Objectives: Winter sports are high-energy outdoor activities involving high velocities and acrobatic maneuvers, thus raising safety concerns. Specific studies on the impact mechanics of back protectors are very limited. In this study analytical and numerical models are developed to rationalize results of impact experiments and propose new design procedures for this kind of equipment. Design: Different soft-shell solutions currently available on the market are compared. In particular, the role of dynamic material constitutive properties and of environmental temperature (which affects mainly material stiffness) on energy absorption capability are evaluated. Methods: Starting from dynamic mechanical–thermal characterization of the closed-cell polymeric foams constituting the protectors, we exploited analytical modeling and Finite Element Method simulations to interpret experimental data from drop weight impact test and to characterize protectors at different temperatures and after multiple impacts. Results: The temperature and frequency dependent properties of these materials characterize their impact behavior. Modeling results are in good agreement with impact tests. Results demonstrate how ergonomic soft-shell solution provides an advantage with respect to traditional hard-shell in terms of impact protection. Moreover, it can maintain nearly unaltered its protective properties after multiple impacts on the same point. Conclusions: The coupled analytical-simulation approach here presented could be extensively used to predict the impact behavior of such equipment, starting from material characterization, allowing to save costs and time for physical prototyping and tests for design and optimization.

Modeling and simulation of the impact behavior of soft polymeric-foam-based back protectors for winter sports / Signetti, Stefano; Nicotra, Marco; Colonna, Martino; Pugno, Nicola M.. - In: JOURNAL OF SCIENCE AND MEDICINE IN SPORT. - ISSN 1440-2440. - 2019:(2019). [10.1016/j.jsams.2018.10.007]

Modeling and simulation of the impact behavior of soft polymeric-foam-based back protectors for winter sports

Signetti, Stefano;Pugno, Nicola M.
2019-01-01

Abstract

Objectives: Winter sports are high-energy outdoor activities involving high velocities and acrobatic maneuvers, thus raising safety concerns. Specific studies on the impact mechanics of back protectors are very limited. In this study analytical and numerical models are developed to rationalize results of impact experiments and propose new design procedures for this kind of equipment. Design: Different soft-shell solutions currently available on the market are compared. In particular, the role of dynamic material constitutive properties and of environmental temperature (which affects mainly material stiffness) on energy absorption capability are evaluated. Methods: Starting from dynamic mechanical–thermal characterization of the closed-cell polymeric foams constituting the protectors, we exploited analytical modeling and Finite Element Method simulations to interpret experimental data from drop weight impact test and to characterize protectors at different temperatures and after multiple impacts. Results: The temperature and frequency dependent properties of these materials characterize their impact behavior. Modeling results are in good agreement with impact tests. Results demonstrate how ergonomic soft-shell solution provides an advantage with respect to traditional hard-shell in terms of impact protection. Moreover, it can maintain nearly unaltered its protective properties after multiple impacts on the same point. Conclusions: The coupled analytical-simulation approach here presented could be extensively used to predict the impact behavior of such equipment, starting from material characterization, allowing to save costs and time for physical prototyping and tests for design and optimization.
2019
Signetti, Stefano; Nicotra, Marco; Colonna, Martino; Pugno, Nicola M.
Modeling and simulation of the impact behavior of soft polymeric-foam-based back protectors for winter sports / Signetti, Stefano; Nicotra, Marco; Colonna, Martino; Pugno, Nicola M.. - In: JOURNAL OF SCIENCE AND MEDICINE IN SPORT. - ISSN 1440-2440. - 2019:(2019). [10.1016/j.jsams.2018.10.007]
File in questo prodotto:
File Dimensione Formato  
17-JSAMS19-backprotectors_post-print.pdf

Open Access dal 07/11/2020

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.85 MB
Formato Adobe PDF
5.85 MB Adobe PDF Visualizza/Apri
1-s2.0-S144024401831065X-main (1).pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri
1-s2.0-S144024401831065X-main.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/229615
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact