We present a micromechanical analysis of flow-induced peeling of a layered 2D material suspended in a liquid, for the first time accounting for realistic hydrodynamic loads. In our model, fluid forces trigger a fracture of the inter-layer interface by lifting a flexible “flap” of nanomaterial from the surface of a suspended microparticle. We show that the so far ignored dependence of the hydrodynamic load on the wedge angle produces a transition in the curve relating the critical fluid shear rate for peeling to the non-dimensional adhesion energy. For intermediate values of the non-dimensional adhesion energy, the critical shear rate saturates, yielding critical shear rate values that are drastically smaller than those predicted by a constant load assumption. Our results highlight the importance of accounting for realistic hydrodynamic loads in fracture mechanics models of liquid-phase exfoliation.

Micromechanics of liquid-phase exfoliation of a layered 2D material: A hydrodynamic peeling model / Salussolia, G.; Barbieri, E.; Pugno, N. M.; Botto, L.. - In: JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS. - ISSN 0022-5096. - 134:(2020), p. 103764. [10.1016/j.jmps.2019.103764]

Micromechanics of liquid-phase exfoliation of a layered 2D material: A hydrodynamic peeling model

Pugno N. M.;
2020-01-01

Abstract

We present a micromechanical analysis of flow-induced peeling of a layered 2D material suspended in a liquid, for the first time accounting for realistic hydrodynamic loads. In our model, fluid forces trigger a fracture of the inter-layer interface by lifting a flexible “flap” of nanomaterial from the surface of a suspended microparticle. We show that the so far ignored dependence of the hydrodynamic load on the wedge angle produces a transition in the curve relating the critical fluid shear rate for peeling to the non-dimensional adhesion energy. For intermediate values of the non-dimensional adhesion energy, the critical shear rate saturates, yielding critical shear rate values that are drastically smaller than those predicted by a constant load assumption. Our results highlight the importance of accounting for realistic hydrodynamic loads in fracture mechanics models of liquid-phase exfoliation.
2020
Salussolia, G.; Barbieri, E.; Pugno, N. M.; Botto, L.
Micromechanics of liquid-phase exfoliation of a layered 2D material: A hydrodynamic peeling model / Salussolia, G.; Barbieri, E.; Pugno, N. M.; Botto, L.. - In: JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS. - ISSN 0022-5096. - 134:(2020), p. 103764. [10.1016/j.jmps.2019.103764]
File in questo prodotto:
File Dimensione Formato  
436-JMPS19-liquid-phase-layered-material-peeling.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF   Visualizza/Apri
447.pdf

Open Access dal 16/10/2020

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/247331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact