Atomistic copper nanocrystals were investigated via Molecular Dynamics (MD) under hydrostatic pressure to probe the relationship between applied load and structure deformation. The corresponding X-ray powder diffraction patterns were generated from the atomic coordinates. The analysis followed both the traditional Williamson-Hall approach based on pseudo-Voigt fitting and an alternative, more accurate method able to derive the integral breadths without applying a fitting. The Williamson-Hall results show discrepancies not fully associated with an issue of fitting

Diffraction line broadening from nanocrystals under large hydrostatic pressures

Burgess, Michael Alexander;Leonardi, Alberto;Leoni, Matteo;Scardi, Paolo
2013-01-01

Abstract

Atomistic copper nanocrystals were investigated via Molecular Dynamics (MD) under hydrostatic pressure to probe the relationship between applied load and structure deformation. The corresponding X-ray powder diffraction patterns were generated from the atomic coordinates. The analysis followed both the traditional Williamson-Hall approach based on pseudo-Voigt fitting and an alternative, more accurate method able to derive the integral breadths without applying a fitting. The Williamson-Hall results show discrepancies not fully associated with an issue of fitting
2013
S2
Burgess, Michael Alexander; Leonardi, Alberto; Leoni, Matteo; Scardi, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/35621
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact