A commercial Polyamide 6 (PA6) was melt compounded by using a twin screw extruder with a combination of 1,1′-Carbonyl-Bis-Caprolactam (CBC) and 1,3-Phenylene-Bis-2-Oxazoline (PBO), in order to evaluate their effect on the chain extension behaviour of the resulting materials. An increase of the viscosity values with the chain-extender amount was evidenced by rheological tests on the compounded pellets and relative viscosity measurements on solubilized samples, while the opposite trend was determined increasing the residence time at elevated temperatures. The increase of the molecular weight due to the presence of CBC and PBO was confirmed by the reduction of carboxylic and aminic functionalities evidenced in end group analysis. DSC tests showed a reduction of the melting temperature and of the crystallinity degree proportionally to the chain extender amount. Elastic modulus of the chain-extended materials was similar to that of the corresponding PA6 grades at different molecular weight, while crystallinity drop due to chain extension determined an increase of the strain at break values

Thermo-mechanical behaviour of Polyamide 6 chain extended with 1,1′-Carbonyl-Bis-Caprolactam and 1,3-Phenylene-Bis-2-Oxazoline

Buccella, Mauro;Dorigato, Andrea;Fambri, Luca
2013-01-01

Abstract

A commercial Polyamide 6 (PA6) was melt compounded by using a twin screw extruder with a combination of 1,1′-Carbonyl-Bis-Caprolactam (CBC) and 1,3-Phenylene-Bis-2-Oxazoline (PBO), in order to evaluate their effect on the chain extension behaviour of the resulting materials. An increase of the viscosity values with the chain-extender amount was evidenced by rheological tests on the compounded pellets and relative viscosity measurements on solubilized samples, while the opposite trend was determined increasing the residence time at elevated temperatures. The increase of the molecular weight due to the presence of CBC and PBO was confirmed by the reduction of carboxylic and aminic functionalities evidenced in end group analysis. DSC tests showed a reduction of the melting temperature and of the crystallinity degree proportionally to the chain extender amount. Elastic modulus of the chain-extended materials was similar to that of the corresponding PA6 grades at different molecular weight, while crystallinity drop due to chain extension determined an increase of the strain at break values
2013
9
Buccella, Mauro; Dorigato, Andrea; M., Caldara; E., Pasqualini; Fambri, Luca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/35069
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 19
social impact