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Abstract

High frequency communications (mmWave and TeraHz) in urban areas require
a higher density of base stations compared to pre-5G mobile networks, but
open the way to a quantum leap in increased throughput and reduced latency.
However, we currently have no indication of how much we need to densify the
deployment, and on the trade-off between the density of base stations and the
performance improvement. This paper studies the problem of base stations
placement to guarantee coverage to vehicles and pedestrians in urban areas
when using high frequency communications. Our novel methodology takes ad-
vantage of vehicular traffic simulations and precise urban maps to generate a
realistic demand model for vehicles and pedestrians in urban areas. We use
a bounded error heuristic to find the maximal coverage that can be achieved
with a given density of base stations, primarily using line-of-sight communica-
tions. We implemented the heuristic using Cuda libraries on Nvidia GPUs and
evaluated the coverage in an urban area in the city of Luxembourg, for which
vehicular traffic patterns are available. We focus on coverage and capacity anal-
ysis for the mmWave frequency, but the results are easily extended to TeraHz
communications.

Our results are the first to show that a reasonably low density (15 base
stations per km2) is sufficient to provide coverage for vehicles in urban envi-
ronments. However, optimizing on vehicles or on pedestrians are competing
objectives: the operator needs to choose which one to target based on its busi-
ness model when designing the network infrastructure. Our algorithms, code
and open data can be used to perform this task and reproduce our results in
different settings.
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1. Introduction

In order to meet the increasing demand for mobile connectivity, the next-
generation access networks (XGs) will rely on the use of very high frequencies
(mmWave and TeraHerz) and on the densification of the existing access network,
by increasing up to 10 times the number of deployed base stations [1]. These new
communication technologies are much more susceptible to obstruction and they
need Line-of-Sight (LoS) to function reliably. For these reasons, the placement
strategy of the base stations is crucial, and as already shown in previous works,
an optimal choice of such locations can lead to substantial savings for network
operators [2].

One of the future applications enabled by XGs is the use of Cooperative
Autonomous Vehicles (CAVs). To be really effective, cooperative driving will
not only require vehicles to exchange basic data such as position, speed, head-
ing, etc., but raw sensor data as well. This will permit vehicles to implement
Cooperative Perception (CP) [3], i.e., to be able to construct a view of the
surrounding environment that goes beyond the field of view of their sensors.
Sharing raw sensor data rather than pre-processed data enables vehicles to take
decisions on their own or to come up with a consensus on how to classify certain
objects, which can lead to safer and more efficient driving (see the boar and the
hare example [4]).

While this vision is technologically stimulating, we still miss a reliable es-
timation of the effort needed to deploy a new, denser infrastructure that will
provide mostly LoS coverage to mobile terminals in urban areas. Manufacturers
suggest that 5G will require more than 100 base stations - or next Generation
NodeBs (gNBs) using the 5G terminology - per km2, up from the roughly 10
per km2 in LTE [1], and even more in 6G. Some works consider densities even
higher than a hundred gNB/km2 [5].

Without algorithms, data, and code to tackle this problem, the research
community can not design protocols and applications with credible results. This
paper contributes to provide this missing link. We use a data-driven approach to
find an optimal placement for gNBs by taking into account a demand model built
for vehicles (based on street traffic patterns) and for pedestrians (isolating side-
walks and pedestrian areas on detailed maps). Given a demand model, we devise
a new heuristic that exploits it to find the optimal location of the gNBs. We
take advantage of open geographical data, specifically OpenStreetMap (OSM)
vectorial maps and Digital Surface Model (DSM) to evaluate different gNB
placements on real-world data. While the analyses have been conducted only in
the city of Luxembourg, the availability of open-data together with the source
code we release will enable anyone else to reproduce the analyses in different
areas. 1

We advance the state of the art with the following findings:

• A “reasonably low ” density (15 gNBs/km2) can be used to provide 95%

1https://github.com/UniVe-NeDS-Lab/TrueBS/tree/vehicular_mod
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coverage to vehicles, while pedestrian areas require a higher density (35
gNBs/km2);

• Non Line-of-Sight (NLoS) links can be useful to fill the gap but the per-
formance penalty is extremely high;

• Providing connectivity to vehicles and pedestrians are two competing ob-
jectives, as a small part of the walkable area is on the streets. If the op-
erator needs to guarantee service continuity also to pedestrians, it needs
to adopt a dedicated covering strategy.

This work extends and improves the initial results obtained in a previous
conference paper [6] in which we introduced the methodology and measured
the availability of LoS from gNBs to ground points. This work uses the same
approach but focuses on the estimation of the link capacity. We use realistic
path loss models suggested by ETSI to provide much more insightful results
compared to our previous ones.

2. State of the Art

While the placement of base stations is a widely investigated matter [7], the
LoS requirements introduced by the newer communication technologies have
reignited the attention on the subject, with several works taking advantage of
similar techniques [8, 9, 10, 11, 2]. However, to the best of our knowledge, no
other study is focused on investigating different placement strategies to opti-
mize mobile coverage for vehicles using realistic traffic data, and for pedestrians
using detailed city maps. This is because vehicular networks are a very specific
application for which research on field is extremely expensive and the available
simulation tools fall short in the analysis of a three-dimensional scenario, that is
fundamental to evaluate LoS in XGs. The most popular open source simulator
used to simulate vehicular networks is Veins, powered by the Omnet++ discrete
event simulator [12]. Veins uses a flat 2D map, so it does allow to perform LoS
estimation but it is mostly useful for vehicle-to-vehicle communications, assum-
ing that vehicles in communication range are at roughly the same elevation. For
some other applications however, the lack of a 3D approach has been recognized
as a limitation [13]. There have been some attempts to improve Veins to in-
troduce the third dimension but this is limited to the use of loss models that
are more accurate in considering the ground elevation (like the n-ray ground
model) and not necessarily the shape of buildings [14]. Only very recently Veins
has been extended to introduce simple prisms as three dimensional building
shapes [15] with a limited computational penalty. In comparison, our approach
is GPU-based and can exploit data of arbitrary accuracy. Finally, the CARLA
simulator is a recent instrument that heavily relies on 3D models [16], however
the goal of CARLA is not to model realistic networks of vehicles, but to im-
prove their intelligence with the reconstruction of 3D objects. The most similar
research, from Jaquet et al. [17] is focused on enhancing vehicular networks by
taking advantage of unmanned aerial vehicles.
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3. Problem Formulation and Solution

We consider a 3D shape of an urban area and a set Λ of points in the ground
that can be potentially covered with a LoS connection from a gNB. Each point
corresponds to an (x, y, z) triplet, in which the (x, y) coordinates are quantized
using one point per squared meter. Points are selected to be outside any building
shape and only in public areas (streets, roundabouts, street parking, sidewalks)
and not in private areas. Each point in Λ is uniquely identified by the (x, y)
couple, as we set the z value to a height of 1.5m, as such, with a little abuse of
notation we may use (x, y) ∈ Λ when it simplifies the description.

The problem we tackle can be summarized in three steps described in the
next two sections:

1. For each point in Λ define a weight, the higher the weight the higher the
probability the point will be covered. The matrix that associates (x, y) to
a generic weight is called τ ;

2. Identify the set P of points in space in which a gNB could potentially be
placed. Each position pi ∈ P is defined by an (x, y, z) triplet, we consider
only points on the facades of buildings;

3. Find an algorithm that chooses the minimal number of gNBs so that the
coverage is maximized according to some metric.

Step one is a novel contribution of this paper. In a previous work [2], all
points in the city had the same importance, whereas here we weight locations
considering traffic demand and pedestrian areas, choosing gNB locations de-
pending on that. The solution to the second step comes from a previous pub-
lication in which we introduced the problem of coverage as a variation of the
classical maximum subset coverage problem [2], while the third step modifies
the solution proposed therein to take into account the weights introduced in
step one. In the remainder of this section, we will formalize point 3 (the gNB
placement problem) and provide an algorithmic solution for a generic weights
matrix τ . Then, in Sect. 4 we detail the different strategies to obtain 2 realistic
weights matrices for vehicles and for pedestrians.

For convenience, we list all the mathematical symbols in Tab. 1, some of
which are also represented graphically in Fig. 1. In what follows we use the | · |
operator on sets and matrices. On sets it counts the number of elements, while
on matrices it refers to the 1-norm.

Limitations. It is important to note that all our results are to be interpreted as
a base-line on which to produce fine-grained further results. In this sense, we
recognize that our conclusions are not directly applicable to other cities, because
at the time of writing the Luxembourg scenario is the only one for which we
own all the necessary data, however the paper methodology is fully repeatable.
Future works will extend our approach using data coming from other cities
and more complex ways of estimating the performance of the links, such as
estimating the blockage due to obstacles that are not buildings or using more
elaborate ray-tracers that take into account also reflections and diffraction.
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Figure 1: Graphical depiction of the weighted placement problem: The matrix of weight
(τ ) associated with each point is represented by the numbers in the background; the set of
Buildings (B) is represented by the rectangles in brick red; the set of candidate locations (P)
is represented by the small black points on the edge of the buildings; the locations selected
by the algorithm are represented by the larger dots colored in green, their viewsheds σi are
represented by the grey shadows projected on the streets.

3.1. gNB Placement
We briefly recall what was proposed in Gemmi et al. [2] that is at the base of

this work. Let B = {bi} be the set of buildings extracted from the OSM dataset.
Let also ϕ(bi) be a function that extracts a set of coordinates that compose the
perimeter of the building bi, with points spaced on average one meter away from
each other, placed 1m below the height of the roof. The elevation of the roof is
derived using open data repositories that provide a surface model (a DSM file).
We can then define the set of candidate locations P as:

P =
⋃
bi∈B

ϕ(bi) (1)

Once the set of candidate locations is determined, we need to evaluate the
coverage from each of them. In order to do so, we take advantage of a viewshed
algorithm implemented using the CUDA library on NVidia GPUs [18]. This
algorithm, applied on a highly precise DSM computes the presence of LoS from
the candidate location pi to each point in Λ given a maximum distance (dmax =
300m) from pi. We consider this value of distance as it has been used as an
upper bound in other works [19]. Let σi = Υ(Λ, pi) be a 2-dimensional binary
matrix that associates each point in Λ to a non-zero value if there is LoS from
the point pi to the point of coordinate (x, y, z) ∈ Λ. Υ corresponds to the
application of the viewshed algorithm from the point pi over the set of points Λ.
We call σi the viewshed matrix from point pi. If we apply Υ to all the points
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Table 1: List of symbols

Symbol Meaning

Λ Set of ground points potentially to be covered
τ Matrix of weights associated to points in Λ
P Set of all candidate locations for gNBs
B = {bi} Set of buildings extracted from the OSM dataset
ϕ(bi) Set of coordinates that compose the perimeter of the

building bi
σi = Υ(Λ, pi) Υ is a function returning a binary matrix σi indicating

if there is LoS between a point pi and a set of points Λ
Ω Set of all viewsheds corresponding to all possible gNB

positions
Ω⋆ Quasi-optimal set of viewshed computed by the optimiza-

tion algorithm
π,γ Weight matrices for the pedestrian and vehicular strate-

gies, respectively
Λπ,Λγ Set of ground points to be covered by the pedestrian and

vehicular strategies, respectively. Named as walkable and
drivable areas in the text

λ Desired gNB density, in gNBs per squared kilometer
S Size of the area considered in the analysis [km2]
k = λS Maximum number of gNBs to deploy
|Γ|, Γ being a set Set size operator, counts the number of elements in the

set
|τ |, τ ∈ Rm,n 1-norm operator over a matrix (sum of absolute values),

i.e.,
∑m

i=1

∑n
j=1 |τ i,j |

in P we obtain a collection of matrices that represent all the possible viewsheds
from all the potential positions of gNBs, as in Eq. (2):

Ω =
⋃

pi∈P
Υ(Λ, pi) (2)

We then obtain a collection of matrices Ω = {σ1,σ2, . . . ,σm} in which
σi

x,y = 1 means that a terminal in position (x, y) has LoS with a gNB placed
in the point pi. Remember that we extend the classic definition of LoS with
the additional constraint of being within a maximum distance dmax and that
to each point of coordinate (x, y) we attribute an elevation z given by the DSM
file, plus 1.5m.

3.2. Quasi-optimal gNB placement
Given a parameter k indicating the maximum number of gNBs an operator

is willing to deploy, we want to find a subset Ω⋆ ⊆ Ω whose size is lower than k
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that maximizes the coverage
∣∣∨

σi∈Ω⋆ σi
∣∣, where

∨
is the OR operator between

binary matrices. In order to take into account the traffic patterns, consider
a generic non-negative weight matrix τ with the same shape of σi. We can
formulate the maximization objective as

max
Ω⋆

∣∣∣∣∣τ ⊙
( ∨

σi∈Ω⋆

σi

)∣∣∣∣∣ with |Ω⋆| ≤ k, (3)

where ⊙ is the Hadamard product (the element-by-element multiplication be-
tween two matrices). This will lead to a choice of the optimal k viewsheds in Ω⋆

to cover the roads with the highest traffic. The problem is a so-called weighted
maximum coverage problem.

Note that if we call 1 the matrix made of all one elements, and we set τ =
1 then the problem converges to the classical unweighted maximum coverage
problem, in which we try to cover the largest portion of the points in Λ treating
all of them equally.

3.3. Heuristic solution
Since the above-described coverage problem is NP-Hard in our past work we

relied on a polynomial greedy heuristic with bounded error to efficiently find a
quasi-optimal solution [2].

Here we modify the greedy heuristic as described in detail in Algorithm 1
to take into account the weight matrix. The heuristic proceeds as follows: we
start by defining a coverage matrix C of the same size of τ , initialized with zeros
(Line 2). Each iteration of the loop in Line 4 will choose the position of one gNB.
For each candidate location pi and the corresponding viewshed σi we derive the
so-far uncovered elements C̄ as the negation of the coverage matrix (Line 7).
The idea is, at each step, to progressively add the gNB that provides the largest
additional coverage with respect to the already covered area. We define C⋆ that
represents the so-far uncovered elements that would be covered by the candidate
location, with their weight given by τ (Line 8). Note that bool() is a function
that makes an integer matrix a boolean one, ¬ is the boolean NOT operand.
We then provide a score for pi as the norm-1 of the coverage matrix (in Line 9).

Then, the element with the maximal ranking that is not already in Ω⋆ (σj /∈
Ω⋆) is chosen and the corresponding values of the viewshed matrix are added
to C (Line 13). Note that this makes C a non-boolean matrix. Finally, the
viewshed with the maximal ranking σ⋆ is added to the set of optimal viewsheds
(Line 14). The loop is repeated till the number of desired locations is reached.
The operation at line Line 8 has complexity |Λ|, and is repeated at most k×|P|
times, so the overall complexity is O(k|P||Λ|).

This algorithm is referred to as Γ (Ω, k, τ ) and in the next section we use it
with two weights matrices π or γ, producing two sets of quasi-optimal viewsheds
optimized for pedestrians or vehicles respectively.
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Algorithm 1 Greedy algorithm for the weighted maximum coverage problem.

Input: Ω (Set of viewsheds), k (number of gNBs), τ (weighted traffic matrix)
Output: Ω⋆ (Set of the viewsheds from optimal locations)
1: procedure Γ (Ω, k, τ )
2: C = 0
3: Ω⋆ = {}
4: for i← 1 to k do
5: h⋆ = −∞
6: for σj ∈ Ω do
7: C̄ = ¬bool(C)
8: C⋆ = C̄ ⊙ σj ⊙ τ
9: hj = |C⋆|

10: if hj > h⋆ and σj /∈ Ω⋆ then
11: σi⋆ = σj

12: h⋆ = hj

13: C = C + σi⋆

14: Ω⋆ = Ω⋆ ∪ {σi⋆}
15: return Ω⋆

4. A Demand Model for Vehicles and Pedestrians

Obtaining realistic traffic data, for both pedestrians and vehicles, is always
a challenging task, as data collected by cities is rarely released to the public.
One possibility, which is the one we consider in this work, is to generate traffic
data using microscopic traffic simulators and realistic scenarios. We use the
urban traffic simulator SUMO [20] to generate realistic mobility traces of the
city of Luxembourg. In particular, we make use of the Luxembourg SUMO
Traffic (LuST) scenario [21], a publicly available scenario generated from traffic
data provided by the Luxembourg government which includes both public and
private transportation over a period of 24 h. Unfortunately, since the model
does not include pedestrian mobility, we had to resort to a different approach
to model it. In the next sections, we detail both models.

The reason for choosing Luxembourg lies in the fact that, in addition to the
demand model, our solution requires buildings height data, which is available
for this city. We obtain such information from 3D lidar data available from the
Luxemburg open-data platform 2, enabling us to associate a precise height to
every building extracted from the OSM map. We considered including other
cities in our analysis, but finding both the demand model and the lidar data is
unfortunately very unlikely. As an example, we find lidar data for the city of
Turin, but the SUMO scenario [22] produces traffic deadlocks with consequent

2The lidar data is available at: https://data.public.lu/fr/datasets/
lidar-2019-modele-numerique-de-terrain-mnt/
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Figure 2: Area of the city of Luxembourg over which traces are collected.

“teleportations”3, which would make the traces unrealistic. On the contrary,
there exists a very realistic SUMO scenario of the Principality of Monaco [23],
but no 3D lidar data.

4.1. Vehicular Model
To obtain traffic traces, we run the scenario over the full 24 h for a total

of 286 215 vehicles moving on the streets. The simulation sampling time is set
to 1 s and, at the same frequency, we log the positions of the vehicles in the
area of the city shown in Fig. 2, corresponding to an area S of roughly 4 km2.
We collect traces using GPS (latitude/longitude) coordinates and then convert
them to a .gpx file for later processing. We map each point in a trace to a cell
in the discretized space given by Λ. We obtain a matrix γ with the same shape
as τ , where γx,y = n means that n vehicles have passed in cell (x, y) during the
whole simulation4.

Fig. 3 shows the empirical pdf of the values of the cells with non zero value,
binned with bins of size 0.125 passages/minute, rescaled to the number of pas-
sages per minute for readability. It can be seen that the majority of the cells
have less than one passage per minute, with the 95th percentile roughly at 0.55.
The distribution is pretty skewed, with about 5 orders of magnitude between
the largest and the lowest frequency.

We call Λγ the set of points (x, y, z) ∈ Λ in which γx,y ̸= 0, and we refer to
it as the drivable area.

3Teleportation is used in SUMO to resolve deadlocks or collisions. If a vehicle is involved
in a collision or it is stopped for a time longer than a threshold, SUMO moves it to the next
edge in its path.

4In our previous work [6] due to memory limitations of our GPU we had to re-scale the
frequency values in τ to be within the allowed range of one byte: [0, 255]. In this work we
resort to a GPU with a larger memory, enabling us to work with 16 bit integers and get rid of
such re-scaling.
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Figure 3: Empirical p.d.f. of the vehicles passages per minute per cell.

4.2. Pedestrian Model
Due to the lack of a pedestrian mobility model in the LuST scenario, we had

to manually define certain public areas where the pedestrians would transit. We
decided to focus on sidewalks and public open-air areas such as parks, gardens,
squares, etc.

To model the sidewalks we started from the lines characterizing the OSM
roads, which were used to center two symmetrical 2-meter wide sidewalks with
a distance from the center of the road depending on the type of road. To
model the public open-air areas, on the other hand, we relied on the public
land use database from OSM, where we selected the public areas with one of
the following types: cemetery, forest, grass, heath, meadow, orchard,
park, recreation_ground. Again, we mapped those points to a cell in the
discretized space given by Λ and obtained a matrix π with the same shape as
τ , where πx,y = 1 when the element corresponds to one of those areas and 0
otherwise. Fig. 4 shows both sidewalks and public areas in green, the roads
dedicated to vehicles in yellow, and buildings in gray. We call Λπ the set of
points (x, y, z) in which πx,y ̸= 0, and we refer to it as the walkable area.

Note that in a realistic deployment our algorithm allows to be manually
tailored by an operator, according to local needs and strategies. This could be
achieved by manually modifying the demand model: the operator could increase
(or decrease) the weights to improve the coverage of a certain area that is more
(ol less) important, based on its business or operating needs. Once the weights
are manually modified, the optimization algorithm does not need modifications.

5. Experimental Setup and Metrics

We consider two different settings, one in which we optimize the coverage
for the vehicular traffic (τ = γ), and another one in which we optimize for the
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Figure 4: Detailed view of a portion of the area considered in the analysis. Yellow highlights
roads, green indicates public areas for pedestrians (sidewalks and parks), grey indicates build-
ings, and white indicates private areas. The zoomed portion shows the vehicular traces with
a grayscale representing the number of passages per point (darker means higher).

Parameter Value

Area size 3.98 km2

Carrier frequency 28GHz
Bandwidth (B) 400MHz
Thermal Noise (T=300K) −87.8 dBm
Noise Figure (Nt) 5 dB
3GPP Channel Model ETSI TR 38.901 Urban Micro
Reception gain 3 dBi
MIMO layers (µ) 2
Transmission power 30 dBm
Transmission gain 10 dBi
Maximum distance for LoS links 300m

Table 2: Simulation Parameters

areas where pedestrians might be located (τ = π). We apply Algorithm 1 to
compute the optimal locations for the gNBs, increasing their number k. We
consider a density λ of gNBs per squared km going from 5 to 45 at steps of 5,
and we set k = λS. Remember that S indicates the size of the area we consider.
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We obtain two solutions for the coverage:

Ω⋆
λ,γ = Γ (Ω, λS,γ) (4)

Ω⋆
λ,π = Γ (Ω, λS,π) (5)

that we aggregate with the OR operator to obtain a full coverage matrix:

Φλ,γ =
∨

σj∈Ω⋆
λ,γ

σj ; Φλ,π =
∨

σj∈Ω⋆
λ,π

σj (6)

In brief, the elements in Φ indicate whether a point (x, y) is covered by at least
one gNB.

5.1. Coverage Metrics
We use four metrics to compare the results in terms of coverage (again, ⊙ is

the Hadamard product and | · | the norm-1). The first two refer to the drivable
area and are:

Dcovve(λ) =
|γ ⊙ Φλ,γ |
|γ|

; Dcovpe(λ) =
|γ ⊙ Φλ,π|
|γ|

(7)

The metrics in Eq. (7) tell how good the coverage of drivable areas is when we
optimize for vehicles (Dcovve) or when we optimize for pedestrians (Dcovpe).
Dcovpe, in practical terms, tells us what happens if we try to optimize the
coverage for pedestrians but we measure the results only on the points where
the vehicles pass (with their multiplicity). Of course, we expect Dcovve(λ) to
be larger than Dcovpe(λ), yet we are interested in the difference.

We use two more metrics to evaluate the complementary set-up:

Wcovpe(λ) =
|π ⊙ Φλ,π|
|π|

; Wcovve(λ) =
|π ⊙ Φλ,γ |
|π|

(8)

Both metrics express how good the coverage of walkable areas is, in the first
case when we optimize for pedestrians (Wcovpe) while, in the second, when we
optimize for vehicles (Wcovve).

5.2. Channel Capacity Model
Besides the evaluation on pure coverage, we also evaluate the quality of the

coverage in terms of capacity, using the Shannon channel capacity formula. To
obtain the received signal strength we consider a transmission power of 30 dBm
at a frequency of 28GHz. We also assume the gNB to have an isotropic antenna
with transmission gain equal to 10dB. In practice, this would be made possible
by having between one and three sectorial antennas covering the unobstructed
area around the gNB . To compute the pathloss between a gNB located at pi
and a point (x, y, z) in the city, we employ the Urban Micro model defined in
ETSI TR 38.901 [24]. The model provides the path loss for both LoS and NLoS
conditions, and we can easily distinguish between the two cases thanks to the
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Figure 5: Shannon channel capacity as a function of the distance between two points d and
the LoS/NLoS conditions.

pre-computed viewsheds. In addition, we consider a gNB to be in LoS with a
point only if the distance between them is smaller than 300m. We set the noise
floor for a bandwidth B = 400MHz to be Nt = −87.8 dBm and we compute the
Signal to Noise Ratio (SNR) and the corresponding Shannon channel capacity
CSH(d) for µ = 2 MIMO layers:

CSH(d) = µB log2

(
1 +

S(d)

Nt

)
(9)

In Eq. (9), S(d) refers to the received signal power at distance d, as per the
LoS/NLoSpath loss model. Tab. 2 details all the parameters.

Fig. 5 shows a graph of the capacity as a function of the distance and
LoS/NLoS. We report this known curve for three reasons. The first is that
it quantifies the difference between the maximum bit-rate in the two cases. The
second is that it highlights that a terminal continuously switching between LoS
and NLoS would experience a constant change in network performance that
would make it very hard to support any application, so a partial LoS coverage
may be worse than a fully NLoS coverage. The third is that if the NLoS curve
is shifted right, it can intersect the LoS one. This translates into the fact that
in certain points it may be convenient to choose a gNB that is in NLoS but is
physically closer to the closest one in LoS. This is more likely if the NLoS link
is very short, and impossible if it is longer than roughly 50m. It is interesting
to evaluate if and how often this event happens.

5.3. Capacity Metrics
Consider a point (x, y, z) ∈ Λγ in the drivable area, the set Ω⋆

λ,γ of the quasi-
optimal viewsheds at density λ optimized for the vehicles, and the corresponding
positions of gNBs. We call LCx,y,γ(λ) the highest capacity we can achieve from
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any gNB to (x, y, z) using only LoS links5. If LCx,y,γ(λ) = 0 then there is no
LoS link between (x, y, z) to any gNB. We call NCx,y,γ(λ) the highest capacity
when using only NLoS links, which is always larger than zero (there are always
NLoS links to any (x, y, z)). The same metrics are also defined for walkable
areas using the π pedix. We collect all the capacities in four sets, divided by
LoS/NLoS:

DcapLλ = {LCx,y,γ(λ) ∀ (x, y, z) ∈ Λγ | LCx,y,γ(λ) > NCx,y,γ(λ)} (10)

DcapNλ = {NCx,y,γ(λ) ∀ (x, y, z) ∈ Λγ | NCx,y,γ(λ) > LCx,y,γ(λ)} (11)

WcapLλ = {LCx,y,π(λ) ∀ (x, y, z) ∈ Λπ | LCx,y,π(λ) > NCx,y,π(λ)} (12)

WcapNλ = {NCx,y,π(λ) ∀ (x, y, z) ∈ Λπ | NCx,y,π(λ) > LCx,y,π(λ)} (13)

There are two important things to note in these definitions. The first is that
we estimate the capacity on the drivable (walkable) area only when we optimize
on vehicles (pedestrians), so we do not consider the cross-metrics like in Sect. 5.1
and capacity metrics don’t have the ve/pe subscript like coverage metrics. The
second is that we consider NLoS links only when a LoS link is not available or
it offers a lower capacity than a NLoS link. This last observation leads to the
definition of a further metric: the fraction of points for which there exist some
LoS links, but a NLoS link provides a higher capacity.

W diff (λ) =
|{(x, y, z) | NCx,y,γ(λ) > LCx,y,γ(λ) > 0}|

|Λγ |
(14)

Ddiff (λ) =
|{(x, y, z) | NCx,y,π(λ) > LCx,y,π(λ) > 0}|

|Λπ|
(15)

We analyze the sets of capacity metrics in the following section in terms
of averages, cumulative distribution functions, and coefficient of variation to
provide a link quality estimation of the coverage strategies.

6. Results

6.1. Analysis of the coverage
We start the analysis by looking at coverage metrics as observed by different

areas in the city (walkable and drivable areas) for the two optimization strate-
gies. Fig. 6a shows the coverage as perceived on walkable areas when optimizing
for pedestrians (Wcovpe) and for vehicles (Wcovve) as a function of the density
of gNBs. Conversely, Fig. 6b shows the coverage as perceived on drivable areas
when optimizing for pedestrians (Dcovpe) and for vehicles (Dcovve).

5As previously said, we don’t use z as an index in the subscript since (x, y) uniquely
addresses one point.
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Figure 6: Coverage (fraction of points reached by at least one LoS link) for different opti-
mization strategies. On the left, we measure the coverage for walkable areas (Wcovpe(λ) and
Wcovve(λ)) while on the right we measure the coverage for drivable areas (Dcovve(λ) and
Dcovpe(λ)).

Fig. 6b shows two very relevant conclusions. The first is that Dcovve reaches
90% coverage with λ = 10, 95% coverage with λ = 15 and 99.9% coverage
with λ = 25 while Dcovpe needs 150% and 100% more gNB to cover 90%
and 95% of the vehicles, respectively, and can not reach 99.9% even with λ =
45. Considering that vehicles’ coverage for autonomous driving requires high
reliability, we see that there is a relevant difference when we specifically optimize
for vehicles, rather than for pedestrians. The second conclusion is more generic:
so far we did not have any concrete indication of how much we need to increase
the density of gNBs to achieve vehicles coverage, and this result tells us that in
urban areas, a reasonably low density can still be sufficient for a reliable service.

Fig. 6a instead tells a different message. There is a remarkable difference in
the coverage of walkable areas when optimizing for vehicles or not. In particular,
Wcovve (the vehicles’ optimization) allows us to cover only slightly more than
80% of the ground. This result is worse than in our previous work [6] where we
show that we could not cover more than 95% of the ground because here we
included larger public areas such as parks and squares in the analysis. On the
other side, while optimizing for pedestrians and measuring on walkable areas,
Wcovpe reaches 90% with λ = 25 and 95% with λ = 35.

The takeaway for the operator that needs to start deploying gNBs for LoS
communications is that the goals of covering vehicles or pedestrians are compet-
ing ones. Optimizing for vehicles would reduce significantly the required density
of gNBs but would not allow to reliably cover pedestrian areas.

6.2. Analysis of the capacity
While coverage gives us a qualitative measure of the impact of different

optimization strategies, it does not provide us with quantitative insights. In this
section, we analyze the capacity resulting from different optimization strategies,
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Figure 7: Fraction of points for which a NLoS gNB has been chosen even though a LoS gNB
was available, for drivable areas (Ddiff (λ)) and walkable areas (W diff (λ)).

but before that, we introduce Fig. 7, which shows the fraction of NLoS links
chosen even if a LoS link was available (W diff (λ) and Ddiff (λ)). Regardless of
the density, less than 1% of the links will obtain better connectivity from a NLoS
link than from a LoS link. This means that in realistic coverage conditions, the
best link is almost always the LoS one and that NLoS links are of prevalent
importance only when the LoS coverage is low, that is, in the leftmost part of
the curves in Fig. 7. The fact that the curves in Fig. 7 grow with λ is due to
the average reduction of the distance to any gNB with the growth of λ. As we
already noticed this makes it more likely that the two curves in Fig. 5 intersect,
as the average link length stays in the lower range.

6.2.1. Estimating the Average Capacity
For each density value λ, we compute the average capacity for LoS and

NLoS links, as well as the overall average. Fig. 8a shows the average capacity
measured over the walkable areas when optimizing the locations of gNBs for
pedestrians. The absolute values are to be considered as an upper bound (as
in conditions of interference, the capacity can be far from the Shannon limit)
however the comparison is interesting, with a minimum average of 5.5Gbit/s
achieved at the lowest gNB density for LoS links, versus less than 500Mbit/s
for NLoS links. Especially at low gNB densities, this has a large impact on the
overall (LoS and NLoS) average capacity: As the fraction of LoS links for λ = 5
is 55% (Fig. 6a), the overall average is as low as 4Gbit/s.

Fig. 8b instead shows the average capacity measured over drivable areas only
when optimizing for vehicles. Again, there is a striking difference between LoS
and NLoS links, however, since with the same density the drivable areas reach
a better coverage, the overall average is closer to the average of LoS links. This
also applies to the right end of the curve, in which a higher density reduces the

16



10 20 30 40

0

2

4

6

8

λ

A
ve

ra
ge

C
ap

ac
it
y

[G
b/

s]
WcapLλ WcapLλ

WcapLλ ∪WcapNλ

a) Walkable areas

10 20 30 40

0

2

4

6

8

λ

A
ve

ra
ge

C
ap

ac
it
y

[G
b/

s]

DcapLλ DcapNλ

DcapLλ ∪DcapNλ

b) Drivable areas

Figure 8: Average Capacity for different areas and LoS conditions. On the left, we measure
the average capacity for walkable areas, divided LoS links (WcapLλ ), NLoS links (WcapNλ ) ,
and both of them (WcapLλ ∪WcapNλ )). On the right, we measure the same metrics for drivable
areas.

average length of all links (including NLoS) and thus the green curve gets closer
to the orange one.

6.2.2. Capacity Distribution
As averages hide information about the distribution of the capacities, Fig. 9a

and 9b show the empirical Cumulative Density Function (eCDF) of the Dcapve
and Wcappe sets. Each graph shows the distribution for λ = 5, the density to
cover 95% of the area (λ = 35 for pedestrians, λ = 15 for vehicles), and for
λ = 45, for both LoS and NLoS links.

By looking at LoS capacities, regardless of the optimization strategy and the
density, for the smallest possible density, we can see that all distributions have a
reasonable shape. Most importantly we can see that no capacity is smaller than
3Gbit/s. This means that, regardless of the objective, deploying gNBs focusing
on LoS will result in very good performance.

With respect to NLoS, the quality of links is instead highly dependent on
density. At low densities, a vast majority of links experience capacities that
are very close to zero. For the densities providing 95% coverage, instead, the
distribution depends on the optimization strategy. When optimizing for vehi-
cles (Fig. 9a), roughly 20% of the links have close to zero capacity, and 75%
have a capacity lower than 1Gbit/s. This means that, in high density zones,
vehicles will experience very good network conditions, but in less dense areas
communication might be at risk and some roads might be left completely with-
out coverage or with poor communication. For the pedestrian strategy, there
are fewer links with this problem, as 50% of them have an available capacity of
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Figure 9: empirical Cumulative Density Function (eCDF) of the capacity for different areas,
LoS conditions and gNB densities. At the top, the metrics are displayed for drivable areas,
while at the bottom for walkable areas. The gNB densities displayed, corresponds to the
minimum considered (λ = 5), the maximum (λ = 45) and the density that guarantees a LoS
coverage of 95% of the areas (λ = 15 for drivable areas and λ = 35 for walkable areas).
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Figure 10: Coefficient of variation (ratio between standard deviation and average) of the
capacity for drivable areas (DcapLλ ∪DcapNλ ) and walkable areas (WcapLλ ∪WcapNλ ).

at least 1.5Gbit/s, but this comes at the cost of more than doubling the density
of gNBs. At high density, the vehicular strategy results in very good perfor-
mance, with just 20% of links experiencing a capacity smaller than 3Gbit/s
and 75% of them experiencing at least 4Gbit/s. On the contrary, the eCDF for
the pedestrian strategy grows at a much slower rate, with almost 50% of the
links having a capacity smaller than 2Gbit/s.

Finally, Fig. 10 shows the coefficient of variation (i.e., the ratio between
standard deviation and the average) of the capacity for different values of λ.
Regardless of the optimization strategy, the coefficient of variation decreases
with the density of gNBs. This indicates that, as we increase the density of
gNBs the change in the experienced capacity between different locations reduces,
indicating a more even distribution of resources among users, but also in the
trajectory of one single user. Increasing the coverage not only improves the
average performance but makes it more stable.

7. Conclusions

The foreseen densification of gNBs and the advancements in vehicular com-
munications are playing a pivotal role in the deployment of XG access networks
in ultradense urban areas. This paper proposes a novel data-driven method
to optimize the placement of gNBs and provide crucial insights to the network
operators to understand how the two coverages, for vehicular communication
and pedestrians, are intertwined. We show that at least for the vehicular case a
reasonably low density of gNBs is sufficient to provide 95 % coverage in urban
areas, but that at the same time optimizing the coverage only towards the roads
with the most traffic will not provide sufficient coverage for pedestrians. Our
data numerically confirm the intuition that if operators want to have good and
stable performance they must focus on the deployment of LoS links, and we

19



provide evidence on the expected LoS coverage for reasonable values of gNB
density.
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