Scientific Annals of Computer Science vol. 22 (1), 2012, pp. 5-60
DOI: 10.7561/SACS.2012.1.5

Contract-Oriented Computing in CO,

Massimo BARTOLETTI!, Emilio TUOSTO?, Roberto ZUNINO3

Abstract

We present COo, a parametric calculus for contract-based comput-
ing in distributed systems. By abstracting from the actual contract
language, our calculus generalises both the contracts-as-processes and
contracts-as-formulae paradigms. The calculus features primitives for
advertising contracts, for reaching agreements, and for querying the
fulfilment of contracts. Coordination among participants happens via
multi-party sessions, which are created once agreements are reached.
We present two instances of our calculus, by modelling contracts as pro-
cesses in a variant of CCS, and as formulae in a logic. We formally relate
the two paradigms, through an encoding from contracts-as-formulae
to contracts-as-processes which ensures that the promises deducible
in the logical system are exactly those reachable by its encoding as
a process. Finally, we present a coarse-grained taxonomy of possible
misbehaviours in contract-oriented systems, and we illustrate them
with the help of a variety of examples.

Keywords: contracts, concurrent constraint programming, multiparty
sessions

1 Introduction

The increasing spread and complexity of distributed computing services
is changing the way services are designed, implemented and exploited. A
key problem is how to drive safe and fair interactions among distributed

!Dipartimento di Matematica e Informatica, Universitd degli Studi di Cagliari, via
Ospedale 72, 09124 Cagliari, Italy. Email: bart@unica.it

2Department of Computer Science, University of Leicester, UK

3DISI, Universita di Trento and COSBI, Italy

6 M. Bartoletti, E. Tuosto, R. Zunino

participants which are possibly mutually distrusted, and have possibly
conflicting individual goals.

Typically, this problem is tackled quite unfairly: service providers fix
some terms of usage (Service-Level Agreement, SLA), which have to be
accepted by the client before using the service. SLAs are legal documents,
written in natural language, normally so long and convoluted that they are
accepted by default. If a provider infringes its SLA, clients could legally
prosecute the provider, but the potential costs of a legal action discourage
clients from taking legal steps, especially when the transaction involves small
amounts of money.

Traditionally, SLAs are mostly meant to protect the service provider,
while the client has to trust that the service correctly implements the required
functionalities. The acceptance of the SLA has the purpose of freeing the
service provider from responsibilities in case of hardware and/or software
hazards, or to avoid costly or impossible tasks. On the other side, service
providers are rather reluctant to propose SLAs which offer strong guarantees
to clients. This is quite understandable, since it would require providers to
certify that their services actually satisfy the promised properties — which
most often is unfeasible. This situation becomes even more complex when the
boundary between providers and clients is fuzzy, as it happens for services
composed together from other services, where the client of a service may be
the provider of another one.

Contract-oriented computing is a software design paradigm where the
interaction between clients and services is disciplined by formal entities,
named contracts. The life-cycle of a contract-oriented service can be thought
as composed of three phases. In the first phase, contracts are used to
negotiate the required and offered behaviour. At the end of this phase,
contracts may be stipulated: when this happens, the terms of service they
prescribe become legally binding. In the last phase, services execute their
tasks. While doing that, they may inspect the contracts they have stipulated,
to check e.g. what are their current duties, and what has to be expected
by the other parties. In this framework, enforcing a contract through a
legal authority has to be considered as a last resort. Typical situations
would be resolved automatically by the service infrastructure itself, e.g. by
providing suitable compensations to the injured party, and by inflicting the
right punishment to the offending party.

Contracts have been investigated from a variety of perspectives and
using a variety of different formalisms and analysis techniques, ranging from

Contract-Oriented Computing in CO2 7

c-semirings [8, 9, 18], to behavioural types [7, 12, 11, 13], to formulae in
suitable logics [1, 4, 25], to categories [10], etc. This heterogeneous ecosystem
of formalisms makes it difficult to understand the essence of those methods,
and how they are related.

As a first step towards a unifying framework for reasoning about con-
tracts we propose a generic calculus for COntract-Oriented computing (in
short, CO3). By abstracting away from the actual contract language, our
calculus can encompass a variety of different contract paradigms. We pro-
vide a common set of primitives for computing with contracts: they allow
for advertising and querying contracts, for reaching agreements, and for
fulfilling them with the needed actions. All these primitives are independent
from the chosen language of contracts, and they only pivot on some general
requirements fixed in the contract model proposed here.

Synopsis. Our main contributions are centred around COs which is de-
signed around three main principles.

The first is the separation of concerns between the way contracts are
modelled and the way they are used in distributed computations. Indeed,
we abstract from the actual contract language by only imposing a few
general requirements. In this way, we envisage our calculus as a generic
framework which can be tuned by instantiating the contract model to concrete
formalisations of contracts. In § 2 we present the abstract contract model,
followed by two concretisations: in § 2.1 we adopt the contracts-as-processes
paradigm whereby CCS-like processes represent contracts that drive the
behaviour of distributed participants; in § 2.2 we embrace instead the
contracts-as-formulae paradigm, by instantiating our calculus with contracts
expressed in a suitable logic. We relate the two concrete models in § 2.3,
first with the help of a few examples, and then by showing that contracts-as-
formulae, expressed in a significant fragment of our logic, can be suitably
encoded into contracts-as-processes (Theorem 2.7).

The second design principle of our calculus is that its primitives must be
reasonably implementable in a distributed setting. To this purpose, we blend
in § 3 a few primitives inspired by Concurrent Constraint Programming
(CCP [27]) to other primitives inspired by session types [21]. The key notions
around which our primitives are conceived are participants and sesstons.
The former represent distributed units of computation that can advertise
contracts, execute the corresponding operations, and establish/check agree-
ments. Each agreement corresponds to a fresh session, containing rights and

8 M. Bartoletti, E. Tuosto, R. Zunino

obligations of each stipulating party. Participants use sessions to coordi-
nate with each other and fulfil their obligations. Also, sessions enable us
to formulate a general notion of “misbehaviour” which paves the way for
automatic verification. We suggest possible variants of our primitives and of
the contract model (§ 3.7).

The third design principle of COsis that it must allow for modelling
a wide variety of misbehaviours, specific to contract-oriented systems. Re-
markably enough, in our approach contracts are not supposed to be always
respected after they have been stipulated. This motivates the fact that, in
COg, contracts are not discharged after they have been used to establish a
session among a set of participants, as usually done e.g. in the approaches
dealing with behavioural types. In our approach, contracts are also used to
drive computations after sessions have been initiated, e.g. to detect if some
violation has happened, and to identify the responsibles. In § 3.5 we sketch
a concise taxonomy of what can go wrong in contract-oriented systems, and
in § 3.6 we present a collection of relevant misbehaviours.

In § 4 we discuss some related work, and in § 5 we conclude. Appendix A
contains all the proofs of our statements.

A simple example. We now give an overview of our proposal with the
help of a simple example. To do that, we abstract away from the actual
language for describing contracts: we just illustrate the main features of
CO9, and how contracts are exploited in our framework.

Consider an on-line marketplace where sellers advertise their products,
and buyers can shop. In COy we can specify a system composed by a seller
A, a buyer B, and a marketplace M as follows:

representing three distributed participants running in parallel. Within the
square brackets, the ellipses stand for a process which describes the state
and behaviour of each participant.

For instance, assume that the seller first checks that a payment has
been made, and then ships some goods to the buyer, while the buyer simply
pays. We informally describe the contracts of A and B as follows:

Seller contract: ca = “I promise to ship after the buyer has paid”

Buyer contract: cg = “I promise to pay”

Contract-Oriented Computing in CO2 9

The behaviour of A and B can be formalised in COs as:

Seller behaviour: P = (v) tellm Ly ca. asky @paiaz. doy, ship
Buyer behaviour: Q = (z)telly . cg. do, pay

In their first steps, both seller and buyer advertise their contracts
(ca and cg, respectively) to the marketplace M. This is done through the
primitive tell. The effect of telly |, ca is to move the latent contract |, ca
to the environment of M. Once the two tell prefixes have been executed, the
system A[P] | M[---] | B]Q] becomes:

(v,2) (Alasku Gpaiaz. douship] | MLy ca |1z e |-+] | Bldopay]) (1)

It is important to note that, as long as the contracts are latent (sym-
bolically, represented by prefixing ca and cg with |), neither A nor B have
any obligations. As typically done in process calculi, the scope of delimiters
has been expanded in the system (1).

Let us now turn our attention to the marketplace M. In our scenario, M
acts as a brokerage service between sellers and buyers. Indeed, the first step
of M is to inspect the latent contracts in its environment, in order to find
agreements among participants. This is modelled by the recursive process
X = (u)fuse, ¢. X. The prefix fuse, ¢ looks for a set of latent contracts
that ensure (at least) a given level of service agreement, described by the
condition ¢. The actual nature of such conditions, and when contracts satisfy
them, depend on the contract language adopted (e.g. those described in § 2.1
and § 2.2). Here we assume that ¢ requires “A ships the goods and B pays”,
which is satisfied by the contracts ca and cg. Once the fuse, ¢ is executed,
the system (1) (where the ellipses are replaced by X) evolves to:

() (Alasks Gpaiar- dogship] | M[X] | Bldospay] | slea |cs]) (2)

Basically, the fuse has initiated a new session s among A, B and M, and it
has moved the contracts ca and cg to the environment of s. Note that in (2)
these contracts are no longer latent; also, the variables u, v and z involved in
the latent contracts are now instantiated to the session name s. The shared
name s allows A and B to coordinate, by accessing the environment of s
through the primitives ask and do.

The next step is performed by B, which fires the prefix dos pay. This
makes the contracts in s adjust themselves to reflect the fact that B has

10 M. Bartoletti, E. Tuosto, R. Zunino

paid. Formally, this is modelled by an LTS on contracts such that cp |

B does pa . . .
g —2P¥y - The contract ¢ represents a situation where A has to ship,

while B has paid (and so, he has no further obligations). The system (2)
evolves then to:

(s)(A[asks paiar. dogship] | M[X] | B[0] | s[c]) (3)

Assume that the condition ¢p,iq2 requires that the goods have been paid to
A. The prefix asks ¢pqiq7 in A can now be fired, because the contract c in s
satisfies ¢pqig7. Therefore, the system (3) may evolve to:

() (Aldos ship] | M[X] | BI0] | s[c]) (4)

The seller can now perform her last action, i.e. shipping the goods. Assume

A hi
that ¢ does ship
the system (4) finally evolves to:

¢/, where the contract ¢’ prescribes no obligations. Then,

(s)(Al0] | MIX] | B[o] | s[c)

The example above shows some of the main features of COs . However,
to keep it small, we have not included in the example some distinguished
features, which we briefly discuss below.

First, the primitive fuse allows for agreements which involve an arbitrary
number of participants and contracts. Technically, this is obtained by
stipulating a minimal set of contracts which satisfy the given condition, and
then by opening a multiparty session among all the involved participants.

Second, COs allows for stipulating contracts with multiple levels of
compliance. Contracts can expose optional behaviours, and the condition ¢
in fuse ¢ ensures a minimal level of “static” agreement. The actual obligations
of a participant (contained in the contract) may be discovered later on in the
execution, depending on the other contracts involved in the agreement, and
possibly also on the actions performed in the session (see e.g. Example 3.4).

Third, participants are never considered trusted in COsg, i.e. we do not
assume that a stipulated contract is always respected. This makes CO»
a suitable language for modelling a variety of attacks in contract-oriented
applications, as shown e.g. by Examples 3.10, 3.11, 3.6, 3.12, and 3.13. Since
it is not possible, in general, to guarantee that the promises in a contract
are followed by facts, a minimal safety requirement is that, if some promise
has not been maintained, then it is possible to identify the responsibles.

Contract-Oriented Computing in CO2 11

Our framework allows for identifying, at each step of the execution, who
is culpable of such violations. Technically, this is done through a relation
c< A between participants and contracts, which has to be specified in each
instance of the abstract contract model. Intuitively, ¢~ A means that A has
no obligations in the contract c. This allows us to specify (in Definition 3.5)
when a participant is honest in a given context. Roughly, A[P] is honest in
S when in all fair maximal computations of A[P] | S, ¢ A holds true for
all contracts c¢ stipulated by A in the system. The property of being honest
in all possible contexts is a main design goal for contract-oriented systems,
because when a participant satisfies it, she is guaranteed that no (honest)
judge will ever deem her culpable of violations.

2 An Abstract Contract Model

Before providing a formal definition, we sketch the basic ingredients of a
generic contract model.

We start by introducing some preliminary notions and definitions;
some of them will only be used later on in § 3. Participants are those
agents which may advertise contracts, establish agreements, and realise
them. Sessions are created upon reaching an agreement, and provide the
context in which participants can interact to fulfil their contracts. Let N
and V be countably infinite, disjoint sets of names and variables, respectively.
Assume N partitioned into two infinite sets Np and Ng, for names of
participants and of sessions, respectively. Similarly, V is partitioned into two
infinite sets Vp and Vg, for variable identifiers of participants and sessions.
A substitution is a partial map o from V to N; we write u € dom o when
o is defined at u, and require that ¢ maps a € domo N Vp to Np and
s € domo N Vg to Ns.

Our main notational conventions are displayed in Table 1.

The first ingredient of our contract model is a set A of atoms. Intuitively,
these will be the basic statements contained in contracts, like e.g. pay and
ship mentioned in the example in § 1.

The second ingredient is a set C of contracts. We are quite liberal about
it: we only require that (i) there exists a set I of unsigned contracts such
that A says v € C for all participants A and v € I', and (i7) ¢ | ¢ € C for all
¢, € C. The contract A says v can be thought of as “y signed by A”, while
¢ | ¢ can be thought as a contract comprising both ¢ and ¢

12 M. Bartoletti, E. Tuosto, R. Zunino

n,m,...cN names, union of:
AB,...c Np participant names
s,t,...€Ng session names

1% variables, union of:
a,b,...€Vp participant variables
z,Y,... € Vg session variables

u,v,... e NUV names or variables

AB,...e NpUVp participant names/variables

a,o...e A atoms

v ,...€l unsigned contracts

e, cd,...eC contracts (of the form A says v)

cld contract comprising ¢ and ¢’

¢, ,...e P observables

¢ Adoes oy LTS on contracts

Al A has no obligations in ¢

cko c entails ¢

Table 1: Notation

A labelled transition relation 29 %; on contracts models their evolu-
tion under the actions A does a performed by participants.

Two further ingredients are a set ® of observables (properties of con-
tracts) and an entailment relation - between contracts and observables.
Note that we keep distinct contracts from observables. This has the same
motivations as the traditional distinction between behaviours (systems) and
their properties (formulae predicating on behaviours), which brought in
plenty of advantages in the design/implementation of systems.

The last ingredient of our contract model is a relation < between
participants and contracts. We write A< ¢ to mean that the contract ¢
prescribes no obligations to the participant A. This does not mean that
A will remain without any obligations while ¢ evolves. Possibly, some
obligations will arise when some actions are performed by other participants
involved in ¢. When A< ¢ is false, we say that A is culpable in c. We require
that A< ¢ whenever ¢ has no occurrences of A says -- -, i.e. A is not culpable
in contracts where she has not made any statement.

Definition 2.1 formalises the above concepts.

Contract-Oriented Computing in CO2 13

Definition 2.1. A contract model is a tuple (A,C,—», ®, b, <) where
e A is a set of atoms.

e C is a set of contracts, such that (i) IT. VA € Np,v €. A says v € C,
(11) Ve,d € C. ¢ | ¢ € C, and (iii) for some signature 3, C forms a
subalgebra of a term-algebra Typn(X).

Ad . . .
c =5 % s a labelled transition relation over contracts.

® is a set of observables, forming a subalgebra of a term-algebra
Tyun (X)) for some signature 3.

e I is a contract entailment relation between C and ®.

e C s a contract fulfilment relation between C and participants, such
that A< ¢ for all ¢ without A says.

We illustrate the contract model with the help of an informal example.

Example 2.1. A seller A and a buyer B stipulate a contract cg, which binds

A to ship an item after B has paid. Let pay be the atom which models the

. . » Bd ,
action of paying. The transition cg = PHy 1 models the evolution of ¢o

mnto a contract ¢y where A is obliged to ship, while B has no more duties.
Now, let ¢ be the observable “A must ship”. Then, we would have co t/ ¢,
because A does not have to ship anything yet, while c1 & ¢, because B has
paid and so A must ship. It would not be the case that A< ¢1, because B has
paid, while A has not yet fulfilled her obligation to ship.

We remark that the use of term-algebras in Definition 2.1 allows us to
smoothly apply variable substitutions to contracts and observables. Accord-
ingly, we assume defined the sets var(c) and var(¢) of variables of contracts
and observables. Note that actions are not required to be in C. Including
them in C would allow for recording the history of the past actions within
contracts, see e.g. § 2.2.

2.1 Contracts as Processes

The first instance of our contract model appeals to the contracts-as-processes
paradigm. A contract is represented as a CCS-like process [24], the execution
of which dictates obligations to participants.

14 M. Bartoletti, E. Tuosto, R. Zunino

A contract A says 7 represents a participant A committed to the
behaviour specified by the process 7. A pending message A)a)B represents
a message sent on channel a by A, but not received by B yet. A process 7 is
a (possibly recursive) composition of prefix-guarded sums of processes. The
prefixes are the atoms, and they represent silent, input, or output actions.
Unlike in the standard CCS, input and output prefixes declare not only the
communication port, but also the intended partner. In an output prefix
3) A, the participant A denotes the receiver of the message, while in an input
prefix B)a, B stands for the expected sender.

Definition 2.2. We define a contracts-as-processes language as follows

o A is the union of three disjoint sets: the inputs A)a, the outputs a)A,
and the internal activity T, where a is a channel name.

o C is the set of process terms generated by the non-terminal ¢ (the set
of terms I is generated by v):

=T ‘ A)a } aB
=) 0G0 ‘ vl } X
c == 0 ‘ A says vy } cle } A)a)B

where we assume variables X to be defined through (prefir-guarded
recursive) equations X = ~. We also denote with 0 the empty sum;
trailing occurrences of 0 may be omitted. The signature ¥ corresponds
to the syntax above.

o —» is the least relation closed under the rules in Figure 1 and structural
equivalence = (defined with the usual CCS rules and A says 0 =0).

e ® is a set of terms on a signature Y/, including one sort interpreted
on atoms A (e.g. LTL or CTL formulae).

o ck ¢ is a decidable relation between the LTS of ¢ and ¢ € P.

o Al ¢ holds iff 3c,a. ¢ Adoesay, v
We briefly comment on the rules in Figure 1.
The first row defines an LTS < for 4-processes. The rules are quite
standard: (PREF) allows for firing an atom, (PAR) for making two y-processes
evolve in parallel, and (DEF) for expanding a process definition.

Contract-Oriented Computing in CO2 15

o N X< %
ay+v" — v (PREF) ! R ! (PAR) v (DEF)
! «
Ml =l X =4
y 28,
(OuT)
A does 3a)B ’
A saysy ———» Asaysy' | A)a)B
Aa
Y7
(IN)
B says v | A)a)B Bdocs Aoy says '
T A does «
=] ——— ¢}
Z doel (Tav) ! — ! (CPAR)
A says v ———» A says ' c1 | e %% | e

Figure 1: Labelled transition relation of contract-as-processes

The other rules define the LTS —» of contracts, as prescribed by Defi-
nition 2.1. The rule (OUT) implements an asynchronous output: when the
contract of A is willing to send a message on channel a to B, the pending
message A)a)B is put in parallel with the continuation of the contract of A.
The rule (IN) allows the participant B to perform an input, when a suitable
pending message is available. Note that the order of output messages is
not preserved in general. By rule (TAU), a contract willing to perform an
internal action 7 can do so and exhibit the label A does 7. Rule (CPAR)
makes two contracts evolve in parallel.

In this paper the actual choice of the set ® and of the relation is
almost immaterial. For the sake of the examples we choose for ® the set
of LTL formulae [17], where the atomic formulae are the atoms in A, and
F is Eprr where, for all traces n of ¢, the semantics of atoms is defined
as: n Ea < 3JA,n'. n= (A does a) 1. Decidability of I is ensured
by restricting contracts to finite control processes [16], i.e. processes where
parallel composition does not appear under recursion.

Concerning the fulfillment relation <, note that a process with an
output at the toplevel is always culpable, while an input at the toplevel
makes a process culpable only if the corresponding pending message is
available.

Example 2.2. Recall the buyer-seller scenario from Exzample 2.1. The
seller A first requires the buyer B to pay, then promises to ship some goods

16 M. Bartoletti, E. Tuosto, R. Zunino

to B. The buyer B promises to pay A, and then to receive the item. Let the
contracts of A and B be defined as follows:

ca = A says B)pay. ship)B

cg = B says pay)A. A)ship
A possible evolution of the contract cp | cg is then:
B does pay)

B does pIA, ca | B says A)ship | B)pay)A
A does B)pay
—

CA‘CB

A says ship)B | B says A)ship

A does SRIB, Ayship)B | B says A)ship

B does A)ship 0
—_—

Note that that the buyer contract cg in Example 2.2 is subject to
attacks. Indeed, A can use a different contract ca allowing her to receive the
payment without having to perform any other action (cf. Example 3.12). In
that case, she can legitimately choose not to ship, and still be regarded as
non culpable.

Further examples of contracts-as-processes will be provided in § 3.

2.2 Contracts as Formulae

For the second specialization of our generic model, we choose the contract
logic PCL [4]. A comprehensive presentation of PCL is beyond the scope
of this paper, so we give here just a brief overview, and we refer the reader
to [4, 3] for more details.

PCL extends intuitionistic propositional logic IPC [28] with the con-
nective —, called contractual implication. Differently from IPC, a contract
b — a implies a not only when b is true, like IPC implication, but also in the
case that a “compatible” contract, e.g. a — b, holds. So, PCL allows for a
sort of “circular” assume-guarantee reasoning, summarized by the theorem
F(b—a) A (a—»b) — aAb. Also, PCL is equipped with an indexed lax
modality _ says -, similarly to [19]. The proof system of PCL extends that
of IPC with the axioms in Figure 2, while remaining decidable.

Following Definition 2.1, we now define a contract-as-formulae language
which builds upon PCL.

Contract-Oriented Computing in CO2 17

T—>T

(9—>¢)—¢

(¢ = @) = (0=) = (¥ = 1) = (¢ >)
¢ — (A says ¢)

(A says A says ¢) — A says ¢

(¢ =) = (A says ¢) = (A says ¥)

Figure 2: Hilbert-style proof system of PCL (IPC axioms omitted)

Definition 2.3. We define a contracts-as-formulae language as follows:

o A is partitioned in promises, written as a, and facts, written as la.
o C =T is the set of PCL formulae, with the following syntax:
ce=L |a|-p|pVvp|pAp|[p=p|p—>p| Asaysc

We let ¢ | ¢ be syntactic sugar for ¢ A . The signature 3 comprises
the atoms A, all the connectives of PCL, and the _ says _ modality.

The labelled relation —» is defined by the rule:

Ad
c 5% ¢ | Asaysa | Asays'a

e d=C,and ¥ =3.

F is the provability relation of PCL.

A< ¢ holds iff ¢+ A says a implies ¢+ A says 'a, for all promises a.

Note that the definition of —» allows participants to perform any actions:
the result is that ¢ is augmented with the corresponding fact !la. We include
the promise a as well, following the intuition that a fact may safely imply
the corresponding promise. A participant A fulfils a contract ¢ when all the
promises a made by A have been followed by the fact !a.

Example 2.3. The contracts of seller A and buyer B from Example 2.1 can
be modelled by the following contract-as-formulae:

ca = A says ((B says pay) — ship) cg = B says pay
By the proof system of PCL, we have that:

ca | e F (A says ship) A (B says pay)

18 M. Bartoletti, E. Tuosto, R. Zunino

Example 2.4. Consider the following variant for the contracts of buyer and
seller introduced in Fxample 2.5.

ca = A says ((B says pay) — ship)
cg = B says ((A says ship) — pay)

By the proof system of PCL, we have that:

ca | cg F (A says ship) A (B says pay)

2.3 On Contracts-as-Processes vs. Contracts-as-Formulae

We now compare contracts-as-processes with contracts-as formulae. Our
main technical result is Theorem 2.7, where we show that contracts-as-
formulae, expressed in a significant fragment of PCL, can be encoded into
contracts-as-processes. Finally, we further discuss the differences between
the two contract models in some specific examples.

Concretely, we consider a fragment of PCL contracts comprising atoms,
conjunctions, says, and non-nested (contractual) implications. We call this
fragment 1N-PCL , after “PCL with 1 level of Nesting of connectives”. Then,
we provide an encoding of 1N-PCL into contract-as-processes (Definition 2.5)
and formally relate them.

Definition 2.4. We define 1N -PCL as the fragment of PCL where formulae
¢ have the following syntax:

c = Nier Ai says v
v o= Neg 3 | (Nier Bisaysbi) > N\je g2
| (Niex Bisays b)) = Njeya;

Definition 2.5. For all 1N-PCL contracts ¢ and set of participant names
P, we define the contract-as-process [c|p by the rules in Figure 3.

We now comment on the equations in Figure 3. All the rules are
parameterized by a set P of participant names/variables, which is used to
keep track of the participants mentioned in the contract. The encoding of a
signed contract A says 7 is just the encoding [v], prefixed with the signature
A says . The encoding of a conjunction of signed contracts ¢;, with i € Z, is
the parallel composition of the encodings [¢;].

Contract-Oriented Computing in CO2 19

/\ A; says ’YiLD = ||iez Ai says [’Yi]p
=
/\ aJ}P = ||jej OUTp(a;)
jeg
(/\Bz says bz) — /\ aj] = B1>b1. Bn>bn (||j€.7 OUT'p(a]))
“i€l.n jeJ P
(\Bi says b)) - N\ ajLD — 7.0+ 7.(|liezDEBT(B;,b;) | |l,e5 OUT»(a))
i€z JjeTJ

OUTp(a)=7.0 + > a)A.0UTp(a)
AeP
DEBT(A,a) = 7.DEBT(A,a) + A)a.0

Figure 3: Mapping from 1N-PCL contracts to contracts-as-processes.

The encoding of an (unsigned) atom a is the process OUTp(a). This
process can either perform an internal action and then terminate, or perform
an output a) A and then return to the initial state. The set P is used to send a
(non-deterministically) to each participant mentioned in the contract. This
is to accomodate the explicit receivers of contracts-as-processes with the fact
that, in 1N-PCL , actions are “broadcasted” to all participants. Note that
OUT (a) is a recursive process, where an output of a can be performed at each
recursion. This reconciles the fact that PCL has a non-linear interpretation
of actions (i.e. once an a is true, it can be “consumed” an arbitrary number
of times), while contracts-as-processes interpret actions linearly.

The encoding of an implication (A;c; ,Bi says bi)) — \;c7a; is a
process that first inputs all the premises bq,...,b, from the respective
senders, and then outputs (in parallel) all the consequences aj. This is done
through the recursive process OUT (a;) discussed above. Note that the order
in which the inputs are put is arbitrary. An alternative mapping could be:

[(/\ B; says b;) — /\ ajL) = IN({Bi)bi}icz, {aj}jer)
€T JjeT

IN(X,0) = Yorex TAN(X N\ {7}, 0) if X #0
, llaco OUTp(a) if X =0

We opted for the simpler encoding, because the order in which inputs
are executed is immaterial. Indeed, (i) all outputs are asynchronous and

20 M. Bartoletti, E. Tuosto, R. Zunino

replicated, and (7i) what matters is that all the inputs have a matching
output. In other words, it is not important if a blocked input prefix occurs
before or after another input prefix; the outputs in the consequence of —
will not be fired anyway.

The encoding of a contractual implication (/\;czBi says b;) — ¢ 7 2;
is a process which can either perform an internal action and terminate, or
perform an internal action and continue with the process ||;cz DEBT(B;,b;),
in parallel with ||;e; OUTp(aj). The outputs have the same behaviour as
in the case of standard implication. The process DEBT(B;, b;) waits for an
input of b;, but while doing so, it may perform internal actions. Therefore,
the participant who runs a DEBT(B;,b;) is culpable as long as he keeps
iterating. When the process eventually chooses to perform the input, it is
no longer culpable.

Theorem 2.7 below establishes a correspondence between contracts-as-
formulae and contracts-as-processes. It states that the formulae A says a
logically entailed by a 1N-PCL contract ¢ exactly correspond to those
actions labelling the traces of [¢] which lead to states where no participants
are culpable.

A technical issue is related to “ambiguous” contracts where some atom
is associated with more than one participant. We rule out this case by
restricting to non-ambiguous contracts, where instead each atom is said
by a unique participant. This requires to analyse the contract at hand in
order to tell, for each atom contained therein, the participant name which
“binds” it. Technically, this is modelled by the relation 7(c) between atoms
and participants, introduced in Definition 2.6 below. We shall say that c is
non-ambiguous iff w(c) is a function.

Definition 2.6. For all ¢, we define the relation 7w(c) € Ax NpUVp as
follows, where o € {—, —}:

w(\ Aisays vi) = 7w, (0)

i€T €T
ma(\ aj) ={(@;,4) | j €T}
jeT
7a((/\ Bisaysb)o N a;)={(bi,Bi) | i €T} U{(a;, A)) | je T}
i€l JjeT

We can now state Theorem 2.7. Its proof is contained in the appendix.
Note that the non-ambiguity of ¢ is only needed in the “only if” direction.

Contract-Oriented Computing in CO2 21

Theorem 2.7. Let ¢ be a non-ambiguous 1N-PCL contract, and let the set
P include the participant names occurring in c¢. Then, ¢t A says a iff:

I, d, B. ([c]p M d A (Adoes3VB) en A VB € P. B’ud)

Example 2.5. Recall the contracts from Example 2.4. According to Defini-
tion 2.5, we have that:

[ca | cg] = A says 7.0+ 7.(DEBT(B,pay) | OUT (ship)) |
B says 7.0 + 7.(DEBT (A, ship) | OUT (pay))

77»0

where 1 = (A does 7) (B does T) (A does ship)B) (B does pay)A)
(A does B)pay) (B does A)ship) (A does 7) (B does 7). This agrees with
Theorem 2.7, since A0 and B 0.

Remark 2.1. The contracts-as-processes used in Example 2.2 may sug-
gest a simpler encoding of — than the one given in Figure 3. For in-
stance, suppose that — along that direction — we naively encode the formula
B says (A says ship) — pay as the following process cg

cg = B says pay)A. A)ship

Assume that the context of B is empty, hence it never performs a ship output.
Then, we have that

B does pay)A
cB —ﬂL» cg = B says A)ship
Note that no participant is culpable in cg. The simplified encoding would
then lead to a counterexample to Theorem 2.7. Indeed, such theorem would
imply
B says (A says ship) — pay F B says pay

which does not hold in PCL. To solve this problem, the encoding in Defi-
nition 2.5 guarantees that some participant is culpable until the ship output
has been performed.

3 A Calculus for Contract-Oriented Computing

We now introduce the syntax and semantics of COs. It generalises the
contract calculus in [4] by making it independent of the actual contract
language. In fact, CO2 assumes the abstract model of contracts introduced
in § 2, which can be instantiated to a variety of actual contract languages.

22 M. Bartoletti, E. Tuosto, R. Zunino

S == 0 | A[P] ’ slc] | S|S | (w)S
n= lue | Y mP | P|P | (u)P | X (@)
T ou= T | do, a | tellylyy | askuge | fuse, o

Figure 4: Syntax of COq

3.1 Syntax

First, let us define the syntax of COs.

Definition 3.1. The abstract syntax of CO3 is given by the productions in
Figure 4, where S stands for systems, P for processes, and m for prefixes.
Also, we write ||jer P; (resp. ||icr Si) for the parallel composition of processes
(P)ier (resp. systems (S;)icr). Further, we stipulate that the following
conditions always hold: in a system ||;er ni[Pi], n; # n; for each i # j € I;
in a process (u)P and a system (u)S, u & Np.

We distinguish between processes and systems. Systems S consist of a
set of agents A[P] and of sessions s|c], composed in parallel. Note that A
and s are names of participants and sessions, respectively.

Processes P comprise latent contracts, guarded summation, parallel
composition, scope delimitation, and process identifiers. A latent contract
e c represents a contract ¢ which has not been stipulated yet; upon stipu-
lation, the variable xz will be bound to a fresh session name. We allow for
finite prefix-guarded sums of processes; as usual, we write m1.P; + m9. P, for
> i1 m™i-P;. The empty system and the empty sum are both denoted by 0.
As ushal, we may omit trailing occurrences of 0 in processes. Processes can
be composed in parallel, and can be put under the scope of binders (u)_. We
use process identifiers X to express recursive processes, and we assume that
each identifier has a corresponding defining equation X (u1,. .., u;) & P such
that var(P) C {u1,...,u;} €V and each occurrence of process identifiers
Y in P is prefix-guarded. Free/bound occurrences of variables/names are
defined as expected. Variables and session names can be bound; in (u)S all
free occurrences of u in S are bound. Note that participant names cannot
be bound, but can be communicated if permitted by the contract language.
A system S is closed when it has no free variables.

Prefixes include the silent prefix 7, action execution do, a, contract
advertisement tell, |, 7, contract query ask, 7 ¢, and contract stipulation

Contract-Oriented Computing in CO2 23

commutative monoidal laws for | on processes and systems
u[(W)P] = (W)ul[P] futv Z|(wZ' =w)(Z|Z) ifugvar(Z)U(Z)
(w)(0)Z = (v)(u)Z (wW)Z =7 ifudvar(Z)Un(2)

lnc=0 tell, , vP=0 ask, 3 ¢0.P =0 ifoNN #0 fuse, p.P =0

Figure 5: Structural equivalence (Z, Z' range over systems or processes)

fuse, ¢. Note that the contract «y in a tell v is unsigned: the correct signature
A says --- will be attached by the semantics. The index u in tell, /ask,
indicates the target agent/session where the prefix will be fired; in the case
of fuse, , it refers to the session where the contracts will be stipulated.

We shall refer to the set of latent contracts within an agent A[P] as its
environment; similarly, in a session s[c] we shall refer to ¢ as the environment
of s. Note that the environment of agents can only contain latent contracts,
advertised through the primitive tell, while sessions can only contain (non-
latent) contracts, obtained either upon reaching an agreement with fuse, or
possibly upon participants performing some do prefixes.

3.2 Semantics

The semantics of COs is formalised by a reduction relation on systems which
relies on the structural congruence laws in Figure 5. Only the last row in
Figure 5 contains non-standard laws: they allow for collecting garbage terms
which may possibly arise after variable substitutions.

Definition 3.2. The binary relation — on closed systems is the smallest
relation closed under structural congruence and under the rules in Figure 6,
where the agreement relation K >9 ¢ in (FUSE) will be introduced in Def-
mation 3.3, and T K is obtained by removing all the | from K, i.e. if
K = |lier Loy cis then T K = ||er ¢;.

We now briefly comment on the rules in Figure 6.

Rules (TAu), (PAR), (DEL), and (DEF) are standard. Axioms (TELL;)
and (TELLy) state that a participant A can advertise a latent contract |, 7
either in her own environment, or in a remote one. When the contract

24 M. Bartoletti, E. Tuosto, R. Zunino

A[r.P+ P'| Q] = A[P | Q] (Tav)

Altellale 7P+ P | Q] = Allz A says v | P | Q] (TELL;)

Altells o v.P+P' | Q] | B[R] = AP | Q] | B[R |lz Asays~] (TELLy)

A does « CI
(Do)
Aldos .P + P [Q] | s[c] = A[P | Q] | s[c']
domoc=4uCV co b po
(AsK)
(@) (Alasks,a ¢.P + P' | Q] | s[c] | S) = AP | Qlo | s[cJo | So
Kp? ¢ @ =domo CV s =o(z) fresh
(FusE)
(@)(Alfuse, ¢.P + P'| K | Q] | S) — (s)(A[P | Qo | s[t K]o | So)
X@ =P P{"/a} = P’ (DEF)
X(v) — P
S =9
(PAR)
S8 — 58"
S =9
(DEL)

(w)S — (u)S’

Figure 6: Reduction semantics of CO9

Contract-Oriented Computing in CO2 25

is advertised, the correct signature A says --- is attached. In (Do), the
participants A may perform the atom « in session s, provided that the action
A does « is permitted on the contract in s. Rule (Ask) allows A to check if
an observable ¢ is entailed by the contracts ¢ in session s; notice that the
entailment is subject to an instantiation o (possibly empty) of the variables
mentioned in the ask prefix. Rule (FUSE) establishes a multi-party session s
among all the parties that reach an agreement on the latent contracts K.
Roughly, the agreement relation K 7 ¢ (Definition 3.3) holds when, upon
some substitution o, the latent contracts K entail ¢.

The simplest typical usage of these primitives is as follows. First, a
group of participants exchanges latent contracts using tell, hence sharing
their intentions. Then, one of them opens a new session using the fuse
primitive. Once this happens, each involved participant A can inspect the
session using ask, hence discovering her actual duties within that session: in
general, these depend not only on the contract advertised by A, but also on
those of the other participants (see e.g. Example 3.4). Finally, the primitive
do is used to actually perform the duties.

Example 3.1. The sale scenario between seller A and buyer B from Exam-
ple 2.8 can be formalized as follows.

S = Al(z,b) telladz ((b says pay) — ship). fuse, (A says ship). do, ship]
| B[(y) tella 1y pay. do, pay]

The buyer tells A a contract which binds B to pay, and eventually does that.
A session between the buyer and the seller is created and proceeds smoothly
as expected, as shown in the trace in Figure 7.

In the previous example, we have modelled the buyer-seller system by
using a contracts-as-formulae approach. In the following example, we adopt
instead the contracts-as-processes paradigm. In the meanwhile, we introduce
a further participant to our system: a broker C which collects the contracts
from A and B, and then uses a fuse to find when an agreement is possible.

Example 3.2. Recall the contracts of Example 2.2. We specify the behaviour
of the system as follows, where observables are expressed in LTL:

S Z Al(z,b)tellc (I, b)pay.ship)b). do, b)pay. do, ship)b]
| B[(y)tellc |, pay)A. doy, pay)A. do, A)ship |
| C[(z,a,b)fuse. <(pay)a A Oship)b) |

26 M. Bartoletti, E. Tuosto, R. Zunino

S — (z,b,y) (Allz A says ((b says pay) — ship) |
fuse, (A says ship). do, ship]
| Bltella |, pay. do, pay])
— (2,b,y) (Ally B says pay | L. A says ((b says pay) — ship) |
fuse, (A says ship). do, ship]
| B[doy pay])
— (s) (A[dos ship]
| Bldo, pay]
| s[A says ((B says pay) — ship) | B says pay])
— () (A[0]
| B[dos paY]
| s[A says ((B says pay) — ship) | B says pay | A says Iship | ...])
— () (Al0]
| B[O]
| s[A says ((B says pay) — ship) | B says pay |
A says Iship | B says lpay | ...])

Figure 7: A trace of the system in Example 3.1

The participants A and B advertise their contracts to the broker C, which
opens a session for their interaction. The broker checks that the buyer
declares that he will eventually pay, and that the seller declares that she will
eventually ship. As expected,

S —" (s) (Alo] | B[0] | s[0])

namely, as soon as the payment is received, the goods are shipped.

3.3 On Agreements

To give semantics to fuse, ¢ we instantiate in Definition 3.3 below the relation
- >, -, which establishes when a set of latent contracts can be stipulated.
Roughly, K > ¢ states that the latent contracts in K satisfy ¢, according
to the relation F of the contract model. More formally, Definition 3.3
accommodates the variables in K and in ¢ as well as it enables the creation
of the session for the evolution of the stipulated contracts. Notably, in this
way we allow for agreements among an arbitrary number of participants
(modulo a minimality condition explained below).

Contract-Oriented Computing in CO2 27

Definition 3.3. For all parallel compositions K of latent contracts, for all
substitutions o : V — N, for all x € V, and for all observables ¢, we write
K ¢ ¢ iff the following conditions hold:

e € domo

e var(Ko) = var(¢o) =0

ds e Ng:VyedomoNVs:o(y) =s

(1 K)o - ¢o
e 1o o' C o satisfies the conditions above, i.e. o is minimal.

The first four items in Definition 3.3 state that an agreement is reached
when the latent contracts in K entail, under a suitable substitution, an
observable ¢. Recall that ¢ is the condition used by the participant acting
as broker when searching for an agreement (cf. rule (FUSE) in Figure 6).
The substitution ¢ has to instantiate all the variables appearing in the latent
contracts K as well as the session variable x; the latter, together with any
other session variables in the domain of ¢, is mapped to a session name s.
The freshness of s is guaranteed by the rule (Fusg).

The last item in Definition 3.3, i.e. the minimality condition on o, allows
brokers to tell apart unrelated contracts. For instance, let |4, c1, {4, c2, and
lz; €3 be the latent contracts advertised to a broker; if there is an agreement
on |z, c¢1 and |4, co, the latent contract |;, c3 would not be included. This
is illustrated by the following informal example.

Example 3.3. Let ¢ be the observable “A shall ship the goods”, and consider
the following latent contracts, advertised by A, B, and C, respectively:

o |, c1 = “in session x1, if b pays, then I shall ship the goods”

e |, co = “in session xa, I shall pay”

o |., c3 = “in session x3, I shall kiss a frog”.
Note that the first two latent contracts do entail ¢ when o(b) = B, and
o(x1) = o(x2) = s. Without the minimality condition, o(x3) = s could

have been included in the agreement of A and B, despite the offer of C being
somewhat tmmaterial.

28 M. Bartoletti, E. Tuosto, R. Zunino

The following example shows that our approach allows for agreements
with multiple levels of compliance.

Example 3.4. Let ca, cg,, and cg, be the following contracts-as-formulae:

ca = A says ((b says pay) — ship A (b says coupon) — gift)
cg, = B says pay

cB, = B2 says pay A coupon

Now, consider the following system composed of a seller A, which also acts
as a broker, and two buyers By and Ba:

A [(z,b) tella }z ca. fuse, (b says pay).
(ask Ipay. dog ship | ask lcoupon. do, gift)]
| Bi[(y) tella 4y cg,. doy pay]
| Ba[(2) tella | cB,. do, pay. do, coupon]

The seller contract cp is compliant with both cg, and cg,, i.e. both buyers
can be put in a session with A. When coupled with cg,, the contract ca
entails both the obligations ship and gift for A. When coupled with cg,, we
obtain a weaker agreement, as only the obligation ship is entailed. Although
both levels of agreement are possible, in some sense the contract cg, yields
a tighter Service-Level Agreement than cg,. The seller A detects the actual
service level she has to provide through the primitive ask .

3.4 On Honesty

In Definition 3.5 below we set out when a participant A is honest in a given
system S, i.e. she always respects all the promises made. More in detail,
we consider all the possible runs of S, and require that in every session the
participant A eventually is not culpable. To this aim, we shall exploit the
fulfilment relation A< ¢ from the contract model.

Before defining honesty, we need to cope with a few technical issues.
First, the a-conversion of session names makes it hard to track the same
session at different points in a trace. So, we consider traces without a-
conversion of session names, formalized as the LTS ~~ in Definition 3.4.

Definition 3.4. For all systems S, we define the function freeze,(S) as:

freezep (S) ={S" | S=(s1,...,8;)S" and S delimitation-free}

Contract-Oriented Computing in CO2 29

where a system is delimitation-free if it does not contain delimitations of
session names. We define the LTS ~» on systems as

S~ S iff S — S and S” € freezen (S')

We say that a ~>-trace (S;); is maximal iff it is either infinite, or it ends in
a state S, such that Sy ~.

Another technical issue is that a participant could not get a chance to
act in all the traces (see e.g. Example 3.17. To account for this fact, we will
check the honesty of a participant in fair traces, only, i.e. those obtained
by running S according to a fair scheduling algorithm. More precisely, a
~-trace (5;); is fair if no single prefix is enabled in an infinite number of S;.

Definition 3.5. A participant A is honest in S iff for all maximal fair
~-traces (S;);

Vs. 3. Vi>j, it ¢, S <Siz(ﬁ)(s[c] |8 = Ai)c>

In other words, a participant A misbehaves if involved in a session s
such that the contracts ¢ of s do not settle the obligations of A.

3.5 What Can Go Wrong in Contract-Oriented Systems?

Contract-oriented systems are a subclass of distributed systems where the
interaction among participants is based on the principle that “every promise
must be kept”. Of course, since the goals of the participants are possibly
conflicting, and since systems resemble “the condition of mere nature, which
is a condition of war of every man against every man” [20], this principle
is not expected to be always obeyed in practice. Indeed, contract-oriented
systems are characterised by a variety of possible misbehaviours and attacks,
in part inherited from real-world issues in legal contracts, in part specific to
(concurrent and distributed) software systems.

We outline below a coarse-grained taxonomy of possible misbehaviours
in contract-oriented systems, where the participant A plays the role of the
injured party. Associated to each issue in the taxonomy, we enumerate a
(non-exhaustive) list of possible causes. We will do that rather informally, by
appealing to the reader intuition, to be reinforced in § 3.6 with the help of
a collection of relevant examples. Roughly, below we say that “A succeeds”
in a session when the goals of A (either implicitly known to A, or explicitly

30

M. Bartoletti, E. Tuosto, R. Zunino

written in her contract) have been performed by the other participants
involved in that session. We say that “A is protected” when, in each possible
interaction, either A succeeds or someone else is culpable.

In Table 2 we summarize our taxonomy, and we point out some links
to relevant CO2 examples which may be found in the following section.

Agreement issues The participant A has advertised the contract ¢, but
she is never placed in a session where ¢ has been stipulated.

1.

The contract c¢ is over-protective for A: if stipulated by B, then
A would be protected, while B would not.

. The contracts advertised by the other participants do not guar-

antee the success of A.

3. The broker is over-protective (for one or more of the participants).

4. Fairness problems: even though the contract of A could be stipu-

lated, the broker never includes A in a session.

Success issues The participant A participates in a session, but she does
not succeed.

1.

Some participant does not fulfil his contract, and he is considered
culpable.

. The contract of A is not strong enough to protect A: no participant

is culpable.

. The contract of A is strong enough to protect A, but the broker

puts A in a session with participants which do not guarantee that
the goal of A will be reached.

. The contract of A is strong enough to protect A, but A performs

unprotected actions.

. Fairness problems: other participants cannot perform their duties

because of unfair scheduling.

Culpability issues The participant A participates in a session where she
tries to respect her contract ¢ with the best intentions, but she is
eventually considered culpable of a violation of c.

1.

A relies on some other participant B to fulfil some of her duties,
but B has “passed the buck” to A.

Contract-Oriented Computing in CO2 31

Agreement issues

Cause

Contracts-as-formulae

Contracts-as-processes

Over-protective A

No success guarantee
Over-protective broker
Fairness problems

Ex. 3.5
Ex. 3.6
fuse L
Ex. 3.8

Ex. 3.5
(similar)
Ex. 3.7
Ex. 3.9

Success issues

Cause

Contracts-as-formulae

Contracts-as-processes

Someone else culpable
Contract too weak
Deceptive broker
Unprotected actions
Fairness problems

Ex. 3.10
Ex. 3.11
Ex. 3.13
Ex. 3.14
(similar)

(similar)
(similar)
Ex. 3.12
(similar)
Ex. 3.15

Culpability issues

Cause

Contracts-as-formulae

Contracts-as-processes

Pass the buck
Fairness problems

(similar)
Ex. 3.17

Ex. 3.16
(similar)

Table 2:

2. Fairness problems: A cannot fulfil her contract because of unfair

scheduling.

A main design principle of CO3 is that it must allow for writing “wrong’
specifications of systems which exhibit these kinds of misbehaviour and
attacks. This is the reason why COg does not prevent (almost) any actions in
the semantics. In particular: (i) participants can advertise whatever contracts
they wish, the only condition being that these can be expressed in the contract
model; (i7) contract brokers can stipulate arbitrary contracts, and create
sessions with an arbitrary number of participants; (ii7) participants can
perform whatever action in a session, if permitted in the current state of the
contract in that session.

Issues in contract-oriented systems.

3.6 A Collection of Misbehaviours and Attacks

)

In this section we collect a set of archetypal contract-oriented scenarios,

which use contracts from both paradigms introduced in § 2.1 and § 2.2. Each

32 M. Bartoletti, E. Tuosto, R. Zunino

of the scenarios discussed below highlights one of the causes of misbehaviour
reported in the taxonomy in § 3.5.

Example 3.5. Consider a variation of the system S in FExample 3.1 where
the buyer process is modified as follows:

B[(a,y) tella 1y ((a says ship) — pay). ask, (a says !ship). do, pay]
Now, the fuse in A has to entail A says ship from the contract:
A says (B says pay) — ship | B says (A says ship) — pay

Note that both participants require the other one to “make the first step”.
This circular dependency forbid any agreement. A similar behaviour can be
modelled as follows, using contracts-as-processes:

A says B)pay. ship)B | B says A)ship. pay)A

Example 3.6. Consider a variation of the buyer-seller system, where the
buyer and seller contracts are:

ca = ((b says pay) — snakeQil)
cg = (a says ship) — pay

and the processes are as follows:

A[(z,b) tella | ca. fuse, (A says snakeQil). do, snakeQil]
Bl(a,y) tella 1y cg. asky, (B says pay). do, pay]

The interaction between the fraudulent seller A and the buyer B gets
stuck on the fuse in A, because the available latent contracts do not en-
tail A says snakeQil. Note that we have used contractual implication —»,
rather than standard implication —. This would have allowed B to reach an
agreement with the seller contract (b says pay) — ship.

Example 3.7. Consider the following variant of Erxample 3.4, using
contracts-as-processes:

ca = A says (B)pay. ship)B | B)coupon. gift)B)
cg = B says pay)A. (7. A)ship + 7. coupon)A. A)ship. A)gift)

Contract-Oriented Computing in CO2 33

Now, assume that cp and cg are advertised to a broker, which wants to
establish an agreement through a fuse ¢, with ¢ = O(pTy>A A OW)A).
The broker will not be able to put A and B together in a session, because the
contract cg allows B to choose whether consuming the coupon or not. Instead,
the broker would be able to establish the weaker agreement ¢' = Opay)A.

Example 3.8. Consider the system:

S = A[Xo] | B[X1] | C[X2] | K[Y]
where, for i € 0.2, X; def (x)tell 4oy €. X5, Y def (z)fuse, ¢.Y, and ¢ is
satisfied by any ¢; | ¢; with i # j. An unfair scheduler could always choose
the contracts of B and C, and neglect those of A.

Example 3.9. Consider the following contracts-as-processes for the buyer-
seller scenario:

def

=X X Y 7.X +B)pay.Y Y € 7Y +ship)B
cg = Z | A)ship Z € 1.7 + pay)A

Assume that the broker attempts to establish a session between A and B
through fuse ¢, with ¢ = < (pay)A A Oship)B). Without any fairness as-
sumptions, ca | cg YrrL ¢, because an unfair scheduler can choose e.g. to
never fire the prefiz pay)A, even though this prefix is enabled infinitely often.

Example 3.10. Consider a variation of the system S in Example 3.1 where
the seller process is modified as follows:

Al(z,b) tellp L» ((b says pay) — ship). fuse, (A says ship). 0]

The fraudulent seller A promises to ship, but it does not act accordingly and
simply terminates. The interaction between A and B leads to the system:

(s)(A[0] | B[O] | s[A says ((B says pay) — ship), B says pay, B says !pay])

where the buyer has not obtained what he has paid for. However, the
insuccess of the buyer is partially mitigated by the fact that the seller is found
responsible of this misbehaviour. Indeed, the seller is dishonest according
to Definition 3.5, because the contracts in s entail the promise A says ship,
while the fact A says Iship is not present in the session. A judge may thus
eventually punish A for her misconduct.

34 M. Bartoletti, E. Tuosto, R. Zunino

Example 3.11. Recall Example 3.10 and consider a fraudulent seller A,
which promises in her contract some snake oil:

ca = ((bsays pay) — snakeOil)
while the contract and the behaviour of B are as in Example 3.1. Then:

S = Al(x,b) tella l, ca. fuse, (A says snakeOil). do, snakeOil] | B[- - -]
—* (s) (A[0] | B[O] | s[A says !snakeQil, B says !pay, ...])

In this case the interaction between A and B goes unhappily for B: he will
pay for some snake oil, while A is not even classified as dishonest according
to Definition 3.5: indeed, A has eventually fulfilled all her promises. The
cause of this misbehaviour is that the buyer contract is too weak for being
used with untrusted participants.

Example 3.12. Recall the buyer-seller scenario from Example 2.2. We
slightly modify the seller contract as follows, while cg stays the same:

ca = A says b)pay.(T + ship)b)

The seller A first requires the buyer to pay, then promises either to ship an
item, or to do nothing. A possible evolution of the contract ca | cg, where
the participant name B substitutes for the participant variable b, is then:

B does pay)A
I, | B says A)ship | Blpay)A

A does B)pay
AL

(ca | cB){B/b}

A says (7 + ship)B) | B says A)ship
Adoes T A says 0 | B says A)ship

The contract of B is rather naive, because the buyer pays without requiring

any guarantee to the seller. Indeed, in the final state ¢’ = B says A)ship, we

have that A, i.e. A is not culpable. Now, consider the following system,

composed of a buyer A, a seller B, and a broker C:

S € A[(x,b) (tellc Lo ca. dog b)pay. (7 + dog ship)b))]
| B[(y) (tellc Ly cg. do, pay)A.do, A)ship)]
| C[(z,d) fuse. O(pay)d)]

The broker C, which opens a session between A and B. Notice that C is rather
unfair, since it only checks that the buyer will eventually pay, while it does

Contract-Oriented Computing in CO2 35

not require that the seller will eventually ship. The seller can then choose
to perform the internal action T, instead of shipping the paid item, while
remaining not culpable. We have the following (maximal) computation:

S —* (s) (A[O] | B[do, A)ship] | 3[0])
where B has not succeeded, but neither A nor C are considered culpable.

Example 3.13. Consider the following formalization of the system in Ez-
ample 3.12, using contract-as-formulae:

Al(z,b)tellc 4o ((b says pay) — (ship V fraud)). do fraud]

B[(y, a)tellc 1y ((a says ship) — pay). ask, B says pay. do, pay]
C[(2)fuse; ¢]

where the formula ¢ is chosen so to make the fuse in C pass (this can be
obtained e.g. by taking the conjunction of the contracts of A and B). Unlike
in Fxample 3.12, even if a session between A and B is established by the
deceptive broker, the buyer will not pay, and he will not be considered culpable
for that. Indeed, the prefiz ask, B says pay is stuck because the contracts in
the session do not entail any obligation for B to pay.

Example 3.14. Consider the following variant of Example 3.13, where the
buyer process is modified as follows:

B[(y, a)tellc 1y ((a says ship) — pay). do, pay]

Although the contract of B is strong enough to protect B, this protection is
lost when the buyer performs the action pay without checking beforehand
(through asky B says pay) that he actually has to pay. This imprudence leads
B to a situation where he does not succeed, while A is not considered culpable.

Example 3.15. Consider a variant of the buyer-seller system in Ezam-
ple 3.2, where the seller behaviour is modified as follows:

A (z,b) (tellc (} b)pay.ship)b). do, b)pay. X | X Z7r.X + do, ship)b
Even though the prefiz do, ship)b is enabled infinitely often, an unfair process-
level scheduler could prevent A from eventually shipping. A similar misbe-
haviour can be obtained through an unfair system-level scheduler. Note that
in Definition 3.5, we do not consider dishonest the participants which fail to
fulfil their duties because of an unfair scheduling.

36 M. Bartoletti, E. Tuosto, R. Zunino

Example 3.16. Consider the following variant of the buyer-seller scenario.
The seller A advertises a contract where she promises to provide the buyer b
with a proof-of-shipment (PoS) if b pays (pay). After the buyer has paid,
the seller advertises a contract to a broker K, where she looks for a carrier ¢
which provides A with a proof-of-shipment if A pays shipping (payS).

Al (z,y,b,c) tella Lz (b)pay. PoS)b). fuse, b says pay)A. do, b)pay. P]
P = tellg J, (payS)c. ¢)PoS). do, payS)c. do, c)PoS. do, PoS)b
B[(y) tella 1, (pay)A. A)PoS). do, pay)A. do, A)PoS]

Now, assume that the contract between buyer and seller has been stipulated,
and that the buyer has paid. If no carrier is found to stipulate the contract
with A, then the seller will be considered culpable of a violation, because she
has not honoured her promise to provide the buyer with a proof-of-shipment.

Example 3.17. Consider the system S = Aldospay| | B[X] | S, where

x & 7.X, and S’ contains a session where the action of A is enabled. Note

that S generates the infinite trace S ~> S ~» S ~» -+ in which A never pays,
despite her honest intention. According to Definition 3.5, participant A is
considered honest.

3.7 Variants to the Basic Calculus

We mention below a few variants and extensions of COs.

Protection for contracts-as-processes. The contracts-as-processes
model can be adapted to allow participants to defend against attacks carried
over by deceptive brokers, like the one shown in Example 3.12. The variant
requires the semantics of fuse ¢ to be changed so that contractual obligations
derive only from mutually compliant contracts, i.e. ¢ - ¢ should hold only
when all the (fair) traces of ¢ lead to 0, in addition to ¢ =7y ¢. Similarly,
A< ¢ should also hold on non-mutually-compliant ¢, since in this case no
obligation arises. With this change, even if a participant A is somehow put
in a session with fraudulent parties, A can discover (via ask) that no actual
obligation is present, so avoiding to perform unprotected actions.

Local actions. In COg, agents A[P] only carry latent contracts in P.
Hence, communication between participants is limited to latent contract
exchange. Allowing general data exchange in COg can be done in a natural

Contract-Oriented Computing in CO2 37

way by following CCP. Basically, P would include CCP constraints ¢, ranging
over a constraint system (7,F), a further parameter to CO2. Assume that
A sayst € T for all t € T and for all A. The following rules will augment
the semantics of COs (the syntax is extended accordingly):

Altellat.P+ P | Q] — A[A says t | P | Q]
Aftellgt.P + P’ | Q] | B[R] — A[P | Q] | B[A says t | R]
Alaskat.P+P'|T|Q] — A[P|T|Q] provided that T F ¢

Note that the above semantics does not allow A to corrupt the constraint
store of B augmenting it with arbitrary constraints. Indeed, exchanged data
is automatically tagged on reception with the name of the sender. So, in the
worst case, a malicious A can only insert garbage A says t into the constraint
store of B.

Retracting latent contracts. A retract primitive could allow a partici-
pant A to remove a latent contract of hers after its advertisement. Therefore,
A could change her mind until her latent contract is actually used to establish
a session, where A is bound to her duties. Of course a contract cannot be
retracted after it has been agreed upon.

Consistency check. The usual check t primitive from CCP, which checks
the consistency of the constraint store with ¢, can also be added to COs.
When check ¢ is executed by a participant A[P], ¢ is checked for consistency
against the constraints in P. Note that checking the whole world would be
unfeasible in a distributed system.

Forwarding latent contracts. A forward primitive could allow a broker
A to move a latent contract from her environment to that of another broker
B, without tagging it with A says . In this way A delegates to B the actual
opening of a session.

Remote queries. More primitives to access the remote participants could
be added. Note however that while it would be easy e.g. to allow Alaskg]
to query the constraint of B, this would probably be undesirable for security
reasons. Ideally, B should be allowed to express whether A can access his
own constraint store. This requires some access control mechanism.

38 M. Bartoletti, E. Tuosto, R. Zunino

4 Related Work

Contracts have been used at different levels of abstraction, and with different
purposes. A coarse classification of the approaches appeared in the literature
separates the approaches that use contracts to model the possible inter-
action patterns of services, from those where contracts are used to model
Service Level Agreements. In the former category, the typical goal is that of
composing services only if their interactions enjoy progress properties (e.g.
deadlock-freedom). In the latter, the goal is that of matching clients and
services, so that they agree on the respective rights and obligations.

Multi-party session types [22] are integrated in [6] with decidable frag-
ments of first-order logic (e.g., Presburger arithmetic) to transfer the design-
by-contract of object-oriented programming to the design of distributed
interactions. We follow a methodologically opposite direction. In fact, in [6]
one starts from a global assertion (that is global choreography decorated
with logical assertions) to arrive to a set of local assertions; distributed pro-
cesses abiding by local assertions are guaranteed to have correct interactions.
In our framework, a participant declares its contract independently of the
others and then advertises it; a COg primitive (fuse) tries then to harmonise
contracts by searching for a suitable agreement. In other words, one could
think of our approach as based on orchestration rather than choreography.
The same considerations above apply to [23]; there protocols (state machines
with memory) represent global choreographies and contracts are represented
as parallel state machines (according to a CSP-like semantics). Basically,
the contract model of [23] coincides with its choreography model.

Global assertions in [6] enable for the automatic generation of monitors.
At a first glance, this looks similar to our use of contracts as driver of the
computation. However, a main difference is that the monitors synthesised
from global assertions have a “local” view of the computation as they
basically check the incoming messages of a distributed component. Instead
in CO2, the contracts stipulated in a session form a “global view” of the
(current) evolution of the computation. This enables us to formalise a notion
of honesty (cf. Definition 3.5) and single out culpable components during
the computation. We argue that it would be hard to attain the same within
the approach in [6]. For instance, a monitor obtained from a global assertion
can check for an incoming message m from a partner A; however the monitor
cannot distinguish if the absence of m is due to a violation the contract of
A, or due to the fact that other duties (possibly from other participants)
required by A are not accomplished. In other words, the monitor cannot

Contract-Oriented Computing in CO2 39

deem A culpable.

An advantage of the approach in [6] is that projecting a global assertion
yields local assertions, that is the contracts of each component in the chore-
ography. Using local assertions one can check if a component A abide by its
contract L, namely if A realises L. In our framework this is more complex
to be achieved since abstracting away from contracts makes it hard to give
a general notion of “realisability”.

In cc-pi [9], CCP is mixed with communication via name fusion so
that parties establish SLA by merging the constraints representing their
requirements. Constraints are values in a c-semiring advertised in a global
store. It is not permitted to merge constraints making the global store
inconsistent, since an agreement cannot be reached in that case. Conversely,
COg envisages contracts as binding promises rather than requirements. Ac-
tually, even if a participant A tells an absurdum, this will result in a contract
like: “A is stating a contradiction” added to the environment. When this
happens, our approach is not “contracts are inconsistent, do not open a ses-
sion”, but rather “A is promising the impossible, she will not be able to keep
her promise, and she will be blamed for that”. The cc-pi calculus is further
developed in [8] to include long running transactions and compensations.
There, besides the global store, the calculus features a local store for each
transaction. Local inconsistencies are then used to trigger compensations.
In CO2, compensations do not represent exceptional behaviour; they fall
within “normal” behaviour and have to be spelt out inside contracts. In-
deed, after a session has been established, each honest participant A either
maintains her promises, or she is culpable of a violation; A cannot simply try
to execute arbitrary compensations in place of the due actions. Of course,
other participants may deem her promise too weak and avoid establishing a
session with A.

In [15] a calculus is proposed to model SLAs which combines 7-calculus
communication, concurrent constraints, and sessions. There, the constraint
store is global and sessions are established between two processes whenever
the stated requirements are consistent. Interaction in sessions happens
through communication and label branching/selection. A type system is
provided to guarantee safe communication, although not ensuring progress.
Essentially, the main role of constraints in this calculus is that of driving
session establishment. Instead, in COs3 the contracts of an agreement leading
to a session are still relevant e.g. to detect violations.

In [14], contracts are modelled in a fragment of CCS which includes

40 M. Bartoletti, E. Tuosto, R. Zunino

prefixing, internal /external choice, and recursion. This model is not directly
comparable with our CCS-like model in § 2.1: while our contracts do not
feature external choice, they have parallel composition and synchronization.
The notion of compliance between two contracts used in [14] is “boolean”:
either the client contract is compliant with the service contract, or it is
not. In Example 3.4 we show that our approach allows for a “multi-level”
notion of compliance, encompassing more than two contracts. In [14],
contracts which are not compliant may become compliant by adjusting the
order of asynchronous actions. When this is possible, an orchestrator can
be synthesised from the client and service contracts. In some sense, the
orchestrator acts as an “adapter” between the client and the service. In our
approach, the orchestrator behaves as a “planner” which finds a suitable
set of contracts and puts in a session all the participants involved in these
contracts.

Our approach differs from those discussed above, as well as from all the
other approaches we are aware of (e.g. [7, 12, 13]), w.r.t. two general principles.
First, we depart from the common principle that contracts are always
respected after their stipulation. We represent instead the more realistic
situation where promises are not always maintained. As a consequence,
in CO2 we do not discard contracts after they have been used to couple
services and put them in a session, as done e.g. in all the approaches dealing
with behavioural types. In our approach, contracts are also used to drive
computations after sessions have been established (cf.§ 3), e.g. to detect
violations and to provide the agreed compensations.

The second general difference is that COg smoothly allows for handling
contracts-as-processes (cf. § 2.1). To the best of our knowledge, it seems
hard to accommodate these contracts within frameworks based on constraint
systems ([5, 15]), logics ([4, 6]), or c-semirings (e.g. [9, 8, 18]).

The contract-as-formulae model proposed here hinges on PCL ’s contrac-
tual implication to handle the intrinsic circularity present in contracts. This
is motivated by the fact that the standard intuitionistic implication would
fall short in modelling (circular) require-guarantee conditions to participants
in distributed systems. Some relations between PCL and other logics are
reported in [3].

A recent research direction is modelling contracts as formulae in suitable
deontic logics [26]. We argue that those approaches are complementary to
ours. On the one hand, deontic logics are more suitable than PCL to model
the dynamic execution of contracts (e.g., to assign blame to participants

Contract-Oriented Computing in CO2 41

and to provide reparations to contract violations). On the other hand,
PCL targets more directly the problem of finding agreements, especially in
presence of circular dependencies among the participant requirements.

The present paper extends and enhances prior work appeared in [2, 4, 5].
The calculi presented in [4, 5] were hard-wired to the PCL contract model,
and they did not explicitly keep apart promises from facts. Instead, CO-
distinguishes between promises (latent contracts, advertised through a tell
prefix) and facts (actions performed through a do prefix), so allowing us to
give a general definition of when a participant is honest in a given context
(Definition 3.5). Also, the calculi in [4, 5] recorded contracts into a global
constraint store, while CO5 has local environments for participants and
sessions. This makes CO2 amenable to possible distributed implementations.

With respect to [2], the main improvements concern the contracts-as-
processes model, and its relation with contracts-as-formulae. More precisely,
in the current paper (i) contracts explicitly mention the participants from
which they expect to receive an input / send an output, (i7) outputs are asyn-
chronous, using an implicit buffer with unbounded capacity which preserves
no ordering among outputs, and (iii) there is a stronger correspondence
result between contracts-as-formulae and contracts-as-processes.

The feature (7) allows for a finer-grain design of contracts-as-processes.
For instance, instead of just requiring “if someone pays, then I will ship”,
explicit senders/receivers allow for modelling the contract “if B pays, then I
will ship to B”, specified formally as A says B)pay.ship)B. Also, (i) helps in
improving the precision of the correspondence between contracts-as-processes
and 1N-PCL contracts, which natively feature explicit senders through the
says in the antecedent of —/—.

The feature (ii) allows for a definition of culpability which is fairer w.r.t.
that in [2]. For instance, assume that A promises to pay (i.e. she outputs
pay), while B promises to receive the payment (i.e. he inputs pay). Consider
the situation were A exposes the output prefix of pay, but B does not expose
the corresponding input prefix. In [2], communication is synchronous, and a
participant is culpable until it reaches the state 0: therefore, both A and
B are considered culpable. This is quite unfair for A, who after all has
attempted to fulfil her duties. Also the converse situation, where A has not
paid and B is stuck on the input, is unfair in [2]: this time B is considered
culpable, even if he is just waiting that A has fulfilled her duties. In the
current paper, instead, when A wants to pay she can do it asynchronously;
B will be culpable until he eventually performs the input. Conversely, when

42 M. Bartoletti, E. Tuosto, R. Zunino

A has not paid and B is stuck on the input, B will not be culpable.

The correspondence result between contracts-as-formulae and contracts-
as-processes featured in this paper is more precise than the result in [2]. The
encoding in [2] guarantees that a 1N-PCL contract ¢ logically entails all the
atoms contained in c iff its encoding [c] can reach the state 0. The encoding
presented here (Definition 2.5) guarantees a stronger result. Roughly, a
1IN-PCL contract ¢ logically entails some atom a iff its encoding [c] has
a trace containing a, and leading to a state where all participants are not
culpable (Theorem 2.7).

While taking inspiration from Concurrent Constraint Programming,
CO2 makes use of more concrete communication primitives which do not
assume a global constraint store, so reducing the gap towards a possible
distributed implementation. The main differences between COs and CCP
are: (¢) in COq constraints are contracts, (i7) in COq there is no global store
of constraints: all the prefixes act on a local environment, (ii¢) the prefix ask
of CO2 may instantiate variables to names, and (iv) the prefixes do (which
makes contracts evolve) and fuse (which establishes a new session) have no
counterpart in CCP.

5 Conclusions

We have developed a formal model for reasoning about contract-oriented
distributed programs. The overall contribution of this paper is a contract
calculus (COg) that is parametric in the choice of contract model. In COq,
participants can advertise their own contracts, find other participants with
compatible contracts, and establish a new multi-party session with those
which comply with the global contract. We have set out two crucial issues:
how to reach agreements, and how to detect violations. We have presented
two concretisations of the abstract contract model. The first is an instance
of the contracts-as-processes paradigm, while the second is an instance of
the contracts-as-processes paradigm.

We envision a methodology where one uses contract-as-formulae at
design-time, reasons about them through the contract logic, and then concre-
tises them at run-time to contracts-as-processes. As a first step towards this
goal, we have related contract-as-processes and contracts-as-formulae, by
devising a mapping from contracts based on the logic PCL [4] into CCS-like
contracts. Theorem 2.7 guarantees that contracts-as-processes can reach
success in those cases where an agreement would be possible in the logic

Contract-Oriented Computing in CO2 43

model, hence providing a connection between the two worlds.

The correspondence result established by Theorem 2.7 may be refined
in two directions. First, while the goal of the current encoding is to preserve
the entailment, one could also focus on precisely preserving the culpability
of participants. Note e.g. that the encoding of B says (A says a) — b in
Definition 2.5 makes it possible to perform b “on credit”. However, this
results in B being culpable because of the DEBT (B, b) process. In order to
precisely preserve culpability, the encoding should instead make A culpable,
since she has to “pay” the debt. Still, the current encoding preserves a weak
form of culpability, i.e. the fact that some participant is culpable. This is
enough to establish the correspondence in Theorem 2.7.

A second direction for refining the encoding is to preserve some corre-
spondence property in all the traces of the contract-as-process. This seems
to suggest to exploit reversibility techniques, i.e. by assuming that all the
actions can be undone, and then by undoing those traces which do not lead
to a successful state. Note in passing that Theorem 2.7 guarantees that at
least one property-preserving trace exists. Yet, this is enough to preserve
agreements. For instance, assume that fuse (A says a) finds an agreement
in a PCL contract ¢. Then, it is possible to reach an agreement also with
[c]. This is obtained through a fuse ¢, where ¢ requires that there exists
some trace of [c] where (i) A does a)B eventually holds (for some B), and
after that (i7) no participant is culpable. Such ¢ can be expressed e.g. in
the branching temporal logic EF.

Acknowledgements

We thank the anonymous reviewers for their valuable suggestions and com-
ments which helped us in improving the paper.

This work has been partially supported by the Aut. Region of Sar-
dinia under grants L.R.7/2007 CRP2-120 (Project TESLA) and CRP-17285
(Project TRICS), and by the Leverhulme Trust Programme Award “Tracing
Networks”.

References
[1] Alexander Artikis, Marek J. Sergot, and Jeremy V. Pitt. Specifying

norm-governed computational societies. ACM Trans. Comput. Log.,
10(1), 2009.

44

M. Bartoletti, E. Tuosto, R. Zunino

2]

Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contracts
in distributed systems. In ICFE, volume 59 of EPTCS, pages 130-147,
2011.

Massimo Bartoletti and Roberto Zunino. A logic for contracts. Technical
Report DISI-09-034, DISI - Universita di Trento, 2009.

Massimo Bartoletti and Roberto Zunino. A calculus of contracting
processes. In LICS, pages 332-341. IEEE Computer Society, 2010.

Massimo Bartoletti and Roberto Zunino. Primitives for contract-based
synchronization. In ICFE, volume 38 of EPTCS, pages 67-82, 2010.

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A
theory of design-by-contract for distributed multiparty interactions. In
CONCUR, volume 6269 of Lecture Notes in Computer Science, pages
162-176. Springer, 2010.

Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory
for choreography conformance and contract compliance. In Software
Composition, volume 4829 of Lecture Notes in Computer Science, pages
34-50. Springer, 2007.

Maria Grazia Buscemi and Hernédn C. Melgratti. Transactional service
level agreement. In TG C, volume 4912 of Lecture Notes in Computer
Science, pages 124-139. Springer, 2007.

Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A constraint-based
language for specifying service level agreements. In ESOP, volume 4421
of Lecture Notes in Computer Science, pages 18-32. Springer, 2007.

Felice Cardone. The geometry and algebra of commitment. In Ludics,
dialogue and interaction, pages 147-160. Springer, 2011.

Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, and Luca
Padovani. A formal account of contracts for web services. In WS-FM,
volume 4184 of Lecture Notes in Computer Science, pages 148-162.
Springer, 2006.

Samuele Carpineti and Cosimo Laneve. A basic contract language for
web services. In ESOP, volume 3924 of Lecture Notes in Computer
Science, pages 197-213. Springer, 2006.

Contract-Oriented Computing in CO2 45

[13]

[21]

[22]

[23]

[24]

Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of con-
tracts for web services. ACM Transactions on Programming Languages
and Systems, 31(5), 2009.

Giuseppe Castagna and Luca Padovani. Contracts for mobile processes.
In Proc. CONCUR, volume 5710 of Lecture Notes in Computer Science,
pages 211-228. Springer, 2009.

Mario Coppo and Mariangiola Dezani-Ciancaglini. Structured commu-
nications with concurrent constraints. In TG C, volume 5474 of Lecture
Notes in Computer Science, pages 104-125. Springer, 2008.

Mads Dam. On the Decidability of Process Equivalences for the -
calculus. Theoretical Computer Science, 183(2):215-228, 1997.

E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages
995-1072. North-Holland Pub. Co./MIT Press, 1990.

Gian Luigi Ferrari and Alberto Lluch-Lafuente. A logic for graphs with
QoS. Electr. Notes Theor. Comput. Sci., 142:143-160, 2006.

Deepak Garg and Martin Abadi. A modal deconstruction of access
control logics. In FoSS5aCS, volume 4962 of Lecture Notes in Computer
Science, pages 216-230. Springer, 2008.

Thomas Hobbes. Leviathan or The Matter, Forme and Power of a
Common Wealth Ecclesiasticall and Civil. 1651. Chapter XIV — Of
the first and second natural laws, and of contracts.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type disciplines for structured communication-based
programming. In ESOP, volume 1381, 1998.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In POPL, pages 273-284. ACM, 2008.

Ashley T. McNeile. Protocol contracts with application to choreographed
multiparty collaborations. Service Oriented Computing and Applications,
4(2):109-136, 2010.

Robin Milner. Communication and concurrency. Prentice-Hall, Inc.,
1989.

46

M. Bartoletti, E. Tuosto, R. Zunino

[25]

Cristian Prisacariu and Gerardo Schneider. A formal language for
electronic contracts. In FMOODS, volume 4468 of Lecture Notes in
Computer Science, pages 174-189. Springer, 2007.

Cristian Prisacariu and Gerardo Schneider. A dynamic deontic logic for
complex contracts. The Journal of Logic and Algebraic Programming
(JLAP), 81(4):458-490, 2012.

Vijay Saraswat, Prakash Panangaden, and Martin Rinard. Semantic
foundations of concurrent constraint programming. In POPL, pages
333-352, 1991.

Anne Troelstra and Dirk van Dalen. Constructivism in Mathematics,
vol. 1. North-Holland, 1988.

Contract-Oriented Computing in CO2 47

A Proofs

Notation. Hereafter, for ¢, ¢ contracts-as-formulae, we write ¢, ¢’ for cAc.

Definition A.1. The Gentzen-style sequent calculus of PCL is defined by
the rules in Figure 8.

As proved in [4], the sequent calculus of PCL enjoys cut elimination. A
cut on a formula p is replaced by cuts on strict subformulae of p, and cuts
on p having a shorter proof tree. This makes PCL decidable.

Theorem A.2 (Cut Elimination [4]). If p is provable in PCL, then there
exists a proof of p not using the (Cur) rule.

Definition A.3. Let u be the homomorphic function from PCL formulae
to PCL formulae such that u(A says p) = u(p). We say that a formula c
is says -free 1IN-PCL when there ewists some ¢ in 1N-PCL such that
c=u(d).

Lemma A.4. For all says-free IN-PCL formulae ¢, and for o € {—,—}:
c,aobkFc = ckFc V c,aob I a,b,c

Proof. By Theorem A.2, consider a proof tree A of ¢,aob F ¢ without
occurrences of the (Cur) rule. The RHS of each sequent in A has the form
Nicr ai, and so A only contains occurrences of the rules (Ip), (AL1), (AL2),
(AR), (—L), (Fix). There are two cases, according to the choice for o.

e o =—. If the rule (—L) has never been used in A, consider the proof
tree A’ obtained by replacing each I';a — b p in A with I - p. Since
there is no other rule in those mentioned above which can use — in
the LHS, then A’ proves ¢ - c.

Otherwise, if A contains an occurrence of the rule (—L), then one of

its premises must be ¢,a — b - a. By the rule (—=L), we have:

c,a— bl a c,a—b,bkb
c,a—bkb

e o =—». If the rule (Fix) has never been used in A, consider the proof
tree A’ obtained by replacing each I';a — b p in A with I - p. Since

48 M. Bartoletti, E. Tuosto, R. Zunino

IpAhg,p b r I'' pAg, g B r r
', pAq Fr ', pAgq Fr (AL2)

| Ik gq
Trove VBY O v

p—=qFp Ip=gq gk I'pkg

I'p—qtkr (=L)

Ip—-qabp I''psq qk D
R — (PREPOST)

,p—sqgrkp I'psqgqgkr
Lp—qhbr (1

I'kFo»p

', Asaysp,p b Asaysq
I' b Asaysp (SavsR)

I'Asaysp b A says q

(SAysL)

Figure 8: Genzten-style proof system for PCL.

Contract-Oriented Computing in CO2 49

there is no other rule in those mentioned above which can use —» in
the LHS, then A’ proves c I c.

Otherwise, if there exists an occurrence of the rule (Fix), then its
premise contains the entailment c¢,a — b, r I a, for some r. By case
analysis on the rules (Ip), (AL1), (AL2), (AR), (—L), (Fix), it follows
that, for all I', TV, p, q, if I' - p and I” I ¢ belong to A, then I" and I"
are logically equivalent. Therefore, c,a — b, r is logically equivalent to
¢,a — b, that is to say ¢,a — b a. To conclude, by the rule (Fix):

c,a—»b,bka c,a—»b,bFDb
c,a—»bhkb

Definition A.5. Let 7 : A — Np U Vp. We define the partial function
sxz() from unsigned says-free LN-PCL formulae to 1N-PCL formulae as
follows:

sx(\ i) = /\ Pr(vi) says vi

1€l 1€L
/\ m(aj) says a; if v = /\ aj
sa(y) = 4957 A
Pr(y) says (sx(\bi) o Njegas) ifv=(/\bi)o A a

i€l i€l JjeET

where o € {—,—}, and Pr(v) is defined as follows:

Pw(/\aj) — {A ifVjeJ. n(aj)=A

undefined otherwise

JjeT
Pﬂ((/\bi) o /\ aj) = PW(/\ aj)
€T JjeET JjeJ

Lemma A.6. For all PCL formulae p,q, if p+ q then u(p) - u(q).

Proof. Straightforward by induction on the derivation of p I q. O

Lemma A.7. Let m: A — NpUVp. For all says-free IN-PCL formulae
c and a = \;c;a; such that sx(c) is defined:

cka <= sq(c)F sg(a)

50 M. Bartoletti, E. Tuosto, R. Zunino

Proof. To prove the (=) direction, assume that ¢ - a. By Theorem A.2,
consider a proof tree A of ¢+ a without occurrences of the (Cur) rule. The
RHS of each sequent in A has the form A, ;a;, with J C I, and so A only
contains occurrences of the rules (In), (AL1), (AL2), (AR), (=L), (Fix). We
have the following cases, according to the last rule used in A:

e (Ip). We have that ¢ = ¢/, a, and rule (Ip) has been instantiated as:

d,a - a
The thesis follows trivially by sz(a) F sx(a).

e (AL1). We have that ¢ = p A ¢, and the instance of rule (AL1) is:

d,pANg,p F oa
cd,pNq F a

By the induction hypothesis,
377(0/)’ sr(pAq),sx(p) F sx(a)
Since sz (p A q) <> sz(p) A s=z(q), by (AL1) we conclude:

s7(¢'), 2 (P) A 5x(q), $x(p) b sr(a)
sx(¢), 82 (p) Nsx(q) = sx(a)

from which the thesis follows by using the same observation.
e (AL2). Similar to the previous case.
e (AR). We have that a = p A ¢, and the instance of rule (AR) is:
ckp ¢k g
ckF pAg

By the induction hypothesis (twice), sx(c) F sz(p) and sr(c) F sz(q).
Therefore, by (AR):

sz(c) F sx(p) sxz(c) - sx(q)
sx(c) F sx(p) A sz(q)

and the thesis follows because s;(p) A sz(q) <> sz(p A q) = sz(a).

Contract-Oriented Computing in CO2 51

(—»L). We have that ¢ = ¢, p — ¢, with p = /\; b; and ¢ = /\j aj. The
instance of rule (—L) is:

dip—qtFp dp—=qgqtoa

dip—=qt a
By the induction hypothesis, applied twice:

sx(¢),sx(p = q) F sz(p) (5)
s5x(c'), 5x(p = @), 5:(q) F sx(a) (6)

By Definition A.5,

sr(p = q) = Pr(p = q) says (s«(p) — /\aj)

Since Pr(q) = P:(p — q) is defined by hypothesis, and since

Asays (p —q) — (' — A says q)
A says /\aj < /\A says a;

J J

are theorems in PCL , we have that:
sx(c),sx(p = @) & 52(p) = sx(q) (7)
By (7) and (5), it follows that:
sx(c),sx(p) = sx(q) F sx(q)
Together with (6), we conclude that:
sx(c),sx(p = q) F sx(a)

(Fix). We have that ¢ = ¢,p — ¢, with p = A\, b; and ¢ = A\;a;. The
instance of rule (Fix) is:

d,p»qabtp dp>qgqta
d,p—>qtoa

92

M. Bartoletti, E. Tuosto, R. Zunino

By the induction hypothesis, applied twice:

By Definition A.5,

sx(p = q) = Pr(p — q) says (s(p) — /\aj)

Since Pr(q) = Pr(p — q) is defined by hypothesis, and since

A says /\aj ~ /\A says a; (10)

J J

is a theorem in PCL, we have that ¢ - s;(q), and so by (9):
sp(c)ysx(p = q),q + sx(a) (11)
By (9) and (11), it follows that:

sx(),82(p = q),q b sx(p) (12)

By Definition A.5, sz(p — ¢) = Px(q) says (sz(p) - ¢). Now, since
p — A says p is a theorem in PCL, by (12) it follows that:

SW(C/),SW(p) —q,q = sz(p) (13)

Therefore, by rule (SaysL):

13 I
(13) -, 82(p) > q,q q(D)(FIX)
<, 5:(p) »q F q (SAvSR)
-, Pr(q) says (sz(p) = q), s=(p) = q & Pr(q) says q (14)

52(C'), Pr(q) 5ays (5(p) —) F Pr(q) says q

Now, since P(q) = Pr(p — q) is defined and because of (10), we have
that Pr(q) says q <> sz(q). Also, by Definition A.5,

Pr(q) says (sz(p) = q) = sz(p— q)

Contract-Oriented Computing in CO2 53

We can then rewrite (14) as:
sx(c);sx(p = q) b sx(q)
Together with (9), this gives the thesis:

sx(¢),sx(p— q) F sx(a)

To prove the (<) direction, assume that s;(c) - sr(a). By Lemma A.6, we
have that u(sz(c)) F u(sx(a)). The thesis follows by noting that u(s,(c)) = c,
and u(sy(a)) = a. O

Definition A.8. For all traces n of a contract-as-process ¢, we define the
set of IN-PCL actions act(n) as follows:

1] if n is empty
act(n) = 4 act(n’) if n = (A says B)a)n/
{A says a} U act(n') if n= (A says3)B)n’

Notation. Hereafter, to indicate any contract ¢ such that A< ¢ for all A,
we sometimes just write <. We write A)a) for a pending message where the
receiver is immaterial.

Lemma A.9. For all IN-PCL contracts c, if
[l | |l;e;PEBT(Bisbi) | ||,c 4502) —=» <

then

c, /\ Aj says aj F act(n), /\ B; says b;
jedJ i€l

Proof. We proceed by induction on the length of 7.

To keep the proof succinct, we make some mild simplifying assumptions
on the form of the contract c. More precisely, we assume that in conjunctions
A jeg 3j, the set J is always a singleton (we do not make this assumption
for the antecedent of — and —). The proof for the general case can be
easily obtained from the current one, at the cost of some extra details in the
management of conjunctions.

In the base case 7 is empty, and so act(n) = (). Since, by hypothesis,
AL HieIDEBT(Bi’ b;) for all A, then it must be the case that I = (): by

54 M. Bartoletti, E. Tuosto, R. Zunino

contradiction, if this were not the case and ¢ € I, we would have that

the participant who says DEBT (B;,b;) = T.DEBT(B;,b;) + - - - is culpable.

Therefore, the base case requires to prove that c, - - - = (), which holds trivially.
For the inductive case, let

co = [d||],c;PEBT(B,b;) yH s Aj)a5)

and assume a trace:

A says « n ..
Co C1 ~

where 1 = (A says a)n’. We have the following exhaustive cases, obtained
by analysing the possible choices for the first transition.

1. ¢ =, A says a, transition by the rule (Tav) on [a] = OUT(a). Then:

A says T
EE—

co DEBT (B, b;) | HjEJ.Aj>aj>

[lier

The thesis follows directly from the induction hypothesis.

2. ¢ =, A says a, transition by the rule (Our) on [a] = OUT (a). Then,
a = 2a)B for some B, and:

A says a)B
co ————» [¢]| OUT(a) | A)a)B | ||,c,DEBT(Bi,bi) | ||, ,4;)a;)

= [¢,a] | A)3)B | |[,c;PEBT(Bi,bi) | ||;c,45)a5)

By the induction hypothesis, it follows that:

, A says a, /\ Aj saysaj F act(n /\ B; says b; (15)
jeJ i€l

By the rule (In), ¢+ A says a. Then:

/\ Aj saysa; F A says a,act(n /\B says b;
jeJ i€l

and to conclude it suffices to note that act(n) = {A says a} U act(n).

3. ¢ = ¢, (Ape1nDn says dp) — b, transition by the rule (Ix) on the
leftmost input of [(A,c; , Dn says dy) — b]. This requires that a
suitable pending message is available in ¢g, i.e. there exists j; € J such
that Aj)a;;) = D1)di1)A. There are two subcases.

Contract-Oriented Computing in CO2 55

e if n =1, then:

A says D1)d
co = (]| OUT (b) | ||,c; DEBT(Bi,bi) | || ;01 (5, Ai)a7)

= [¢,b] | |[;,c; DEBT (Bi,bi) | || ;¢ (.3 A7)25)
By the induction hypothesis, we have that:
d, b, /\ Aj says aj F act(n), /\Bi says b;
je\{i1} icl

The above entailment is weakened to:

d, (D1 says d1) — b, D1 says d1, /\ Aj says aj

je\{i}
Now, since A, = Dq and aj; = dy, the above is equivalent to:
d, (Dy says d1) — b, /\ Aj says aj
JjeJ
from which the thesis follows, because act(n) = act(n’).
e if n > 1, then:

A Dy)d
co PN (|||, DEBT(By,by) |

D2>d2. s Dn>dn ‘ HjGJ\{jl}Aj>aj>
= ¢, (Ahea.n Dn says dp) — b] |

||,c; PEBT (B, b;) | Hjej\{jl}Aj>aj>
By the induction hypothesis, we have that:
d, (/\ Dy, says dp) — b, /\ Aj says aj F act(n), /\Bi says b;

he2.n JeN{in} iel

The above entailment can be weakened as follows:

d, (/\ Dy, says dp) — b, Dy says dy, /\ Aj says aj +
he2.n jeN{}

which is equivalent to:

d, (/\ Dy, says dp) — b, D; says di, /\ Aj says aj F
hel.n Je\{jr}

56 M. Bartoletti, E. Tuosto, R. Zunino

Now, since A;, = D; and aj, = di, the above is equivalent to:

c, (/\ Dy, says dp) — b, /\ Aj says aj
hel..n jeJ

from which the thesis follows, because act(n) = act(n).

4. ¢ = ', (Apeg Dn says d) — b, transition by the rule (Tav) on the
leftmost 7 of [(A,cy Dn says d) — b]. Then:

A says T
co ——» []]||,c;PEBT(B,b;) | \|j€JAj>aj>

By the induction hypothesis, we have that:
d, /\ Aj says aj b act(n), /\ B; says b;
JjedJ iel
Since act(n) = act(n'), to conclude it suffices to weaken the entailment:

¢, /\ Aj says aj F act(n), /\Bi says b;
jeJ icl

5. ¢ = ¢, (Apen Dn says d) — b, transition by the rule (Tav) on the
rightmost 7 of [(A,cy Dn says d) — b]. Then:

A says T
5 0 |)yey PEBT (D, dp) | OUT (b) |

||,e; DEBT (Bi,bi) | ||, A7)a;)
= (.51 | [,y DEBT (D, d) |
DEBT (B;,bi) | ||, ;A7)aj)

Co

llies

By the induction hypothesis, we have that:

d, b, /\ Aj says aj F act(n), /\ Dy, says dp, /\BZ- says b; (16)
jed heH icl

The above entailment can be weakened as follows:

d, /\ Aj says aj, (/\ Dy, says dp) - b, b F /\ Dy, says dp, (17)
jeJ heH heH

Contract-Oriented Computing in CO2 57

Also, by the rule (Ip) we have that:

c, /\ A;j says aj, (/\ Dy, says dp) - b, b + b (18)
jeJd heH

Therefore, by the rule (Fix) it follows that:

(17) (18)
s Njes Aj says aj, (Apey Dn says dp) - bEb

(FIx) (19)

Since act(n) = act(n'), (16) and (19) allow to obtain the thesis:

d, (/\ Dy, says dp,) — b, /\ Aj says aj + act(n), /\ B; says b;
heH jed iel

. Transition by the rule (Tav) on DEBT(By,by), for some k € I. Then:

A says T
co —» Cp

and the induction hypothesis gives the thesis.

. Transition by the rule (Our) on DEBT (B, by), for some k € I. This
requires that a suitable pending message is available in ¢y, i.e. there
exists h € J such that Ap)ap) = By)bg)A. Then:

A says By)b
cp —— [[lier oy PEBT (Bis bi) | || je gy Ai)ai)

By the induction hypothesis, we have that:
d, /\ Aj says aj b act(n), /\ B; says b;
jeJ\{h} ieI\{k}

By weakening the entailment, the above is equivalent to:

d, /\Aj says a; + act(n'), /\ B; says b;
JjeJ ieI\{k}

Now, since Ay, says ap = By says by, by the rule (In) we obtain:

d, /\ Aj says aj b act(n), /\ B; says b;
jed iel

and the thesis follows because act(n) = act(n). O

58 M. Bartoletti, E. Tuosto, R. Zunino

Lemma A.10. For all 1IN-PCL contracts ¢ such that [C]P 2y d and
A says a)B € n, we have that B € P, and either d has the form d' |
A says OUTp(a), or there exists some 1/ with A says 3a)B € 1/ such that

[C]P s d | A says OUTp(a).

Proof. We proceed by induction on the length of 7.

In the base case,) necessarily consists of A says a)B. Hence, the
thesis trivially follows by construction since [C]P must be of the form ¢’ |
A says OUTp(a) with B € Psod = | A)a)B | A says OUTp(a) (by
rules (REC), (OUT), and (PAR) in Figure 1).

For the inductive case, let n =1, A says a)B ny with A says a)B & na.

Namely, assume that [C]P M dy B do 2y d. Note that do
has the form df | A says OUTp(a) and recall that A says OUTp(a) =
7.0+ > pepa)B.A says OUTp(a).

If d is not of the form d' | A says OUTp(a) then there must be a state
d" reached through 7y where the 7 transition of A says OUTp(a) is taken.
Removing such transition from 7e would give another trace 7} from dy where
all states are the same as those in 7 in parallel with A says OUTp(a), which
gives the thesis. O

A says a)

Definition A.11. We say that a participant A is in charge of « in state cgy
. A says o
if cg ———».

Lemma A.12. Let ¢ be a non-ambiguous 1N-PCL contract, and let the
set P include the participant names occurring in c. If c= A says a, then:

n, d. ([C]P 2 d A A says a € act(n) A VBGP.BUd>

Proof. Since ¢ is non-ambiguous, then by Definition 2.6 there exists a function
m = m(c) which maps each atom in ¢ to a single participant. Since ¢
A says a by hypothesis, then 7(a) = A. Let ¢; be a says-free 1N-PCL
formula such that ¢ = s;(c1). Since sz(c1) F sz(a), then by Lemma A.7 it
follows that ¢; - a. By repeated applications of Lemma A.4, we can write ¢;
as ¢y, c, for some ¢, and ¢ such that ¢, F b for all atoms b occurring in ¢,
and ¢, Fa. W.l.o.g. we can assume such ¢, to be minimal, so that removing
a formula from it would prevent the entailment of some atom.
By observing that:

[0]79 = [SW(CI)]p = [SW(CU)]P ’ [SW(CI)]p

Contract-Oriented Computing in CO2 59

we show the thesis by exhibiting a trace where all the steps are due to the
subprocess [sﬂ(cu)}P, while [sﬂ(c/)]73 stays idle. The trace of [sﬂ(cu)}P is
then constructed as follows:

e First, we consider the contractual implications of ¢,. Let ¢, =
&y Se((Aizq bi) = b), ... where ¢, is free from —. In the encoding of
each —, we fire the second 7: we therefore have

— SaYS T

lea] (] | 7(b) says (OUTp(b) | ||, DEBT(x(by),by)) | ...

This basically makes available in the contract all the outputs b which
occur as a consequence of a contractual implication, at the cost of
introducing the associated debts.

e Then, using all the OUTp(b) in the context, including those we have
spawned above, we fire all the inputs in the encoding of the (standard)
implications of ¢, hence spawning outputs for their consequences, as
well. Unlike for the contractual implications, this requires to follow a
precise ordering, namely the ordering in which implications would be
eliminated in a proof of their consequence. For instance, for a;,a; —
as,as — ag we would use aj to fire the inputs of a; — a9, and only
then use as to fire the inputs of ao — az. In the general case, a correct
order of such implications always exists, since otherwise we would have
a circular dependency between some implications, some of which would
then be redundant to entail some atom, and hence it would not belong
to ¢, which is minimal.

This shows that

[CU}P —" [Cg]p |
w@)aws(OUTp)| ||l DEBT(x(bs),b;) | OUTp(c) | --)\.”

where the c¢’s denote the consequences of the implications.

e Above we made available all the OUTp(b) for any b in ¢,. These allow
us to fire all the inputs of all the DEBT (w(b;),b;), so making them
move to 0.

e Having removed the encoding of implications, contractual implications,
and debts, now only the OUTp(b) remain, for any b in ¢,. We can
then make them output all their atoms, so that they occur in 7, and
then make them move to d = 0, so that we can have B d for any B.

60 M. Bartoletti, E. Tuosto, R. Zunino

The trace generated above indeed includes all the entailed atoms. [

Theorem 2.7. Let ¢ be a non-ambiguous 1 N-PCL contract, and let the
set P include the participant names occurring in c¢. Then, ¢ A says a iff:

I, d, B. ([c]p I d A (Adoes3B) en A VB € P. B’ud)

Proof. The “only if” direction follows from Lemma A.9, by substituting the
empty set for I and J. The “if” direction follows from Lemma A.12. O

(© Scientific Annals of Computer Science 2012

	Introduction
	An Abstract Contract Model
	Contracts as Processes
	Contracts as Formulae
	On Contracts-as-Processes vs. Contracts-as-Formulae

	A Calculus for Contract-Oriented Computing
	Syntax
	Semantics
	On Agreements
	On Honesty
	What Can Go Wrong in Contract-Oriented Systems?
	A Collection of Misbehaviours and Attacks
	Variants to the Basic Calculus

	Related Work
	Conclusions
	Proofs

