A strategy to accelerate the direct simulation of aeroacoustic problems in terms of CPU time. The key idea is to introduce a heterogeneous domain decomposition. The whole computational domain is subdivided into smaller domains. In each of these subdomains the equations, the discretization, the mesh, and the time step may be different and are adapted to the local behavior of the solution. To reduce the total number of elements we propose the use of high order methods. Here the class of arbitrary high-order using derivatives–finite volume schemes on structured meshes and arbitrary high-order using derivatives discontinuous Galerkin methods on unstructured meshes seem a good choice to us. The coupling procedure is validated and numerical results for the interface transmission problem and the single airfoil gust response problem (from 4th Computational Aeroacoustics Workshop on Benchmark Problems, CP-2004 212954, NASA, 2004) are presented, together with the acoustic scattering problem at a cylinder and at multiple objects. The coupling approach proves to be especially efficient for the propagation of sound in large domains

Heterogeneous Domain Decomposition for Computational Aeroacoustics / J., Utzmann; T., Schwartzkopff; Dumbser, Michael; C. D., Munz. - In: AIAA JOURNAL. - ISSN 0001-1452. - STAMPA. - 44:10(2006), pp. 2231-2250. [10.2514/1.18144]

Heterogeneous Domain Decomposition for Computational Aeroacoustics

Dumbser, Michael;
2006-01-01

Abstract

A strategy to accelerate the direct simulation of aeroacoustic problems in terms of CPU time. The key idea is to introduce a heterogeneous domain decomposition. The whole computational domain is subdivided into smaller domains. In each of these subdomains the equations, the discretization, the mesh, and the time step may be different and are adapted to the local behavior of the solution. To reduce the total number of elements we propose the use of high order methods. Here the class of arbitrary high-order using derivatives–finite volume schemes on structured meshes and arbitrary high-order using derivatives discontinuous Galerkin methods on unstructured meshes seem a good choice to us. The coupling procedure is validated and numerical results for the interface transmission problem and the single airfoil gust response problem (from 4th Computational Aeroacoustics Workshop on Benchmark Problems, CP-2004 212954, NASA, 2004) are presented, together with the acoustic scattering problem at a cylinder and at multiple objects. The coupling approach proves to be especially efficient for the propagation of sound in large domains
2006
10
J., Utzmann; T., Schwartzkopff; Dumbser, Michael; C. D., Munz
Heterogeneous Domain Decomposition for Computational Aeroacoustics / J., Utzmann; T., Schwartzkopff; Dumbser, Michael; C. D., Munz. - In: AIAA JOURNAL. - ISSN 0001-1452. - STAMPA. - 44:10(2006), pp. 2231-2250. [10.2514/1.18144]
File in questo prodotto:
File Dimensione Formato  
KOP2D-AIAA.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.45 MB
Formato Adobe PDF
8.45 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/71648
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact