Let $X^{(n,m)}_{(1,d)}$ denote the Segre-Veronese embedding of $mathbb{P}^n imes mathbb{P}^m$ via the sections of the sheaf $mathcal{O}(1,d)$. We study the dimensions of higher secant varieties of $X^{(n,m)}_{(1,d)}$ and we prove that there is no defective $s^{th}$ secant variety, except possibly for $n$ values of $s$. Moreover when ${m+d choose d}$ is multiple of $(m+n+1)$, the $s^{th}$ secant variety of $X^{(n,m)}_{(1,d)}$ has the expected dimension for every $s$.
Higher secant varieties of Pn×Pm embedded in bi-degree (1,d) / Bernardi, Alessandra; Enrico, Carlini; Maria Virginia, Catalisano. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 215(2011), pp. 2853-2858.
Titolo: | Higher secant varieties of Pn×Pm embedded in bi-degree (1,d) | |
Autori: | Bernardi, Alessandra; Enrico, Carlini; Maria Virginia, Catalisano | |
Autori Unitn: | ||
Titolo del periodico: | JOURNAL OF PURE AND APPLIED ALGEBRA | |
Anno di pubblicazione: | 2011 | |
Codice identificativo Scopus: | 2-s2.0-79959354813 | |
Codice identificativo Pubmed: | 10.1016/j.jpaa.2011.04.005 | |
Codice identificativo WOS: | WOS:000293104600006 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jpaa.2011.04.005 | |
Handle: | http://hdl.handle.net/11572/134867 | |
Citazione: | Higher secant varieties of Pn×Pm embedded in bi-degree (1,d) / Bernardi, Alessandra; Enrico, Carlini; Maria Virginia, Catalisano. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 215(2011), pp. 2853-2858. | |
Appare nelle tipologie: |