An epoxy resin was nanomodified with in-situ generated silver nanoparticles (Ag) and with various amounts of carbon black (CB) and carbon nanofibers (NF), in order to increase the electrical conductivity of the matrix. Differential scanning calorimetry tests revealed how the addition of both CB and NF led to a slight decrease of the glass transition temperature of the material, while electron microscopy evidenced how the dimension of CB aggregates increased with the filler content. Both flexural modulus and stress at yield were decreased by CB addition, and the introduction of Ag nanoparticles promoted an interesting improvement of the flexural resistance. CB resulted to be more effective than NF in decreasing the electrical resistance of the materials down to 103 !·cm. Therefore, a rapid heating of the CB-filled samples upon voltage application was observed, while Ag nanoparticles allowed a stabilization of the temperature for elevated voltage application times.

Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles

Dorigato, Andrea;Pegoretti, Alessandro
2013-01-01

Abstract

An epoxy resin was nanomodified with in-situ generated silver nanoparticles (Ag) and with various amounts of carbon black (CB) and carbon nanofibers (NF), in order to increase the electrical conductivity of the matrix. Differential scanning calorimetry tests revealed how the addition of both CB and NF led to a slight decrease of the glass transition temperature of the material, while electron microscopy evidenced how the dimension of CB aggregates increased with the filler content. Both flexural modulus and stress at yield were decreased by CB addition, and the introduction of Ag nanoparticles promoted an interesting improvement of the flexural resistance. CB resulted to be more effective than NF in decreasing the electrical resistance of the materials down to 103 !·cm. Therefore, a rapid heating of the CB-filled samples upon voltage application was observed, while Ag nanoparticles allowed a stabilization of the temperature for elevated voltage application times.
2013
8
Dorigato, Andrea; G., Giusti; F., Bondioli; Pegoretti, Alessandro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/97069
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact