For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earth's local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model independent test of the Weak Equivalence Principle at the base of the general relativity. The initial goal of a g measurement with a relative uncertainty of 1% will be achieved with less than 1000 detected antihydrogens, provided that their vertical position could be determined with a precision of a few micrometers. An emulsion based detector is very suitable for this purpose featuring an intrinsic sub-micrometric spatial resolution. Nevertheless, the AEgIS experiment requires unprecedented operational conditions for this type of detector, namely vacuum environment and very low temperature. An intense R&D activity is presently going on to optimize the detector for the AEgIS experimental requirements with rather encouraging results.

Development of nuclear emulsions operating in vacuum for the AEgIS experiment

Brusa, Roberto Sennen;Mariazzi, S;
2014-01-01

Abstract

For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earth's local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model independent test of the Weak Equivalence Principle at the base of the general relativity. The initial goal of a g measurement with a relative uncertainty of 1% will be achieved with less than 1000 detected antihydrogens, provided that their vertical position could be determined with a precision of a few micrometers. An emulsion based detector is very suitable for this purpose featuring an intrinsic sub-micrometric spatial resolution. Nevertheless, the AEgIS experiment requires unprecedented operational conditions for this type of detector, namely vacuum environment and very low temperature. An intense R&D activity is presently going on to optimize the detector for the AEgIS experimental requirements with rather encouraging results.
2014
JOURNAL OF INSTRUMENTATION Volume: 9 Article Number: C01061
IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
IOP
Scampoli, P; Aghion, S; Ahlén, O; Amsler, C; Ariga, A; Ariga, T; Belov, A. S; Berggren, K; Bonomi, G; Bräunig, P; Bremer, J; Brusa, Roberto Sennen; Cabaret, L; Caccia, M; Canali, C; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Derking, H; Domizio, S. Di; Noto, L. Di; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S. N; Haider, S; Huse, T; Jordan, E; Jørgensen, L. V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnický, D; Lagomarsino, V; Lehner, S; Malbrunot, C; Mariazzi, S; Matveev, V. A; Moia, F; Nebbia, G; Nédélec, P; Oberthaler, M. K; Pacifico, N; Petráček, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Storey, J; Vasquez, M. A. Subieta; Špaček, M; Testera, G; Wildmann, E; Zavatarelli, S; Zmeskal, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/117009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact