An original synthetic route, based on the combination of a single-source precursor, UV-photodegradation and inverse w/o miniemulsion, is used to prepare Au nanoparticles (NPs) dispersed on titania. The source of the nanocomposite materials is the photolabile single-source precursor AuCl4(NH4)7[Ti2(O2)2(cit)(Hcit)]2$12H2O, which is suspended in a w/o miniemulsion consisting of different surfactant/hydrocarbon/water formulations (surfactant: sodium dodecylsulfate (SDS) or Triton X-100) and subsequently irradiated with a UV lamp to promote its decomposition in the confined space of the droplets. Gold NPs that form at room temperature are found to be crystalline, while titanium dioxide occurs as an amorphous phase. Moreover, the average crystallite size of gold NPs ranges between 20 and 24 nm when using SDS and between 26 and 40 nm in the case of Triton X-100, after 4 and 8 hours of irradiation time, respectively. Scanning and transmission electron microscopies (SEM and TEM) are used to get information about the nanocomposite morphology and nanostructure, revealing that gold NPs are uniformly distributed on the titanium oxide surface. Furthermore, X-ray photoelectron spectroscopy (XPS) outcomes, besides confirming the formation of both metallic gold and titania, provide information about the high dispersion of Au NPs on the TiO2 surface. In fact, the Au : Ti atomic ratio is found to be 0.45–1.5 (1 : 2–1.5 : 1), which is higher than the value determined by starting from the precursor stoichiometry (0.25). Catalytic testing in the oxidation of 2-propanol shows that decomposition of the precursor in a miniemulsion provides a nanocomposite with enhanced activity compared to the decomposition in the aqueous phase

Inorganic chemistry in a nanoreactor: Au/TiO2 nanocomposites by photolysis of a single-source precursor in miniemulsion

Gialanella, Stefano;
2013-01-01

Abstract

An original synthetic route, based on the combination of a single-source precursor, UV-photodegradation and inverse w/o miniemulsion, is used to prepare Au nanoparticles (NPs) dispersed on titania. The source of the nanocomposite materials is the photolabile single-source precursor AuCl4(NH4)7[Ti2(O2)2(cit)(Hcit)]2$12H2O, which is suspended in a w/o miniemulsion consisting of different surfactant/hydrocarbon/water formulations (surfactant: sodium dodecylsulfate (SDS) or Triton X-100) and subsequently irradiated with a UV lamp to promote its decomposition in the confined space of the droplets. Gold NPs that form at room temperature are found to be crystalline, while titanium dioxide occurs as an amorphous phase. Moreover, the average crystallite size of gold NPs ranges between 20 and 24 nm when using SDS and between 26 and 40 nm in the case of Triton X-100, after 4 and 8 hours of irradiation time, respectively. Scanning and transmission electron microscopies (SEM and TEM) are used to get information about the nanocomposite morphology and nanostructure, revealing that gold NPs are uniformly distributed on the titanium oxide surface. Furthermore, X-ray photoelectron spectroscopy (XPS) outcomes, besides confirming the formation of both metallic gold and titania, provide information about the high dispersion of Au NPs on the TiO2 surface. In fact, the Au : Ti atomic ratio is found to be 0.45–1.5 (1 : 2–1.5 : 1), which is higher than the value determined by starting from the precursor stoichiometry (0.25). Catalytic testing in the oxidation of 2-propanol shows that decomposition of the precursor in a miniemulsion provides a nanocomposite with enhanced activity compared to the decomposition in the aqueous phase
2013
N. A., Heutz; P., Dolcet; A., Birkner; M., Casarin; K., Merz; Gialanella, Stefano; S., Gross
File in questo prodotto:
File Dimensione Formato  
2013_Inorganic chemistry in a nanoreactor_nanoscale_5_10534_10541.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 409.41 kB
Formato Adobe PDF
409.41 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/100389
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact