

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

"MORE DETERMINISTIC" VS. "SMALLER" BUECHI
AUTOMATA FOR EFFICIENT LTL MODEL CHECKING

Roberto Sebastiani and Stefano Tonetta

April 2003

Technical Report # DIT-03-016

Also: submitted to CHARME 2003

.

“More Deterministic” vs. “Smaller” Büchi Automata
for Efficient LTL Model Checking

�

Roberto Sebastiani and Stefano Tonetta

DIT, Università di Trento, via Sommarive 14, 38050 Povo, Trento, Italy�
rseba,stonetta � @dit.unitn.it

Abstract. The standard technique for LTL model checking (M � ��� ϕ) consists
on translating the negation of the LTL specification, ϕ, into a Büchi automaton
Aϕ, and then on checking if the product M � Aϕ has an empty language. The
efforts to maximize the efficiency of this process have so far concentrated on
developing translation algorithms producing Büchi automata which are “as small
as possible”, under the implicit conjecture that this fact should make the final
product smaller. In this paper we build on a different conjecture and present an
alternative approach in which we generate instead Büchi automata which are “as
deterministic as possible”, in the sense that we try to reduce as much as we are
able to the presence of non-deterministic decision states in Aϕ. We motivate our
choice and present some empirical tests to support this approach.

1 Introduction

Model checking is a formal verification technique which allows for checking if the
model of a system verifies some desired property. In LTL model checking the system
is modeled as a Kripke structure M, and (the negation of) the property is encoded as an
LTL formula ϕ. The standard technique for LTL model checking consists on translating
ϕ into a Büchi automaton Aϕ, and then on checking if the product M � Aϕ has an empty
language. To this extent, the quality of the conversion technique plays a key role in the
efficiency of the overall process.

Since the seminal work in [6], the efforts to maximize the efficiency of this process
have so far concentrated on developing translation algorithms which produce from each
LTL formula a Büchi automaton (BA) which is “as small as possible” (see, e.g., [1,
11, 3, 5, 4, 9, 7]). This is motivated by the implicit heuristic conjecture that, as the size
of the product M � Aϕ of the Kripke structure M and the BA Aϕ is in worst-case the
product of the sizes of M and Aϕ, reducing the size of Aϕ is likely to reduce the size of
the final product also in the average case. This conjecture is implicitly assumed in most
papers (e.g., [1, 11, 5, 7]), which use the size of the BA’s as the only measurement of
efficiency in empirical tests.

Remarkably, Etessami and Holtzmann [3] tested their translation procedures by
measuring both the size of resulting BA’s and the actual efficiency of the LTL model
checking process, and noticed that “... a smaller number of states in the automaton does
	

We thank all the members of the SE&FM group at DIT for lending us weeks of CPU-time on
their workstations for our empirical tests.

not necessarily improve the running time and can actually hurt it in ways that are diffi-
cult to predict” [3].

In this paper we propose and explore a new research direction. Instead of wonder-
ing what makes the BA Aϕ smaller, we wonder directly what may make the product
automaton M � Aϕ smaller, independently on the size of the BA Aϕ. We start from
noticing the following fact: if a state s in M � Aϕ is given by the combination of the
states s � in M and s � � in Aϕ, and if s � � is a deterministic decision state —that is, each
label may match with at most only one successor of s � � — then each successor state of
s � can combine consistently with at most one successor of s � � . Thus s has at most the
same amount of successor states as s � , no matter the number of successors of s � � . From
this fact, we conjecture that reducing the presence of non-deterministic decision states
in the BA is likely to reduce the size of the final product in the average case, no matter
if this produces bigger BA’s. (Notice that it is not always possible to reduce completely
the presence of non-deterministic decision states, as not every LTL formula ϕ can be
converted into a deterministic BA, and even deciding if it can be converted into a deter-
ministic BA is in EXPSPACE and is PSPACE-Hard [10].)

In order to explore the effectiveness of the above conjecture, we thus present a new
approach in which we generate from each LTL formula a Büchi automaton which is “as
deterministic as possible”, in the sense that we try to reduce as much as we are able
to the presence of non-deterministic decision states in the generated automaton. This is
done by exploiting the idea of semantic branching, which has proved very effective in
the domain of modal theorem proving [8].

The rest of paper is structured as follows. In Section 2 we present some preliminary
notions. In Section 3 we describe the main ideas of our approach. In Section 4 we
describe the LTL to BA algorithm we have implemented. In Section 5 we present the
results of an extensive empirical test. In Section 6 we conclude, describing also some
future work. In the Appendix we prove the correctness of the algorithm.

2 Preliminaries

We use Linear Temporal Logic (LTL) with its standard syntax and semantics [2] to
specify properties. Let Σ be a set of elementary propositions. A propositional literal
(i.e., a proposition p in Σ or its negation � p) is a LTL formula; if ϕ1 and ϕ2 are LTL
formulae, then � ϕ1, ϕ1

� ϕ2, Xϕ1, ϕ1Uϕ1are LTL formulae, X and U being the stan-
dard “next” and “until” temporal operators respectively. ϕ1 � ϕ2 is an abbreviation of
����� ϕ1

� � ϕ2 � , the constants � (true) and 	 (false) are abbreviations of p � � p and
p
� � p respectively, ϕ1Rϕ1 (ϕ1 releases ϕ2), Fϕ1 (eventually ϕ1) and Gϕ1 (globally

ϕ1) are standard abbreviations of ����� ϕ1U � ϕ1 � , � Uϕ1 and 	 Rϕ1 respectively.
For every operator op in
 ��� � � X �

F
�
G
�
U
�
R , we say that ϕ is a op-formula if op is

the root operator of ϕ (e.g., X � pUq � is an X-formula). We say that the occurrence of a
subformula ϕ1 in an LTL formula ϕ is a top level occurrence if it occurs in the scope of
only boolean operators � ����� � (e.g., Fp occurs at top level in Fp � XFq, Fq does not).

A Kripke Structure M is a tuple � S � S0
�
T
� L � with a finite set of states S, a set of

initial states S0 � S, a transition relation T � S � S and a labeling function L : S � 2Σ,
Σ being the set of atomic propositions.

Definition 1. [6] A labeled generalized Büchi automaton is a tuple A : � � Q �
Q0

�
T
� L �

D
� F � ,

where Q is a finite set of states, Q0 � Q is the set of initial states, T � Q � Q is the
transition relation, D : � 2Σ is the finite domain (alphabet), L : Q � 2D is the labeling
function, and F � 2Q is the set of accepting conditions (fair sets).

A run of A is an infinite sequence σ : � σ � 0 � � σ � 1 � � ����� of states in Q, such that σ � 0 � �
Q0 and T � σ � i � � σ � i � 1 � � holds for every i � 0. A run σ is an accepting run if, for every
Fi
� F , there exist σ � j � � Fi that appears infinitely often in σ. A labeled generalized

Büchi automaton A accepts an infinite word ξ : � ξ � 0 � � ξ � 1 � � ����� � Dω if there exists an
accepting run σ : � σ � 0 � � σ � 1 � � ����� so that ξ � i � � L � σ � i � � , for every i � 0.

Henceforth, if not otherwise specified, we will refer to a labeled generalized Büchi
automaton (LGBA) simply as a Büchi automaton (BA).

Notice that each state in a Kripke structure is labeled by one total truth assignment
to the proposition in Σ, whilst the label of a state in a BA represents a set of such as-
signments. A partial assignment represents the set of all total assignments/labels which
entail it. We represent truth assignments (and thus labels) indifferently as sets of literals

 li i or as conjunctions of literals � i li, with the intended meaning that a literal p (resp.� p) in the set /conjunction assigns p to true (resp. false).

Notationally, we use ξ for representing an infinite word over 2Σ (2Σ is the set of total
assignments to the propositions); ξ � i � is the i-th element and ξi is the suffix starting from
ξ � i � . We use σ for an infinite sequence of states (runs); σ � i � is the i-th element and σi

is the suffix starting from σ � i � . We use µ for the label of a state, i.e. µ is a conjunction
of propositional literals. We use ϕ � ψ � ϑ for general formulae. We denote by succ � s � Aϕ �
[succ � s � M �] the set of successor states of the state s in a BA Aϕ [Kripke structure M].

If µ is a set of literals and ϕ is a LTL formula, we denote by ϕ � µ 	 the formula
obtained by substituting every top level literal l

�
µ in ϕ with � (resp. � l with)

and by propagating the � and 	 values in the obvious ways. (E.g., � p � Xϕ1 � � � q �
Xϕ2 � �
 p

� � q
	�� Xϕ2.)
An elementary formula is a LTL formula which is either a constant in
 � � 	 , a

propositional literal or a X-formula. A cover for a set of LTL formulae
 ϕk k is a set
of sets of elementary formulae

 ϑi j j i s.t. � k ϕk �� i � j ϑi j � (Henceforth, we in-
differently represent covers either as sets of sets or as disjunctions of conjunctions of
elementary formulae.) A cover for
 ϕk k is typically obtained by computing the dis-
junctive normal form (DNF) of � k ϕk (written DNF � � k ϕk � henceforth), considering
X-subformulae as boolean propositions.

The general translation schema of an LTL formula ϕ into a BA Aϕ works as follows
[6]. First, ϕ is written in negative normal form (NNF), that is, all negation are pushed
down to literal level.

Second, ϕ is expanded by applying the following tableau rewriting rules:

ϕ1Uϕ2 ��� ϕ2 � � ϕ1
�

X � ϕ1Uϕ2 � � � ϕ1Rϕ2 ��� ϕ2
� � ϕ1 � X � ϕ1Rϕ2 � � (1)

until no U-formula or R-formula occurs at top level. Then the resulting formula is
rewritten into a cover by computing its DNF. Each disjunct of the cover represents a
state of the automaton: all propositional literals represent the label of the state —that is,
the condition the input word must satisfy in that state— and the remaining X-formulae

S"2

S"3

S"4
ϕ1X ϕ2X[]

[]

ϕ1X[]

ϕ2X[]

S"2

S"3

S"4
ϕ1X ϕ2X[]

[]

ϕ1X[]

ϕ2X[]

decision state
non−deterministic

deterministic
decision state

pq... p−q... −pq... −p−q...

. . .

.....

S’

432
1S’

S’ S’ S’

S’2

S’3

S’4

1S’S"1

S"2

S"3

S"4

. . .
S’

pq...

p−q...

−pq...

−p−q...

S"

S’2

S’3

S’2 S’3 S’4

1S’

1S’

1S’

1S’S"1

S"2 S"2

S"3
S"3

S"4
S"4 S"4 S"4

. . .
S’

pq...

pq...

pq...

pq...

p−q...

p−q...

−pq...

−pq... −p−q...

S"1

S"1

S"

. . .

−p−q

−pq

p−q

pq

S"

. . .

pq

p

q

KRIPKE STRUCTURE M BUECHI AUTOMATON A PRODUCT MxA

S"

Fig. 1. Product of a generic Kripke structure with a non-deterministic (up) and a deterministic
(down) cover expansion of ϕ : ��� p � Xϕ1 ��� � q � Xϕ2 � .

represent the next part of the state —that is, the obligations that must be fulfilled to get
an accepting run— and determine the transitions outcoming from the state.

The process above is applied recursively to the next part of each state, until no
new obligation is produced. This results into a closed set of covers, so that, for each
cover C in the set, the next part of each disjunct in C has a cover in the set. Then
Aϕ � � Q �

Q0
�
T
� L �

D
� F � is built as follows. The initial states are given by the cover of

ϕ. The transition relation is given by connecting each state to those in the cover of its
next part. An acceptance condition Fi is added for every elementary subformula in the
form � ϕ1Uϕ2 � , so that Fi contains every state s

�
Q such that s �� � � ϕ1Uϕ2 � or s

� � ϕ2.

3 A new approach

3.1 Deterministic and non-deterministic decision states

We say that two states are mutually consistent if their respective labels are mutually con-
sistent, mutually inconsistent otherwise. We say that a state s in a BA is a deterministic
decision state if the labels of all successor states of s are pairwise mutually inconsistent,
a non-deterministic decision state otherwise. Intuitively, if s is a deterministic decision
state, then (the labels of) the successors of s have no propositional model in common,
so that every label in the alphabet is consistent with (the label of) at most one successor
of s. Notice that all states in a deterministic BA are deterministic decision states, and
that a BA whose states are all deterministic decision states and whose initial states are
pairwise mutually inconsistent is a deterministic BA.

We consider an LTL model checking problem M
� � � ϕ, M being a Kripke structure

and ϕ being a LTL formula. Aϕ is the BA into which ϕ is converted, and M � Aϕ is
the product of M and Aϕ. Each state s in M � Aϕ is given by the (consistent) pairwise
combination s � s � � of some states s � in M and s � � in Aϕ, and the successor states of s are
given by all the consistent combinations of one successor of s � and one of s � � :

succ � s � M � Aϕ � �
 s �is � �j � s �i � succ � s � � M � � s � �j � succ � s � � � Aϕ � � s �is � �j �� � 	 � (2)�
succ � s � M � Aϕ � ��� �

succ � s � � M � ��� � succ � s � � � Aϕ � � � (3)

where s � s � � denotes the combination of the states s � and s � � and “s �is � �j �� � 	 ” denotes the
fact that the combination of s � and s � � is consistent.

We make the following key observation: if s � � is a deterministic decision state, then
each successor state of s � can combine consistently with at most one successor of s � � , so
that s has at most as many successor states as s � . Thus (3) reduces to

�
succ � s � M � Aϕ � ��� �

succ � s � � M � � � (4)

The above observation suggests us the following heuristic consideration: in order to
minimize the size of the product M � Aϕ, we should try to make Aϕ “as deterministic
as we can” —that is, to reduce as much as we can the presence of non-deterministic
decision states in Aϕ— no matter if the resulting BA is greater than other equivalent but
“less deterministic” BA’s.

Example 1. Consider the generic state s � of a Kripke structure M in Figure 1 (left), and
its successor states s �1, s �2, s �3 and s �4 with labels
 p

�
q
� ����� ,
 p

� � q
� ����� ,
 � p

�
q
� ����� and

 � p
� � q

� ����� respectively. Consider the generic LTL formula ϕ : � � p � Xϕ1 � � � q � Xϕ2 �
for some LTL subformulae ϕ1 and ϕ2. Consider the two covers of ϕ:

C1 : �

 p
�
q �
 p

�
Xϕ2 �
 q � Xϕ1 �
 Xϕ1

�
Xϕ2 � (5)

C2 : �

 p
�
q �
 p

� � q
�
Xϕ2 �
 � p

�
q
�
Xϕ1 �
 � p

� � q
�
Xϕ1

�
Xϕ2 � (6)

which generate the two BA’s A in Figure 1 (center) respectively. In the first BA, cor-
responding to the cover (5), the state s � � is a non-deterministic decision state. Thus the
successors of s � s � � in M � A are all the consistent states belonging to the cartesian prod-
uct of the successor sets of s � and s � � . In particular, s �1 matches with all successor states
of s � � , s �2 matches with s � �2 and s � �4 , s �3 matches with s � �3 and s � �4 , and s �4 matches with s � �4 . In
the second BA, corresponding to cover (6), the state s � � is a deterministic decision state.
Thus then each successor of s � matches with only one successor of s � � . �
Remark 1. It is well-known that, in general, converting a non-deterministic BA A into a
deterministic one A � (when possible) makes the size of the latter blow up exponentially
wrt. the size of the former. This is due to the fact that each state s � of A � represents a
subset of states
 si i of A, so that

�
A � ��� 2 �A � , and hence

�
M � A � ��� �

M
���

2 �A � , whilst�
M � A

�	� �
M
�
� �

A
�
. Thus, despite the local effect described above (4), one may suppose

that globally our approach worsens the global performance.
We notice instead that L � s � � � � � i L � si � , so that the set of states in M matching with

s � is a subset of the intersection of the set of states in M matching with each si:

 s � � M
�
s � s � �� � 	 ��

i

 s � � M
�
s � si �

� � 	 � 1 (7)

1 As L � s � � is a total assignment, � s ��� M � s � s ���� ����� ��� s ��� M � L � s � � � � L � s � � ���� s ��� M �L � s � � � ��� i L � si � � ��� i � s ��� M �L � s � � � � L � si � � ��� i � s ��� M � s � si �� ��� � .

Thus, the process of determinization may increase the number of states in the BA, but
reduces as well the number of states in M with which each state in the BA matches. �
Example 2. Consider the LTL formula and the covers of Example 1. (Notationally, we
denote by Ci j the jth element of Ci.) Then C21, C22, C23 and C24 match with 1

�
1, 1
�
2,

1
�
2 and 1

�
4 of the labels matched by C11, C12, C13 and C14 respectively. �

3.2 Deterministic and non-deterministic covers

Now, let
 ϕk k be a set of LTL formulae in NNF, let ϕ denote � k ϕk, and let C : �

 ϑi j j i be a cover for ϕ. C can be written as
 µi � χi i where µi : �
 ϑi j

�
 ϑi j j
�

ϑi j prop � literal and χi : �
 ϑi j
�
 ϑi j j

�
ϑi j X-formula are the set of propositional

literals and X-formulae in
 ϑi j j respectively. 2 Thus

ϕ ���
i

� µi
� χi � � (8)

We say that a cover C �
 µi � χi i as in (8) is a deterministic cover if and only if all
µi’s are pairwise mutually inconsistent, non-deterministic otherwise.

Example 3. Consider the LTL formula and the covers of Example 1. C1 is non-deterministic
because, e.g.,
 p

�
q and
 p are mutually consistent. C2 is deterministic because
 p

�
q ,

 p
� � q ,
 � p

�
q and
 � p

� � q are pairwise mutually inconsistent. �
In the construction of a BA, each element µi

� χi in a cover C represents a state si,
µi being the label of the state and χi being its next part. Thus, a deterministic cover C
represents a set of states whose labels are pairwise mutually inconsistent. Consequently,
deterministic covers (when admissible) give rise to deterministic decision states.

3.3 Computing deterministic covers

As said in the previous sections, the standard approach for computing covers is based
on the recursive application of the tableau rules (1) and on the subsequent computation
of the DNF of the resulting formula. The latter step is achieved by applying recursively
to the top level formulae the rewriting rule

ϕ � � � ϕ1 � ϕ2 � ��� � ϕ � � ϕ1 � � � ϕ � � ϕ2 � (9)

and then by removing every disjunct which propositionally implies another one. As in
[8], we call step (9) syntactic branching because it splits “syntactically” on the dis-
juncts of the top level � -subformulae. As noticed in [8], a major weakness of syntactic
branching is that it generates subbranches which are not mutually inconsistent, so that,
even after the removal of implicant disjuncts, the distinct disjuncts of the final DNF

2 For simplicity we assume that X-formulae occur only positively in the covers, which is always
the case when we reason on formulae in NNF. Anyway, this assumption is not restrictive even
in the general case, as we can always rewrite negated X-formulae � Xϕ as X � ϕ.

may share models. As a consequence, if the boolean parts of two disjuncts in a cover
are mutually consistent, non-deterministic decision states are generated.

To avoid this fact we compute a cover in a new way. After applying the tableau
rules, we apply recursively to the top level boolean propositions the rewriting rule

ϕ ��� � p � � ϕ �
 p 	 � � � ��� p
� � ϕ �
 � p
	 � � � (10)

As in [8], we call step (10) semantic branching because it splits “semantically” on the
truth values of top level propositions. The key issue of semantic branching is that it
generates subbranches which are all mutually inconsistent. 3 Thus, after applying (10)
to all top level literals in ϕ, we obtain an expression in the form

�
i

� µi
� ϕ � µi 	 � � (11)

such that all µi’s are all pairwise mutually inconsistent and ϕ � µi 	 is a boolean combina-
tion of X-formulae. If all ϕ � µi 	 ’s are conjunctions of X-formulae, then (11) is in the form
(8), so that we have obtained a deterministic cover. If not, every disjunct � µi

� ϕ � µi 	 � in
(11) represents a set of states Si such that all states belonging to the same set Si have the
same label µi but different next-part, whilst any two states belonging to different sets
Si’s are mutually inconsistent.

As a consequence, the presence of non-unary sets Si is a potential source of non-
determinism. Thus, if this does not affects the correctness of the encoding (see below),
we rewrite each formula ϕ � µi 	 into a single X-formula by applying the rewriting rules:

Xϕ1
�

Xϕ2 ��� X � ϕ1
� ϕ2 � � (12)

Xϕ1 � Xϕ2 ��� X � ϕ1 � ϕ2 � � (13)

The result is clearly a deterministic cover. We call this step branching postponement
because (13) allows for postponing the or-branching to the expansion of the next part.

Example 4. Consider the LTL formula and the covers of Example 1. The cover C1 is
obtained by applying syntactic branching to ϕ from left to right, whilst C2 is obtained by
applying semantic branching to ϕ, splitting on p and q. (As all ϕ � µi 	 ’s are conjunctions
of X-formulae, no further step is necessary.) �

Unfortunately, branching postponement is not always safely applicable. In fact,
while rule (12) can always be applied without affecting the correctness of the encoding,
this is not the case of rule (13). For example, it may be the case that Xϕ1 and Xϕ2 in
(13) represent two states s1 and s2 respectively so that s1 is in a fair set F1 and s2 is
not, and that the state corresponding to X � ϕ1 � ϕ2 � is not in F1; if so, we may loose the
fairness condition F1 if we apply (13). This fact should not be a surprise: if branching
postponement were always applicable, then we could always generate a deterministic
BA from a LTL formula, which is not the case [10]. Our idea is thus to apply branch-
ing postponement only to those formulae ϕ � µi 	 for which we are guaranteed it does not

3 The benefits of using semantic branching rather then syntactic branching in some automated
reasoning domains are described in [8].

cause incorrectness, and to apply standard DNF otherwise. This will be described in
detail in the next section.

To sum up, semantic branching allows for partitioning the next states into mutually
inconsistent sets of states Si, whilst branching postponement, when applied, collapses
each Si into only one state. Notice that

– unlike syntactic branching, semantic branching guarantees that the only possible
sources of non-determinism (if any) are due to the next-part components ϕ � µi 	 ’s.
No source of non-determinism is introduced by the boolean components µi’s;

– branching postponement reduces the global number of states sharing the same la-
bels even if it is applied only to a strict subset of the subformulae ϕ � µi 	 in (11).
Thus, also partial applications of branching postponement make the BA “more de-
terministic”.

4 The MODELLA Algorithm

In the current state-of-the-art algorithms the translation from an LTL formula ϕ into a
BA Aϕ can be divided into three main phases:
1. Formula rewriting: apply a finite set of rewriting rules to ϕ in order to remove

redundancies and make it more suitable for an efficient translation.
2. BA construction from ϕ: build a BA with the same language of the input formula ϕ.
3. Simulation-based BA reduction: exploits simulations in order to reduce redundan-

cies in the BA.

In our work we focus on the phase 2. According to the new approach proposed in
the previous section, we have conceived and implemented a new translation algorithm,
called MODELLA 4, which builds a BA from an LTL formula trying to apply branching
postponement as often it is able to.

4.1 The basic Algorithm

The general schema of the BA construction in MODELLA, in its basic form, is the
standard one proposed in [6] and briefly recalled in Section 2. MODELLA differs
from previous conversion algorithms in two steps: the computation of the covers and
the computation of the fair sets.

Computation of the cover The function which computes the cover of the formula ϕ
is described in Figure 2. First, we apply, as usual, the tableau rewriting rules (1) (line
1). The formula obtained is a boolean combination of literals and X-formulae. After
applying the semantic branching rules on labels (10), we get a disjunction of formulae
in the form (11) (lines 2-5).

If now we applied branching postponement (12) and (13), denoting � k � Ki j
ψi jk by

ψi j, we would obtain the deterministic cover:

C D � ϕ � : �
 µi
�

X �
j � Ji

ψi j i � I (14)

4 More Deterministic LTL to Automata. In Italian “modella” is a feminine noun meaning
“model”, in the sense of “woman who poses for an artist, a photographer or a stylist”.

cover compute cover(ϕ) �
1 apply tableau rules(ϕ);
2 for each p occurring at top level in ϕ �
3 ϕ : ��� p � ϕ

� � p ��� � � � � p � ϕ
� � � p ��� � ; // semantic branching on labels

4 simpli f y � ϕ � ; // boolean simplification
5 � // now ϕ ��� i � I � µi � ϕ

�
µi � �

6 ϕ : � � i � I � µi � DNF � ϕ � µi � � � ; // now ϕ � � i � I � µi � � j � Ji
� k � Ki j

Xψi jk �
7 ϕ : � � i � I � µi � � j � Ji

X � k � Ki j
ψi jk � ; // factoring out the X operators

8 C � � ϕ � : � � i � I � j � Ji
� µi � Xψi j � ; // ψi j being � k � Ki j

ψi jk

9 C � ϕ � : ��� ; // initialization of C � ϕ �
10 for each i � I �
11 si : � � µi � X � j � Ji

ψi j � ;
12 Subs � si � : � � j � Ji

� µi � Xψi j � ;
13 if (Post ponement is Sa f e � si � �
14 then C � ϕ � : � C � ϕ � � si; // postponement applied
15 else C � ϕ � : � C � ϕ � � Subs � si � ; // postponement not applied
16 �
17 return C � ϕ � ; �

Fig. 2. The schema of the cover computation algorithm

Unfortunately, as already pointed out in section 3.3, branching postponement may af-
fect the correctness of the BA. Thus, we apply it only in “safe” cases. First, for every
disjunct µi � ϕ � µi 	 we temporarily compute DNF � ϕ � µi 	 � and then we factor X out of
every conjunction in DNF � ϕ � µi 	 � (lines 6-7). We obtain a temporary non-deterministic
cover

C � � ϕ � : �
 µi
�

Xψi j i � I � j � Ji
� (15)

Notice that every state si in C D � ϕ � is equivalent to the disjunction of
�
Ji
�
states in C � � ϕ � :

si � µi
�

X �
j � Ji

ψi j � �
j � Ji

� µi
�

Xψi j � � (16)

For every i
�

I. we define the set of substates of si as:

Subs � si � : �
 µi
�

Xψi j j � Ji (17)

(Subs � si � is the set Si in Section 3.3.) We extend the definition to every state s � of C � � ϕ �
by saying that Subs � s � � : �
 s � .

Then, the cover C � ϕ � is built in the following way (lines 10-16): for every i
�

I, we add to C � ϕ � si if postponement is safe for si, Subs � si � otherwise. Postpone-
ment is Safe(s) decides if branching postponement is safe for a state s according to
a sufficient condition described in the following paragraphs.

Computation of fair sets If Uϕ is the set of U-formulae which are subformulae of ϕ,
the usual set of accepting conditions is:

F � : �
 F �ψUϑ
�
ψUϑ � Uϕ � (18)

F �ψUϑ : �
 s � Q
�
s �� � ψUϑ or s

� � ϑ � (19)

Unfortunately, if we apply branching postponement, these fair sets are no more suffi-
cient to guarantee the correctness of the BA. To cope with this fact, in our approach a
fair set is no more identified by an U-formula, but rather by a set of U-formulae:

F : �
 FH
�
H � 2Uϕ � (20)

FH : �
 s � Q
�
there exists ψUϑ � H s.t. (21)

for each s � � Subs � s � � s � �� � ψUϑ or for each s � � Subs � s � � s � � � ϑh �
Notice that, if

�
H
� � 1 and, for every s

�
Q,
�
Subs � s � � � 1 (i.e. we have never applied

branching postponement), this is the usual notion (i.e. F� ψUϑ � � F �ψUϑ).
We say that the branching postponement is not safe for a state s if there exists

FH
� F such that s �� FH and there exist ψUϑ � H �

s � � Subs � s � such that s � � FψUϑ.
With this condition we are guaranteed that if the BA A �ϕ built without branching

postponement has an accepting run σ � over a word ξ, then the correspondent run σ of
the BA Aϕ built with safe branching postponement is also accepting.

Example 5. Consider the LTL formula ϕ : � FGp. After having applied tableau rules
and semantic branching on labels, we obtain ϕ � � p � � XFGp � XGp � � � ��� p

�
XFGp � �

If s � � p � X � FGp � Gp � � , the branching postponement is not safe for s. Indeed, Subs �

 � p � XFGp � � � p � XGp � � and � p � XGp � � F� FGp � but s �� F� FGp � . Thus, MODELLA
produces the cover:

 � p � XFGp � � � p � XGp � � ��� p
�

XFGp � � � (22)

4.2 Improvements

We describe some improvements to the basic schema of MODELLA described in the
previous section.

Pruning the fair sets. In the previous section we have noticed that, due to the appli-
cation of branching postponement, the basic version of MODELLA computes 2 �U � fair
sets. Anyway, when branching postponement cannot be applied, some fair set in F
may become redundant. Thus, in the final computation of the fair conditions, F , we
apply the following simplification rules, which are a simple version of an optimization
introduced in [11]:

– for all F � F , if F � Q then F : � F �
 F ,
– for all F

�
F � � F , if F � F � then F : � F �
 F � .

Notice that if
�
Subs � s � � � 1, we have s � FψUϑ � s � FH for each H s.t. ψUϑ � H ;

thus, if we never apply branching postponement, FψUϑ � FH for each ψUϑ � H , so
that after the above fair sets pruning, we have

�
F
� � �

Uϕ
�
as in the usual construction.

Merging states. After computing a cover, if two states s1 � � µ1
� χ � � s2 � � µ2

� χ � have
the same next part χ and satisfy the following property:

for all ψUϑ � Uϕ
�

� for all s �1 � Subs � s1 � � s �1 � � ψUϑ ��� � for all s �2 � Subs � s2 � � s �2 � � ψUϑ � and
� for all s �1 � Subs � s1 � � s �1 � � ϑ ��� � for all s �2 � Subs � s2 � � s �2 � � ϑ � �

then we substitute them with s � � µ1 � µ2
� χ � where Subs � s � : � Subs � s1 � � Subs � s2 � .

Notice that for every F � F , we have s1
� F � s2

� F � s � F . This technique is a
simpler version of the one introduced in [7], which however applies the merging only
after moving labels from the states to the transitions.

Example 6. Consider the formula of Example 5 and the cover produced by the basic
version of MODELLA. After merging the states with the above technique, the cover
(22) becomes
 � � �

XFGp � � � p � XGp � � �
5 Empirical results

MODELLA is an implementation in C of the algorithm described in Section 4. It imple-
ments only phase 2, so that it can be used as kernel of optimized algorithms including
also formula rewriting (phase 1) and simulation-based BA reduction (phase 3). (In-
deed, we believe our technique is orthogonal to the rewriting rules of phase 1 and to
simulation-based reductions.)

We extensively tested MODELLA in comparison with the state-of-the-art algo-
rithms. Unlike, e.g., [1, 11, 5, 7], we did not consider as parameters for the comparison
the size of the BA produced, but rather the number of states and transitions of the prod-
uct M � Aϕ between the BA and a randomly-generated Kripke structure. To accomplish
this, we used LBTT 1.0.1 [12], a randomized testbench which takes as input a set of
translation algorithms for testing their correctness. In particular, LBTT gives the same
formula (either randomly-generated or provided by the user) to the distinct algorithms,
it gets their output BA’s and it builds the product of these automata with a randomly-
generated Kripke structure M of given size

�
M
�
and (approximated) average branching

factor b. LBTT provides also a random generator producing formulae of given size
�
ϕ
�

and maximum number of propositions P.
To compare MODELLA with state-of-the-art algorithms, we provided interfaces

between LBTT and WRING 1.1.0 [11, 9] and between LBTT and TMP 2.0 [3, 4]. Since
LBTT computes the direct product between the BA and the state space, the size of the
product is not affected by the number of fair sets of the BA. Thus, to get more reli-
able results, we have dealt only with degeneralized BA, and we have applied a simple
procedure described in [6] to convert a BA into a Büchi automata with a single fair set.

We have run LBTT on three PCs Dual Processor with 2GB RAM on Linux RedHat.
All the tools and the files used in our experiments can be downloaded at
http://www.science.unitn.it/˜stonetta/modella.html.

5.1 Comparing pure translators

In a first session of tests, we wanted to verify the effectiveness of MODELLA as a pure
“phase 2” translator. Thus, we compared MODELLA with “pure” translators (no for-
mula rewriting, no simulation-based BA reduction), i.e. with GPVW [6], LTL2AUT
[1]5 and WRING [11] with rewriting rules and simulation-based reduction disabled
(WRING(2) henceforth). Notice that TMP uses LTL2AUT as phase 2 algorithm [3].

5 For GPVW and LTL2AUT, we have used the reimplementation provided by WRING.

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30 40 50 60 70

GPVW
LTL2AUT

WRING(2)
MODELLA-MS

MODELLA

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 10 20 30 40 50 60 70

GPVW
LTL2AUT

WRING(2)
MODELLA-MS

MODELLA

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60 70

GPVW
LTL2AUT

WRING(2)
MODELLA-MS

MODELLA

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 10 20 30 40 50 60 70

GPVW
LTL2AUT

WRING(2)
MODELLA-MS

MODELLA

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70

GPVW
LTL2AUT

WRING(2)
MODELLA-MS

MODELLA

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

0 10 20 30 40 50 60 70

GPVW
LTL2AUT

WRING(2)
MODELLA-MS

MODELLA

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 10 20 30 40 50 60 70

GPVW
LTL2AUT

WRING(2)
MODELLA-MS

MODELLA

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0 10 20 30 40 50 60 70

GPVW
LTL2AUT

WRING(2)
MODELLA-MS

MODELLA

Fig. 3. Performances of the pure “phase 2” algorithms. X axis: approximate average branching
factor of M. Y axis: mean number of states (left column) and of transitions (right column) of the
product M � Aϕ. 1st row: 400 random formulae, 4 propositions; 2nd row: 400 random formulae,
8 propositions; 3rd row: 24 formulae from [11]; 4th row: 54 formulae from [3].

For reasons which will be described in the next section, we run also a version of
MODELLA without the merging of states (MS) optimization of Section 4.2 (which
we call MODELLA–MS henceforth).

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0 10 20 30 40 50 60 70

WRING(2)
MODELLA-MS

WRING(123)
MODELLA-MS+WRING(13)

TMP

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 10 20 30 40 50 60 70

WRING(2)
MODELLA-MS

WRING(123)
MODELLA-MS+WRING(13)

TMP

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70

WRING(2)
MODELLA-MS

WRING(123)
MODELLA-MS+WRING(13)

TMP

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

0 10 20 30 40 50 60 70

WRING(2)
MODELLA-MS

WRING(123)
MODELLA-MS+WRING(13)

TMP

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10 20 30 40 50 60 70

WRING(2)
MODELLA-MS

WRING(123)
MODELLA-MS+RR+WRING(13)

TMP

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 10 20 30 40 50 60 70

WRING(2)
MODELLA-MS

WRING(123)
MODELLA-MS+WRING(13)

TMP

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70

WRING(2)
MODELLA-MS

WRING(123)
MODELLA-MS+WRING(13)

TMP

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0 10 20 30 40 50 60 70

WRING(2)
MODELLA-MS

WRING(123)
MODELLA-MS+WRING(13)

TMP

Fig. 4. Same experiments as in Figure 3, adding phases 1 and 3 to the pure “phase 2” algorithms.

We fixed
�
M
�
to 5000 states and we made b grow exponentially in
 2 � 4 � 8 � 16

�
32

�
64 .

We did four series of tests: 1) tests with 200 random formulae with
�
ϕ
� � 15 and P � 4;

2) tests with 200 random formulae with
�
ϕ
� � 15 and P � 8; 3) tests on the 12 formulae

proposed in [3]; 4) tests on the 27 formulae proposed in [11]. For every formula ϕ, we
tested both M

� � ϕ and M
� � � ϕ. The results are reported in Figure 3. (In the fourth

series, the run of GPVW and LTL2AUT were stopped for b � 16 because they caused
a memory blowup.)

Comparing the plots in the first column (number of states of M � Aϕ) we notice that
(i) GPVW and LTL2AUT are significantly less performing than the other algorigthms;
(ii) MODELLA performs better than WRING(2) in all the test series; (iii) even with MS
optimization disabled, MODELLA performs mostly better than WRING(2).

Comparing the plots in the second column (number of transitions of M � Aϕ) we
notice that WRING(2) performs much better than LTL2AUT and GPVW, and that both
MODELLA and MODELLA–MS perform always better than WRING(2). In particular,
the performance gaps are very relevant in the fourth test series.

5.2 Comparing translators with rewriting rules and simulation-based reduction

In a second section of tests, we investigated the behaviour of MODELLA as the ker-
nel of a more general algorithm, embedding also WRING’s rewriting rules (phase 1)
and simulation-based reduction (phase 3). This allows us for investigating the effective
“orthogonality” of our new algorithm wrt. the introduction of rewriting rules and of
simulation-based reduction.

To do this, we applied to our algorithm the rewriting rules described in [11] and
interfaced MODELLA–MS with the simulation-based reduction engine of WRING.
Unfortunately, since WRING accepts only states labeled with conjunctions of literals,
we could interface WRING only with MODELLA–MS and not with the full version
of MODELLA. (We denote the former as MODELLA–MS+WRING(13) henceforth.)
Moreover, since TMP is a one-block piece of SML code, we were not able to use its
simulation-based reduction engine separately as we did with WRING.

We run the tests with the same parameters of the first session of tests, obtain-
ing the results of Figure 4. We added to the plots also the curves for WRING(2) and
MODELLA–MS from Figure 3.

Comparing the plots in the first column (number of states of M � Aϕ), we notice
the following facts: (i) MODELLA–MS+WRING(13) benefits a lot from WRING’s
rewriting rules and simulation-based reduction, although slightly less than WRING itself
does; (ii) MODELLA–MS+WRING(13) performs mostly better than WRING(123),
although the gap we had with “pure” algorithms is reduced; (iii) except with the third
test series, TMP performs much better than all the others.

Comparing the plots in the second column (number of transitions of M � Aϕ), we
notice the following facts: (i) as before, MODELLA–MS benefits a lot from WRING’s
rewriting rules and simulation-based reduction; (ii) MODELLA–MS+WRING(13) per-
forms always better than WRING(123), although the gap of Figure 3 is reduced; (iii)
except with the third test series, TMP performs better than all the others.

However, as TMP uses simply LTL2AUT as phase 2 algorithm, the performance
gaps between TMP and the other algorithms are due to the very efficient form of
simulation-based reduction, which it was not possible to interface with MODELLA. 6

6 In another test not reported here, we used TMP’s rewriting rules instead of WRING’s with
MODELLA-MS+WRING(3), but obtained no significant performance variation.

6 Conclusions and Future Work

In this paper we have presented a new approach to build Büchi automata from LTL
formulae, which is based on the idea of reducing as much as possible the presence of
nondeterministic decision states in the automata; we have motivated this choice and
presented a new conversion algorithm, MODELLA, which implements these ideas; we
have presented an extensive empirical test, which suggests that MODELLA is a valu-
able alternative as a core engine for state-of-the-art algorithms.

We plan to extend our work on various directions. From the implementation view-
point, we want to implement from scratch in MODELLA the optimizations presented
in [7], which are completely orthogonal to our work, and the state-of-the art simulation-
based reduction techniques [3, 4, 9]. From an algorithmical viewpoint, we want to inves-
tigate new optimizations steps ad hoc for our approach. From a theoretical viewpoint,
we want to investigate more general sufficient conditions for branching postponement.

Another interesting research direction, though much less straightforward, might be
to investigate the feasibility and effectiveness of introducing semantic branching in the
alternating-automata based approach of [5].

References

1. M. Daniele, F. Giunchiglia, and M. Vardi. Improved Automata Generation for Linear Time
Temporal Logic. In Proc. CAV’99, volume 1633 of LNCS. Springer, 1999.

2. E.A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, volume B, pages 995–1072. Elsevier Science Publisher B.V., 1990.

3. K. Etessami and G. Holtzmann. Optimizing Büchi Automata. In Proc. CONCUR’2000,
volume 1877 of LNCS, 2000. Springer.

4. K. Etessami, R. Schuller, and T. Wilke. Fair Simulation Relations, Parity Games, and State
Space Reduction for Buechi Automata. In Automata, Languages and Programming, 28th
international colloquium, volume 2076 of LNCS. Springer, July 2001.

5. P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In Proc. CAV’01, volume
2102 of LNCS, pages 53–65. Springer, 2001.

6. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In Proc. 15th IFIP/WG6 .1 Symposium on Protocol Specification,
Testing and Verification, Warzaw, Poland, 1995. Chapman & Hall.

7. D. Giannakopoulou and F. Lerda. From States to Transitions: Improving Translation of LTL
Formulae to Büchi Automata. In Proc. FORTE’02., volume 2529 of LNCS. Springer, 2002.

8. F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propo-
sitional decision procedures - the case study of modal K(m). Information and Computation,
162(1/2), October/November 2000.

9. S. Gurumurty, R. Bloem, and F. Somenzi. Fair Simulation Minimization. In Proc. CAV’02,
number 2404 in LNCS. Springer, 2002.

10. O. Kupferman and M.Y. Vardi. Freedom, Weakness, and Determinism: From Linear-time to
Branching-time. In Proc. 13th IEEE Symposium on Logic in Computer Science, June 1998.

11. F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. In Proc CAV’00,
volume 1855 of LNCS. Springer, 2000.

12. H. Tauriainen. A Randomized Testbench for Algorithms Translating Linear Temporal Logic
Formulae into Büchi Automata. In Proceedings of the Concurrency, Specification and Pro-
gramming 1999 Workshop (CS&P’99), pages 251–262. Warsaw University, September 1999.

Appendix: the Proof of Correctness 7

Let A �ϕ be the automaton built with C � (15) as notion of cover and with F � (18) as set
of accepting conditions. Let Aϕ be the automaton built with C as notion of cover and
with F as set of accepting conditions, i.e. the BA built by MODELLA.

Theorem 1 ξ
� � A �ϕ � ξ

� � ϕ

Proof. Let’s show the theorem by induction on ϕ:

– ϕ � p: If σ is a run of A �ϕ, σ � 0 � � p
�

X � . Then σ is an accepting run over ξ �
p
� ξ � 0 � � ξ

� � p.
– ϕ � � p: If σ is a run of A �ϕ, σ � 0 � � � p

�
X � . Then σ is an accepting run over ξ �� p

� ξ � 0 � � ξ
� � � p.

– ϕ � Xψ: If σ is a run of A �ϕ, σ � � �
Xψ � σ1 where σ1 is an run of A �ψ over ξ1. Then

σ is accepting � σ1 is accepting � (for inductive hypothesis) ξ1
� � ψ � ξ

� � Xψ.
– ϕ � ψ � ϑ: If σ is a run of A �ϕ, σ � µ0

�
X � ψ0

� ϑ0 � � ����� � µi
�

X � ψi
� ϑi � � ����� where

Xψ0
�

DNF � ψ � µ0 	 � , Xψi
�

DNF � ψi � 1 � µi 	 � for all i
� 0 and Xϑ0

�
DNF � ϑ � µ0 	 � ,

Xϑi
�

DNF � ϑi � 1 � µi 	 � for all i
� 0. Then σ is accepting � σψ � µ �0 � X � ψ0 � � ����� � µ �i �

X � ψi � � ����� and σϑ � µ � �0 � X � ϑ0 � � ����� � µ � �i � X � ϑi � � ����� (where µ �i � µ � �i � µi for all i � 0) are
accepting runs respectively of A �ψ and of A �ϑ over ξ � (for inductive hypothesis)
ξ
� � ψ and ξ

� � ϑ � ξ
� � ψ � ϑ.

– ϕ � ψ � ϑ: If σ is a run of A �ϕ, either σ � µ0 � X � ψ0 � � ����� � µi � X � ψi � � ����� where Xψ0
�

DNF � ψ � µ0 	 � , Xψi
�

DNF � ψi � 1 � µi 	 � for all i
� 0 or σ � µ0 � X � ϑ0 � � ����� � µi � X � ϑi � � �����

where Xϑ0
� DNF � ϑ � µ0 	 � , Xϑi

� DNF � ϑi � 1 � µi 	 � for all i � 0. Suppose we are in
the first case. Then σ is accepting � σψ � µ �0 � X � ψ0 � � ����� � µ �i � X � ψi � � ����� (where
µ �i � µi for all i � 0) is an accepting run of A �ψ over ξ � (for inductive hypothesis)
ξ
� � ψ. Similarly, in the second case, σ is an accepting run � ξ

� � ϑ. Thus, in
general, σ is an accepting run � ξ

� � ψ or ξ
� � ϑ � ξ

� � ψ � ϑ.
– ϕ � ψRϑ: If σ is a run of A �ϕ, either, for all i � 0, σ � i � � µi

�
X � � 0 � j � i ϑ j

� ψRϑ �
where Xϑ0

�
DNF � ϑ � µ0 	 � , Xϑi

�
DNF � ϑi � 1 � µi 	 � for all i

� 0 or there exists k � 0
such that, for all i � k, σ � i � � µi

�
X � � i � k � j � i ϑ j

� ψi � k � and, for all 0
�

i � k,
σ � i � � µi

�
X � � 0 � j � i ϑ j

� ψRϑ � where Xψ0
�

DNF � ψ � µ0 	 � , Xψi
�

DNF � ψi � 1 � µi 	 �
for all i

� 0 and Xϑ0
�

DNF � ϑ � µ0 	 � , Xϑi
�

DNF � ϑi � 1 � µi 	 � for all i
� 0. In the

first case, σ is accepting � for all j � 0, σ j
ϑ � µ � �j � X � ϑ0 � � ����� � µ � �i � j

�
X � ϑi � j � � �����

(where µ � �i � µi for all i � 0) is an accepting run of A �ϑ over ξ � (for inductive
hypothesis) for all j � 0, ξ j

� � ϑ. In the second case, σ is accepting � for 0
�

j
�

k,
σ j

ϑ � µ � �j � X � ϑ0 � � ����� � µ � �i � j
�

X � ϑi � j � � ����� (where µ � �i � µi for all i � 0) is an accepting

run of A �ϑ over ξ and σk
ψ � µ �k � X � ψ0 � � ����� � µ �i � k

�
X � ψi � k � � ����� (where µ �i � µi for all

i � 0) is an accepting run of A �ψ over ξ � (for inductive hypothesis) for 0
�

j
�

k,
ξ j
� � ϑ and ξk

� � ϕ. Thus, in general, σ is an accepting run � either, for all i � 0,
ξi
� � ϑ or there exists k � 0 such that ξk

� � ψ and, for all 0
�

i
�

k, ξi
� � ϑ �

ξ
� � ψRϑ.

7 As agreed with the Conference Chair, this two-page appendix is added here only for the sake
of the reviewing process. If the paper is accepted, in order to fulfill the length requirements, the
appendix will be omitted from the camera-ready and will be inserted in a document available
via web.

– ϕ � ψUϑ
If σ is a run of A �ϕ, either, for all i � 0, σ � i � � µi

�
X � � 0 � j � i ψ j

� ψUϑ � where
Xψ0

� DNF � ψ � µ0 	 � , Xψi
� DNF � ψi � 1 � µi 	 � for all i � 0, or there exists k � 0 such

that, for all i � k, σ � i � � µi
�

X � � i � k � j � i ϕ j
� ϑi � k � and, for all 0

�
i � k, σ � i � �

µi
�

X � � 0 � j � i ψ j
� ψUϑ � where Xψ0

�
DNF � ψ � µ0 	 � , Xψi

�
DNF � ψi � 1 � µi 	 � for

all i
� 0 and Xϑ0

�
DNF � ϑ � µ0 	 � , Xϑi

�
DNF � ϑi � 1 � µi 	 � for all i

� 0. Then, σ is
accepting � we are in the second case and for 0

�
j � k, σ j

ψ � µ � j � X � ψ0 � � ����� � µ �i � j
�

X � ψi � j � � ����� (where µ �i � µi for all i � 0) is an accepting run of A �ψ over ξ and σk
ϑ �

µ � �k � X � ϑ0 � � ����� � µ � �i � k
�

X � ϑi � k � � ����� (where µ � �i � µi for all i � 0) is an accepting run
of A �ϑ over ξ � (for inductive hypothesis) for 0

�
j � k, ξ j

� � ψ and ξk
� � ϑ �

ξ
� � ψUϑ.

Lemma 1 Let s be a state of Aϕ so that Subs � s � �
 s � j j � J and let FH
� F so that

H �
 ϕ jUψ j j � J. If, for all j � J, s � j �� F �ϕ jUψ j
, then s �� FH

Proof.

for all j
�

J
�
s � j �� Fϕ jUψ j � for all j

�
J
�
s � j � � ϕ jUψ j

� there is no h
�

J s.t. for all j
�

J
�
s � j �� � ϕhUψh

Suppose by contradiction that s
�

FH

s
�

FH � there exists h
�

J s.t. for all j
�

J
�
s � j � � ψh

� there exists h
�

J s.t. s �h � � ψh and this contradicts the hypothesis

Theorem 2 ξ
� � Aϕ � ξ

� � A �ϕ
Proof. If ξ

� � Aϕ, then there exists an accepting run σ of Aϕ over ξ. For all i � 0,
σ � i � � µi

�
X j � Ji

ψi j where Ji � Ji � 1 for all i
� 0. Since Aϕ is finite, there exists k � 0

such that Ji � Ji � 1 for all i
�

k. Then σ j � µ0
�

Xψ0 j
� ����� � µi

�
Xψi j

� ����� is a run of A �ϕ over
ξ for all j � Jk. Suppose now by way of contradiction that every σ j is not accepting.
Then, for all j � Jk, there exists F �ϑ j

� F � such that σ j � i � �� F �ϑ j
for all i � 0. But, in this

case (for lemma 1), σ � i � �� F� ϑ j � j � J
for all i � 0 and therefore it cannot be accepting.

Theorem 3 ξ
� � A �ϕ � ξ

� � Aϕ

Proof. In general, there exist
�
J
�
runs σ j (j � J) of A � ϕ over ξ. If ξ

� � A �ϕ, then there
exists k � J such that σk is an accepting run. σ j � µ0

�
Xψ0 j

� ����� � µi
�

Xψi j
� ����� . Then

σ � µ0
�

X j � J0
ψ0 j

� ����� � µi
�

X j � Ji
ψi j, where J0 � J, Ji � Ji � 1 for all i � 0 and k � Ji

for all i � 0, is a run of Aϕ over ξ. Suppose now by way of contradiction that σ is not
accepting. Then there exists F� ϑl � l � L

� F such that σ � i � �� F� ϑl � l � L
for all i � 0. But,

since σk is accepting, there exists h � 0 such that σk � h � � F �ϑ0
and this is not possible

from the construction.

