
1

Hibernus: Sustaining Computation during
Intermittent Supply for Energy-Harvesting Systems

Domenico Balsamo, Alex S. Weddell, Member, IEEE, Geoff V. Merrett, Member, IEEE,
Bashir M. Al-Hashimi, Fellow, IEEE, Davide Brunelli, Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—A key challenge to the future of energy-harvesting1

systems is the discontinuous power supply that is often generated.2

We propose a new approach, Hibernus, which enables computa-3

tion to be sustained during intermittent supply. The approach has4

a low energy and time overhead which is achieved by reactively5

hibernating: saving system state only once, when power is about6

to be lost, and then sleeping until the supply recovers. We validate7

the approach experimentally on a processor with FRAM non-8

volatile memory, allowing it to reactively hibernate using only9

energy stored in its decoupling capacitance. When compared to10

a recently proposed technique, the approach reduces processor11

time and energy overheads by 76-100% and 49-79% respectively.12

Index Terms—energy harvesting, checkpointing, embedded13

software14

I. INTRODUCTION15

Energy-harvesting systems power themselves by extract-16

ing energy from the environment [1]. However, the energy17

provided is often highly temporally dynamic, providing an18

intermittent supply that is incapable of sustaining computation.19

This is because processors switch off when the supply drops20

below their minimum operating voltage and, when power is21

available again, restart computation from the beginning.22

To manage an intermittent supply, one approach is to use a23

battery or supercapacitor to buffer energy. However, the level24

of miniaturisation required to realise medical implants [2]25

or visions of ‘smart dust’ [3] causes energy storage to be26

minimised, constraining the computational ability of systems.27

Recently, a different approach (Mementos [4]) was proposed,28

which uses the well-known concept of checkpoints [5] placed29

at compile-time. Mementos saves periodic snapshots of system30

state to non-volatile memory, which enable it to return to31

a previous checkpoint after a power failure. A number of32

checkpoint placement heuristics are proposed, including at the33

beginning of every function-call or before any loop. At run-34

time, when these checkpoints are reached, the supply voltage35

(VCC) of the processor is inspected using the an analog-to-36

digital converter (ADC). If it is deemed to be failing (VCC <37

a threshold VM), a snapshot of the system state is saved to non-38

volatile memory. This requires regular polling of the supply39

voltage, and can result in multiple snapshots being saved when40

D. Balsamo, A. S. Weddell, G. V. Merrett and B. M. Al-Hashimi are with
the Pervasive Systems Centre, Electronics and Computer Science, University
of Southampton, UK.

D. Brunelli is with the Department of Industrial Engineering, University of
Trento, Italy.

D. Balsamo and L. Benini are with the Department of Electrical, Electronic
and Information Engineering “Guglielmo Marconi” (DEI), University of
Bologna, Italy.

Time

S
u

p
p

ly
 V

o
lt

ag
e

(V
cc

)Vmax

Vmin

VR
VH

Restore

Hibernate

Hibernating Active Hiber.Active Hibernating Active Active

Hibernate

Restore

Hibernate

Restore

Fig. 1. Operation of Hibernus in response to intermittent supply voltage.

the supply voltage is close to the threshold; both introduce time41

and energy overheads.42

This brief proposes Hibernus1, a new approach which43

automatically saves a snapshot only once (without the need for44

checkpoint placement heuristics), immediately before power45

failure, then sleeps. Hibernus saves the system’s complete46

volatile memory; this is enabled in part by developments47

in Ferroelectric RAM (FRAM), a non-volatile memory tech-48

nology that is more efficient than flash, and is now being49

monolithically integrated into low-power microcontrollers [6].50

The speed and efficiency of integrated FRAM means we can51

react to power loss and save a snapshot using only the energy52

stored in a system’s decoupling capacitance.53

II. HIBERNUS54

The Hibernus approach has two states: active and hi-55

bernating. It moves between these states when the supply56

voltage (VCC) passes thresholds (Fig. 1). It uses a hardware57

interrupt to detect when VCC drops below VH, then prompts a58

reactive hibernation – saving an immediate snapshot of volatile59

memory, then entering deep sleep. The snapshot is restored by60

another interrupt, when the supply voltage rises above VR. The61

approach is illustrated in Fig. 2 and differs from Mementos,62

whose checkpoint locations are set in advance. Due to this,63

our approach is more energy- and time-efficient than existing64

approaches (experimentally demonstrated in Sec. III), and does65

not depend on checkpoint placement heuristics.66

Hibernus is application-agnostic and transparent to the67

programmer, because it can reactively hibernate at any time68

during the execution of an application. Therefore, to save a69

snapshot of system state, it copies all registers and volatile70

memory to non-volatile memory. The energy consumed by71

1In computing, ‘hibernation’, from the Latin hı̄bernus, is the process of
saving state to allow power to be removed.

2

Interrupt

Interrupt

Hibernate

Restore

Y N

Normal Operation

Save snapshot to

non-volatile memory

Sleep
Set up hibernate interrupt

Supply failing?
(VCC VH)

Supply recovering?
(VCC VR)

Snapshot
saved OK?

Restore

state

Restart

application

Fig. 2. Flow-chart illustrating the Hibernus approach.

this process, Eσ , depends on the size of the volatile memory72

and the energy consumption for copying each byte.73

Eσ = nαEα + nβEβ (1)

Here, nα and nβ are the sizes of the RAM and registers74

(in bytes). Eα and Eβ are the energy required to copy each75

RAM and register byte to non-volatile memory (J/byte).76

Hibernus requires sufficient non-volatile memory to save the77

contents of all processor registers and RAM. This is the case78

with modern microcontrollers, e.g. [6]. It also requires enough79

energy to be stored in the capacitance between the supply rails80

to save a full snapshot. Energy harvesting systems normally81

operate across a range of voltages, from Vmin to Vmax. Below82

Vmin, processors may operate unpredictably (brown-out), or83

shut down completely. Given the total capacitance (
∑
C), the84

energy Eδ stored between a given voltage V and Vmin is:85

Eδ =
V 2 − V 2

min

2
·
∑

C (2)

V is used to define the threshold VH, and VR is set higher to86

add hysteresis, allowing the system to restore without taking87

the Vcc below VH. For small embedded microcontrollers (with88

relatively small nα) using fast-write non-volatile memory89

(therefore relatively low Eα), it is possible to save a snapshot90

without additional C (using only the system’s decoupling91

capacitance); this is explored in Sec. III. However, if Eδ < Eσ92

with V = Vmax, it will not be possible to guarantee that93

snapshots can be taken reliably, and extra C must be added.94

The total time, Thibernus, to execute a test algorithm with95

Hibernus is given by (3), where Ta is the CPU time required96

to execute the algorithm, nι is number of power interruptions97

(where VCC < Vmin) per algorithm execution, Ts is the time98

required to save a snapshot to non-volatile memory, Tr is the99

time required to restore from non-volatile memory, and Tλ100

is the average time spent sleeping (after a snapshot has been101

saved but before Vcc = Vmin, and on power-up when Vmin <102

VCC < VR).103

Thibernus︸ ︷︷ ︸
Total execution

=

Algorithm︷︸︸︷
Ta + nι︸︷︷︸

No. interruptions

(

Save snapshot︷︸︸︷
Ts + Tr︸︷︷︸

Restore snapshot

+

Sleep︷︸︸︷
Tλ) (3)

The total time, Tmementos, to execute an algorithm with104

Mementos is given by (4), where nm is the number of105

Signal

Generator

R

R

Processor

VCC

S2/2

MSP430FR5739 Evaluation Board

S2S1

In-built

decoupling

capacitance

ΣC

Fig. 3. The test platform used to experimentally validate Hibernus.

checkpoints per complete execution of the algorithm, Tm is106

the time taken for an ADC reading of VCC, and Ps is the107

proportion of checkpoints resulting in a snapshot, taking Ts.108

Tmementos︸ ︷︷ ︸
Total execution

=

Algorithm︷︸︸︷
Ta + nι︸︷︷︸

No. interruptions

(

Restore snapshot︷︸︸︷
Tr +

Ta
2nm︸ ︷︷ ︸

Backtrack

)+

Monitoring and save snapshot︷ ︸︸ ︷
nm(Tm + PsTs) (4)

Hence, Thibernus < Tmementos provided nι(Ta/2nm) +109

nmTm + (nmPs − nι)Ts > nιTλ; that is, Hibernus spends110

less time sleeping than Mementos spends on backtracks (re-111

running code that was executed between a snapshot and a112

power interruption), sampling Vcc, and redundant snapshot113

saves. This is evaluated experimentally in the next section.114

III. EXPERIMENTAL VALIDATION115

Hibernus has been validated with an intermittent power sup-116

ply and representative workload. Its energy and time overheads117

have been evaluated, and compared against Mementos.118

A. Implementing Hibernus119

While most microcontrollers have flash non-volatile mem-120

ory (and consequently a high Eσ), processors are emerging121

that incorporate fast, low-power FRAM rather than flash (and122

hence have a low Eσ). The test platform (Fig. 3) uses a123

development board combining a Texas Instruments MSP430124

processor [6] with FRAM non-volatile memory. This means125

that its decoupling capacitance alone allows Eδ >> Eσ when126

V = Vmax, requiring no additional energy storage (battery or127

large capacitor) to support Hibernus.128

The platform’s datasheet parameters were inspected, and129

identified Eα as 4.2 nJ/byte and Eβ as 2.7 nJ/byte, with a130

total RAM size of 1024 bytes and register size of 524 bytes.131

The platform operates with a Vmax = 3.6 V and Vmin = 2.0 V .132

Using (1), a complete operation copying all registers and RAM133

to FRAM consumes 5.7 µJ. The decoupling capacitance on the134

board totals
∑
C = 16 µF. Using (2), it was found that this135

alone is sufficient for Hibernus and VH was set to 2.17 V. It was136

found empirically that VR = 2.27 V was sufficient for reliable137

operation. The test platform’s VCC input (S2) is connected to138

the output of a signal generator (S1) through a diode, which139

prevents back-flow of charge to the harvester (Fig. 3). Square140

and sinusoidal traces (Fig. 4) with a peak amplitude of 3.6V141

are presented as examples. The slower decay of S2 compared142

to S1 is due to the input diode; the slow decay on the negative143

3

Fig. 4. Measured behavior of signals S1 and S2 (Fig. 3) with (a) 6 Hz square-
wave input; (b) 6 Hz sinusoidal input.

#include "hibernus.h"

int main (void) {
if (flag) restore(); //restore system state
else initialise(); //initialise hibernus

// application code goes here
}

__interrupt void COMP_D_ISR(void) {
hibernate(); //save system state & sleep

}

Fig. 5. Example code used for evaluation of Hibernus.

edge illustrates the discharge of the decoupling capacitance by144

the current drawn by the processor.145

Hibernus functionality is contained within the146

hibernus.h library file; application developers need147

only include this library and call the initialise(),148

hibernate() and restore() routines, as illustrated149

in Fig. 5. As shown in Fig. 2, the algorithm requires that150

interrupts are generated when Vcc passes VH and VR; this151

is facilitated by comparators and voltage references. The152

test platform has an on-chip comparator configured with an153

on-chip variable reference voltage generator, and an external154

voltage divider (R = 200 kΩ) giving Vcc/2, as inputs. This155

is set up in the initialise() routine. Dependent on156

whether the system is hibernating or active, the interrupt is157

set to trigger off either Vcc ≤ VH or Vcc ≥ VR. The handler158

then calls hibernate() or restore().159

When hibernate() (Fig. 2) is called, it first pushes the160

core registers onto the FRAM memory. It then copies the entire161

RAM contents (stack segment, local and global variables) into162

the FRAM, followed by the general registers, and finally the163

Stack Pointer (SP) and Program Counter (PC). It then sleeps in164

a low-power mode. The system remains in sleep mode until165

VCC > VR. The restore() routine is then called and the166

complete previous system state is restored. The system phases167

the restore of the memory locations to reinstate its operating168

state reliably. The general registers are restored first, followed169

by the RAM, and lastly the core registers including the SP and170

PC. When the PC is restored from the snapshot, the system171

implicitly transfers to the application and resumes operation.172

B. Experimental Setup173

The evaluation test case represents a common long-running174

task for energy harvesting systems: a Fast Fourier Transform175

(FFT) analysis of three arrays, each holding 128 8-bit samples176

of tri-axial accelerometer data. The FFT algorithm was chosen177

as an illustration: Hibernus is application-agnostic and will178

provide the same functionality to any embedded program, with179

minimal impact on the application developer (see Fig. 5).180

Supply interruption frequencies fι (of 2, 4, 6, 8, 10 Hz,181

and DC) were chosen to represent the types of intermittent182

power output that may be expected from an energy harvester183

(e.g. micro wind turbine or inductive power transfer to a184

rotating object). They allow the overheads of the Hibernus185

approach to be compared against Mementos.186

Our implementation of Mementos places static checkpoints187

after function calls or before loops, referred to as ‘function’188

and ‘loop’. ADC (Vcc) measurements are taken and compared189

to a threshold (Vm = 2.5V), chosen for each scheme to ensure190

that a snapshot can be saved at least once before power failure.191

At each checkpoint, Vcc < Vm indicates imminent power192

failure, and a snapshot is saved. Mementos consumes energy193

for multiple checkpoints, both for ADC readings and saving194

snapshots. In contrast, Hibernus consumes energy for a single195

hibernation per power-outage, plus the quiescent consumption196

of the voltage reference and comparator.197

The power consumption at mid-range between Vmax and198

Vmin of the FFT algorithm (without Hibernus or Mementos199

running), ADC, voltage reference, and comparator were mea-200

sured as 2.7 mW, 310 µW, 17 µW and 130 µW respectively.201

These values are used to estimate the energy consumption202

of the different approaches. For each of the three schemes,203

and at each frequency fι, we evaluated: (1) the number of204

system restores required to complete the computation of the205

FFT algorithm, (2) the number of times snapshots were stored,206

or checkpoints were called, (3) the energy overhead, and (4)207

the processor time overhead. The results were averaged over208

three complete executions of the test program. The overheads209

are evaluated with reference to the time and energy for the210

processor to complete the FFT algorithm with a steady supply:211

without Mementos or Hibernus, it completed in 100 ms.212

C. Results213

Fig. 6(a) shows how many checkpoints were made by214

Hibernus and Mementos during a single execution of the FFT.215

As can be seen, Hibernus reduces the number of times that216

checkpoints are taken. This can also be seen from Fig. 7, which217

shows when Hibernus and Mementos checkpoint (for the case218

when fι = 6 Hz), whereas Hibernus snapshots (hibernates)219

only once per interruption (twice in total), Mementos executes220

a static number of checkpoints (12 and 27 times), although221

some are repeated when VCC < Vmin during a snapshot.222

Fig. 6(b) shows that, at higher fι values, Hibernus com-223

pletes execution of the FFT over fewer power interruptions224

(3, instead of 5). This is because the mean processor time225

overheads (Fig. 6(d)) of Hibernus are 80-100% shorter than226

Mementos (function), and 76-100% shorter than Mementos227

(loop); this leaves more time to execute the application (also228

shown in Fig. 7, where the arrows denote the total execution229

time). Furthermore, Fig. 6(c) shows that the energy overheads230

of running Hibernus are 65-79% lower than Mementos (func-231

tion) and 49-76% lower than Mementos (loop).232

4

0

10

20

30
N

o
.
C

h
ec

k
p
o
in

ts

Hibernus

Mementos (function)

Mementos (loop)

(a)

0

5

10

N
o
.

S
y

s.
 R

es
to

re
s

(b)

0

50

100

E
n

er
g

y
 O

/h
ea

d
 (

%
)

(c)

0

50

100

0 2 4 6 8 10

T
im

e
O

/h
ea

d
 (

%
)

fι Supply Interruption Frequency (Hz)

(d)

Fig. 6. Comparison of Hibernus against Mementos, showing performance
when running the FFT text program (averaged over 3 executions): (a) number
of checkpoints/snapshot saves, (b) number of times snapshots were restored,
(c) energy overhead, (d) time overhead.

0

2

4

V
C

C
 (

V
)

0.00 0.10 0.20 0.30 0.40 0.50

Time (s)

M
em

.

(f
u
n

ct
io

n
) C'point

Restore

1 FFT

M
em

.

(l
o

o
p

)

C'point

Restore

1 FFT

H
ib

er
n

u
s Hibern.

Restore

1 FFT

VH

VM
VR

Fig. 7. Results comparing when Hibernus and Mementos hibernate, check-
point, and restore. Results shown were measured over a complete execution
of the test FFT algorithm, powered by a sinusoidal supply with fι = 6 Hz.

The benefits of Hibernus are particularly noticeable at fι =233

0 Hz (i.e. DC, when Vcc is uninterrupted), where negligible234

time and energy overheads are imposed (see Fig. 6(c) and235

(d)), while Mementos still requires the same number of check-236

points. This increases the required processor active time and237

energy by at least 10% and 11% respectively. Table I shows238

experimentally obtained values for the parameters of (3) and239

(4). Evaluating these equations support our measured results,240

TABLE I
EXPERIMENTALLY MEASURED PARAMETERS (SEE EQUATIONS (3), (4)).

and confirm that Hibernus spends less time sleeping than241

Mementos spends on redundant snapshot saves, backtracks,242

and sampling Vcc.243

IV. CONCLUSION244

A new approach for sustaining computation during inter-245

mittent supply, Hibernus, has been proposed. This allows a246

system to sustain computation through power outages which247

are common in energy-harvesting systems. It has a lower248

energy and time overhead than a recently proposed scheme,249

as demonstrated experimentally. This contributes to the devel-250

opment of future energy harvesting systems.251

ACKNOWLEDGMENT252

This work is part of the PRiME programme: EPSRC grant253

EP/K034448/1 (www.prime-project.org). It was also supported254

by a Telecom Italia s.p.a. PhD grant, and PHIDIAS, an EU255

7th Framework Programme project (CA 318013).256

REFERENCES257

[1] P. D. Mitcheson et al., “Energy Harvesting From Human and Machine258

Motion for Wireless Electronic Devices,” Proc. IEEE, vol. 96, no. 9, pp.259

1457-1486, Sept. 2008.260

[2] M. R. Mhetre et al., “Micro energy harvesting for biomedical applications:261

A review,” Proc. ICECT 2011, vol. 3, pp. 1-5, 8-10 April 2011.262

[3] B. A. Warneke and K. S. J. Pister, “An ultra-low energy microcontroller263

for Smart Dust wireless sensor networks,” Proc. IEEE ISSCC 2004, pp.264

316-317, vol. 1, Feb. 2004.265

[4] B. Ransford et al., “Mementos: System Support for Long-Running266

Computation on RFID-Scale Devices,” ASPLOS11, Newport Beach, CA,267

USA, Mar. 5-11, 2011.268

[5] P. A. Bernstein et al., “Concurrency Control and Recovery in Database269

Systems,” Addison-Wesley Longman Publishing, Boston, USA 1987.270

[6] M. Zwerg et al., “An 82µA/MHz microcontroller with embedded FeRAM271

for energy-harvesting applications,” Proc. IEEE ISSCC 2011, pp.334-336,272

20-24 Feb. 2011.273

www.prime-project.org

	Introduction
	Hibernus
	Experimental Validation
	Implementing Hibernus
	Experimental Setup
	Results

	Conclusion
	References

