The recent development of many new ultra-wideband (UWB) array technologies has created a demand for antenna elements that can effectively operate over similar bandwidths. For example, the polyfractal [1] and RPS [2] topologies are capable of exhibiting remarkably wide frequency bandwidths on the order of 20:1, 40:1 or even more, depending on the array size. Often, the antenna elements that are capable of these extended bandwidths begin to develop several lobes in the radiation pattern and generate increased cross-polarized radiation at their upper range of operating frequencies. A new type of ultra-wideband antenna has been developed based on a spline-shaping technique and a particle swarm algorithm (PSO) [3]. With proper attention to the radiation pattern, cross-polarization, and return loss in the PSO cost function, this method is capable of producing UWB antenna elements that minimize all the aforementioned undesirable characteristics, making them very suitable for use in UWB array systems with bandwidths up to 4:1 and perhaps even wider.

A novel design methodology for integration of optimized wideband elements with aperiodic array topologies

Lizzi, Leonardo;Oliveri, Giacomo;Massa, Andrea
2010-01-01

Abstract

The recent development of many new ultra-wideband (UWB) array technologies has created a demand for antenna elements that can effectively operate over similar bandwidths. For example, the polyfractal [1] and RPS [2] topologies are capable of exhibiting remarkably wide frequency bandwidths on the order of 20:1, 40:1 or even more, depending on the array size. Often, the antenna elements that are capable of these extended bandwidths begin to develop several lobes in the radiation pattern and generate increased cross-polarized radiation at their upper range of operating frequencies. A new type of ultra-wideband antenna has been developed based on a spline-shaping technique and a particle swarm algorithm (PSO) [3]. With proper attention to the radiation pattern, cross-polarization, and return loss in the PSO cost function, this method is capable of producing UWB antenna elements that minimize all the aforementioned undesirable characteristics, making them very suitable for use in UWB array systems with bandwidths up to 4:1 and perhaps even wider.
2010
[Proceedings of] Antennas and Propagation Society International Symposium, 2010 IEEE
Piscataway, NJ
IEEE
9781424449675
Lizzi, Leonardo; Oliveri, Giacomo; M. D., Gregory; D. H., Werner; Massa, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/81695
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact