We present an implementation of a semi-device-independent protocol of the generation of quantum random numbers in a fully integrated silicon chip. The system is based on a prepare-and-measure scheme, where we integrate a partially trusted source of photons and an untrusted single photon detector. The source is a silicon photomultiplier, which emits photons during the avalanche impact ionization process, while the detector is a single photon avalanche diode. The proposed protocol requires only a few and reasonable assumptions on the generated states. It is sufficient to measure the statistics of generation and detection in order to evaluate the min-entropy of the output sequence, conditioned on all possible classical side information. We demonstrate that this protocol, previously realized with a bulky laboratory setup, is totally applicable to a compact and fully integrated chip with an estimated throughput of 6 kHz of the certified quantum random bit rate.

An optical chip for self-testing quantum random number generation / Leone, N.; Rusca, D.; Azzini, S.; Fontana, G.; Acerbi, F.; Gola, A.; Tontini, A.; Massari, N.; Zbinden, H.; Pavesi, L.. - In: APL PHOTONICS. - ISSN 2378-0967. - 5:10(2020), p. 101301. [10.1063/5.0022526]

An optical chip for self-testing quantum random number generation

Leone N.;Azzini S.;Fontana G.;Acerbi F.;Tontini A.;Pavesi L.
2020-01-01

Abstract

We present an implementation of a semi-device-independent protocol of the generation of quantum random numbers in a fully integrated silicon chip. The system is based on a prepare-and-measure scheme, where we integrate a partially trusted source of photons and an untrusted single photon detector. The source is a silicon photomultiplier, which emits photons during the avalanche impact ionization process, while the detector is a single photon avalanche diode. The proposed protocol requires only a few and reasonable assumptions on the generated states. It is sufficient to measure the statistics of generation and detection in order to evaluate the min-entropy of the output sequence, conditioned on all possible classical side information. We demonstrate that this protocol, previously realized with a bulky laboratory setup, is totally applicable to a compact and fully integrated chip with an estimated throughput of 6 kHz of the certified quantum random bit rate.
2020
10
Leone, N.; Rusca, D.; Azzini, S.; Fontana, G.; Acerbi, F.; Gola, A.; Tontini, A.; Massari, N.; Zbinden, H.; Pavesi, L.
An optical chip for self-testing quantum random number generation / Leone, N.; Rusca, D.; Azzini, S.; Fontana, G.; Acerbi, F.; Gola, A.; Tontini, A.; Massari, N.; Zbinden, H.; Pavesi, L.. - In: APL PHOTONICS. - ISSN 2378-0967. - 5:10(2020), p. 101301. [10.1063/5.0022526]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/287231
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact