Hydrogen sulfide (H2S)-based therapy is a promising therapeutic strategy for several biomedical applications. Following the observation that endogenous and exogenous H2S plays a prominent role as a bone anabolic agent, we recently developed a silk fibroin (SF) porous scaffold loaded with GYY4137 (GYY), an H2S donor, for applications in bone tissue engineering. Here, we assayed whether the combination of SF with H2S potentiates the osteoconductive properties of SF. Biocompatibility and osteoanabolic activity were assayed in vitro using human bone marrow mesenchymal stromal cells. Cell cultures were performed on a perfusion bioreactor to obtain results closer to the in vivo microenvironment. Cytotoxicity was excluded by lactate dehydrogenase and live/dead assays. Cell colonization and mineral apposition were evaluated by Haematoxylin & Eosin and Von Kossa/Alizarin Red-S stainings respectively. PCR array for human osteogenesis and immunohistochemical analyses were performed to identify pathways and targets involved. Our findings show that H2S-releasing SF scaffolds supported cell adhesion, proliferation and viability. Moreover, H2S activated genes and proteins involved in ossification, osteoblast differentiation, bone mineral metabolism and angiogenesis allowing a high and early mineralization. Based on these properties, we suggest the use of H2S-releasing SF scaffolds for bone healing and regeneration applications.

Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering / Gambari, L.; Amore, E.; Raggio, R.; Bonani, W.; Barone, M.; Lisignoli, G.; Grigolo, B.; Motta, A.; Grassi, F.. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - ELETTRONICO. - 102:(2019), pp. 471-482. [10.1016/j.msec.2019.04.039]

Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering

Raggio R.;Bonani W.;Motta A.;
2019-01-01

Abstract

Hydrogen sulfide (H2S)-based therapy is a promising therapeutic strategy for several biomedical applications. Following the observation that endogenous and exogenous H2S plays a prominent role as a bone anabolic agent, we recently developed a silk fibroin (SF) porous scaffold loaded with GYY4137 (GYY), an H2S donor, for applications in bone tissue engineering. Here, we assayed whether the combination of SF with H2S potentiates the osteoconductive properties of SF. Biocompatibility and osteoanabolic activity were assayed in vitro using human bone marrow mesenchymal stromal cells. Cell cultures were performed on a perfusion bioreactor to obtain results closer to the in vivo microenvironment. Cytotoxicity was excluded by lactate dehydrogenase and live/dead assays. Cell colonization and mineral apposition were evaluated by Haematoxylin & Eosin and Von Kossa/Alizarin Red-S stainings respectively. PCR array for human osteogenesis and immunohistochemical analyses were performed to identify pathways and targets involved. Our findings show that H2S-releasing SF scaffolds supported cell adhesion, proliferation and viability. Moreover, H2S activated genes and proteins involved in ossification, osteoblast differentiation, bone mineral metabolism and angiogenesis allowing a high and early mineralization. Based on these properties, we suggest the use of H2S-releasing SF scaffolds for bone healing and regeneration applications.
2019
Gambari, L.; Amore, E.; Raggio, R.; Bonani, W.; Barone, M.; Lisignoli, G.; Grigolo, B.; Motta, A.; Grassi, F.
Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering / Gambari, L.; Amore, E.; Raggio, R.; Bonani, W.; Barone, M.; Lisignoli, G.; Grigolo, B.; Motta, A.; Grassi, F.. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - ELETTRONICO. - 102:(2019), pp. 471-482. [10.1016/j.msec.2019.04.039]
File in questo prodotto:
File Dimensione Formato  
Gambari Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering Mat Scie Eng C 2019.pdf

Solo gestori archivio

Descrizione: pdf
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.4 MB
Formato Adobe PDF
4.4 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/239436
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact