all k.

The experiment shown in Fig. 2.1 (obtained applying a brute force search for each annulus)
suggests that a good modeling of the radial correction can be obtained by allowing α to vary
with r, so (2.4) in this case becomes

r′ = Tα(r)(r) = r(1 + α(r) ⋅ r
2
). (2.13)

The idea is that by allowing α to be a function of r, we achieve much more flexibility in modeling
complex distortions. Moreover, as long as the annuli are thin enough, the zero-th order approxi-
mation α(r) ≈ α(rk+∆k/2) ≐ αk will be reasonably good for all r ∈Rk. This local approximation
will allow us to use (2.10) for the inverse transform. However, since we are allowing α to vary
with r, instead of a locally cubic dependence, as in (2.13), it also makes sense to consider a
locally linear one, i.e., r′ = Tα(r)(r) = r(1 + α(r)). Even though for the generic mappings we
will keep using Tαk

(r) and T −1αk
(r) for the sake of generality, we specialize them by adding the

sub-indices c to denote cubic, and l to denote linear. Therefore, on each annulus we write

Tαk,c(r) ≐ r(1 + αkr
2
);

Tαk,l(r) ≐ r(1 + αk), r ∈Rk, (2.14)

whereas the corresponding inverse mappings are

T −1αk,c
(r′) ≈ r′(1 − αkr

′2
+ 3α2

kr
′4
), r′ ∈ Tαk,c(Rk);

T −1αk,l
(r′) =

r′

1 + αk
, r′ ∈ Tαk,l(Rk), (2.15)

Note that the ranges of the inverse transforms in (2.15) may be different because the image of
each annulus will differ under the locally cubic and locally linear mappings.
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Given a collection of annuli Rk, k = 1,⋯, L, one can see the mapping Tα(r) in (2.6) as a se-
quence of transformations Tαk

(r), k = 1,⋯, L, that is parameterized by a vector α = [α1,⋯, αL]
T .

This larger number of parameters provides a much higher capacity of expressing complex radial
functions, as required by our targeted distortion compensations. Obviously, the maximization of
the PCE with respect to α ∈ A ≐ A1 × ⋯AL, with Ak the feasible set for αk, would suffer from
a combinatorial explosion due to the L dimensions involved, so we will be interested in finding
efficient alternative ways for performing an approximate maximization.

A first step is to treat each annulus separately and find the optimal value of αk constrained
to the kth annulus. There are several possible approaches at this stage. One would be to find
αk that maximizes the PCE constrained to the kth annulus; unfortunately, since the total PCE
is not the sum of those constrained PCEs, it is quite difficult to work individually with each
annulus using such a criterion. Instead, we have opted for a maximum likelihood estimation
approach that aims at finding the αk that has the highest likelihood of producing the observed
cross-correlations with the estimated PRNU. Once we describe how the optimal αk can be found
for each annulus in an adaptive way (Sect. 2.4.2.3), we proceed by explaining how the PCE can
be computed and updated (Sect. 2.4.2.4).

In the following, we give a formal description of the annuli for the inverse approach (i.e.,
using T −1αk

) and afterwards indicate how to adapt the discussion to the direct approach. Let Pk
be the set of points of the image grid that are contained in the kth annulus, i.e.,

Pk ≐ (D2 ⋅Rk) ∩ I, k = 1,⋯, L, (2.16)

where multiplication of Rk by D2 (i.e., half the diagonal in pixels) is necessary to re-scale the
annulus back to integer-valued coordinates (recall that r = 1 corresponds to half the diagonal).

Given W̃ =W−W̄ and Pk, computation of T −1αk
(W̃) proceeds as follows (see Fig. 2.6). First,

the image of the set Pk under T −1αk
, i.e. T −1αk

(Pk), is calculated and the transformed points lying
outside the image boundaries B are discarded, as the subsequent interpolation would not be
computable. For the remaining points, T −1αk

(W̃) is obtained by interpolation from W̃. We let
Qk,inv(αk) be the set of points of Pk for which their image under T −1αk

exists (the sub-index inv
stands for ‘inverse approach’). Formally, this set is

Qk,inv(αk) =D2 ⋅ Tαk
([(D2 ⋅ T

−1
αk
(Pk/D2)) ∩ B] /D2) . (2.17)

Notice that if the set Pk transformed via T −1αk
does not get out of the image bounds B, then

Qk,inv(αk) = Pk; otherwise, Qk,inv(αk) ⊂ Pk. As a consequence, Qk,inv(αk) ∩ Pk = Qk,inv(αk).
Also notice that, as explicitly indicated, the set Qk,inv(αk) and, in particular, its cardinality,
varies with αk.

For the direct approach, the considerations are similar. Basically, we have to exchange the
roles of Tαk

and T −1αk
. Recalling that the sub-index dir stands for ‘direct approach’, the set

Qk,dir(αk) can be formally written as

Qk,dir(αk) =D2 ⋅ T
−1
αk
([(D2 ⋅ Tαk

(Pk/D2)) ∩ B] /D2) . (2.18)

2.4.2.2 Optimization with respect to αk

Once the annuli have been characterized, in this section we address the problem of finding the
optimal values of αk that parameterize the transformations T −1αk

and Tαk
for the kth annulus.

For the sake of compactness, we will find it useful to denote the cross-correlation and the
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Figure 2.6: Illustration of the application of transforms T −1αk
and Tαk

, and related domains.

energy of the transformed residual computed over Qk,inv(αk) as, respectively,

Φk,inv(αk) ≐ ∑
(i,j)∈Qk,inv(αk)

K̂ ′i,j ⋅ [T
−1
αk
(W̃)]

i,j
, (2.19)

Ek,inv(αk) ≐ ∑
(i,j)∈Qk,inv(αk)

[T −1αk
(W̃)]

2

i,j
, (2.20)

by making implicit the use of the inverse transformation T −1αk
(⋅), and K̂

′
and W̃. Similarly,

we denote by Φk,dir(αk) and Ek,dir(αk) the cross-correlation and energy for the direct mapping
Tαk
(⋅) computed over Qk,dir(αk).

In 2.7 we derive an estimator of αk on the kth annulus. This estimator is rooted in the
principle of maximum likelihood applied to the output of a bank of cross-correlations. For the
inverse approach, this becomes

α∗k = arg max
αk∈Ak

φk,inv(αk), (2.21)

where

φk,inv(αk) ≐
Φk,inv(αk)

Ek,inv(αk)
. (2.22)
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For the direct approach, the optimization is carried out after replacing the subindex inv by dir
in both (2.21) and (2.22). We notice the proposed objective function is different from the PCE
(constrained to the kth annulus); besides the theoretical justification in 2.7, in [84] we provide
empirical evidence that optimization of our objective function renders better global performance
than the PCE.

2.4.2.3 Adaptive optimization

One key observation from Fig. 2.1 is that the sequence α∗k, k = 1,⋯, L, changes smoothly for
sufficiently small ∆k and, for this reason, it is possible to treat it as a time-serie. This hints at
the possibility of reducing the computational complexity of the exhaustive search by using an
adaptive predictor. In our case, we will show experimentally that a linear predictor u with length
U suffices to achieve excellent results. In the following, we explain this adaptive procedure. As
above, we will give the details for the inverse approach, as the direct one is methodologically
identical.

First, we need to select an initial index that we will denote by k0. To this end, we look for
the annulus that gives the best results under no transformations (i.e., when αk = 0). Formally,
this implies that

k0 = arg max
k=1,⋯,L

φk,inv(0). (2.23)

Once this initial point is found, the optimal value of αk0 is found by exhaustive search in a
discrete set around αk0 = 0. Let Ak0 be such a neighborhood, then following (2.21), α∗k0 =
argmaxαk0

∈Ak0
φk0,inv(αk0).

We will find it useful to define an auxiliary sequence {βk} that is initialized as βk = α
∗
k0
⋅δk−k0 ,

where δk is Kronecker’s delta.1 This sequence is used to store the regressor values. Since
the starting point is k = k0, there are two possible directions for the prediction: forward (i.e.,
k > k0), and backward (i.e, k < k0).

2 We will describe how the former is carried out, and then
indicate the modifications needed for the latter. We define the forward regressor at index k
as βTk ≐ [βk−U+1,⋯, βk−1, βk], where U is the length. Notice that, from the way the auxiliary
sequence is initialized, βTk0 = [0,⋯,0, α

∗
k0
]. We also need a vector of weights at index k that will

be denoted by uk; this vector of length U is initialized as uTk0 = [0,⋯,0,1]. Then, for k > k0 the
output of the predictor at index k will be computed as

α̂k = u
T
k−1βk−1, (2.24)

for k = k0+1,⋯, L. This predicted value is refined by exhaustive search in a discrete neighborhood
of α̂k. Let Ak denote such a neighborhood; then α∗k is obtained as in (2.21). The details on
how the neighborhood Ak is constructed are given below. Before that, we explain the updating
procedure for uk and βk. To that end, we define the a posteriori error at index k as

ek ≐ α
∗
k − α̂k, (2.25)

for k = k0 + 1,⋯, L. This error is used to drive the adaptive algorithm. It is easy to show that
the gradient vector of ∣ek ∣

2 with respect to the weights vector uk−1 is equal to −2ekβk−1. Then,
following the Least Mean Squares algorithm [114], we propose to update the weights by taking
a step in the direction of the negative gradient, that is,

uk = uk−1 + µekβk−1, k = k0 + 1,⋯, L, (2.26)

1Although from a notational point of view, it would be more correct to define a sequence for every iteration
of the algorithm, we allow replacing values in this sequence in order to avoid overcomplicating the notation.

2Degenerate cases arise when k0 = L or k0 = 1, for which the forward and backward predictions, respectively,
are not needed.
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where µ is the so-called step-size. The update of the sequence {βk} containing the regressor
is done by making βk = α

∗
k; the forward regressor vector βk is updated accordingly. This it-

erative procedure is then repeated by going back to (2.24) and proceeding until the sequence
α∗k0+1, α

∗
k0+2

,⋯, α∗L is produced.

The backward prediction proceeds in a similar way, but now vector βk is defined as βTk ≐
[βk, βk+1,⋯, βk+U−1]; this means that at the backward initialization, vector βk0 will take advan-
tage of the availability of values of α∗k that have been already computed, i.e.,
βk0 = [α

∗
k0
, α∗k0+1,⋯, α

∗
k0+U−1

]T . The weights vector for the backward prediction uk0 is initialized
as uk0 = [1,0,⋯,0]. Now this weights vector is updated in the reverse direction:

uk = uk+1 + µekβk+1, k = k0 − 1,⋯,1, (2.27)

and again the sequence {βk} containing the regressor is updated by making βk = α
∗
k; the back-

ward regressor vector βk is updated accordingly. The algorithm thus generates the sequence
α∗k0−1, α

∗
k0−2

,⋯, α∗1 .
After both forward and backward predictions are finished, the optimal vector is α∗inv =

[α∗1 ,⋯, α
∗
L]
T ∈ A, where once again we have added the subindex inv to stress the fact that

we are dealing with the inverse approach. The same procedure applied to the direct approach
will yield an optimal vector α∗dir. The pseudo-code for the proposed algorithm is provided in the
technical report [84].3

One critical point of the algorithm is the refining of α̂k that produces α∗k. While smarter
strategies might be possible, here we perform an exhaustive search around α̂k in a discrete set
Ak. Of course, the cardinality of this set must be kept at a small value in order to limit the
computational burden. On the other hand, the discrete points must be generated finely enough
to output a value that is sufficiently close to the optimal. We thus employ two parameters to
describe the set: λk that controls the resolution, and Ak that is an odd integer that determines
the number of points. Then, given α̂k and these parameters, the search set is constructed as:

Ak = {α̂k + λk ⋅ n ∶ n ∈ Z ∩ [−(Ak − 1)/2, (Ak − 1)/2]}. (2.28)

Note that this construction guarantees that ∣Ak ∣ = Ak. The parameter λk is selected to be
commensurate with ∣α∗k − α

∗
k−1∣ in the forward case (resp. ∣α∗k − α

∗
k+1∣ in the backward case),

so that the smaller the change in α∗k, the finer the grid. In Sect. 2.4.2.7 we give more details
about the rules that were employed to generate λk for the experiments. Regarding the size of
the set Ak, this is updated in the same loop as the predictor; for the forward predictor, the rule
is as follows: if for index k the maximum α∗k is found at one of the extremes of the set Ak (i.e.,
α∗k = α̂k − λk ⋅ (Ak − 1)/2 or α∗k = α̂k + λk ⋅ (Ak − 1)/2) then the size of the set is increased at the
following iteration, i.e., Ak+1 = Ak +2. Otherwise, if Ak is already small, i.e., Ak = Amin for some
minimum size Amin, then Ak+1 = Amin; else (i.e, if the maximum in Ak is not found at either of
the extremes, and the set is large enough), the size is decreased at the following iteration, i.e.,
Ak+1 = Ak − 2. This update is intended to find a compromise between the size of the set and the
objective of capturing the optimal αk. For the backward prediction the reasoning is identical,
but updating Ak−1 from Ak. An example of the evolution of α∗k and Ak with respect to the
different annuli is shown in Fig. 2.7 for a test image taken with a Canon 1200D camera, Canon
EF-S 10-18mm lens, and corrected with Adobe Lightroom using the strongest radial correction.
The reference PRNU is estimated with 20 natural images all obtained with the same settings
but with no Lightroom correction. The star indicates the value of α∗k0 estimated for the initial
iteration, the red line indicates the forward prediction direction and the blue line the backward
one. Finally, the band in pale blue encompasses the set Ak containing the candidate values of
αk for the kth annulus. The “Dir, Cub” variant of our algorithm is employed (see Sect. 2.5).

3The code is available at https://github.com/AMontiB/AdaptivePRNUCameraAttribution
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Figure 2.7: Evolution of α∗k and Ak versus rk ⋅D2. Test image taken with Canon 1200D camera,
Canon EF-S 10-18mm lens, corrected with Adobe Lightroom. Focal length: 10mm. Shutter
speed: 1/120 sec. Aperture: f8.0. ISO “Dir, Cub” variant.

2.4.2.4 PCE computation for the optimal α

As a result of the adaptive algorithm presented in the previous section, it is possible to compute
the PCEs that are required in the hypothesis test, that is, PCEinv(α

∗
inv) and PCEdir(α

∗
dir), see

the definitions in (2.6) and (2.7). In both cases, the numerator and denominator of the PCE are
already available, as they are required for the optimization. The only additional computations
are simple sums to accumulate the results corresponding to the different annuli. To see how this
is so for the inverse approach, notice first that the right hand side of (2.7) requires computing the

difference T −1α∗(W) − T
−1
α∗(W) (cf. the expression of the PCE in (1.6)), which can be simplified

by noticing that: 1) It is reasonable to write T −1α∗(W) ≈ T
−1
α∗(W̄) because T

−1
α∗ is a geometrical

transformation that will not substantially alter the mean value of the residual.4 2) Due to zero-
meaning on the residual, it is possible to write W̄ = 0. With these considerations, we can write

T −1α∗(W) − T
−1
α∗(W) ≈ T

−1
α∗(W̃), which is simpler to compute.

With this approximation, the numerator of PCE(K̂
′
, T −1α∗(W)) can be expanded as follows

ssq(⟨K̂
′
, T −1α∗(W̃)⟩) =

L

∑
k=1

ssq(Φk,inv(α
∗
k)), (2.29)

Now we can easily identify each of the L summands in (2.29) as the numerator of φk,inv(α
∗
k) in

(2.22) which can be stored during the adaptive optimization process.
The denominator of the PCE requires more attention. With the approximation above, this

denominator is 1
∣IT /S∣

∑s∈IT /S⟨K̂
′
,C(T −1α∗(W̃), s)⟩

2 which is nothing but a sample estimate of the

variance of the cross-correlation of K̂
′
and T −1α∗(W̃). In [84, Sect. VIII] we derive and discuss a

simpler sample estimate that is more statistically efficient (i.e., has a lower variance). This fully

4Strict equality does not hold because W̄ and T−1
α∗
(W̄) do not have the same support.
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justifies the approximation

1

∣IT /S ∣
∑

s∈IT /S
⟨K̂
′
,C(T −1α∗(W̃), s)⟩

2
≈ κ ⋅ σ̂2

K̂′
⋅
L

∑
k=1

Ek,inv(α
∗
k), (2.30)

where σ̂2
K̂′
≐ ∣∣K̂

′
∣∣2/∣I ∣ (recall that K̂ ′i,j exists for all (i, j) ∈ I), and κ is a factor that takes into

account the fact that the cardinalities of I and ⋃Lk=1Qk,inv(α
∗
k) are different. (In practice, κ will

be close to 1, so it can be dropped.) Once again, the L summands in (2.30) are already available
as the denominator of (2.22).

2.4.2.5 Early stopping

The partition into annuli offers one remarkable byproduct: taking inspiration from the work
of Perez et al. [93], it is possible to stop processing annuli (and declare that H1 holds) if a
cumulative PCE exceeds a predefined threshold. Following the approximations in the previous
subsection, one might be tempted to compute a cumulative PCE by using the numerators and
denominators already produced during the optimization. In this way, the optimization would
not need to be carried out for all annuli but instead it could be stopped as soon as the PCE
computed so far exceeds the threshold. Unfortunately, this approach would be incorrect, because
while a fraction with sums in the numerator can be expanded into a sum of fractions, this is
not the case when there are sums in the denominator. Therefore, if we want to implement an
early stopping mechanism, we need to seek ways to further approximate the denominator of the
PCE without actually computing all the elements of α∗. To this end, we can ask ourselves how
sensitive is the right hand side of (2.30) to changes in α∗k; after all, since each of the L summands
is an estimate of the variance of the transformed residual inside an annulus, one would expect
not much variation for realistic values of α. If this were the case, then one might approximate
the right hand side of (2.30) (which corresponds to the optimal vector α∗inv) by computing it for
any reasonable value of αinv without involving any optimization.

In order to illustrate the feasibility of this approximation, we show in Fig. 2.8 the values of

the sample variance of a transformed residual computed in each annulus, i.e., σ̂2
W ≐

Ek,inv(αk)

∣Qk,inv(αk)∣
as

a function of αk for several annuli (i.e., k = 18,22,33) and for cubic inverse mappings, see (2.15).
Fig. 2.8 also shows the value of the variance estimated from the full-size transformed residual,
i.e., 1

∣IT ∣
∣∣T −1αk

(W̃)∣∣2. Bi-linear interpolation is used in all cases.

As we can see, the variance estimate is fairly constant for different values of αk, except in a
neighborhood of zero. Moreover, this is similar to the variance estimate obtained from the whole
transformed residual, so the latter can be used in place of the variance estimate for a specific
annulus. The reason for the spike at αk = 0 is that the interpolation that is needed for computing
the inverse mapping when αk ≠ 0 produces a reduction in the variance of the transformed residual.
This reduction depends on the square magnitude of the interpolation filter at different sampling
points. In general, the grids before and after the interpolation are not related through rational
numbers, but for certain annuli and values of α, moiré patterns between the sampling grids may
appear; this is why in Fig. 2.8 a ripple near zero is observed for the annuli k = 18,22. The energy
reduction phenomenon has been reported in [41] in a different scenario but related to ours.

The invariance discussed in the previous paragraph suggests several ways of approximating
the right hand side of (2.30); for instance, it is possible to pick any value of α, say αf , sufficiently
far from α = 0 and for all the annuli use the same transformation T −1αf

in place of T −1α∗
k
. We remark

that the reason why the neighborhood of α = 0 should be excluded when selecting αf is the fact
that inside such a neighborhood the denominator of the PCE is overestimated and, consequently,
the PCE underestimated.
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Figure 2.8: Sample variance of the transformed residual for different annuli and different values
of α. Camera and parameters are the same as in Fig. 2.1.

Another way of approximating the right hand side of (2.30) which offers a slightly better
performance than the former is to use the values of α∗k already available from the optimization
to update the approximation. This comes at practically no cost because the corresponding term
Ek,inv(α

∗
k) needs to be computed anyway during the optimization. For those annuli whose α∗k

is not available yet, the corresponding term is substituted by its approximation computed at
αk = αf .

We explain next how to compute the Cumulative PCE at the nth iteration which we will

denote by CPCEn,inv(K̂
′
,W). First, we need a mapping ξ ∶ {1,⋯, L} → {1,⋯, L}, from the

natural order to the one induced by the proposed iterative procedure, i.e., ξ(1) ↦ k0, ξ(2) ↦
k0 + 1,⋯, ξ(L − k0)↦ L, ξ(L − k0 + 1)↦ k0 − 1,⋯, ξ(L)↦ 1. Then,

CPCEn,inv(K̂
′
,W) ≐

∑
ξ(n)

k=ξ(1)
ssq (Φk,inv(α

∗
k))

σ̂2
K̂′
(
ξ(n)

∑
k=ξ(1)

Ek,inv(α∗k) +
ξ(L)

∑
k=ξ(n+1)

Ek,inv(αf))

. (2.31)

Thus, the early-stopping algorithm will declare a match and stop if for some n = 1,⋯, L,

CPCEn,inv(K̂
′
,W) > τc is satisfied. The value of τc is set experimentally to achieve the desired

False Positive Rate (FPR).

Given the numerator and denominator of CPCEn,inv(K̂
′
,W), and once α∗ξ(n+1) is available,

the numerator of CPCEn+1,inv(K̂
′
,W) is updated by adding Φξ(n+1),inv(α

∗
ξ(n+1)), while the up-

date of the denominator requires adding Eξ(n+1),inv(α
∗
ξ(n+1)) and subtracting Eξ(n+1),inv(αf).

A similar definition follows for the Cumulative PCE in the direct approach CPCEn,dir(K̂
′
,W)

and the corresponding early stopping criterion.

2.4.2.6 Parameter inheritance

As we have discussed, the test decision statistic takes the maximum of the PCEs computed
through the direct and the inverse approaches. This implies that it is necessary to compute the
optimal vector α∗ for both approaches, so the computational complexity is roughly doubled.
This also holds if the early stopping criterion introduced above is applied. In such a case, the
iterations for both the direct and the inverse approaches are made in parallel, so that for every
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k both CPCEn,dir(K̂
′
,W) and CPCEn,inv(K̂

′
,W) are checked against the threshold in order to

stop as early as possible.
There is one sub-optimal way to alleviate the computational burden due to keeping the two

approaches. We term it parameter inheritance and basically consists in using for the direct
approach the same vector α∗ that was computed for the inverse approach. Of course, the latter
is not necessarily optimal for the direct approach, but the rationale is that inside each annulus
Rk the direct and inverse transformations nearly correspond to each other for the same value
of αk. Perfect correspondence does not exist because the inverse transformation is only an
approximation and due to the fact that the search algorithm is prone to errors due to noise and
insufficient resolution.

2.4.2.7 Parameter default values

In this section we provide the default values for the parameters of our algorithm and discuss
some decisions regarding the initialization. These default values were used in the experiments
reported in Sect. 2.5. Specifically, the radius of the inner disk r1 is such that r1 ⋅ D2 equals
250 pixels and the width of each annulus ∆k is such that ∆k ⋅D2 equals 64 pixels. Both values
are chosen as a compromise between performance and computational cost; see Sect.2.5 for an
additional discussion. For the linear predictor we set U = 6, µ = 1 and Amin = 7.

The initial search set Ak0 is given by Ak0 = {−0.22,−0.21,⋯,0.21,0.22}, which is the same
range as used and justified in G2012 [40] to cover a variety of barrel and pincushion distortions.
However, in our case we apply a coarser resolution for computational reasons and because the
adaptive nature of our algorithm automatically adjusts to finer resolutions after a few iterations.
We are aware that in G2014 [43] a wider range was preferred (even if just to invert pincushion
distortions), so we carried out some experiments with images taken with the Canon 1200D
camera and radially corrected with Adobe Lightroom using the lens distortion model of a different
device (see Sect. 2.5), since this combination produces some of the strongest and most variable
radial corrections of our dataset. In these experiments, the search set was expanded to Ak0 =
{−0.50,−0,49,⋯,0.49,0.50}. While it is true that this set allows in some cases to get closer to
the proper αk0 , we found no significant differences in terms of performance with the previous
initialization; as mentioned, this is due to our algorithm quickly finding the right range for αk
after few iterations. In contrast, the computational load of using the enlarged search set would
be larger; for this reason, we recommend Ak0 = {−0.22,−0.21,⋯,0.21,0.22}. For an in-depth
complementary discussion on the initial set, please see our technical report [84].

After the initial search, for the forward prediction Ak0+1 is given by (2.28) with λk0+1 = 0.001
and Ak0+1 = 9. For the following iterations,

λk =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0.1 if ∣αk − αk−1∣ > 0.1,

0.01 if 0.01 < ∣αk − αk−1∣ ≤ 0.1,

0.001 if ∣αk − αk−1∣ ≤ 0.01.

(2.32)

Identical considerations to the previous paragraph are made in regard to the backward pre-
diction, where k0 + 1 is replaced now by k0 − 1 and in (2.32) k − 1 is replaced by k + 1.

2.5 Experimental Results

We conducted a performance comparison between the methods presented in Sect. 2.4.1 and
Sect. 2.4.2, G2012 [40], and G2014 [43], in terms of True Positive Rate (TPR), ROC Curve and
execution time. To enrich our evaluation, we introduced a third method [68] proposed by Li et al.
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In their work, Li et al. [68] introduced a fully data-driven radial correction method, employing
a Convolutional Neural Network (CNN) architecture trained on a dataset containing distorted
images and their corresponding undistorted pairs. This CNN learned to estimate a flow field,
enabling radial correction with a single image. In evaluating the method by Li et al. [68], we
aimed to explore the potential advantages of a data-driven spatial transformation in the context
of source attribution for radially corrected images. It is worth noting that, to execute the method
by Li et al. [68], we had to centrally crop the test images and the camera fingerprint K̂ to a size
of 1024 × 1024. Larger crops or full-resolution images require more than 24 GB of VRAM on an
NVIDIA RTX 3090.

For our experiments, we built a test dataset composed of 3645 images, of which 2037 were
taken with the following compact cameras and radially corrected “in-camera” (i.e., by the camera
software): Canon SX230 HS (188 images), Panasonic ZS7 (170 images), Canon SX40 (57 images),
Canon SX210 (82 images), and Nikon S9100 (1540 images). All these images were downloaded
from Flickr, as done in the two work of the SoA we compared with G2012 [40] and G2014 [43]; for
this reason, there is an uneven distribution of images per device. 1508 of the remaining images
in the test dataset were taken with the Canon 1200D (a reflex camera not applying any type of
in-camera post-processing) with the following Canon Zoom Lenses: 1) EF-S 10-18 mm 1:4-5.6 IS
STM; 2) EF-S 18-55 mm 1:3.5-5.6; 3) EF 75-300 mm 1:4-5.6, all radially corrected “out-camera”
with third-party editing software: Adobe Lightroom Classic CC 2017, Adobe Photoshop CC
2017, PT Lens v2.0 (Macbook) and Gimp 2.10.14. Specifically, 377 images were corrected with
each of these tools. With Adobe Lightroom we applied the correction model specific to the lens
used to take the picture, thanks to the database of radial correction models Lightroom is equipped
with. For the other editing software we applied the strongest radial correction available, as those
tools cannot be tuned to a specific lens model. The last 100 images in the test dataset were
also taken with the Canon 1200D camera but corrected with Lightroom using models for other
lenses (i.e., Nikon, Tamron, Apple, Huawei and DJI, with 20 images each), always applying the
strongest radial correction. This latter subset will be labeled as “Lightroom*” in the following.

Images in the test dataset were JPEG compressed with QFs in the range 90-98. For each
device, the same QF is consistently used; see our technical report [84] for details. The reference
PRNUs for carrying out the tests were estimated for each device using (1.4) with L = 20 natural
images (not used for testing) compressed with matching QFs to the test subset of that device.
For the compact devices, since the in-camera corrections depend on the focal length, fixed specific
values of the latter were sought in order to estimate the respective PRNUs; whenever enough
images were available for a certain device and focal length, a different fingerprint was estimated
and the results averaged for each device. In all cases, hypothesis H1 was tested with images
taken with focal lengths different from those used to estimate the fingerprints. We refer the
reader to our technical report [84] for full details. When, under hypothesis H0, the test images
and the fingerprints have different sizes, for our solutions, G2012 [40], and G2014 [43], we crop
the central part of the larger to match its size to the smaller [87]. In contrast, all the images
processed with the method proposed by Li et al. [68] were cropped to size 1024 × 1024 due to
VRAM memory limits.

While the definition of the “MAX”, “OR” and “PSLR” methods, given in Sect. 2.4.1 are fairly
straightforward, next, we describe the identifiers used to refer to the different variants of method
proposed in Sect. 2.4.2 in the figures and tables in this section. With “Dir” and “Inv” we indicate
those cases where CPCEn,dir(K̂′,W) and CPCEn,inv(K̂′,W) are respectively used as the only
test statistics. By “2W” we refer to the “two-way” case in which both the direct and the inverse
approaches are used and H1 is decided if either CPCEn,dir(K̂′,W) or CPCEn,inv(K̂′,W) are
above the threshold for any n ∈ {1,⋯, L}. To alleviate the computational load of the “two-way”
parameter optimization, recall that in Sect.2.4.2.6 we proposed to inherit the parameters of one
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Name Ref. Combo? Mismatch Detection? Adaptive? Early Stop? Model Opt. Function

MAX [83]
✓

✓ ✗ ✗
Tα(r) = r (1 +∑

n=2
i=1 αir

2i)
PCEmax

[40] [43] T −1α (r
′) = r′(1 − α1r

′2 + 3α2
2r
′4 +O(r′

6
))

OR [83]
✓

✓ ✗ ✗
Tα(r) = r (1 +∑

n=2
i=1 αir

2i)
PCEmax

[40] [43] T −1α (r
′) = r′(1 − α1r

′2 + 3α2
2r
′4 +O(r′

6
))

PSLR [83]
✓

✓ ✗ ✓ Tα(r
′) = r′ (1 +∑

n=2
i=1 αir

′2i) PCEinv[40] [43]

Ð→
ID, Lin [85] ✗ ✗ ✓ ✓

Tαk,l(r) = r(1 + αk) CPCE
(Inv+Dir)T −1αk,l

(r′) = r′

1+αk

Ð→
DI, Lin [85] ✗ ✗ ✓ ✓

Tαk,l(r) = r(1 + αk) CPCE
(Inv+Dir)T −1αk,l

(r′) = r′

1+αk

Ð→
ID, Cub [85] ✗ ✗ ✓ ✓

Tαk,c(r) = r(1 + αkr
2) CPCE

(Inv+Dir)T −1αk,c
(r′) = r′(1 − αkr

′2 + 3α2
kr
′4)

Ð→
DI, Cub [85] ✗ ✗ ✓ ✓

Tαk,c(r) = r(1 + αkr
2) CPCE

(Inv+Dir)T −1αk,c
(r′) = r′(1 − αkr

′2 + 3α2
kr
′4)

Inv, Cub [85] ✗ ✗ ✓ ✓ CPCEn,invT −1αk,c
(r′) = r′(1 − αkr

′2 + 3α2
kr
′4)

Dir, Cub [85] ✗ ✗ ✓ ✓ CPCEn,dirTαk,c(r) = r(1 + αkr
2)

2W, Cub [85] ✗ ✗ ✓ ✓
Tαk,c(r) = r(1 + αkr

2) CPCE
(Inv+Dir)T −1αk,c

(r′) = r′(1 − αkr
′2 + 3α2

kr
′4)

Table 2.1: We resume in this Table the main characteristics of the methods proposed in this
chapter. “Name” is our solution name, “Ref.” the reference to our paper, “Combo?” refers if
the solution was obtained by the combination of G2012 [40] and G2014 [43], “ Mismatch Detec-
tion?” refers to the implementation of methodologies aimed at the detection of early Mismatch,
“Adaptive?” if the methods use a series of annulus for the prediction of α∗k, “Early Stop?” if the
methods use early stop to proclaim a match before the finishing the execution of the algorithm
on the entire image, “Model” are the model used to invert the radial correction and, “Opt.
Function” is the function we try to maximize with our different solutions.

approach to the other. We will use the label
Ð→
DI to indicate inheritance of α∗n from the direct

approach to the inverse one; and
Ð→
ID vice versa. On the other hand, with the labels “Cub” and

“Lin” we refer to the cubic and the linear radial correction models, respectively; see (2.15). For

PSLR,
Ð→
DI,
Ð→
ID, Inv, Dir and 2W, the early stopping strategy from Sect. 2.4.2.5 is imposed. For

the sake of clarity, we summarize the main characteristics of the solutions we implemented in
Table 2.1.

All the tests were run on a server with the following characteristics: 16 Cores, Processors
2xXeon E5-2667v3 3.2 GHz, RAM 192 GB, GPU Nvidia RTX 3090 24 GB; our implementations
require at most 5GB of RAM. In experimentally comparing the variants of our method with the
algorithms proposed in G2012 [40] and G2014 [43], we noticed that G2012 [40] was tested on
images of size 3000×4000 that are, on average, larger than the in-camera corrected images in our
dataset (refer to Table 2.2 for the image sizes in each subset). This explains the slightly worse
performance measured here (with downsampling) compared to that reported in the reference
paper of G2012 [40].

In Table 2.2 we show a breakdown by subset of the TPR and the time consumed to declare
a match (under H1) by all the methods we tested (with early stopping in those cases where it
applies).5 In contrast, the Receiver Operating Characteristic (ROC) curves for all the methods
of Table 2.2 are plotted in Fig. 2.9, where we have also added for comparison the baseline (BL)

obtained by using PCE(K̂′,W) (i.e., with no transformations of either the PRNU or the residual)

5The time consumed when no early stopping is in force for the methods of Sect. 2.4.2 is given in the technical
report [84].
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Figure 2.9: ROCs obtained with our methods, the methods proposed by Goljan et al. G2012
[40] (with and without DS), G2014 [43], and the architecture of Li et al. [68], on the test dataset.

as test statistic.
From the results shown in Fig. 2.9 and Table 2.2, it is evident that the combination of the

SoA proposed by Goljan et al. [40],[43], denoted as ’MAX’ and ’OR’, leads to improvements in
terms of ROC and TPR@FPR.05. However, it is important to note that these improvements
come at the cost of a significantly longer execution time, which is comparable to or even greater
(see “MAXseq” that execute “MAX” SoA method sequentially and not in parallel “MAXpar”)
than that of the SoA [40], [43]. Superior results, in terms of ROC, TPR@FPR.05, and execu-
tion time, are achieved with the PSLR method when utilizing GPU parallelization to optimize
computationally expensive operations such as grid searches, PCE estimations, and spatial trans-
formations. In contrast, when the PSLR method cannot leverage the parallelization capabilities
of the GPU, its execution time can be longer than that of the methods proposed by Goljan et
al. in G2012 [40] and G2014 [43].

Significant improvements, achieved without relying on any GPU, are observed with the vari-
ants of the method presented in Sect. 2.4.2. Specifically, the best-performing solutions correspond

to the cubic correction model (’Cub’), with “
Ð→
DI”, “Dir”, “Inv” and “2W” all achieving similar

TPRs for the target FPRs. On the other hand, the average execution time of the ’one-way’ vari-
ants, i.e., ’Dir’ and ’Inv’, is lower because only one statistic needs to be computed per iteration.
The experiments, conducted on a dataset comprising various radial corrections, demonstrate
that the variants presented in Sect. 2.4.2 outperform G2012 [40] (both with or without DS) in
terms of TPR. Moreover, thanks to our early stopping strategy, the fastest variants of Sect. 2.4.2
(i.e., ’Dir, Cub’ and ’Inv, Cub’) achieve execution times under H1 that are comparable to those
obtained by G2012 [40] with DS.

We also observe that the original solution proposed for G2012 [40] (i.e., with DS) exhibits
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limited performance, especially on low-resolution devices such as SX230 and ZS7, as well as in the
presence of complex out-camera radial corrections, such as those applied by Adobe Lightroom.
While these limitations can be mitigated by using the ’MAX’ or ’OR’ combination, our PSLR
method, or simply by adapting G2012 [40] to avoid DS, all of these solutions result in a significant
performance increase in those challenging cases, albeit at the cost of much longer execution times.

However, for severe radial corrections like those in our ’Lightroom*’ subset, using the full
resolution in G2012 [40], or any of the solutions proposed in Section 2.4.1, is still not sufficient.
In contrast, the methods proposed in Sect. 2.4.2 are capable of adapting to this high complexity
and deliver excellent performance with a manageable execution time.

Concerning the results obtained using the architecture presented by Li et al. [68], we observed
in Fig. 2.9 and Table 2.2 that, without fine-tuning the network to learn how to invert the radial
correction precedently applied, the method performed the poorest. By checking the results
obtained with it, we noticed it achieved larger PCE values post radial correction inversion for H1
in only 23% of the cases. This can be attributed to the fact that Li et al.’s CNN [68] was originally
trained to apply radial correction by learning how to compensate for image radial distortions.
To do so, the authors [68] composed a dataset of original images and their corresponding radial-
corrected ones, allowing the network to learn automatic radial correction. In our future works,
we will explore a similar training strategy, aiming to invert the radial correction, optimizing a
final objective function potentially based on the PCE (1.5). Lastly, as noted in Table 2.2, the
advantage in terms of execution time of the architecture proposed by Li et al. is significant.

The results across the different subsets, in Table 2.2, reveal that both out-camera radial dis-
tortion corrections and small images represent the most difficult scenarios. As already mentioned,
complex corrections probe the limits of the expressive capacity of the radial transformations that
need to be applied; on the other hand, small images have a lower PCE (or CPCE) thus making
it more difficult to score above the threshold under H1 (we define H1 and H0 in Sect. 1.2.2). In
this sense, processing pipelines that would further degrade the signal strength (e.g. compressions
applied by social networks) become great challenges that deserve future attention. Concerning
complex radial distortion corrections, the preliminary experiments of Fig. 2.10 carried out by
replacing in the method of Sect. 2.4.2 the proposed local search algorithm by a much more time-
consuming exhaustive search, such that Ak = {λ ⋅ n ∶ n ∈ Z ∩ [−0.22/λ,0.22/λ]} with λ equals to
0.005, 0.0025, 0.001 or 0.0005, reveal that there is a significant margin of improvement in the
former.

Considering the trade-off between performance and speed, our recommended solution is “Dir,
Cub”, which is the one that we used in the other experiments discussed in the following sections.

2.5.1 Impact of annuli’s width

Next, we present results supporting the choice for the width of the annuli ∆k. Recall that in
Sect. 2.4.2 we assume that ∆k =∆ except for the inner disk. Fig. 2.11 plots the ROC curves for
the previous dataset and different values of ∆ ⋅D2. The “Dir, Cub” variant of our final method
was selected. The legend shows the Area Under the Curve (AUC) obtained by integrating the
ROC for FPRs in the interval [0,0.05) and normalizing it by 0.05, so that for a perfect detector
this AUC would be 1; this quantity is denoted as AUC@0.05. As we can see, when ∆ ⋅ D2

is too large, the expressive capacity of the third-order mapping is less adequate to correctly
approximate the true radial distortion correction in the most complex cases. On the other hand,
when ∆ ⋅D2 is too small, the signal to noise ratio may be insufficient for our adaptive method
to work properly. In any case, our results show that performance is quite robust to the choice
of ∆ ⋅D2. Thus, our choice of ∆ ⋅D2 = 64 was motivated by it achieving the best performance
and the fact that computational complexity decreases with ∆ ⋅D2 (e.g. the execution time for
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Figure 2.10: CPCE values evolution as a function of rk ⋅D2. “Dir, Cub” is the implementation
presented in Sect. 2.4.2, in contrast, where we wrote λ we replaced the proposed local search
with an exhastive one such that Ak = {λ ⋅ n ∶ n ∈ Z ∩ [−0.22/λ,0.22/λ]}. The image we used to
produce this result was taken with a Canon 1200D camera with EF-S 10-18mm lens, corrected
with Adobe Lightroom, focal length 18mm. Shutter speed: 1/200 sec. Aperture: f9.0. ISO 100.
The PRNU was estimated with 20 natural images all taken with those settings.

∆ ⋅D2 = 64 is 0.61 times that for ∆ ⋅D2 = 32 on average across the dataset).

2.5.2 Verification of the approximation in (2.30)

In Fig. 2.12 we visualize the goodness of the approximation presented in (2.30), for Tα∗,c, that
is “Dir, Cub”. For this experiment, we took 20 random images for each of the following models
in the dataset of Sect. 2.5: Canon SX230, SX210, Panasonic ZS7, Nikon S9100 (all corrected in-
camera) and the Canon1200D (corrected with Adobe Lightroom). In order to apply Tα∗,c on the
left hand side of (2.30) we did so in annulus-by-annulus basis, that is, deriving the transformed

coordinates Tα∗
k
,c for each annulus and then computing the transformed fingerprint Tα∗,c(K̂

′) by

interpolating K̂ at those coordinates. Fig. 2.12 represents a scatter-plot in which the coordinates
of every point are obtained by computing the right and left hand sides of (2.30). As we see, the
approximation that we proposed in this chapter [85] is reasonable (even more so considering the
interpolation carried out to practically compute the left hand side of (2.30)). We can also see
that for larger images the approximation is noisier; this can be attributed to the larger variance
of the sample variance estimator given by the denominator of the PCE, as discussed in our
technical report [84]. The absolute relative error for the samples considered in Fig. 2.12 has a
mean value of 0.069.

2.5.3 Experiments with smartphones from the dataset of Iuliani et al.
[49]

For the second set of experiments, we decided to assess the presence of radial distortion cor-
rections on common smartphones, and analyze in this context the performance of some of the
methods discussed in this chapter when trying to solve the mismatches due to those corrections.
To this end, we decided to use a subset of the database recently published by Iuliani et al. [49]
which contains 33,000 Flickr images belonging to 45 smartphones and 25 DSLR camera models
with several different devices for each model (the number of test images and devices per model
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Figure 2.11: ROC curves for different values of annulus width ∆ ⋅D2.

are indicated in the first two columns of Table 2.3). Due to the fact that, as it will be explained
below, one of the tested approaches required a brute-force search, we had to limit the set of tested
models to the ones shown in Table 2.3, which were randomly picked from the original dataset.
For those selected models, we used all the available images. The results on the full dataset will
be reported elsewhere. The fingerprints were computed for each device of each model using 35
images (those provided for the reference fingerprint by the authors [49]) that were later discarded
for testing.

Specifically, in this experiment, noticing that the results in the paper of Iuliani et al. [49]
contain a large number of false negatives, we wanted to find out whether any of those could
be attributed to in-camera radial distortion corrections and thus be reverted by the algorithms
discussed in this chapter. Thus, we chose the method “Dir, Cub” as representative of our
variants, and G2012 [40] for the SoA. Furthermore, to decouple the limitations of G2012 [40]
from the expressive constraints of the family of third-order radial transformations considered
therein and given by (2.4), we decided to modify G2012 [40] so that parameter α is found
through an exhaustive search with step size 0.01 and range [−0.3,0.3].

Next, we explain the quantities reflected in the Tablecolumns. For every given camera model,
the standard true positive rate (STPR) is the fraction of images that are correctly matched using
the standard PCE (Eq. (1.5)) without any radial transformation. The detection threshold is set
for a FPR=0.01 separately for each model6 (i.e. H0 is constructed with all images taken with
devices from the same model other than the device under test); this is advisable in the current
experiment because of: 1) the availability of many exemplars of the same model, which allows us
to construct a rich null hypothesis; 2) the fact that for some models we have observed systematic
biases on the PCE values under both H0 and H1 (for instance, for the Nokia Pure View 808
model a STPR=1 is prominently achieved when the threshold is set using only images from the

6While for other experiments in this chapter we set FPR=0.05, here we chose a more conservative threshold
in order to achieve larger statistical significance.
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Figure 2.12: Scatter-plot of the two sides of (2.30) computed for images from different camera
models in the dataset.

same model, different device, to compose H0). The new discovery rate (NDR) is the fraction of
false negatives of the standard PCE test that can be matched after applying the algorithm under
study. Again, the threshold is set specifically for each model, which requires that images from
H0 are also subjected to the algorithm under study to properly evaluate the FPR. To give an
example, suppose that for a model we have 100 test images, 70 of which are correctly detected
with the standard PCE test, so STPR=0.7; if for the remaining 30 false negatives, 10 of them
are correctly detected after applying a distortion inversion algorithm (i.e, there were 10 newly
discovered positives), then NDR=10/30=0.33.

From Table 2.3 we can see two types of cases: 1) for the iPhones and the Oppo A9 2020
the NDRs are relatively small (but not zero), so it cannot be entirely ruled out that the new
discoveries are just false positives. 2) For the two Huawei models, the Moto e5 Play, and the
One Plus 6T our method achieves significantly many more new discoveries than those of the two
other approaches, including the exhaustive search. The new discoveries made by our method
range from 20% to 70%, which is a remarkable result, as it leads to a dramatic reduction in
the false negatives reported in the paper of Iuliani et al. [49]. The statistical significance of the
new discoveries is supported by their p-values.7 Let µp and σp respectively denote the mean
and standard deviation (std) of the p-values corresponding to the new discoveries. For those
new discoveries made by our method their respective means and stds of p-values are as follows:
Huawei P20 lite: µp = 2.1 ⋅ 10

−3, σp = 2 ⋅ 10
−3; Huawei mate 20 lite: µp = 1.3 ⋅ 10

−3, σp = 3 ⋅ 10
−3;

Moto e5 Play: µp = 1.7 ⋅ 10−3, σp = 2 ⋅ 10−3; One Plus 6T: µp = 2 ⋅ 10−4, σp = 1 ⋅ 10−3. On the
other hand, failure of G2012 [40] to make new discoveries in these cases, even with brute-force
search, is a clear sign that for those camera models the radial corrections applied in-camera are
more complex than the third-order model described in (2.4), and thus require a more flexible
approach, as afforded by our proposed methods.

7Note that, by selection of the threshold, all p-values are ≤ 10−2.
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2.6 Conclusions

In this chapter, we have proposed several solutions for PRNU-based camera attribution able to
cope with complex radial distortion corrections, as those performed in-camera by most compact
models and out-camera by image processing software. Existing approaches try to either “correct”
the reference fingerprint or invert the correction by applying a further geometric transformation
that, in order to avoid a combinatorial explosion, must use a reduced number of parameters. We
demonstrate that the unsatisfactory performance of the methods of the SoA, on low resolution
images and some of the out-camera radial corrections, can be partially attenuated by efficiently
combine them and exploiting the higher parallelization of GPU hardware. Nevertheless, these
solution do not solve problems related to complex radial distortion corrections, an undesirable
aspect in view of the trend of more elaborate transformations that are made possible by ever
more powerful distortion correction firmware/software. Our final solution “Dir,Cub” is radically
different: by applying a divide-and-conquer principle, embodied in the use of annuli and inter-
preting the set of L parameters to be estimated as a time series, we are able to: 1) allow for
complex distortion corrections, as locally the transformation undergone by each annulus is much
simpler; 2) implement an early stopping strategy that offers large computational savings. The
results presented in the chapter clearly reveal that the algorithm of “Dir,Cub” (in most of its
variants) outperforms the SoA when accuracy and computational load are considered.

We believe that the adaptive approach proposed in Sect. 2.4.2 can also be fruitful in other
highly challenging camera attribution scenarios with numerous latent parameters, such as in
HDR images [87], in-camera-stabilized videos [78], and emerging in-camera processing [49].

Preliminary experiments carried out with complex radial correction distortions show that a
local exhaustive search significantly outperforms our prediction-based algorithm. Moreover, for
those outer annuli that extend beyond the image boundaries, the lower signal-to-noise ratio often
leads to estimation errors. Thus, the design of more effective, yet computationally affordable,
local search algorithms is an open problem. On the other hand, our methods assume that the
geometric center of the radial transformation is known; when this is not the case (e.g., due
to image cropping), the number of unknown parameters grows, necessitating efficient search
algorithms. In future works, we will explore the applicability of methods, such as the one
proposed by Li et al. [68], to problems similar to the one addressed in this chapter.

2.7 Chapter Appendix: Derivation of the estimator of α∗k
In this Appendix we derive a plausible estimator of α∗k under the inverse approach; the derivation
would be identical for the direct approach and, hence, is skipped here. See the definition of α∗k
in (2.21). We introduce a super-index in αk to enumerate the elements of the candidate set Ak,

i.e., {α
(n)
k ∶ n = 1,⋯,Ak} = Ak.

We assume that H1 holds, i.e., I contains K′, and the following model for the residuals:

[T −1
α
(n)
k

(W̃)]i,j = γ
(n)
i,j [T

−1

α
(n)
k

(Tα†
k
(K̂
′
))]i,j +N

(n)
i,j (2.33)

for all (i, j) ∈ Qk,inv(α
(n)
k ) and n ∈ {1,⋯,Ak}. In (2.33) α†

k represents the true (locally for the

kth annulus) value of α. The multipliers γ
(n)
i,j are non-negative and take into account both the

multiplicative effect of the image I and the gain of the effective denoising filter (which also impacts

on the estimate K̂
′
of the true PRNU). We argue that these multipliers are very hard to estimate

accurately; as a consequence, a full maximum likelihood decision will not be possible and some
simplifications will be required. One such simplification is to consider that the cross-correlations
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between K̂
′
and T −1

α
(n)
k

(W̃), for all n = 1,⋯,Ak, constitute a set of sufficient statistics for the

estimation problem. Recall from (2.19) that these cross-correlations are denoted by Φk,inv(α
(n)
k ).

We make the following hypotheses:

1) Spikiness: The α
(n)
k are sufficiently separated so that the Φk,inv(α

(n)
k ) are mutually uncorre-

lated and E{Φk,inv(α(n)k )} = 0, for all n = 1,⋯,Ak, except for n = l, where l is such that α
(l)
k is the

closest to the true value α†
k and the expectation is taken over the underlying distribution of K′.

This hypothesis is reasonable in view of the spikiness of the PCE with α (see Fig. 2.2). We also as-

sume that α
(l)
k is close enough to α†

k so that [T −1
α
(l)
k

(Tα†
k
(K̂
′
))]i,j ≈ K̂

′
i,j for all (i, j) ∈ Qk,inv(α

(l)
k ).

2) Uncorrelatedness: In (2.33), N
(n)
i,j and γ

(n)
i,j [T

−1

α
(l)
k

(K̂
′
)]i,j are zero-mean and mutually uncorre-

lated for all (i, j) ∈ Qk,inv(α
(n)
k ) and n ∈ {1,⋯,Ak}. For any l, n ∈ {1,⋯,Ak}, l ≠ n, the variables

K̂ ′i,j ⋅ N
(n)
i,j and K̂ ′u,v ⋅ N

(l)
u,v are mutually uncorrelated for every (i, j) ∈ Qk,inv(α

(n)
k ) and every

(u, v) ∈ Qk,inv(α
(l)
k ).

3) Weak PRNU: In (2.33), ∣γ
(n)
i,j [T

−1

α
(n)
k

(Tα†
k
(K̂
′
))]i,j ∣≪ ∣Ni,j ∣ for a large number of pixels of each

annulus; we write this more precisely as

∑

(i,j)∈Qk,inv(α
(n)
k
)

(γ
(n)
i,j )

2
[T −1
α
(n)
k

(Tα†
k
(K̂
′
))]

2
i,j ≪ ∑

(i,j)∈Qk,inv(α
(n)
k
)

N2
i,j (2.34)

for all n ∈ {1,⋯,Ak}.
As a consequence of the spikiness and uncorrelatedness assumptions above and the Central

Limit Theorem (which is applicable if we assume that ∣Qk,inv(α
(n)
k )∣ is large for all n ∈ {1,⋯,Ak}),

the variables Φk,inv(α
(n)
k ) will be well modeled by independent Gaussian distributions, so the

cross-correlations will be

Φk,inv(α
(n)
k ) ∼ N (0, (σ(n))2), n = 1,⋯,Ak, n ≠ l (2.35)

Φk,inv(α
(l)
k ) ∼ N (µ(l), (σ(l))2) (2.36)

where N (µ,σ2) denotes a Gaussian with mean µ and variance σ2, µ(l) denotes the expected value

of the cross-correlation for the value of α
(n)
k ∈ Ak that is closest to α†

k, and (σ
(n))2, n = 1,⋯,Ak,

denote the variances of the cross-correlations.
For all n = 1,⋯,Ak, the variances (σ(n))2 can be written as Var{∑(i,j)∈Qk,inv(αk)

K̂ ′i,j ⋅Ni,j} ≈

σ̂2
K̂′
∑(i,j)∈Qk,inv(αk)

N2
i,j . As a consequence of the weak PRNU assumption ∑(i,j)∈Qk,inv(αk)

N2
i,j ≈

Ek,inv(α
(n)
k ). Therefore, (σ

(n))2 ≈ σ̂2
K̂′

Ek,inv(α
(n)
k ).

Let fN (Y ;µ,σ) denote the Gaussian pdf on random variable Y ∼ N (µ,σ2). Also, let El
denote the event “α

(l)
k , l ∈ {1,⋯,Ak} is the closest to the true value α†

k”. Then the likelihood of

jointly observing the cross-correlations Φk,inv(α
(n)
k ) conditioned on El is

f(Φk,inv(α
(1)
k ),⋯,Φk,inv(α

(Ak)

k )∣El) =

fN (Φk,inv(α
(l)
k );µ

(l), σ(l)) ⋅
Ak

∏
n=1

n≠l

fN (Φk,inv(α
(l)
k ); 0, σ

(n)
) (2.37)

The maximum likelihood estimator would be obtained by maximizing the likelihood in (2.37) with

respect to l. The estimator will not change if we divide (2.37) by ∏
Ak

n=1 fN (Φk,inv(α
(n)
k ); 0, σ

(n));
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this gives the following simpler likelihood function

L(Φk,inv(α
(1)
k ),⋯,Φk,inv(α

(Ak)

k )∣El)

=
fN (Φk,inv(α

(l)
k );µ

(l), σ(l))

fN (Φk,inv(α
(l)
k ); 0, σ

(l))
(2.38)

Taking the logarithm and simplifying, we find that the maximum likelihood estimator is equiv-
alent to solving

l∗ = arg max
l=1,⋯,Ak

ψ(l) (2.39)

where

ψ(l) ≐
µ(l) ⋅Φk,inv(α

(l)
k )

(σ(l))2
−
1

2

(µ(l))2

(σ(l))2
(2.40)

and making α∗k = α
(l∗)
k .

Notice that, as discussed above, (σ(l))2 can be replaced by its estimator σ̂2
K̂′

Ek,inv(α
(l)
k ) in

(2.40). Unfortunately, producing a reliable estimator of µ(l) is not feasible due to the unavail-

ability of the gains γ
(l)
i,j . For this reason, we turn our attention to suboptimal estimators that

can be practically implemented. If we assume that for all l in {1,⋯,Ak} both µ
(l) and the ratio

µ(l)/σ(l) do not vary significantly around their respective means, we can think of replacing µ(l)

and µ(l)/σ(l) in (2.40) by those means. This yields the simplified functional

ψ′(l) ≐ Φk,inv(α
(l)
k )/(σ

(l)
)
2 (2.41)

to be used in (2.39). After replacing (σ(l))2 in (2.41) by its estimator σ̂2
K̂′

Ek,inv(α
(l)
k ), and

dropping σ̂2
K̂′

because it is independent of l, we obtain the proposed (2.22).

It is interesting to evaluate the loss of performance that results when using (2.41) instead
of (2.40). We do so by assuming w.l.o.g. that El holds and estimate the probabilities that a
given n ∈ {1,⋯,Ak}, n ≠ l, produces a larger value than for n = l in ψ(n) and ψ′(n). Then, we
compare the two resulting probabilities in terms of the effective signal-to-noise ratios (SNR).

Therefore, in this case, following (2.35), we have that for n ≠ l, Φn,inv(α
(n)
k ) ∼ N (0, (σ

(n))2), and

Φk,inv(α
(l)
k ) ∼ N (µ

(l), (σ(l))2). Thus, when El holds, ψ
(l) ∼ N ((µ(l))2/(

√
2σ(l))2, (µ(l))2/(σ(l))2)

and ψ(n) ∼ N (−(µ(n))2/(
√
2σ(n))2, (µ(n))2/(σ(n))2), n ≠ l. Since ψ(l) and ψ(n) are independent,

the probability that ψ(n) ≥ ψ(l) when El holds is the probability that the random variable
ψ(l) − ψ(n) is less than zero. And since both variables are Gaussian, so is their difference.
Therefore, ψ(l) − ψ(n) ∼ N (ωn,l/2, ωn,l), where

ωn,l ≐
(µ(l))2

(σ(l))2
+
(µ(n))2

(σ(n))2
(2.42)

If we define the effective SNR as the ratio between the squared mean and the variance of ψ(l) −
ψ(n), then we find that SNRψ = ωn,l/4, where the subindex ψ indicates that we are using the
estimator in (2.40).

For the simplified estimator in (2.41), a similar derivation leads to showing that

ψ′(l) − ψ′(n) ∼ N (
µ(l)

(σ(l))2
, [

1

(σ(l))2
+

1

(σ(n))2
]) (2.43)
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for which the effective SNR, denoted as SNRψ′ is now

SNRψ′ =
(µ(l))2/(σ(l))2

(σ(l))2

(σ(n))2
+ 1

(2.44)

In order to compare the effective SNRs, we compute their ratio:

SNRψ

SNRψ′
=
1 + (µ

(n)

µ(l)
)
2

⋅ ( σ
(l)

σ(n)
)
2

4
⋅
⎛

⎝
(
σ(l)

σ(n)
)

2

+ 1
⎞

⎠
(2.45)

To get a cleaner interpretation of this result, we can further assume that both µ(n) and (σ(n))2

are proportional to the cardinality of the support set ∣Qk,inv(α
(n)
k )∣. This way, if we let βn,l ≐

∣Qk,inv(α
(n)
k )∣/∣Qk,inv(α

(l)
k )∣, we can write that µ(n)/µ(l) = βn,l and (σ

(l))2/(σ(n))2 = β−1n,l. Then,
substituting into (2.45) we find that

SNRψ

SNRψ′
=
(1 + βn,l)

2

4βn,l
= 1 +

(1 − βn,l)
2

4βn,l
(2.46)

which is clearly larger than one for all βn,l ≥ 0, βn,l ≠ 1. This confirms that, as expected, for any
βn,l ≠ 1 there is a loss of effective SNR with respect to the optimal estimator. However, in practice

this loss will be rather small: for instance, suppose that ∣Qk,inv(α
(n)
k )∣ is within the range of 20%

larger and 20% smaller than ∣Qk,inv(α
(l)
k )∣, then the effective SNR for the suboptimal detector is

at most 0.054 dB smaller than the corresponding to the optimal one.
This supports the plausibility of the proposed simplified detector.
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GIMP
3456 × 5184

LIGHTROOM
3456 × 5184

LIGHTROOM*
3456 × 5184

PHOTOSHOP
3456 × 5184

PT LENS
3456 × 5184

TPR time [s] TPR time [s] TPR time [s] TPR time [s] TPR time [s]
[40] (τ = 4.81) 0.96 85.3 0.44 87.9 0.41 91.6 0.91 107.2 0.64 100.3

[40] no DS (τ = 7.65) 0.97 962.3 0.6 930.8 0.51 930.9 0.96 947.6 0.91 918.3
[43] (τ = 2.83) 0.96 861.7 0.35 849.8 0.55 808.7 0.88 731.7 0.36 847.1

MAXpar (τ = 5.28) 0.97 861.7 0.68 849.8 0.75 808.7 0.93 731.7 0.83 847.1
MAXseq (τ = 5.28) 0.97 947 0.68 937.3 0.75 900.3 0.93 838.9 0.83 947.4

OR (τ = 5.28) 0.96 96.4 0.67 548.1 0.74 553.8 0.93 171.6 0.83 402.4
PSLR (τ = 5.83) 0.98 197.1 0.75 308.6 0.71 284.2 0.96 162.2 0.9 140.3

PSLR CPU (τ = 5.83) 0.98 667.76 0.75 932.29 0.71 962.46 0.96 576.83 0.9 474.04
Ð→
ID, Lin (τ = 98.86) 0.98 220.1 0.93 237.8 0.95 137.5 0.97 151.2 0.97 181.3
Ð→
DI, Lin (τ = 90.01) 0.98 303.6 0.95 330.3 0.92 222.6 0.98 159.5 0.99 247.3
Ð→
ID, Cub (τ = 73.48) 0.98 193.9 0.94 288.4 0.99 158.8 0.97 165.4 0.98 248.9
Ð→
DI, Cub (τ = 71.13) 0.99 204.8 0.97 309.1 0.98 126.5 0.97 176.2 0.99 253.6
Inv, Cub (τ = 97.66) 0.98 182 0.94 274.6 0.99 127.7 0.97 170.7 0.98 256.3
Dir, Cub (τ = 71.13) 0.98 196.2 0.97 295.1 0.98 129.7 0.97 167.3 1 238.2
2W, Cub (τ = 71.12) 0.99 326.4 0.98 467.4 0.98 220.5 0.97 293 1 412.4

[68] (τ = 12.69) 0.98 3.094 0.10 3.017 0.21 2.886 0.85 3.013 0.40 2.998

(a)

S9100
3000 × 4000

SX210
3240 × 4320

SX230
1584 × 2816

SX40
2664 × 4000

ZS7
1920 × 2560

TPR time [s] TPR time [s] TPR time [s] TPR time [s] TPR time [s]
[40] (τ = 4.81) 0.97 81.7 0.98 81.3 0.82 25.1 0.98 56.3 0.79 27.8

[40] no DS (τ = 7.65) 1 598.3 1 723.4 0.98 229.0 1 526.3 0.98 255.2
[43] (τ = 2.83) 0.92 553.5 0.93 661.1 0.76 205.2 0.70 472.9 0.65 227.2

MAXpar (τ = 5.28) 0.99 553.5 1 661.1 0.88 205.2 1 472.9 0.87 227.2
MAXseq (τ = 5.28) 0.99 635.2 1 742.4 0.88 230.3 1 529.2 0.87 255

OR (τ = 5.28) 0.99 95.8 1 93.2 0.88 60.3 1 67.2 0.86 70.1
PSLR (τ = 5.83) 0.96 80.72 1 234.1 0.98 147.2 1 125.4 0.95 51.8

PSLR CPU (τ = 5.83) 0.96 197.75 1 621.83 0.98 363.18 1 287.46 0.95 151.82
Ð→
ID, Lin (τ = 98.86) 0.99 114.2 0.96 256.8 0.87 33.8 1 105.1 0.76 42.7
Ð→
DI, Lin (τ = 90.01) 0.98 117.3 0.97 262.5 0.9 29 0.96 145 0.81 35
Ð→
ID, Cub (τ = 73.48) 0.99 72.9 1 127.5 1 23 1 93.4 0.98 27.7
Ð→
DI, Cub (τ = 71.13) 0.99 99.8 1 139.1 1 24.2 1 103.4 0.98 29.8
Inv, Cub (τ = 97.66) 0.99 92.9 1 121.8 0.98 41 1 88.6 0.93 50.5
Dir, Cub (τ = 71.13) 1 92.5 1 126.8 0.98 41.8 1 93.6 0.99 46.9
2W, Cub (τ = 71.12) 1 160.3 1 210.3 0.98 70.5 1 154 0.99 79.6

[68] (τ = 12.69) 0.926 2.848 1 2.847 0.809 2.693 0.965 2.693 0.638 2.753

(b)

Table 2.2: TPR and average execution time of G2012 [40], G2014 [43], the CNN of Li et al. [68]
and our proposed schemes, for different subsets. Table (a) contains the results on out-camera
radial corrected images, Table (b) on in-camera radial corrected images. The thresholds τ were
set using the ROCs of Fig. 2.9 for FPR@0.05 .
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2.7. CHAPTER APPENDIX: DERIVATION OF THE ESTIMATOR OF α∗k

No. No. Dir, Cub [40] Exhaust.
Dev. Img. STPR NDR NDR [40] NDR

iphone11pro 7 124 0.77 0.02 0.09 0
iphone11promax 9 232 0.82 0.02 0.09 0
iphone6 10 341 0.76 0.05 0.01 0.04
iphone7 10 295 0.71 0.08 0.04 0
huawei ane lx1 10 336 0.68 0.33 0.03 0.08
huawei sne lx1 10 346 0.58 0.70 0.05 0.05
motoe5play 9 293 0.65 0.20 0.01 0.06
808pureview 8 280 1 - - -
oneplusa6013 8 272 0.61 0.25 0.02 0.07
oppoa92020 3 103 0.61 0.02 0.04 0
realmec2 2 67 0.93 0 0 0

Table 2.3: Standard True Positive Rates (STPR) and New Discovery Rates (NDR) for camera
models in the second dataset. “No. Dev.” is the number of device, “No. Img.” the number of
images.
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Chapter 3

GPU-Accelerated Source
Attribution of Stabilized Videos

In this chapter, we will address electronic image stabilized (EIS) video source attribution prob-
lems. EIS [86] consists in applying a temporal coherent spatial transformation, compensating for
unintended camera movements, such as handheld shakiness, vibrations, or walking movements.
While EIS improves the quality of our video, as for radial correction in Sect. 2, EIS compromises
PRNU-methods consistency, making necessary to estimate the set of parameters able to reverse
the EIS applied to video frames, and realign the frames noise residuals Wu with K̂′.

While the set of parameters in Chapter 2 was treated as a time series without actually being
one, in the case of EIS video source attribution, the set of parameters to be estimated in every
frame forms a time serie, of which parameter values are temporally correlated with those used
to reverse the spatial transformation in the preceding frames.

Furthermore, in this chapter, we will leverage additional temporal information present in a
video, such as the ability to identify groups of pictures (GOPs) that are less stabilized within
a video sequence. In this scenario, we assume that within a video, there are varying levels of
camera motion, resulting in GOPs of which noise residuals Wu, are less misaligned with respect
to K̂′.

The aforementioned insights, combined with the utilization of the GPU as a computational
accelerator (without relying on deep learning to comply with European regulations for forensic
algorithms to be used in court, as stated by Zluatescu et al. [122]), enable us to propose an
innovative and accurate solution while addressing the significant execution time limitations that
affect state-of-the-art (SoA) methods [78, 77].

We will introduce the problems and the solutions proposed by the SoA in Sect. 3.1, provide
the mathematical definition of EIS in Sect. 3.2, and present our solution in Sect. 3.3. Finally, we
will showcase the experimental results in Sect. 3.4 and draw our conclusions in Sect. 3.5.

3.1 Introduction to EIS Video Source Attribution

As we introduced in Chapter 2, the PRNU can be very effective in tasks of image source attribu-
tion, altough it is very sensible to any kind of spatial transformations. Such issues are even more
impactful when applied to video source identification, due to stronger compression, frames storing
different kind of information changing in concert with the type of frame [109, 117]: Intra-frame
(I-) storing complete image information, Predicted (P-) storing the motion vectors and residuals
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with respect to the precedent frame, and Bidirectional (B-) storing P- frames information but
with respect to the precedent and next frames. Moreover, more complex spatial transformations
such as the Electronic Image Stabilization (EIS) [86] are applied by modern devices to improve
video quality.

To invert EIS transformations and restore the reliability of the PRNU, many works propose
to use a combination of grid searches, predicting methods and parallel CPU processing [78, 77,
50]. However, a common trait of such approaches is the rather high computational burden they
entail. Iuliani et al. [50] proposed solution checks every possible combination of scaling, rotation
and shift parameters by means of a grid search on each frame; to reduce the computational
cost, some of the parameters are estimated offline and used as a-priori information. Mandelli
et al. in their work [78] propose a faster algorithm for the inversion of the EIS, which however
implies significant hardware requirements to be computationally efficient. Finally, Mandelli et
al. [77] proposed a novel method, based on a modified version of the Fourier-Mellin transform
for efficient estimation of the rotation parameter and the inversion of the EIS. The algorithm
obtains promising results in terms of accuracy and computational cost but (just like the other two
works of the SoA [78, 50]) it exploits only the information coming from the video I-frames, while
fully discarding P- and B- frames. Furthermore, although the EIS transformations are typically
modelled through 8 parameters, all the cited methods ([78, 77, 50]) target the estimation of only
three of them in order to avoid combinatorial explosion, thus decreasing the inversion accuracy.

In performing source identification, an alternative approach to the conventional PRNU ex-
traction is the computation of a proper residual by means of deep neural networks, whose weights
are learned through a training procedure. It is the case of Noiseprint [29], which has been suc-
cessfully applied for digital images and recently extended to videos [28], although not dealing
with video stabilization issues.

Given the current limitations of existing approaches, in this chapter, we propose an innova-
tive solution for source identification of stabilized videos using the PRNU. Our algorithm inverts
the EIS by pre-selecting the less stabilized frames through a blind camera momentum estima-
tor before estimating the inversion parameters via grid search. In this phase, we leverage the
higher computational and parallelization capabilities of the GPU architectures, which particu-
larly fit our needs as they are optimized for similar point-wise operations arising in computer
graphics applications and act here as computing accelerators. Our pipeline includes the use of
SIFT features- already used in forensics [12, 11] but never for source identification - in order to
exploit the temporal correlation between neighbour frames and efficiently initialize their search
parameters.

3.2 Theoretical Background

3.2.1 Electronic Image Stabilization

Electronic Image Stabilization (EIS) [86] is a post-processing technique used in modern devices
and cameras to stabilize video sequences by compensating for temporal camera motion. To
this end, a spatial transformation is applied to the acquired frames, which entails a parametric
coordinate mapping followed by interpolation. We can model as follows the inverse coordinate
mapping between the stabilized and the original frame pixels:

⎛
⎜
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(3.1)

46
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Figure 3.1: Example of two frames where SIFT keypoints are detected (colored circles) and
matched through the DEGENSAC algorithm (colored lines.)

where (w′, h′) are the coordinates of the stabilized pixels and (w,h) the original ones, while
t = [t1,1, t1,2, ..., t3,2] is a 8-dimensional vector of varying parameters. In particular, t1,1 and t2,2
are related to horizontal/vertical scaling, t1,2 and t2,1 to rotation, t1,3 and t2,3 to translation,
and finally t3,1 and t3,2 are the projective parameters. Such model encompasses different types of
EIS systems [86], operating on 3-, 5- or 6-axes, depending on the nature of the transformations.
With a slight abuse of notation, if Y is a generic video frame, we will write Ht(Y) to indicate
the version of Y whose pixels underwent the grid transformation with parameters t followed by
interpolation.

3.2.2 Keypoint matching and homography estimation

The homography relation between two frames can be estimated through the detection and the
interframe matching of keypoints. In particular, we can associate to a pair of two generic frames
X and Y:

• S, a set containing pairs (sX, sY) of 2-D SIFT keypoints [74] that have been detected in
X and Y, respectively, and result as matching from the application of the DEGENSAC
algorithm [25]. An example of this detection and matching process is reported in Figure
3.1. We employ the Open-CV libraries for this purpose;

• HS , the estimated homography matrix between X and Y, which is provided as a by-
product by the DEGENSAC algorithm starting from the keypoints in S. HS has a similar
model as in Eq. (3.1) and, by using the same notation convention, we expect X ≈HS(Y).

In addition, we also define S̃, a sanitized set of matching keypoints where only those yielding
an interframe Euclidean distance ∣∣sX − sY ∣∣2 below an empirical threshold are retained.

3.3 Proposed Solution

We consider the hybrid scenario where the reference fingerprint of a device is estimated starting
from flat images acquired by the same device using (1.4).

As highlighted in previous approaches, in order for it to be used for testing video frames,
the image-based fingerprint needs to be properly down-scaled and cropped due to size mismatch
between image and video acquisition; we perform this operation similarly to what is done by

Mandelli et al. [78], so to obtain a fingerprint K̂′ to be used for testing video frames.
For a generic frame I, the core of the identification analysis consists in searching for the

parameters t that maximize the PCE value as in Eq. (1.5) between K̂′ and the residual extracted
from Ht(I), the latter being as close as possible to the originally acquired frame before the
stabilization.
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In order to improve the efficiency and the accuracy of this process, we propose a two-phase
methodology encompassing a preselection of lightly stabilized frames (described in Sect. 3.3.1)
and a frame-wise inversion analysis boosted by a SIFT-based homography estimation (described
in Sect. 3.3.2). Moreover, we developed a Tensorflow implementation of the overall procedure,
building on the Tensorflow add-on libraries for the frame-wise inversion operations, and the PCE
and the cross-correlation formulas defined in Eqs. (1.5) and (1.1), respectively.

3.3.1 Selection of low-stabilization frames

In this first phase, pairs of consecutive I-frames are analyzed, with the goal of locating the Group
of Pictures (GOPs) where the weaker stabilization has supposedly been applied. Inspired by the
work of Battiato et al. [8], we achieve this by computing a camera momentum, which expresses
the global amount of motion between frames. We interpret this measure as a proxy for the
strength of the stabilization operation applied to the originally acquired frame: our intuition is
that less stabilized frames yield more reliable frame inversion and PRNU matching processes.
Once located, the GOP where the weaker stabilization has supposedly been applied will be used
during the SIFT-aided EIS Inversion of Sect. 3.3.2.

Given two consecutive I-frames Iu and Iu+1, the set S̃u containing sanitized matching keypoint
pairs (su, su+1) is obtained as described in Sect. 3.2.2. The camera momentum between Iu and
Iu+1 is then defined as

∆u ≐ ∑
(su,su+1)∈S̃u

∣∣su − su+1∣∣2 ⋅ ∣S̃u∣
○−1, (3.2)

that is, the average interframe displacement between matching keypoint pairs in S̃u.
By iterating this operation along the video duration, we can identify the index A such that

A = argmin
u

∆u (3.3)

The corresponding I-frame IA is defined as the anchor and identifies the starting point of the
successive frame-wise inversion analysis, which will be limited to the frames

IA,P1,P2, . . . ,PVA
(3.4)

where Pv, v = 1, . . . , VA are predicted frames (P or B type) except for PVA
≡ IA+1, and VA is the

GOP size. When the set S̃u is empty, as for flat videos, and ∆u cannot be estimated, the index
A corresponds to the first I-frame of the video.

3.3.2 SIFT-aided EIS Inversion

In this second phase, we aim at filling a vector γ = [γA, γ1, . . . , γVA
] containing the maximum

PCE value with the reference fingerprint K̂′ measured at each of the selected frame indices in
Eq. (3.4) under a number of tested inverse transformations of the frame.

For this purpose, we define the following operators:

• correction(K̂′, I,Tinit): given a reference PRNU fingerprint K̂′ and a frame I, this oper-
ator applies a breadth-first search [16] over the parameters in t with the goal of maximizing

PCE(K̂′,Ht(I)). The search starts from the parameters contained in the optional input
matrix Tinit, if given.

As in the paper of Mandelli et al. [78], simplifying assumptions are made, in particular on
the scaling parameters (t1,1 = t2,2 ≐ λ ) and on the rotation parameters (t1,2 = −t2,1 ≐ θ).
Moreover, t3,1, t3,2 are set to 0, and t1,3, t2,3 are estimated once and kept fixed.
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D02 D05 D06 D10 D14 D15 D18 D19 D20 D25 D29 D34

λ 1.333 1.455 1.417 1.333 1.455 1.416 1.454 1.417 1.227 1.933 1.455 1.455
wtl 206 103 134 206 103 134 104 133 38 182 103 103
htl 345 269 291 345 269 291 269 291 216 327 269 269
wbr 2242 2140 2170 2242 2140 2170 2140 2170 2074 2218 2140 2140
hbr 1491 1414 1437 1491 1414 1437 1414 1436 1362 1437 1414 1414

Table 3.1: Estimated parameters for obtaining K̂′ for each device starting from the image-based
fingerprint. λ is the down-scaling parameters, and (wtl, htl) and (wbr, hbr) are the coordinates
of the top-left and bottom-right corners of the rectangular crop.

At each n-th iteration, the pair (λ(n), θ(n)) is determined through exhaustive search over

Λ(n) ×Θ(n) as the one yielding the transformation of I with the highest PCE value.

The sets Λ(n) and Θ(n) are finite and progressively narrower neighborhoods of the previous
estimates. In particular:

Λ(n) = {λ(n−1) + α ⋅ 0.01−n}α∈Z∩[−5,5]

Θ(n) = {θ(n−1) + α ⋅ 0.1−n}α∈Z∩[−5,5]
(3.5)

where α sets the size of Λ(n) and Θ(n). At the first iteration (n = 1), if the matrix Tinit

is given as input, then a corresponding vector tinit is derived, from which λ(0) and θ(0) are
extracted accordingly. Otherwise, they are initialized to 1 and 0, respectively. Moreover,
at the first iteration θ(1) is searched on a denser grid ({−5,−4.9, . . . ,4.9,5}), to improve
accuracy.

If at the n-th iteration, (λ(n), θ(n)) ≡ (λ(n−1), θ(n−1)), the process stops. Also, in our
experiments we fixed the maximum number of iterations at 3. tmax is the parameter vector
for which the maximum PCE value γ is observed. γ is returned as output together with
the corrected frame I(c) obtained by transforming I with tmax.

• coregistration(I,P): this operator returns as output the estimated homography matrix
H between I and P computed as in Sect. 3.2.2, and the resulting co-registered frame
P(r) ≐H(P) ≈ I.

Algorithm 1 SIFT-aided EIS inversion

1: Inputs: anchor index A,
frames IA , PA+1, . . . ,PA+VA

reference fingerprint K̂′

2: Initialize: vector γ, temporary frame U
▷ Correction of the anchor

3: (I(c)
A
, γA)← correction(K̂′, IA)

4: U← I
(c)
A

▷ Co-registration and correction of the successive frames
5: for v = 1, . . . , VA do

6: (Hv,P
(r)
v )← coregistration(U,Pv)

7: if PCE(K̂′,P(r)v ) > PCE(K̂′,Pv) then

8: (P(c)v , γv) = correction(K̂′,Pv,Hv)

9: else
10: (P(c)v , γv) = correction(K̂′,Pv)

11: U← P(c)v

12: return vector γ
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Figure 3.2: ROC of the proposed method “Ours”, M2019 [78] and MFM [77].

Those operators are combined in our proposed method as formalized in Algorithm 1. Es-
sentially, the iterative correction procedure is applied to each frame. The overall idea is to first

correct the anchor IA so to obtain I
(c)
A ; then, the successive frames Pv are co-registered with

respect to the previous one prior to correction, obtaining for each of them a registered version
P(r)v . If P(r)v yields a higher PCE value than Pv, the correction is initialized by taking into
account the homography estimation.

The final decision is taken by thresholding with a value τ the mean of the vector γ provided
by Algorithm 1.

3.4 Experimental Results

We compared our method with the works presented in the papers of Mandelli et al. the first
work [78] denoted as M2019, and the second [77] denoted as MFM, whose codes are available
on git-hub We measure the method performance in terms of computational cost, True Positive
Rates (TPR) for a fixed False Positive Rate FPR ≈ 0.05 and Area Under the Curve (AUC).

The dataset used for the experiments is VISION [101], from which we selected horizontal
videos taken using the EIS (except videos from device D23 which have very low resolution
640 × 480). Metadata were checked for every video to know whether it was taken upside down
and, in this case, we rotated it by 180 degrees. For each device, we composed the image-based
camera fingerprint with L = 100 flat images. Similarly to M2019 [78], it gets down-sampled and

cropped, so to obtain a new fingerprint K̂′ directly comparable to the test frames. We estimated
offline such down-scaling and crop parameters and report them in Table 3.1 for all tested devices.

We analysed between eight and twelve videos per device, for a total of 131 videos. Results
were obtained on a server with the following characteristics: RAM 64GB, Processor Intel(R)
Xeon(R) CPU E5-2630 v3 2.40GHz, GPU NVIDIA Tesla K40c 12 GB.

In Figure 3.2, we report ROC curves for our solution and SoA methods tested on all the
devices of Tab. 3.1. We computed the PCE values used for Figure 3.2 by matching all the 131
video, taken with devices of Tab. 3.1, with their correspective ones for H1, and with different
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3.4. EXPERIMENTAL RESULTS

D02 D05 D06 D10 D14 D15
TPR ETPS TPR ETPS TPR ETPS TPR ETPS TPR ETPS TPR ETPS

Ours
τ0.05 = 19.5

1 12.27 1 11.72 0.72 9.85 1 16.56 0.92 19.77 1 23.29

M2019
τ0.05 = 36

0.87 61.61 0.62 54.08 0.88 52.33 0.87 51.47 0.87 51.46 0.63 60.65

MFM
τ0.05 = 34

0.89 110.13 0.89 107.33 0.78 95.05 0.89 78.42 1 72.29 0.78 66.32

Ours CPU
τ0.05 = 19.5

1 615.19 1 492.42 0.72 538.82 1 519.15 0.92 554.55 1 611.62

(a)

D18 D19 D20 D25 D29 D34
TPR ETPS TPR ETPS TPR ETPS TPR ETPS TPR ETPS TPR ETPS

Ours
τ0.05 = 19.5

1 13.34 0.91 11.30 1 11.69 0.64 10.47 1 4.94 1 8.21

M2019
τ0.05 = 36

0.5 47.21 0.75 38.27 0.88 37.97 1 37.88 0.63 53.21 0.57 44.88

MFM
τ0.05 = 34

0.89 76.50 0.89 57.54 1 51.97 1 49.50 0.67 37.58 0.55 39.88

Ours CPU
τ0.05 = 19.5

1 566.81 0.91 558.43 1 563.09 0.636 469.04 1 408.81 1 523.74

(b)

Table 3.2: Results obtained by the proposed method “Ours”, M2019 [78] and MFM [77] in terms
of TPR and ETPS (Elaboration Time Per Second of video) for a FPR=0.05 on the different
devices. In boldface are highlighted the best results, the time is expressed in seconds. We
divided the results in two separate tables, (a) and (b), to improve their readability.

devices for H0 (we define H1 and H0 in Sect. 1.2.2). The improvement with respect to M2019
[78] and MFM [77] is evident both in terms of AUC and TPR, demonstrating the effectiveness
of the proposed algorithm.

A more detailed comparison at the acquisition device level is shown in Table 3.2, where we
report the TPR for a fixed FPR of 0.05 and the computational time required by each solution.
While the results in Table 3.2 confirm the superiority of our solution in terms of TPR for most
devices, they also demonstrate the significant reduction in computational cost achieved with
our strategy when utilizing the GPU, resulting in a much smaller Elaboration Time Per Second
(ETPS) for video, even when analyzing up to three times more frames than M2019 [78] and
MFM [77]. Conversely, it is evident that when our method is executed on the CPU, it requires
a much higher ETPS compared to M2019 [78] and MFM [77]. Nevertheless, the much larger
ETPS of our solution when using the CPU, while proving the suitability of the GPU in highly
computationally complex problems like the one studied in this chapter due to the GPU’s high
parallelization, is also attributed, in our case, to the larger number of parameters we attempt
to estimate with our method (i.e., eight vs. four for M2019 [78] and MFM [77]), and the much
larger number of frames we study (i.e., the entire GOP against 10 frames for M2019 [78] and
MFM [77]).

A more in detail analysis of Table 3.2 shows that the proposed method outperforms the
State-of-the-Art (SoA) in terms of True Positive Rate (TPR) with False Positive Rate (FPR)
fixed at 0.05, except for video sequences from devices D06 and D25. We conjecture that their
lower TPR performance is related to incorrect estimations of Eqs. (3.2) and (3.3), which we
frequently observed in highly textured or well-stabilized videos (i.e., videos where the Electronic

51



CHAPTER 3. GPU-ACCELERATED SOURCE ATTRIBUTION OF STABILIZED VIDEOS

630 635 640 645 650 655 660

100

200

300

400

630 635 640 645 650 655 660

50

100

150

200

250

300

(a)

630 635 640 645 650 655 660

100

200

300

400

630 635 640 645 650 655 660

50

100

150

200

250

300

(b)

630 635 640 645 650 655 660

100

200

300

400

630 635 640 645 650 655 660

50

100

150

200

250

300

(c)

Figure 3.3: PCE values pre PCE(K̂
′
,Pv) and post PCE(K̂

′
,P(c)v ) EIS Inversion us-

ing the proposed method, and camera momentum ∆ (3.2) computed between frames
in the less stabilized GOP retrieved using (3.3). Figure (a) was obtained using the
video with ID “D02 V outdoor panrot 0002”, figure (b) “D06 V outdoor move 0002”, and (c)
“D25 V indoor move 0001”. Refer to the paper of the dataset [101] for additional details.

Image Stabilization (EIS) works very well, leading to an incorrect estimation of (3.2)).

In Fig. 3.3, we confirm this hypothesis by comparing the per-frame Peak Correlation Energy
(PCE) values (pre- and post-EIS inversion) with the values of (3.2) for three randomly selected
videos from devices D02, D06, and D25. Device D02 was selected since, as shown in Table 3.2,
we obtained a TPR of 1. In contrast, for D06 and D25, we selected two videos that our method
misattributed and was unable to invert the EIS. Note in Table 3.2 that D06 and D25 were also
the devices on which our method performed the worst.

As expected, when the proposed method intercepts the GOP with less camera movement,
as shown in Fig. 3.3a, our solution maximizes the PCE for most frames of the GOP post-EIS
inversion. Conversely, when intercepting the more stabilized GOP as in Fig. 3.3b (and for this
reason, with less movement), the proposed solution poorly inverts the video EIS and maximizes
the final PCE value. Finally, in Fig. 3.3c, we also show that false negatives can be caused by the
absence of a “steady” GOP, resulting in a more challenging EIS inversion process.
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While outperforming M2019 [78] and MFM [77] on most devices of Table 3.2, the results of
Fig. 3.3 demonstrate that future efforts should focus on implementing a new estimator for ∆ and
refining the EIS inversion process of Sect. 3.3.2. Regarding a better estimator of ∆, if the video
EIS is applied based on the acceleration perceived by the gyroscope, the best frames should be
those for which their “acceleration” is closer to 0 or for which ∆ estimated on subsequent frames
is constant.

Following this intuition, given a triplet of subsequent frames Ii, Ii+1, and Ii+2, to which
correspond two sets S̃1 and S̃2 of sanitized matching keypoint pairs (si, si+1), if we assume that
the time interval between Ii, Ii+1, and Ii+2 is constant, a possible estimator for ∆i is:

∆i ≐ ∣ ∑
(si,si+1)∈S̃1

∣∣si − si+1∣∣2 ⋅ ∣S̃1∣
○−1
− ∑
(si+1,si+2)∈S̃2

∣∣si+1 − si+2∣∣2 ⋅ ∣S̃2∣
○−1
∣, (3.6)

A potential advantage of the solution presented in (3.6) is its ability to avoid the constraint
of selecting a GOP but instead to select the most steady triplet (or a set of the most steady
triplets) of frames. Nonetheless, exhaustive experiments have to be carried on since problems
similar to those shown in Fig. 3.3 may occur.

Regarding the optimization of the EIS inversion process presented in Sect. 3.3.2, a possible
solution could be to adopt a “divide-and-conquer” approach, similar to the one proposed in
Chapter 2 or in the paper of Darvish et al. [87], where the spatial transformation is inverted
locally. This involves breaking down a mathematically complex problem into smaller ones that
are easier to solve. Additionally, data-driven approaches, such as the one proposed by Li et
al. [68] (introduced in Sect. 2.5), properly adapted to invert spatial transformations, could also
provide a non-negligible contribution in terms of accuracy and execution time.

3.5 Conclusions

In this chapter, we presented an innovative method for the identification of the source of EIS
videos, where the more promising frames for this purpose are temporally localized. We did it by
taking into account the inevitable temporal correlation of the EIS applied to neighbour frames
and by defining a measure for the camera momentum. The results obtained so far on stabilized
videos coming from VISION [101] outperform previous approaches both in terms of identification
accuracy and of computational efficiency.

However, we believe there is space for improvement in different aspects. In particular, we
aim to improve the model used for estimating the camera momentum and incorporating deep
networks [68, 106] in the forensics analysis for EIS inversion and EIS parameters estimation, which
has a high potential for improving algorithmic efficiency. However, to maintain the method’s
explainability, we will continue using the Photo-Response Non-Uniformity (PRNU) to accomplish
the task of source attribution. In the end, moving from the hybrid scenario, where the camera
fingerprint is estimated on flat images, to a fully video-based one where (potentially stabilized)
videos are used to obtain the reference fingerprints would be of high practical relevance.
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Chapter 4

Forgeries Localization of
Inpainted Video post-processed
by Temporally Consistency
Network

4.1 Introduction to Video Inpainting Localization

In the preceding chapters, we illustrated the benefits of exploiting temporal information in source
attribution problems by modeling sets of parameters as time series to be predicted.

Temporal information becomes even more important when applied to video forgery localiza-
tion tasks due to the complexity of tampering applied by DNN [108] and stronger compression,
such as H.264.

In this chapter, we will focus on a specific type of tampering called video inpainting [59,
90, 112]. Video inpainting involves removing an object from video frames in an imperceptible
manner by substituting its pixels coherently with the rest of the frame.

Very recently, video inpainting techniques have incorporated post-processing into their gen-
eration pipeline to enhance the spatio-temporal consistency of their videos [91, 67]. This post-
processing involves the use of a Temporal Consistencies Network (TCN) [91] to improve video
visual quality and reduce artifacts, such as flickering, resulting from inconsistent inpainting across
multiple frames.

However, post-processing in video inpainting not only affects video quality but also impacts
the accuracy of SoA methods (see Sect. 1.2.3 for details on the SoA of inpainting techniques) for
inpainting localization. These methods rely on artifacts learned from non-post-processed RGB
frames [120] or spatio-temporal residuals [65, 113].

While one potential solution is to fine-tune SoA methods on post-processed videos, in this
chapter, as introduced in Sect. 1.2.3, we aim to work in a scenario as close as possible to the
real world. We propose a solution that is reliable regardless of whether the training set contains
post-processed or non-post-processed videos.

To achieve this, we will first introduce a new dataset consisting of over eleven thousand
inpainted videos created using six different techniques, both with and without post-processing.

Next, we will outline the challenges faced by the SoA methods and propose our novel solution.
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This solution involves training a model to distinguish the sources of spatio-temporal inconsisten-
cies without relying on spatio-temporal residuals. Instead, we will adapt RAFT [106], a network
designed for dense optical flow field estimation. This adaptation allows us to learn artifacts at
“dense optical flow field” level, which, as demonstrated by Li et al. [67] and confirmed by Gao
et al. [38], are often more prominent and persistent.

The remain of the chapter is organized as follows: In Sect. 4.2, we describe the dataset
compiled for the problem in this chapter. In Sect. 4.3, we detail our method, and in Sect. 4.4,
we provide additional details on the training parameters. Finally, we present the experimental
results and draw conclusions in Sect. 4.5 and 4.6.

4.2 Dataset creation

Inpainting detection and localization are not new in multimedia forensics. However, while image
inpainting detection and localization can rely on a larger literature [65, 69, 115, 108] and related
datasets the state of the art for video inpainting detection and localization techniques is relatively
young [120, 113]. Consequently, both literature and available datasets are very limited.

Most of the published articles used the DAVIS Dataset [17], inpainted with several inpainting
techniques [120, 113]. Nevertheless, the DAVIS Dataset [17] provides video frames stored in
JPEG format, which, due to JPEG compression, are not representative of a real-world case
scenario where video frames are potentially extracted in a lossless format, to then be inpainted
and encoded back to video. Additionally, none of these datasets [120, 113] are publicly available.

To provide a publicly available dataset of video inpainted and post-processed with six of the
most recent inpainting techniques representative of a real-world case scenario, we decided to
compose our own dataset.

In the next sections we describe the dataset we built to test our method and compare it with
the SoA.

4.2.1 Original data collection and preparation

Original videos have been collected from four datasets. Two of them, namely Youtube-8m [2] and
Sports-1m [54], were originally proposed for action recognition, while the others, i.e. Vision [101]
and Socrates [36], for the source identification task. A total of 312 videos have been collected from
these sources, as detailed in Tab. 4.1. Two-thirds of them were originally recorder at WXGA
(1280×720 pixels) resolution, while the remaining have Full-HD (1920×1080 pixels) resolution,
with frame rate of 30 frames per second (88@fps24-25, 221@fps30, 3@fps60). We decided to use
videos from these four sources which have different duration and variable bit rates to provide
good variability in terms of video compression, thus better reflecting a real-world scenario. Both
duration and bit rate distributions on the whole dataset are depicted in Fig. 4.1 left and right,
respectively.

Starting from the videos of Tab. 4.1 we extrapolate clips of few seconds using ffmpeg and
store then in a lossless format with resolution 432 × 240, as did by Wei et al. [113]. In each
clip, an object (or a portion of it) visible during the whole sequence has been selected and
segmented. The clips selected for validation and testing were manually segmented to achieve the
best qualitative results. As for the training videos, 25% of them were manually segmented just
like the test and validation ones, while the remaining 75% were segmented by using SiamMask
[110], also used by Wei et al. [113]. SiamMask allows selecting the desired object in the first
frame and automatically tracking and segmenting it for the whole video, speeding up the dataset
creation. At this point, the dataset was obtained by i) decoding from every clip all frames, ii)
storing them in PNG format F, iii) processing them using the inpainting techniques described in
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Source Original resolution Total
1280×720 1920×1080

Youtube-8m [2] 90 70 160
Sports-1m [54] 105 - 105
Vision [101] 11 20 31
Socrates [36] - 16 16
Total 206 106 312

Table 4.1: Videos in the dataset.

Figure 4.1: Bitrate (left) and duration (right) distributions on the whole dataset.

the next Sect. 4.2.2 IF, iv) encoding the frames back to videos in H.264 with constant rate factor
(crf) 23 IV and finally, v) decoding again the video frames IVF. This way, for every sequence
we collected all inpainted frames before and after encoding. The dataset generation pipeline is
summarized in Fig. 4.2.

A second version of the dataset was created by introducing an additional layer of complexity
to mimic real-world conditions. In this version, a post-processing P step was applied to reduce
spatio-temporal artifacts caused by inpainting. This post-processing was accomplished by em-
ploying two different techniques: Temporal Consistency Network (TCN) [91] and Deep Video
Prior (DVP) [64]. Further details, motivating the decision to use TCN and DVP, are presented
in Sect. 4.3.

In summary, our dataset consists of 312 pristine clips that were inpainted using six different
techniques. Additionally, two post-processing networks were applied, resulting in a total of 18
inpainted variants (one without post-processing and two with post-processing). Furthermore,
there are three versions that include both pristine sequences and post-processed versions, result-
ing in a total of 21 versions of all video clips. These 21 versions are available both before and
after being encoded as H.264 videos, resulting in a total of 13,104 sequences. A few examples
illustrating the effects of inpainting on single video frames are depicted in Fig. 4.3.

4.2.2 Selected Inpainting and Post-Processing Techniques

We selected six of the most recent video and image inpainting techniques:

• Generative Multi-column Convolutional Neural Networks (GMCNN) [112].

• Spatial-Temporal Transformer Network (STTN) [59].
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Figure 4.2: Dataset generation pipeline. C are the original clips from which we extrapolated
and resize to resolution 432x240 the frames F. These frames are either just inpainted IF, or
also post-processed using TCN or DVP PIF. Finally, IF and PIF are encoded back to video
using H.264 crf 23, obtaining IV and PIV, from which derives the correspective frames IVF
and PIVF.

• Decoupled Spatial-Temporal Transformer (DSTT) [70].

• Fuse Former (FF) [71].

• Onion Peel Network (OPN) [90].

• Flow Guided Video Completion (FGVC) [38].

STTN, DSTT, FF, OPN, and FGVC are video inpainting techniques that produce quali-
tatively better results. GMCNN is an image inpainting technique selected to assess how well
methods trained for video inpainting localization transfer to image inpainting.

In addition to these inpainting techniques, we augmented our dataset by applying post-
processing using the Temporal Consistency Network (TCN) [91], which is also used by OPN,
and the Deep Video Prior (DVP) [64]. TCN and DVP are employed to reduce spatio-temporal
inconsistencies left by inpainting techniques, such as flickering [91]. Nevertheless, we noticed
that when TCN and DVP are used during the inpainted video generation pipeline, they affect
the localization capabilities of SoA methods. Thus, we choose to use TCN and DVP to create a
second version of our dataset, post-processed to study their effects, and proposed a solution.

In the next subsections, we will introduce and briefly summarize each inpainting and post-
processing technique.

4.2.2.1 GMCNN

The Generative Multi-column Convolutional Neural Network (GMCNN) [112] is an image in-
painting technique based on a multi-column structure designed to decompose the image using
different receptive fields and feature resolutions.
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Figure 4.3: Original frames (first row) sampled from videos in our dataset and the corresponding
inpainted frames (second row) obtained using STTN. In the inpainted frames, specific regions
of the frame have been replaced spatio-temporally coherently with respect to the current and
neighboring frames.

The multi-column structure consists of three parallel encoder-decoder networks. Unlike other
techniques that use a coarse-to-fine or multi-scale approach, GMCNN can directly operate on
full-resolution input, providing a multi-scale feature representation that captures both global and
local information.

Given an image and its mask, GMCNN extracts features at different levels, which are bi-
linearly up-sampled to the original resolution and then concatenated into a feature map to
generate the resulting image. GMCNN yields good inpainting results and avoids the issues
associated with coarse-to-fine or multi-scale approaches. It can handle random-sized inpainting
objects and images effectively. However, as we will demonstrate in Sect. 4.5, GMCNN struggles
to inpaint large objects, leading to the presence of significant visual artifacts in such cases.

4.2.2.2 STTN

The Spatial-Temporal Transformer Network (STTN) [59] simultaneously fills missing regions in
all input frames by leveraging a self-attention mechanism. In more detail, STTN formulates the
problem as a multi-to-multi task where both neighboring and distant frames are considered. It
aims to fill the objects to be inpainted by searching for coherent contents in all frames through
a multi-scale patch-based attention module.

Patches are extracted at multiple scales from each frame to account for different appearance
changes in the object to be inpainted due to its motion or the complex motion of the camera.
The most relevant patches are then aggregated, detected, and transformed by the heads of the
transformer to fill the missing regions left by the object to be removed.

STTN has been demonstrated to produce excellent inpainting results when compared with
other techniques on benchmark datasets such as DAVIS[17] and Youtube-vos[118]. However, its
major constraints arise from VRAM limitations when used for inpainting high-resolution or long
videos.
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4.2.2.3 Fuse Former

Fuse Former (FF) [71], similar to STTN, is a transformer-based inpainting technique. However,
FF addresses VRAM limitations and enhances temporal consistency using standard transformers,
avoiding the multi-scale multi-head architecture of STTN, while adopting overlapping patches
for inpainting.

4.2.2.4 DSTT

Similar to FF, the Decoupled Spatial-Temporal Transformer (DSTT) [70] extends STTN by im-
proving both its accuracy and VRAM limitations by decoupling the spatio-temporal propagation
into different transformers.

4.2.2.5 OPN

The Onion Peel Network (OPN) [90], unlike STTN, FF, and DSTT, produces qualitatively
good results without restrictions on the length or resolution of the input video. This inpainting
technique progressively fills the object to be inpainted from its boundaries toward its center,
utilizing spatio-temporal attention mechanisms. OPN accomplishes this by gradually eroding
the area left by the object to be inpainted one ‘peel’ of pixels at a time, collecting the missing
pixels from reference frames through an asymmetric attention block and an encoder-decoder
architecture.

4.2.2.6 FGVC

Flow Guided Video Completion (FGVC) is a video inpainting technique that fills the area left
by the object to be inpainted using optical flow to reduce spatio-temporal artifacts introduced
during inpainting. FGVC first exploits optical flow between adjacent frames for piecewise-smooth
flow completion of edges in the video frames. Furthermore, by using the optical flow of distant
frames, FGVC effectively handles periodic motions. Subsequently, FGVC refines textures of
inpainted objects to further reduce the presence of artifacts. The use of optical flow makes
videos processed by FGVC very difficult to detect, especially when inpainting small objects, as
we will demonstrate in Sect. 4.5.

4.2.2.7 TCN

The Temporal Consistency Network (TCN) [91], utilized by OPN, is an encoder-decoder architec-
ture with an intermediate convolutional GRU used to capture long-term temporal inconsistencies
across the video frame features extracted by the encoder. TCN is trained by optimizing a tem-
poral stability loss (aimed at making pixel values of two subsequent frames as consistent as
possible) and a perceptual similarity loss (to maintain consistencies between pixels of the same
frame). This post-processing technique was employed by the authors of OPN [90] to reduce
spatio-temporal inconsistency artifacts introduced during inpainting, such as flickering. Never-
theless, TCN, by reducing flickering introduced during inpainting, also diminishes the presence
of spatio-temporal inconsistencies used for inpainting localization.

4.2.2.8 DVP

Deep Video Prior (DVP) is a technique similar to TCN, used for video enhancement [64]. In
the original paper, DVP is used to reduce multimodal inconsistencies (e.g., flickering) introduced
in video frames as a consequence of common deep video processing tasks such as colorization,
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style transfer, intrinsic image generation, and many others. However, during our experiments,
we observed that DVP can be used similarly to TCN to reduce spatio-temporal inconsistencies
caused by inpainting.

DVP employs internal learning to identify and reduce the specific multimodal inconsistencies
present in the input videos. It achieves this using a U-Net [96] architecture with perceptual loss
and an iteratively re-weighted training strategy.

4.3 Proposed Method

During the dataset creation, we noticed that OPN [90] implemented post-processing using TCN
[91] in the inpainted video generation pipeline. This post-processing aimed to reduce spatio-
temporal artifacts introduced by inpainting and enhance the video’s visual quality. However,
when TCN was used, we observed poor localization performance with State-of-the-Art (SoA)
methods.

To illustrate the motivation behind our method, we refer to the example shown in Figure 4.4,
where we highlight the effects of post-processing applied by TCN [91] on inpainting localization
methods.

Inpainted objects can be localized by exploiting artifacts resulting from their imperfect re-
construction. These artifacts are often detectable in high-pass residuals [65], RGB frames [120],
or handcrafted spatio-temporal residuals [113].

However, while the SoA methods shown in Figure 4.4 perform well on non-post-processed
frames (i.e. only OPN), when post-processed (i.e. OPN+TCN), these inpainted objects become
almost undetectable. This is because TCN-like post-processing techniques reduce the amount of
spatio-temporal artifacts that can be revealed in RGB frames [120] or spatio-temporal residuals
[65, 113] by the SoA methods.

TCN learns during training to reduce spatio-temporal artefacts introduced, for this case, by
inpainting methods, optimizing the loss function of (4.1).

LTCN = κ ⋅LTS +LPS (4.1)

The loss of (4.1) is similar to the one proposed by Lai et al. [62]. In this equation, κ is a
constant used to weight the temporal stability (TS) loss LTS, and LPS represents the perceptual
stability (PS) loss.

It is important to note that LTS decreases as the pixel distances toward the previous post-
processed frame are minimized. However, using only LTS would bias TCN towards producing
extremely blurred frames since they are temporally more stable. By adding LPS, which measures
the distance between the post-processed and non-post-processed frames, a trade-off between
temporal and perceptual stability is achieved. This reduces spatial-temporal artifacts while
preserving the content of each frame.

As a result, spatio-temporal artifacts occurring in post-processed frames are significantly
reduced, making it challenging for State-of-the-Art (SoA) methods [113],[120],[65] – which rely
on residuals – to reliably perform inpainting localization when post-processed frames have not
been seen during training. In contrast, by definition of (4.1), we can assume that spatio-temporal
artefacts are never completely removed and they can be recovered.

Motivated by these results, we propose an architecture that learns to localize spatio-temporal
artifacts by exploiting the dense optical flow field domain. The intuition of exploring the dense
optical flow field comes from the work of Gao et al. [38], where the authors demonstrate how
spatio-temporal artefacts left by inpainting method are more persistent in this domain (see
Fig. 4.6).
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Figure 4.4: Results obtained by three methods of the SoA, HPFCN [65], VIDNet [120] and DVIL
[113] on IF samples inpainted with OPN, and inpainted with OPN and then post-processed with
TCN. HPFCN, VIDNet and DVIL were trained on IF samples inpainted with STTN and OPN
without post-processing them with TCN or DVP.

To implement our method, we decided to extend RAFT [106], a network initially designed
for dense optical flow field estimation. Given in input two subsequent frames, Ii and Ii+1, we
will train the feature encoder f(⋅) of RAFT [106] to learn temporal features from Ii and Ii+1 so
that < f(Ii), f(Ii+1) >, used to build a four layer correlation pyramid P, will poorly correlate in
inpainted regions and highly elsewhere (see Sect. 4.3.2). We refer to the module trained for this
task in the rest of the chapter with the name “Temporal Feature Extraction Module” (TFEM).

In addition to f(⋅), spatial discriminative features for inpainting localization will be learned
by the “Spatial Feature Extraction Module”, that implements an attention mechanism based on
SegFormer h(⋅), a transformer architecture for image segmentation. SegFormer will be trained
with the rest of the network to produces attention maps highlighting potentially inpainted regions
in Ii, so that h(Ii)⊗ Ii. Consequently, a second encoder c(⋅), focusing on the highlighted regions
of h(Ii)⊗ Ii, will learn features related to spatial inconsistencies across single frames due to
inpainting (further details in Sect. 4.3.3).

Finally, P, c(h(Ii)⊗ Ii) and a first dense optical flow field estimation F
(j=1)
i = 0, will be used

by an update module similar to the one used in RAFT [106] to produce and refine, during J
iteration j, a dense optical flow field estimation reveling small motion (i.e. like flickering) due

to inpainting in the dense optical flow field prediction F̂i = F
(j=J)
i and in the final inpainting

localization map Ôi = O
(j=J)
i . The output localization map O

(j)
i will be obtained using the

so-called “learned prototypes” [67, 63, 98].
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Figure 4.5: Overview of the proposed solution and its three modules. The Temporal Feature
Extraction Module takes two input frames, denoted as Ii and Ii+1, and produces a correlation
volume that represents the temporal correlation between these frames. The Spatial Feature Ex-
traction Module, using Ii highlights potential inpainted regions through an attention mechanism
driven by SegFormer [116], and extracts another set of features using a second network. Finally,

the features from both modules plus a first estimation of the dense optical flow field F
(j=1)
i are

input to the Update Module, which iteratively refines the final dense optical flow field F̂i and
inpainting localization Ôi predictions over J iterations.

In the following sub-sections, we will present RAFT [106] and provide additional details on
our method. The flowchart of the solution proposed in this chapter is visible in Figure 4.5.

4.3.1 RAFT

Given a pair of subsequent frames Ii and Ii+1, the feature encoder f(⋅) extracts dense feature maps
at lower resolutions, denoted as f(Ii) and f(Ii+1). The similarity between f(Ii) and f(Ii+1) is
estimated by computing the dot product between all pairs of the feature vectors < f(Ii), f(Ii+1) >
and building a four layer correlation pyramids P. Additionally, a third dense feature map c(Ii)
is estimated solely from Ii by the context encoder c(⋅) to provide additional information on the
semantic context of the video scene. c(Ii) is combined with P and an initial dense optical flow

field estimation at iteration j = 0, denoted as F
(j=1)
i = 0, and is input to the update module. The

dense optical flow field estimation is produced and iteratively refined for J iterations j, where
the specific value of J was set empirically as it is not specified in the reference paper of RAFT
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(a) (b) (c)

Figure 4.6: Dense Optical Flow Field estimated using RAFT [106]. Sub-figure (a) shows the
dense optical flow field estimated from frames of a real video C. In contrast, sub-figures (b) and
(c) show, respectively, the dense optical flow fields estimated on inpainted video frames IVF
produced with OPN and STTN. Note that in (b) and (c), it is possible to notice “distortions” in
the color gradient in correspondence to the inpainted region, while in (a), this does not happen,
except for the presence of the race ranking.

[106].

The values of F
(j=1)
i can be initialized to 0 or set equal to F

(j=J)
i−1 , for i > 1.

RAFT estimates the dense optical flow field using a lightweight architecture that is easy to
train and capable of capturing both large and small displacements between subsequent frames.
Given that inpainting introduces spatio-temporal inconsistencies in video frames [91], such as
flickering, likely “viewable” at the dense optical flow field level (as shown by Gao et al. [38] and
in Fig. 4.6), we have chosen to adapt and extend RAFT for this task, so that to not only detect
these inconsistencies but also highlight them

4.3.2 Temporal Feature Extraction Module

In contrast to approaches proposed by HPFCN [65], VIDNet [120], and DVIL [113], our method
focuses on learning discriminative features related to spatio-temporal inconsistencies caused by
inpainting at dense optical flow field level.

For instance, in DVIL [113], the authors manually crafted temporal features by subtracting
two subsequent frames that had been co-registered. In contrast, we leverage the feature encoder
of RAFT [106] to detect temporal artifacts left by inpainting techniques.

As shown in Figure 4.7, we extract features from two frames, Ii and Ii+1, both of sizeH×W×3,
using the same methodology as proposed in RAFT [106]. We refer to the encoder responsible for
extracting these features as f(⋅). This encoder comprises two residual blocks at 1/2 resolution,
two at 1/4 resolution, and two at 1/8 resolution, with the number of output channels set to 256.
Consequently, f(⋅) ∶ RH×W×3 → RH/8×W /8×256.

The features extracted from Ii and Ii+1 as f(Ii) and f(Ii+1) are then correlated, resulting in
a 4D tensor denoted as C: C =< f(Ii), f(Ii+1) >∈ RH×W×H×W .

This tensor C is used to construct a 4-layer pyramid, denoted as P = {C1,C2,C3,C4}. Each
layer Ct in the pyramid is obtained by pooling the last two elements of Ct, where t = {1,2,3,4}.
The pooling is done with kernel sizes and strides equal to 1, 2, 4, and 8, resulting in Ct ∈
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Figure 4.7: Temporal Feature Extraction Module used for the method proposed in this chapter.

RH×W×
H

22
t−1 ×

W

22
t−1 .

In RAFT [106], the objective was to ensure that the pyramid P reveals high pixel similarity
when corresponding to the same object, which is crucial for accurate dense optical flow field
estimation. RAFT was trained to minimize the L2-distance between the predicted dense optical
flow field and ground truth.

In our case, we aim to identify regions affected by imperfect temporal correlation due to
inpainting. To achieve this, we have defined the loss function in Equation (4.2). This loss
function maximizes the L2-distance between the output dense optical flow field values Fn,m and
the binary ground-truth mask valuesMn,m in inpainted regions, while it is close to zero elsewhere.

LTFEM =
1

H ⋅W

H

∑
h

W

∑
w

((∥Fh,w −Mh,w∥∣Mh,w=0
) − (∥Fh,w −Mh,w∥∣Mh,w=1

)) (4.2)

The results obtained after training the Temporal Feature Extraction Module (TFEM) and
the update module of RAFT, with the output of the context encoder set as c(⋅) = 0, using the
loss defined in Equation (4.1), are shown in Figure 4.8. This figure demonstrates the efficient
use of TFEM for localizing temporal artifacts caused by inpainting, even in the presence of
post-processing.

As we will demonstrate in Sect. 4.3.3, the results shown in Figure 4.8 can be further improved
by combining the temporal features estimated by the TFEM with spatial features extracted from
a single frame. Additionally, we further improve the results of Figure 4.8 by employing a weighted
binary cross-entropy loss, which is more robust to outliers. This loss is preferred in problems like
ours, where the objective is to distinguish between inpainted and non-inpainted frames with an
emphasis on accuracy, rather than predicting continuous values.

4.3.3 Spatial Feature Extraction Module

In RAFT, a context encoder c(⋅) is used to extract spatial features from single frames, which
are primarily designed to refine the dense optical flow field prediction. However, our focus is on
detecting features indicative of spatial inconsistencies resulting from inpainting.
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Figure 4.8: Results obtained training TFEM and the update module of RAFT (setting the
output of the context encoder c(⋅) = 0) using (4.2) and OPN as training dataset. “Prediction
OPN” are predictions resulting by testing our methods against frames inpainted with OPN. In
contrast “Prediction OPN+TCN” are the results obtained testing frames inpainted with OPN
and post-processed with TCN.

To achieve this, we introduce SegFormer h(⋅), a Visual Transformer (ViT) originally designed
for image segmentation. SegFormer is used to produce a preliminary inpainting localization
prediction h(Ii), which serves as an attention map to highlight regions on Ii that are likely
inpainted (h(Ii)⊗ Ii). Only at this point do we utilize c(⋅) to learn and extract discriminative
spatial features potentially related to inpainting. The architecture of c(⋅) is the same as that of
f(⋅).

The flowchart illustrating the Spatial Feature Extraction Module (SFEM) is presented in
Figure 4.9.

In the following subsections, we will describe SegFormer in Sect. 4.3.3.1. The advantages
of using SegFormer as an attention mechanism, rather than just c(⋅), will be demonstrated in
Sect. 4.5.

Figure 4.9: Architecture of the Spatial Feature Extraction Module where SegFormer h(⋅) serves
as attention mechanism to highlight portion of the frame Ii that were likely inpainted.
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4.3.3.1 SegFormer

Visual Transformers (ViTs) have gained popularity in the fields of computer vision and multime-
dia forensics applications [89, 57, 45, 37, 103]. However, their applications are often limited due
to parameter number and patch size constraints. SegFormer [116] addresses these constraints
by introducing a novel positional encoding-free hierarchical transformer encoder, combined with
a lightweight All-Multi Layer Perceptron (All-MLP) decoder. These characteristics, in addition
to its training efficiency and capabilities to generalize across various video resolutions, make
SegFormer particularly suitable for application in the context of inpainted videos.

Given a frame Ii of sizeH×W×3, we divide it into patches Pl, where l ranges from 1 to L, each
patch being of size 4× 4. For each Pl, the hierarchical feature encoder generates a coarse-to-fine
feature representation Fmap(k) through four transformer blocks. These feature representations
have resolutions of H

2k+1
× W

2k+1
×Ck, where k ranges from 1 to 4, and Ck can be 64, 128, 320, or

512. Each Pl undergoes an efficient self-attention module with reduced complexity, followed by a
Mix-Feed Forward Network (FFN) that combines 3x3 convolution and MLP layers. Importantly,
SegFormer eliminates the need for positional encoding (PE), making it patch-size independent.

After each transformer block, Fmap(k) is merged using an overlapping patch merging process
to preserve local continuity.

For each Fmap(k), where k is 1, 2, 3, or 4, a lightweight All-MLP decoder is applied. The
decoder involves four steps. During the first step a MLP unify the feature channel dimensions.
Then the unified features are up-sampled up(H/4 ×W /4)(⋅) by 1/4, fused using a linear layer
Linl(Cin,Cout)(⋅) and concatenated conc(⋅). Finally, a last linear fuse them to produce a seg-
mentation map H that will be up-sampled to resolution H ×W × 1. Following the paper of
SegFormer [116], the decoding process can be formulated as follows:

Fmap(k)′ =MLP(Fmap(k)), ∀k∈{1,2,3,4}

Fmap(k)′ = up(H/4 ×W /4)(Fmap(k)′), ∀k∈{1,2,3,4}

Fmap = Linl(Cin,Cout)(conc(Fmap(k)′)), ∀k∈{1,2,3,4}

H = up(H ×W )Linl(Cout,1)(Fmap)

(4.3)

Details on Cin and Cout are provided in Sect. 4.4.

4.3.4 Update Module

In our approach, similarly to RAFT [106], the update module iteratively produces the final
output over J iterations, treating the problem as an optimization task [106].

However, our update module introduces two key differences. First, we output both the final
inpainting localization map Ôi and the corresponding dense optical flow field F̂i, revealing the
inpainting effects in both the localization and dense optical flow field. Second, we obtain Ôi

using the “learned-prototypes” technique [98, 63, 67].

As shown in Figure 4.10, considering i as the index of the ith frame Ii, we obtain Ôi =O
(j=J)
i

and F̂i = F
(j=J)
i by taking the correlation pyramid P as input and retrieving the correlation

feature ρ(j) at iteration j. These features are obtained by defining a local grid I(u, v)r as a
look-up operator such that:

I(u, v)r = {x + dx, y + dy ∣ dx, dy ∈ Z2, ∣∣dx∣∣1 ≤ r, ∣∣dy∣∣1 ≤ r} (4.4)
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where r represents a radius, and dx and dy denote the per-pixel displacement between Ii and

Ii+1, estimated using the current dense optical flow field estimation F
(j)
i ∈ R

H×W×2 by the update

module at iteration j. If j = 1, then F
(j−1)
i = 0. Thus, I performs a lookup at each level of P by

indexing using I(u/2c+1, v/2c+1)r. Finally, the values of each level are concatenated in the final
correlation feature map ρ(j).

ρ(j) and F
(j)
i are processed by two convolutional layers and then concatenated with the fea-

tures from the SFEM c(h(Ii)⊗ Ii). These combined features are passed through two ConvGRU

layers, and the hidden state λ(j) is used to iteratively refine F
(j)
i and O

(j)
i .

To update the dense optical flow field F
(j)
i , it is processed by two convolutional layers and

summed with F
(j−1)
i . On the other hand, we update O

(j)
i using the ’learned-prototypes’ method

and by estimating δ(j).
Learned-prototypes are typically used to detect out-of-distribution (OOD) samples in clas-

sification tasks [98, 63, 67]. In our specific case, we aim to identify areas across multiple video
frames that have been inpainted and exhibit spatio-temporal inconsistencies.

We assume that these inconsistencies produce separable isotropic Gaussian class-conditional
distributions N (⋅) in specific regions of frames. These distributions represent the inpainted areas,
and we learn prototypes to use during the inference phase. To achieve this, our network employs
deep multi-class data descriptors (Deep-MCDD) to learn these distributions during training.

Deep-MCDD operates on the latent feature representations from the last layer, grouping to-
gether samples (pixels) belonging to the same class within a hypersphere of minimal volume.
Let k∗ represent the number of classes, with each class corresponding to an isotropic Gaussian
distribution N (µk∗ , σ

2
k∗) characterized by the class mean µk∗ and standard deviation σk∗ . If u

represents our network up to the end of the convGRU, and the class-conditional probabilities indi-
cate how likely an input sample belongs to a class, which is represented by N (u(x;W)∣µk∗ , σ

2
k∗),

then we define δ
(j)
k∗ as in (4.5).

δ
(j)
k∗ = − logN (u(x;W)∣µk, σ

2
k) ≈

∣∣u(x;W) − µk ∣∣
2

2σ2
+ logσk (4.5)

With logσk ≥ 0 to satisfy the triangular inequality, the output localization map at iteration

j is computed as O
(j)
i =O

(j−1)
i + δ(j), given that in our case k∗ = 1.

During training, the network learns the parameters W, µk, and σk.
An example of the output obtained with our update module can be seen in Figure 4.11. In

this output, we can observe that the regions localized as inpainted in Ôi are also confirmed in
F̂i, demonstrating how our method effectively localizes inpainting artifacts in the dense optical
flow field.

4.4 Training and Hyper-parameters

As mentioned in Sect. 4.3.4, we trained our method using the weighted binary cross-entropy loss
defined in (4.6). The weighted binary cross-entropy loss is preferred for applications like the one
in this chapter, where we need to distinguish between inpainted and non-inpainted objects in
video frames, with an emphasis on accuracy, rather than predicting continuous values.

L = −
B

∑
i=1

(
J

∑
j=1

γ(J−j)[β ⋅ (Mi ⋅ log(O
(j)
i ) + (1 −Mi) ⋅ log(1 −O

(j)
i ))]) (4.6)

In (4.6), the batch size B is set to 6, and the number of iterations J used by the update
module to refine the final estimations is set to 12. Additionally, a value of γ = 0.85 is employed to

68



4.5. EXPERIMENTS

Figure 4.10: Flowchart of the update module used to produce the final inpainting localization

map Ôi =O
(j=J)
i and the dense optical flow field F̂i = F

(j=J)
i prediction.

weight the loss contributions differently based on the predictions obtained during the J iterations.
Finally, the weights β used in (4.6) are defined in (4.7).

β =
1.0 −Mi

Mi

+
Mi

Mi

(4.7)

In both (4.6) and (4.7), Mi represents the binary-ground-truth mask corresponding to O
(j)
i .

We trained our method for 50000 iterations using a weighted Adam Optimizer with a learning
rate of 0.0001 and weight decay of 0.00001. Each batch consisted of randomly cropped frames
of size 200 × 400 × 3. We introduced additive Gaussian noise η with µη = 0 and σ2

η = 1 for
data augmentation, with its intensity modulated by a random value α sampled from the range
[0,5] ∈ R. Additionally, we applied photometric [56] and occlusion [119] data augmentation
techniques and included random flips and rotations.

The training, validation, and test sets were divided into percentages of 80/20/20, respectively.
In (4.3), we have Cin = 2084 and Cout = 512.

4.5 Experiments

We evaluated our method against three state-of-the-art (SoA) techniques for inpainting local-
ization: HPFCN [65], VIDNet [120], and DVIL [113]; over 434 videos inpainted videos, equally
divided between OPN with and without TCN, STTN, GMCNN, FuseFormer, FGVC, and DSTT.
The evaluation was based on the F1-score, a commonly used metric in statistics and machine
learning to assess the performance of binary classification models.

In our experiments, we conducted two types of tests. The first set involved localizing inpaint-
ing using Inpainted Frame (IF) samples that were inpainted with techniques including OPN,
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Figure 4.11: Output inpainting localization map Ôi and dense optical flow field F̂i produced by
our solution. To the white region in Ôi corresponds visual artifacts in the dense optical flow
field F̂i. The original video was inpainted with STTN and the corresponding frames are IF.

OPN+TCN OPN GMCNN STTN DSTT FF FGVC
HPFCN [65] 0.145 0.865 0.419 0.935 0.352 0.579 0.075
VIDNet [120] 0.550 0.845 0.373 0.735 0.519 0.508 0.228
DVIL [113] 0.370 0.858 0.358 0.797 0.268 0.451 0.178
RAFT [106] 0.787 0.854 0.465 0.794 0.822 0.747 0.320

Ours 0.855 0.882 0.557 0.855 0.866 0.854 0.622

Table 4.2: Average F1-score obtained training on IF STTN and OPN training samples and
testing on IF and PIF samples. In bold are reported the best results.

STTN, GMCNN, FuseFormer, FGVC, and DSTT. Additionally, we included post-processed in-
painted frame (PIF) samples that were inpainted with OPN and post-processed with TCN. These
tests aimed to evaluate the effectiveness of our adaptation integrated into RAFT.

In the second set of experiments, we localized inpainting using the same techniques as in
the first set, but the samples belonged respectively to inpainted video Frame (IVF) and post-
processed inpainted video frames (PIVF). For further details on nomenclatures, refer to Sect. 4.2.

In all of our experiments, we trained our method, HPFCN [65], VIDNet [120], and DVIL
[113] using IF samples from STTN and OPN. The threshold used to binarize the inpainting
localization maps was set to τ = 0.5.

4.5.1 Results on IF and PIF Samples

In Sect. 4.3.3 and Sect. 4.3.4, we propose adapting the original RAFT architecture [106] for
improved performance in inpainting localization tasks. To achieve this, we trained our method,
RAFT, HPFCN [65], VIDNet [120], and DVIL [113] using inpainted frame (IF) samples from
STTN and OPN. Subsequently, we tested these models on IF samples from OPN, STTN, GM-
CNN, FuseFormer, FGVC, DSTT, and post-processed inpainted frame (PIF) samples from OPN
post-processed with TCN. The results are presented in Tab. 4.2.

Interestingly, from the results of Tab. 4.2, emerge that RAFT trained for inpainting localiza-
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OPN+PP OPN GMCNN GMCNN++ STTN DSTT FF FGVC
Ours 0.855 0.882 0.557 0.710 0.855 0.866 0.854 0.622

Table 4.3: Average F1-score obtained training our method IF samples from STTN and OPN
and testing on IF and PIF samples. GMCNN++ refer to the test-set were corrupted frames like
those reported in Fig. 4.12 have been removed.

Figure 4.12: Problems related to GMCNN when used to inpaint large objects in video frames.

tion already achieve promising results. However, by using SegFormer as proposed in Sect. 4.3.3
and incorporating the learned-prototypes detailed in Sect. 4.3.4, we can further enhance these re-
sults. This improvement is especially notable for videos inpainted with FGVC [38], which present
the most challenges due to optical flow completion and exhibit a lower amount of spatio-temporal
inconsistencies [38].

Additionally, in Tab. 4.2, we can observe the challenge faced by state-of-the-art (SoA) meth-
ods in generalizing across different inpainting techniques. Notably, HPFCN [65] obtained better
results on STTN and comparable results with our solution on OPN. This may be attributed to
the use of a trainable convolutional high-pass filter by HPFCN. In a frame-based analysis, this
filter provides undeniable improvements on the technique HPFCN was trained on. However, the
trainable high-pass fully convolutional filter used by HPFCN does not allow for generalization
to other techniques, especially in the presence of post-processing. Furthermore, when the same
high-pass fully convolutional filter of HPFCN [65] is used in combination with the temporal
residuals of DVIL [113], we observe lower F1-scores on OPN and STTN compared to HPFCN
but better generalization to the rest of the techniques. Interestingly, this could mean that the
features extracted by the high-pass convolutional filter of DVIL [113] should not be concate-
nated with the temporal features to be analyzed by the decoder but used to refine the prediction
obtained with the temporal features. We will investigate this scenario in future works.

Overall, all the methods produce poor results on GMCNN. Nevertheless, as we show in
Fig. 4.12 and in Tab. 4.3, the poor results obtained on GMCNN are due to the poor inpainting
capabilities, particularly when dealing with large objects. By excluding problematic samples from
GMCNN, the resulting F1-scores become comparable to those obtained with other inpainting
techniques. These refined results are presented in Tab.4.3, where we refer to the new test set as
GMCNN++. GMCNN++ will be the reference test set for the remainder of this chapter.

4.5.2 Results on IVF and PIVF Samples

The results obtained in Sect. 4.5.1 are promising but were obtained in a controlled test-case
scenario where the inpainted frames were not compressed using H.264.

In this section, we repeat these tests but training our method, HPFCN [65], VIDNet [120]
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OPN+PP OPN GMCNN++ STTN DSTT FF FGVC
HPFCN [65] 0.112 0.106 0.115 0.108 0.101 0.102 0.1
VIDNet [120] 0.144 0.167 0.153 0.137 0.143 0.143 0.155
DVIL [113] 0.114 0.102 0.108 0.102 0.117 0.119 0.101

Ours 0.443 0.462 0.570 0.459 0.458 0.411 0.325

Table 4.4: Average F1-score obtained training on IVF H.264 crf 23 STTN and OPN training sam-
ples and testing on IVF and PIVF samples. All the tests were conducted on frames compressed
with H.264 crf 23. In bold the best results.

OPN+PP OPN GMCNN++ STTN DSTT FF FGVC
Ours 0.443 0.462 0.570 0.459 0.458 0.411 0.325
Ours∗ 0.684 0.744 0.896 0.737 0.693 0.654 0.499
Ours∗∗ 0.725 0.724 0.902 0.767 0.713 0.649 0.706

Table 4.5: Average F1-score obtained training our method IVF H.264 crf 23 STTN and OPN.
With Ours we refer to test on IVF and PIVF and with Ours∗ to IVF and PIVF but considering
only videos with inpainted objects larger than the 10% of the frame resolution. Ours∗∗ are the
results testing IF and PIF samples.

and DVIL [113] on VIF and PIVF samples encoded with H.264 and crf 23, the results are visible
in Tab. 4.4. We excluded RAFT [106] which in Sect. 4.5.1 was used just to validate the intuition
on SegFormer and learned prototypes in support of our idea.

While our solution in Tab. 4.4 outperformed state-of-the-art methods, it’s worth noting that
the relatively small resolution of our inpainted frames at 240x432 pixels, in conjunction with
H.264 video compression, has had an impact on the final F1-scores.

Further efforts are needed to enhance our solution’s performance when tested on H.264-
compressed frames at this resolution. However, it’s important to acknowledge that part of the
reason for these suboptimal results lies in the size of inpainted objects within some frames.

We observed that approximately 68% of our test-set consists of frames in which inpainted
objects occupy less than 10% of the frame’s surface (i.e., in a 240x432 frame). By excluding
these videos from our test-set, as demonstrated in Tab. 4.5, our solution’s F1-score improves.

In Tab. 4.5, we report how our method, trained on VIF samples, generalize well also on IF
and PIF.

4.6 Conclusions and discussion

As mentioned in the introduction of this chapter, the results and methodology we propose for
localizing inpainted objects in videos are part of a broader collaborative effort with Luisa Ver-
doliva’s group at the University of Naples.

The results obtained thus far are promising, showcasing the advantages of addressing specific
spatio-temporal inconsistencies introduced by inpainting techniques, even in scenarios with post-
processing and H.264 video compression.

In the coming months, we plan to expand upon the findings presented in this dissertation to
encompass the entire dataset. This expansion will include the addition of a detection module to
determine if a video has been inpainted before proceeding with inpainting localization. Further-
more, we will conduct tests to explore whether comparable results can be achieved solely using
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the features extracted by SegFormer, without the context encoder of RAFT.
Lastly, our current work has not yet fully harnessed the temporal information available in

RAFT. Specifically, in RAFT [106], given two subsequent frames Ii and Ii+1, to which correspond

a dense optical flow field F̂i, it is possible to initialize for j = 1 F
(j−1)
i = F̂i−1 = F

(J)
i−1 . It is

conceivable that by implementing a similar approach in our method, we could reinforce the
temporal correlation between Ôi∀i ∈ {1, I}, with I the total numer of frames in a video, and
potentially further improve our results.
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Conclusions

In this doctoral dissertation, we contribute significantly to the state-of-the-art of source attribu-
tion of spatially transformed images and videos, as well as for forgery localization of inpainted
videos. We emphasize the crucial role of temporal information, particularly in addressing chal-
lenging real-world scenarios.

In the case of source attribution, we observed that new in-camera and out-camera processing
diminishes the accuracy of existing methods for source attribution. Moreover, we demonstrated
that one of the causes of the problems affecting the state-of-the-art [40, 43] can be attributed to
the higher complexity and variability of the spatial transformations implemented by new devices
or out-camera software. This complexity requires the estimation of several parameters to invert
these spatial transformations, recover the PRNU consistency, and reliably attribute an image or
a video to its source device.

In our work, we demonstrate how the estimation of a large number of parameters >> 2 for the
inversion of complex spatial transformations applied to images, is made possible by modeling the
set of parameters to be estimated as a time series. Specifically, we divided images into a series
of concentric annuli. After estimating the first parameters in the series, we predict the others
by exploiting the correlation between neighboring parameters. This approach has produced
significant improvements both in inverting radial corrections in images processed out-of-camera
by editing software such as Adobe Lightroom, Photoshop, GIMP, and PTLens, as well as in
images captured using modern devices [49].

In our humble opinion, a similar approach to the one implemented for source attribution
of images transformed by complex radial corrections could be applied to other types of spatial
distortions. One example is the source attribution of HDR images [87]. In their work, Darvish et
al. [87] performed source attribution on HDR images by reversing the transformations applied
during HDR processing on single image patches. However, while the authors employed a brute
force search approach, the results presented in their paper [87], which show neighboring patches
inverted using similar parameters, suggest that a methodology like the one we proposed for the
inversion of complex radial corrections could be more convenient.

For instance, after retrieving the least distorted patch (or groups of least distorted patches),
as in our method of Chapter 2, it could be possible to first estimate a rough approximation of
the parameters needed to invert the HDR transformation and then predict, and refine, the others
similarly to our approach.

The method for source attribution of images transformed by complex radial correction yielded
significant results also when applied to a recent and challenging dataset of new devices [49].
However, in our preliminary results, we only inverted the radial correction, and we believe that
better results can be achieved by simultaneously addressing multiple spatial transformations,
such as digital zoom, radial correction, rotation, and others.

In details, once the first annulus is retrieved, the first radial correction parameter, along with
the scaling and rotation parameters, are estimated. Thus, while the rotation parameter of an
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image should remain constant, the scaling parameter will be “fine-tuned” during the estimation
of the radial correction parameters in the subsequent annuli.

By following this strategy, we avoid mathematically escalating the complexity of the problem,
limiting the parameters to be estimated to L + 2 instead of L × 3.

Possible limitations of approaches like Dir, Cub, which we implemented for source attribution
of radial-corrected images, lie in the size of the annuli ∆ ⋅D2. Setting ∆ ⋅D2 too small, while
it may be optimal for better modeling spatial transformations, could decrease the Signal-to-
Noise Ratio (SNR), leading to incorrect parameter estimation. This must be taken into account,
especially when methods are PRNU-aided and when multiple parameters need to be estimated
simultaneously due to the high sensitivity of the PRNU to any type of spatial transformations
[43].

Alternatively, data-driven methods, such as the one proposed by Li et al. [68], which can au-
tomatically apply spatial transformations to images by detecting artifacts in a flow field domain,
should be considered. This can be achieved by adapting the training procedure to make them
suitable for tasks of source attribution as we proposed in Chapter 2.

In Chapter 3, we presented a method for EIS video source attribution. We exploited the
temporal correlation between subsequent transformation matrices applied to video frames to
efficiently retrieve the less stabilized GOP and estimate the parameters required to reverse the EIS
in each frame. Additionally, we reimagined the use of the GPU, employing it as a computational
accelerator while maintaining the method’s explainability. Following this procedure, our method
outperforms state-of-the-art approaches [78, 77] in both accuracy and computational efficiency
while working with the entire GOP.

The method we implemented for EIS video source attribution significantly reduced the exe-
cution time compared to the state-of-the-art [78, 77]. This improvement was achieved through
the estimation of the so-called “less stabilized GOP,” the application of an image registration al-
gorithm to co-register subsequent frames undergoing temporally similar spatial transformations,
and the utilization of the GPU for parallelizing computationally expensive operations. Our re-
sults also demonstrate that the longer execution times, relative to the state-of-the-art [78, 77],
observed when our method runs on the CPU can be attributed to both the larger number of
frames (up to three times that of the state-of-the-art) and the increased number of parameters
(eight versus four in the state-of-the-art) that our method operates on.

While we can generally be satisfied with the results obtained using our method, there is room
for additional improvements. We have found that the proxy we adopted for estimating the “less-
stabilized” GOP is not always able to fulfill its task. The potential reasons for such failures are
essentially twofold: firstly, the presence of well-stabilized videos where the displacement between
two subsequent frames is small (i.e. false “less-stabilized” GOP), and secondly, the absence of
GOPs with low motion (i.e. shaky videos), requiring us to invert complex EIS.

In the case of well-stabilized GOP, we propose modifying the function used for estimating
the “less stabilized” GOP (refer to (3.6)) to detect groups of n ≥ 3 frames of which “acceler-
ations” are closer to 0. This proposal is grounded in the assumption that the EIS is applied
in coordination with the camera acceleration measured by the gyroscope. Consequently, frames
with accelerations closer to 0 among groups of n ≥ 3 frames are expected to correspond to the
“less-stabilized” ones. Rigorous experiments will be conducted to validate this hypothesis, as it
is conceivable that, even with the adoption of (3.6), challenges related to the absence of GOP,
or frames, with low motion may persist.

Addressing the issue due to the absence of GOPs with low motion, requires additional efforts
on optimizing the parameter estimation for EIS inversion. Similar to the approach of Chapter
2, consideration should be given to adapting data-driven techniques for the inversion of com-
plex spatial transformations. EIS poses a mathematically intricate challenge, necessitating the
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estimation of up to 8 parameters.

Techniques such as the one proposed by Li et al. [68], have the potential to infer the inverse
transformation when trained to identify artifacts resulting from a preceding transformation,
optimizing it to maximize a final similarity function like the PCE. Moreover, adopting the archi-
tecture proposed by Li et al. [68] may circumvent the need for estimating the “less stabilized”
GOP (essential in the case of model-based algorithms for computational efficiency reasons) by
working on a frame-by-frame basis. In fact, this method exhibits high computational efficiency,
processing a 1024 × 1024 × 3 frame in approximately 3 seconds.

For methods resembling the one proposed by Li et al. [68], temporal information could still
be leveraged during the classification phase, considering the trend of the PCE values obtained
from multiple frames post inversion of the EIS.

Future experiments and efforts will explore the insights outlined in these paragraphs, con-
tributing to the extension of this work to a journal.

Finally, we extend our understanding of the importance of temporal information to video
inpainting localization. In our preliminary results, we observed that state-of-the-art techniques
[120, 65, 113], tested on our dataset, for video inpainting localization primarily rely on spatial
inconsistencies detected from RGB frames or high-pass residuals, largely neglecting temporal
inconsistencies occurring between two subsequent frames. However, we demonstrate that by
addressing specific spatio-temporal inconsistencies introduced by inpainting techniques at dense
optical-flow level, it is possible to achieve robustness even in scenarios involving low resolution,
post-processing, and video compression. The results we obtained in video inpainting localization
are very promising, and we are committed to further exploring and improving our current solution
in terms of localization capabilities and explainability by shedding light on the inconsistencies
that have contributed the most to our results so far. Additionally, we plan to expand our
methodology to cover the entire inpainted dataset, incorporating a detection module for inpainted
videos.

In future works, potential new challenging problems may arise due to the continuous techno-
logical progress of AI-aided post-processing techniques and the growing capabilities to produce
increasingly realistic results. The use of dense optical flows estimated using RGB video frames
might prove insufficient for handling these advancements. As a consequence, our objective will
be to explore methodologies capable of extracting features that discriminate between real and
fake videos, independent of the type of processing applied.

In this doctoral dissertation, we have presented various insights into the significance of tempo-
ral information for both source attribution parameter optimization and forgery localization. Con-
sidering the ongoing technological advancements, with AI algorithms producing higher-quality
results and the emergence of new types of AI-generated media (e.g., stable diffusion video), cou-
pled with the widespread use of social networks, we foresee that temporal information will play
an increasingly vital role in future research and applications.

Building upon the insights and discoveries presented in this doctoral work, over the first
few months of the next three years, we will focus on finalizing the work presented in Chapter
4, in accordance with the statements made in this doctoral dissertation, to submit it to the
journal Transactions on Information Forensics and Security (TIFS). Subsequently, our future
research will encompass extending the investigation of spatio-temporal inconsistencies observed
in inpainted videos to other types of AI-generated videos (such as out-painting [73] and deep-fakes
[97]), with an attempt to generalize across them. Part of this research has already commenced
during an internship at the University of Drexel and is currently ongoing in collaboration with
Dr. Prof. Matthew C. Stamm’s group.

In parallel, we, in collaboration with Dr. Prof. Fernando Pérez-González, will extend the
work presented in Chapter 2. The extension involves the inversion of radial correction, digital
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zoom, and rotation, with subsequent testing on a dataset of modern devices [49]. Our interest lies
in investigating whether our methodology can alleviate, if not completely resolve, issues related
to false negatives.

Additionally, upon checking the image metadata in this dataset, we have identified additional
biases that could be sources of false positives. Examples include images labeled as belonging to
different devices but taken with the same device and images post-processed with out-camera
software. Interestingly, these aspects were not previously reported in the reference paper of
the dataset [49] as the dataset should not contain mis-labelled or post-processed images. We
aim to submit our findings to the Information Hiding and Multimedia Security (IH&MMSec)
conference.

By the end of the first year, we plan to collaborate with the group of Dr. Prof. Fernando
Pérez-González to submit an extension of the CNN proposed by Mandelli et al. [79] for source
attribution to IEEE Communications Letters. Simultaneously, we will commence the writing
process for extending the work presented in Chapter 3 to Transactions on Information Forensics
and Security (TIFS). This extension involves enhancing parameter estimation, EIS inversion,
and addressing the challenges related to the “less stabilized” GOP. Additionally, we aim to test
our method on a new dataset of videos taken with modern devices [18].

Over the next two years, our future research will encompass AI-generated video localization
when shared on social networks, culminating in the conclusion of the DARPA project Reverse
Engineering of Deceptions (RED). During this period, we are collaborating synergistically with
the group of Dr. Prof. Alessandro Piva (UNIFI). In this project, our objective goes beyond merely
locating AI-generated objects in video frames or detecting partially or completely generated
videos; we aim to define a signature representative of these classes for classification purposes.
Notably, our classifier is not binary; instead, it returns a measure of similarity by comparing
these signatures in the feature space [5].

By the first months of the second year, we plan to submit a work to a top conference based
on the application of Forward-Forward [46], a Visual Transformer training paradigm used in
Computer Vision for image classification, to classify real vs. fake images of our dataset TrueFace
[14]. TrueFace is a large and diverse dataset composed of StyleGan [55] images shared on various
social networks. The primary advantage of this technique lies in its use of continual learning,
allowing continuous fine-tuning of the network. This approach ensures robustness against the
continuous update of social network image compression, while avoiding problems of catastrophic
forgetting loss [60] on images compressed with the previous version, or those not compressed
at all. In the meantime, we are working on extending Trueface to Stable Diffusion generated
images.

In conclusion, we have initiated investigations into stable diffusion-generated videos [95], a
new type of AI-generated media that was released in early 2023 and has already yielded to realistic
and concerning results in less than a year. While promising real vs. fake detection results have
been obtained with the most recent stable diffusion generation techniques, we anticipate that
more challenging scenarios will emerge in the next few years, and the development of a journal
paper is envisaged from the third year.
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[94] Janez Perš and Stanislav Kovacic. “Nonparametric, model-based radial lens distortion cor-
rection using tilted camera assumption”. In: Proceedings of the Computer Vision Winter
Workshop. Vol. 1. 2002, pp–286.

[95] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, and
Qifeng Chen. “Fatezero: Fusing attentions for zero-shot text-based video editing”. In:
ArXiv preprint arXiv:2303.09535 (2023).

[96] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for
biomedical image segmentation”. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18. Springer. 2015, pp. 234–241.

[97] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and
Matthias Nießner. “Faceforensics++: Learning to detect manipulated facial images”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
2019, pp. 1–11.

[98] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui,
Alexander Binder, Emmanuel Müller, and Marius Kloft. “Deep one-class classification”.
In: International Conference on Machine Learning. PMLR. 2018, pp. 4393–4402.

85



BIBLIOGRAPHY

[99] Pallabi Saikia, Dhwani Dholaria, Priyanka Yadav, Vaidehi Patel, and Mohendra Roy.
“A hybrid CNN-LSTM model for video deepfake detection by leveraging optical flow
features”. In: 2022 International Joint Conference on Neural Networks (IJCNN). IEEE.
2022, pp. 1–7.

[100] Shobhita Saxena, AV Subramanyam, and Hareesh Ravi. “Video inpainting detection and
localization using inconsistencies in optical flow”. In: 2016 IEEE Region 10 Conference
(TENCON). IEEE. 2016, pp. 1361–1365.

[101] Dasara Shullani, Marco Fontani, Massimo Iuliani, Omar Al Shaya, and Alessandro Piva.
“VISION: a video and image dataset for source identification”. In: EURASIP Journal on
Information Security 2017.1 (2017), pp. 1–16.

[102] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: ArXiv preprint arXiv:1409.1556 (2014).

[103] Yu Sun, Rongrong Ni, and Yao Zhao. “ET: Edge-enhanced transformer for image splicing
detection”. In: IEEE Signal Processing Letters 29 (2022), pp. 1232–1236.

[104] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going deeper with con-
volutions”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2015, pp. 1–9.

[105] Samet Taspinar, Manoranjan Mohanty, and Nasir Memon. “Source camera attribution
using stabilized video”. In: 2016 IEEE International Workshop on Information Forensics
and Security (WIFS). IEEE. 2016, pp. 1–6.

[106] Zachary Teed and Jia Deng. “Raft: Recurrent all-pairs field transforms for optical flow”.
In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16. Springer. 2020, pp. 402–419.

[107] L. Verdoliva, D. Cozzolino, and Poggi G. “Extracting camera-based fingerprints for video
forensics”. In: Proc. of CVPRW (2019).

[108] Luisa Verdoliva. “Media forensics and deepfakes: an overview”. In: IEEE Journal of Se-
lected Topics in Signal Processing 14.5 (2020), pp. 910–932.

[109] Anthony Vetro, Charilaos Christopoulos, and Huifang Sun. “Video transcoding architec-
tures and techniques: an overview”. In: IEEE Signal Processing Magazine 20.2 (2003),
pp. 18–29.

[110] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. “Fast on-
line object tracking and segmentation: A unifying approach”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 1328–1338.

[111] Wei Wang, Jing Dong, and Tieniu Tan. “Tampered region localization of digital color
images based on JPEG compression noise”. In: International Workshop on Digital Wa-
termarking. Springer. 2010, pp. 120–133.

[112] Yi Wang, Xin Tao, Xiaojuan Qi, Xiaoyong Shen, and Jiaya Jia. “Image inpainting via gen-
erative multi-column convolutional neural networks”. In: ArXiv preprint arXiv:1810.08771
(2018).

[113] Shujin Wei, Haodong Li, and Jiwu Huang. “Deep Video Inpainting Localization Using
Spatial and Temporal Traces”. In: ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022, pp. 8957–8961.

86



BIBLIOGRAPHY

[114] B. Widrow and S. Stearns. Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-
Hall, 1985.

[115] Haiwei Wu and Jiantao Zhou. “IID-Net: Image Inpainting Detection Network via Neural
Architecture Search and Attention”. In: IEEE Transactions on Circuits and Systems for
Video Technology (TCSVT) (2021).

[116] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo.
“SegFormer: Simple and efficient design for semantic segmentation with transformers”.
In: Advances in Neural Information Processing Systems 34 (2021), pp. 12077–12090.

[117] Jun Xin, Chia-Wen Lin, and Ming-Ting Sun. “Digital video transcoding”. In: Proceedings
of the IEEE 93.1 (2005), pp. 84–97.

[118] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and
Thomas Huang. “Youtube-vos: A large-scale video object segmentation benchmark”. In:
ArXiv preprint arXiv:1809.03327 (2018).

[119] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. “Random erasing
data augmentation”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. 07. 2020, pp. 13001–13008.

[120] Peng Zhou, Ning Yu, Zuxuan Wu, Larry S Davis, Abhinav Shrivastava, and Ser-Nam Lim.
“Deep video inpainting detection”. In: ArXiv preprint arXiv:2101.11080 (2021).

[121] Pengfei Zhu, Longyin Wen, Xiao Bian, Haibin Ling, and Qinghua Hu. “Vision meets
drones: A challenge”. In: ArXiv preprint arXiv:1804.07437 (2018).
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