We present a high-dimensional model of the representational space in human ventral temporal (VT) cortex in which dimensions are response-tuning functions that are common across individuals and patterns of response are modeled as weighted sums of basis patterns associated with these response tunings. We map response-pattern vectors, measured with fMRI, from individual subjects' voxel spaces into this common model space using a new method, "hyperalignment." Hyperalignment parameters based on responses during one experiment--movie viewing--identified 35 common response-tuning functions that captured fine-grained distinctions among a wide range of stimuli in the movie and in two category perception experiments. Between-subject classification (BSC, multivariate pattern classification based on other subjects' data) of response-pattern vectors in common model space greatly exceeded BSC of anatomically aligned responses and matched within-subject classification. Results indicate that population codes for complex visual stimuli in VT cortex are based on response-tuning functions that are common across individuals.

A common high-dimensional model of the representational space in human ventral temporal cortex

Haxby, James Van Loan;
2011-01-01

Abstract

We present a high-dimensional model of the representational space in human ventral temporal (VT) cortex in which dimensions are response-tuning functions that are common across individuals and patterns of response are modeled as weighted sums of basis patterns associated with these response tunings. We map response-pattern vectors, measured with fMRI, from individual subjects' voxel spaces into this common model space using a new method, "hyperalignment." Hyperalignment parameters based on responses during one experiment--movie viewing--identified 35 common response-tuning functions that captured fine-grained distinctions among a wide range of stimuli in the movie and in two category perception experiments. Between-subject classification (BSC, multivariate pattern classification based on other subjects' data) of response-pattern vectors in common model space greatly exceeded BSC of anatomically aligned responses and matched within-subject classification. Results indicate that population codes for complex visual stimuli in VT cortex are based on response-tuning functions that are common across individuals.
2011
2
Haxby, James Van Loan; Guntupalli, J.  . S.; A. C., Connolly; Y. O., Halchenko; B. R., Conroy; M. I., Gobbini; M., Hanke; P. J., Ramadge
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/90754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 408
  • ???jsp.display-item.citation.isi??? 382
social impact