Carbon xerogels, synthesized through the resorcinol–formaldehyde polycondensation and subsequently dried under subcritical condition, have been studied as electrodes for supercapacitors. In particular, the influence of the catalyst concentration has been investigated by systematically changing the amount of catalyst (Na2CO3) utilized to synthesize the xerogels. To clarify the effect of such variable, both the surface properties and the electrochemicalbehavior of xerogel-based supercapacitors have been examined. From the xerogels characterization, it can be inferred that the amount of catalyst used has a strong influence on the properties of the material. Contrary to what happens with carbon aerogels, the best properties are obtained with the xerogels synthesized with the least amount of catalyst: in this case the highest measured specific capacitance of the supercapacitor cells, which is assembled coupling two symmetric electrodes in series, is 25 F/g, value that corresponds to a single-electrode specific capacitance of 100 F/g. The maximum energy storage capacity in an aqueous electrolyte is 3.1 Wh/kg. Using more concentrated catalyst solutions, the gel microstructure becomes finer, composed of smaller particles and pores, which in turns leads to an increase of the capillary drying stresses and to the collapse of the organic structure. Consequently, the shrinkage of the gels is high and the final carbon xerogels do not posses sufficient surface area and porosity to store a significative amount of energy.

Carbon Xerogels as Electrodes for Supercapacitors. The Influence of the Catalyst Concentration on the Microstructure and on the Electrochemical Properties / S., Mezzavilla; Zanella, Caterina; P. R., Aravind; Della Volpe, Claudio; Sorarù, Gian Domenico. - In: JOURNAL OF MATERIALS SCIENCE. - ISSN 0022-2461. - STAMPA. - 47:20(2012), pp. 7175-7180. [10.1007/s10853-012-6662-1]

Carbon Xerogels as Electrodes for Supercapacitors. The Influence of the Catalyst Concentration on the Microstructure and on the Electrochemical Properties

Zanella, Caterina;Della Volpe, Claudio;Sorarù, Gian Domenico
2012-01-01

Abstract

Carbon xerogels, synthesized through the resorcinol–formaldehyde polycondensation and subsequently dried under subcritical condition, have been studied as electrodes for supercapacitors. In particular, the influence of the catalyst concentration has been investigated by systematically changing the amount of catalyst (Na2CO3) utilized to synthesize the xerogels. To clarify the effect of such variable, both the surface properties and the electrochemicalbehavior of xerogel-based supercapacitors have been examined. From the xerogels characterization, it can be inferred that the amount of catalyst used has a strong influence on the properties of the material. Contrary to what happens with carbon aerogels, the best properties are obtained with the xerogels synthesized with the least amount of catalyst: in this case the highest measured specific capacitance of the supercapacitor cells, which is assembled coupling two symmetric electrodes in series, is 25 F/g, value that corresponds to a single-electrode specific capacitance of 100 F/g. The maximum energy storage capacity in an aqueous electrolyte is 3.1 Wh/kg. Using more concentrated catalyst solutions, the gel microstructure becomes finer, composed of smaller particles and pores, which in turns leads to an increase of the capillary drying stresses and to the collapse of the organic structure. Consequently, the shrinkage of the gels is high and the final carbon xerogels do not posses sufficient surface area and porosity to store a significative amount of energy.
2012
20
S., Mezzavilla; Zanella, Caterina; P. R., Aravind; Della Volpe, Claudio; Sorarù, Gian Domenico
Carbon Xerogels as Electrodes for Supercapacitors. The Influence of the Catalyst Concentration on the Microstructure and on the Electrochemical Properties / S., Mezzavilla; Zanella, Caterina; P. R., Aravind; Della Volpe, Claudio; Sorarù, Gian Domenico. - In: JOURNAL OF MATERIALS SCIENCE. - ISSN 0022-2461. - STAMPA. - 47:20(2012), pp. 7175-7180. [10.1007/s10853-012-6662-1]
File in questo prodotto:
File Dimensione Formato  
164-Mezzavilla_JMaterSci.pdf

Solo gestori archivio

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 603.57 kB
Formato Adobe PDF
603.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/91985
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact