Mapping the static magnetic field via the phase evolution over gradient echo scans acquired at two or more echo times is an established method. A number of possibilities exist, however, for combining phase data from multi-channel coils, denoising and thresholding field maps for high field applications. Three methods for combining phase images when no body/volume coil is available are tested: (i) Hermitian product, (ii) phase-matching over channels, and (iii) a new approach based on calculating separate field maps for each channel. The separate channel method is shown to yield field maps with higher signal-to-noise ratio than the Hermitian product and phase-matching methods and fewer unwrapping errors at low signal-to-noise ratio. Separate channel combination also allows unreliable voxels to be identified via the standard deviation over channels, which is found to be the most effective means of denoising field maps. Tests were performed using multichannel coils with between 8 and 32 channels at 3 T, 4 T, and 7 T. For application in the correction of distortions in echo-planar images, a formulation is proposed for reducing the local gradient of field maps to eliminate signal pile-up or swapping artifacts. Field maps calculated using these techniques, implemented in a freely available MATLAB toolbox, provide the basis for an effective correction for echo-planar imaging distortions at high fields.

B0 mapping with multi-element RF coils at high field

Robinson, Simon Daniel;Jovicich, Jorge
2011-01-01

Abstract

Mapping the static magnetic field via the phase evolution over gradient echo scans acquired at two or more echo times is an established method. A number of possibilities exist, however, for combining phase data from multi-channel coils, denoising and thresholding field maps for high field applications. Three methods for combining phase images when no body/volume coil is available are tested: (i) Hermitian product, (ii) phase-matching over channels, and (iii) a new approach based on calculating separate field maps for each channel. The separate channel method is shown to yield field maps with higher signal-to-noise ratio than the Hermitian product and phase-matching methods and fewer unwrapping errors at low signal-to-noise ratio. Separate channel combination also allows unreliable voxels to be identified via the standard deviation over channels, which is found to be the most effective means of denoising field maps. Tests were performed using multichannel coils with between 8 and 32 channels at 3 T, 4 T, and 7 T. For application in the correction of distortions in echo-planar images, a formulation is proposed for reducing the local gradient of field maps to eliminate signal pile-up or swapping artifacts. Field maps calculated using these techniques, implemented in a freely available MATLAB toolbox, provide the basis for an effective correction for echo-planar imaging distortions at high fields.
2011
4
Robinson, Simon Daniel; Jovicich, Jorge
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/86772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact