Extended X-ray absorption fine structure (EXAFS) is a powerful probe of the distribution of nearest- neighbour distances around selected atomic species. We consider here the effect of vibrational disorder in crystals. The potential of EXAFS for the accurate evaluation of the coefficient of bond thermal expansion and its temperature dependence is discussed, with the aim of stimulating and facilitating the comparison with the results from total scattering experiments. The meaning of the distribution asym- metry in crystals and its connection with the effective potential anharmonicity and the bond expansion is quantitatively explored by comparing the results for a number of different systems. The extent of the relative atomic vibrations perpendicular to the bond direction and the perpendicular to parallel anisotropy are correlated with the extent of lattice negative thermal expansion as well as with the ionic mobility in superionic crystals.

Nearest-neighbour distribution of distances in crystals from extended X-ray absorption fine structure

Fornasini, Paolo;Grisenti, Rolly;
2017-01-01

Abstract

Extended X-ray absorption fine structure (EXAFS) is a powerful probe of the distribution of nearest- neighbour distances around selected atomic species. We consider here the effect of vibrational disorder in crystals. The potential of EXAFS for the accurate evaluation of the coefficient of bond thermal expansion and its temperature dependence is discussed, with the aim of stimulating and facilitating the comparison with the results from total scattering experiments. The meaning of the distribution asym- metry in crystals and its connection with the effective potential anharmonicity and the bond expansion is quantitatively explored by comparing the results for a number of different systems. The extent of the relative atomic vibrations perpendicular to the bond direction and the perpendicular to parallel anisotropy are correlated with the extent of lattice negative thermal expansion as well as with the ionic mobility in superionic crystals.
2017
4
Fornasini, Paolo; Grisenti, Rolly; Dapiaggi, M.; Agostini, G.; Miyanaga, T.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/183395
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact