Hibernus: Sustaining Computation during
Intermittent Supply for Energy-Harvesting Systems

Domenico Balsamo, Alex S. Weddell, Member, IEEE, Geoff V. Merrett, Member, IEEE,
Bashir M. Al-Hashimi, Fellow, IEEE, Davide Brunelli, Member, IEEE, and Luca Benini, Fellow, IEEE

1 Abstract—A key challenge to the future of energy-harvesting
2 systems is the discontinuous power supply that is often generated.
3 We propose a new approach, Hibernus, which enables computa-
4 tion to be sustained during intermittent supply. The approach has
sa low energy and time overhead which is achieved by reactively
s hibernating: saving system state only once, when power is about
7 to be lost, and then sleeping until the supply recovers. We validate
s the approach experimentally on a processor with FRAM non-
s volatile memory, allowing it to reactively hibernate using only
10 energy stored in its decoupling capacitance. When compared to
11a recently proposed technique, the approach reduces processor
12 time and energy overheads by 76-100% and 49-79% respectively.

13 Index Terms—energy harvesting, checkpointing, embedded
14 software

15 I. INTRODUCTION

16 Energy-harvesting systems power themselves by extract-
17ing energy from the environment [1]. However, the energy
is provided is often highly temporally dynamic, providing an
19 intermittent supply that is incapable of sustaining computation.
20 This is because processors switch off when the supply drops
21 below their minimum operating voltage and, when power is
22 available again, restart computation from the beginning.

To manage an intermittent supply, one approach is to use a
24 battery or supercapacitor to buffer energy. However, the level
2s0of miniaturisation required to realise medical implants [2]
s 0r visions of ‘smart dust’ [3] causes energy storage to be
27 minimised, constraining the computational ability of systems.
23 Recently, a different approach (Mementos [4]) was proposed,
20 which uses the well-known concept of checkpoints [S] placed
30 at compile-time. Mementos saves periodic snapshots of system
31 state to non-volatile memory, which enable it to return to
s2a previous checkpoint after a power failure. A number of
a3 checkpoint placement heuristics are proposed, including at the
34 beginning of every function-call or before any loop. At run-
3s time, when these checkpoints are reached, the supply voltage
3 (Vce) of the processor is inspected using the an analog-to-
a7 digital converter (ADC). If it is deemed to be failing (Ve <
ss a threshold V)), a snapshot of the system state is saved to non-
ss volatile memory. This requires regular polling of the supply
40 voltage, and can result in multiple snapshots being saved when

23

D. Balsamo, A. S. Weddell, G. V. Merrett and B. M. Al-Hashimi are with
the Pervasive Systems Centre, Electronics and Computer Science, University
of Southampton, UK.

D. Brunelli is with the Department of Industrial Engineering, University of
Trento, Italy.

D. Balsamo and L. Benini are with the Department of Electrical, Electronic
and Information Engineering “Guglielmo Marconi” (DEI), University of
Bologna, Italy.

<
3
&

Restore Restore

Hibernate \/’ Hlbernate Hibernate

\ Restore

>[:“s

<<

Voltage (V)

‘T
I

<
E!

Supply

Active Active [Hibernating] __ Active | Hiber.[Active]

Time

[Hibernating |

Fig. 1. Operation of Hibernus in response to intermittent supply voltage.

41 the supply voltage is close to the threshold; both introduce time
«2and energy overheads.

a3 This brief proposes Hibernusﬂ a new approach which
as automatically saves a snapshot only once (without the need for
ss checkpoint placement heuristics), immediately before power
s failure, then sleeps. Hibernus saves the system’s complete
s7volatile memory; this is enabled in part by developments
ssin Ferroelectric RAM (FRAM), a non-volatile memory tech-
ssnology that is more efficient than flash, and is now being
so monolithically integrated into low-power microcontrollers [6]].
st The speed and efficiency of integrated FRAM means we can
s2 react to power loss and save a snapshot using only the energy
s3 stored in a system’s decoupling capacitance.

II. HIBERNUS

54

ss The Hibernus approach has two states: active and hi-
s6 bernating. It moves between these states when the supply
s7 voltage (Vcc) passes thresholds (Fig. [I). It uses a hardware
ss interrupt to detect when Ve drops below Vi, then prompts a
se reactive hibernation — saving an immediate snapshot of volatile
e0o memory, then entering deep sleep. The snapshot is restored by
et another interrupt, when the supply voltage rises above V. The
s2 approach is illustrated in Fig. 2] and differs from Mementos,
63 Whose checkpoint locations are set in advance. Due to this,
e+ OUr approach is more energy- and time-efficient than existing
ss approaches (experimentally demonstrated in Sec. [[II), and does
es not depend on checkpoint placement heuristics.

Hibernus is application-agnostic and transparent to the
es programmer, because it can reactively hibernate at any time
eo during the execution of an application. Therefore, to save a
7o snapshot of system state, it copies all registers and volatile
71memory to non-volatile memory. The energy consumed by

67

'In computing, ‘hibernation’, from the Latin hibernus, is the process of
saving state to allow power to be removed.

|
J/ S1 ~ S22 N\ |
| - =g T |
Normal Operation | | | v |
; R [< In-built
|
Hibernate Signal s2/2 ! _ 1 decoupling |
Generator | Processor T capacitance |
|
R | xC |
! [
T

|
J MSP430FR5739 Evaluation Board

Save snapshot to

non-volatile memory Restore Restart =
state application
| Sleep |_I_ N - - N Fig. 3. The test platform used to experimentally validate Hibernus.
Loooooo oo | [Setup tbemat mermpt [
Fig. 2. Flow-chart illustrating the Hibernus approach. 106 checkpoints per complete execution of the algorithm, T, is

w7the time taken for an ADC reading of V¢, and Py is the

. . . roportion of checkpoints resulting in a snapshot, taking 7.
72 this process, E,, depends on the size of the volatile memory108p P P J P &4

73 and the energy consumption for copying each byte.

Algorithm Restore snapshot Monitoring and save snapshot
=~ ~~ T, ——
Ea = naEa + ’n,ﬁE/@ (1) Tmemento's = Ta + n, (Tr + 27’lm)+nm(Tm + PsTs) (4)
Here, n, and ng are the sizes of the RAM and registers ~'°% execution No. intermuptions ===

75 (in bytes). F, and Eg are the energy required to copy each
76 RAM and register byte to non-volatile memory (J/byte).

77 Hibernus requires sufficient non-volatile memory to save the
7s contents of all processor registers and RAM. This is the case
7o with modern microcontrollers, e.g. [[6]. It also requires enough
g0 energy to be stored in the capacitance between the supply rails
s1to save a full snapshot. Energy harvesting systems normally
g2 operate across a range of voltages, from Vi, to Vi Below
83 Viin, processors may operate unpredictably (brown-out), or'"®))])
s shut down completely. Given the total capacitance (3" C), the ''® Hibernus has been validated with an intermittent power sup-

ssenergy s stored between a given voltage V and Vi is: 17 ply and representative workload. Its energy and time overheads
118 have been evaluated, and compared against Mementos.

100 Hence, Thibernuss < Tmementos provided n,(T,/2n.,) +
10N Ty + (M Ps — n,)Ts > n,Th; that is, Hibernus spends
11 less time sleeping than Mementos spends on backtracks (re-
mzrunning code that was executed between a snapshot and a
nspower interruption), sampling V., and redundant snapshot
na saves. This is evaluated experimentally in the next section.

III. EXPERIMENTAL VALIDATION

2 2
By = Vain e

2 19 A. Implementing Hibernus
sV is used to define the threshold Vy, and Vy is set higher to 120
s7add hysteresis, allowing the system to restore without taking
s the V. below V4. For small embedded microcontrollers (with
sorelatively small n,) using fast-write non-volatile memory
9 (therefore relatively low E,), it is possible to save a snapshot

While most microcontrollers have flash non-volatile mem-
izrory (and consequently a high E,), processors are emerging
122 that incorporate fast, low-power FRAM rather than flash (and
izzhence have a low E,). The test platform (Fig. [3) uses a
3 <)) . 1zadevelopment board combining a Texas Instruments MSP430
o Wltho?‘t addltlo.na.l C (usmg' only the system’s .decouphng% processor [6] with FRAM non-volatile memory. This means
% ca‘pacuance); this 18 exp'lored in Sec. {lIll However, if E5 < Eo it it decoupling capacitance alone allows Es >> E, when
awith V' = Vi, it will not be possible to guarantee that ¢, _ v, requiring no additional energy storage (battery or
94 snapshots can be taken reliably, and extra C' must be added. 128 large capacitor) to support Hibernus.

% 'The tot.al t%me, Thibernus, 10 execu.te a test alg"mhm Wlth129 The platform’s datasheet parameters were inspected, and
s Hibernus is given by (8), where T, is the CPU time required i4enified E,, as 4.2 ni/byte and Ej as 2.7 nl/byte, with a

o to execute the algorithm, n, is 'number of power in'terrupti'ons 131 total RAM size of 1024 bytes and register size of 524 bytes.
98 (whe.re Vee < Viin) per algorithm exec'utlon, T is the. Ume . The platform operates with a Vi = 3.6 V and Vi, = 2.0 V.
* r.equlred t(,) save a snapshot to non-volatﬂe memory, ;. is the Using (I), a complete operation copying all registers and RAM
1% Flme required tf) restore from .non-volaule memory, and T 134 to FRAM consumes 5.7 pJ. The decoupling capacitance on the
101is the average time spent sleeping (after a snapshot has been135 board totals 3> C = 16 yuF. Using , it was found that this
e saved but before Ve = Vinin, and on power-up when Vinin < 136 alone is sufficient for Hibernus and Vi was set to 2.17 V. It was
0 Vee < VR)- 137 found empirically that Vg = 2.27 V was sufficient for reliable

Algorithm Save snapshot Sleep 1zs operation. The test platform’s V¢ input (S2) is connected to
~= ~= — 130 the output of a signal generator (S§7) through a diode, which
@E = Ta +\n;(T +\Tf/+)) prevents back-flow of charge to the harvester (Fig. [3). Square

Total execution No. interruptions Restore snapshot 11 and sinusoidal traces (Fig. [d) with a peak amplitude of 3.6V
14 The total time, Tiementos, tO €xecute an algorithm with 142 are presented as examples. The slower decay of S2 compared
10s Mementos is given by (@), where n,, is the number ofisto SI is due to the input diode; the slow decay on the negative

-)) N
18
S R AN ya N\
g:g) 18 | —Input Voltage S1
G] —Processor Vce S2
> -3.6

3.6

1.8 [——

0.0

0 100 Time (ms) 200 300

Fig. 4. Measured behavior of signals S7 and S2 (Fig.|3) with (a) 6 Hz square-
wave input; (b) 6 Hz sinusoidal input.

#include "hibernus.h"
int main (void) {
if (flag) restore(); //restore system state
else initialise(); //initialise hibernus
// application code goes here

}

__interrupt void COMP_D_ISR(void)
hibernate();

}

{

//save system state & sleep

Fig. 5. Example code used for evaluation of Hibernus.

122 edge illustrates the discharge of the decoupling capacitance by
s the current drawn by the processor.

Hibernus functionality is contained within the
wrhibernus.h library file; application developers need
usonly include this library and call the initialise(),
uwehibernate () and restore () routines, as illustrated
ioin Fig. 5] As shown in Fig. [2] the algorithm requires that
is1interrupts are generated when V.. passes Vg and Vg; this
1s21s facilitated by comparators and voltage references. The
1ss test platform has an on-chip comparator configured with an
1sa on-chip variable reference voltage generator, and an external
155 voltage divider (R = 200 k2) giving V,./2, as inputs. This
1s6iS set up in the initialise () routine. Dependent on
157 whether the system is hibernating or active, the interrupt is
s set to trigger off either V. < WV or V. > Vk. The handler
1se then calls hibernate () or restore ().

When hibernate () (Fig. @) is called, it first pushes the
161 core registers onto the FRAM memory. It then copies the entire
1.2 RAM contents (stack segment, local and global variables) into
1sathe FRAM, followed by the general registers, and finally the
16« Stack Pointer (SP) and Program Counter (PC). It then sleeps in
1es @ low-power mode. The system remains in sleep mode until
166 Voe > Vk. The restore () routine is then called and the
1s7 complete previous system state is restored. The system phases
1es the restore of the memory locations to reinstate its operating
1e0 state reliably. The general registers are restored first, followed
170 by the RAM, and lastly the core registers including the SP and
171 PC. When the PC is restored from the snapshot, the system
1722 implicitly transfers to the application and resumes operation.

146

160

173 B. Experimental Setup
172 The evaluation test case represents a common long-running

i7s task for energy harvesting systems: a Fast Fourier Transform

176 (FFT) analysis of three arrays, each holding 128 8-bit samples
177 of tri-axial accelerometer data. The FFT algorithm was chosen
izsas an illustration: Hibernus is application-agnostic and will
179 provide the same functionality to any embedded program, with
1o minimal impact on the application developer (see Fig. [3).
181 Supply interruption frequencies f, (of 2, 4, 6, 8, 10 Hz,
iezand DC) were chosen to represent the types of intermittent
183 power output that may be expected from an energy harvester
184 (.g. micro wind turbine or inductive power transfer to a
s rotating object). They allow the overheads of the Hibernus
18s approach to be compared against Mementos.

Our implementation of Mementos places static checkpoints
188 after function calls or before loops, referred to as ‘function’
1o and ‘loop’. ADC (V,.) measurements are taken and compared
190 to a threshold (V,, = 2.5V), chosen for each scheme to ensure
191 that a snapshot can be saved at least once before power failure.
122 At each checkpoint, V. < Vj, indicates imminent power
193 failure, and a snapshot is saved. Mementos consumes energy
14 for multiple checkpoints, both for ADC readings and saving
1es snapshots. In contrast, Hibernus consumes energy for a single
196 hibernation per power-outage, plus the quiescent consumption
197 of the voltage reference and comparator.

The power consumption at mid-range between Vip.x and
190 Vinin Of the FFT algorithm (without Hibernus or Mementos
200 running), ADC, voltage reference, and comparator were mea-
201 sured as 2.7 mW, 310 uW, 17 uW and 130 uW respectively.
202 These values are used to estimate the energy consumption
203 of the different approaches. For each of the three schemes,
204 and at each frequency f,, we evaluated: (1) the number of
205 system restores required to complete the computation of the
206 FFT algorithm, (2) the number of times snapshots were stored,
207 or checkpoints were called, (3) the energy overhead, and (4)
208 the processor time overhead. The results were averaged over
200 three complete executions of the test program. The overheads
210 are evaluated with reference to the time and energy for the
211 processor to complete the FFT algorithm with a steady supply:
212 without Mementos or Hibernus, it completed in 100 ms.

187

198

213 C. Results

2 Fig. [6fa) shows how many checkpoints were made by
215 Hibernus and Mementos during a single execution of the FFT.
216 As can be seen, Hibernus reduces the number of times that
217 checkpoints are taken. This can also be seen from Fig. |7} which
218 shows when Hibernus and Mementos checkpoint (for the case
aiswhen f, = 6 Hz), whereas Hibernus snapshots (hibernates)
220 only once per interruption (twice in total), Mementos executes
221 a static number of checkpoints (12 and 27 times), although
222 some are repeated when Voe < Viyin during a snapshot.

Fig. @b) shows that, at higher f, values, Hibernus com-
224 pletes execution of the FFT over fewer power interruptions
225 (3, instead of 5). This is because the mean processor time
226 overheads (Fig. [6(d)) of Hibernus are 80-100% shorter than
227 Mementos (function), and 76-100% shorter than Mementos
228 (loop); this leaves more time to execute the application (also
220 shown in Fig. [/} where the arrows denote the total execution
230 time). Furthermore, Fig. [6{c) shows that the energy overheads
2a1 of running Hibernus are 65-79% lower than Mementos (func-
22 tion) and 49-76% lower than Mementos (loop).

223

-e-Hibernus
-B Mementos (function)
-&Mementos (loop)

e

No. Checkpoints

(a)
¢

No. Sys. Restores

—
(=3
S o

wn
S

Energy O/head (%)

(=3
(s}

wn
(=}

Time O/head (%)

]
(%

10
fi Supply Interruption Frequency (Hz)

Fig. 6. Comparison of Hibernus against Mementos, showing performance
when running the FFT text program (averaged over 3 executions): (a) number
of checkpoints/snapshot saves, (b) number of times snapshots were restored,
(c) energy overhead, (d) time overhead.

4
3) NN
g 5 : \: / ¢ / X X
> — T ——] 1 e
0
@ Hibern.
£ 1 FFT
5]
=]
T Restore
AC'point
g & 1 FFT
L3
=<
Restore
) ’g C'point N |
;’é il | 1 FF
=}
E Restore
0.00 0.10 0.20 0.30 0.40 0.50
Time (s)

Fig. 7. Results comparing when Hibernus and Mementos hibernate, check-
point, and restore. Results shown were measured over a complete execution
of the test FFT algorithm, powered by a sinusoidal supply with f, = 6 Hz.

233 The benefits of Hibernus are particularly noticeable at f,
2340 Hz (i.e. DC, when V.. is uninterrupted), where negligible
sstime and energy overheads are imposed (see Fig. [f[c) and
236 (d)), while Mementos still requires the same number of check-
237 points. This increases the required processor active time and
2 energy by at least 10% and 11% respectively. Table [[] shows
230 experimentally obtained values for the parameters of (3) and
2«0 (@). Evaluating these equations support our measured results,

TABLE I

EXPERIMENTALLY MEASURED PARAMETERS (SEE EQUATIONS (3), (@)).
f, r, 1, 1, T, T, |Hib. Loop Function

(Hz) | (ms) (ms) (ms) (ms) (ms)| n. | n, n, P, | n. n, P
0 | 100 285 22 065 - | - | - 12 000 - 27 0.00
2 | 100 285 22 065 17| 0 | 0 12 008 0 27 0.1
4 1100 285 22 065 95| 1 | 1 12 025 1 27 019
6 | 100 2.85 22 065 65| 2 | 2 12 050 2 27 033
8 | 100 285 22 065 38| 3 | 5 12 100 5 27 0.70
10 | 100 2.85 22 065 28| 3 | 5 12 08| 5 27 067

21and confirm that Hibernus spends less time sleeping than
22 Mementos spends on redundant snapshot saves, backtracks,
23 and sampling V..

IV. CONCLUSION

25 A new approach for sustaining computation during inter-
246 mittent supply, Hibernus, has been proposed. This allows a
247 sSystem to sustain computation through power outages which
asgare common in energy-harvesting systems. It has a lower
29 energy and time overhead than a recently proposed scheme,
250 as demonstrated experimentally. This contributes to the devel-
25t opment of future energy harvesting systems.

244

ACKNOWLEDGMENT

253 This work is part of the PRIME programme: EPSRC grant
2ss EP/K034448/1 (www.prime-project.org). It was also supported
255 by a Telecom Italia s.p.a. PhD grant, and PHIDIAS, an EU
256 7th Framework Programme project (CA 318013).

252

257 REFERENCES

258 [1] P. D. Mitcheson et al., “Energy Harvesting From Human and Machine
259 Motion for Wireless Electronic Devices,” Proc. IEEE, vol. 96, no. 9, pp.
260 1457-1486, Sept. 2008.

261 [2] M. R. Mhetre et al., “Micro energy harvesting for biomedical applications:
262 A review,” Proc. ICECT 2011, vol. 3, pp. 1-5, 8-10 April 2011.

263 [3] B. A. Warneke and K. S. J. Pister, “An ultra-low energy microcontroller
264 for Smart Dust wireless sensor networks,” Proc. IEEE ISSCC 2004, pp.
265 316-317, vol. 1, Feb. 2004.

266 [4] B. Ransford et al., “Mementos: System Support for Long-Running
267 Computation on RFID-Scale Devices,” ASPLOS11, Newport Beach, CA,
268 USA, Mar. 5-11, 2011.

269 [5] P. A. Bernstein et al., “Concurrency Control and Recovery in Database
270 Systems,” Addison-Wesley Longman Publishing, Boston, USA 1987.

271 [6] M. Zwerg et al., “An 82uA/MHz microcontroller with embedded FeRAM
272 for energy-harvesting applications,” Proc. IEEE ISSCC 2011, pp.334-336,
273 20-24 Feb. 2011.

www.prime-project.org

	Introduction
	Hibernus
	Experimental Validation
	Implementing Hibernus
	Experimental Setup
	Results

	Conclusion
	References

