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Abstract. — We consider the continuity equation qtmt þ divðbmtÞ ¼ 0, where fmtgt AR is a measur-

able family of (possibily signed) Borel measures on Rd and b : R� Rd ! Rd is a bounded Borel
vector field (and the equation is understood in the sense of distributions). If the measure-valued

solution mt is non-negative, then the following superposition principle holds: mt can be decom-
posed into a superposition of measures concentrated along the integral curves of b. For smooth

b this result follows from the method of characteristics, and in the general case it was established
by L. Ambrosio. A partial extension of this result for signed measure-valued solutions mt was ob-

tained in [AB08], where the following problem was proposed: does the superposition principle
hold for signed measure-valued solutions in presence of unique flow of homeomorphisms solving

the associated ordinary di¤erential equation? We answer to this question in the negative, present-
ing two counterexamples in which uniqueness of the flow of the vector field holds but one can

construct non-trivial signed measure-valued solutions to the continuity equation with zero initial
data.
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1. Introduction

In this paper we consider the initial value problem for the continuity equation

qtmt þ divðbmtÞ ¼ 0;

m0 ¼ m

�
ðPDEÞ

for finite Borel measures fmtgt A ½0;T � on Rd , where b : ½0;T � � Rd ! Rd is a given
bounded Borel vector field, T > 0 and d a N and m a MðRdÞ is a given measure
on Rd . This class of measure-valued solutions arises naturally in the limit for
weakly* converging subsequences of smooth solutions, and it appears in various
applications including hyperbolic conservation laws, optimal transport and other
areas, see e.g. [BJ98, AGS08, BPRS15].

We want to study the relationship between uniqueness of solutions to (PDE)
and uniqueness to the ordinary di¤erential equation drifted by b, i.e.

d

dt
gðtÞ ¼ bðt; gðtÞÞ; t a ð0;TÞ;ðODEÞ



where g a Cð½0;T �;RdÞ. As usual, a solution to (PDE) is intended in the sense
of distributions, while a solution to (ODE) is defined to be a continuous curve
g a Cð½0;T �;RdÞ such that

gðtÞ ¼ gðsÞ þ
Z t

s

bðr; gðrÞÞ dr for every ðs; tÞ � ð0;TÞ:

Note that this definition is sensitive to modifications of b in a Lebesgue-
negligible set, therefore we underline that b is a function defined everywhere and
not an equivalence class.

Given a solution g a Cð½0;T �;RdÞ of (ODE) one readily checks that mt :¼ dgðtÞ
solves (PDE), where dp denotes the Dirac measure concentrated at p. Therefore
uniqueness for (PDE) implies uniqueness for (ODE). Hence it is natural to ask
whether the converse implication holds.

In the class of non-negative measure-valued solutions the answer to this ques-
tion is positive, and it was obtained in [AGS08] as a consequence of the so-called
superposition principle. In order to formulate this principle, we will say that a
family of Borel measures fmtgt A ½0;T � is represented by a finite (possibly signed)
Borel measure h on Cð½0;T �;RdÞ if

1. h is concentrated on Gb;
2. ðetÞ]h ¼ mt for a.e. t,

where et : Cð½0;T �;RdÞ ! Rd is the so-called evaluation map defined by etðgÞ :¼
gðtÞ, ðetÞ]h denotes the image of h under et, and Gb denotes the set of solutions of
(ODE) (note the Gb is a Borel subset of Cð½0;T �;RdÞ by [Ber08, Proposition 2]).
For example, if g a Cð½0;T �;RdÞ solves (ODE) then h :¼ dg (as a measure on
Cð½0;T �;RdÞ) represents the solution mt :¼ dgðtÞ of (PDE).

A straightforward computation shows that if fmtgt A ½0;T � is represented by

some (possibly signed) measure h then mt solves (PDE). In this case we will say
that mt is a superposition solution of (PDE). Clearly uniqueness for (ODE) implies
uniqueness for (PDE) in the class of superposition solutions. Indeed, by unique-
ness for (ODE) the continuous mapping e0 : Gb ! Rd is injective, hence e�1

0 is
Borel and thus ðe0Þ]h ¼ m0 is equivalent to h ¼ ðe�1

0 Þ]m0.
Therefore, when uniqueness holds for the Cauchy problem for (ODE), unique-

ness for the Cauchy problem for (PDE) holds in the class of measure-valued solu-
tions if and only if any measure-valued solution of such Cauchy problem is a
superposition solution.

The superposition principle established in [AGS08] states that any non-
negative solution mt of (PDE) can be represented by some non-negative measure

h on Cð½0;T �;RdÞ. However, without extra assumptions this result cannot be
extended to signed solutions, because (PDE) can have a nontrivial signed solution
even when Gb ¼ j (see e.g. [Gus18] for the details).

Under Lipschitz bounds on the vector field b uniqueness for (PDE) within the
class of signed measures is well known, see e.g. [AGS08, Prop. 8.1.7]. Out of the
classical setting, the first (positive) result is contained in [BC94], where the au-
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thors considered log-Lipschitz vector fields. Later on, in the paper [AB08], the
authors proved that the signed superposition principle holds provided that the
vector field satisfies a quantitative two-sided diagonal Osgood condition. More
precisely, in [AB08] the authors considered vector fields enjoying

(O) it holds

j3bðt; xÞ � bðt; yÞ; x� y4jaCðtÞkx� ykrðkx� ykÞ
Ex; y a Rd ; Et a ð0;TÞ;

where C a L1ð0;TÞ and r : ½0; 1Þ ! ½0;þlÞ is an Osgood modulus of con-
tinuity, i.e. a continuous, non-decreasing function with rð0Þ ¼ 0 and

Z 1

0

1

rðsÞ ds ¼ þl:

(B) jbðt; xÞjaDðtÞ for some D a L1ð0;TÞ for every t; x a ðð0;TÞ � RdÞ.

Their results is the following:

Theorem 1.1 (Thm. 1 in [AB08]). If the vector field b satisfies (O) and (B), then
there is uniqueness for (PDE) in the class of bounded signed measures, i.e. if mt is a
solution of (PDE) such that jmtjðRdÞ a Llð0;TÞ then

mt ¼ Xðt; �Þam0; Et a ð0;TÞ;

where Xðt; �Þ is the flow of b, i.e. the unique map solving

qtXðt; xÞ ¼ bðt;Xðt; xÞÞ t a ½0;T �; x a Rd

Xð0; xÞ ¼ x x a Rd

�

Notice that the Osgood assumption (O) is an assumption on b, and it is much
stronger than an implicit assumption of uniqueness for (ODE). For a simple
example one can consider e.g. (for d ¼ 1) bðt; xÞ ¼ 1ð�l;0�ðxÞ þ 2 � 1ð0;þlÞðxÞ.
Moreover, according to a theorem of Orlicz [Orl32] (see also [Ber08, Thm. 1]),
in the space of all continuous vector fields b (equiped with the topology of the
uniform convergence on compact sets) those fields for which the di¤erential equa-
tion (ODE) has at least one non-uniqueness point is of first category: this shows
that in the generic situation Lipschitz/Osgood conditions are not necessary for
uniqueness.

Let us mention some other generic uniqueness results for (PDE). The one-
dimensional case was studied in [BJ98], where uniqueness of signed measure-
valued solutions was obtained under the assumption that b satisfies a one-sided
Lipschitz condition, i.e. there exists a a L1ð0;TÞ such that qxbðt; xÞa aðtÞ (in the
sense of distributions). Still in d ¼ 1, uniqueness in the class of absolutely contin-
uous (with respect to Lebesgue measure) solutions was obtained in [Gus19] for
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nearly incompressible vector fields. In the multi-dimensional case uniqueness of
absolutely continuous solutions was obtained in [BB17] for nearly incompressible
vector fields with bounded variation. For generic solutions, besides [AB08], one
can refer to [CJMO17], where uniqueness within the signed framework is shown
for vector fields having an Osgood modulus of continuity.

The generic uniqueness results mentioned above require some regularity of b
(e.g. some form of weak di¤erentiability), but as discussed above one can ask if
uniqueness for (ODE) is su‰cient for uniqueness for (PDE). In particular, a nat-
ural question (raised in [AB08]) is whether uniqueness for (PDE) (in the class of
signed measures) holds in the presence of a (unique) flow of homeomorphisms
solving (ODE), without an explicit bound like (O) on the vector field. We show
that the answer to this question in general is negative by constructing two coun-
terexamples of bounded vector fields b : ½0;T � � Rd ! Rd (for d ¼ 1 and d ¼ 2)
such that for any x a Rd only gðtÞCx ðEt a ½0;T �Þ solves (ODE) but (PDE) with
zero initial condition has a non-trivial measure-valued solution fmtgt A ½0;T �. More
precisely, this is the main result of the present paper:

Main Theorem. The following claims hold true.

(i) Let d ¼ 1. Then there exist a vector field b : ½0;T � � R ! R and a measurable
measure-valued map ½0;T � C t 7! mt a MðRÞ such that

• b is bounded and Borel (in particular it is defined everywhere);

• for any x a R only gðtÞCx Et a ½0;T � solves (ODE), hence there exists a
unique flow of homeomorphisms of b;

• ½t 7! mt� a L1ð½0;T �;MðRÞÞnLlð½0;T �;MðRÞÞ is a non-trivial solution of
(PDE) with zero initial condition.

(ii) Let d ¼ 2. Then there exist a vector field b : ½0;T � � R2 ! R2 and a measur-
able measure-valued map ½0;T � C t 7! mt a MðR2Þ such that

• b is bounded and Borel (in particular it is defined everywhere);

• for any x a R2 only gðtÞCx Et a ½0;T � solves (ODE), hence there exists a
unique flow of homeomorphisms of b;

• ½t 7! mt� a Llð½0;T �;MðR2ÞÞ is a non-trivial solution of (PDE) with zero ini-
tial condition.

Remark 1.2. We stress the fact that in example related to Point (i) of the Main
Theorem the map ½t 7! mt� B Llð½0;T �;MðRÞÞ, i.e. the measure mt is not bounded
in time on every subinterval I � ½0;T �. See also Lemma 3.7 below for a rigorous
proof of this fact.

In the examples (i) and (ii) of the present paper the vector field b is only
bounded, but not continuous. However all vector fields that satisfy (O) and (B)
are continuous (see Proposition 5.1). It would therefore be interesting to under-
stand whether for continuous vector fields uniqueness for (ODE) implies unique-
ness for (PDE).

Note that our examples (i) and (ii) are based on a one-dimensional vector field
that does not have integral curves and hence cannot be continuous (in view of
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Peano’s theorem). And in fact for d ¼ 1 it is possible to prove that if b is sta-
tionary and continuous then uniqueness for (ODE) implies uniqueness for (PDE)
(see Proposition 5.2). It is interesting to note that such b can be very irregular
and hence one cannot apply to it any of the generic uniqueness results discussed
earlier.

Let us also mention that (still for d ¼ 1) if b is continuous and for any t
the function x 7! bðt; xÞ is non-strictly decreasing then uniqueness holds both
for (PDE) (this follows from [BJ98]) and for (ODE) (this can be shown di-
rectly: if g1 and g2 are integral curves of b such that g1ð0Þ ¼ g2ð0Þ and g1ðtÞ <
g2ðtÞ for all su‰ciently small t > 0 then qtðg1ðtÞ � g2ðtÞÞ ¼ bðt; g1ðtÞÞ � bðt; g2ðtÞÞ
b 0).

2. Preliminaries

In the following, we will denote by BðRdÞ the Borel s-algebra on Rd . We recall
some basic definitions.

Definition 2.1. A family fmtgt A ½0;T � of Borel measures on Rd is called a Borel

family if for any A a BðRdÞ the map t 7! mtðAÞ is Borel-measurable.

The following propositions are well-known (see, e.g. [AFP00, Prop. 2.26 and
(2.16)]):

Proposition 2.2. If fmtgt A ½0;T � is a family of Borel measures on Rd such that
t 7! mtðAÞ is Borel for any open set A � Rd then fmtgt A ½0;T � is a Borel family.

Proposition 2.3. If fmtgt A ½0;T � is a Borel family then fjmtjgt A ½0;T � also is a Borel
family.

Proposition 2.4. If fmtgt A ½0;T � is a Borel family then for any bounded Borel

function g : ½0;T � � Rd ! R the map t 7!
R
Rd gðt; xÞ dmtðxÞ is Borel.

In what follows we will write that ½t 7! mt� a L1ðð0;TÞ;MðRdÞÞ if fmtgt A ½0;T �
is a Borel family and

Z T

0

jmtjðRdÞ dt < þl:

If, in addition,

ess supt A ½0;T �jmtjðRdÞ < þl;

then we will write ½t 7! mt� a Llðð0;TÞ;MðRdÞÞ.
In view of Proposition 2.4 the distributional formulation of the continuity

equation is well-defined:
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Definition 2.5. A family ½t 7! mt� a L1ðð0;TÞ;MðRdÞÞ is called a measure-
valued solution of (PDE) if for any j a C1

c ð½0;TÞ � RdÞ
Z T

0

Z
Rd

ðqtjþ bðt; xÞ � ‘xjðt; xÞÞ dmtðxÞ dtþ
Z
Rd

jð0; xÞ dmðxÞ ¼ 0:ð2:1Þ

Even though the distributional formulation of the Cauchy problem for (PDE)
is well-defined for ½t 7! mt� a L1ðð0;TÞ;MðRdÞÞ, it is much more natural in the
class ½t 7! mt� a Llðð0;TÞ;MðRÞÞ, because in this class the initial condition can
be understood in the sense of traces, considering a weak* continuous representa-
tive of ½t 7! mt�. More precisely, we have the following Proposition (for a proof
see e.g. [Bon17, Chapter 1, Prop. 1.6]).

Proposition 2.6 (Continuous representative). Let fmtgt A ½0;T � be a Borel fam-

ily of measures and assume ½t 7! mt� a Llðð0;TÞ;MðRdÞÞ. Then there exists a
narrowly continuous curve ½0;T � C t 7! ~mmt a MðRdÞ such that mt ¼ ~mmt for a.e.
t a ½0;T �.

3. Non-uniqueness in the class L1ðð0;TÞ;MðRÞÞ

In this section we prove the following result:

Theorem 3.1. There exist T > 0, a bounded Borel b : ½0;T � � R ! R and
½t 7! mt� a L1ðð0;TÞ;MðRÞÞ satisfying the following conditions:

(i) b has only constant characteristics, i.e. g a Gb if and only if there exists x a R
such that gðtÞ ¼ x for all t a ½0;T �;

(ii) fmtgt A ½0;T � is not identically zero and solves (PDE) with zero initial condition.

3.1. Auxiliary result

We begin by the following auxiliary result: although it is well-known, we give a
proof because some details will be used later.

Lemma 3.2. There exist a Borel sets P;N � R such that

1) PBN ¼ j;
2) PAN ¼ R;
3) for any nonempty bounded open interval I � R it holds that jI BPj > 0 and

jI BNj > 0,

where jAj denotes the Lebesgue measure of A � R.

Proof. Let fqkgk AN be the set of all rational numbers. Let f0ðxÞ :¼ 1 ðx a RÞ,
E0 :¼ j and e0 :¼ 1.
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Consider k a N, kb 1 and suppose that the set Ek�1, the number ek�1 > 0
and the function fk�1 are already constructed. We assume that Ek�1 is finite,
Ek�1BQ ¼ j, hence RnEk�1 is a union of finitely many open intervals. We also
assume that fk�1 is either þ1 or �1 on each of these intervals.

Since distðqk;Ek�1Þ > 0 there exists ek > 0 such that

ek < 2�kek�1;ð3:1Þ
ðqk � ek; qk þ ekÞ � RnEk�1;ð3:2Þ

and moreover

qk e
1

2
ek B Q:ð3:3Þ

We then define

Ik :¼ qk �
1

2
ek; qk þ

1

2
ek

� �
� RnEk�1ð3:4Þ

and

fkðxÞ :¼
fk�1ðxÞ; x B Ik;

�fk�1ðxÞ; x a Ik;

0; x a qIk

8<
:ð3:5Þ

and Ek :¼ Ek�1 A qIk. It is easy to see that Ek, ek and fk satisfy the same assump-
tions as Ek�1, ek�1 and fk�1. Therefore we can construct inductively the sequence
fEk; ek; fkgk AN.

Consider the set Rk :¼
Sl

n¼kþ1 In on which the function fn ðn > kÞ may di¤er
from fk. By (3.1)

jRkja
Xl

n¼kþ1

en ¼
Xl
n¼k

enþ1 <
Xl
n¼k

2�ðnþ1Þen < ek
Xl
n¼k

2�ðnþ1Þ
a

1

2
ek:ð3:6Þ

For any x a RnRk it holds that fnðxÞ ¼ fkðxÞ for all n > k. Since ek ! 0 as
k ! l, we conclude that fk converges a.e. to some function f : R ! R as
k ! l. Moreover, on the complement of Lebesgue negligible set

T
k AN Rk AS

k qIk the function f by construction takes only the values e1. We therefore
set

P :¼ f �1ðfþ1gÞ; N :¼ RnP:ð3:7Þ

Consider an arbitrary nonempty bounded open I � R. There always exists a
nonempty open interval J such that J � I . Since J contains infinitely many ra-
tionals and ek ! 0 as k ! l, there exists k0 a N such that ðqk � ek; qk þ ekÞ � I
for some k > k0.
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Without loss of generality let us assume that fk�1 ¼ þ1 on ðqk � ek; qk þ ekÞ
(the argument is the same when this value is �1). Hence by construction

fkðxÞ ¼
fk�1ðxÞ ¼ þ1; x a ðqk � ek; qk þ ekÞnIk;
�fk�1ðxÞ ¼ �1; x a Ik:

�

Ultimately, by (3.6) the function f may di¤er from fk only on the set Rk and
jRkj < 1

2 ek. Therefore

jI BPjb jðqk � ek; qk þ ekÞnIkj � jRkjb ek �
ek

2
¼ ek

2

and

jI BNjb jIkj � jRkjb ek �
ek

2
¼ ek

2
: r

3.2. The construction of the counterexample

Given the sets P;N � R constructed in Lemma 3.2 we now set

f ðtÞ :¼ 2þ
Z t

0

ð1PðrÞ � 1NðrÞÞ dr and F ðtÞ :¼ ð f ðtÞ; tÞð3:8Þ

where t a ½0; 1�. Since the derivative of f is equal to 1P � 1N a.e., for convenience
we denote f 0 :¼ 1P � 1N . Notice that since N ¼ RnP the function f 0 is defined
everywhere and takes values in fe1g and it is a Borel representative of the deriv-
ative of the function f defined in (3.8).

We now set T :¼ 4 and define

bðt; xÞ :¼ 1F ½0;1�ðt; xÞ �
1

f 0ðxÞ and ~mmt :¼
X

x A f �1ðtÞ
signð f 0ðxÞÞdx:ð3:9Þ

By definition b is Borel and bounded. Moreover by the area formula f~mmtgt A ½0;T � is
a measurable family of Borel measures (see also Figure 1).

Lemma 3.3. For b and ~mmt defined above

qt ~mmt þ divðb~mmtÞ ¼ �dF ð1Þ þ dF ð0Þ in D 0ðð0;TÞ � RÞ:

Proof. Using the area formula (since f ð½0; 1�Þ � ð0;TÞ) we get
Z T

0

Z
R

ðqtjþ bqxjÞ d ~mmtðxÞ dt

¼
Z T

0

� X
x A f �1ðtÞ

�
ðqtjÞðt; xÞ þ

1

f 0ðxÞ ðqxjÞðt; xÞ
� f 0ðxÞ
j f 0ðxÞj

�
dt
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¼
Z 1

0

�
ðqtjÞð f ðxÞ; xÞ þ

1

f 0ðxÞ ðqxjÞð f ðxÞ; xÞ
�
f 0ðxÞ dx

¼
Z 1

0

ð f 0ðxÞðqtjÞð f ðxÞ; xÞ þ ðqxjÞð f ðxÞ; xÞÞ dx

¼
Z 1

0

qxðjð f ðxÞ; xÞÞ dx ¼ jð f ð1Þ; 1Þ � jð f ð0Þ; 0Þ: r

To get rid of the defect �dFð1Þ þ dFð0Þ we simply add to ~mmt solutions concen-
trated on constant in time trajectories (since b is 0 outside Fð½0; 1�Þ). More pre-
cisely, one readily checks that

mt :¼ ~mmt þ 1½ f ð1Þ;þlÞðtÞd1 � 1½ f ð0Þ;þlÞðtÞd0
solves (PDE).

To conclude the proof of Theorem 3.1, it remains to study the integral curves
of b. This issue is addressed in the following Lemma:

Lemma 3.4. For any ðt; xÞ there exists a unique characteristic of b passing
through x.

Proof. Clearly points gðtÞ ¼ x, t > 0, are characteristics of b. Since the image
of ½0; 1� under F is closed, b vanishes identically in a neighbourhood of any
ðt; xÞ B Fð½0; 1�Þ. Therefore for ðt; xÞ B F ð½0; 1�Þ the claim is trivial.

Hence it is su‰cient to prove that any characteristic g ¼ gðtÞ of b intersects
Fð½0; 1�Þ at most in one point. We argue by contradiction: suppose there exist

Figure 1. Graph of the function t ¼ f ðxÞ (approximation step). At each t a ½0;T � the
measure ~mmt is a superposition of Dirac masses with weight given by sign f 0ðxÞ, where
x a f �1ðtÞ (notice the red/green parts).
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x < y such that

gð f ðxÞÞ ¼ x and gð f ðyÞÞ ¼ y:ð3:10Þ

Since g 0 ¼ bðt; gÞ and kbkl a 1 it holds that

jx� yj ¼ jgð f ðxÞÞ � gð f ðyÞÞja j f ðxÞ � f ðyÞjð3:11Þ

On the other hand, by properties of the sets P and N

j f ðyÞ � f ðxÞj ¼
Z y

x

ð1PðzÞ � 1NðzÞÞ dz
����

����ð3:12Þ

¼ j j½x; y�BPj � j½x; y�BNj j < jx� yj:

The inequalities (3.11) and (3.12) are not compatible, hence the proof is
complete. r

Therefore we have constructed a vector field b for which the characteristics
are unique, but there exists a nontrivial signed solution of the CE. Using a minor
modification of the present construction one can construct a similar example of
ðmt; bÞ having compact support in spacetime.

Remark 3.5. The constructed solution fmtg is not a superposition solution
(see Introduction).

As we in Section 2, the distributional formulation of the Cauchy problem for
(PDE) is well-defined for ½t 7! mt� a L1ðð0;TÞ;MðRÞÞ but it is best suited in the
class ½t 7! mt� a Llðð0;TÞ;MðRÞÞ, because of Proposition 2.6. Unfortunately
for the present construction this bound on the solution ½t 7! mt� does not hold, as
the following Proposition shows.

Proposition 3.6. The function ½t 7! mt� is not bounded on any open subinterval
U � ð0;TÞ, i.e. ½t 7! mt� B LlðU ;MðRÞÞ.

Before presenting the proof of Proposition 3.6 we need the following auxiliary.

Lemma 3.7. Let g a Lipðð0; 1ÞÞ be such that g 0A 0 a.e. and let O � gðð0; 1ÞÞ be a
non-empty open interval such that

ess supt AOaðg�1ðtÞÞ < l:ð3:13Þ

Then there exists a nonempty open interval I � ð0; 1Þ such that g is strictly mono-
tone on I.

Proof (of Lemma 3.7). It is su‰cient to prove the Lemma under the
assumption

ess supt ARaðg�1ðtÞÞ < l:
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Indeed, being g Lipschitz continuous, the preimage g�1ðOÞ � ð0; 1Þ is an open set
and it can be written as countable union of disjoint, open intervals. Let ða; bÞ be
one connected component of g�1ðOÞ and consider the restriction ~gg of g to ða; bÞ.
Then it holds

ess supt ARað~gg�1ðtÞÞ < l;

because if t a O this is (3.13), while if t a RnO we have ~gg�1ðtÞ ¼ j. It is now
clear that it is enough to prove the Lemma for ~gg, because if we prove that ~gg is
strictly monotone (on a subinterval of ða; bÞ) so is the function g. Let C denote
the set of points x a ð0; 1Þ where g is not di¤erentiable or g 0ðxÞ ¼ 0. By the as-
sumptions (and Rademacher’s theorem) C has measure zero. Then by the area
formula

0 ¼
Z
C

jg 0ðxÞj dx ¼
Z
gðCÞ

aðg�1ðtÞÞ dt;

hence gðCÞ has zero Lebesgue measure (sinceaðg�1ðtÞÞb 1 for all t a gðCÞ).
Let

M :¼ ess supt ARaðg�1ðtÞÞ:

Since for any t a R we haveaðg�1ðtÞÞ a NA f0g, there exists a set R � R with
strictly positive measure such thataðg�1ðtÞÞ ¼ M for all t a R. In particular, we
can take t a RngðCÞ. Then g�1ðtÞ ¼ fx1; x2; . . . ; xMg and g 0ðxiÞA 0. Hence there
exist disjoint open intervals Ii containing xi such that gð�Þ � t has di¤erent signs
on qIi, where i ¼ 1; 2; . . . ;M.

Using continuity of g we can always find an e > 0 such that ½t� e; tþ e� �TM
i¼1 gðIiÞ. Hence, by the intermediate value property we can find nonempty

open intervals Ji � Ii (with xi a Ji) such that gðqJiÞ ¼ ft� e; tþ eg for each i a
1; 2 . . . ;M.

Figure 2. Situation described in the proof of Lemma 3.7. The intervals Ii are depicted in
blue.
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By the intermediate value property for each t a ½t� e; tþ e� we have

aðg�1ðtÞB JiÞb 1; i a 1; . . . ;M:ð3:14Þ

On the other hand for all t a ½t� e; tþ e� we have

XM
i¼1

aðg�1ðtÞB JiÞaM:ð3:15Þ

Indeed, by the definition of M the estimate (3.15) holds for a.e. t, and if it fails
for some t, then at least for some i it holds thataðg�1ðtÞB JiÞb 2. Since g 0A 0
a.e., by the intermediate value property this implies existence of x > 0 such that
aðg�1ðsÞB JiÞb 2 for all s a ½t; tþ xÞ (or all s a ðt� x; t�), and in view of (3.14)
this clearly contradicts the definition of M.

From the estimates (3.14) and (3.15) we conclude that for all t a ½t� e; tþ e� it
holds that

aðg�1ðtÞB JiÞ ¼ 1; i a 1; . . . ;M:

Therefore for each i a 1; . . . ;M the function g is injective on Ji, hence it is strictly
monotone on Ji (by continuity). r

Now we are in a position to prove Proposition 3.6.

Proof (of Proposition 3.6). We need to show that the map ½t 7! mt� con-
structed in the proof of Theorem 3.1 is not bounded on any subinterval U �
ð0;TÞ. We argue by contradiction. Since by (3.9) for a.e. t

j~mmtj ¼að f �1ðtÞÞ;

the inclusion ½t 7! mt� a LlðU ;MðRÞÞ is equivalent to the inequality
ess supt AUað f �1ðtÞÞ < l. From Lemma 3.7 it follows that the function f con-
structed above is monotone on some nonempty open interval I � ð0; 1Þ. But then
f 0b 0 a.e. on I , and this contradicts the construction of f (more specifically, the
sets P and N). r

Remark 3.8. We remark that if f were monotone on some interval I then
uniqueness would fail for the Cauchy problem for (ODE) with b constructed in
the proof of Theorem 3.1. Indeed, without loss of generality suppose that f is
strictly increasing on I . Then for any x a I there exist at least two (actually, infi-
nitely many) integral curves g a Gb such that gð0Þ ¼ x. Indeed, clearly gðtÞ :¼ x
ðEt a ½0;T �Þ belongs to Gb. On the other hand, for any y a I such that y > x
one can define g by

gðtÞ :¼
x; t < f ðxÞ;
f �1ðtÞ; f ðxÞa t < f ðyÞ;
y; tb f ðyÞ:

8<
:
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Then one readily checks that g a Gb, since for a.e. t a ð f ðxÞ; f ðyÞÞ it holds that

g 0ðtÞ ¼ 1

f 0ð f �1ðtÞÞ ¼
1

f 0ðgðtÞÞ ¼ bðt; gðtÞÞ:

4. Non-uniqueness in the class Llðð0;TÞ;MðR2ÞÞ

The aim of this final section is to show the following result:

Theorem 4.1. There exist T > 0, a bounded Borel b : ½0;T � � R2 ! R2 and
½t 7! mt� a Llðð0;TÞ;MðR2ÞÞ satisfying the following conditions:

(i) b has only constant characteristics, i.e. g a Gb if and only if there exists x a R2

such that gðtÞ ¼ x for all t a ½0;T �;
(ii) fmtgt A ½0;T � is not identically zero and it solves (PDE) with zero initial condition.

Proof. The proof will consist in essentially two steps. We will first work in 2D,
constructing an example very similar to the one discussed for the proof of Theo-
rem 3.1. We will then suitably embed this into the three-dimensional euclidean
space R3 in such a way that the path of measures resulting from this construction
will be uniformly bounded.

Consider the three dimensional Euclidean space with the coordinates ðx; y; tÞ.
Let ðx; h; zÞ denote the coordinates in the Cartesian system with the origin O 0 ¼�
1
2 ;

1
2 ; 0

�
and the axes O 0x, O 0h and O 0z having directions e 01 :¼ 1ffiffi

2
p ð�1; 1; 0Þ,

e 02 :¼ 1ffiffi
6

p ð�1;�1; 2Þ and e 03 :¼ 1ffiffi
3

p ð1; 1; 1Þ respectively (see Fig. 3a).
The 2D construction. Let us consider the plane O 0xh and work in the coordi-

nates ðx; hÞ. Let f and fk ðk a NÞ be the functions constructed in the proof of
Lemma 3.2. We set P :¼ f �1ð1Þ, N :¼ RnP, Pk :¼ ð f kÞ�1ð1Þ and Nk :¼ RnPk.
Let

Wðx; hÞ :¼ a � ð1; 1PðxÞ � 1NðxÞÞ; W kðx; hÞ :¼ a � ð1; 1PkðxÞ � 1N kðxÞÞ;

where a > 0 is a geometrical constant to be specified later. Clearly divx;hðWÞ ¼ 0
and the h-component of W (and W k) takes only the valuesea.

Let now D � R2
x;h be an open, bounded set with piecewise smooth boundary

qD and assume that qD does not contain vertical segments. We claim that

divð1DWÞ ¼ W � nH1
OqD in D 0ðR2Þ;ð4:1Þ

where n is the outer unit normal to qD and H1
OqD is the restriction of H1 to qD.

Indeed, W k are piecewise constant inside D, so decomposing D into finitely
many pieces, applying the classical Gauss–Green Theorem for each piece and
summing the results we get that for any test function f a Cl

c ðR2Þ
Z
D

W k � ‘f dx ¼
Z
qD

fW k � n dH1:
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Figure 3. Construction of the vector field B and the function u.
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Since qD does not contain vertical segments, by construction of the sets Pk and
Nk (see Lemma 3.2) we have W k ! W H1-a.e. on qD as k ! l. Passing to the
limit by means of Dominated convergence Theorem we get (4.1).

Passage to 3D. We extend W to the whole space using the coordinates ðx; h; zÞ
as follows:

Vðx; h; zÞ :¼ a � ð1; 1PðxÞ � 1NðxÞ; 0Þ:

Let us switch to the coordinates ðx; y; tÞ. Then V becomes a function of
ðx; y; tÞ, which we still denote as Vðx; y; tÞ. Since at each point ðx; y; tÞ we have
Vðx; y; tÞ ¼ ae 01 e ae 02 (where the sign depends on ðx; y; tÞ), clearly ð0; 0; 1Þ � V ¼
ea 2ffiffi

6
p ¼ea

ffiffiffiffiffiffiffiffi
2=3

p
, hence fixing a ¼

ffiffiffiffiffiffiffiffi
3=2

p
we achieve that the t-component of V

ise1.
Let S :¼ fðx; y; tÞ j x; y; t > 0; xþ yþ t ¼ 1g. By (4.1) it holds that

divð1SVH2Þ ¼ g1 þ g2 þ g3, where gi ¼ V � niH1
OEi and

E1 ¼ fð0; y; tÞ j y; t > 0; yþ t ¼ 1g; n1 ¼ ð�2; 1; 1Þ=
ffiffiffi
6

p
;

E2 ¼ fðx; 0; tÞ j x; t > 0; xþ t ¼ 1g; n2 ¼ ð1;�2; 1Þ=
ffiffiffi
6

p
;

E3 ¼ fðx; y; 0Þ j x; y > 0; xþ y ¼ 1g; n3 ¼ ð1; 1;�2Þ=
ffiffiffi
6

p
:

We define U : R3 ! R3 as follows:

Uðx; y; tÞ ¼
X

s1; s2; s3 A fe1g
1Sðs1x; s2y; s3tÞU s1; s2; s3ðs1x; s2y; s3tÞ;

where

U s1; s2; s3ðx; y; tÞ ¼ ðs2s3V1ðx; y; tÞ; s1s3V2ðx; y; tÞ; s1s2V3ðx; y; tÞÞ:

Observe that

divðUH2Þ ¼ gð4:2Þ

in the sense of distributions, being

gðx; y; tÞ ¼
X3

i¼1

X
s1; s2; s3 A fe1g

s1s2s3giðs1x; s2y; s3tÞ:

Notice that also g1ðx; y; tÞ ¼ g1ð�x; y; tÞ, g2ðx; y; tÞ ¼ g2ðx;�y; tÞ and g3ðx; y; tÞ
¼ g3ðx; y;�tÞ. Because of this symmetry the right hand side of (4.2) is zero. For
instance, for i ¼ 1 we haveX

s1; s2; s3 A fe1g
s1s2s3g1ðs1x; s2y; s3tÞ ¼

X
s2; s3 A fe1g

s2s3g1ðx; s2y; s3tÞ

þ
X

s2; s3 A fe1g
ð�1Þs2s3g1ð�x; s2y; s3tÞ ¼ 0:
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Consider the octahedron D :¼ fðx; y; tÞ : Uðx; y; tÞA 0g and let

uðx; y; tÞ :¼ U3ðx; y; tÞ; ðx; y; tÞ a D;

0; ðx; y; tÞ B D;

�

Bðx; y; tÞ :¼
Uðx; y; tÞ
uðx; y; tÞ ; ðx; y; tÞ a D;

ð0; 0; 1Þ; ðx; y; tÞ B D:

8<
:

Then B3 ¼ 1 (everywhere) and by (4.2) we have divð1DuBH2Þ ¼ divðUH2Þ ¼
0 (in the sense of distributions). Hence for any test function j a Cl

c ðR3Þ
Z
D

uB � ‘x;y; tj dH
2 ¼ 0:ð4:3Þ

Denoting with St :¼ fx; y a R j ðx; y; tÞ a Dg and disintegrating the measure
H2

OD as

H2
OD ¼

Z
nt dt; where nt ¼ aH1

OSt;

(see e.g. [AFP00, Thm. 2.28]) we can rewrite (4.3) as

Z
R

Z
R2
ðuB � ‘x;y; tjÞ dnt dt ¼ 0:

Then the family of measures

mt :¼ u � nt

satisfy (PDE) with

bðx; y; tÞ :¼ ðB1ðx; y; tÞ;B2ðx; y; tÞÞ:

The characteristics of b. We claim that g a CðR;R2Þ is a characteristic of b if
and only if gðtÞ ¼ gð0Þ for all t. This claim follows immediately if gðtÞ B D for all t
since outside of D the vector field b is zero. Therefore it is su‰cient to show that g
can intersect each face of D at most once.

Suppose that g intersects the face S (defined above) in two points. Since b
is zero outside of D this is possible only if there exists some nonempty segment
½a; b� such that ðg1ðtÞ; g2ðtÞ; tÞ a D for all t a ½a; b�. Then in the coordinates
ðx; h; zÞ the ODE for g can be written as

_xx ¼ vðxÞ :¼ að1PðxÞ � 1NðxÞÞ; _hh ¼ a; _zz ¼ 0:

But the first equation does not have solutions. (Indeed, suppose that x ¼ xðtÞ is
a non-constant solution of _xx ¼ vðxÞ such that xðtÞ > xð0Þ for some t > 0. Then
there would exist a Lebesgue point z for v such that xð0Þ < z < xðtÞ and
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vðzÞ < 0. By continuity of x there exists tm :¼ minft : xðtÞ ¼ zg. But then x 0ðtmÞ ¼
vðxðtmÞÞ ¼ vðzÞ < 0, which contradicts the minimality of tm. We refer e.g. to
[Gus18] for the details). Hence we have obtained a contradiction.

The uniform bounds. Ultimately, by definition of nt

jntjðR2Þ ¼ a � 4
ffiffiffi
2

p
�

1� t; t a ½0; 1�;
1þ t; t a ½�1; 0�;
0; t B ½�1; 1�;

8<
:

hence jmtja a � 4
ffiffiffi
2

p
, i.e. the family of measures fmtg is uniformly bounded. r

5. Continuous vector fields

In this section we prove some partial results for continuous vector fields that were
mentioned in the Introduction.

Proposition 5.1. If a vector field b : ð0;TÞ � Rd ! Rd satisfies (O), then b
is continuous in the space variable, i.e. for a.e. t a ð0;TÞ the map btð�Þ ¼ bðt; �Þ is
continuous.

Proof. Let us first show that if b : ð0;TÞ � Rd ! Rd satisfies (O), then bt is
locally bounded in space for a.e. t a ð0;TÞ. Let x a Rd be fixed and suppose by
contradiction that there exists a sequence ðxnÞn AN � Rd such that xn ! x and
jbtðxnÞj ! þl. In this case, up to subsequences,

btðxnÞ
jbtðxnÞj

! z

as n ! þl for some z a Rd with jzj ¼ 1. By Osgood condition (O) for every
y a Rd

btðxnÞ � btðyÞ
jbtðxnÞj

; xn � y


 �����
����a CðtÞ

jbtðxnÞj
jxn � yjrðjxn � yjÞ

and passing to the limit (since jbtðxnÞj ! þl) we obtain

j3z; x� y4ja 0

for every y, from which z ¼ 0, a contradiction.
Now we can prove that bt is (sequentially) continuous. Arguing again by con-

tradiction, suppose that for some t a ð0;TÞ, x a Rd and fxngn AN it holds that
xn ! x and btðxnÞ 6! bðxÞ as n ! l. Being bt locally bounded, by passing if nec-
essary to a subsequence, we may assume that btðxnÞ ! btðxÞ þ z 0 for some z 0 a Rd

as n ! l. By (O) for any y a Rd

j3btðxnÞ � btðyÞ; xn � y4jaCðtÞjxn � yjrðjxn � yjÞ:
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Passing to the limit in both sides of this inequality we get

j3z 0 þ btðxÞ � btðyÞ; x� y4jaCðtÞjx� yjrðjx� yjÞ:

Hence by triangle inequality using (O) again we obtain

j3z 0; x� y4j ¼ j3z 0 þ btðxÞ � btðyÞ; x� y4� 3btðxÞ � btðyÞ; x� y4j
a 2CðtÞjx� yjrðjx� yjÞ:

Taking y ¼ xþ s � z with s > 0 we get

jz 0ja 2CðtÞrðsjz 0jÞ:

Passing to the limit as s ! 0 we get jz 0j ¼ 0, and this concludes the proof. r

Proposition 5.2. Suppose that b a CðRÞ and for any ðt; xÞ a R2 there exists a
unique g a Gb such that gðtÞ ¼ x. Then for any m a MðRÞ the Cauchy problem for
(PDE) with the initial condition mtjt¼0 ¼ m has a unique solution ½t 7! mt� a L1ð0;T ;
MðRÞÞ.

Proof. Suppose that ½t 7! mt� a L1ð0;T ;MðRÞÞ is a (signed) measure-valued so-
lution to the continuity equation with m ¼ 0. Then there exists a Lebesgue negli-
gible set N � ð0;TÞ such that for all t a ð0;TÞnN for any F a C1

c ð½0; t� � RÞ it
holds that Z

R

Fðt; xÞ dmtðxÞ �
Z
R

Fð0; xÞ dmðxÞð5:1Þ

¼
Z t

0

Z
R

½qtFðt; xÞ þ b � qxFðt; xÞ� dmtðxÞ dt:

(Indeed, first one can consider finite linear combinations of functions F hav-
ing the form Fðt; xÞ ¼ cðtÞfðxÞ, where f belong to some countable dense sub-
set of C1

c ðRÞ and c a C1
c ð½0;T �Þ are arbitrary. For such test functions (5.1)

follows from (2.1), and in the general case one can apply an approximation
argument.)

There are countably many open intervals where b > 0 or b < 0 (and b ¼ 0 on
the complement of the union of all those intervals). Consider one of the intervals,
i.e. suppose that bðaÞ ¼ bðbÞ ¼ 0, a < b and b > 0 on ða; bÞ. Fix x0 a ða; bÞ and
for all x a ða; bÞ let

F ðxÞ :¼
Z x

x0

dy

bðyÞ :ð5:2Þ

(Note that 1
b a L1½x0; x� since min½x0;x� b > 0 by continuity.) Clearly F a C1ða; bÞ.

If b ¼ þl then F ðb � 0ÞCFðþlÞ ¼ þl. Otherwise there exists x a R such
that

R þl
x

dy
bðyÞ < T . This would mean that the solution g of (ODE) with the initial

condition x escapes to infinity in finite time, which contradicts the existence as-
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sumption that g a Gb. Analogously, if a ¼ �l then F ðaþ 0ÞCF ð�lÞ ¼ �l.
Finally, if a; b a R then by uniqueness of the integral curves F ðaþ 0Þ ¼ �l and
Fðb � 0Þ ¼ þl.

Furthermore, F is strictly increasing and continuous, hence F �1 : R ! ða; bÞ
is continuous and strictly increasing as well. Since F a C1ða; bÞ we also have
F�1 a C1ðRÞ. Hence

Xðt; xÞ :¼ F�1ðF ðxÞ þ tÞ

belongs to C1ðR� ða; bÞÞ by the chain rule. Moreover, X ð�; xÞ solves (ODE).
Let now o a C1

c ða; bÞ be an arbitrary test function and fix t a ð0;TÞ. Then
define

jðt; xÞ :¼ oðX ðt� t; xÞÞð5:3Þ

which belongs to C1
c ð½0; t� � ða; bÞÞ. (Indeed, if ½u; v� � ða; bÞ contains the support

of o, then the support of j is contained in ½0; t� � ½Xð�t; uÞ; v�.) Moreover, j sat-
isfies the transport equation qtjþ bqxj ¼ 0 (pointwise) with the final condition
jðt; xÞ ¼ oðxÞ. Using the test function F ¼ j in (5.1) we get

Z
R

oðxÞ dmtðxÞ ¼ 0

and by arbitrariness of o this implies that mt ¼ 0 for a.e. t a ð0;TÞ (more pre-
cisely, for all t a ð0;TÞnN). In particular, this implies that the solution ðmtÞOða;bÞ
¼ 0 for a.e. t and hence mt vanishes on every connected component of the set
fb > 0g. Similarly, one can show that mt vanishes for a.e. t on every connected
component of the set fb < 0g. We have thus proved that mt is concentrated on
fb ¼ 0g and then it solves (PDE) with bC 0. Hence mt ¼ 0 globally for a.e.
t a ð0;TÞ and this concludes the proof. r

Remark 5.3. Currently it is not known to us whether Proposition 5.2 can
be extended to more than one space dimensions, or for non-autonomous one-
dimensional case. Our proof of Proposition 5.2 relies on C1 regularity of the
flow X ðt; xÞ of b on the set ½0;T � � fx a R : bðxÞA 0g. This allows us to con-
struct C1 solutions j of the transport equation and use them as the test functions
in the distributional formulation of the continuity equation.

But in the case when d > 1 (and also in the case when d ¼ 1 and b is non-
autonomous) the flow of b in general is not di¤erentiable on the set where bA 0.

Indeed, let f : R ! R be a Lipschitz function. Then the flow of b : R2 C x 7!
ð0; f ðx1ÞÞ a R2 is given by X ðt; xÞ ¼ ðx1; x2 þ t � f ðx1ÞÞ. It is evident that for all
t > 0 the function Xðt; �Þ is di¤erentiable at x a R2 if and only if f ð�Þ is di¤eren-
tiable at x1.

Similarly, in the one-dimensional non-autonomous setting one can show that
if f is a strictly increasing biLipschitz function such that f ð0Þ ¼ 0 then there
exists T > 0 (dependent on the Lipschitz constants for f and f �1) such that the
function Xðt; xÞ :¼ xþ t � f ðxÞ for every t a ½0;T � is biLipschitz (as the function
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of x a R). Then denoting with Y ðt; �Þ the inverse of X ðt; �Þ one can show that X is
the flow of continuous function bðt; xÞ :¼ f ðt;Y ðt; xÞÞ.
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