
Department of Information Engineering and Computer Science

Doctoral Thesis

Human-Machine Alignment
for Context Recognition in the Wild

Author:
Andrea Bontempelli

Supervisors:
Prof. Fausto Giunchiglia

Prof. Andrea Passerini

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

April 19, 2024

Contents

List of Figures v

List of Tables vii

Acronyms viii

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 2
1.3 Solution . 3
1.4 List of publications . 6
1.5 Reproducibility statement . 7
1.6 Outline . 8

2 Background and problem setting 9
2.1 Personal situational context 9
2.2 Context representation . 10
2.3 Context recognition in static world 12
2.4 Context recognition in the wild 12

2.4.1 Learning from user . 13
2.4.2 Learning from noisy data 14
2.4.3 Learning from data streams 14
2.4.4 Learning in an open world 15
2.4.5 Learning incrementally 15

2.5 Related works . 16
2.6 Conclusion . 17

I Learning in the wild 19

3 Incremental Skeptical Learning 20
3.1 Introduction . 20
3.2 Incremental classification in the wild 22
3.3 Original formulation of skeptical learning 23

3.3.1 Limitations . 24
3.4 Incremental Skeptical Gaussian Processes 25

3.4.1 Gaussian Processes . 25
3.4.2 The isgp algorithm . 27
3.4.3 Advantages and limitations 29

3.5 Experiments . 30

i

CONTENTS ii

3.5.1 Synthetic experiment 31
3.5.2 Location prediction . 34

3.6 Related work . 36
3.6.1 Open recognition . 36
3.6.2 Lifelong learning . 37
3.6.3 Learning under noise 37

3.7 Conclusion . 38

4 Explainable Skeptical Learning 40
4.1 Introduction . 41
4.2 Background . 42
4.3 Explainable interactive label cleaning 44

4.3.1 The cincer algorithm 44
4.3.2 Counter-example selection 44
4.3.3 Counter-example selection with the Fisher information

matrix . 47
4.3.4 Selecting pertinent counter-examples 48
4.3.5 Advantages and limitations 49

4.4 Experiments . 49
4.4.1 Data sets . 50
4.4.2 Models . 51
4.4.3 Q1: Counter-examples improve the quality of the data 51
4.4.4 Q2: Fisher Information-based strategies identify the

most mislabeled counter-examples 52
4.4.5 Q3: Both influence and curvature contribute to the

effectiveness of Top Fisher 52
4.5 Related work . 53

4.5.1 Influence functions and Fisher information 53
4.5.2 Other works . 54

4.6 Conclusion . 54

5 Knowledge Drift 56
5.1 Introduction . 57
5.2 Hierarchical classification and knowledge drift 58
5.3 Handling knowledge drift with TRCKD 60

5.3.1 Step 1: Detection . 61
5.3.2 Step 2: Disambiguation 62
5.3.3 Step 3: Adaptation . 63

5.4 Experiments . 64
5.4.1 Experimental details 65
5.4.2 Hyperparameters . 66
5.4.3 Q1: Knowledge-aware adaptation improves performance 67
5.4.4 Q2: Interaction is beneficial 69
5.4.5 Q3: trckd works well in multi-drift settings 70

CONTENTS iii

5.4.6 Additional comparisons 70
5.5 Related work . 72

5.5.1 Maximum mean discrepancy. 72
5.5.2 Drift over graph data. 73
5.5.3 Open world recognition. 73
5.5.4 Novelty and anomaly detection 73
5.5.5 Other topics. 74

5.6 Conclusion . 74

II From the lab to the wild 76

6 Context Recognition Architecture 77
6.1 Introduction . 77
6.2 Personal context recognition architecture 79

6.2.1 A recurrent network 79
6.2.2 Memory . 81
6.2.3 Reasoning . 82
6.2.4 Interaction . 85
6.2.5 Execution policy . 85
6.2.6 Design principles . 85

6.3 Personal context procedures 86
6.3.1 Scheduler . 86
6.3.2 Initialization . 87
6.3.3 Perceive the world and the user 88
6.3.4 Relevance computation: load data from the memories 89
6.3.5 Reasoning . 90
6.3.6 Memories update . 91

6.4 Related works . 91
6.5 Conclusion . 92

7 Skeptical Learning evaluation in the wild 94
7.1 Introduction . 94
7.2 Use case . 96
7.3 Machine learning architecture 97

7.3.1 iLog infrastructure . 98
7.3.2 Pre-processing of the sensor data 99
7.3.3 Learning module . 99
7.3.4 User-machine interaction 100
7.3.5 Performance monitoring 100

7.4 Experiment design . 101
7.4.1 Research protocol . 101
7.4.2 Experiment setup . 103

7.5 Results . 104

CONTENTS iv

7.5.1 Sensor data . 106
7.5.2 Time diaries . 106
7.5.3 Skeptical questions . 107
7.5.4 Evaluation question 109
7.5.5 isgp performance . 110

7.6 Conclusion . 110

8 Conclusion 113
8.1 Summary . 113
8.2 Discussion . 115

8.2.1 Benefits and limitations 115
8.2.2 Ethics statement and societal impact 115

8.3 Future research development 117

Bibliography 118

Appendices

A iLog sensor list 135

List of Figures

1.1 Simplified overview of the solution 4

2.1 Entity type graph . 11
2.2 Entity Graph (EG) . 18

3.1 Illustration of isgp on a 2D synthetic data set 22
3.2 Example of Gaussian process regression 25
3.3 Gaussian Process: uncertainty estimation and query annota-

tor when uncertain . 27
3.4 Results of isgp on synthetic data with 10% noise 32
3.5 Results of isgp on synthetic data with 40% noise 33
3.6 Results of isgp on location prediction 35
3.7 isgp training time on real-world and synthetic dataset 35

4.1 Two hypothetical rounds of interaction on a noisy version of
MNIST . 42

4.2 Results of cincer on Q1 . 51
4.3 Results of cincer on Q2 . 52
4.4 Results of cincer on Q3 . 53

5.1 Illustration of concept drift versus knowledge drift 59
5.2 Results of trckd and standard forgetting strategies on dif-

ferent data sets . 68
5.3 Results of trckd and less interactive variants on different

data sets . 69
5.4 trckd versus competitors on sequential KD 70
5.5 Results on H-STAGGER of the automatic drift type identifi-

cation with Graphical Lasso 71

6.1 Sequence of computations . 79
6.2 Context recognition architecture 80
6.3 Long term memory (LTM) structure 83

7.1 Experiment architecture . 97
7.2 Research protocol of the real-world experiment 101
7.3 iLog app screenshots . 103
7.4 Number of users by day . 105
7.5 Percentage of missing values for each numeric feature. 105
7.6 Number of time diary answers by hour of the day 107
7.7 Main category of each label provided by the user 108
7.8 Statistics about skeptical questions. 108
7.9 Statistics about the evaluation questions 109

v

LIST OF FIGURES vi

7.10 Correct predictions by user 109
7.11 Progressive average F1-score 110

List of Tables

5.1 Data sets statistics . 66
5.2 Hyperparameter values . 67

7.1 Experiment questions . 104
7.2 Time diary answer options . 106

A.1 iLog sensors . 135
A.2 Engineered features . 138

vii

Acronyms

LTM Long Term Memory

SM Sensory Memory

WM Working Memory

cincer Contrastive and InflueNt CounterExample stRategy

isgp Incremental Skeptical Gaussian Processes

trckd TRaCking Knowledge Drift

KD knowledge drift

PCR personal context recognition

SKL Skeptical Learning

viii

Abstract

The premise for AI systems like personal assistants to provide guidance and
suggestions to an end-user is to understand, at any moment in time, the
personal context that the user is in. The context – where the user is, what
she is doing and with whom – allows the machine to represent the world
in user’s terms. The context is not directly accessible to the machine, and
thus, it must be inferred from a stream of sensor readings generated by smart
wearables such as smartphones and smartwatches. We refer to this task as
context recognition, a supervised learning task with the constraints that the
target classes are user-specific, namely it encodes the user perspective (e.g.,
this user’s home is not another user’s home). In addition, given that the
machine follows the user over time, it faces changes in the world and in the
user (e.g., the user visits new places), generating changes in the vocabulary
and in the data. Thus, the fundamental issues in this out-of-the-lab setting
are (i) the unreliability of the supervision due to noisy labels that fool the
machine and changes in the user vocabulary, and (ii) data shifts that lead the
machine to systematic errors. To perform robust context prediction in this
real-world scenario, the machine must handle the egocentric nature of the
context, adapt to the changing world and user, and maintain a bidirectional
interaction with the user to ensure the user-machine alignment of world
representations. To this end, the machine must learn incrementally on the
input stream of sensor readings and user supervision. Based on the above
considerations, the contributions of this work are the following. (i) We
introduce interactive classification in the wild, which is characterized by
noisy labels, and the number of classes grows over time. Then, we present
knowledge drift (KD), a special form of concept drift, occurring due to world
and user changes. (ii) In order to tackle this task, we develop simple and
robust ML methods: isgp is an interactive learning approach to clean the
example by asking the user to revise the label when sufficiently confident that
the supervision is noisy, cincer is an approach that selects training examples
to explain and support the skepticism of the machine and allows fixing noisy
examples that elude the cleaning step. trckd is a novel approach that
tackles KD and combines automatic drift detection and knowledge-aware
adaptation with interactive refinement of the machine understanding of the
detected KD. (iii) We showcase the advantages of each of these methods in
empirical evaluations on controlled synthetic and real-world data sets. (iv)
We design a flexible and modular architecture that combines the methods
above to support context recognition in the wild. (v) We evaluate isgp with
real users in a concrete social science use case.

Keywords: interactive machine learning, incremental learning, data streams,
human-in-the-loop, concept drift, context recognition

ix

Acknowledgements

The PhD is a long journey made up of a sequence of research and personal
challenges. By looking back to the time I started, I realize how much I have
learned and the improvement I made in addressing research and technical
challenges. I would like to thank my advisors, Prof. Fausto Giunchiglia and
Prof. Andrea Passerini, for giving me the opportunity to make this jour-
ney. I am very grateful to Stefano Teso for the valuable feedback and useful
lessons he gave me during my doctoral journey. Their guidance has been fun-
damental to shaping how I think as a scientist and as a person. A significant
portion of the knowledge I obtained during my doctoral studies arose from
discussions with them, and they contributed significantly to various chap-
ters of this thesis. I thank the reviewers Prof. Albert Bifet and Prof. Frank
van Harmelen for their valuable feedback, and the committee members Prof.
Frank van Harmelen, Prof. Vincenzo D’Andrea and Dr. Riccardo Guidotti
for being part of this journey. The research period abroad at IDIAP has
been possible thanks to Prof. Daniel Gatica-Perez and the social computing
group. The experiment with real users would not have been possible with-
out the contribution of Matteo Busso to the experiment design and research
proposal for the Research Ethics Committee. I also thank Marcelo Rodas
Britez, Leonardo Malcotti, and Ivan Kayongo for adapting the iLog platform
to the experiment requirements. I would like to thank Alessio Zamboni, Si-
mone Bocca and all the Knowdive members for the insightful discussions and
support, and for building an inspiring and welcoming working environment.
Last but not least, I want to give special thanks to my family and my friends
outside academia for their immense and constant support.

The work compiled in this thesis has been supported by:

“DELPhi - DiscovEring Life Patterns” project funded by the MIUR Progetti
di Ricerca di Rilevante Interesse Nazionale (PRIN) 2017 – DD n. 1062 del
31.05.2019.

“WeNet – The Internet of us’ project funded by European Union’s Horizon
2020 FET Proactive under grant agreement No 823783.

xi

1
Introduction

Contents
1.1 Motivation . 1
1.2 Problem . 2
1.3 Solution . 3
1.4 List of publications 6
1.5 Reproducibility statement 7
1.6 Outline . 8

This chapter provides an overview of the work of this thesis. We start by
describing the motivation and the context that guided the development of
the algorithms and architectures presented in the next chapters. Then, the
thesis’s contributions in tackling the relevant problems are outlined. Finally,
we list the publications on which the thesis is based and also a brief summary
of each chapter.

1.1 Motivation

Understanding the activity the person is performing and the place where
he or she is fundamental for the machine to provide services that support
timely and correctly the person in his or her everyday life [168]. The high
penetration of smartphones and smartwatches in the life of the person is
a privileged observation point of view. Indeed, these personal devices are
always with the person and allow one to observe the world through the
person’s point of view. Let us introduce a motivating example. Ann’s phone
detects that she is driving her car, so it decides to mute incoming notifications
to avoid distracting her. This simple but non-trivial example is common
to many users and highlights the knowledge the machine needs to acquire
about its user and the surrounding world to recognize this scenario. First, the
machine needs to detect that the user is moving with a vehicle by sensing the
world through sensor data like accelerometer and GPS coordinates. Second,
the machine must disambiguate if Ann is on a car or bus. The machine
infers from past data the habits of going to her workplace every day at 8

1

1. Introduction 2

am. Moreover, her smartphone is connected via Bluetooth to her, so the
machine infers that Ann is driving her car to go to work. Ann decides to
start taking the bus in the morning to avoid getting stuck in the traffic.
The machine recognizes that during the last week, Ann moved through a
different route, but it is not able to know whether this is due to roadworks
or because she is using a different means of transportation. Therefore, it asks
Ann to disambiguate, and based on her answer, then the machine enables
the notification during the morning trip.

The scenario above is an example of an AI working in lifelong symbiosis
with a human and interacting with her or him via smart devices like smart-
phones, smartwatches and medical devices. Possible use cases are personal
assistants, smart environments and medical applications. Existing personal
assistants focus on a single dimension of the user’s life, such as calendar
management [117], time and task management [118], education and learning
[157] and information access [81], and they can leverage Natural Language
Processing [7] to interact with the user. The key requirement for a Human-
AI symbiosis is to recognize the personal situational context at any moment
in time [20]. In this work, we use the notion of context introduced in [69]
as “a theory of the world which encodes an individual’s subjective perspective
about it”. Thus, the context models a subjective view, which is a partial
view of the world representing a set of facts locally relevant to the current
activity [24]. The personal situational context, for brevity context, describes
the part of the world in which the person operates, and it is described in
terms of space (locations), social context (other persons), object environ-
ment (surrounding objects) and functional relations (expected behaviour of
persons and objects, and the performed activities). The sequence of the
context at any point in time is a stream storing the past contexts.

1.2 Problem

The personal context is not directly accessible to the machine, which infers
it from other sources such as wearable devices, knowledge graphs and the
reference person. We refer to the task of recognizing the context of the person
at any point of time as personal context recognition (PCR). From one point
of view, PCR can be seen as a generalization of activity recognition [33] in
which the task is to learn the mapping between the sensor data of personal
devices and a single dimension of the context, namely the activity. The
learned mapping is then used to recognize the activity in unseen situations.
Two aspects characterize the personal context. First, its dimensions are
correlated, thus making the context inherently structured [194]. For instance,
the person’s activity is strongly influenced by his/her location. Second, it
is constrained by the context knowledge graph, which encodes the entities
and their relations (cfr. 2.1). Given these desiderata, PCR can appear as

1. Introduction 3

a standard but highly non-trivial ML task under KR constraints. However,
this task becomes challenging when moving to a lifelong setting. To deliver
high recognition performance in this setting, the machine is required to be
robust to known unknowns (uncertain aspects modelled by the machine)
and unknown unknowns (unmodeled aspects of the world) [46]. In PCR,
this requires the machine to be robust to changes in the world and in the
user.

The user’s description of the context changes. The personal context
is subjective, and thus, the machine obtains the user’s description of the
context to learn how to recognize unseen context. This description, given
that PCR is a supervised learning task, corresponds to the supervision given
by the user to the machine. However, over time, the user describes the same
situation in different ways, even if the world has not changed. For instance,
the same person can be referred to as a friend, girl or Ann based on what
is relevant in the current context. At the same time, this supervision is fre-
quently unreliable due to mistakes, inattention and other response bias [188,
64] that affect the context recognition performance.

The world itself changes. Over time, the machine knowledge about the
world evolves because both the world actually changes and new information
becomes available. At the same time, the user changes her understanding of
the world. For instance, if the user moves to another city, the structure of
her personal context changes. From a statistical perspective, these changes
are forms of concept drifts [166, 63] affecting the distribution of sensor ob-
servation and personal context supervision. However, in the lifelong context
recognition task, the drift is more complex as it alters the context knowledge
graph. Indeed, the entities and their relations become obsolete and updated
over time, e.g., the set of friends or the apartment where the user is living.

Given the problems above, AI must ensure that its understanding of what
is happening is aligned with that of its user; otherwise, the misrecognized
context may lead the system to useless and harmful outputs [41].

1.3 Solution

To deliver high-quality personal context recognition performance, the goal
is to ensure alignment between machine perception and human description
over the lifespan of the AI. Thus, the key challenges to consider are:

• egocentric nature of user’s context, crucial to provide useful suggestion;

• lifelong context recognition that is robust to changes in the world and
to their users, which are impossible to anticipate;

1. Introduction 4

Context
Recognition

Personal
Knowledge

Graph Web Open Data

Figure 1.1: Simplified overview of the proposed solution. The input of the
context recognition solution is the data generated by the user’s devices and
the knowledge about the world and the user. The bidirectional interaction
between the user and the machine via the devices.

• continual bidirectional interaction between the user and the machine to
ensure the alignment of their world representation. The direction from
the user to the machine is what is usually done in Knowledge Rep-
resentation and Machine Learning. The other direction has recently
emerged under the term Explainable AI (XAI) [82, 116], considered as
a major requirement to achieve human-centric and trustworthy AI.

Therefore, given the challenges above, the machine needs to be:

• incremental, to update the learned model to the new information as it
becomes available over time;

• able to detect changes and adapt by interacting with the reference user;

• exploit prior knowledge stored in previous contexts.

Here, it is fundamental that the machine’s understanding of what is happen-
ing is completely aligned with that of its reference users. This understanding
is in the mind of the reference user, who is the AI’s ultimate source of infor-
mation. Hence, the AI must interact with the user to get information when
something new and unforeseen happens.

Specifically, we are interested in predicting the user’s context at any mo-
ment in time from the stream of data coming user’s smartphone. Figure 1.1
shows an simplified overview of the scenario. The input of the context recog-
nition solution is the data generated by the user’s devices and the knowledge
about the world and the user, structured as a knowledge graph. This knowl-
edge graph is filled with the knowledge just learned by the model and, at
the same time, can also be integrated with data from third parties such
as large multilingual resources [70], geographic information and other open

1. Introduction 5

data. The PCR machine implements a bidirectional interaction between the
user and the machine via the devices. This work focuses on the development
of robust machine learning algorithms to tackle context recognition in the
wild. Specifically, the contributions of this work are the following. We:

1. Introduce interactive classification in the wild, a novel form of interac-
tive learning in which there is a substantial amount of labelling noise,
and new classes are observed over time. In this setting, the user’s de-
scription of the context is noisy due to mistakes and inattention. To
address this task, we present a redesign of Skeptical Learning [188] that
leverages exact uncertainty estimates to allocate queries to the user
appropriately when suspicious about a label and avoids over-confident
models even in the presence of noise;

2. Introduce an explanatory interactive label-cleaning strategy that lever-
ages example-based explanations to identify inconsistencies in the data—
as perceived by the model—and enable the annotator to fix them. This
strategy builds upon Skeptical Learning by adding explanations. The
explanation is a set of counter-examples that explain why the model
is suspicious and that are highly informative. This contribution goes
in the direction of the bidirectional interaction. Indeed, first, the user
provides a label, then the machine explains its suspicion about this
label, and finally, the user fixes the inconsistency in the data.

3. Identify knowledge drift (KD) as a complex phenomenon that affects
the knowledge encoded in the context knowledge graph whenever the
world changes. In KD, which we identified as a special kind of concept
drift, concepts and their relations can become obsolete or irrelevant,
and new ones can be added. To address this task, we design trckd,
an approach for handling KD that combines automated detection and
adaptation with interactive disambiguation and instantiates it on top of
kNN-based classifiers by implementing a knowledge-aware adaptation
strategy. Here, given the egocentric nature of the personal context,
we identify the interaction with the reference user as the only way to
disambiguate among the possible forms of knowledge drift. The reason
is that different forms of drift have similar footprints on the observed
data, which is thus insufficient to adapt the model and its knowledge
graph to them properly.

4. Design a comprehensive architecture to solve PCR in the lifelong set-
ting. Through the composition of Skeptical Learning and knowledge
drift handling, the architecture addresses the problem of language and
knowledge alignment. This compositionality strategy allows the archi-
tecture to be sufficiently flexible in terms of input data and reasoning
strategy to adapt to specific designer’s requirements and, thus to sev-
eral application domains.

1. Introduction 6

5. Design and execute an experiment with real users to evaluate Skeptical
Learning in the wild. The experiment design investigates how Skeptical
Learning can help tackling the respondent burden and answer quality
problems that affect the longitudinal studies run in social science. In
these studies, the researchers are interested in acquiring the context of
the participants multiple times per day over a period of a few weeks
by asking them multiple questions. The respondent burden causes
the participants to leave the data collection or to provide unreliable
answers. We also provide a description of the technological stack and
the lessons learned. The result highlights that the assumptions made
in the lab might be disrupted when going into real-world validation.

1.4 List of publications

This thesis is based on the following publications:

• Andrea Bontempelli, Stefano Teso, Fausto Giunchiglia, and Andrea
Passerini. 2020. “Learning in the Wild with Incremental Skeptical
Gaussian Processes”. The Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence (IJCAI).

https://doi.org/10.24963/ijcai.2020/399

• Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini and Ste-
fano Teso. 2022. “Human-in-the-loop handling of knowledge drift”.
Data Mining Knowledge Discovery.

https://doi.org/10.1007/s10618-022-00845-0

• Andrea Bontempelli, Marcelo Rodas Britez, Xiaoyue Li, Haonan
Zhao, Luca Erculiani, Stefano Teso, Andrea Passerini, and Fausto
Giunchiglia. 2022. “Lifelong Personal Context Recognition”. The First
International Workshop on Human-Centered Design of Symbiotic Hy-
brid Intelligence co-located with The First International Conference on
Hybrid Human-Artificial Intelligence (HHAI).

https://arxiv.org/abs/2205.10123.

• Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, and An-
drea Passerini. 2021. “Interactive label cleaning with example-based
explanations”. Advances in Neural Information Processing Systems
(NeurIPS). (spotlight presentation)

https://proceedings.neurips.cc/paper_files/paper/2021/file/
6c349155b122aa8ad5c877007e05f24f-Paper.pdf

https://doi.org/10.24963/ijcai.2020/399
https://doi.org/10.1007/s10618-022-00845-0
https://arxiv.org/abs/2205.10123
https://proceedings.neurips.cc/paper_files/paper/2021/file/6c349155b122aa8ad5c877007e05f24f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6c349155b122aa8ad5c877007e05f24f-Paper.pdf

1. Introduction 7

• Fausto Giunchiglia, Marcelo Rodas Britez, Andrea Bontempelli,
and Xiaoyue Li. 2021. “Streaming and Learning the Personal Con-
text”. The Twelfth International Workshop Modelling and Reasoning
in Context (MRC) co-located with IJCAI 2021.

https://ceur-ws.org/Vol-2995/paper3.pdf

The author has further contributed to the following publications:

• Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini and Ste-
fano Teso. 2022. “Toward a Unified Framework for Debugging Gray-
box Models”. The AAAI-22 workshop on Interactive Machine Learn-
ing.

https://arxiv.org/abs/2109.11160

• Andrea Bontempelli, Stefano Teso, Katya Tentori, Fausto Giunchiglia
and Andrea Passerini. 2023. “Concept-level Debugging of Part-Prototype
Networks”. The Eleventh International Conference on Learning Rep-
resentations (ICLR). (notable-top-25%)

https://openreview.net/pdf?id=oiwXWPDTyNk

• Luca Erculiani, Andrea Bontempelli, Andrea Passerini and Fausto
Giunchiglia. 2023. “Egocentric Hierarchical Visual Semantics”. The
Second International Conference on Hybrid Human-Machine Intelli-
gence (HHAI). (best working paper award)

https://ebooks.iospress.nl/volumearticle/63343

1.5 Reproducibility statement

The experimental setup and the code of the algorithms presented in this
work are publicly available. The code of the method presented in Chapter 3
is available at https://gitlab.com/abonte/incremental-skeptical-gp.
The evaluation has been performed on both synthetic and real-world data.
The former are published in the repository. The anonymized version the used
real-world data sets and more recent data sets with the same sensor data
and collection methodology can be requested and downloaded from https:
//datascientiafoundation.github.io/LivePeople/datasets/. The al-
gorithm of Chapter 4 is published on https://github.com/abonte/cincer.
The code of the method of Chapter 5 has been uploaded on https://gitlab.
com/abonte/handling-knowledge-drift, and the experiment data sets are
released by their respective authors.

https://ceur-ws.org/Vol-2995/paper3.pdf
https://arxiv.org/abs/2109.11160
https://openreview.net/pdf?id=oiwXWPDTyNk
https://ebooks.iospress.nl/volumearticle/63343
https://gitlab.com/abonte/incremental-skeptical-gp
https://datascientiafoundation.github.io/LivePeople/datasets/
https://datascientiafoundation.github.io/LivePeople/datasets/
https://github.com/abonte/cincer
https://gitlab.com/abonte/handling-knowledge-drift
https://gitlab.com/abonte/handling-knowledge-drift

1. Introduction 8

1.6 Outline

Each chapter is self-contained and report an introduction, related works
and contributions. Given that the work is cross-cutting to different research
fields, each chapter provides related works, which allow the reader to position
the contribution of the chapter with respect to the specific field to which it
refers. The work is divided into two parts. In Part I, we introduce the theory
about the proposed algorithms and evaluate each of them in a controlled
setting (Chapters 3 to 5). Then, in Part II, we move the discussion towards
the real world scenario by proposing a reference architecture (Chapter 6)
and evaluating in the wild with real users (Chapter 7). The remainder of
this work is organized as follows:

Chapter 2 frames the research problem by providing the definition of user
personal context and exposing the challenges of recognizing it in the
open world.

Chapter 3 presents skeptical learning as an algorithm that addresses the
mislabeling problem that arises when interacting with the user to train
the machine to recognize her or his personal context.

Chapter 4 improves skeptical learning algorithm by adding an example-
based explanation allowing to clean training example that eluded the
skeptical check. This explanation allows the user to observe and fix
the reasons behind the model’s suspicions.

Chapter 5 depicts the knowledge drift problem that occurs when the ma-
chine’s knowledge about the world and the user becomes obsolete. The
interaction with the user is crucial to align the machine with the oc-
curred change.

Chapter 6 describes the logical architecture that allows the recognition of
the personal context. The architecture combines the procedures pre-
sented in the previous chapters to learn in the wild and a knowledge
representation of the personal context and machine memory that sup-
ports the recognition task. The solution is not stick to any specific
technology.

Chapter 7 presents the evaluation of skeptical learning in a real-world ex-
periment run with university students.

Chapter 8 summarizes the main contributions, presents the limitations,
briefly argues the ethical and societal impacts of this work and depicts
future research directions.

2
Background and problem setting

Contents
2.1 Personal situational context 9
2.2 Context representation 10
2.3 Context recognition in static world 12
2.4 Context recognition in the wild 12
2.5 Related works . 16
2.6 Conclusion . 17

The goal of this thesis is to define a system that recognizes the user
context, which can be exploited by personalized applications and services to
help the user in his or her life. Section 2.1 provides an introduction to the
personal context, which is crucial to ensure an alignment between the user
and the machine , which is one of our motivation examples. Then, we intro-
duce the knowledge graph representation of the context in Section 2.2. The
recognition task is formalized in Section 2.3. However, several issues emerge
when the task is performed in uncontrolled environments. Thus, Section 2.4
describes the main conditions that a machine has to face when deployed in
the wild. First, what the machine learns about the surrounding environ-
ment from perception data must be aligned with the user’s interpretation of
the same space. Second, traditional machine learning approaches assume a
closed word, i.e., the training set is given at the beginning, and the data dis-
tribution does not change at inference time. However, the world is evolving
over time, and thus machine knowledge must be adapted accordingly.

2.1 Personal situational context

Context models the environment in which a person is from his or her point of
view. Since the person has a partial view of the world all the time, the con-
text, as defined in [69], “is a theory of the world which encodes an individual’s
subjective perspective about it.” A lot of work has been done to define the
context in multiple research areas such as ubiquitous computing, computer
science and sociology [51], and to study context-aware application [156, 41].

9

2. Background and problem setting 10

In our uncontrolled setting, the context model must address the open and
changing world, in which is not possible to define a-priori the environments
and the concepts. Thus, Giunchiglia et al. [71] model the context as the local
view centred around the person and is composed of the following dimensions:

• activity, the main activity the person on which the context is centred
is performing. This is derived from the question “what are you doing?”,
e.g., studying;

• location, the main place where the person is currently, and it is the
answer to the question “where are you?” (library);

• social, the persons that are part of the current environment and, in
this case, the question is “who are you with? (friends);

• object, the objects that are around or used by the person “what are you
with?” (laptop and book).

Context subjectivity. From the above definitions, it is possible to note
that the answers to the four questions are subjective. For instance, consider
the following situation. The professor is teaching to the university students
in the classroom. This scenario can be modelled differently according to
which reference user the context is centred. Regarding the location, the
classroom is the workplace for the professor, whereas a student interprets
the same place as a study place. The same building can have different func-
tions according to the point of view. In the case of the performed activity,
the student is listening, and the professor is writing to the blackboard. The
student and the professor have different objects. The former writes with the
chalk on the blackboard, and the latter writes with the pen on their note-
books. The subjectivity of the context is encoded by teleologies, which were
introduced in [74]. The concepts used to represent the context are organized
in object, function and action. Objects represent concrete and finite objects
like buildings, persons and cars. Functions represent the expected behaviour
with respect to the user. Actions describe how the object changes in time in
order to satisfy its functions.

The context is thus represented as a knowledge graph and encodes the
prior knowledge about the user and the world. We formalize and detail the
subjective representation of the context in the next section.

2.2 Context representation

This section’s aim is to briefly explain the schema level and data level of
the knowledge graph proposed in previous works by Giunchiglia et al. [75].
Based on these notions, we model the personal context as follows.

2. Background and problem setting 11

hasCurrentFunction hasCurrentAction

Person

hasFunction hasAction

Thing

Function
has

Function
Action

Action

Me

Other

isA

isA

Context

where

what

withPerson
withObject

Object

isA
isA

partOf

partOf
partOf

ObjectToObjectRelationhasThing

Figure 2.1: Entity Type Graph (ETG) is the schema of the personal situ-
ational context. The yellow arrows represent the predicates that model the
current context of the user.

Entity type graph (ETG). The ETG is the schema that defines the re-
lation between the different concepts, namely objects, functions and actions.
Figure 2.1 shows the schema of the context, in which nodes are entity types
and their links are object properties. The entity type Me represents the agent,
whose context is modelled. The statements describing the context are:

• withPerson(Me,Person) defines the user’s social context;

• where(Me,Object) identifies the location;

• what(Me, Action) represents the actions being performed by the user;

• hasCurrentAction(Thing,Action), determine the actions performed
by the objects and person in the current personal context.

• hasCurrentFunction(Thing,Function) represent the functions of the
persons in the social context and the object defining the location;

Entity Graph (EG). The instantiation of the entity types and object
properties of ETG with a specific value at a certain time t generates an
entity graph EGt. The nodes of this graph are entities and links are object
properties. Figure 2.2 is an instantiation example, and the green boxes
highlight the different possible contexts.

2. Background and problem setting 12

2.3 Context recognition in static world

The user’s mobile devices like smartphones and smartwatches generate a
stream of sensor readings (e.g., GPS coordinates, accelerometer and gyro-
scope). These devices are always with the user and generate a stream of
perception data that captures the user’s perspective. The machine’s task is
to recognize the user’s context at regular intervals from a stream of data.

We are concerned with a learning task in which an instance x ∈ Rd

is associated with a set of concepts, and their relations are organized as a
knowledge graph K = (C,R), in which C = {c1, . . . , cn} encodes the entity
types in the ETG and their instantiation in the EG, and R = {r1, . . . , rk}
lists the relations between them R ⊆ C × C. The instances are annotated
with indicator vector y ∈ {0, 1}k+n, where the i-th element of y, denoted
yi, is 1 if given x, the i-th relation or concept is true and 0 otherwise. Both
the true concepts and relations in any given moment in time represent the
current personal situational context. The machine observes a stream of ex-
amples zt = (xt,yt), for t = 1, 2, . . . drawn from a ground-truth distribution
Pt(X,Y) which is always consistent with the ground-truth knowledge graph
Kt. This means that if a relation s between two concepts i and j does not
exist in the ground-truth Kt, then the probability Pt(X,y) of all y violating
this statement (ys = 1 and yi = 1 and yj = 1) is zero. The classification task
is to find a classifier and a corresponding knowledge graph K̂t that perform
well on future instances. In order to output high-quality predictions, the
acquired knowledge K̂t must approximate the unobserved ground truth Kt.

2.4 Context recognition in the wild

In the lifelong context recognition in the wild, the ground-truth labels y are
not available, and the system must ask the user. However, users are unreli-
able and might provide incorrect labels, as is well known in social sciences,
and over time they change how they describe the world. Moreover, the world
unpredictably changes, i.e., the unobserved ground-truth knowledge graph
Kt and the data distribution can both change over time t = 1, 2, If not
addressed, these factors lead the machine to systematic prediction errors.
Adaptation is thus crucial to provide useful services [41]. We detail these
issues in the following paragraphs.

The user’s description of the context changes. The user’s world de-
scription changes over time even if the world is not changed. There are
several reasons why this happens. First, the user may use words that de-
scribe the same object at different levels of granularity. For instance, a
professor can alternatively say to be in his office, in a university building
or in the city of Trento. Even if all these descriptions are correct, they ap-

2. Background and problem setting 13

pear as different concepts to the machine. Second, the user is inattentive or
unwilling to report and thus, wrong descriptions are provided. This badly
affects the performance of the machine to recognize the context. Third, the
world is changed, and the user provides a different description according to
this change, e.g., the professor’s office moved to Rome.

The knowledge incompleteness. Partial knowledge about the world and
the user is built-in into the machine. However, over time, new knowledge
about the user and the world becomes available and needs to be integrated
into the machine’s knowledge. Formally, new concepts and new relations
between them are observed and become available over time. If the acquired
knowledge graph K̂ and the classifier are not updated, the context recog-
nized by the machine is imprecise, obsolete or wrong. In our learning task,
new classes appear over time, namely the relations in the knowledge graphs
changes.

The world changes. Once acquired, the knowledge graph becomes ob-
solete due to changes in the world and user behaviour. For example, the
user graduates and start working in a company, or the user’s favorite shop
moves to another street. We called the addition or removal of concepts and
relations between them in the knowledge graph K as knowledge drift (KD).
These changes impact the ability of the classifier to recognize the context
correctly.

Changes in the knowledge graph leave footprints on the data stream, i.e.,
the data distribution changes. Formally, the ground-truth data distribution
drifts if there is a point in time t such that Pt(X,Y) ̸= Pt+1(X,Y) due to a
change in Kt. We don’t consider the drifts in K that do not impact the data
distribution unless the information can be derived from third-party services
or provided by the user.

2.4.1 Learning from user

There is a misalignment between the information we can extract from sensor
data and the interpretation the user gives to the situation measured by the
sensor. This is a known problem, especially in image processing, where it was
initially introduced. This is called the semantic gap problem, and Smeulders
et al. [145] defines it as “the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same data
have for a user in a given situation.” To maintain an alignment between
how the user thinks of the word and the machine perception, it is crucial
to leverage the annotations and labels from the user herself. In this way,
we ensure an egocentric point of view, and the machine can describe what
it perceives in the users’ own terms [53, 52]. This implies that the machine
should recognize context dimension at the instance level (e.g., recognizing

2. Background and problem setting 14

my own home) and not only at the class level (e.g., I’m in a building). More
practically, it means training the context recognition system on the labels
collected from the user.

The interaction with the user also brings some difficulties. First, the
user may provide wrong labels due to inattention or unwillingness to re-
spond. Second, the question budget must be limited to avoid the respondent
burden, and thus the user may leave the system. This situation implies that
supervision is scarce and, a limited number of training labels are obtained.

2.4.2 Learning from noisy data

AI agents learning in real-world scenarios have to consider errors and mis-
takes in the data. In the setting of this work, the task is to learn user-specific
contextual dimension, and thus the user is the only annotator that can pro-
vide supervision to the machine. In practice, the user may make mistakes
and provides wrong supervision during the learning process. The reasons
behind these errors can be the misunderstanding of the task, inattention,
cognitive bias, unwillingness to respond and reporting of more socially ac-
ceptable behaviour [165, 188].

Example 1 Ann is studying at home, when she answers “University” to
Ann’s PA question “Where are you?”.

We assume the collaborative behaviour of the user since it is in his or her
interest to have a useful service. The proportion of incorrect annotation
can be significant, as shown by an experiment in the same setting as this
research [193, Table 2]. Noise can misguide the machine and has a cascading
effect on the correctness of the future predictions and on the acquired EG.

2.4.3 Learning from data streams

Personal devices, such as smartphones and smartwatches, are always with
the user and are sources of valuable information. These devices allow for
monitoring the user’s behaviour and observing their environment continu-
ously. Hence, it is possible to capture the user’s perspective, e.g., the places
where the user is and the performed activity. The machine has some initial
knowledge about the word and the user (e.g., the user answers some initial-
ization questions during the installation). The machine receives a continuous
stream of sensor data (e.g., GPS coordinates and nearby Bluetooth devices)
and input from the user (e.g., answers to questions). Receiving data over
time implies that the system continuously incorporates the new data into its
knowledge and reacts to changes in the world and the user.

2. Background and problem setting 15

2.4.4 Learning in an open world

Learners in a closed-word setting assume that all the classes they see during
testing were encountered in training. When an unknown input belonging to
a new class is received, the learner assigns one of the known classes. In an
open world, the learner must consider its own limited knowledge of the world
and consider the existence of unknown classes. Scheirer et al. [138] identify
three categories of classes: (i) known concepts, concepts for which there are
positive examples in the training set, (ii) known unknown concepts, concepts
for which there are examples but are not part of known concepts, and (iii)
unknown unknown concepts, concepts that have no examples in the training
set.

Example 2 Ann goes to the university building for the first time. Ann’s PA
predicts that Ann is in a “Bar” because it has never observed the “University”
concept.

The unknown unknown concepts are regions of the feature space where the
predictor misclassifies the examples with high-confidence [46]. Classifiers
that use the distance from a decision boundary as a measure of confidence
assign classes with high confidence to examples that are far from known
training data [23]. This type of error is challenging because the system
is unaware of it. As defined by Dietterich [46], robust AI systems need to
consider both known unknowns and unknown unknowns. We can summarize
the challenge of learning in an open world as the “[...] the ability to recognize
when we do not know something, analyze the need to learn about it, and
then, when needed, to adapt and learn it”[23].

In addition to observing new concepts, streaming data are commonly
affected by other forms of data drifts: i) concept drift, the relation between
input X and Y changes, ii) future drift, the distribution of X changes (e.g.,
the value range), iii) feature evolution, the number of variables increases or
decreases. The current model adapts passively or actively to the drift. In
the former, the model keeps the most recent data. In the latter, the drift
detection triggers the model retraining on a combination of data collected
since the drift detection and old data, to retain also previous knowledge.

Given the unboundedness of the data streams, traditional batch learning
approaches are impractical due to expensive computation and increasing
storage demand. To continuously react to drift and to incorporate new data,
the focus must be on incremental learning, as described in the next section.

2.4.5 Learning incrementally

Many applications deal with continuous data streams, such as sensor read-
ings, logs, news and images. As described above, our setting is also character-
ized by the arrival of new examples over time, and thus the machine learning

2. Background and problem setting 16

model and the acquired knowledge need to be updated incrementally. In-
cremental learning is not limited to handling new training examples. [198]
identify three categories of incremental learning tasks where new knowledge
must be incorporated into the learned model:

• example-incremental learning, when a new example is available (e.g., a
new sensor reading)

• class-incremental learning, when a new target concept appears in the
stream (e.g., "electronics" is a new classification topic of the news)

• attribute incremental-learning, when a new attribute of the examples
is introduced (e.g., the user enables the GPS, and latitude and lon-
gitude are available). New knowledge is incorporated over time but
also removed when it becomes obsolete (decremental learning), e.g.,
the user’s face is removed from a door lock with facial recognition, so
he or she can no longer access the room.

This setting is challenging for standard batch learning techniques. These
approaches assume that the model trained on an initial data set works ap-
propriately, even in the future. This works fine if the examples are drawn
from the same distribution as the training set. This assumption is hardly
satisfied in real-world scenarios on data streams, and it can be costly or
unfeasible to collect a sufficiently large data set before the learning process
starts.

Incremental learning algorithms are designed to work on data streams
and efficiently perform training and prediction each time a new example
arrives. The main advantage is that they do not need to learn from scratch
on the entire data set, saving time and computational costs [65]. Incremental
learners extract knowledge from local information, i.e., from the most recent
examples. This is especially important when we assume that the order of
the data has some meaning and that the most recent data are aligned with
the current state of the world [68]. Batch learning methods can be used to
solve incremental tasks, but they have a computational overhead [68].

2.5 Related works

There is an enormous amount of work on using sensor data and self-reports
to infer aspects of a person’s life or a specific population. Many studies
have investigated the use of passive sensor data in longitudinal studies that
model human behaviours, such as depression detection algorithms [178] or
educational performances [173]. Sensor data are used to perform activity
recognition, i.e., provide information about users’ activities [43], on evolving
data streams [1], even in out-of-the-lab settings [54], and to recognize the
context [170]. Mobile sensing works investigate, e.g., social interactions [134],

2. Background and problem setting 17

recognition of flu-like symptoms [8] and eating event detection [6]. The
main differences are that we are concerned with the egocentric point of view
acquired by interacting with the user, and we handle noisy labels and changes
in the world. Moreover, the work considers the lifelong setting, in which
the machine and the reference user interact for long periods, even for the
whole life. One last and crucial point is that in the first part of this work,
we focus on designing robust ML algorithms that learn on tasks with the
characteristics discussed above. Thus, they are not restricted to a specific
domain like mobile sensing or context recognition.

Multiple studies proposed context or activity recognition on real-world
data in which participants use the devices naturally, outside the lab and
without instruction from the researchers. Thus, this setting implies unbal-
anced and incomplete labels, missing sensors [168], and, when dealing with
streams, novel labels appear or become obsolete [2]. Given the variability of
the patterns in real-world data, some approaches apply personalization on
human activity recognition to generalize to other users [57, 155]. This work
is concerned with noise handling and drift in hierarchical classification, and
it considers interaction with human annotators. Thus, the machine interacts
with the user to fix noisy examples or update the model to the undergone
drift.

2.6 Conclusion

We introduced the personal context, and we described the challenges of its
recognition in the wild. This means considering drift in the data due to
changes in the world and noise. To this end, we must design a robust model
that incrementally updates its knowledge based on the stream of input sensor
data and subjective supervision of its users.

2. Background and problem setting 18

hasPart

hasPart hasPart

hasPartLife

Home
context

Holiday
context

partOf

Main home
context

partOf

Vacation home
context

Transportation
context

University
context

Person

name: Bob

age: 60

Function

name: Professor
Function

name: Sister

hasFunction hasFunction

hasThing

hasThing

Person

name: Emma

age: 20

hasThing

Action

name: Listening Activity

name: Talking

hasAction

Me

name: Lisa

age: 23

Activity

name: Sitting

hasThing

hasAction

hasAction

hasCurrentFunction

withPerson

hasCurrentActionhasFunction
Action

Figure 2.2: Entity Graph (EG) represents the actual entities used to de-
fine the personal context. The yellow arrows show the actual entities that
describe the context in a specific moment in time.

Part I

Learning in the wild

19

3
Incremental Skeptical Learning

Contents
3.1 Introduction . 20
3.2 Incremental classification in the wild 22
3.3 Original formulation of skeptical learning 23
3.4 Incremental Skeptical Gaussian Processes 25
3.5 Experiments . 30
3.6 Related work . 36
3.7 Conclusion . 38

Changing conditions and noisy data are common problems for AI agents
learning in open-world scenarios. Skeptical learning (SKL) is introduced in
Section 3.3 and addresses the problem of noisy supervision by asking the
user to revise the possible error. Noisy labels occur because the end-user is
inattentive or unwilling to respond. However, the previous SKL design has
some limitations that make it unsuitable for open-world scenarios in which
there are changing conditions, like in our motivation example. To overcome
these issues, Section 3.4 presents the SKL redesign, which leverages the un-
certainty estimation of Gaussian processes. The experiments in Section 3.5
show that our redesign improves over the original formulation in terms of
query allocation and performance.

Attribution This chapter includes material previously published as [22].
Stefano Teso, Fausto Giunchiglia and Andrea Passerini contributed signifi-
cantly to the material presented in this chapter.

3.1 Introduction

Imagine a handheld personal assistant that provides guidance to an end-user.
In order to give useful, timely suggestions (like “please take your insulin”),
the agent must be aware of the user’s context, for instance where she is (“at
home”), what she is doing (“eating cake”), and with whom (“alone”) [71].
The machine must infer this information from a stream of sensor readings

20

3. Incremental Skeptical Learning 21

(e.g., GPS coordinates, nearby Bluetooth devices), with the caveat that the
target classes are user-specific (e.g., this user’s home is not another user’s
home) and thus that the label vocabulary must be acquired from the user
herself. Moreover, as the user visits new places and engages in new activities,
the vocabulary changes. This simple example shows that, to be successful
outside of the lab [46], AI agents must adapt to the changing conditions of
the real world and to their end-users.

We study these challenges in a simplified but non-trivial setting, inter-
active classification in the wild, where an interactive learner requests labels
from an end-user and the number of classes grows with time. A fundamen-
tal issue in this setting is that end-users often provide unreliable supervi-
sion [165, 174, 188]. This is especially problematic in the wild, as noisy
labels may fool the machine into being under- or over-confident and into
acquiring non-existent classes.

We address these issues by proposing Incremental Skeptical Gaussian
Processes (isgp), a redesign of skeptical learning [188] tailored for learning
in the wild. In skeptical learning (SKL), if the interactive learner is confident
that a newly obtained example is mislabeled, it immediately asks the anno-
tator to reconsider her feedback. In stark contrast to other noise handling
alternatives, SKL is designed specifically to retrieve the clean label from the
annotator.

isgp improves original SKL in four important ways. First, instead of
relying on random forests, like SKL, isgp builds on Gaussian Processes
(GPs) [175]. Thanks to their explicit uncertainty estimates, GPs prevent
pathological cases in which an overconfident learner 1) refuses to request the
label of instances far from the training set, thus failing to learn, and 2) con-
tinuously challenges the user regardless of her past performance, estrang-
ing her. Second, isgp makes use of the model’s uncertainty to determine
whether to be skeptical or credulous, while the original SKL uses an inflex-
ible strategy that relies on the number of observed examples only. Third,
while the previous SKL relies on several hard-to-choose hyper-parameters,
isgp makes use of a simple and robust algorithm that works well even with-
out fine-tuning. Last, isgp makes use of incremental learning techniques for
improved scalability [109].

Contributions. Summarizing, we:

1. Introduce interactive classification in the wild, a novel form of interac-
tive learning in which there is a substantial amount of labelling noise
and new classes are observed over time;

2. Develop isgp, a simple and robust redesign of skeptical learning that
leverages exact uncertainty estimates to allocate queries to the user
appropriately and avoids over-confident models even in the presence of
noise;

3. Incremental Skeptical Learning 22

(a) Regular GP (b) Skeptical learning

(c) isgp

Figure 3.1: Illustration of isgp on a 2D synthetic data set with six
normally-distributed classes (in color) and noisy labels (corrupted at ran-
dom with probability 0.4). The outlines enclose regions with high predictive
probability (solid ≥ 0.3, dashed ≥ 0.2). Crosses and boxes are noisy exam-
ples; boxes have been cleaned by skeptical learning.

3. Showcase the advantages of isgp – in terms of query budget allocation,
prediction quality and efficiency – on a controlled synthetic task and
on a real-world task.

3.2 Incremental classification in the wild

Interactive classification in the wild (ICW) is a sequential prediction task:
in each round t = 1, 2, . . . , the learner receives an instance xt ∈ X (e.g., a
vector of sensor readings) and outputs a prediction ŷt ∈ Y (e.g., the user’s
location). The learner is also free to query a human annotator – usually the
end-user herself – for the ground-truth label yt ∈ Y (e.g., the true location).
The goal of the learner is to acquire a good predictor while keeping the number
of queries at a minimum, not to overload the annotator.

Two features make ICW unique: the amount of label noise and the pres-
ence of task shift.

3. Incremental Skeptical Learning 23

Label noise. Label noise follows from the fact that human annotators
are often subject to momentary inattention and may fail to understand the
query [188]. The label ỹt fed back by the annotator is thus often wrong,
i.e., ỹt ̸= yt. Failure to handle noise can bloat the model and affect its
accuracy [60]. Label noise is especially troublesome in ICW, as it can fool the
model into being under- or over-confident. This, in turn, makes it difficult to
identify informative instances and properly allocate labeling budget. Failing
to detect mislabeled examples before using them for training prevents the
model from spotting future mislabeled examples that fall in regions affected
by these noisy examples.

Task shift. By task shift, we mean that newly received instances may
belong to new and unanticipated classes. For this reason, we distinguish
between the complete but unobserved set of classes Y ⊆ N and the classes
observed up to iteration t, that is1 Yt ⊆ Y. Hence, yt belongs to Y, ỹt to
Yt, and ŷt to Yt−1. To keep the task manageable, we assume that previously
observed classes remain valid, i.e., Yt ⊆ Yt+1 for all t. In our personal aid
example, this would imply that, for instance, the user’s home remains the
same over time. This is a reasonable assumption so long as the agent’s
lifetime is not too long. Chapter 5 studies other forms of task shift.

Note that ICW is not the same as open recognition [23]: both settings
involve handling previously unseen classes, but open recognition is not inter-
active and it is unconcerned with noise. Thus, ICW is both easier, in new
classes are annotated immediately, and harder, as noise makes can confuse
the learner; see the Related Work for a discussion.

3.3 Original formulation of skeptical learning

Skeptical learning (SKL) is a noise-handling strategy designed for interactive
learning [188]. SKL challenges the annotator about any suspicious examples
it receives instead of blindly accepting the annotator’s supervision In con-
trast with standard strategies for handling noise, like using robust models or
discarding anomalies [60], SKL aims at recovering the ground truth.

In skeptical learning, an example is deemed suspicious if the learner is
confident that the model’s prediction is right and that the user’s annotation
is wrong. This requires the learner to assign a confidence level to its own
predictions and to the user’s annotations. SKL estimates these confidences
using two separate heuristics. The confidence in the model is estimated using
a combination of training set size and confidence reported by the model. The
confidence in the user is based on the number of user mistakes spotted during
past interaction rounds. To solve the conflict, the machine leverages previous

1It is assumed that Y0 is defined appropriately, e.g., |Y0| ≥ 1.

3. Incremental Skeptical Learning 24

knowledge to decide if the predicted and user labels are compatible. The
knowledge has the forms of knowledge graphs that encode the relationships
among the labels. For instance, one concept is the generalization of another
one. The user is contradicted when the two labels are not compatible and the
machine is confident enough. Then, the user is presented with both labels
and can decide whether to accept one of the two or provide a new label.
See [188] for more details.

The skeptical learner runs through three stages and the transition from
one phase to another is defined by thresholds on the expectation of model
confidence taken over all the past interaction rounds. The three stages are:

1. train mode, the learner always request supervision on new examples
and never contradicts the user. The goal of the machine is to acquire
enough knowledge about the user;

2. refine mode, once the model is confident enough, it begins to challenge
the user. The models expected probability of querying the user exceeds
a threshold;

3. regime mode, the model begins to actively request labels when uncer-
tain about its prediction and challenges the user on suspicious exam-
ples. It remains in this phase indefinitely.

3.3.1 Limitations

The original formulation of skeptical learning is not a good fit for ICW.
First and foremost, SKL is based on random forests (RFs), which are robust
to noise but also notoriously over-confident. This can be clearly seen in
Figure 3.1a where RF is very confident even far away from the training set.
This is a major issue, as over-confident predictors may stubbornly refuse
to query novel and informative instances, compromising learning, and may
keep challenging the user regardless of her past performance, overloading
and estranging her.

The three-stage strategy fails in the wild, as new classes appear even in
later learning stages, in which over-confident models may refuse to request
supervision for them. This occurs frequently in our experiments. The active
learning strategy in the last stage partially avoids over-confidence by request-
ing extra labels. In the first stage, the model may learn from noisy examples
because the machine cannot challenge the user on suspicious examples.

Two other issues are that SKL requires to choose several hyper-parameters
(like θ, which controls when to transition between stages), which is non-
trivial in interactive settings, and that it retrains the RF from scratch in
each iteration.

3. Incremental Skeptical Learning 25

(a) prior (b) posterior (c) posterior (d) posterior

Figure 3.2: Example of Gaussian process regression over one dimension.
Panel (a) shows ten functions drawn at random from the prior distribution.
Panel (b) to (d) shows ten functions drawn at random from the prior con-
ditioned on one, two and three observations, respectively. In all plots, the
thick black line is the mean prediction and the grey-shaded area is twice the
standard deviation.

3.4 Incremental Skeptical Gaussian Processes

isgp is a redesign of skeptical learning based on Gaussian Processes (GPs)
that avoids over-confident predictors and handles label noise. GPs are a nat-
ural choice in learning tasks like active learning [90, 133], online bandits [152],
and preference elicitation [84], in which uncertainty estimates help to guide
the interaction with the user. Our key observation is that skeptical learning
is another such application.

3.4.1 Gaussian Processes

Introduction to GPs

Gaussian Processes (GPs) [175] are non-parametric distributions over func-
tions f : X → R. A GP is entirely specified by a mean function µ(x) and
a covariance function k(x, x′). The latter encodes structural assumptions
about the functions modeled by the GP and can be implemented with any
kernel function. Without any observation, the average value over the sample
functions at each x is assumed to be zero, i.e., µ(x) ≡ 0.

The intuition behind Gaussian process is that a stochastic process de-
fines the properties of functions. Figure 3.2 shows an example of Gaussian
process for a 1-d regression task. Ten sample functions are drawn at random
from the prior distribution over function and plotted in Figure 3.2a. This
prior distribution encodes the assumption about the function before observ-
ing any training data. In Figures 3.2b to 3.2d, the model observes one, two
and three new data points, respectively. The ten functions, drawn from the
posterior distribution, pass through the data points. Hence, the uncertainty
tends to decrease for instances close to the training examples (i.e., the sim-
ilarity increases) and to increase far from known data. In the above plots,
the shaded grey area denotes the uncertainty. The intuition is that similar
instances should belong to the same class or have the same regression value.

3. Incremental Skeptical Learning 26

This similarity between instances is defined by the covariance function.
Bayesian inference, that is, conditioning a GP on examples, produces

another GP whose mean and covariance functions can be written in closed
form. Letting xt = (x1, . . . , xt)

⊤ be the instances received so far and yt =
(y1, . . . , yt)

⊤ their “scores” yt = f(xt) (possibly perturbed by Gaussian noise),
the mean and covariance functions conditioned on (xt,yt) are:

µt(x) = kt(x)
⊤Γtyt (3.1)

kt(x, x
′) = k(x, x′)− kt(x)

⊤Γtkt(x
′) + ρ2 (3.2)

Here, we denote kt(x) as the vector of covariances between the test point x
and all the t training points, i.e., kt(x) = (k(x1, x), . . . , k(xt, x))

⊤, the t× t
matrix of covariances between all pairs of training points is Kt = [k(x, x′) :
x, x′ ∈ xt], Γt = (Kt + ρ2I)−1, and ρ, a smoothing parameter that models
noise. Note that Eq. (3.2) depends only on the input data and not on the
target value. Given a GP with parameters (µ, k) and x, the value of f(x)
is normally distributed with mean µ(x) and variance k(x, x). Hence, the
probability that f(x) is non-negative is:

P(f(x) ≥ 0 |x) = Φ

(
µ(x)

σ(x)

)
(3.3)

where Φ denotes the cdf of a standard normal distribution and σ(x) =√
k(x, x). This quantity is often used in classification tasks to model the

probability of the positive class, that is, P(1 |x) = P(f(x) ≥ 0 |x), see [90].
Figure 3.3a shows an example on a binary classification task.

Incremental multi-class GPs

Incremental multi-class GPs (IMGPs) generalize Gaussian Processes to multi-
class classification [109]. An IMGP can be viewed as a collection of GPs,
one for each observed class ℓ ∈ Yt, which share the same precision matrix Γt

but have separate label vectors yℓ,t. The label vectors use a one-versus-all
encoding: an element of yℓ,t is 1 if the label of the corresponding example is
ℓ and 0 otherwise. The posterior mean function of the ℓ-th GP is:

µℓ,t(x) = kt(x)
⊤Γtyℓ,t (3.4)

Since the covariance function does not depend on the labels, it remains the
same as in Eq. (3.2). The multi-class posterior is obtained by combining the
GP posteriors with a soft-max:

P(ℓ |xt) =
1

Z
expPℓ(1 |xt), (3.5)

where Pℓ(1 |xt) is the posterior of the ℓ-th GP (Eq. (3.3)) and the normal-
ization factor Z is

Z =
∑
ℓ′

expPℓ′(1 |xt). (3.6)

3. Incremental Skeptical Learning 27

(a) uncertainty estimation (b) probability of asking a label

Figure 3.3: We consider the random variable of a binary classification task
(y = ±1) for one-dimension input x. The plot shows the continuous hidden
random variable f(x), modeled by a GP, denoting the binary class of an
unlabeled instance. The discrete label is generated according to the sign of
f(x). Solid black line is the mean µ(x), instances belonging to the positive
class are denoted as orange points, whereas negative instances as blue points.
Panel (a): The probability that an instance x belongs to the positive class
(Eq. (3.3)) equals the shaded purple area. The uncertainty in labeling x is
maximum when P(f(x) ≥ 0 |x) is close to 0.5, namely the quantity µ(x)/σ(x)
is close to zero. Panel (b): The plot shows the continuous hidden random
variable f(x) of the predicted class of an unlabeled instance. The probability
of querying the annotator (Eq. (3.8)) is denoted by the shaded purple area.
Intuitively, the probability of querying increases as the probability of the
predicted class decreases. Credits figures: Stefano Teso.

IMGPs offer two major advantages. First, in IMGPs, the predictive
variance is guaranteed to increase with the distance from the training set,
as illustrated by Figure 3.1c. This guarantee prevents IMGPs from being
over-confident about classes and instances that differ significantly from its
previous experience, a key feature when learning in the wild. Another ben-
efit is that IMGPs support incremental updates, i.e., in each iteration the
updated precision matrix Γt+1 is computed from Γt by exploiting the matrix-
inversion lemma, without any matrix inversion [109]. This makes IMGPs
scale much better than non-incremental learners and GPs; see Section 3.4.3
for a discussion.

3.4.2 The isgp algorithm

In this section, we present isgp, and the pseudo-code is listed in Algorithm 1.
In each iteration t, the learner receives an instance xt and predicts the most

3. Incremental Skeptical Learning 28

Algorithm 1 Pseudo-code of isgp. Y0 is provided as input. All branches
are stochastic, see the relevant equations.
1: for t = 1, 2, . . . do
2: receive xt
3: ŷt ← argmaxy∈Yt−1

µy(xt) ▷ Eq. (3.7)
4: if uncertain about ŷt then ▷ Eq. (3.8)
5: request label, receive ỹt
6: if skeptical about ỹt then ▷ Eq. (3.9)
7: challenge user with ŷt, receive y′t
8: else
9: y′t ← ỹt

10: add (xt, y
′
t) to data set and update IMGP

11: Yt ← Yt−1 ∪ {y′t}

likely label (line 3):

ŷt = argmax
ℓ

P(ℓ |xt)

= argmax
ℓ

1

Z
expPℓ(1 |xt)

= argmax
ℓ

Φ

(
µℓ,t(x)

σt(x)

)
= argmax

ℓ
µℓ,t(xt) (3.7)

where ℓ ∈ Yt−1. The last step holds because Φ is monotonically increasing
and σt(x) does not depend on ℓ.

Query the user. At this point, isgp has to decide whether to request
the label of xt (line 4). In line with approaches to selective sampling [31,
16], isgp prioritizes requesting the labels of uncertain instances, as these are
more likely to impact the model. This also limits the labeling cost as the
model improves. Intuitively, xt is uncertain if either µŷt(xt) is small or σt(xt)
is large; in either case, Eq. (3.3) ensures that Pŷt(1 |xt) is small. Hence,
isgp queries the annotator with probability Pŷt(0 |xt). This is achieved by
sampling at from a Bernoulli distribution with parameter αt, defined as:

αt = Pŷt(f(xt) ≤ 0 |xt)

= 1− Φ

(
µŷt,t(xt)

σt(xt)

)
(3.8)

and querying the user if at = 1. The choice is randomized so to prevent isgp
from trusting the model too much, which is problematic, especially during

3. Incremental Skeptical Learning 29

the first rounds of learning. Randomization is a key ingredient in online
learning and selective sampling, cf. [31].

Challenge the user. If the check succeeds, isgp has to decide whether
to challenge the user’s label (line 6). If the user and the machine agree on
the label2, the probability of challenging the user should be small; we set
it to zero, for simplicity. Otherwise, it should increase with Pŷt(1 |xt) and
decrease with Pỹt(1 |xt). Since these probabilities come from different GPs,
a direct comparison is not straightforward. In order to facilitate this, isgp
treats the GPs as if they were independent. Under this modeling assumption,
letting fℓ be a sample from the ℓ-th GP, P(fŷt(xt) ≥ fỹt(xt)) is a normal
distribution with mean δt(x) = µŷt(x) − µỹt(x) and variance σt(x). isgp
determines whether to challenge the user by sampling from a Bernoulli with
parameter γt:

γt = P(fŷt(xt)− fỹt(xt) ≥ 0)

= Φ

(
δt(xt)

σt(xt)

)
(3.9)

This is analogous to the case of active queries discussed above. Despite
relying on an (admittedly strong) modeling assumption, this strategy worked
well in our experiments.

Once confronted by the learner, the user replies with a potentially cleaned
label y′t. As in the original formulation of SKL [188], this label is never
contested by isgp. The reason is that in our target applications the user is
collaborative and label noise is mostly due to temporary inattention. Lastly,
in line (10) the model is updated using the consensus example (xt, y

′
t) and

the loop repeats.

3.4.3 Advantages and limitations

isgp improves on the original formulation of skeptical learning [188] in sev-
eral ways. A major benefit is that IMGPs are never over-confident in re-
gions far away from the training set. This facilitates allocating the query
budget and avoids pathological behaviors. Our empirical analysis shows
that the original formulation has no such guarantees. isgp is also simpler.
isgp uses the IMGP itself to model the confidence in the annotator’s la-
bel, whereas the original implementation relies on a separate model trained
heuristically. Also, learning is not heuristically split into stages and only two
hyper-parameters are needed, namely k and ρ. Since hyper-parameters are

2The original formulation of SKL tackles hierarchical multi-class classification, in which
the user and the machine can agree on a parent of the prediction and the annotation. For
simplicity, we focus here on multi-class classification. The pathological behavior of SKL
that our method fixes affects the hierarchical setting, too.

3. Incremental Skeptical Learning 30

hard to tune properly in interactive tasks, this is a substantial advantage.
The net effect is that isgp performs better and more consistently.

A well-known weakness of GPs is their limited scalability, due to the need
of storing all past examples and of performing a matrix inversion during
model updates. The latter is avoided here by using incremental updates,
which reduce the per-iteration cost from O(t3) to O(t2). This is enough for
isgp to run substantially faster than the original implementation of SKL and
to handle weeks or months of interaction with no loss of reactivity, as shown
by our real-world experiment. Sparse GP techniques [128] and stochastic
variational inference for GP models [85] can speed up isgp even further. Of
course, GPs are not immediately applicable to lifelong tasks. However, as
outlined in Chapter 6, we can introduce a forgetting or select mechanism that
keeps only the relevant training data by discarding the obsolete or irrelevant
to the task at hand.

Another limitation of isgp is that the active and skeptical checks (that
is, Eqs. (3.8) and (3.9)) rely on the GP of the predicted class only. The
active check can be easily adapted to use information from all classes known
to the IMGP by replacing Pℓ(1 |xt) with P(ℓ |xt). An adaptation of the
skeptical check, however, is non-trivial and left to future work. In practice,
this does not seem to be an issue, as isgp works much better than the original
implementation of SKL.

Finally, both this redesign of SKL and the original implementation are
completely black-box and do not attempt to explain to the supervisor why ex-
amples are considered suspicious by the machine, making it hard for him/her
to establish or reject trust in the data and the model.

3.5 Experiments

We investigate the following research questions:

Q1 Does isgp output better predictions than the original formulation of
skeptical learning?

Q2 Does isgp correctly identify mislabeled examples?

Q3 Does isgp scale better than skeptical learning?

To address these questions, we implemented isgp using Python 3 and com-
pared it against three alternatives on a synthetic and a real-world data set.
We compared isgp against some alternatives:

• srf: the original implementation of SKL [188] based on random forests;

• gpnever: active IMGP baselines that never challenge the user, i.e., the
machine always trust the user label, thus the labels are never revised
by the user. This can be considered as the performance of IMGP in
the worst scenario.

3. Incremental Skeptical Learning 31

• gpalways: active IMGP baselines that always the user, i.e., the machine
never trust the user label, so for every incoming label, the user is asked
to revised it. This is IMGP in the best scenario.

The experiments were run on a computer with a 2.2 GHz processor and 16
GiB of memory. The code and experimental setup can be downloaded from:
gitlab.com/abonte/incremental-skeptical-gp.

3.5.1 Synthetic experiment

Experimental details. As a first experiment, we ran all methods on a
synthetic data set with six classes, similar to Figure 3.1: 100 instances were
sampled from six 2D normal distributions, one for each class, with different
means and identical standard deviations (namely 1.5). As usual in active
learning, the annotator’s responses are simulated by an oracle. Our oracle
replies to labeling queries with a wrong label η% of the time. We experi-
mented with a low- (η = 10) and a high-noise regime (η = 40). (Notice that
40% noise rate is very high: 50% is the limit for learnability in binary classi-
fication [4].) While in [188] the oracle always replies to contradiction queries
with the correct label, our oracle answers with a wrong label η% of the time
(unless the label being contested is correct, in which case no mistake is pos-
sible). This is meant to better capture the behavior of human annotators, as
the answer to contradiction queries can be incorrect. Results obtained using
the original oracle are not substantially different from the ones below.

All results are 10-fold cross-validated. For each fold, training examples
are supplied in a fixed order to all methods. The order has a noticeable
impact on performance, so we studied two alternatives: a) instances chosen
uniformly at random; b) instances chosen randomly from sequential clusters
(red, then blue, etc.). This captures task shift, i.e., increasing number of
classes. Y0 matches the first example provided. All GP learners used a
squared exponential kernel

k(x, x′) = exp

(
−∥x− x′∥2

2ℓ2

)
(3.10)

with the length scale ℓ of 2, the smoothing parameter that models noise
ρ = 10−8, and ∥x− x′∥2 is the squared Euclidean distance between the two
feature vectors. The hyperparameters are not optimized. The number of
trees of srf was set to3 100. The methods were evaluated based on their F1

score and query budget usage. For simplicity, the cost of skeptical queries
was assumed to be similar to that of labeling queries.

3This matches the original paper. With 100 trees, srf is already more computationally
expensive than isgp, so we didn’t increase it.

gitlab.com/abonte/incremental-skeptical-gp

3. Incremental Skeptical Learning 32

F1 # of Queries

Same F1

Same # of Queries

Figure 3.4: Results on synthetic data with 10% noise. The left column
reports the F1, and the right column reports # of labeling and contradiction
queries (bars indicate the standard error). Top two rows: srf tuned to match
F1 of isgp. Bottom two rows: srf tuned to match # of queries of isgp (and
forced to query at least 10 labels). Odd/even rows are random/sequential
clusters, respectively.

3. Incremental Skeptical Learning 33

F1 # of Queries

Same F1

Same # of Queries

Figure 3.5: Results on synthetic data with 40% noise. The leftmost
column reports the F1, and the rightmost column shows the # of labeling
and contradiction queries (bars indicate the standard error). Top two rows:
srf tuned to match F1 of isgp. Bottom two rows: srf tuned to match #
of queries of isgp (and forced to query at least 10 labels). Odd/even rows
are random/sequential clusters, respectively.

3. Incremental Skeptical Learning 34

Results. The cross-validated results can be viewed in Figures 3.4 and 3.5.
The plots show the F1 score on the left-out fold and the cumulative num-
ber of queries made (dash-dot line: active queries; solid line: contradiction
queries; dashed line: contradiction queries that uncovered an actual mis-
take). Figure 3.4 reports the performance of all methods at η = 10% noise,
Figure 3.5 at 40%. In order to enable a fair comparison, we tuned srf to
either match the F1 score of isgp or its query budget utilization. This was
achieved by tuning the hyper-parameter θ of srf, which controls the length
of the training and refinement stages of srf, cf. Section 3.3: the longer
the stages, the better the estimates acquired by the random forest but the
worse the query usage. These two settings are illustrated by the top two and
bottom two rows of Figures 3.4 and 3.5. Finally, odd rows refer to random
instance selection order, and even rows to sequential order.

srf worked well only in the low-noise, random order case (left columns,
first row). Here, it managed to outperform our method by about 5%. This
setting, however, is not very representative of ICW, as the user is quite
consistent and examples from all classes are quickly obtained. In all other
cases, srf fails completely. Two trends are clearly visible. If tasked with
reaching the F1 score of isgp, srf tends to request the label of all new
instances: the blue curve increases linearly beyond the plot y range. This
is because the value of θ needed to reach a high enough F1 score also forces
srf to remain in refine and train stage for most iterations. On the other
hand, if the query budget is limited (bottom two rows), srf quickly becomes
over-confident and refuses to query the user. This is especially troublesome
with task shift (bottom row), as the random forest becomes confident after
seeing examples from mostly one class, leading to abysmal performance.

Our method does considerably better. Most importantly, isgp does not
suffer from pathological behavior and performs consistently across the board.
The F1 score typically increases with the number of queries made, even in
the high-noise scenarios, while querying is not too aggressive – definitely not
as aggressive as srf. The F1 and query curves also show much lower variance
compared to srf in most cases, as shown by the narrower error bars. It is
easy to see that isgp usually achieves F1 score almost indistinguishable (in
low-noise conditions, left two columns) or close (high-noise, right columns) to
the F1 of gpalways with a comparable number of active queries and a smaller
number of skeptical ones. Moreover, isgp always outperforms gpnever in
terms of F1, as expected, while asking only 10–20 extra queries.

3.5.2 Location prediction

Experimental details. Next, we applied the methods to the location
prediction task introduced in [188], which is reminiscent of our running ex-
ample. The data includes 20 billion readings from up to 30 sensors collected
from the smartphones of 72 users monitored over a period of two weeks us-

3. Incremental Skeptical Learning 35

Figure 3.6: Results on location prediction. Left to right: F1 score, # of
queries (cumulative).

(a) Real-world dataset (b) Synthetic dataset

Figure 3.7: Run-time (not cumulative) as learning proceeds on real-world
and synthetic dataset (the training step is performed at each iteration).

ing a mobile app (I-Log [187]), for a total of 110 GiB. The sensors are both
hardware (i.g., gravity and temperature) and software (e.g., screen status,
incoming calls). The mobile app also asks every 30 minutes the user what
he or she is doing, where and with whom. We focus on location labels, for
which an oracle exists capable of providing reliable ground truth annotations.
The task consists in predicting the location of the user as Home, University
or Others. The oracle identifies Home by clustering the locations labelled
as home by the user via DBSCAN [55], and choosing the cluster where she
spends most of the time during the night. University is identified using the
maps of the University buildings, while all remaining locations are identi-
fied as Others. Please see [188] for the list of sensors and the pre-processing
pipeline. The GP-based methods use a combination of constant, rational
quadratic and squared exponential:

k1(x, x
′) = C(x, x′)×

(
RQ

(
x, x′

)
+ SE

(
x, x′

))
(3.11)

3. Incremental Skeptical Learning 36

where

C(x, x′) = σ2
0 (3.12)

RQ(x, x′) =

(
1 +
∥x− x′∥2

2αℓ2rq

)−α

(3.13)

SE(x, x′) = exp

(
−∥x− x′∥2

2ℓ2se

)
(3.14)

with α = 1, ℓrq = 0.2, ℓse = 1 and σ2
0 = 1. srf uses 100 decision trees, as in

the synthetic experiments.

Results. Figure 3.6 shows the result on the real-world dataset. The left-
most plot highlights the F1 scores and the subsequent one the number of
queries. In this experiment, srf is tuned to match the same number of
queries of isgp. The case where the two methods have a similar F1 score is
not reported since srf shows the same behaviour as in the synthetic exper-
iments (i.e., the number of active queries tends to increase rapidly). As in
the synthetic experiments, the predictive performance of isgp lies between
gpalways and gpnever, as expected. The number of active queries is also in
line with the baselines, while the number of skeptical queries is very limited,
roughly 15. Notice that the F1 of srf plateaus at roughly 70 iterations, while
the performance of isgp keeps increasing up to iteration 200. This trend is
again explained by the fact that srf becomes over-confident and requests the
label of new instances very infrequently (second graph from left). All in all,
these results confirm the considerations made in the synthetic experiment
on a more challenging real-world ICW task. Finally, Figure 3.7 shows the
training times of isgp and srf in the real world and the synthetic task. The
advantage of the incremental updates is immediately apparent: srf is sub-
stantially more computationally expensive in both tasks, making it a poor
candidate for ICW with thousands of data points. Moreover, isgp enjoys a
reduction of about 70% of the predicting time in the location prediction task
(data not shown).

3.6 Related work

Our work generalizes skeptical learning (SKL) [188] to incremental classifi-
cation in the wild; the relationship between the two is analyzed in detail in
Section 3.4.3. Below, we describe other related areas.

3.6.1 Open recognition

Open recognition (OR) [23] refers to learning problems like face verification,
in which not all classes are observed during training. The goal is to attain

3. Incremental Skeptical Learning 37

low risk also on the unknown classes [139]. To this end, the learner attempts
to distinguish between instances that belong to known classes (for which a
prediction can be made) and instances that do not. This typically amounts
to rejecting instances that lie away from the training set, thus bounding
the chance of unjustified high-probability predictions [138, 136, 23]. Gen-
eralizations prescribe to annotate the detected unknown-class instances and
re-train the model accordingly [15] and to employ incremental learning [42],
as we do. ICW is not open in the above sense: while not all target classes
are known, all incoming instances are labeled. What makes ICW hard is
that the annotations are noisy, while OR is not concerned with shielding the
model from noise. An additional difference is that in ICW there is no dis-
tinction between training and testing stages, as prediction and learning are
interleaved. Moreover, skeptical learning requires and exploits interaction
with human annotators, which is absent in OR.

3.6.2 Lifelong learning

In lifelong learning [162, 14] the learner witnesses a sequence of different but
correlated classification tasks and the goal is to transfer knowledge from the
previous tasks to the new ones. This is related to multi-task learning [144,
125]. Surprisingly, most existing algorithms either assume batch learning,
although some do support incremental or online learning; cf. the discussion
in [45]. The main differences with ICW are that lifelong learning is uncon-
cerned with noise handling and does not consider interaction with human
annotators.

3.6.3 Learning under noise

Label noise badly affects the predictor performance. Three typical strate-
gies for learning from noisy labels are (i) label noise-robust models, e.g.,
decision tree [67] and ensemble methods, (ii) data cleansing methods, i.e.,
suspicious examples are discarded or down-weighted, (iii) models robust to
noise like Bayesian approaches [4, 60, 119, 148]. Often a non-trivial noise
ratio estimation is required step [120]. These approaches make no attempt
to recover the ground-truth label and are not ideal in interactive learning
settings characterized by high noise rate/cost and small data sets. Most
works on interactive learning under noise are designed for crowd-sourcing
applications in which different annotators of varying quality label items and
the goal is to aggregate weak annotations into a high-quality consensus la-
bel [190]. In the case of multiple annotators with different reliability, the
optimal one can be chosen [48]. Son et al. [147] propose a re-labeling of
previously labeled examples for regression problems when the annotator is
noisy. In our setting, the user is the only annotator available, and we can
recover the ground truth only from her or him. Moreover, the timing of the

3. Incremental Skeptical Learning 38

interaction is crucial because the user may forget the ground truth if too
much time has elapsed (e.g., ask the user about the activity performed seven
days ago in the morning).

3.7 Conclusion

In this chapter, we introduced interactive classification in the wild (ICW),
and isgp, a redesign of skeptical learning based on Gaussian Processes. AI
agents, such as personal assistants, are deployed in real-world scenarios where
input data are sensor measurements and user annotations. The data arrives
over time, thus, the stream contains new unforeseen labels that must be
incorporated into the model. The characterizing features of ICW are noisy
user annotations and the appearance of new unanticipated classes. isgp
solves ICW while avoiding pathological scenarios in which the learner always
or never queries the annotator. Our empirical results showcase the benefits
of our approach.

Our work can be further developed and improved in several directions.
First, isgp is applied to settings where the input and target are user-specific,
like personal assistants, where the main requirement is to ensure the per-
sonalization of the model. However, applications like citizen science and
crowdsourcing can also benefit from the presented approach. In that case,
the correct annotation can be recovered from other users, domain experts or
external systems. Second, a promising direction is to explain the machine
skepticism by going beyond indicating only which example looks suspicious.
Indeed, in Chapter 4, we propose to serve as an explanation of the model’s
suspicion training instances that are maximally incompatible with the sus-
picious example. The advantage of this approach is that the user can clean
both the training examples that eluded the skeptical check and the suspicious
example. In the case of visual input like images, video, or texts, the user
can directly spot the incompatibility by looking at the example. However,
it is not trivial how this can be replicated on inputs that encode sensor data
(e.g., accelerometer, orientation). Third, exploiting semantic knowledge for
conflict resolution as in [188] is crucial especially when the annotations are
provided as free text. Hence, isgp must be extended to the hierarchical
classification.

Last, most of the research focus is on incremental and continuous learn-
ing in which new data must be included without forgetting what has been
learn so far. However, in lifelong learning the amount of training data in-
creases over time and becomes partially obsolete. The incremental multi-
class GPs [109] underlying isgp implement an efficient decremental learning,
which can be leveraged to keep the only the most relevant data. Indeed, in
Chapter 5, we propose an approach in the case of hierarchical classification
to remove or update current training data.

3. Incremental Skeptical Learning 39

In this chapter, we showed the benefit of relabeling suspicious examples
and that isgp overcomes some limitations of the previous formulation of
skeptical learning. This evaluation are run in a controlled environment,
namely using synthetic and real-world data where the user is replaced by an
oracle and where the models performance can be easily evaluated on future
data. In Chapter 7, we evaluate isgp in a real-world scenario with real users
for one month.

4
Explainable Skeptical Learning

Contents
4.1 Introduction . 41
4.2 Background . 42
4.3 Explainable interactive label cleaning 44
4.4 Experiments . 49
4.5 Related work . 53
4.6 Conclusion . 54

We tackle sequential learning under label noise in applications where a
human supervisor can be queried to relabel suspicious examples. The ap-
proach in Chapter 3 only relabel incoming examples that look “suspicious”
to the model. As a consequence, those mislabeled examples that elude (or
don’t undergo) this cleaning step end up tainting the training data and the
model with no further chance of being cleaned. We highlight these limitations
in Section 4.2. In Section 4.3, we propose cincer, a novel approach that
cleans both new and past data by identifying pairs of mutually incompatible
examples. Whenever it detects a suspicious example, cincer identifies a
counter-example in the training set that—according to the model—is maxi-
mally incompatible with the suspicious example, and asks the annotator to
relabel either or both examples, resolving this possible inconsistency. The
counter-examples are chosen to be maximally incompatible, so to serve as
explanations of the model’s suspicion, and highly influential, so to convey
as much information as possible if relabeled. cincer achieves this by lever-
aging an efficient and robust approximation of influence functions based on
the Fisher information matrix (FIM). Our extensive empirical evaluation in
Section 4.4 shows that clarifying the reasons behind the model’s suspicions
by cleaning the counter-examples helps in acquiring substantially better data
and models, especially when paired with our FIM approximation. We con-
clude with the related work (Section 4.5) and a final discussion (Section 4.6).

Attribution This chapter includes material previously published as [159].
Stefano Teso, Fausto Giunchiglia and Andrea Passerini contributed signifi-

40

4. Explainable Skeptical Learning 41

cantly to the material presented in this chapter.

4.1 Introduction

Label noise is a major issue in machine learning as it can lead to compro-
mised predictive performance and unreliable models [60, 148]. We focus on
sequential learning settings in which a human supervisor, usually a domain
expert, can be asked to double-check and relabel any potentially mislabeled
example. Applications include crowd-sourced machine learning and citizen
science, where trained researchers can be asked to clean the labels provided
by crowd-workers [190, 99], and interactive personal assistants [22], where
the user self-reports the initial annotations (e.g., about activities being per-
formed) and unreliability is due to memory bias [165], unwillingness to re-
port [39], or conditioning [174].

This problem is often tackled by monitoring for incoming examples that
are likely to be mislabeled, aka suspicious examples, and ask the super-
visor to provide clean (or at least better) annotations for them. Existing
approaches and the one in Chapter 3, however, focus solely on cleaning the
incoming examples [167, 99, 188]. This means that noisy examples that did
not undergo the cleaning step (e.g., those in the initial bootstrap data set)
or that managed to elude it are left untouched. This degrades the quality
of the model and prevents it from spotting future mislabeled examples that
fall in regions affected by noise.

We introduce cincer (Contrastive and InflueNt CounterExample stRat-
egy), a new explainable interactive label cleaning algorithm that lets the
annotator observe and fix the reasons behind the model’s suspicions. For
every suspicious example that it finds, cincer identifies a counter-example,
i.e., a training example that maximally supports the machine’s suspicion.
The idea is that the example/counter-example pair captures a potential in-
consistency in the data—as viewed from the model’s perspective—which is
resolved by invoking the supervisor. More specifically, cincer asks the user
to relabel the example, the counter-example, or both, thus improving the
quality of, and promoting consistency between, the data and the model.
Two hypothetical rounds of interaction on a noisy version of MNIST are
illustrated in Figure 4.1.

cincer relies on a principled definition of counter-examples derived from
few explicit, intuitive desiderata, using influence functions [37, 96]. The
resulting counter-example selection problem is solved using a simple and
efficient approximation based on the Fisher information matrix [104] that
consistently outperforms more complex alternatives in our experiments.

Contributions: Summarizing, we:

4. Explainable Skeptical Learning 42

Figure 4.1: Suspicious example and counter-examples selected using (from
left to right) cincer, 1-NN and influence functions (IF), on noisy MNIST.
Top: the suspicious example is mislabeled, the machine’s suspicion is sup-
ported by a clean counter-example. Bottom: the suspicious example is not
mislabeled, the machine is wrongly suspicious because the counter-example is
mislabeled. cincer’s counter-example is contrastive and influential; 1-NN’s
is not influential and IF’s is not pertinent, see desiderata D1–D3 below.

1. Introduce cincer, an explanatory interactive label cleaning strategy
that leverages example-based explanations to identify inconsistencies
in the data—as perceived by the model—and enable the annotator to
fix them.

2. Show how to select counter-examples that at the same time explain
why the model is suspicious and that are highly informative using (an
efficient approximation of) influence functions.

3. Present an extensive empirical evaluation that showcases the ability of
cincer of building cleaner data sets and better models.

4.2 Background

We are concerned with sequential learning under label noise. In this setting,
the machine receives a sequence of examples z̃t := (xt, ỹt), for t = 1, 2, . . .,
where xt ∈ Rd is an instance and ỹt ∈ [c] is a corresponding label, with
[c] := {1, . . . , c}. The label ỹt is unreliable and might differ from the ground-
truth label y∗t . The key feature of our setting is that a human supervisor can

4. Explainable Skeptical Learning 43

be asked to double-check and relabel any example. The goal is to acquire a
clean dataset and a high-quality predictor while asking few relabeling queries,
so to keep the cost of interaction under control.

The state-of-the-art for this setting is skeptical learning (SKL), intro-
duced by Zeni et al. [188] and revised in Chapter 3. To briefly summarize,
SKL is designed primarily for smart personal assistants that must learn from
unreliable users. SKL follows a standard sequential learning loop: in each
iteration, the machine receives an example and updates the model accord-
ingly. However, for each example that it receives, the machine compares (an
estimate of) the quality of the annotation with that of its own prediction,
and if the prediction looks more reliable than the annotation by some factor,
SKL asks the user to double-check his/her example. The details depend on
the implementation: in [188] label quality is estimated using the empirical
accuracy for the classifier and the empirical probability of contradiction for
the annotator, while in Chapter 3 the machine measures the margin be-
tween the user’s and machine’s labels. The approach of this chapter follows
the latter strategy.

Another very related approach is learning from weak annotators (LWA) [167,
99], which focuses on querying domain experts rather than end-users. The
most recent approach [99] jointly learns a prediction pipeline composed of
a classifier and a noisy channel, which allows it to estimate the noise rate
directly. Moreover, the approach in [99] identifies suspicious examples that
have a large impact on the learned model. A theoretical foundation for LWA
is given in [167]. LWA is however designed for pool-based scenarios, where
the training set is given rather than obtained sequentially. For this reason,
in the remainder of the chapter, we will chiefly build on and compare to the
previous work on SKL.

Limitations of existing approaches. A major downside of the previ-
ous work on SKL is that it focuses on cleaning the incoming examples only.
This means that if a mislabeled example manages to elude the cleaning step
and gets added to the training set, it is bound to stay there forever. This sit-
uation is actually quite common during the first stage of skeptical learning, in
which the model is highly uncertain and trusts the incoming examples—even
if they are mislabeled. The same issue occurs if the initial training set used
to bootstrap the classifier contains mislabeled examples. As shown by our
experiments, the accumulation of noisy data in the training set may have a
detrimental effect on the model’s performance (cf. Figure 4.2). In addition,
it can also affect the model’s ability to identify suspicious examples: a noisy
data point can fool the classifier into trusting incoming mislabeled examples
that fall close to it, further aggravating the situation.

4. Explainable Skeptical Learning 44

4.3 Explainable interactive label cleaning

We consider a very general class of probabilistic classifiers f : Rd → [c] of the
form f(x; θ) := argmaxy∈[c] P (y |x; θ), where the conditional distribution
P (Y |X; θ) has been fit on training data by minimizing the cross-entropy
loss ℓ((x, y), θ) = −

∑
i∈[c] 1{i = y} logP (i |x, θ). In our implementation,

we also assume P to be a neural network with a softmax activation at the
top layer, trained using some variant of SGD and possibly early stopping.

4.3.1 The cincer algorithm

The pseudo-code of cincer is listed in Algorithm 2. At the beginning of
iteration t, the machine has acquired a training set St−1 = {z1, . . . , zt−1}
and trained a model with parameters θt−1 on it. At this point, the machine
receives a new, possibly mislabeled example z̃t (line 3) and has to decide
whether to trust it.

Following skeptical learning [22], cincer does so by computing the mar-
gin µ(z̃t, θt−1), i.e., the difference in conditional probability between the
model’s prediction ŷt := argmaxy P (y |xt, θt−1) and the annotation ỹt. More
formally:

µ(z̃t, θt−1) := P (ŷt |xt, θt−1)− P (ỹt |xt, θt−1) (4.1)

The margin estimates the incompatibility between the model and the exam-
ple: the larger the margin, the more suspicious the example. The example z̃t
is deemed compatible if the margin is below a given threshold τ and suspi-
cious otherwise (line 4); possible choices for τ are discussed in Section 4.3.5.

If z̃t is compatible, it is added to the data set as-is (line 5). Otherwise,
cincer computes a counter-example zk ∈ St−1 that maximally supports
the machine’s suspicion. The intuition is that the pair (z̃t, zk) captures a
potential inconsistency in the data. For instance, the counter-example might
be a correctly labeled example that is close or similar to z̃t but has a different
label, or a distant noisy outlier that fools the predictor into assigning low
probability to ỹt. How to choose an effective counter-example is a major
focus of this chapter and discussed in detail in Section 4.3.2 and following.

Next, cincer asks the annotator to double-check the pair (z̃t, zk) and
relabel the suspicious example, the counter-example, or both, thus resolv-
ing the potential inconsistency. The data set and model are then updated
accordingly (line 9) and the loop repeats.

4.3.2 Counter-example selection

Counter-examples are meant to illustrate why a particular example z̃t is
deemed suspicious by the machine in a way that makes it easy to elicit
useful corrective feedback from the supervisor. We posit that a good counter-
example zk should be:

4. Explainable Skeptical Learning 45

Algorithm 2 Pseudo-code of cincer. Inputs: initial (noisy) training set
S0; threshold τ .
1: fit θ0 on S0

2: for t = 1, 2, . . . do
3: receive new example z̃t = (xt, ỹt)
4: if µ(z̃t, θt−1) < τ then
5: St ← St−1 ∪ {z̃t} ▷ z̃t is compatible
6: else
7: find counterexample zk using Eq. 4.14 ▷ z̃t is suspicious
8: present z̃t, zk to the user, receive possibly cleaned labels y′t, y

′
k

9: St ← (St−1 \ {zk}) ∪ {(xt, y
′
t), (xk, y

′
k)}

10: fit θt on St

D1. Contrastive: zk should explain why z̃t is considered suspicious by the
model, thus highlighting a potential inconsistency in the data.

D2. Influential : if zk is mislabeled, correcting it should improve the model
as much as possible, so to maximize the information gained by inter-
acting with the annotator.

In the following, we show how, for models learned by minimizing the cross-
entropy loss, one can identify counter-examples that satisfy both desiderata.

What is a contrastive counter-example? We start by tackling the
first desideratum. Let θt−1 be the parameters of the current model. Intu-
itively, zk ∈ St−1 is a contrastive counter-example for a suspicious example
z̃t if removing it from the data set and retraining leads to a model with pa-
rameters θ−k

t−1 that assigns higher probability to the suspicious label ỹt. The
most contrastive counter-example is then the one that maximally affects the
change in probability:

argmax
k∈[t−1]

{
P (ỹt |xt; θ

−k
t−1)− P (ỹt |xt; θt−1)

}
(4.2)

While intuitively appealing, optimizing Eq. 4.2 directly is computationally
challenging as it involves retraining the model |St−1| times. This is imprac-
tical for realistically sized models and data sets, especially in our interactive
scenario where a counter-example must be computed in each iteration.

Influence functions. We address this issue by leveraging influence
functions (IFs), a computational device that can be used to estimate the
impact of specific training examples without retraining [37, 96]. Let θt be
the empirical risk minimizer on St and θt(z, ϵ) be the minimizer obtained

4. Explainable Skeptical Learning 46

after adding an example z with weight ϵ to St, namely:

θt := argmin
θ

1

t

t∑
k=1

ℓ(zk, θ)

θt(z, ϵ) := argmin
θ

1

t

(
t∑

k=1

ℓ(zk, θ)

)
+ ϵℓ(z, θ)

Taking a first-order Taylor expansion, the difference between θt = θt(z, 0)
and θt(z, ϵ) can be written as θt(z, ϵ) − θt(z, 0) ≈ ϵ ·

(
d
dϵθt(z, ϵ)

∣∣
ϵ=0

)
. The

derivative appearing on the right-hand side is the so-called influence function,
denoted Iθt(z). It follows that the effect on θt of adding (resp. removing) an
example z to St can be approximated by multiplying the IF by ϵ = 1/t (resp.
ϵ = −1/t). Crucially, if the loss is strongly convex and twice differentiable,
the IF can be written as:

Iθt(z) = −H(θt)
−1∇θℓ(z, θt) (4.3)

where the curvature matrix H(θt) :=
1
t

∑t
k=1∇2

θℓ(zk, θt) is positive definite
and invertible. IFs were shown to capture meaningful information even for
neural networks and other non-convex models [96].

Identifying contrastive counter-examples with influence func-
tions. To see the link between contrastive counter-examples and influence
functions, notice that the second term of Eq. 4.2 is independent of zk, while
the first term can be conveniently approximated with IFs by applying the
chain rule:

− 1

t− 1

(
d

dϵ
P (ỹt |xt; θt−1(zk, ϵ))

∣∣∣∣
ϵ=0

)
(4.4)

= − 1

t− 1

(
∇θP (ỹt |xt; θt−1)

⊤ d

dϵ
θt−1(zk, ϵ)

∣∣∣∣
ϵ=0

)
(4.5)

= − 1

t− 1
∇θP (ỹt |xt; θt−1)

⊤Iθt−1(zk) (4.6)

The constant can be dropped during the optimization. This shows that
Eq. 4.2 is equivalent to:

argmax
k∈[t−1]

∇θP (ỹt |xt; θt−1)
⊤H(θt−1)

−1∇θℓ(zk, θt−1) (4.7)

Eq. 4.7 can be solved efficiently by combining two strategies [96]: i) Caching
the inverse Hessian-vector product (HVP) ∇θP (ỹt |xt; θt−1)

⊤H(θt−1)
−1, so

that evaluating the objective on each zk becomes a simple dot product,
and ii) Solving the inverse HVP with an efficient stochastic estimator like
LISSA [3]. This gives us an algorithm for computing contrastive counter-
examples.

4. Explainable Skeptical Learning 47

Contrastive counter-examples are highly influential. Can this
algorithm be used for identifying influential counter-examples? It turns out
that, as long as the model is obtained by optimizing the cross-entropy loss,
the answer is affirmative. Indeed, note that if ℓ(z, θ) = − logP (y |x; θ),
then:

∇θP (ỹt |xt; θt−1) (4.8)

= P (ỹt |xt; θt−1)
∇θP (ỹt |xt; θt−1)

P (ỹt |xt; θt−1)
(4.9)

= P (ỹt |xt; θt−1)∇θ logP (ỹt |xt; θt−1) (4.10)

= −P (ỹt |xt; θt−1)∇θℓ(z̃t, θt−1) (4.11)

Hence, Eq. 4.6 can be rewritten as:

− P (ỹt |xt; θt−1)∇θℓ(z̃t, θt−1)
⊤H(θt−1)

−1∇θℓ(zk, θt−1) (4.12)

∝ −∇θℓ(z̃t, θt−1)
⊤H(θt−1)

−1∇θℓ(zk, θt−1) (4.13)

It follows that, under the above assumptions and as long as the model sat-
isfies P (ỹt |xt; θt−1) > 0, Eq. 4.2 is equivalent to:

argmax
k∈[t−1]

−∇θℓ(z̃t, θt−1)
⊤H(θt−1)

−1∇θℓ(zk, θt−1) (4.14)

This equation recovers exactly the definition of influential examples given
in [96, Eq. 2] and shows that, for the large family of classifiers trained by
cross-entropy, highly influential counter-examples are highly contrastive and
vice versa, so that no change to the selection algorithm is necessary.

4.3.3 Counter-example selection with the Fisher information
matrix

Unfortunately, we found the computation of IFs to be unreliable in practice,
cf. [12]. This leads to unstable ranking of candidates and reflects on the
quality of the counter-examples, as in Figure 4.1. The issue is that, for non-
convex classifiers trained using gradient-based methods (and possibly early
stopping), θt−1 is seldom close to a local minimum, rendering the Hessian
non-positive definite. In our setting, the situation is further complicated by
the presence of noise, which dramatically skews the curvature of the em-
pirical risk. Remedies like fine-tuning the model with L-BFGS [96, 181],
preconditioning and weight decay [12] proved unsatisfactory in our experi-
ments.

We take a different approach. The idea is to replace the Hessian by the
Fisher information matrix (FIM). The FIM F (θ) of a discriminative model

4. Explainable Skeptical Learning 48

P (Y |X, θ) and training set St−1 is [111, 101]:

F (θ) :=
1

t− 1

t−1∑
k=1

Ey∼P (Y |xk,θ)

[
∇θ logP (y |xk, θ)∇θ logP (y |xk, θ)

⊤
]

(4.15)
It can be shown that, if the model approximates the data distribution, the
FIM approximates the Hessian, cf. [163, 11]. Even when this assumption
does not hold, as is likely in our noisy setting, the FIM still captures much
of the curvature information encoded into the Hessian [111]. Under this
approximation, Eq. 4.14 can be rewritten as:

argmax
k∈[t−1]

−∇θℓ(z̃t, θt−1)
⊤F (θt−1)

−1∇θℓ(zk, θt−1) (4.16)

The advantage of this formulation is twofold. First of all, this optimization
problem also admits caching the inverse FIM-vector product (FVP), which
makes it viable for interactive usage. Second, and most importantly, the
FIM is positive semi-definite by construction, making the computation of
Eq.4.16 much more stable.

The remaining step is how to compute the inverse FVP. Naïve storage
and inversion of the FIM, which is |θ| × |θ| in size, is impractical for typical
models, so the FIM is usually replaced with a simpler matrix. Three common
options are the identity matrix, the diagonal of the FIM, and a block-diagonal
approximation where interactions between parameters of different layers are
set to zero [111]. Our best results were obtained by restricting the FIM to
the top layer of the network. We refer to this approximation as “Top Fisher”.
While more advanced approximations like K-FAC [111] exist, the Top Fisher
proved surprisingly effective in our experiments.

4.3.4 Selecting pertinent counter-examples

So far, we have discussed how to select contrastive and influential counter-
examples. Now we discuss how to make the counter-examples easier to inter-
pret for the annotator. To this end, we introduce the additional desideratum
that counter-examples should be:

D3 Pertinent : it should be clear to the user why zk is a counter-example
for z̃t.

We integrate D3 into cincer by restricting the choice of possible counter-
examples. A simple strategy, which we do employ in all of our examples
and experiments, is to restrict the search to counter-examples whose label
in the training set is the same as the prediction for the suspicious example,
i.e., yk = ŷt. This way, the annotator can interpret the counter-example as
being in support of the machine’s suspicion. In other words, if the counter-
example is labeled correctly, then the machine’s suspicion is likely right and

4. Explainable Skeptical Learning 49

the incoming example needs cleaning. Otherwise, if the machine is wrong
and the suspicious example is not mislabeled, it is likely the counter-example
– which backs the machine’s suspicions – that needs cleaning.

Finally, one drawback of IF-selected counter-examples is that they may
be perceptually different from the suspicious example. For instance, outliers
are often highly influential as they fool the machine into mispredicting many
examples, yet they have little in common with those examples [11]. This
can make it difficult for the user to understand their relationship with the
suspicious examples they are meant to explain. This is not necessarily an
issue: first, a motivated supervisor is likely to correct mislabeled counter-
examples regardless of whether they resemble the suspicious example; second,
highly influential outliers are often identified (and corrected if needed) in the
first iterations of cincer (indeed, we did not observe a significant amount
of repetitions among suggested counter-examples in our experiments). Still,
cincer can be readily adapted to acquire more perceptually similar counter-
examples. One option is to replace IFs with relative IFs [11], which trade-off
influence with locality. Alas, the resulting optimization problem does not
support efficient caching of the inverse HVP. A better alternative is to restrict
the search to counter-examples zk that are similar enough to z̃t in terms of
some given perceptual distance ∥·∥P [86] by filtering the candidates using
fast nearest neighbor techniques in perceptual space. This is analogous to
FastIF [83], except that the motivation is to encourage perceptual similarity
rather than purely efficiency, although the latter is a nice bonus.

4.3.5 Advantages and limitations

The main benefit of cincer is that, by asking a human annotator to correct
potential inconsistencies in the data, it acquires substantially better super-
vision and, in turn, better predictors. In doing so, cincer also encourages
consistency between the data and the model. Another benefit is that, by
explaining the reasons behind the model’s skepticism, cincer allows the su-
pervisor to spot bugs and justifiably build – or, perhaps more importantly,
reject [137, 160] – trust into the prediction pipeline.

cincer only requires to set a single parameter, the margin threshold
τ , which determines how frequently the supervisor is invoked. The optimal
value is highly application-specific, but generally speaking, it depends on
the ratio between the cost of a relabeling query and the cost of noise. If the
annotator is willing to interact (for instance, because it is paid to do so) then
the threshold can be quite generous.

4.4 Experiments

We empirically address the following research questions:

4. Explainable Skeptical Learning 50

Q1 Do counter-examples contribute to cleaning the data?

Q2 Which influence-based selection strategy identifies the most mislabeled
counter-examples?

Q3 What contributes to the effectiveness of the best counter-example se-
lection strategy?

We implemented cincer using Python and Tensorflow [112] on top of
three classifiers and compared different counter-example selection strategies
on five data sets. The IF code is adapted from [180]. All experiments were
run on a 12-core machine with 16 GiB of RAM and no GPU. The code for
all experiments is available at: https://github.com/abonte/cincer.

4.4.1 Data sets

We used a diverse set of classification data sets:

• Adult [50]: data set of 48,800 persons, each described by 15 attributes;
the goal is to discriminate customers with an income above/below
$50K.

• Breast [50]: data set of 569 patients described by 30 real-valued fea-
tures. The goal is to discriminate between benign and malignant breast
cancer cases.

• 20NG [50]: data set of newsgroup posts categorized in twenty topics.
The documents were embedded using a pre-trained Sentence-BERT
model [131] and compressed to 100 features using PCA.

• MNIST [103]: handwritten digit recognition data set from black-and-
white, 28× 28 images with pixel values normalized in the [0, 1] range.
The data set consists of 60K training and 10K test examples.

• Fashion [177]: fashion article classification dataset with the same
structure as MNIST.

For adult and breast, a random 80 : 20 training-test split is used while for
MNIST, fashion and 20 NG the split provided with the data set is used.
The labels of 20% of training examples were corrupted at random. The
experiments were repeated five times, each time changing the seed used for
corrupting the data. Performance was measured in terms of F1 score on
the (uncorrupted) test set. Error bars in the plots indicate the standard
error. All competitors received exactly the same examples in exactly the
same order.

https://github.com/abonte/cincer

4. Explainable Skeptical Learning 51

Drop CE No CE CINCER (Top Fisher)

0 20 40 60 80 100
0

10

20

0 20 40 60 80 100
Iterations

0.70

0.73

0.75

0 20 40 60 80 100
0

10

20

30

0 20 40 60 80 100
Iterations

0.85

0.90

0.95

0 20 40 60 80 100
0

10

20

30

0 20 40 60 80 100
Iterations

0.36

0.38

0.40

0 20 40 60 80 100
0

10

20

30

0 20 40 60 80 100
Iterations

0.60

0.70

0.80

Figure 4.2: cincer using Top Fisher vs. drop CE and no CE. Left to
right: results for FC on adult, breast and 20NG, CNN on MNIST. Top
row: # of cleaned examples. Bottom row: F1 score.

4.4.2 Models

We applied cincer to three models: LR, a logistic regression classifier;
FC, a feed-forward neural network with two fully connected hidden layers
with ReLU activations; and CNN, a feed-forward neural network with two
convolutional layers and two fully connected layers. For all models, the
hidden layers have ReLU activations and 20% dropout while the top layer
has a softmax activation. LR was applied to MNIST, FC to both the tabular
data sets (namely: adult, breast, german, and 20NG) and image data sets
(MNIST and fashion), and CNN to the image data sets only. Upon receiving
a new example, the classifier is retrained from scratch for 100 epochs using
Adam [94] with default parameters, with early stopping when the accuracy
on the training set reaches 90% for FC and CNN, and 70% for LR. This
helps substantially to stabilize the quality of the model and speeds up the
evaluation. Before each run, the models are trained on a bootstrap training
set (containing 20% mislabeled examples) of 500 examples for 20NG and
100 for all the other data sets. The margin threshold is set to τ = 0.2. Due
to space constraints, we report the results on one image data set and three
tabular data, and we focus on FC and CNN. The other results are consistent
with what is reported below; these plots are reported in the Supplementary
Material.

4.4.3 Q1: Counter-examples improve the quality of the data

To evaluate the impact of cleaning the counter-examples, we compare cin-
cer combined with the Top fisher approximation of the FIM, which works
best in practice, against two alternatives, namely: No CE: an implementa-
tion of skeptical learning [22] that asks the user to relabel any incoming sus-
picious examples identified by the margin and presents no counter-examples.
Drop CE: a variation of cincer that identifies counter-examples using Top
Fisher but drops them from the data set if the user considers the incoming
example correctly labeled. The results are reported in Figure 4.2. The plots

4. Explainable Skeptical Learning 52

Pr@5 Pr@10
0.0

0.1

0.2

0.3

0.4

pr
ec

isi
on

Pr@5 Pr@10
0.0

0.1

0.2

0.3

0.4

pr
ec

isi
on

Pr@5 Pr@10
0.0

0.1

0.2

0.3

0.4

pr
ec

isi
on

Pr@5 Pr@10
0.0

0.1

0.2

0.3

0.4

pr
ec

isi
on

IF
Practical Fisher
Top Fisher
Full Fisher

Figure 4.3: Counter-example Pr@5 and Pr@10. Standard error information
is reported. Left to right: results for FC on adult, breast and 20NG, and
CNN on MNIST.

show that cincer cleans by far the most examples on all data sets, between
33% and 80% more than the alternatives (top row in Figure 4.2). This trans-
lates into better predictive performance as measured by F1 score (bottom
row). Notice also that cincer consistently outperforms the drop CE strat-
egy in terms of F1 score, suggesting that relabeling the counter-examples
provides important information for improving the model. These results vali-
date our choice of identifying and relabeling counter-examples for interactive
label cleaning compared to focusing on suspicious incoming examples only,
and allow us to answer Q1 in the affirmative.

4.4.4 Q2: Fisher Information-based strategies identify the
most mislabeled counter-examples

Next, we compare the ability of alternative approximations of IFs to discover
mislabeled counter-examples. To this end, we trained a model on a noisy
bootstrap data set, selected 100 examples from the remainder of the training
set, and measured how many truly mislabeled counter-examples are selected
by alternative strategies. In particular, we computed influence using the IF
LISSA estimator of [96], the actual FIM (denoted “full Fisher” and reported
for the simpler models only for computational reasons) and its approxima-
tions using the identity matrix (aka “practical Fisher” [87]), and Top Fisher.
We computed the precision at k for k ∈ {5, 10}, i.e, the fraction of misla-
beled counter-examples within five or ten highest-scoring counter-examples
retrieved by the various alternatives, averaged over 100 iterations for five
runs. The results in Figure 4.3 show that, in general, FIM-based strategies
outperform the LISSA estimator, with Full Fisher performing best and Top
Fisher a close second. Since the full FIM is highly impractical to store and
invert, this confirms our choice of Top Fisher as the best practical strategy.

4.4.5 Q3: Both influence and curvature contribute to the
effectiveness of Top Fisher

Finally, we evaluate the impact of selecting counter-examples using Top
Fisher on the model’s performance, in terms of use of influence, by com-
paring it to an intuitive nearest neighbor alternative (NN), and modelling
of the curvature, by comparing it to the Practical Fisher. NN simply selects

4. Explainable Skeptical Learning 53

NN Practical Fisher Top Fisher

0 20 40 60 80 100
0

10

20

0 20 40 60 80 100
Iterations

0.70

0.73

0.75

0 20 40 60 80 100
0

10

20

30

0 20 40 60 80 100
Iterations

0.85

0.90

0.95

0 20 40 60 80 100
0

10

20

30

0 20 40 60 80 100
Iterations

0.36

0.38

0.40

0 20 40 60 80 100
0

10

20

30

0 20 40 60 80 100
Iterations

0.70

0.80

Figure 4.4: Top Fisher vs. practical Fisher vs. NN. Left to right: results
for FC on adult, breast and 20NG, CNN on MNIST. Top row: # of cleaned
examples. Bottom row: F1 score.

the counter-example that is closest to the suspicious example. The results
can be viewed in Figure 4.4. Top Fisher is clearly the best strategy, both
in terms of number of cleaned examples and F1 score. NN is always worse
than Top Fisher in terms of F1, even in the case of adult (first column)
when it cleans the same number of examples, confirming the importance of
influence in selecting impactful counter-examples. Practical Fisher clearly
underperforms compared with Top Fisher, and it shows the importance of
having the curvature matrix. For each data set, all methods make a simi-
lar number of queries: 58 for 20NG, 21 for breast, 31 for adult and 37 for
MNIST. In general, cincer detects around 75% of the mislabeled examples
(compared to 50% of the other methods) and only about 5% of its queries
do not involve a corrupted example or counter-example. The complete val-
ues are reported in the Supplementary Material. As a final remark, we note
that cincer cleans more suspicious examples than counter-examples (in a
roughly 2 : 1 ratio), as shown by the number of cleaned suspicious examples
vs. counter-examples reported in the Supplementary Material. Comparing
this to the curve for Drop CE shows that proper data cleaning improves the
ability of the model of being suspicious for the right reasons, as expected.

4.5 Related work

4.5.1 Influence functions and Fisher information

It is well known that mislabeled examples tend to exert a larger influence on
the model [176, 96, 91, 11] and indeed IFs may be a valid alternative to the
margin for identifying suspicious examples. Building on the seminal work of
Koh and Liang [96], we instead leverage IFs to define and compute contrastive
counter-examples that explain why the machine is suspicious. The difference
is that noisy training examples influence the model as a whole, whereas
contrastive counter-examples influence a specific suspicious example. To the
best of our knowledge, this application of IFs is entirely novel. Notice also

4. Explainable Skeptical Learning 54

that empirical evidence that IFs recover noisy examples is restricted to offline
learning [96, 91]. Our experiments extend this to a less forgiving interactive
setting in which only one counter-example is selected per iteration and the
model is trained on the whole training set. The idea of exploiting the FIM to
approximate the Hessian has ample support in the natural gradient descent
literature [111, 101]. The FIM has been used for computing example-based
explanations by Khanna et al. [91]. However, their approach is quite different
from ours. cincer is equivalent to maximizing the Fisher kernel [87] between
the suspicious example and the counter-example (Eq. 4.16) for the purpose
of explaining the model’s margin, and this formulation is explicitly derived
from two simple desiderata. In contrast, Khanna et al. maximize a function
of the Fisher kernel (namely, the squared Fisher kernel between zk and z̃t
divided by the norm of zk in the RKHS). This optimization problem is not
equivalent to Eq. 4.16 and does not admit efficient computation by caching
the inverse FIM-vector product.

4.5.2 Other works

cincer draws inspiration from explanatory active learning, which integrates
local [160, 143, 105, 141] or global [127] explanations into interactive learn-
ing and allows the annotator to supply corrective feedback on the model’s
explanations. These approaches differ from cincer in that they neither con-
sider the issue of noise nor perform label cleaning, and indeed they explain
the model’s predictions rather than the model’s suspicion. Another notable
difference is that they rely on attribution-based explanations, whereas the
backbone of cincer is example-based explanations, which enable users to
reason about labels in terms of concrete (training) examples [116, 88]. Fol-
lowing these works, saliency maps – which provide complementary informa-
tion about relevant attributes – could potentially be integrated into cincer
to provide more fine-grained explanations and control.

4.6 Conclusion

We introduced cincer, an approach for handling label noise in sequential
learning that asks a human supervisor to relabel any incoming suspicious
examples. Compared to previous approaches, cincer identifies the reasons
behind the model’s skepticism and asks the supervisor to double-check them
too. This is done by computing a training example that maximally supports
the machine’s suspicions. This enables the user to correct both incoming and
old examples, cleaning inconsistencies in the data that confuse the model.
Our experiments shows that, by removing inconsistencies in the data, cincer
enables acquiring better data and models than less informed alternatives.

Our work can be improved in several ways. cincer can be straightfor-
wardly extended to online active and skeptical learning, in which the label

4. Explainable Skeptical Learning 55

of incoming instances is acquired on the fly [110, 188]. cincer can also
be adapted to correcting multiple counter-examples as well as the reasons
behind mislabeled counter-examples using “multi-round” label cleaning and
group-wise measures of influence [97, 13, 66]. This more refined strategy
is especially promising for dealing with systematic noise, in which counter-
examples are likely affected by entire groups of mislabeled examples.

Potential negative impact. Like most interactive approaches, there is
a risk that cincer annoys the user by asking an excessive number of ques-
tions. This is currently mitigated by querying the user only when the model
is confident enough in its own predictions (through the margin-based strat-
egy) and by selecting influential counter-examples that have a high chance
to improve the model upon relabeling, thus reducing the future chance of
pointless queries. Moreover, the margin threshold τ allows to modulate the
amount of interaction based on the user’s commitment. Another potential
issue is that cincer could give malicious annotators fine-grained control over
the training data, possibly leading to poisoning attacks. This is however not
an issue for our target applications, like interactive assistants, in which the
user benefits from interacting with a high-quality predictor and is therefore
motivated to provide non-adversarial labels.

5
Knowledge Drift

Contents
5.1 Introduction . 57
5.2 Hierarchical classification and knowledge drift . 58
5.3 Handling knowledge drift with TRCKD 60
5.4 Experiments . 64
5.5 Related work . 72
5.6 Conclusion . 74

We introduce and study knowledge drift (KD), a special form of con-
cept drift that occurs in hierarchical classification. Section 5.2 explains that
under KD the vocabulary of concepts, their individual distributions, and
the is-a relations between them can all change over time. The main chal-
lenge is that, since the ground-truth concept hierarchy is unobserved, it is
hard to tell apart different forms of KD. For instance, the introduction of a
new is- a relation between two concepts might be confused with changes to
those individual concepts, but it is far from equivalent. Failure to identify
the right kind of KD compromises the concept hierarchy used by the clas-
sifier, leading to systematic prediction errors. Our key observation is that
in human-in-the-loop applications like smart personal assistants, the user
knows what kind of drift occurred recently, if any. Motivated by this obser-
vation, we introduce trckd in Section 5.3, a novel approach that combines
two automated stages—drift detection and adaptation—with a new interac-
tive disambiguation stage in which the user is asked to refine the machine’s
understanding of recently detected KD. In addition, trckd implements a
simple but effective knowledge-aware adaptation strategy. Our simulations
(5.4) on three challenging data sets show that, when the structure of the
concept hierarchy drifts, a handful of queries to the user are often enough to
substantially improve prediction performance on both synthetic and realistic
data. We conclude with Section 5.5 and we position our contribution with
respect to the existing literature and conclude with some final remarks and
a brief discussion of promising research directions.

56

5. Knowledge Drift 57

Attribution This chapter includes material previously published as [21].
Fausto Giunchiglia, Stefano Teso and Andrea Passerini contributed signifi-
cantly to the material presented in this chapter.

5.1 Introduction

We are concerned with human-in-the-loop applications of hierarchical clas-
sification. Our main interest lies in smart personal assistants (PAs) that
must infer the location or social context of their user from sensor data (e.g.,
GPS, nearby Bluetooth devices) under the constraint that the hierarchy of
relevant places and people changes over time [71]. In these applications, the
concept hierarchy embedded into the predictor can become obsolete and has
to be continually re-aligned [154].

We refer to this as knowledge drift (KD). KD is a complex phenomenon:
concepts and is-a relations between them may appear, disappear, and change.
The main challenge is distinguishing between different kinds of KD and es-
pecially between changes to the data distribution and to the concept hierar-
chy. Existing approaches to concept drift make no attempt at understand-
ing whether shifts in the observed correlations between concepts are due to
changes to the hierarchy (like adding an is-a relation) or not [63]. These
leave similar footprints on the data, but confusing one for the other – and
confusing different kinds of KD – entails acquiring spurious is-a relations or
neglecting changes to the hierarchy, leading to systematic mis-predictions on
future instances.

Our key observation is that, in our human-in-the-loop setting, an expert
user can identify with little effort what kind of drift occurred, if any. Sev-
eral examples are given below. Motivated by this observation, we design
TRaCking Knowledge Drift (trckd) trckd (TRaCking Knowledge Drift),
an approach that tackles KD by combining automated drift detection and
adaptation with a novel, interactive drift disambiguation step. In particu-
lar, trckd maintains two windows of examples for each concept – one holds
old data points and the other the most recent ones – and it detects KD
by checking whether the distribution of current and past examples have di-
verged in distribution. The two empirical distributions are compared using
the maximum mean discrepancy (MMD), a flexible and efficient kernel-based
divergence [78]. Whenever it detects KD, trckd guesses what kind of KD
occurred using a simple heuristic and presents this initial description to a
knowledgeable human supervisor. The latter is then tasked with either con-
firming the machine’s description or improving it, if necessary, according to
her own understanding. Finally, in order to adapt the model to the differ-
ent kinds of KD, trckd implements a simple but effective knowledge-aware
adaptation strategy that we ground on top of kNN-based multi-label clas-
sifiers [151]. Our experiments show that, when changes to the structure of

5. Knowledge Drift 58

the concept hierarchy occur, interactive drift disambiguation and knowledge-
aware adaptation are key for good performance under KD, and that asking
a handful of queries to the user is often enough to achieve substantial per-
formance improvements.

Contributions. Summarizing, we:

1. Identify knowledge drift as a special kind of concept drift;

2. Introduce the related issue of drift disambiguation and identify inter-
action with an expert user as a natural solution;

3. Design trckd, an approach for handling KD that combines automated
detection and adaptation with interactive disambiguation, and instan-
tiate it on top of kNN-based classifiers by implementing a knowledge-
aware adaptation strategy;

4. Compare empirically trckd with state-of-the-art competitors on three
representative data sets.

5.2 Hierarchical classification and knowledge drift

We consider learning tasks in which each instance x belongs to one or more
concepts (classes) organized in a ground-truth hierarchy H = (C, I), a di-
rected acyclic graph in which nodes C = {1, . . . , c} index concepts and edges
I ⊆ C × C encode is-a relations. Instances are labeled by indicator vectors
y ∈ {0, 1}c, whose i-th element yi is 1 if x belongs to the i-th concept in H
and 0 otherwise.

During operation, the machine receives a stream of examples zt = (xt,yt)
drawn from a ground-truth distribution Pt(X,Y) that is consistent with a
corresponding ground-truth hierarchy Ht. In other words, if Ht asserts that
concept j is-a specialization of concept i, then the probability Pt(X,y) of
all labels y that violate this relation (i.e., yj = 1 and yi = 0), is zero. The
goal is to learn a predictor P̂t (as well as a hierarchy Ĥt consistent with it)
that outputs high-quality predictions on future instances.1 It goes without
saying that, in order to avoid systematic prediction mistakes, the acquired
hierarchy Ĥt must closely resemble the ground-truth Ht.

Example 3 Ann’s PA receives observations x (like GPS coordinates, nearby
Bluetooth devices) and uses them to predict that “Ann is studying at the
library with Bob”: “Studying”, “Library”, and “Bob” are concepts and the
hierarchy states, among other things, that “Bob” is-a “Friend” of Ann’s and
a “Person”.

5. Knowledge Drift 59

Figure 5.1: Left: Decision surface and hierarchy of a classifier for Ann’s
social context and five concepts: “Person”, “Boss”, “Subordinate”, “Dave”,
and “Earl”. Middle: Individual Concept Drift: Dave moves to a different
office, so the decision surface changes but the hierarchy remains the same.
Right: Knowledge Drift: Ann is promoted, “Dave” is now her subordinate.
If the classifier knows that the hierarchy changed, it can transfer examples
from “Dave” to “Subordinate”, quickly improving its performance.

What makes our setting challenging is that the (unobserved) ground-
truth concept hierarchy Ht and data distribution Pt can both unexpectedly
and frequently change over time t = 1, 2,

Approaches for dealing with concept drift do not capture this scenario.
Indeed, regular concept drift is restricted to distribution shift, in which the
prior distribution Pt(X) changes, and individual or multi-label concept drift,
in which the conditional distribution Pt(Yi | X) of one or more concepts
changes [63, 197], but the concepts themselves are not mutually constrained
by a ground-truth hierarchy.

Example 4 During the semester, Ann spends most of her time studying at
the library. Once the finals are over, Ann stops going to the library as often,
and when she goes there she is less likely to be studying. This affects both the
distribution of GPS coordinates and the conditional distribution of activities
given GPS coordinates.

In stark contrast, changes to the hierarchy Ht give rise to knowledge
drift (KD), a special form of drift in which changes to the distribution are
specifically due to changes to the hierarchy, cf. Figure 5.1. KD combines
four types of atomic changes: concept addition and removal, which refer to
the appearance of new concepts and the phasing out of obsolete concepts in
Ct, respectively, and relation addition and removal, which refer to changes
in the edges It themselves.

Example 5 While concepts like “Friend” are immutable, the specific friends
that matter to Ann (which are also concepts) change over time, e.g., if Ann
moves abroad. For instance, if Ann buys a vacation home, a new concept
“Ann’s vacation home” appears in the ground-truth hierarchy (concept addi-
tion). Conversely, if Ann’s vacation home is sold, the corresponding concept

1We assume y to be given for ease of exposition. In practical applications where y is
not given, it can be acquired using an active learning step.

5. Knowledge Drift 60

is no longer meaningful and disappears (concept removal). If Ann receives
a promotion and her old boss Dave becomes her subordinate, then “Dave”
moves from being a child of “Boss” (relation removal) to being a child of
“Subordinate” (relation addition).

Now, handling regular concept drift requires to detect changes in the
data and adapt the model accordingly [63]. KD, on the other hand, requires
an additional step, namely to understand what concepts and relations in the
hierarchy Ht were affected, if any. This drift disambiguation step is crucial
for preventing the estimated hierarchy Ĥt from getting misaligned, which
could in turn lead to systematic, cascading prediction errors. It is also very
challenging.

To see this, consider relation addition (RA). Like all forms of KD, RA
can only be identified by its effects on the data, and specifically from the
correlation between the concepts that it entails. However, correlations can
exist and vary independently of the hierarchy. For instance, if Ann is visiting
a branch of her company in another city, she could be taken out for lunch and
dinner by Mary, the branch manager. Data could thus suggest a correlation
between the concepts “Mary” and “Friend”. Once Ann gets back home, she
no longer hangs out with Mary, and the correlation drops dramatically. Since
the machine has no sure way of telling apart RA from regular concept drift,
it might wrongly add a spurious relation to its concept hierarchy – a mistake
that takes plenty of examples to correct.

Similarly, concept removal (CR) implies not only that a concept i cannot
occur (and should not be predicted) ever again, but also that its children are
not longer attached to it. Treating CR as concept drift means that i) the
conditional distribution Pt(Yi | X) is not constrained to zero, and that ii) the
deleted concept might be predicted when one of its children is.2 Naturally,
multiple atomic changes can occur simultaneously, further complicating drift
disambiguation.

5.3 Handling knowledge drift with TRCKD

Our key observation is that in many human-in-the-loop scenarios the user
can naturally disambiguate between different types of KD. In our running
example, for instance, Ann is perfectly aware that her vacation home has
been recently sold, that Dave is now her subordinate and that Mary is a
colleague and not a friend. It is therefore sensible to partially offload drift
disambiguation to the user.

Motivated by this insight, we introduce trckd, a kNN-based approach
for human-in-the-loop hierarchical classification under KD that combines au-

2The only “easy” case is concept addition, which is straightforward in our fully labeled
setting and will not be considered further.

5. Knowledge Drift 61

Algorithm 3 The trckd algorithm. Inputs: initial data set S1 and hier-
archy H1, s := |S1|, window size w, threshold τ , empirical estimator M̂MD;
zit := (xt, y

i
t).

1: Fit initial classifier on S1 and H1, Ĥ1 ← H1

2: for every concept i in Ĥ1 do
3: W i

old ← {zis, . . . , zis−w}
4: for t = 1, 2, . . . do
5: Receive new example zt
6: for every concept i in Ĥt do
7: W i

cur ← {zis+t, z
i
s+t−1, . . . , z

i
s+t−w}

8: if ∃ i : M̂MD(W i
cur,W

i
old) ≥ τ then

9: Illustrate detected KD to the user
10: Adapt based on user’s KD description

tomated detection and adaptation with a new, interactive drift disambigua-
tion stage. Owing to their flexibility, kNN-based approaches are a popular
choice for learning under drift [63] and achieve considerable performance in
non-trivial learning tasks [135].3 Our work builds on MW-kNN [151], an
kNN-based approach to multi-class classification under drift that adapts to
change by passively forgetting old, potentially obsolete examples. trckd
upgrades MW-kNN from multi-class to hierarchical classification and addi-
tionally integrates a sliding-window approach [92] for drift detection. More-
over, trckd introduces a simple but effective knowledge-aware adaptation
strategy specifically tailored for kNN-based classifiers (and that generalizes
to other instance-based predictors).

The pseudo-code of trckd is listed in Algorithm 3. The algorithm takes
a data set S1 and a concept hierarchy H1 consistent with it and uses them
to train an initial classifier. Then, in each iteration t = 1, 2, . . . the machine
receives a new example zt = (xt,yt) and performs three steps: 1) It detects
whether KD occurred, 2) It cooperates with the user to determine what
concepts and relations were affected by KD, and 3) It adapts the classifier
and the machine’s hierarchy accordingly. We discuss these three steps in
turn.

5.3.1 Step 1: Detection

For every concept i in Ĥt, trckd maintains two windows of examples: W i
cur

holds the w most recent examples and is updated in each iteration, while W i
old

3While the ideas behind trckd do carry over to other models, a proper assessment
using non-kNN architectures is outside of scope for this chapter and left to future work.

5. Knowledge Drift 62

holds w reference (past) examples.4 Predictions for concept i are obtained
by applying kNN to W i

cur.
trckd detects drift by looking for changes in distribution between the re-

cent and past windows of each concept. To this end, it employs the maximum
mean discrepancy (MMD), a discrepancy employed in hypothesis testing [78]
and domain adaptation [191]. Let P and Q be distributions over some space
X and k : X ×X → R a user-defined kernel. Then the MMD between P and
Q relative to k is given by

MMD(P,Q)2 = E[k(a,a′)]− 2E[k(a,b)] + E[k(b,b′)], (5.1)

where a, a′ are drawn i.i.d. from P and b, b′ from Q. Estimating the
MMD between W i

old and W i
cur requires to define a kernel between examples

z. trckd achieves this by defining two separate kernels over instances and
labels kX and kY and then taking their tensor product, i.e.,

k(z, z′) = k((x, y), (x′, y′)) = kX(x,x′) · kY (y, y′). (5.2)

In our experiments, we employ a Gaussian kernel kX for the instances and
a delta kernel kY (y, y′) = 1{y = y′} for the labels.

The MMD is well-behaved, in the sense that if P ≡ Q then MMD(P,Q) =
0 and if k is characteristic, the converse also holds [158]. However, unlike
other well-behaved alternatives – for instance the total variation distance,
the A-distance [92], and the mutual information [124] – the MMD can be
estimated efficiently (in linear time) even for high-dimensional data [78].
In addition, the MMD allows to select concrete examples (witness points)
that illustrate the difference between the two distributions, simplifying the
interaction with the user [106]. It also performs well empirically: in our
experiments, the MMD achieved a better false detection rate than ME [89],
a state-of-the-art discrepancy with better discrimination power on paper.

5.3.2 Step 2: Disambiguation

Upon detecting drift, trckd initiates interaction with the user by present-
ing a visualization of the detected KD and asking the user to verify and
potentially improve a description of the detected KD.

If the KD detected by the machine identifies the right concepts – which
should typically be if the drift detector is tuned well – then the user’s jobs is
to tell the machine whether the relations between the highlighted concepts
have undergone drift and how. To this end, the user can modify the visualiza-
tion by selecting or deselecting highlighted concepts and is-a edges. As long
as the user is expert enough, she is likely to improve the machine’s guess. A
sufficiently motivated and knowledgeable user has also the option of editing

4trckd reserves 1/3 of each window to positive examples to account for class imbal-
ance [151].

5. Knowledge Drift 63

any drifting concepts or relations that were not detected by the machine,
providing even more guidance. Notice that even partial improvements to
the detected KD are likely to improve future predictive performance and are
in any case better than no adaptation and fully automated disambiguation.5

Extra context can be supplied to the user by presenting a handful of
examples that summarize how the concepts affected by KD have changed.
Such examples can be selected from the past and current windows of those
concepts using MMD witness functions [106].

5.3.3 Step 3: Adaptation

Once it receives the user’s drift description, trckd adapts the machine’s
hierarchy and the windows accordingly. Here we present a simple knowledge-
aware adaptation strategy for kNN-based approaches. In particular:

• For every instance of individual concept drift in the description, it
transfers the contents of the current window of the affected concept
to the past window and keeps only the u most recent examples in the
former, i.e.:

W i
old ←W i

cur, W i
cur ← {zis+t, z

i
s+t−1, . . . , z

i
s+t−u} (5.3)

where u is a user-provided hyperparameter. All examples are not longer
used for the classification task except for the most recent ones, which
are likely drawn from the post-drift distribution and thus kept to fa-
cilitate recovery.

• For concept removal, the past and current windows of the affected
concept are deleted, that is:

W i
old ← ∅, W i

cur ← ∅ (5.4)

Furthermore, all is-a relations between the removed concept are deleted
and the children of the latter are attached to its parent. The concept
will not occur and thus should not be predicted.6 Notice that con-
cept removal cannot be handled as concept drift, otherwise the deleted
concepts would end up being predicted whenever one of its children
is. The child concepts are no longer attached to it. The parent’s win-
dow is reduced in size by w elements since it has to accommodate the
examples of fewer child classes.

5The assumption is that the user is expert enough and therefore does not inject a lot
of noise into the loop. This is a reasonable assumption to make applications like smart
personal assistants.

6Notice that, by definition, a removed concept cannot recur unless it is added again to
the hierarchy. This is handled separated via concept addition.

5. Knowledge Drift 64

• For relation addition, the positive examples belonging to the child con-
cept are copied to the ancestors’ windows and the former are increased
in size by w in order to take the examples of the new child. Given the
child concept r:

W i
old ←W i

cur, W i
cur ←W i

cur ∪W r
cur (5.5)

for each ancestor i. This adaptation ensures that the ancestors are
predicted whenever the children is.

• For relation removal, the positive examples belonging to the child con-
cept are removed from the parent’s window and the latter is shrank ac-
cordingly. The child concept is also linked directly to its grand-parent.
Given i and r the parent and the child respectively, then:

W i
old ←W i

cur; W
i
cur = W i

cur \W r
cur (5.6)

Our experiments show that, despite its simplicity, our knowledge-aware adap-
tation strategy outperforms the knowledge-oblivious strategies of state-of-
the-art kNN classifiers [151, 135]. It is reasonable to expect the benefits of
knowledge-aware adaptation to carry over to other classifiers, e.g., neural
networks [27].

5.4 Experiments

We empirically address the following research questions:

Q1 Is knowledge-aware adaptation useful for handling knowledge drift?

Q2 Does interaction with an expert user help adaptation?

Q3 Does trckd work in realistic, multi-drift settings?

The code of trckd as well as the complete experimental setup are available
at: https://gitlab.com/abonte/handling-knowledge-drift.

Competitors. We compared trckd against several alternatives:

• PAW-kNN: punitive adaptive window kNN, a state-of-the-art multi-
label approach that employs a single sliding window for all concepts to
address gradual drift, and that adapts by discarding examples respon-
sible for prediction mistakes in case of abrupt drift [135];

• MW-kNN: the multi-window kNN approach of [151] designed specif-
ically for multi-label problems that trckd builds on;

• kNN 1-window: kNN with a single sliding window for all concepts
that simply forgets old examples;

• kNN: regular kNN with no adaptation.

https://gitlab.com/abonte/handling-knowledge-drift

5. Knowledge Drift 65

Data sets. We ran experiments on three data sets from different domains:

• H-STAGGER: a hierarchical version of STAGGER, a widely used
synthetic data set of two-dimensional objects with three categorical
attributes (shape, color, size) and labeled by drifting random formulas
like “small and (green or red)” [140]. H-STAGGER has 3 attributes
with 4 values each and labels instances using 5 different drifting random
formulas chosen to have a reasonable pos./neg. ratio. The hierarchy
is created by selecting two concepts as part of a third one that acts as
parent concept.

• H-EMNIST: a data set of 28×28 handwritten digits and (uppercase,
lowercase) letters [36]. The data set was converted to hierarchical clas-
sification by grouping different characters into higher level concepts,
e.g., even numbers and vowels. The digits and letters are grouped in
5 concepts and the hierarchy is created as for H-STAGGER. Instances
were embedded using a variational autoencoder [95].

• H-20NG: a data set of newsgroup posts categorized in twenty topics.7

The data set was converted to hierarchical classification by grouping
different classes into super-topics (e.g., “religion’ grouping alt.atheism,
soc.religion.christian and talk.religion.misc). The documents were em-
bedded using a pre-trained Sentence-BERT model [131] and compressed
to 100 features using PCA.

All instances always belong to the root concept in the concept hierarchy.
Each data sets is converted into a streams by sampling a sequence of ex-
amples at random. Table 5.1 reports, for each data sets, the number of
attributes d, the number of concepts c, as well as the following three mea-
sures of annotation density taken from [192]: the average number of positive
labels per example LC, the empirical probability that a label is positive LD,
and how many distinct combinations of positive categories (out of 2c) are
annotated in the data DL.

5.4.1 Experimental details

All experiments were run on a machine with eight 2.8 GHz CPUs and 32
GiB RAM. Each experiment was run ten times by randomizing the choice of
examples in the stream: 2 runs were used for hyperparameter selection and
8 for evaluation. The plots report the average and the standard error over
the 8 runs. All methods received exactly the same sequences of examples.

The results for concept drift are independent of our knowledge-handling
strategy, so our evaluation focuses on concept deletion, relation addition,
and relation removal. In these three cases, drift is injected into the stream

7From https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

5. Knowledge Drift 66

Name |S| d c LC LD DL

H-STAGGER 570 3 6 4.42 ± 0.16 0.63 ± 0.02 34.63 ± 11.89
H-EMNIST 570 10 9 3.50 ± 0.04 0.44 ± 0.00 55.38 ± 5.57
H-20NG 570 100 6 2.19 ± 0.00 0.31 ± 0.00 8.5 ± 0.5

Table 5.1: Data sets statistics (mean ± std. dev.) averaged over the runs
of the sequential drift experiment. |S|: number of instances, d: number of
attributes, c: number of labels, LC: label cardinality, LD: label density,
DL: distinct label set. The metrics are averaged on 8 runs and refer to the
experiment for Q3.

by removing a random concept from the available ones, adding a random
relation, and removing a random relation, respectively. KD starts after all
competitors approximately reach their peak performance, namely after 100
iterations for H-STAGGER and H-EMNIST, and 170 for H-20NG.

Performance was measured in terms of micro F1 score on a hold-out test
set (of size 64 for H-STAGGER and 200 for H-EMNIST and H-20NG) ran-
domly selected before each run and shared by all competitors. The micro F1

score we use considers the sparsity of positive annotations that is character-
istic of hierarchical classification; that is, most concepts are negative most
of the time. Letting {(xi,yi) : i = 1, . . . , n} be the examples in the test set,
ŷi their predictions and yji the jth element of yi (which is 1 if xi belong to
the jth concept and 0 otherwise), the micro F1 for multi-label classification
is defined as follows [149]:

F1-micro =
2
∑c

j=1

∑n
i=1 y

j
i ŷ

j
i∑c

j=1

∑n
i=1 y

j
i +

∑c
j=1

∑n
i=1 ŷ

j
i

where j iterates over concepts and i over examples.
User replies were simulated by an oracle that always answers correctly

to disambiguation queries. More specifically, the user confirms that a drift
occurred if and only if the concept detected as drifting by MMD has actually
undergone drift, i.e., the concept has been removed, has drifted or is the child
or parent of an added/removed relation.

5.4.2 Hyperparameters

The window size of all window-based methods was set to w = 200. This
value enables these approaches to achieve the same performance (micro F1)
as kNN when no drift is present. To speed up detection, in trckd the MMD
of each concept i is computed on the 70 most recent examples in W i

cur only.
This choice does not sacrifice reliability of detection.

The MMD threshold τ used by trckd, the number of neighbors k used
by all competitors are selected in two independent runs by optimizing the

5. Knowledge Drift 67

RQ Drift τ TRCKD k PAW-kNN k

H-STAGGER

Q1 - Q2

CD 0.04 3 3

CR 0.04 11 3

RA 0.04 11 3

RR 0.04 11 3

Q3 All 0.04 11 3

H-EMNIST

Q1 - Q2

CD 0.04 5 3

CR 0.05 3 3

RA 0.05 3 3

RR 0.04 3 3

Q3 All 0.05 3 3

H-20NG

Q1 - Q2

CD 0.05 3 3

CR 0.05 3 3

RA 0.04 3 3

RR 0.04 3 3

Q3 All 0.05 3 3

Table 5.2: Hyperparameter values. Abbreviations: CD is concept drift,
CR concept removal, RA relation addition, and RR relation removal.

micro F1. τ is selected from {0.4, 0.5} as these values were frequently ob-
served to indicate drift in preliminary experiments. k was selected from
{3, 5, 11} and it was chosen independently for trckd plus its variants (in-
cluding MW-kNN) and for PAW-kNN. Table 5.2 reports the values used in
each experiment of these hyperparamters. All other hyperparameters were
kept fixed across experiments. The penalty ratio of PAW-kNN was set to
p = 1 as suggested in [135], while the minimum and maximum window sizes
were set to mmin = 50 for H-STAGGER and H-EMNIST and 80 for H-20NG
data set, and mmax = 200 respectively. The number of examples retained in
Wcur in case of concept drift adaptation was set to u = 10. The distribution
ratio parameter of trckd and MW-kNN was set to r = 2/3 as in [151].

5.4.3 Q1: Knowledge-aware adaptation improves performance

To evaluate the impact of our adaptation strategy, we compare trckd
against MW-kNN, PAW-kNN, kNN 1-window, regular kNN in a setting
where all approaches are told exactly when KD occurs. In this setting, tr-

5. Knowledge Drift 68

MW-kNN TRCKD_oracle TRCKD_forget PAW-kNN kNN kNN 1 window

100 150 200 250
0.80

0.85

0.90

0.95

1.00
concept removal

100 150 200 250
0.80

0.85

0.90

0.95

1.00
relation addition

100 150 200 250
0.80

0.85

0.90

0.95

1.00
relation removal

100 150 200 250

0.4

0.5

0.6

100 150 200 250

0.4

0.5

0.6

100 150 200 250

0.4

0.5

0.6

150 175 200 225 250 275 300

0.35

0.40

0.45

0.50

0.55

150 175 200 225 250 275 300

0.40

0.45

0.50

0.55

0.60

150 175 200 225 250 275 300
0.35

0.40

0.45

0.50

0.55

Figure 5.2: Comparison in terms of micro F1 between trckd and standard
forgetting strategies for kNN-based methods. Top to bottom: results for
H-STAGGER, H-EMNIST and H-20NG. Left to right: concept removal,
relation addition, and relation removal. Error bars indicate std. error.

ckd is denoted trckdoracle, as knowledge-aware disambiguation combined
with exact detection implies a perfect knowledge of the kind of drift that
occurred. We also compare to a simple knowledge-unaware variant of tr-
ckd, named trckdforget, that adapts to all types of KD by forgetting old
examples.

The results can be viewed in Figure 5.2. The plots show that trckdoracle

is the best performing method on all data sets and for all forms of KD. Note
how the performance difference between trckdoracle and the alternatives is
larger than standard errors in most cases, especially when considering the
first iterations after the drift. Most often, the runner up is trckdforget:
while it performs similarly to trckdoracle for concept removal (because our
adaptation strategy boils down to forgetting in this simple setup), it does lag
behind for relation addition and removal, showing a sizeable advantage for
knowledge-aware adaptation. MW-kNN works reasonably well but suffers
from relying on passive adaptation and does not always perform better than
the two kNN baselines. PAW-kNN tends to underperform on H-EMNIST
and H-20NG, especially when KD affects the relations. These results validate
knowledge-aware adaptation on all data sets and allow us to answer Q1 in
the affirmative. For this reason, we will focus on knowledge-aware adaptation
in the following experiments.

5. Knowledge Drift 69

TRCKD TRCKD_LLR TRCKD_oracle TRCKD_ni

100 150 200 250
0.80

0.85

0.90

0.95

1.00
concept removal

100 150 200 250
0.80

0.85

0.90

0.95

1.00
relation addition

100 150 200 250
0.80

0.85

0.90

0.95

1.00
relation removal

100 150 200 250

0.45

0.50

0.55

0.60

0.65

100 150 200 250

0.45

0.50

0.55

0.60

0.65

100 150 200 250

0.45

0.50

0.55

0.60

0.65

150 175 200 225 250 275 300

0.40

0.45

0.50

0.55

150 175 200 225 250 275 300
0.45

0.50

0.55

0.60

150 175 200 225 250 275 300
0.475

0.500

0.525

0.550

0.575

Figure 5.3: Comparison in terms of micro F1 between trckd and less
interactive variants. Top to bottom: results for H-STAGGER, H-EMNIST
and H-20NG. Left to right: concept drift, concept removal, relation addition,
and relation removal. Error bars indicate std. error.

5.4.4 Q2: Interaction is beneficial

To measure the impact of interaction, we compare four variants of trckd
that differ in what information they elicit from the supervisor, namely: tr-
ckd, trckdoracle, trckdLLR and trckdni.

trckdLLR is a fully-automated version of trckd that follows up MMD
detection by performing drift disambiguation with a likelihood ratio test.
This test detects a relation yj is-a yi iff

P (yj | yi)
P (yj | ¬yi)

≥ β (5.7)

with β =∞. (This is the best possible value for β as the ground-truth data
is assumed to be always consistent with the ground-truth hierarchy.) If the
test detects relation addition/removal, trckdLLR applies the corresponding
knowledge-aware adaptation strategy, otherwise it defaults to emptying the
current window of the detected concept(s).

trckdni is like trckd except that instead of interacting with the user
it assumes that all concepts detected as drifting by MMD have undergone
individual concept drift and adapts by purging their current window.

The results in Figure 5.3 are quite intuitive: trckdoracle substantially
outperforms all alternatives in all cases except for relation removal in H-
20NG. This shows that, if drift is detected correctly and timely, interactive

5. Knowledge Drift 70

MW-kNN TRCKD TRCKD_oracle PAW-kNN kNN kNN 1 window

100 200 300 400 500
Iterations

0.80

0.85

0.90

0.95

200 300 400 500
Iterations

0.5

0.6

0.7

200 300 400 500
Iterations

0.40

0.45

0.50

0.55

0.60

Figure 5.4: trckd versus competitors on sequential KD in terms of micro
F1. Left: H-STAGGER. Middle: H-EMNIST. Right: H-20NG. Error bars
indicate std. error.

disambiguation is extremely useful for guiding knowledge-aware adaptation
and quickly aligning the model to the ground-truth. trckd tends to per-
form substantially better than the no-interaction baselines trckdLLR and
trckdni and if MMD detection works well it quickly reaches the perfor-
mance of the oracle. This allows us to answer Q2 in the affirmative. If
MMD underperforms (as in H-EMNIST), trckd does not get a chance to
quickly interact with the user and shows no improvement. This could be
fixed by better optimizing the choice of kernel and threshold used by MMD,
perhaps by turning them into per-concept parameters. This is left to future
work. The complexity of the task and the impact of the drift vary across the
data sets. Thus, the difference between trckd and the competitor is smaller
in some cases. Importantly, trckd interacts with the user 1.54± 0.78 times
per run on average, showing that few interaction rounds are often enough to
achieve a noticeable performance boost.

5.4.5 Q3: trckd works well in multi-drift settings

We consider a realistic scenario with four sequential KD events: concept
drift, relation addition, relation removal, and concept removal. The results
in Figure 5.4 show that trckd tends to outperform all competitors except
the oracle. The advantage is quite marked whenever the KD affects the
concept hierarchy itself, up to +10% F1 for H-STAGGER and +5% for H-
EMNIST. The plots mirror the advantages shown by trckd in the previous
experiments and highlight that the benefits of knowledge-aware adaptation
and interaction carry over to more realistic settings. This allows us to answer
Q3 in the affirmative. The lack of reactive adaptation penalizes MW-kNN
and PAW-kNN, the latter especially on H-EMNIST.

5.4.6 Additional comparisons

TRCKD outperforms structure learning. Given the similarity be-
tween drift disambiguation and structure learning for probabilistic graphical
models [98], it is natural to ask whether structure learning techniques could

5. Knowledge Drift 71

100 150 200 250
Iterations

0.85

0.90

0.95

TRCKD
TRCKD+lasso

100 150 200 250
Iterations

0.85

0.90

0.95

TRCKD
TRCKD+lasso

Figure 5.5: Micro F1 results on H-STAGGER, automatic drift type identi-
fication with Graphical Lasso and MMD for detection versus trckd. Left:
relation addition. Right: relation removal.

be used for handling KD in a fully automatical manner.
To answer this question, we evaluated a variant of trckd that uses

graphical lasso to reconstruct the structure of the hierarchy from the most
recent examples [61]. In particular, in each iteration a data set is built by
combining the 70 most recent examples (analogously to what is done for
MMD) for all concepts in the machine’s hierarchy. This data set set is fed to
graphical lasso, which spits out an (sparse) undirected graph based on the
empirical correlation between all the concepts. The directions of individual
edges are set so to maximize the likelihood of the child implying the parent
and edges are treated as is-a relations. The resulting directed graph replaces
the machine’s concept hierarchy. The difference between the previous and
current concept hierarchy is used to perform knowledge-aware adaptation.

A comparison between trckd +lasso and trckd is reported in Fig-
ure 5.5. It turns out that for relation addition and removal, graphical lasso
often fails to estimate the ground-truth concept hierarchy, leading to system-
atic prediction errors. Furthermore, it is quite unstable and often detects
spurious changes to the hierarchy. The main issue is that – like other fully
automated approaches for structure learning – graphical lasso does require
substantial amounts of data to perform reliably, and this is simply not the
case in our non-stationary setting. This makes structured learning-based
approaches unsuitable for this setup.

MMD outperforms mean embeddings. Another reasonable question
is whether recent hypothesis tests outperform MMD for drift detection. Mo-
tivated by this, we replace MMD in trckd with Mean Embeddings (ME),
a state-of-the-art kernel-based discrepancy between distributions [89]. Im-
portantly, the discrimination power of ME can be optimized for the task at
hand by performing gradient ascent on an independent training set. In our
experiment, we carried out this optimization on the pre-drift examples (i.e.,
on the first 100 examples in the stream for H-STAGGER and H-EMNIST
and on the first 170 for H-20NG). We also used the very same tensor prod-
uct kernel for both MMD and ME, and for ME we tuned the width of the

5. Knowledge Drift 72

Gaussian kernel kX over instances along with the discrimination power of
ME.

Despite being more powerful than MMD on paper, ME did not perform
as well in our tests. In particular, ME turned out to be overly sensitive
and had severe false detection issues. In practice, ME tends to detect three
to four times as many drifts as MMD. For instance, the average number
of changepoints detected by trckd +ME for the case of H-EMNIST with
sequential drifts is 15.25±1.0 compared to 4.25±0.5 of trckd +MMD. The
ME final hyperparameters used for this experiment are the number of witness
points J = 15 and α = 0.01. This overly sensitivity makes it inadequate for
interacting with the user: indeed, querying the user too frequently is likely
to rapidly make her lose interest in the interaction in practice.

5.5 Related work

There is an enormous amount of work on concept drift, most of which focuses
on single-label [63] and – to a lesser extend – multi-label [197] classification.
Surprisingly, drift in hierarchical classification, in which concepts are explic-
itly mutually constrained, has been so far neglected. In addition, we are not
aware of any work on concept drift affecting the concept hierarchy nor on
knowledge-aware adaptation strategies. As shown by our experiments, this
setup is special enough that standard strategies struggle when applied or
adapted to our setting.

The disambiguation step introduced with trckd is conceptually related
to the problem of drift understanding [107], however works on this topic
are unconcerned with hierarchical classification and, therefore, with drift in
the background knowledge. To the best of our knowledge, this is the first
work that tackles knowledge drift and drift disambiguation and to leverage
interaction with a human supervisor to do so.

trckd makes ample use of well-known strategies. In particular, it com-
bines ideas from MW-kNN [151], a multi-label kNN approach that adapts
passively by discarding old examples, with a proactive detection strategy
based on sliding windows. Actively detecting and reacting to drift is key
for enabling interaction with the user. Importantly, sliding windows offer
distribution-free guarantees on detection accuracy under mild assumptions
on the model class and on drifting frequency and speed [92].

5.5.1 Maximum mean discrepancy.

MMD has been applied extensively in domain adaptation [191, 130]. The ME
criterion [89], a more recent alternative, underperformed in our experiments
but can act as a drop-in replacement for the MMD in applications where it
performs better.

5. Knowledge Drift 73

The idea of using concrete examples in the windows to explain drift was
discussed in [92], although not for MMD. It is true, however, that MMD lends
itself to this task. For instance, Kim et al. [93] propose a subset selection
procedure for identifying both prototypes (examples that are representative
of a particular learned concept) and criticism (examples that, conversely,
are not representative), built around a submodular objective defined using
MMD. These ideas can be used directly for illustrate drifting concepts to the
user and could be generalized to explain the effects of knowledge drift [44].

5.5.2 Drift over graph data.

Drift detection has been studied in the context of graph classification. In this
setting, the input data streams encode a sequence of knowledge graphs [123,
179, 185] or an ontology stream [32], and drift affects the distribution of
said graphs. In contrast, in our target applications, the machine receives a
sequence of examples consisting of a set of subsymbolic observations and of
concept annotations, while the knowledge graph controlling the relationship
between concepts is completely unobserved. Since KD can only be inferred
indirectly by monitoring the examples, this makes drift detection (and dis-
ambiguation) much harder.

5.5.3 Open world recognition.

Our work is related to open world recognition, a streaming classification
setting in which unanticipated classes appear over time [23]. Open world
recognition matches our setting in the case of concept addition, but it is
unconcerned with other forms of KD. Furthermore, even though the overall
goal is to achieve low error rate on the new, unknown classes [139], most
algorithms for open word recognition achieve this by refusing to output any
predictions for incoming instances that belong to the unknown classes [138,
136, 23]. In stark contrast, and compatibly with other approaches to concept
drift, TRaCking Knowledge Drift aims to adapt the model to new classes
rather than reject challenging data points. Other recent work on interactive
classification under concept addition [22] focuses on handling noisy labels
rather than on adapting to drift.

5.5.4 Novelty and anomaly detection

Our approach shares some similarities with recent work on interactive anomaly
detection for structured data [47]. In this work, anomalies are first identified
by a machine and then double-checked by a human supervisor. The key idea
of leveraging interaction with a supervisor has similar motivations as in our
task. More generally, concept drift is related to novelty, anomaly, and out-of-
distribution detection, which tackle the problem of identifying unexpected or
anomalous datapoints [126]. Concept drift and novelty detection have also

5. Knowledge Drift 74

been combined [150, 113]. One key difference is that in these settings, the
set of concepts is typically fixed. Furthermore, and more importantly, KD
– and more generally concept drift – involves updating the model to track
changes in the world, whereas no adaptation is typically necessary in novelty
detection.

5.5.5 Other topics.

In continual learning, a machine acquires new concepts or tasks over time,
and the challenge is to prevent the learned model – typically a neural net-
work – from forgetting previously acquired knowledge [122, 59]. In stark
contrast, in our setting the goal is to intentionally forget obsolete informa-
tion whenever necessary. Moreover, continual learning is unconcerned with
forms of knowledge drift other than concept addition, whereas we tackle all
forms of KD.

Another related but separate topic is active learning of graphical models,
see for instance [164], where the aim is to acquire a multivariate distribution
(with a non-trivial factorization) by querying a human-in-the-loop. Specif-
ically, the machine asks for the downstream value of certain variables upon
intervention (i.e., manipulating a variable to a chosen value). Individually,
these queries are not very informative and it may take tens of queries to ac-
quire a model with a handful of variables. In contrast, TRaCking Knowledge
Drift is only interested in obtaining a description of change to the concept
hierarchy – not a whole model, not a distribution over concepts – and to this
end it presents the user with an initial guess as guidance and then elicits a
one-shot description. These more expressive queries are tailored to the KD
use case and lead to more efficient interaction.

Prototypical networks use prototypes representations for each class, which
are used to classify a test point [146]. Adding new classes cause catastrophic
forgetting, which deteriorates the classifier performance. To avoid this effect,
a set of training points that approximate the class mean are kept [129]. This
solution is then robust to data representations changes. These two works do
not address the concept drift challenge. By estimating the drift in the pre-
vious task, it can be compensated in the new task without storing exemplar
of previous tasks [182]. The main limitation of these approaches is that they
support one prototype for each class (e.g., different libraries are mapped to
the same prototype). The solution does not provide a way to erase concepts
that do not hold anymore.

5.6 Conclusion

We introduced the problem of knowledge drift in hierarchical classification
and proposed to partially offload drift disambiguation to a user. We also

5. Knowledge Drift 75

proposed trckd, an approach for learning under KD that combines auto-
mated drift detection and adaptation, upgraded to hierarchical classifiers,
with interactive drift disambiguation. Our empirical results indicate that
trckd outperforms fully automated approaches by asking just a few ques-
tions to the user, even when detection performance is not ideal, showcasing
the importance of interaction for handling knowledge drift.

Our work can be improved and extended in several directions. First of all,
in practical applications the learner often receives no labels during its normal
operation and must acquire any necessary supervision from the user during
the interaction. Dealing with this setting requires to integrate a knowledge-
aware active learning component into trckd. On the user interaction side,
we plan to improve the interpretability of our interaction protocol (beyond
using examples to illustrate the machine’s behaviour to the user) by adapt-
ing ideas from explainable AI [44] and explainable interactive learning [141].
Another promising direction is to extend trckd to sequential learning meth-
ods beyond kNN, especially deep neural networks. The challenge here is to
develop knowledge-aware adaptation strategies appropriate for this class of
models. It is relatively straightforward to extend our approach to instance-
based neural models, see for instance [146]. Knowledge-aware adaptation for
other kinds of neural networks could be approached by leveraging recent de-
velopments in machine unlearning – so to force the model to forget obsolete
concepts and relations – cf. [27] and follow-ups. These extensions, however,
are highly non-trivial and left to future work.

Part II

From the lab to the wild

76

6
Context Recognition Architecture: From

Perception Data to Knowledge

Contents
6.1 Introduction . 77
6.2 Personal context recognition architecture 79
6.3 Personal context procedures 86
6.4 Related works . 91
6.5 Conclusion . 92

Context recognition in the wild must ensure an alignment between the
human’s and machine’s representation of the world in order to perform well.
After presenting the context definition and representation in Chapter 2, we
presented the issues that undermine the recognition task, i.e., noisy super-
vision and knowledge drift (Chapters 3 to 5). The deployment in the real
world of the system that performs PCR requires combining and integrating
these solutions. To this end, Section 6.2 outlines the reference architecture
and describes each component, whereas Section 6.3 lists the procedures that
allow the integration and communication of the different components from
the collection of the sensor data to the update of the acquired knowledge
about the user and the world.

6.1 Introduction

Smart grids are electrical grids in which demand and offer of energy must
always be balanced. This task is especially complicated when the grids con-
tain renewable energy sources characterized by discontinuous energy produc-
tion. Individual consumers can contribute by communicating to the energy
provider in which time slots their houses can be disconnected in case of en-
ergy shortage in the grid and by allowing the provider to increase or reduce
the energy supply based on the person’s presence in the house building. The
tailored energy supply requires that the system knows the user’s behaviour
routines. Indeed, the system can learn that the user is not at home between

77

6. Context Recognition Architecture 78

8 am and 4 pm because he or she is working in the office and that every
Monday evening, he or she cooks for her or his friends. This task is achieved
by knowing the situational context of the user at any moment in time. Other
applications like smart personal assistants, smart environments and health
monitoring can leverage contextual information to provide their service.

Contextual information is not accessible to the system and needs to be
inferred from perception data, such as GPS coordinates, nearby Bluetooth
devices and inertial sensors coming from personal devices. Moreover, the se-
mantic of the contextual information is highly subjective. For instance, the
same person is a father from the point of view of his daughter and, at the
same time, is seen as a professor by his students. However, the world and/or
the user unpredictably change over time. Thus, the contextual knowledge
acquired by the system over time becomes obsolete, incorrect and incon-
sistent. For instance, the professor moves to a new university and meets
different students. The alignment between the machine’s knowledge and the
current world and user state is achieved through the bidirectional interac-
tion between humans and machines, in which the continuous exchange of
information constitutes the building block to the symbiosis between the two.
From the user to the machine, the system leverages the techniques developed
in knowledge representation and machine learning to learn to recognize per-
sonal context recognition and to handle wrong information provided by the
user (Chapters 3 and 5). At the same time, in the opposite direction, the
machine provides explanations about its decision (also known as explainable
AI) and possibly receives corrections from the user ().

The personal situational context recognition (PCR) task described above
can be tackled by combining several components, each one addressing a spe-
cific problem: (i) machine learning algorithms are trained to recognize the
user’s context from a stream of sensor data; (ii) knowledge representation
formalizes the machine’s internal representation of the world and user [80],
(iii) remembering and forgetting policies are implemented to decide which
information the system needs to focus on in any moment in time, (iv) smart-
phones and smartwatches are the means for interaction with the user and
the perception of the world through sensor data collection.

Contributions. Summarizing, we:

• design a comprehensive architecture that integrates the reasoning and
interaction with the user to address the context recognition task. The
architecture flexibility allows the adaptation to the specific designer’s
requirements and thus to several application domains;

• presents procedures and policies that integrate isgp and trckd in a
single solution to make the recognition robust to changes in the world.

6. Context Recognition Architecture 79

WM 2

SM 1

SM C

Input 1

Process Process

Output 1 Output 2

Scheduler

WM 1

LTM

Initial State

Initialization

Initial
knowlege

Input 0

Time

WM 2

WM 1

LTM

Initial State

WM 2

WM 1

LTM

Initial State

SM 1

SM C

Input 1

Figure 6.1: For each new input, the output is the function of the previous
input’s state, which is composed of the LTM and WM, and the current input.
The output is a knowledge graph encoding the context of the user when the
input was collected.

6.2 Personal context recognition architecture

Given the above introduction of the situational personal context, the context
recognition task and its challenges, we present the architecture that supports
PCR. The section highlights the statefulness of PCR by making an analogy
with recurrent neural networks, in which the current output is influenced by
the current input and the previous system state. Then, we describe the four
main components: memory, reasoning, interaction and policy.

6.2.1 A recurrent network

Figure 6.1 presents an overview of the execution over time. The flow takes
inspiration from what happens in recurrent neural networks: each output
is computed from the current input and the “memory” generated by the
previous input. However, the difference is that our architecture does not deal
with only subsymbolic data like pixels but also considers high-level symbolic
data. In our proposal, after the initialization of the memories, at regular
intervals, the process outputs the current user’s personal context according
to the input and possibly after interacting with the user. The current state of

6. Context Recognition Architecture 80

SM C

Sensory
Memory

Working
Memory

Reasoning

perceive()

readFromSM()

SM 1

perceive()

readFromSM()

SM 2

perceive()

readFromSM() readFromSM()

attention()

context

SM 3

perceive()

updateLTM

Long Term
Memory

Input

Output

Input Gate

Output Gate

Forget Gate

sensors third-party
services

user

Scheduler

updateWM

ctx
recognition

language
alignment

knowledge
alignment

updateWM

interact()

Reasoning

knowledge
graph

machine
learning
model

Working
Memory
attention

Working
Memory

Reasoning

Long Term
Memory

Working
Memory
attention

Figure 6.2: Architecture. The components are grouped into input gate,
forget gate and output gate. Scheduler triggers the execution of each gate.

the system becomes then the input for the next prediction round. Note that
the scheduler is responsible for deciding when to move to the next iteration
and coordinates the components inside the process.

Figure 6.2 expands the process cell by showing how the different com-
ponents interact and how the data flows among them. Drawing inspiration
from the recurrent neural networks, we divide the components into three
types: Input gate collects and preprocesses the sensor data; Forget gate re-
trieves the relevant knowledge from the previous state. Output gate outputs
the context by processing the input data and the retrieved knowledge and, if
needed, by interacting with the user. After the computation, the knowledge
stored in the memories is updated.

6. Context Recognition Architecture 81

6.2.2 Memory

The system needs to store the knowledge acquired over time and retrieve it
for context recognition. Thus, the knowledge is stored in memories, drawn
as orange cylinders in Figure 6.2, and their organization takes inspiration
from human memory . The memories are the following:

• sensory memory (SM) stores the sensed data, i.e., the raw data com-
ing from the user’s devices and external sources like OpenStreetMap
and open data. The perception of the surrounding environment is rep-
resented by the data contained in this memory. Moreover, it stores
the user-machine interactions in terms of questions and answers. Each
input sense has its own memory, i.e., SM = {SM1, . . . , SM|C|}, where
| C | is the total number of input channels. Each SM is a stream
indexed by the collection timestamp. The perceive function (see
Figure 6.2) may collect the data at different rates and calls the API
of the operating system or external services to retrieve devices sensor
data and third-party data. In general, the memory keeps the data un-
til it is processed by the cell process. However, alternative strategies
(e.g., first-in-first-out) can be implemented, e.g., by considering the
memory size and expiration time constraints. Each input memory can
implement different pre-processing strategies, which are defined in the
readFromSm functions, one for each input channel. The function
reads the data from the SM and prepares them, for instance, by per-
forming feature engineering and submitting the relevant features used
for context recognition to the downstream components.

• long term memory (LTM) maintains the built-in knowledge and
acquired knowledge. It is structured in three levels, as shown in Fig-
ure 6.3:

– semantic memory stores both information about the language and
the acquired knowledge about the user and the world. It struc-
tures in language, knowledge and data, as proposed in [75]. The
language graph (upper part of Figure 6.3) is provided by exter-
nal services, such as the Universal Knowledge Core (UKC) [70], a
multilingual machine-readable lexical resource. It is a hierarchy
of words and how they are related to each other. The semantic
memory also keeps the entity types, which are typically part of
the built-in knowledge at the beginning and is the schema encod-
ing the concepts that model the world and their relations (middle
part of Figure 6.3). The lower part stores the instances of the
concepts, e.g., the specific friend or the specific office. Over time,
both graphs are updated as new information becomes available,
e.g., the user’s home GPS coordinates or a new colleague. See

6. Context Recognition Architecture 82

Section 2.2 for the description of entity and entity types. Each
entity is linked to the corresponding word in the language section
to ensure a mutual understanding between machine and user. The
semantic memory stores facts necessary to recognize the context
in future moments.

– episodic memory : a sequence of graphs {G0, G1, G2, . . . Gt}, from
the oldest to the current one at time t, that represents the user’s
personal context at any moment in time as a knowledge graph
pointing to the elements in the semantic memory (occurenceOf
in Figure 6.3). This connection allows the system to retrieve all
past occurrences of an entity. The memory also stores the in-
put instance x used to compute the output context. In this way,
x is accessible by other modules, even in future iterations. For
instance, the reasoning component can detect possible data distri-
bution changes (see 6.2.3). In contrast to semantic memory, which
contains knowledge used for future context recognition, episodic
memory focuses on remembering information about the past.

The other components access this memory through the attention
function, which retrieves the relevant knowledge using a custom strat-
egy. The other components can update the LTM by calling updateLtm:
the recognized context is added to the episodic memory and the seman-
tic memory is updated if changes in the knowledge are detected by the
reasoning component.

• working memory (WM) is the reserved memory of each component
to perform its computations and the structure is component depen-
dent. In general, each component can have either a shared memory
with others or its own memory. For instance, the reasoning compo-
nent in Figure 6.2 stores the machine learning model in the working
memory. As will be explained in Section 6.3, the attention function
employs a machine learning model, which thus is stored in the reserved
WM. Each WM implements a different updating strategy, encoded in
updateWm function.

6.2.3 Reasoning

The reasoning component outputs the current personal situational context.
As described in Section 2.4, the classifier needs to be robust to annotation
noise and changes to the world and the user. The component performs the
following steps.

Recognizing the context. Given the knowledge retrieved from LTM and
the pre-processed data from SM, the context recognition module outputs the

6. Context Recognition Architecture 83

Me

My
laptop

what

Alice

with

Feature 1 Feature 2 Feature 3

Person Building Location Object

hyponymOf
hyponymOf

hyponymOf

Thing

Professor Student Office Phone Laptop

advise

workIn

own

Me

Alice

University of
Trento

partOf

Office 231

Time

Semantic Memory

Episodic Memory

My laptop

t0 t1 t2

Me

Office 231

where

Alice

with

Feature 1 Feature 2 Feature 3

Me

Office 231

where

Alice

with

Feature 1 Feature 2 Feature 3

occurenceOf

occurenceOf
occurenceOf

occurenceOf

Language

Entities

hyponymOfhyponymOfhyponymOf

Entity Types
Thing

Person

partOf

Office

Object

isA

Laptop

Building

Student

isA

advise

workIn

own

Professor

istanceOf

istanceOf istanceOf istanceOf

hasOccurence

hasOccurence

hasOccurence

Figure 6.3: Example of the long term memory (LTM). It is composed of
semantic memory and episodic memory.

6. Context Recognition Architecture 84

knowledge graph representing the current user’s context. External service
can exploit the recognized context.

Language alignment. If the machine is not confident about its prediction,
it asks the user to answer a few questions about his or her current context in
order to improve the predictor performance (see the arrow from reasoning
to interact function). A human-machine alignment of the world represen-
tation and language is crucial to ensure the mutual understanding between
machine and user. The possible inconsistencies between the user and ma-
chine labels are: (i) different but related words, e.g., they are synonyms or
are more/less general meaning; (ii) labels have multiple meanings and thus
need to be disambiguate; (iii) the user label is unknown to the machine; (iv)
the machine’s predicted label is wrong due to either irreducible and general-
ization error or outdated knowledge (see knowledge drift in Chapter 5); (v)
the user provides wrong answers due to, for instance, inattention, memory
bias or misunderstanding. The annotation mistakes badly impact the PCR
predictor performance.

Skeptical learning (SKL), presented in Chapter 3, is an interactive learn-
ing protocol that asks the user to revise the annotation when the machine
is suspicious about the incoming example (x,y). Challenging the user is
often enough to fix errors due to inattention. Hence, the ground-truth la-
bel is retrieved from the user. However, the machine can leverage SKL to
fix the inconsistencies described above, and not only unreliable user super-
vision. The user can disambiguate among the possible inconsistencies that
may arise in the language. The machine’s suspicion can be estimated using
a Bayesian (as in Chapter 3) or frequentist [161] approach. In addition to
cleaning incoming data, also past data that elude the skeptical check or are
included in the bootstrap data set can be cleaned (as in Chapter 4).

Knowledge alignment. The world and the user change over time, and
these changes also impact machine knowledge (e.g., the user relocates to a
new country and meets new friends). The changes affect the sensor data
distribution (e.g., different home GPS coordinates) and personal context ob-
servations. Moreover, it affects the knowledge stored in the LTM, which the
machine must align with the user’s knowledge. Given that the ground-truth
knowledge is unobserved, the challenge is to distinguish among the different
types of drift and update the KG and classifier accordingly. In Chapter 5,
we presented an approach that combines the drift detection phase, and clas-
sifier and graph adaptation with an interactive disambiguation phase. The
user knows what drift occurred, and thus, he or she is asked to describe the
change. If this is the case, the semantic memory is adapted to match the
detected drift: adding and removing entities and properties between them.

6. Context Recognition Architecture 85

6.2.4 Interaction

The personal context is ego-centric. Hence, the human-machine alignment
involves continuous interaction with the user. As described above, in case of
language divergence, the user is asked to fix it. In knowledge alignment, the
only way to disambiguate among different types of knowledge drift, which
can have the same footprint on the data distribution, is to interact with the
user herself. In these scenarios, the user satisfies the needs of the machine
to fix potential inconsistencies between what the machine has acquired and
what the user knows. However, the machine cannot bother the user exces-
sively, who may leave the system. Thus, the machine needs to learn when to
send the questions in order to maximize the quality and the number of re-
sponses, possibly by aggregating several kinds of questions that the machine
asks over time. The interact function in Figure 6.2 is the proxy between
the user and machine through which the components send the questions.
The interaction occurs through close-ended questions with a fixed number of
options, free-text input or chat-bot. Regardless of the input type, the lan-
guage alignment presented above leverages the semantic memory to ensure
that the components and the user communicate using common concepts. For
instance, the machine knows that “my office” and “office n. 231” refer to the
same user’s office.

6.2.5 Execution policy

The execution of the components happens according to the policy imple-
mented in scheduler in Figure 6.2. The scheduler establishes the condi-
tional sequence of the operations based on the output of other components
(e.g., the answer of the user triggers the update of the machine learning
model). This architecture allows the designer to implement custom policies
and adapt them to the available sensors and algorithms. For instance, the
policy can define an asynchronous execution. Potentially, the policy can be
changed at runtime.

6.2.6 Design principles

Given the explanation above about the components, the principles that
guided the architecture design are:

• evolutionary : the knowledge stored in the memories can be expanded
to remember new information. The machine operates in a lifelong set-
ting, which means that inputs, namely sensor data and user interac-
tions, arrive over time, partially and unordered. Each component needs
to evolve over time based on the new data. For instance, the context
recognition component needs to implement an incremental training
step to incorporate as soon as possible the new available sensor data

6. Context Recognition Architecture 86

and labels. The knowledge stored in the LTM is promptly updated
after detecting obsolete statements.

• adaptability : the components should be robust to noisy data and knowl-
edge change and thus adapt to reduce future misprediction. The user
is continuously involved in helping the machine to fix and adapt.

• compositionality : the architecture considers the variability in the kinds
of data, algorithms and composition. The parametrization of each
component helps to define custom policies to tackle new problems and
customization to other application domains. New components can be
added easily. For instance, a new SM and pre-processing procedure are
instantiated if a new sensor becomes available.

• modularity : each component can be easily replaced with another, im-
plementing a different computation. Indeed, context recognition, lan-
guage and knowledge alignment can be implemented using different
ML algorithms.

6.3 Personal context procedures

In the previous section, we presented the overall architecture of the context
recognition task, and we described the purpose of each component. This
section’s aim is to provide a possible architecture implementation The system
designer can choose different procedures according to the task at hand. In
the rest of this section, we detail, in a top-down approach, the pseudo-code
of all components.

6.3.1 Scheduler

The scheduler defines the sequence of operations, and Algorithm 4 presents
a sequential scheduler. The first step is the initialization of working mem-
ory, long-term memory and sensory memory with a given a-priori knowledge
graph G0 and machine learning parameters θ0. Next, readFromSm re-
trieves the raw input data from SM, given the set of input channel C and
the functions F to pre-process the loaded data. For each new input x, the
attention function computes the relevant subgraph H of the LTM given
the pre-processed input data x (line 5). This computation is based on an ML
algorithm, which model is stored in the working memory (line 6). The data
retrieved from SM and LTM are the input of the context recognition machine
learning algorithm (line 7), which outputs the personal context knowledge
graph ŷt. The language alignment fixes language inconsistencies between
user and machine, outputs the updated SKL model θr and revised context
y′
t. These outputs encode the changes to apply to WM r and LTM (lines 9

6. Context Recognition Architecture 87

Algorithm 4 Sequential scheduler.

Inputs: set of input channels C,
input data aggregation time frequency per channel k ∈ R|C|,
set of pre-processing functions applied to each input channel F ,
a-priori knowledge graph H0 and initial model θ0,
time interval between each loop execution j

1: LTM,WMr,WMm, SM←Initialization(H0, θ0, C)
2: for i = 1, 2, . . . do
3: X← readFromSm(C,F ,k, SM)
4: for every new example xt in X do
5: H, θm ← attention (xt,WMm,LTM)
6: WMm ← updateWm(WMm, θm) ▷ update attention model
7: ŷt ← ctxRecognition(xt,WMr, H) ▷ context prediction
8: y′

t, θ
r ← languageAlignment(WMr, H,xt, ŷt) ▷ SKL (Ch. 3)

9: WMr ← updateWm(WMr, θr)
10: LTM← updateLtm(WMr,LTM)
11: Ĥ, θr ← knowledgeAlignment(LTM,WMr) ▷ trckd (Ch. 5)
12: WMr

i ← updateWm(WMr, θr)
13: LTM← updateLtm(WMr

i ,LTM)
14: sleep(j)

and 10). After processing all new input x and before starting a new itera-
tion, the next step is to detect possible inconsistencies between the stored
knowledge and the one acquired with the new inputs (line 11). Finally, the
working memory and the long-term memory are updated and the process
restarts.

6.3.2 Initialization

Algorithm 5 initializes the SM, LTM and WM before starting the execution
the first time. The LTM is initialized with a given a-priori knowledge graph
H0, which, e.g., contains a large multilingual resource and initial knowledge
assertions about the user derived from an initial questionnaire. For each
input channel, a sensory memory is created. A WM is initialized for each
component that needs stateful computation. In our scenario, both atten-
tion and reasoning store their ML models in a WM, which are initialized
with the initial model’s parameters.

6. Context Recognition Architecture 88

Algorithm 5 The initialization procedure. The initial knowledge graph
G0 contains prior knowledge about the user and the world, θ0 are the initial
model parameters, C is the set of input channels.
Input: H0, θ0, C
Output: LTM,WMr,WMmSM
1: LTM← {H0} ▷ long term memory
2:
3: for c in C do
4: SMc ← ∅ ▷ sensory memory
5:
6: WMr ← θ0 ▷ working memory of reasoning
7: WMm ← θ0 ▷ working memory of attention

Algorithm 6 The perceive procedure reads data from the user’s devices
and external sources and stores them in the sensory memory. The maximum
size of the memory is defined by m ∈ N |C|. If the memory reaches the
maximum size, the oldest data is deleted to accommodate the newest.
Input: SM, C, m
Output: SM
1: C = chooseChannel(C)
2: for c in C do
3: Sc ← readNewValuesFromSensors()
4: SMc ← slide(SMc, Sc,mc)

6.3.3 Perceive the world and the user

The perceive function loads the raw data from device-specific API or third-
party services and stores it into the SM, ready to be processed. Algorithm 6
describes the steps. First, a subset of the input channels is chosen according
to the designer’s choice or dynamically, e.g., based on which data are more
informative for the prediction task at hand. Then, for each channel, new
sensor data are stored in SM. If the maximum memory size is reached, the
oldest examples are removed to accommodate new data (line 4). The algo-
rithm execution is not triggered by the scheduler but by data availability in
the external input devices. For instance, the sensor data transmission from
mobile devices and the server is conditioned by the availability of WiFi net-
works. At the same time, devices with low memory capacity send data more
frequently to avoid memory saturation. Given the reasons above, whenever
new data are available, they are loaded into the sensory memory. Thus, this
task is performed in parallel with the scheduler algorithm (Algorithm 4).

6. Context Recognition Architecture 89

Algorithm 7 The readFromSm procedure retrieves the data from the
sensory memory, generates the features and returns the matrix containing
the computed features, which will be stored in the working memory. A subset
of channels and feature functions are chosen. F = {f1, . . . , f |C|} is the set
of feature engineering functions.
Inputs: C,F ,k, SM
Output: X

1: Ct = chooseChannel(C)
2: for c in C do
3: Xc ← f c(SMc, kc)

4: X = [X1, . . . ,X|C|]

Algorithm 8 The attention procedure extracts from the LTM the most
relevant parts according to the current input data.
Input: x,LTM,WM
Output: H, θ

1: θ ← getModel(WM) ▷ retrieve the model
2: L← getLocations(LTM) ▷ retrieve spatial information from LTM
3: ŷ ← predict(θ, L,x) ▷ user’s location prediction
4: if uncertain about ŷ then
5: ỹ ← interact(x, ŷ) ▷ request label
6: θ ← trainModel(θ,x, ỹ)
7: else
8: ỹ ← ŷ

9: H ← scope(ỹ,LTM)

6.3.4 Relevance computation: load data from the memories

Data are loaded from SM and LTM before the reasoning step. The read-
FromSm function, presented in Algorithm 7, retrieves new sensor readings.
Since the input data are structured as an infinite stream, the data are dis-
cretized in time windows of size ki by the aggregating function f i, where i
is the i-th channel. For instance, every 30 minutes, the average latitude and
longitude of the user in the last 30 minutes are computed. Please note that
each channel can have a different aggregation frequency and pre-processing
function.

The attention function, detailed in Algorithm 8, selects the most rel-
evant part H of LTM given the current user’s location predicted from the
sensory data. The user’s location is a strong prior over the set of persons and
activities that can be recognized at a certain moment [35]. First, getModel
retrieves the machine learning model stored in WM. The getLocations
extract spatial information from LTM, namely entities, entity types and re-

6. Context Recognition Architecture 90

lations referring to locations, which are the target classes of the predict
function. predict outputs the most probable location ŷ. Then, the ma-
chine has to decide whether to request the location label of x. Intuitively,
if the machine is uncertain of its prediction, it queries the user. The query
decision can be implemented as a randomized choice (e.g., Equation (3.8) of
isgp) or by fixing a threshold on the probability of ŷ. The implementation
highly depends on the underlying ML algorithm used to recognize the loca-
tion. If the user is queried, then the model is incrementally trained with the
requested label. In alternative to the user interaction, the location can be
retrieved from third-party geolocalization services using GPS coordinates.

Given the location of the user, the scope function retrieves the set of
entities and relations in the LTM (language and entities) that were true at
least once in a certain location by navigating the sequence of past personal
contexts in the episodic memory. These entities and relations are the target
classes of the context recognition model, and this means that the probability
assigned to the other entities and relations is zero. These classes refer to the
social context and activities. For instance, all persons who have been at the
user’s home at least once are the target of the predictor when the user is at
home. This approach reduces the number of possible target classes of the
context prediction task, given that the number of entities and relations in
our lifelong setting increases over time. If the set of retrieved target classes
given the location is outdated (e.g., user’s roommate concept is not retrieved
when her location is home), then, during the knowledge alignment phase,
the LTM will be updated by adding the missing or outdated entities and
relations to the current location. In addition to the entities and relations,
their past occurrences, i.e., the input instances x, are also retrieved and made
available to the reasoning component (see Section 6.2.2). For instance, in
the example above, scope retrieves all x training examples collected when
the user was at home. Context recognition and language alignment train the
machine learning models on these instances.

6.3.5 Reasoning

The reasoning component is the core of the architecture. It performs context
recognition and ensures user-machine language and knowledge alignment.
The input of ctxRecognition is the relevant part of the LTM H and the
current input xt and the output is the personal context knowledge graph,
i.e., location, activity and social context.

The languageAlignment function takes in input the models stored
in WMr, the relevant graph H, the current instance xt and machine’s la-
bels ŷt. This function implements the skeptical learning algorithm (refer to
Chapter 3), which asks the user to provide labels about the context when the
machine is uncertain about its prediction. If the machine is suspicious about
the answer, the user is contradicted and asked to revise his or her feedback.

6. Context Recognition Architecture 91

Algorithm 9 updateWm

Input: WM, θ̂
Output WM
1: WM←WM ∪ {θ̂}

Algorithm 10 updateLtm
Input: WM,LTM
Output: LTM
1: G← computeDifference(LTM,WM)
2: LTM = LTM ∪ {G}

The language alignment ensures that the machine and user understand each
other, and it is performed on each new input instance in X. The output is
the revised context y′

t and the updated model θr.
After having aligned the language of all the current new input instances

in X, knowledgeAlignment detects possible knowledge drifts and, in
case, interacts with the user to adapt the knowledge Ĥ (cfr. Chapter 5).
The input is the current knowledge structure, which is stored in LTM, and
compares the data distribution of past instances, stored in the LTM and the
most recent instances, stored in reasoning working memory mr. If the two
data distributions diverge, the user is asked to modify the knowledge graph
and adjust it if some entities or relations are no longer valid.

6.3.6 Memories update

Algorithm 9 describes updateWm, which updates WM with the new model
parameters θ̂. Algorithm 10 details the updateLtm function. First, com-
puteDifference function computes the difference between the knowledge
graph modified by the reasoning component and stored in WM, and the
graph in the LTM. The graph with the differences is used to update the
semantic memory by propagating possible knowledge drift and the episodic
memory by appending a new personal situational context.

6.4 Related works

Zhang et al. [195] proposes an architecture to integrate SKL with an existing
backend infrastructure for mobile sensor data collection [186], also used in
our experimentation in the next chapter. Our architecture also deals with
knowledge drift and memory management, combined with procedures to let
the various components communicate among them.

Over the years, many works have presented frameworks to support the
development of context-aware applications [5], context-aware middleware on

6. Context Recognition Architecture 92

mobile devices [184], platforms to collect context information [58] or simply
sensor data or administering questionnaires [34, 29, 153, 169, 115]. Coutaz
et al. [41] propose a framework that combines a direct state graph that mod-
els the transitions between contexts and a general-purpose architecture for
the context-aware application. The latter is structured as multiple levels of
abstraction: a sensing layer dealing with numeric observations, a perception
layer handling symbolic observations, a situation and context identification
layer that identifies the context and the changes in the context, and an ex-
ploitation layer which allows applications to exploit the context information.
Here, the shifts are considered in terms of moving from one context to an-
other, causing changes in the set of entities and surrounding environment.
However, they do not consider the context recognition task in the wild and
potentially, our architecture can be seen as a plugin to enhance these sys-
tems. Moreover, they do not handle the knowledge, and their use cases are
not the lifelong user-machine alignment.

Context recognition can suffer from the increasing number of possible
target classes of the context dimensions (e.g., the increasing number of ac-
tivities learned over time). This is especially problematic when the machine
needs to discriminate among the possible activities that look similar in terms
of sensor data [35]. For this reason, we introduce the relevance computation
to perform the recognition only considering the relevant knowledge (Sec-
tion 6.3.4). In [132], the recognition system uses ontological reasoning based
on the user’s location to restrict the possible activities identified by the ac-
tivity recognition module. Out architecture can support different selection
strategies with the aim of recognizing all context dimensions and construct-
ing an egocentric knowledge graph. In addition to restricting the target
space, the contextual information can be used to select the sensors relevant
at a certain point in time [17].

6.5 Conclusion

We presented a modular architecture to support context recognition in the
wild by ensuring language alignment through isgp and knowledge alignment
through trckd. The architecture design takes inspiration from the recur-
rent neural network in order to highlight the sequentiality of the context
recognition task. Indeed, at any moment in time, the prediction is inferred
using only the relevant part of the acquired knowledge and the current sensor
data. The former is crucial in a lifelong user-machine symbiosis, given that
the information and knowledge grow over time.

Limitations. One drawback of this architecture is that it might be difficult
to test the whole execution flow. The interaction with the user happens
through question-answers iterations. In this work, we do not make any

6. Context Recognition Architecture 93

assumption about the answer format, which can be a label out of a fixed
list of options, free text or audio recording. Additional effort is needed to
convert the input into a format understandable by the machine. This work
does not detail the memory structure because is part of another research
direction. Future work needs to define possible forgetting policies of LTM,
such as removing entities in the semantic memory that are no longer used in
the context recognition task (e.g., the girl I met only once in a bar 10 years
ago).

7
Skeptical Learning evaluation in the wild

Contents
7.1 Introduction . 94
7.2 Use case . 96
7.3 Machine learning architecture 97
7.4 Experiment design 101
7.5 Results . 104
7.6 Conclusion . 110

Skeptical learning (SKL) addresses the problems of learning in the wild,
i.e., noisy supervision and task shift. In Chapter 3, we presented isgp by
evaluating it on synthetic and real-world data. However, this evaluation has
been run in a controlled environment. Namely, we were able to measure
the method performance in isolation, removing external factors like missing
data and supervision, and by having available an oracle. In this chapter, we
move the evaluation outside the lab by making the real users interact with
the machine. We test the algorithm in a social science research scenario,
described in Section 7.2. In this setting, isgp contributes by reducing the
number of questions to the user and ensuring a high-quality answer. To
this end, we introduce in Section 7.3 a simplified and working prototype
of the architecture presented in the previous chapter. This implementation
integrates isgp into the existing data collection infrastructure allowing it to
interact with the experiment participants and to obtain the personal device
sensor data. The evaluation involved university students who were asked
to install an application on their devices and to answer questionnaires over
a period of four weeks. We describe the experiment design in Section 7.4,
whereas Section 7.5 analyzes the collected data and the results.

7.1 Introduction

Personal assistants support and give suggestions to their users based on past
observations. Researchers in social sciences observe the participants in longi-
tudinal studies for a period of time by sending questionnaires through their

94

7. Skeptical Learning evaluation in the wild 95

personal devices. In these seemingly distant scenarios, the observations are
information about the user context collected from the person (see 2.1). The
context allows, in the former case, to train a model that provides the user
with the correct and timely suggestion and, in the latter, to infer social
practices and routines. They also have in common the trade-off between
the number of questions and the granularity of the collected information.
Too many questions cause the “respondent burden”, whereas an insufficient
number of questions does not allow the personal assistant and the social
researcher to collect information with needed granularity. Moreover, as out-
lined in Chapter 3, the answers can be noisy and thus affect the quality of
the data.

To solve the quality problem, we introduced isgp in Chapter 3 to de-
tect possible suspicious answers and to revise them. The work on isgp has
been evaluated on synthetic and real-world data sets, and there, an oracle
simulates the user annotator by providing the answers to the questions and
contradiction of the machine. This setting introduces assumptions about
the user and the data necessary to evaluate the algorithm w.r.t. state-of-
the-art competitors in isolation from external influences. For instance, the
examples arrive in an ordered sequence, and the user promptly answers the
questions without considering the user may leave the experiment or some
sensor data is not received because the sensor is disabled by the user (e.g.,
GPS coordinates) or not available on the device. The issues impact the pre-
dictive performance of the model. However, a solution that relies on user
interaction cannot be exempted from an evaluation with real users in the
wild. Most of the studies on interactive machine learning miss an evaluation
with real uses because it is time-consuming, expensive and requires a multi-
disciplinary approach (e.g., sociologist, experimental psychologist, expert in
human-computer interaction) .

To evaluate isgp in a real-world scenario, we apply isgp to the use case
of longitudinal studies in social sciences run through smartphones. The
expected benefits of isgp in this use case are to reduce the effort of the user
in filing the questions and an improvement in the answer quality. isgp learns
to answer the questions that are sent at regular intervals, asking about the
participant’s context and contradicting his or her when skeptical about the
answer. We designed and ran an experiment with students of the University
of Trento to evaluate isgp in recognizing the location of the participants. 1

The ultimate goal of isgp is to reduce the number of questions sent to the
user by asking the model to answer the questions about the user’s position.

Contributions. Summarizing, in this chapter, we:

• instantiate isgp part of the reference architecture into a real-working
1This experiment involves human subjects and has been approved by the Research

Ethics Committee of the University of Trento (protocol n. 2023-006).

7. Skeptical Learning evaluation in the wild 96

prototype and describe the technical solutions;

• introduce a social science use case in which isgp can contribute im-
proving the data collection in terms of duration of the experiment and
data quality;

• design the experiment and run it with university students for one
month.

7.2 Use case

In social sciences, researchers are interested in observing human social be-
haviour in daily life. Using personal mobile devices is a promising direction
allowing a continuous data collection that combines the traditional experi-
ence sampling method (ESM) [102] with passive sensor data [171]. ESM is
a longitudinal study in which the participants are asked to report their feel-
ings, environment or other behaviours multiple times per day. Researchers
send questionnaires over time to groups of people to survey routines and
social practices by collecting contextual information of the person. The con-
text can be defined by the location of the user, the performed activity and
the persons with whom he or she interacts. Originally, these surveys were
paper-based and given one or more times a day. Nowadays, as mobile de-
vices become more widespread, surveys are delivered through smartphones
and smartwatches, which allow to send questions more frequently over the
days and to collect also sensor data. This new collection approach allows for
gathering more granular data [25].

However, the increase in the number of questions causes the so called
“respondent burden”. The participants may stop answering the questions or
provide inaccurate answers. In addition, participants might make inadver-
tent or systematic errors when reporting their activities. This is caused by
inattention or, in the more complex cases, by active choices or biases that in-
duce the participants to alter the answer [38]. For instance, the participants
modify their behaviour due to the awareness of being observed (Hawthorne
effect [114]), do not understand the question, have memory biases [165], are
unwilling to report [39], or they report behaviours that are socially desirable,
i.e., conditioning.

The benefit of isgp in this scenario is twofold. First, the machine learning
model can answer these questions autonomously reducing the effort of the
participants. Second, the quality of the answers can be improved both to
obtain better data for the researchers and to train a more accurate model.

7. Skeptical Learning evaluation in the wild 97

iLog

Streambase

 GPS

 Sensor N

Real-Time Machine Learning System

REST

Users

3

Feature
Data

7 Evaluation and
Perfomance

Data

2Pre-processing
module

5b

5a

Interaction
module

Working
Memory

ISGP

1

IN

Questions OUT

Answers
5a

IN

4

Performance
monitoring

module

Researchers

OUT

Predictions 6OUT

Figure 7.1: Experiment architecture: the yellow dashed box contains the
implemented components and their technology. Red box is the learning
algorithm, whereas blue boxes are the components that provide support
services to it.

7.3 Machine learning architecture

This section outlines the architecture and describes the modules that allow
the integration of isgp with the existing data collection infrastructure (Sec-
tion 7.3.1). This architecture is the backend system used in the experiment
with real-user described in the next section Section 7.4. This system also
enables researchers to plug in their algorithms to evaluate them by reusing
the basic building blocks presented in this work. Figure 7.1 shows the overall
architecture. The yellow area highlights the contribution of this work and
the technological stack based on open-source tools. Essentially, the learning
algorithms retrieve the sensor readings from the iLog system and, after a
pre-processing phase, the data is used to train and recognize the context of
the user (i.e., location, activity and social context). The interactive learning
algorithm interacts with the user through iLog, and the predictions of the
learner are stored locally and sent back to iLog to be reused and shared with
external components.

Researchers who want to successfully validate in the real world their ML
algorithms need to deploy them in a production environment. To this end,
MLOps is the process that automates, operationalizes and maintains ma-
chine learning solutions in production [100]. The deployment of the model

7. Skeptical Learning evaluation in the wild 98

is only part of the process. Indeed, a lot of effort is required to keep the
machine learning system in execution [142]. In traditional batch machine
learning, the model is trained offline on a batch of data and then deployed in
production. Given the model degradation and concept drift, the model needs
to be retrained on new data and redeployed. In our scenario, however, the
learning happens in an online fashion, i.e., new data arrives as a stream, and
thus, the model continues to make predictions and is updated dynamically.
This setting poses additional challenges to the operationalization of the mod-
els like the lack of ground-truth labels, which become available with a certain
delay, and the risk of introducing performance degradation or errors [9, 10].
The architecture must support real-time training and predictions and thus
require additional strategies to support requirements like reproducibility and
monitoring [10]. The prototype follows the microservices architectural style
[49], in which each module is an independent service, and these services
communicate among themselves to provide the expected functionality. Each
service is a package, aka container, containing the code and all its dependen-
cies and can be on different computing environments. The management and
orchestration of these containers are delegated to Kubernetes2, which “is an
open-source system for automating deployment, scaling, and management of
containerized applications”.

7.3.1 iLog infrastructure

iLog is a system that collects personal information and generates streams
of data coming from smartphones and wearable devices [187]. The system
is designed to be easily integrated into the daily life of the users by run-
ning in the background to avoid affecting their routines. The app supports
multiple smartphone models, allowing it to not hinder the participants from
joining the experiments. The users install the mobile application on their
smartphones and smartwatches and authorize the collection of the sensor
values. Through the mobile application, the user answers questions using
different formats like text or pictures. In our scenario, we are interested in
acquiring information about the context dimensions (see Section 2.1). The
application collects hardware sensors such as accelerometer, gyroscope and
rotations, and software sensors such as phone calls, running application and
battery level. The system allows the data collection designer to configure
several aspects such as the collection frequency of each sensor and the ques-
tions text and answer options. The data are sent to the backend server,
called Streambase [186] in Figure 7.1, which stores the data streams, sends
questions to the users and retrieves the answers. Streambase is a collection
of input streams to the learning infrastructure and output streams recording
the outputs of the learning methods. These output streams allow other ex-

2Kubernetes website https://kubernetes.io/

https://kubernetes.io/

7. Skeptical Learning evaluation in the wild 99

ternal components to leverage the predictions made by the machine learning
algorithms. The streams are implemented using Apache Kafka3, an “open-
source distributed event streaming platform”. Each continuous flow of data
is called topic, which stores the data of either one sensor, questions, answers
or the output of the machine learning system. The components writing data
on a topic are called producers, whereas the components reading and pro-
cessing the data are called consumers. The topics contain a stream of data
that arrives over time and is processed incrementally by the machine learning
algorithms.

7.3.2 Pre-processing of the sensor data

The pre-processing module performs cleaning steps on the raw sensor data
and generates the features, which are sent to the machine learning algorithm.
The user’s devices send the sensor data to the Kafka topics in Streambase
(arrow 1 in Figure 7.1), and then the module aggregates the data into time
windows, e.g., of 30 minutes, and stores these feature vectors in the feature
store (arrow 2). In this work, we use PostgreSQL4. The feature vector con-
tains statistics about the sensors, e.g., the number of calls and the centroid
of the GPS coordinates. Moreover, it validates and cleans the data by fixing
errors or missing values. Given the streaming nature of the sensor data,
i.e., the data are continuously generated and processed, we leverage Apache
Flink, which “is a framework and distributed processing engine for stateful
computations over unbounded and bounded data streams”.5. This solution
is considered as data engineering best practice [10]. Researchers need to
define which and how the features are created since they have an impact
on the performance of the ML algorithm. The throughput of the module is
crucial since the amount of data generated by each user is high, and thus,
the computational and memory demands must be tuned accordingly.

7.3.3 Learning module

Multiple ML algorithms can be deployed in parallel to address different tasks.
For this experiment, we focus only on isgp. The goal of machine learning
modules is to recognize the user context from a continuous stream of feature
vectors. Thus, the learners implement an incremental learning strategy to
update the learned model over time efficiently. Since the user’s context is ego-
centric, i.e., it encodes the user’s point of view, each user has its own model,
and the data of one user is not used to train the model of another. Also, the
hyperparameters of the ML algorithms are tuned on a per-user basis. Each
ML algorithm stores the learned model in internal storage called working

3Apache Kafka https://kafka.apache.org/
4PostgreSQL website https://www.postgresql.org/
5Apache Flink website https://flink.apache.org/

https://kafka.apache.org/
https://www.postgresql.org/
https://flink.apache.org/

7. Skeptical Learning evaluation in the wild 100

memory. Each time the algorithm performs a training or prediction step for
a specific user, it loads the corresponding model from the internal storage
and requests feature vectors from the database (arrow 3). The stream of
predictions can be used by other modules or sent back to the user (arrow 3).
If we would add trckd, then the detected knowledge drifts would represent
a new stream.

7.3.4 User-machine interaction

The interactive machine learning algorithm sends questions or messages to
the user. In our use case, isgp sends requests to label incoming examples
and contradiction questions to ask the users to revise their label when the
machine detects a possible mistake in the answer. The communication with
the users occurs through the interaction module (arrows 5b) that is respon-
sible for delivering content to Streambase (arrow 5a) and then forwarded to
the users’ devices. The answers follow back the same path. All learning algo-
rithms need to minimize the number of interactions with the users and avoid
bothering them too often. This aspect is especially challenging when more
algorithms are run in parallel and send multiple questions. This condition
may generate a high number of questions, and the user may stop answering
them.

7.3.5 Performance monitoring

The researchers need to monitor the learning algorithms over time. To this
end, they define the set of relevant metrics to monitor the model perfor-
mances and these metrics are then stored in the evaluation and performance
database (arrows 4) and visible to the researchers. They have access to a
dashboard that loads and processes these metrics through the performance
monitoring module (arrow 7). The metrics measure both the model perfor-
mance, such as F1 score, recall and accuracy, and the infrastructure perfor-
mance, such as throughput and predictions per second. Evaluating stream
learning algorithms is challenging [62, 18]. Moreover, the ground-truth class
may not be available or can be delayed [79]. The ML algorithm handles a
stream of data, and the training and prediction phases are continuously exe-
cuted over time as new data becomes available. The monitoring is even more
important in this streaming setting because of the dynamic nature and con-
tinuous evolution of the model. Indeed, the model is incrementally updated
to integrate the new data coming from the user’s device. The monitoring
module collects and stores all metrics and measurements in Prometheus6 and
visualize them through the monitoring dashboards of Grafana7.

6Prometheus website https://prometheus.io/
7Grafana website https://grafana.com/

https://prometheus.io/
https://grafana.com/

7. Skeptical Learning evaluation in the wild 101

Intake Part 1 Part 2 Part 3 End

Invitation Questions
Sensors

Questions
Skeptical
questions
Sensors

Evaluation
questions
Sensors

Questionnaire
Focus group

1st
week

2nd
week

3rd
week

4th
week

5th
week

6th
week

Figure 7.2: Research protocol.

7.4 Experiment design

This section presents the research protocol of the isgp evaluation experi-
ment developed in a multi-disciplinary team composed of a sociologist and
software engineers and involved in previous data collection [72]. This exper-
iment evaluates isgp on the user case in Section 7.2 to recognize the spatial
dimension of the context and thus to answer this question. The experiment
focuses only on the spatial dimension for the following reasons:

• the location dimension is easier to recognize by the machine with re-
spect to the other dimension of the context;

• taking into account all context dimensions would require the user to
answer questions for each dimension, increasing the user effort and
making more difficult the evaluation of isgp;

• it is possible to compute the ground-truth position from the GPS co-
ordinates of the University of Trento and of the main home. The
ground-truth labels can then be compared with the labels provided by
the user.

The benefits of applying isgp in this setting are the reduction of the effort of
the participants and the improvement of the quality. This experiment makes
it possible to evaluate isgp in an out-of-the-lab environment.

7.4.1 Research protocol

Figure 7.2 outlines the phases of the research protocol. The overall length
of the experiment is six weeks, and four of them are allocated to the data
collection

Intake. The students of the Department of Information Engineering and
Computer Science of the University of Trento have been contacted through
email to present the research project and to provide instructions on how to

7. Skeptical Learning evaluation in the wild 102

join the experiment by installing the iLog app on Android devices. The in-
stallation on the personal device allows the collection of data that faithfully
describes their daily life and does not alter their daily routines. The par-
ticipating students must read and accept the privacy information through
the app and authorize the data collection for each sensor individually. The
incentive strategy includes bonuses as follows: d30 to all participants with
at least 75% completed questions, prizes of d100 to three randomly selected
most active participants and an additional d10 to those attending the focus
group.

Part 1. In this first data collection phase, the app starts collecting data
from the sensors, and the phase lasts one week. Moreover, every 30 minutes,
the app asks the participant’s location, which is the context dimension we
investigate (Figure 7.3a shows a screenshot of the question page in the app).
See the answer options in Table 7.2 with code Q1. isgp algorithm bootstraps
the learning on this data before transitioning to the next phase.

Part 2. For two weeks, the participant continues to answer the time diaries,
and in addition, the model starts challenging the participant on suspicious
labels. A label is suspicious if it does not equal the predicted labels and the
model is sufficiently confident that its label is correct (cfr. Chapter 3). The
participant can confirm the predicted labels, and in this case, the model was
able to detect that the label provided as the answer of the time diary was not
correct. If this is not the case, a new answer is provided. The model is refined
by considering this participant feedback. The model sends the contradictions
every evening at 7 pm all at once to concentrate the answering effort in single
and specific periods of time. See how the contradiction question is visualized
on the smartphone Figure 7.3b.

Part 3. The goal of the last week of the data collection is the evaluation
of the model predictions and, thus, the machine-participant alignment. The
participant needs to select the incorrect location labels from a list of predicted
labels (e.g., Figure 7.3c). This question is the only interaction with the
participant in this phase, and it occurs at 7 p.m.

Conclusion. In the last phase of the research protocol, the participant is
expected to fill out a questionnaire to collect socio-demographic information.
Among the participants who interact the most with the app by answering
the time diaries, ten are selected to participate in a short focus group. This
activity investigates general aspects like the participants’ interaction with
machine learning models and more specific aspects like the interaction with
isgp, how they felt being challenged by the machine and the evaluation of
the iLog app.

7. Skeptical Learning evaluation in the wild 103

(a) Time diary (b) Skeptical (c) Evaluation

Figure 7.3: The three types of questions shown on the iLog app.

7.4.2 Experiment setup

Sensors. The sensor values are continuously collected during the four weeks
of data collection. The full list of the collected sensors is presented in Ta-
ble A.1, which also reports their collection frequency. In this experiment, we
use a subset of the 30 sensors supported by the application to select those
sensors that are more informative in predicting the location and avoid drying
the battery excessively. The streams are temporarily stored on the device
and updated on the server periodically.

Features. The raw sensor data are aggregated in time windows of 30 min-
utes, which is the time between two consecutive annotations, by generating
feature vectors to input into the model. The features are described in Ta-
ble A.2.

Questions. Table 7.1 lists the questions. Time diaries are sent every 30
minutes, and the user is asked to indicate his or her location. The list of
location options (see Table 7.2) is derived from the guidelines for time use
surveys [56]. To reduce the user effort, the options are aggregated into main
categories. Skeptical questions are sent once a day, one for each suspicious
answer. One evaluation question is sent every day in the last phase and
reports the list of predicted labels. Then, the user has to select the incorrect

7. Skeptical Learning evaluation in the wild 104

Timing/
Condition

Question Answer options

Q1 1st week: every
30 minutes

Where are you now? see Table 7.2

Q2 2nd and 3rd
week at 7:00
pm

Is <time> <predicted
label> correct?

1. Yes
2. No

Q3 if Q2 = No Where are you at
<time>?

go to Q1

Q4 4th week at
7:00 pm

Select the labels that
are incorrect

1. <time> <predicted
label>

2. <time> <predicted
label>

3. . . .
4. All correct

Table 7.1: Structure of the questions. Q1 is the time diary, Q2 and Q3 are
the skeptical questions and Q4 is the evaluation question.

ones. If time diaries and questions are not answered within 8 and 12 hours,
respectively, then they expire and cannot be answered.

Hyperparamters. We employ the isgp presented in Chapter 3, and we
use the same hyperparamters of the evaluation in Section 3.5.2.

7.5 Results

This section presents the main results and statistics about the sensor data,
interaction with the participants and performance of isgp. The number of
participants that downloaded and installed the iLog application on their de-
vices is 77, 58 uploaded sensor data and answers. During the data collection,
we sent a questionnaire to collect demographics. We obtained the data from
42 participants, of which 90% consider themselves male and 10% female. All
the participants belong to the Department of Information Engineering and
Computer Science of the University of Trento. Most of the participants are
pursuing a bachelor’s degree (74%), and the remaining a master’s degree
(26%).

7. Skeptical Learning evaluation in the wild 105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
day

0

10

20

30

40

50

us

er
s

Figure 7.4: Number of users who uploaded sensor data by day of the
experiment. Red lines denote the three parts of the data collection.

0 20 40 60 80 100
%

bluetoothdevices_rssi_mean
bluetoothdevices_rssi_var

proximity_mean
proximity_var

orientation_avg_x
orientation_magnitude_var
orientation_magnitude_avg

orientation_avg_z
orientation_avg_y

accelerometer_avg_x
accelerometer_avg_y
accelerometer_avg_z

accelerometer_magnitude_avg
accelerometer_magnitude_var

magneticfield_avg_z
magneticfield_magnitude_avg
magneticfield_magnitude_var

magneticfield_avg_y
magneticfield_avg_x

battery_deltashift
time_sin_hour

time_cos_hour
location_total_distance

location_direct_distance
location_latitude

location_longitude
location_altitude

location_radius_of_gyration

Figure 7.5: Percentage of missing values for each numeric feature.

7. Skeptical Learning evaluation in the wild 106

Main category Subcategory

University 1. My faculty
2. Other faculty (UniTn)
3. Other

Home 1. Main home
2. Weekend home or holiday apart-

ment
3. Other people’s home

Travelling 1. Foot
2. Bicycle
3. Moped, motorcycle or motorboat
4. Passenger car
5. Other private transport mode
6. Public transport

Other 1. Restaurant, cafe, or pub
2. Shopping centers, malls, market,

other shops
3. Hotel, guesthouse, camping site
4. Street, square, city park
5. Sports center
6. Other

Table 7.2: List of answer options to the time diary question “Where are
you now?”.

7.5.1 Sensor data

The attrition effects are clearly visible in Figure 7.4 and caused the partic-
ipants to leave the experiment. During the first week, the server received
sensor data from 48 participants, whereas it decreased to 37 in the last week.
A second common problem in real-life datasets is the missing values. In this
experiment, the percentage of missing values for every numeric feature varies
considerably, as shown in Figure 7.5. The reasons for missing values can be
unsupported mobile devices or participants actively disabling one or more
sensors. For instance, the incompatibility of some Android versions caused
a large number of missing values for the features derived from Bluetooth.

7.5.2 Time diaries

The mobile application sends time diaries every 30 minutes. Figure 7.6 shows
the distribution of the answer over hours of the day and compares weekdays
and weekend days. As expected, the dataset is highly unbalanced given the

7. Skeptical Learning evaluation in the wild 107

0 5 10 15 20
hour

0

200

400

600

800

1000

an

sw
er

s

Traveling
Other
Uni
Home

0 5 10 15 20
hour

0

50

100

150

200

250

300

350

400

an

sw
er

s

Traveling
Other
Uni
Home

Figure 7.6: Number of time diary answers by hour of the day, divided by
weekdays (left) and weekends (right). The answers are aggregated by main
categories.

high number of labels related to home (main home, weekend home or other’s
home). The labels related to university are the ones that vary the most
between weekdays and weekends.

Figure 7.7 shows the time diary answers for each user over the first three
weeks. Each cell of the heatmap is an interval of 30 minutes, and the color
denotes the main category of the answer, i.e., university, home, travelling
and other. Blue cells are unanswered questions. Note how the answering
pattern varies across users. Top rows represent users who regularly provide
answers, whereas bottom users were less active and, at a certain point, left
the experiment. Users in the middle alternate days with answers and periods
where the question expired.

7.5.3 Skeptical questions

The time diary answers are used to train the isgp model, one for each user.
The model learns the mapping between sensor data and location labels.
As described in Chapter 3, mistaken labels badly affect the machine’s per-
formance. In phase two of the experiment (second and third week of the
experiment), the machine sends skeptical questions to contradict the user
whenever it is suspicious about the label. The suspicion is based on the fact
that the predicted label and user label are not compatible and the machine
is sufficiently confident of its prediction (cf. Section 3.4). Figure 7.8(left)
shows the total number of contradictions sent to the user split between an-
swered and not answered. The fraction of missing answers is high, namely
more than 50% for most of the days. The main causes are that the question
is not delivered because the phone was not connected to the Internet or users
did not respond in time. In the 25% of the answers, the machine prediction
was selected as correct, whereas in the rest of the answers, the user provided
a new label. The 80% of these labels of the latter case matches the label pro-
vided before being contradicted.Figure 7.8(right) plots the number of times

7. Skeptical Learning evaluation in the wild 108

MondayMonday Tuesday Wednesday Thursday Friday Saturday Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sunday Monday Tuesday Wednesday Thursday Friday Saturday SundayMonday
time intervals

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

us
er

s

Missing Uni Home Traveling Other

Figure 7.7: The main category of the time diary answers over the first
three weeks of the experiment. Rows: all users of the experiment. Columns:
time interval of 30 minutes (i.e., annotation). White vertical lines denote
each week.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
day

0

50

100

150

200

250

qu

es
tio

ns

answered
expired/empty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
day

0

5

10

15

20

25

30

35

40

%
 c

or
re

ct
 c

on
tra

di
ct

io
ns

Figure 7.8: Overall statistics about skeptical questions during the two
weeks of part 2 of the experiment. Left: number of questions with (blue) and
without (orange) an answer. Right: percentage of skeptical contradiction
in which the machine label is confirmed as correct by the user.

7. Skeptical Learning evaluation in the wild 109

1 2 3 4 5 6 7
day

0

5

10

15

20

25

30

an

sw
er

s

expired/empty
answered

Figure 7.9: Total number of evaluation questions sent to the user for each
day of the last week of the experiment. Orange: number of received answers.
Blue: number of questions without answer.

20 40 60 80 100
percentage of correct predicted labels

users

Figure 7.10: Percentage of predicted labels that are evaluated as correct
by the user. Each point is a user.

the machine was right.

7.5.4 Evaluation question

In the third and last phase, each day, the participant is asked to evaluate
the prediction of the machine. The questions, sent at 7 pm, report the list
of the locations labels predicted in the last 24 hours. Then, the user selects
those labels that she or he considers wrong. Figure 7.9 shows the number of
questions sent to the user for each day of the last week of the experiment.
The fraction of unanswered questions is more than 50% (blue bar). In 25%
of the received answers, the participants evaluated the prediction of that day
as all correct. Each day, participants have to evaluate 30 labels on average.
Figure 7.10 details, for each user, the percentage of the correct labels, which
average is 76%.

7. Skeptical Learning evaluation in the wild 110

0 100 200 300 400 500 600 700
time intervals

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 s

co
re

ISGP
GPnever

0

5

10

15

20

25

30

35

us

er
s

Figure 7.11: Progressive F1-score averaged over all users. Time intervals
are the 30-minute windows of two weeks. Shaded area is the standard de-
viation. Violet dashed line represents the number of users. Blue line is the
isgp, as presented in Chapter 3. Orange line: isgp variant in which the user
is never contradicted.

7.5.5 isgp performance

We compare the effectiveness of isgp with a variant that never contradicts
the user. Figure 7.11 reports the experimental results on these two methods
averaged over all users. The plot shows the progressive F1over the third and
fourth week for every 30-minute timeslot. Since the user label, which is used
as ground truth, or the input data are not always available, the number of
users varies over the time intervals (violet dashed line). The performance of
isgp and gpnever are overlapping, which shows that, on average, there was
no advantage in being sceptical. Indeed, in only 26% of the contradiction,
the machine was correctly skeptical about the participant supervision (see
Figure 7.8). The motivations are that the participants were attentive and
thus provided correct answers.

7.6 Conclusion

In this section, we designed and executed an experiment with real users in
the wild to evaluate isgp. The experiment was designed around a social
science use case. Specifically, social researchers run longitudinal studies in
which the participants provide information about their daily life multiple
times a day. In this scenario, isgp is employed during the data collection
to reduce the respondent burden by allowing the machine to automatically

7. Skeptical Learning evaluation in the wild 111

answer the questions whenever it is confident of its prediction. Here, isgp
ensures that the target labels, which are collected from the user and used to
train the model, are correct. The number of questions can thus be reduced,
allowing the researcher to increase the duration of data collection and miti-
gating the drop-out problem. In this experiment, we focused on the redesign
presented in Chapter 3. To run the experiment, we proposed and imple-
mented an architecture that integrates isgp learning methods in an existing
data collection platform, namely the iLog infrastructure.

Limitations. The results of this experiment cannot be generalised because
the participant’s sample is small and includes only students from one univer-
sity department. In this experiment, isgp has some difference with respect
to the version presented in Chapter 3. First, we removed the active queries,
and thus, during the first three weeks, time diaries were sent all the time to
ask for the label on all examples without considering the machine prediction
confidence. This was necessary because the sensor data are not sent in real-
time to the model on the server. This is also needed to collect a sufficient
number of labels to use as ground truth for the model evaluation. Second,
skeptical questions were sent at a fixed time because it was not possible
to send them close to the time diary they referred to. The reasons are, as
above, that the sensor data are received when the participant uploads them
and to avoid further disturbing the participant during the day. Of course,
this can introduce some memory biases, like forgetting the location where
the participant was at a specific time. The evaluation questions were sent
in the last week of the experiment and are meant to allow the user to select
wrongly predicted labels. However, participants may select only a subset of
the mistakes to avoid going through the full list of predictions. Regarding
skeptical questions, the participants may feel frustrated by the contradiction
and thus always reject the machine label. Future works should investigate
these psychological and behavioural implications that arise from interacting
with a machine that learns about your routines and contradicts your answers.

Discussion. The results show that in this experiment, the participants
were mostly consistent in the provided supervision. This might be explained
by the reduced impact of the respondent burden due to the short experiment
period and the fact there was only one question, which investigated the lo-
cation. In this scenario, being skeptical about the labels does not have an
impact on the model performance. However, the key point is that the partic-
ipants rated as correct the majority of the labels predicted in the evaluation
week, confirming the benefits of employing the model in longitudinal studies.
The benefits of sceptical learning arise when running longer data collections
with multiple questions. In addition, we observed a low fraction of answered
questions. Future experiment design should consider the factors that im-

7. Skeptical Learning evaluation in the wild 112

pact the answering of the questions [19] and have better scheduling of the
questions [196]. The model performance can be improved by implementing a
per-user hyperparameter tuning, which adapts the model to the specific user.
To this end, recent works proposed solutions for hyperparameter tuning on
data streams [172, 28] and AutoML for online learning [30].

8
Conclusion

Contents
8.1 Summary . 113
8.2 Discussion . 115
8.3 Future research development 117

8.1 Summary

In the first part of this work, we presented three algorithms to fix inconsis-
tencies in the data with the goal of performing personal context recognition
in the wild. Namely, the methods are robust to language and knowledge
changes that occur over the lifelong interaction between user and machine.

In Chapter 3, we proposed a solution to two challenges of deploying in-
teractive learners like personal assistants in the wild, i.e., noisy supervision
and the number of classes increases over time. To address these challenges,
we proposed a redesign of Skeptical Learning named isgp. The method
builds on Gaussian Processes to estimate the uncertainty used to ask the
annotator to reconsider her feedback when confident that an example is mis-
labeled. isgp improves over the previous methods by (i) labeling examples
far from known training examples, (ii) avoiding to become overconfident and
thus continuously contradicting the user, (iii) being a simple approach that
requires find-tuning or difficult hyper-parameter setting and (iv) learning
incrementally to incorporate new classes and examples. Our experimental
evaluation on synthetic data and real-world context data showed that isgp
works well in terms of query budget allocation, prediction quality and effi-
ciency on different levels of noise and as new classes are observed.

In Chapter 4, we extended the work in the previous chapter by allow-
ing the annotator to fix the noisy examples that eluded the cleaning step,
e.g., during the initial bootstrap phase. Having noisy training examples im-
pacts the predictive performance and also the ability to spot future noisy
supervision of examples that fall in regions affected by the noise. Thus, we
proposed cincer that, whenever it detects a suspicious example, select a

113

8. Conclusion 114

set of counter-examples in the training set that are maximally incompatible,
from the point of view of the model, with the suspicious example. In this
case, the user can provide relabel both or either the examples to resolve the
inconsistency. The counter-examples serve as an explanation of the model
suspicions and allow the user to fix the reasons for the suspicion. Leveraging
influence functions, cincer retrieves counter-examples that explain why the
example looks spacious, improve the model as much as possible if fixed and
are easier to interpret by the annotator. The method has been evaluated
on diverse data sets. The work focuses on visual inputs, which makes it
straightforward for the annotator to detect the inconsistency. In the case of
sensor data, the examples should be processed to make them understand-
able. For instance, the GPS coordinates can be displayed on a map. This
aspect is left as future work.

In Chapter 5, we introduced and focused on knowledge drift, a special
form of concept drift that occurs in hierarchical classification. Here, the
hierarchy represents the knowledge of the machine about the world and the
user, and it is encoded as a DAG where nodes are the different concepts and
the edge are the is-a relation among them. Under KD, the set of concepts,
their individual distributions and the relations change over time. To perform
classification in this setting, we detailed trckd, an approach built on kNN
combining three stages: drift detection, interactive disambiguation stage
in which the user informs the machine which type of KD occurred, and
adaptation of model and hierarchy. In PCR, the user knows if any KD
occurred and which kind. The experiments highlight that the three steps
above are necessary to achieve performance improvements. Failing to detect
and adapt to drifts implies systematic mis-predictions on future examples.
Future investigations will focus on other learning architectures like neural
networks and how to handle other types of relations besides is-a, e.g., by
converting them to DAG [73].

In the second part, how to move PCR from the controlled environment
of the lab to the real world. In Chapter 6, we proposed a reference ar-
chitecture that integrates language and knowledge alignment addressed by
skeptical learning and knowledge drift methods, respectively. As described
above, PCR is achieved by addressing multiple aspects, namely noisy labels,
knowledge drift and interaction with the user. The compositionality and
modularity of the architecture allow the implementation of diverse policies
to load the necessary data from the memory, to pre-process the data coming
from the sensor and to update the knowledge in the memory. This is key in
a lifelong scenario where the recognition task evolves, and obsolete or irrel-
evant data should be pruned over time to keep only what is needed to solve
the task at hand.

In Chapter 7, we instantiate the architecture above and isgp in a con-
crete use case, namely social science data collection. The goal is to investi-
gate the benefits of PCR in longitudinal studies. The benefits are twofold.

8. Conclusion 115

First, it can reduce the respondent burden by letting the machine answer the
questions asking about the participants’ contexts. Second, it improves the
answers quality by asking the user to revise suspicious answers. To this end,
we ran a real-world experiment with university students interacting with
isgp.

8.2 Discussion

8.2.1 Benefits and limitations

The ML approaches of this work, i.e., isgp, trckd and cincer, have been
presented with the goal of improving context recognition in the wild. How-
ever, they can be applied in different domains characterized by human su-
pervision, incremental learning and knowledge changes. The latter affects
almost all tasks, but in some scenarios, the changes are gradual and thus can
be neglected. Possible applications are quantified self [108], i.e., self-tracking
personal activities and daily life, citizen science and data curation.

The central claim of this work is that detecting and adapting to changes
in knowledge and language is crucial to build robust models. Recognizing
the correct context is necessary to provide useful services to empower human
intelligence with artificial intelligence. This robustness has been obtained by
following a model-centric paradigm focusing on building new models and
losses [120]. This work shifts to data-centric solutions [189] that fix misla-
beled labels and update training examples labels in case of drifts. Thus, the
ML model is used to perform data cleaning and error fixing [40] to improve
the performance.

One limitation of the work is that the human evaluation has been per-
formed only on Skeptical Learning. trckd and cincer miss an evaluation
with real users. Another future work direction is exploring how to visual-
ize counter-examples selected by cincer when working on tabular data and
sensor data. When working on images, the example is shown directly to
the annotator, but in the case of tabular data, each feature might not have
immediate semantic meaning.

8.2.2 Ethics statement and societal impact

Following the approach applied by several conferences1 in the machine learn-
ing field, we communicate possible and known societal impacts of this work.
The approaches conceived in this work, namely isgp, trckd and cincer
are interactive learning approaches that leverage human feedback to im-
prove the reliability of the predictions. The risk is that the methods annoy
the user by asking an excessive number of questions. In the case of isgp,

1E.g., NeurIPS Code of Ethics https://web.archive.org/web/20230904142928/
https://neurips.cc/public/EthicsGuidelines

https://web.archive.org/web/20230904142928/https://neurips.cc/public/EthicsGuidelines
https://web.archive.org/web/20230904142928/https://neurips.cc/public/EthicsGuidelines

8. Conclusion 116

this is mitigated by increasing the probability of contradicting the user only
when the model is sufficiently confident in its own predictions (Section 3.4.2).
Moreover, isgp prevents situations in which the model fails to learn because
refuses to request labels far from the training sets and continuously querying
the user regardless of her past annotation correctness. Regarding trckd,
the drift detection threshold τ can be fine-tuned to reduce the false positive
detection rate and thus the number of disambiguation interactions, at the
cost of adapting to the drift with increased delay. The proposed approaches
are susceptible to adversarial attacks like providing corrupted supervisions
to alter the model and drive its predictions malignant goals. For this reason,
the model must be protected by restricting the access to the model by the
authorized user only, as done in safety-critical applications.

The methods implement an egocentric view, namely the perspective of
the user, to provide reliable and useful services to the user, who acts col-
laboratively to maximize the benefits of using them. The egocentric view is
enabled by training the model on the sensor data of the user’s devices and
her or his answer to the questions. In addition, the interaction with the user
to fix noisy annotations and disambiguate among the drift contributes to
keep the machine aligned with the user. These approaches prevent possible
bias against people of a certain gender, race, sexuality, or other protected
characteristics. Since the models are user-specific and leveraged by the user
herself, there are no discrimination issues, such as access to healthcare and
education. Possible discrimination may arise from the point of view of the
accessibility of the technology and services, issues addressed with careful in-
terface design. On the other hand, egocentric data may be exploited to build
a user profile, for surveillance reasons, to predict protected categories or to
endanger individual well-being. For these reasons, the data must be stored
on secure and privacy-preserving data storage that implements encryption
and anonymization to reduce the risk of data leakage or theft. Solutions
like Solid2 enable the discovery and sharing of personal data, protecting the
user’s privacy. The users store their personal data in one or more decentral-
ized personal online data stores, managed by trusted providers or self-hosted.
the user grants access to the applications, which can access specific data by
leveraging interoperable data formats and protocols. Hence, the user keeps
the ownership and control of the data. In addition to the data, the machine
learning models must be protected and thus stored and run on the user’s
machine rather than executing them on a central server.

The research detailed in Chapter 7 involved human participants interact-
ing with a technical system, and thus, the work went through the approval
process of the Research Ethics Committee of the University of Trento. The
participants were at least 18 years old and provided consent prior to partic-
ipating in the experiment. At the end of the data collection, the user iden-

2Solid (Social Linked Data) https://solidproject.org/

https://solidproject.org/

8. Conclusion 117

tifiers are anonymized, and the connectivity sensors (WiFi and Bluetooth)
are hashed. The data are minimized by using techniques like summarization
and aggregation, ensuring that the data can still be used to fulfil the research
purpose. The processed data are then archived in protected repositories.

8.3 Future research development

Each chapter that describes the contributions reports the future work and
potential improvement of the presented approaches. Here, we focus on a more
general discussion of new research directions. Traditional interactive learning
and active learning approaches investigate which examples interact with the
annotator to retrieve or fix the label. One interesting direction is to find the
best time of the day or context for interacting. This would have to consider
both past behaviour and user preferences. For instance, the user may be
more willing to answer before going to bed, and the machine should avoid
sending questions when driving. In this work, the user was the source of the
feedback, given the egocentric requirement of PCR. However, with the goal of
reducing the respondent burden, third parties can be involved, such as friends
or external services (e.g., using weather forecasting to refine the confidence
of the machine on outdoor activity labels by decreasing their probability
during rainy days). One limitation of learning from streams is the cold start
problem. Indeed, at the beginning, a limited amount of data is available and
acquiring enough data requires from days to weeks. Transfer learning can
overcome this [170]. The initial model is taken from another person with a
profile similar to the reference user. Then, the model is refined and adapted
over time by leveraging the technique presented in this work. However, a
few open questions arise concerning which part of the model and knowledge
hierarchy to transfer and how to define the profile of the user. Further work
should focus on how to deal with very unbalanced context labels (e.g., home
is the most frequent answer to the time diaries in results of Section 7.5.2) and
sparse data such as missing labels and disabled sensors. These issues impact
the model performance. Regarding the explainable skepticism in Chapter 4,
it can be further evaluated on images collected from egocentric cameras (e.g.,
[77]). In this case, also the smart glasses become a source of data to be used
to identify contextual information.

Bibliography

[1] Zahraa S Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, and
Shonali Krishnaswamy. “Activity recognition with evolving data streams:
A review”. In: ACM Computing Surveys (CSUR) (2018) (cit. on p. 16).

[2] Zahraa S Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, and
Shonali Krishnaswamy. “AnyNovel: Detection of novel concepts in
evolving data streams: An application for activity recognition”. In:
Evolving Systems (2016) (cit. on p. 17).

[3] Naman Agarwal, Brian Bullins, and Elad Hazan. “Second-order stochas-
tic optimization for machine learning in linear time”. In: The Journal
of Machine Learning Research (2017) (cit. on p. 46).

[4] Dana Angluin and Philip Laird. “Learning from noisy examples”. In:
Machine Learning (1988) (cit. on pp. 31, 37).

[5] Gregory D. Abowd Anind K. Dey and Daniel Salber. “A Concep-
tual Framework and a Toolkit for Supporting the Rapid Prototyp-
ing of Context-Aware Applications”. In: Human–Computer Interac-
tion (2001). doi: 10.1207/S15327051HCI16234_02. eprint: https:
//doi.org/10.1207/S15327051HCI16234_02. url: https://doi.
org/10.1207/S15327051HCI16234_02 (cit. on p. 91).

[6] Wageesha Bangamuarachchi, Anju Chamantha, et al. “Sensing Eating
Events in Context: A Smartphone-Only Approach”. In: IEEE Access
(2022) (cit. on p. 17).

[7] Allan de Barcelos Silva, Marcio Miguel Gomes, et al. “Intelligent per-
sonal assistants: A systematic literature review”. In: Expert Systems
with Applications (2020) (cit. on p. 2).

[8] Gianni Barlacchi, Christos Perentis, et al. “Are you getting sick? Pre-
dicting influenza-like symptoms using human mobility behaviors”. In:
EPJ data science (2017) (cit. on p. 17).

[9] Mariam Barry, Albert Bifet, and Jean-Luc Billy. “StreamAI: Deal-
ing with Challenges of Continual Learning Systems for Serving AI
in Production”. In: 2023 IEEE/ACM 45th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). IEEE. 2023 (cit. on p. 98).

[10] Mariam Barry, Jacob Montiel, et al. “StreamMLOps: Operationaliz-
ing Online Learning for Big Data Streaming & Real-Time Applica-
tions”. In: 2023 IEEE 39th International Conference on Data Engi-
neering (ICDE). IEEE. 2023 (cit. on pp. 98, 99).

118

https://doi.org/10.1207/S15327051HCI16234_02
https://doi.org/10.1207/S15327051HCI16234_02
https://doi.org/10.1207/S15327051HCI16234_02
https://doi.org/10.1207/S15327051HCI16234_02
https://doi.org/10.1207/S15327051HCI16234_02

BIBLIOGRAPHY 119

[11] Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziu-
gaite. “RelatIF: Identifying Explanatory Training Examples via Rel-
ative Influence”. In: The 23rd International Conference on Artificial
Intelligence and Statistics. 2020 (cit. on pp. 48, 49, 53).

[12] Samyadeep Basu, Philip Pope, and Soheil Feizi. “Influence functions
in deep learning are fragile”. In: arXiv preprint arXiv:2006.14651
(2020) (cit. on p. 47).

[13] Samyadeep Basu, Xuchen You, and Soheil Feizi. “Second-Order Group
Influence Functions for Black-Box Predictions”. In: arXiv preprint
arXiv:1911.00418 (2019) (cit. on p. 55).

[14] Jonathan Baxter. “A model of inductive bias learning”. In: JAIR
(2000) (cit. on p. 37).

[15] Abhijit Bendale and Terrance Boult. “Towards open world recogni-
tion”. In: CVPR. 2015 (cit. on p. 37).

[16] Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. “Impor-
tance weighted active learning”. In: ICML. 2009 (cit. on p. 28).

[17] G. Biegel and V. Cahill. “A framework for developing mobile, context-
aware applications”. In: Second IEEE Annual Conference on Perva-
sive Computing and Communications, 2004. Proceedings of the. 2004.
doi: 10.1109/PERCOM.2004.1276875 (cit. on p. 92).

[18] Albert Bifet, Gianmarco de Francisci Morales, et al. “Efficient online
evaluation of big data stream classifiers”. In: Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and
data mining. 2015 (cit. on p. 100).

[19] Ivano Bison and Haonan Zhao. Factors Impacting the Quality of User
Answers on Smartphones. 2023. arXiv: 2306.00627 [cs.HC] (cit. on
p. 112).

[20] Andrea Bontempelli, Marcelo Rodas Britez, et al. “Lifelong Personal
Context Recognition”. In: First international workshop on Human-
Centered Design of Symbiotic Hybrid Intelligence co-located with The
first International Conference on Hybrid Human-Artificial Intelligence
(HHAI) (2022) (cit. on p. 2).

[21] Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini, and Ste-
fano Teso. “Human-in-the-loop handling of knowledge drift”. In: Data
Mining and Knowledge Discovery (2022) (cit. on p. 57).

[22] Andrea Bontempelli, Stefano Teso, Fausto Giunchiglia, and Andrea
Passerini. “Learning in the Wild with Incremental Skeptical Gaussian
Processes”. In: IJCAI. 2020 (cit. on pp. 20, 41, 44, 51, 73).

https://doi.org/10.1109/PERCOM.2004.1276875
https://arxiv.org/abs/2306.00627

BIBLIOGRAPHY 120

[23] Terrance E Boult et al. “Learning and the Unknown: Surveying Steps
toward Open World Recognition”. In: AAAI. 2019 (cit. on pp. 15, 23,
36, 37, 73).

[24] Paolo Bouquet and Fausto Giunchiglia. “Reasoning about theory ad-
equacy. a new solution to the qualification problem”. In: Fundamenta
Informaticae (1995) (cit. on p. 2).

[25] Matteo Busso. “The iLog methodology for fostering valid and reliable
Big Thick Data”. PhD thesis. University of Trento, 2024 (cit. on p. 96).

[26] Luca Canzian and Mirco Musolesi. “Trajectories of depression: un-
obtrusive monitoring of depressive states by means of smartphone
mobility traces analysis”. In: Proceedings of the 2015 ACM interna-
tional joint conference on pervasive and ubiquitous computing. 2015
(cit. on p. 139).

[27] Yinzhi Cao and Junfeng Yang. “Towards making systems forget with
machine unlearning”. In: 2015 IEEE Symposium on Security and Pri-
vacy. 2015 (cit. on pp. 64, 75).

[28] Matthias Carnein, Heike Trautmann, Albert Bifet, and Bernhard
Pfahringer. “confstream: Automated algorithm selection and config-
uration of stream clustering algorithms”. In: Learning and Intelli-
gent Optimization: 14th International Conference, LION 14, Athens,
Greece, May 24–28, 2020, Revised Selected Papers 14. Springer. 2020
(cit. on p. 112).

[29] Scott Carter, Jennifer Mankoff, and Jeffrey Heer. “Momento: sup-
port for situated ubicomp experimentation”. In: Proceedings of the
SIGCHI conference on Human factors in computing systems. 2007
(cit. on p. 92).

[30] Bilge Celik, Prabhant Singh, and Joaquin Vanschoren. “Online au-
toml: An adaptive automl framework for online learning”. In: Machine
Learning (2023) (cit. on p. 112).

[31] Nicolo Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. “Worst-
case analysis of selective sampling for linear classification”. In: JMLR
(2006) (cit. on pp. 28, 29).

[32] Jiaoyan Chen, Freddy Lécué, Jeff Pan, and Huajun Chen. “Learn-
ing from ontology streams with semantic concept drift”. In: Twenty-
Sixth International Joint Conference on Artificial Intelligence. In-
ternational Joint Conferences on Artificial Intelligence Organization.
2017 (cit. on p. 73).

[33] Kaixuan Chen, Dalin Zhang, et al. “Deep learning for sensor-based
human activity recognition: Overview, challenges, and opportunities”.
In: ACM Computing Surveys (CSUR) (2021) (cit. on p. 2).

BIBLIOGRAPHY 121

[34] Jonas Chromik, Kristina Kirsten, et al. “SensorHub: Multimodal sens-
ing in real-life enables home-based studies”. In: Sensors (2022) (cit.
on p. 92).

[35] Gabriele Civitarese, Riccardo Presotto, and Claudio Bettini. “Context-
driven active and incremental activity recognition”. In: arXiv preprint
arXiv:1906.03033 (2019) (cit. on pp. 89, 92).

[36] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van
Schaik. “EMNIST: Extending MNIST to handwritten letters”. In:
IJCNN. 2017 (cit. on p. 65).

[37] R Dennis Cook and Sanford Weisberg. Residuals and influence in
regression. New York: Chapman and Hall, 1982 (cit. on pp. 41, 45).

[38] Piergiorgio Corbetta. Social research: Theory, methods and techniques.
Sage, 2003 (cit. on p. 96).

[39] Louise Corti. “Using diaries in social research”. In: (1993) (cit. on
pp. 41, 96).

[40] Pierre-Olivier Côté, Amin Nikanjam, et al. “Data Cleaning and Ma-
chine Learning: A Systematic Literature Review”. In: arXiv preprint
arXiv:2310.01765 (2023) (cit. on p. 115).

[41] Joëlle Coutaz, James L Crowley, Simon Dobson, and David Garlan.
“Context is key”. In: Communications of the ACM (2005) (cit. on
pp. 3, 9, 12, 92).

[42] Rocco De Rosa, Thomas Mensink, and Barbara Caputo. “Online open
world recognition”. In: arXiv preprint arXiv:1604.02275 (2016) (cit.
on p. 37).

[43] Florenc Demrozi, Graziano Pravadelli, Azra Bihorac, and Parisa Rashidi.
“Human activity recognition using inertial, physiological and environ-
mental sensors: A comprehensive survey”. In: IEEE access (2020) (cit.
on p. 16).

[44] Jaka Demšar and Zoran Bosnić. “Detecting concept drift in data
streams using model explanation”. In: Expert Systems with Applica-
tions (2018) (cit. on pp. 73, 75).

[45] G Denevi, C Ciliberto, D Stamos, and M Pontil. “Incremental learning-
to-learn with statistical guarantees”. In: UAI. 2018 (cit. on p. 37).

[46] Thomas Dietterich. “Steps toward robust artificial intelligence”. In:
AI Magazine (2017) (cit. on pp. 3, 15, 21).

[47] Kaize Ding, Jundong Li, and Huan Liu. “Interactive anomaly de-
tection on attributed networks”. In: Proceedings of the twelfth ACM
international conference on web search and data mining. 2019 (cit. on
p. 73).

BIBLIOGRAPHY 122

[48] Pinar Donmez and Jaime G Carbonell. “Proactive learning: cost-
sensitive active learning with multiple imperfect oracles”. In: Pro-
ceedings of the 17th ACM conference on Information and knowledge
management. 2008 (cit. on p. 37).

[49] Nicola Dragoni, Saverio Giallorenzo, et al. “Microservices: yesterday,
today, and tomorrow”. In: Present and ulterior software engineering
(2017) (cit. on p. 98).

[50] Dheeru Dua and Casey Graff. UCI Machine Learning Repository.
2017. url: http://archive.ics.uci.edu/ml (cit. on p. 50).

[51] Bruce Edmonds. “Context in social simulation: why it can’t be wished
away”. In: Computational and Mathematical Organization Theory (2012)
(cit. on p. 9).

[52] Luca Erculiani, Andrea Bontempelli, Andrea Passerini, and Fausto
Giunchiglia. “Egocentric Hierarchical Visual Semantics”. In: Proceed-
ings of the Second International Conference on Hybrid Human-Machine
Intelligence (HHAI 23). 2023 (cit. on p. 13).

[53] Luca Erculiani, Fausto Giunchiglia, and Andrea Passerini. “Continual
Egocentric Object Recognition”. In: ECAI 2020. IOS Press, 2020 (cit.
on p. 13).

[54] Miikka Ermes, Juha Pärkkä, Jani Mäntyjärvi, and Ilkka Korhonen.
“Detection of daily activities and sports with wearable sensors in con-
trolled and uncontrolled conditions”. In: IEEE transactions on infor-
mation technology in biomedicine (2008) (cit. on p. 16).

[55] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
“A density-based algorithm for discovering clusters in large spatial
databases with noise.” In: KDD. 1996 (cit. on p. 35).

[56] eurostat. Harmonised European Time Use Surveys (HETUS). 2018.
url: https://ec.europa.eu/eurostat/web/products-manuals-
and-guidelines/-/ks-gq-20-011 (cit. on p. 103).

[57] Anna Ferrari, Daniela Micucci, Marco Mobilio, and Paolo Napoletano.
“Deep learning and model personalization in sensor-based human ac-
tivity recognition”. In: Journal of Reliable Intelligent Environments
(2023) (cit. on p. 17).

[58] Denzil Ferreira, Vassilis Kostakos, and Anind K. Dey. “AWARE: Mo-
bile Context Instrumentation Framework”. In: Frontiers in ICT (2015).
doi: 10.3389/fict.2015.00006. url: https://www.frontiersin.
org/articles/10.3389/fict.2015.00006 (cit. on p. 92).

[59] Timo Flesch, Jan Balaguer, et al. “Comparing continual task learning
in minds and machines”. In: Proceedings of the National Academy of
Sciences (2018) (cit. on p. 74).

http://archive.ics.uci.edu/ml
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-20-011
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-20-011
https://doi.org/10.3389/fict.2015.00006
https://www.frontiersin.org/articles/10.3389/fict.2015.00006
https://www.frontiersin.org/articles/10.3389/fict.2015.00006

BIBLIOGRAPHY 123

[60] Benoît Frénay and Michel Verleysen. “Classification in the presence
of label noise: a survey”. In: IEEE Trans. Neural Netw. Learn. Syst
(2014) (cit. on pp. 23, 37, 41).

[61] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Sparse in-
verse covariance estimation with the graphical lasso”. In: Biostatistics
(2008) (cit. on p. 71).

[62] Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. “Issues
in evaluation of stream learning algorithms”. In: Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining. 2009 (cit. on p. 100).

[63] João Gama, Indrė Žliobaitė, et al. “A survey on concept drift adap-
tation”. In: ACM Comput Surv (2014) (cit. on pp. 3, 57, 59–61, 72).

[64] Nan Gao, Mohammad Saiedur Rahaman, Wei Shao, and Flora D
Salim. “Investigating the reliability of self-report data in the wild: The
quest for ground truth”. In: Adjunct Proceedings of the 2021 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2021 ACM International Symposium on Wear-
able Computers. 2021 (cit. on p. 3).

[65] Xin Geng and Kate Smith-Miles. “Incremental Learning”. In: Ency-
clopedia of Biometrics. Boston, MA: Springer US, 2009. isbn: 978-0-
387-73003-5. doi: 10.1007/978-0-387-73003-5_304. url: https:
//doi.org/10.1007/978-0-387-73003-5_304 (cit. on p. 16).

[66] Amirata Ghorbani and James Zou. “Data shapley: Equitable valua-
tion of data for machine learning”. In: International Conference on
Machine Learning. PMLR. 2019 (cit. on p. 55).

[67] Aritra Ghosh, Naresh Manwani, and PS Sastry. “On the robustness of
decision tree learning under label noise”. In: Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer. 2017 (cit. on
p. 37).

[68] Christophe Giraud-Carrier. “A note on the utility of incremental learn-
ing”. In: Ai Communications (2000) (cit. on p. 16).

[69] Fausto Giunchiglia. “Contextual reasoning”. In: Epistemologia, special
issue on ’I Linguaggi e le Macchine’ (1993) (cit. on pp. 2, 9).

[70] Fausto Giunchiglia, Khuyagbaatar Batsuren, and Gabor Bella. “Un-
derstanding and Exploiting Language Diversity”. In: Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence (IJCAI-17). 2017 (cit. on pp. 4, 81).

[71] Fausto Giunchiglia, Enrico Bignotti, and Mattia Zeni. “Personal con-
text modelling and annotation”. In: PerCom. 2017 (cit. on pp. 10, 20,
57).

https://doi.org/10.1007/978-0-387-73003-5_304
https://doi.org/10.1007/978-0-387-73003-5_304
https://doi.org/10.1007/978-0-387-73003-5_304

BIBLIOGRAPHY 124

[72] Fausto Giunchiglia, Ivano Bison, et al. “A worldwide diversity pilot on
daily routines and social practices (2020)”. In: (2021) (cit. on p. 101).

[73] Fausto Giunchiglia, Marcelo Rodas Britez, Andrea Bontempelli, and
Xiaoyue Li. “Streaming and learning the personal context”. In: arXiv
preprint arXiv:2108.08234 (2021) (cit. on p. 114).

[74] Fausto Giunchiglia and Mattia Fumagalli. “Teleologies: Objects, ac-
tions and functions”. In: International conference on conceptual mod-
eling. Springer. 2017 (cit. on p. 10).

[75] Fausto Giunchiglia, Alessio Zamboni, Mayukh Bagchi, and Simone
Bocca. “Stratified data integration”. In: arXiv preprint arXiv:2105.09432
(2021) (cit. on pp. 10, 81).

[76] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi.
“Understanding individual human mobility patterns”. In: nature (2008)
(cit. on p. 139).

[77] Kristen Grauman, Andrew Westbury, et al. “Ego4d: Around the world
in 3,000 hours of egocentric video”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022 (cit.
on p. 117).

[78] Arthur Gretton, Karsten M Borgwardt, et al. “A kernel two-sample
test”. In: JMLR (2012) (cit. on pp. 57, 62).

[79] Maciej Grzenda, Heitor Murilo Gomes, and Albert Bifet. “Delayed
labelling evaluation for data streams”. In: Data Mining and Knowledge
Discovery (2020) (cit. on p. 100).

[80] Christophe Guerét. “Knowledge Graphs in support of Human-Machine
intelligence”. In: The first International Conference on Hybrid Human-
Artificial Intelligence (HHAI2022) (2022). url: https://www.hhai-
conference.org/wp- content/uploads/2022/06/hhai- 2022_
paper_67.pdf (cit. on p. 78).

[81] Ramanathan Guha, Vineet Gupta, Vivek Raghunathan, and Ramakr-
ishnan Srikant. “User modeling for a personal assistant”. In: Proceed-
ings of the Eighth ACM International Conference on Web Search and
Data Mining. 2015 (cit. on p. 2).

[82] Riccardo Guidotti, Anna Monreale, et al. “A Survey of Methods for
Explaining Black Box Models”. In: ACM Comput. Surv. (Aug. 2018)
(cit. on p. 4).

[83] Han Guo, Nazneen Fatema Rajani, et al. “FastIF: Scalable Influ-
ence Functions for Efficient Model Interpretation and Debugging”.
In: arXiv preprint arXiv:2012.15781 (2020) (cit. on p. 49).

[84] Shengbo Guo, Scott Sanner, and Edwin V Bonilla. “Gaussian process
preference elicitation”. In: NeurIPS. 2010 (cit. on p. 25).

https://www.hhai-conference.org/wp-content/uploads/2022/06/hhai-2022_paper_67.pdf
https://www.hhai-conference.org/wp-content/uploads/2022/06/hhai-2022_paper_67.pdf
https://www.hhai-conference.org/wp-content/uploads/2022/06/hhai-2022_paper_67.pdf

BIBLIOGRAPHY 125

[85] James Hensman, Nicolò Fusi, and Neil D Lawrence. “Gaussian pro-
cesses for Big data”. In: Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence. 2013 (cit. on p. 30).

[86] Martin Heusel, Hubert Ramsauer, et al. “GANs trained by a two
time-scale update rule converge to a local nash equilibrium”. In: Pro-
ceedings of the 31st International Conference on Neural Information
Processing Systems. 2017 (cit. on p. 49).

[87] Tommi S Jaakkola, David Haussler, et al. “Exploiting generative mod-
els in discriminative classifiers”. In: Advances in neural information
processing systems (1999) (cit. on pp. 52, 54).

[88] Jeya Vikranth Jeyakumar, Joseph Noor, et al. “How Can I Explain
This to You? An Empirical Study of Deep Neural Network Explana-
tion Methods”. In: Advances in Neural Information Processing Sys-
tems (2020) (cit. on p. 54).

[89] Wittawat Jitkrittum, Zoltán Szabó, Kacper P Chwialkowski, and
Arthur Gretton. “Interpretable distribution features with maximum
testing power”. In: NeurIPS. 2016 (cit. on pp. 62, 71, 72).

[90] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Dar-
rell. “Active learning with gaussian processes for object categoriza-
tion”. In: ICCM. 2007 (cit. on pp. 25, 26).

[91] Rajiv Khanna, Been Kim, Joydeep Ghosh, and Sanmi Koyejo. “In-
terpreting Black Box Predictions using Fisher Kernels”. In: The 22nd
International Conference on Artificial Intelligence and Statistics. 2019
(cit. on pp. 53, 54).

[92] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. “Detecting change
in data streams”. In: VLDB. 2004 (cit. on pp. 61, 62, 72, 73).

[93] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. “Examples
are not enough, learn to criticize! criticism for interpretability”. In:
Advances in neural information processing systems (2016) (cit. on
p. 73).

[94] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochas-
tic optimization”. In: arXiv preprint arXiv:1412.6980 (2014) (cit. on
p. 51).

[95] Diederik P Kingma and Max Welling. “Auto-encoding Variational
Bayes”. In: ICLR’14. 2014 (cit. on p. 65).

[96] Pang Wei Koh and Percy Liang. “Understanding black-box predic-
tions via influence functions”. In: Proceedings of the 34th International
Conference on Machine Learning. JMLR. org. 2017 (cit. on pp. 41,
45–47, 52–54).

BIBLIOGRAPHY 126

[97] Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang.
“On the accuracy of influence functions for measuring group effects”.
In: Advances in Neural Information Processing Systems. 2019 (cit. on
p. 55).

[98] Daphne Koller and Nir Friedman. Probabilistic graphical models: prin-
ciples and techniques. 2009 (cit. on p. 70).

[99] Jan Kremer, Fei Sha, and Christian Igel. “Robust active label correc-
tion”. In: International conference on artificial intelligence and statis-
tics. PMLR. 2018 (cit. on pp. 41, 43).

[100] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. “Machine
learning operations (mlops): Overview, definition, and architecture”.
In: IEEE Access (2023) (cit. on p. 97).

[101] F Kunstner, L Balles, and P Hennig. “Limitations of the Empirical
Fisher Approximation for Natural Gradient Descent”. In: 33rd Con-
ference on Neural Information Processing Systems (NeurIPS 2019).
Curran Associates, Inc. 2020 (cit. on pp. 48, 54).

[102] Peter Kuppens. “The open handbook of experience sampling method-
ology: A step-by-step guide to designing, conducting, and analyzing
ESM studies”. In: (2021) (cit. on p. 96).

[103] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten
digit database”. In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist
(2010) (cit. on p. 50).

[104] Erich L Lehmann and George Casella. Theory of point estimation.
Springer Science & Business Media, 2006 (cit. on p. 41).

[105] Piyawat Lertvittayakumjorn, Lucia Specia, and Francesca Toni. “Human-
in-the-loop Debugging Deep Text Classifiers”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP). 2020 (cit. on p. 54).

[106] James R Lloyd and Zoubin Ghahramani. “Statistical model criticism
using kernel two sample tests”. In: Advances in Neural Information
Processing Systems (2015) (cit. on pp. 62, 63).

[107] Jie Lu, Anjin Liu, et al. “Learning under concept drift: A review”. In:
IEEE T. Knowl. Data En. (2018) (cit. on p. 72).

[108] Deborah Lupton. The quantified self. John Wiley & Sons, 2016 (cit.
on p. 115).

[109] Alexander Lütz, Erik Rodner, and Joachim Denzler. “I Want To Know
More – Efficient Multi-Class Incremental Learning Using Gaussian
Processes”. In: Pattern Recognition and Image Analysis (2013) (cit.
on pp. 21, 26, 27, 38).

BIBLIOGRAPHY 127

[110] Luigi Malago, Nicolo Cesa-Bianchi, and J Renders. “Online active
learning with strong and weak annotators”. In: NIPS Workshop on
Learning from the Wisdom of Crowds. 2014 (cit. on p. 55).

[111] James Martens and Roger Grosse. “Optimizing neural networks with
kronecker-factored approximate curvature”. In: International confer-
ence on machine learning. PMLR. 2015 (cit. on pp. 48, 54).

[112] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.
url: https://www.tensorflow.org/ (cit. on p. 50).

[113] Mohammad Masud, Jing Gao, et al. “Classification and Novel Class
Detection in Concept-Drifting Data Streams under Time Constraints”.
In: IEEE Transactions on Knowledge and Data Engineering (2011)
(cit. on p. 74).

[114] Rob McCarney, James Warner, et al. “The Hawthorne Effect: a ran-
domised, controlled trial”. In: BMC medical research methodology (2007)
(cit. on p. 96).

[115] Merijn Mestdagh, Stijn Verdonck, et al. “m-Path: An easy-to-use and
flexible platform for ecological momentary assessment and interven-
tion in behavioral research and clinical practice”. In: (2022) (cit. on
p. 92).

[116] Tim Miller. “Explanation in artificial intelligence: Insights from the
social sciences”. In: Artificial Intelligence (Aug. 2018). issn: 0004-
3702. doi: 10.1016/j.artint.2018.07.007 (cit. on pp. 4, 54).

[117] Tom M Mitchell, Rich Caruana, et al. “Experience with a learning
personal assistant”. In: Communications of the ACM (1994) (cit. on
p. 2).

[118] Karen Myers, Pauline Berry, et al. “An intelligent personal assistant
for task and time management”. In: AI Magazine (2007) (cit. on p. 2).

[119] Nitika Nigam, Tanima Dutta, and Hari Prabhat Gupta. “Impact of
noisy labels in learning techniques: a survey”. In: Advances in data
and information sciences. Springer, 2020 (cit. on p. 37).

[120] Curtis Northcutt, Lu Jiang, and Isaac Chuang. “Confident learning:
Estimating uncertainty in dataset labels”. In: Journal of Artificial
Intelligence Research (2021) (cit. on pp. 37, 115).

[121] Luca Pappalardo, Salvatore Rinzivillo, et al. “Understanding the pat-
terns of car travel”. In: The European Physical Journal Special Topics
(2013) (cit. on p. 139).

[122] German I Parisi, Ronald Kemker, et al. “Continual lifelong learning
with neural networks: A review”. In: Neural Networks (2019) (cit. on
p. 74).

https://www.tensorflow.org/
https://doi.org/10.1016/j.artint.2018.07.007

BIBLIOGRAPHY 128

[123] Ramesh Paudel and William Eberle. “An Approach For Concept Drift
Detection in a Graph Stream Using Discriminative Subgraphs”. In:
TKDD (2020) (cit. on p. 73).

[124] Fernando Pérez-Cruz. “Estimation of information theoretic measures
for continuous random variables”. In: NeurIPS. 2009 (cit. on p. 62).

[125] Gianluigi Pillonetto, Francesco Dinuzzo, and Giuseppe De Nicolao.
“Bayesian online multitask learning of Gaussian processes”. In: IEEE
Trans. Pattern Anal. Mach. Intell (2008) (cit. on p. 37).

[126] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko.
“A review of novelty detection”. In: Signal Processing (2014) (cit. on
p. 73).

[127] Teodora Popordanoska, Mohit Kumar, and Stefano Teso. “Machine
guides, human supervises: Interactive learning with global explana-
tions”. In: arXiv preprint arXiv:2009.09723 (2020) (cit. on p. 54).

[128] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. “A uni-
fying view of sparse approximate Gaussian process regression”. In:
JMLR (2005) (cit. on p. 30).

[129] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph
H Lampert. “icarl: Incremental classifier and representation learning”.
In: Proceedings of the IEEE conference on Computer Vision and Pat-
tern Recognition. 2017 (cit. on p. 74).

[130] Ievgen Redko, Emilie Morvant, et al. “A survey on domain adapta-
tion theory: learning bounds and theoretical guarantees”. In: arXiv
preprint arXiv:2004.11829 (2020) (cit. on p. 72).

[131] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Em-
beddings using Siamese BERT-Networks”. In: EMNLP-IJCNLP. 2019
(cit. on pp. 50, 65).

[132] Daniele Riboni and Claudio Bettini. “COSAR: hybrid reasoning for
context-aware activity recognition”. In: Personal and Ubiquitous Com-
puting (2011) (cit. on p. 92).

[133] Filipe Rodrigues, Francisco Pereira, and Bernardete Ribeiro. “Gaus-
sian process classification and active learning with multiple annota-
tors”. In: ICML. 2014 (cit. on p. 25).

[134] Yannick Roos, Michael D Krämer, et al. “Does your smartphone
“know” your social life? A methodological comparison of day recon-
struction, experience sampling, and mobile sensing”. In: Advances in
Methods and Practices in Psychological Science (2023) (cit. on p. 16).

[135] Martha Roseberry, Bartosz Krawczyk, and Alberto Cano. “Multi-
label punitive kNN with self-adjusting memory for drifting data streams”.
In: TKDD (2019) (cit. on pp. 61, 64, 67).

BIBLIOGRAPHY 129

[136] Ethan M Rudd, Lalit P Jain, Walter J Scheirer, and Terrance E Boult.
“The extreme value machine”. In: IEEE Trans. Pattern Anal. Mach.
Intell. (2017) (cit. on pp. 37, 73).

[137] Cynthia Rudin. “Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead”. In:
Nature Machine Intelligence (2019) (cit. on p. 49).

[138] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. “Probabil-
ity models for open set recognition”. In: IEEE Trans. Pattern Anal.
Mach. Intell. (2014) (cit. on pp. 15, 37, 73).

[139] Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota,
and Terrance E Boult. “Toward open set recognition”. In: IEEE Trans.
Pattern Anal. Mach. Intell. (2013) (cit. on pp. 37, 73).

[140] Jeffrey C Schlimmer and Richard H Granger. “Incremental learning
from noisy data”. In: Machine learning (1986) (cit. on p. 65).

[141] Patrick Schramowski et al. “Making deep neural networks right for
the right scientific reasons by interacting with their explanations”. In:
Nat Mach Intell (2020) (cit. on pp. 54, 75).

[142] David Sculley, Gary Holt, et al. “Hidden technical debt in machine
learning systems”. In: Advances in neural information processing sys-
tems (2015) (cit. on p. 98).

[143] Ramprasaath R Selvaraju, Stefan Lee, et al. “Taking a hint: Leverag-
ing explanations to make vision and language models more grounded”.
In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 2019 (cit. on p. 54).

[144] Grigorios Skolidis and Guido Sanguinetti. “Bayesian multitask classi-
fication with Gaussian process priors”. In: IEEE Trans. Neural Netw.
(2011) (cit. on p. 37).

[145] Arnold WM Smeulders, Marcel Worring, et al. “Content-based image
retrieval at the end of the early years”. In: IEEE Transactions on
pattern analysis and machine intelligence (2000) (cit. on p. 13).

[146] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical net-
works for few-shot learning”. In: NeurIPS. 2017 (cit. on pp. 74, 75).

[147] Youngdoo Son and Seokho Kang. “Regression with re-labeling for
noisy data”. In: Expert Systems with Applications (2018) (cit. on
p. 37).

[148] Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. “Learn-
ing from noisy labels with deep neural networks: A survey”. In: arXiv
preprint arXiv:2007.08199 (2020) (cit. on pp. 37, 41).

BIBLIOGRAPHY 130

[149] Mohammad S Sorower. “A literature survey on algorithms for multi-
label learning”. In: Oregon State University, Corvallis (2010) (cit. on
p. 66).

[150] Eduardo J Spinosa, André Ponce de Leon F. de Carvalho, and João
Gama. “Olindda: A cluster-based approach for detecting novelty and
concept drift in data streams”. In: Proceedings of the 2007 ACM sym-
posium on Applied computing. 2007 (cit. on p. 74).

[151] Spyromitros-Xioufis et al. “Dealing with concept drift and class im-
balance in multi-label stream classification”. In: IJCAI. 2011 (cit. on
pp. 57, 61, 62, 64, 67, 72).

[152] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias
W Seeger. “Information-theoretic regret bounds for gaussian process
optimization in the bandit setting”. In: IEEE Transactions on Infor-
mation Theory (2012) (cit. on p. 25).

[153] Sebastian Staacks, Simon Hütz, Heidrun Heinke, and Christoph Stampfer.
“Advanced tools for smartphone-based experiments: phyphox”. In:
Physics education (2018) (cit. on p. 92).

[154] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Sto-
janovic. “User-driven ontology evolution management”. In: ECAW.
2002 (cit. on p. 57).

[155] Marija Stojchevska, Mathias De Brouwer, et al. “From Lab to Real
World: Assessing the Effectiveness of Human Activity Recognition
and Optimization through Personalization”. In: Sensors (2023) (cit.
on p. 17).

[156] Thomas Strang and Claudia Linnhoff-Popien. “A context modeling
survey”. In: Workshop Proceedings. 2004 (cit. on p. 9).

[157] William R Swartout, Benjamin D Nye, et al. “Designing a personal
assistant for life-long learning (PAL3)”. In: The Twenty-Ninth Inter-
national Flairs Conference. 2016 (cit. on p. 2).

[158] Zoltán Szabó and Bharath K Sriperumbudur. “Characteristic and uni-
versal tensor product kernels”. In: JMLR (2017) (cit. on p. 62).

[159] Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, and Andrea
Passerini. “Interactive Label Cleaning with Example-based Explana-
tions”. In: arXiv preprint arXiv:2106.03922 (2021) (cit. on p. 40).

[160] Stefano Teso and Kristian Kersting. “Explanatory interactive machine
learning”. In: Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society. 2019 (cit. on pp. 49, 54).

[161] Stefano Teso and Antonio Vergari. “Efficient and Reliable Probabilis-
tic Interactive Learning with Structured Outputs”. In: arXiv preprint
arXiv:2202.08566 (2022) (cit. on p. 84).

BIBLIOGRAPHY 131

[162] Sebastian Thrun. “Is learning the n-th thing any easier than learning
the first?” In: NeurIPS. 1996 (cit. on p. 37).

[163] Daniel Ting and Eric Brochu. “Optimal subsampling with influence
functions”. In: Advances in Neural Information Processing Systems.
2018 (cit. on p. 48).

[164] Simon Tong and Daphne Koller. “Active learning for structure in
Bayesian networks”. In: International joint conference on artificial
intelligence. Citeseer. 2001 (cit. on p. 74).

[165] Roger Tourangeau, Lance J Rips, and Kenneth Rasinski. The psy-
chology of survey response. 2000 (cit. on pp. 14, 21, 41, 96).

[166] Alexey Tsymbal. “The problem of concept drift: definitions and re-
lated work”. In: Computer Science Department, Trinity College Dublin
(2004) (cit. on p. 3).

[167] Ruth Urner, Shai Ben-David, and Ohad Shamir. “Learning from weak
teachers”. In: Artificial intelligence and statistics. PMLR. 2012 (cit.
on pp. 41, 43).

[168] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. “Recognizing
detailed human context in the wild from smartphones and smart-
watches”. In: IEEE pervasive computing (2017) (cit. on pp. 1, 17).

[169] Yonatan Vaizman, Katherine Ellis, Gert Lanckriet, and Nadir Weibel.
“ExtraSensory App: Data Collection In-the-Wild with Rich User In-
terface to Self-Report Behavior”. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18. New
York, NY, USA: Association for Computing Machinery, 2018. isbn:
9781450356206. doi: 10.1145/3173574.3174128. url: https://
doi.org/10.1145/3173574.3174128 (cit. on p. 92).

[170] Yonatan Vaizman, Nadir Weibel, and Gert Lanckriet. “Context recog-
nition in-the-wild: Unified model for multi-modal sensors and multi-
label classification”. In: Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies (2018) (cit. on pp. 16,
117).

[171] Niels Van Berkel, Denzil Ferreira, and Vassilis Kostakos. “The ex-
perience sampling method on mobile devices”. In: ACM Computing
Surveys (CSUR) (2017) (cit. on p. 96).

[172] Bruno Veloso, João Gama, Benedita Malheiro, and João Vinagre.
“Hyperparameter self-tuning for data streams”. In: Information Fu-
sion (2021) (cit. on p. 112).

[173] Rui Wang, Gabriella Harari, et al. “SmartGPA: how smartphones
can assess and predict academic performance of college students”.
In: Proceedings of the 2015 ACM international joint conference on
pervasive and ubiquitous computing. 2015 (cit. on p. 16).

https://doi.org/10.1145/3173574.3174128
https://doi.org/10.1145/3173574.3174128
https://doi.org/10.1145/3173574.3174128

BIBLIOGRAPHY 132

[174] Brady T West and Jennifer Sinibaldi. “The quality of paradata: A
literature review”. In: Improving surveys with paradata (2013) (cit.
on pp. 21, 41).

[175] Christopher KI Williams and Carl Edward Rasmussen. Gaussian pro-
cesses for machine learning. 2006 (cit. on pp. 21, 25).

[176] Mike Wojnowicz, Ben Cruz, et al. ““Influence sketching”: Finding in-
fluential samples in large-scale regressions”. In: 2016 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE. 2016 (cit. on p. 53).

[177] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learning Algorithms.
Aug. 28, 2017. arXiv: cs.LG/1708.07747 [cs.LG] (cit. on p. 50).

[178] Xuhai Xu, Xin Liu, et al. “GLOBEM: Cross-Dataset Generalization
of Longitudinal Human Behavior Modeling”. In: Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(2023) (cit. on p. 16).

[179] Yibo Yao and Lawrence B Holder. “Detecting concept drift in classi-
fication over streaming graphs”. In: Proc. KDD Workshop on Mining
and Learning with Graphs. 2016 (cit. on p. 73).

[180] Timothy Ye. Example Based Explanation in Machine Learning. https:
//github.com/Timothy-Ye/example-based-explanation. 2020
(cit. on p. 50).

[181] Chih-Kuan Yeh, Joon Sik Kim, Ian EH Yen, and Pradeep Ravikumar.
“Representer point selection for explaining deep neural networks”. In:
Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems. 2018 (cit. on p. 47).

[182] Lu Yu, Bartlomiej Twardowski, et al. “Semantic drift compensation
for class-incremental learning”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2020 (cit. on
p. 74).

[183] Yang Yue, Tian Lan, Anthony GO Yeh, and Qing-Quan Li. “Zooming
into individuals to understand the collective: A review of trajectory-
based travel behaviour studies”. In: Travel Behaviour and Society
(2014) (cit. on p. 139).

[184] Özgür Yürür, Chi Harold Liu, et al. “Context-awareness for mobile
sensing: A survey and future directions”. In: IEEE Communications
Surveys & Tutorials (2014) (cit. on p. 92).

[185] D. Zambon, C. Alippi, and L. Livi. “Concept Drift and Anomaly De-
tection in Graph Streams”. In: IEEE Transactions on Neural Networks
and Learning Systems (2018) (cit. on p. 73).

https://arxiv.org/abs/cs.LG/1708.07747
https://github.com/Timothy-Ye/example-based-explanation
https://github.com/Timothy-Ye/example-based-explanation

BIBLIOGRAPHY 133

[186] Mattia Zeni. “Bridging sensor data streams and human knowledge”.
PhD thesis. Università degli studi di Trento, 2017 (cit. on pp. 91, 98).

[187] Mattia Zeni, Ilya Zaihrayeu, and Fausto Giunchiglia. “Multi-device
activity logging”. In: UbiComp. 2014 (cit. on pp. 35, 98).

[188] Mattia Zeni, Wanyi Zhang, et al. “Fixing Mislabeling by Human An-
notators Leveraging Conflict Resolution and Prior Knowledge”. In:
IMWUT (2019) (cit. on pp. 3, 5, 14, 21, 23, 24, 29–31, 34–36, 38, 41,
43, 55).

[189] Daochen Zha, Zaid Pervaiz Bhat, et al. “Data-centric artificial intelli-
gence: A survey”. In: arXiv preprint arXiv:2303.10158 (2023) (cit. on
p. 115).

[190] Jing Zhang, Xindong Wu, and Victor S Sheng. “Learning from crowd-
sourced labeled data: a survey”. In: Artificial Intelligence Review (2016)
(cit. on pp. 37, 41).

[191] Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun
Wang. “Domain adaptation under target and conditional shift”. In:
ICML. 2013 (cit. on pp. 62, 72).

[192] Min-Ling Zhang and Kun Zhang. “Multi-label learning by exploiting
label dependency”. In: ACM SIGKDD. 2010 (cit. on p. 65).

[193] Wanyi Zhang, Andrea Passerini, and Fausto Giunchiglia. “Dealing
with mislabeling via interactive machine learning”. In: KI-Künstliche
Intelligenz (2020) (cit. on p. 14).

[194] Wanyi Zhang, Qiang Shen, et al. “Putting human behavior predictabil-
ity in context”. In: EPJ Data Science (2021) (cit. on p. 2).

[195] Wanyi Zhang, Mattia Zeni, Andrea Passerini, and Fausto Giunchiglia.
“Skeptical Learning—An Algorithm and a Platform for Dealing with
Mislabeling in Personal Context Recognition”. In: Algorithms (2022)
(cit. on p. 91).

[196] Haonan Zhao and Fausto Giunchiglia. “Scheduling Real-Time Acqui-
sition of Context Information”. In: (2023) (cit. on p. 112).

[197] Xiulin Zheng, Peipei Li, Zhe Chu, and Xuegang Hu. “A survey on
multi-label data stream classification”. In: IEEE Access (2019) (cit.
on pp. 59, 72).

[198] Zhi-Hua Zhou and Zhao-Qian Chen. “Hybrid decision tree”. In: Knowledge-
based systems (2002) (cit. on p. 16).

Appendices

134

A
iLog sensor list

Table A.1: List of iLog sensors collected during the four weeks of experi-
ment explained in Chapter 7.

Sensor Description

Connectivity
Bluetooth normal,
Bluetooth low en-
ergy

Returns the discovered Bluetooth normal or low en-
ergy devices by providing:

• name: user-friendly name of the remote device;

• address: hardware MAC Address of the device;

• bondstate: whether the remote device is con-
nected;

• rssi : Received Signal Strength Indicator;

• class code andclass tag : Bluetooth class of the
device (e.g., phone or computer), and the class
describes the characteristics and capabilities of
the device (e.g., audio and telephony).

135

A. iLog sensor list 136

WiFi Event Returns information related to the WIFI network to
which the phone is connected; if connected, it also re-
ports the WIFI network ID. Additional features are:

• bssid : (Basic Service Set Identifier): Special
SSID used to define a wireless computer net-
work configured to communicate directly with
each other without an access point;

• isconnected : return if the phone is connected to
the WIFI;

• ssid : (Service Set Identifier) ID or unique iden-
tifier of a digital network (Wi-Fi or WLAN).

WiFi Networks
Event

Returns all WIFI networks detected by the smart-
phone. Additional features are:

• address: is a unique identifier assigned to a net-
work interface controller (NIC) for use as a net-
work address in communications within a net-
work segment;

• capabilities: allows local area networks (LANs)
to operate without cables and wiring;

• frequency : the WiFi frequency band, that in-
cludes two frequency ranges within the wireless
spectrum that are designated to carry WIFI: 2.4
GHz and 5 GHz;

• name: the name assigned to the WiFi network

• rssi : (Received Signal Strength Indicator) is an
estimated measurement of how well a device can
hear, detect, and receive signals from any wire-
less access point or Wi-Fi router. An RSSI closer
to 0 is stronger, and closer to –100 is weaker.

Activity
Accelerometer Returns the acceleration of the device along the three

coordinate axes.

A. iLog sensor list 137

Activities Return the user’s activity recognized by the Google
Activity Recognition API. The recognized activities
are in vehicle, on bicycle, on foot, running, still, tilt-
ing, walking and unknown. The sensor reports a con-
fidence score between 0 and 100, which represents the
likelihood that the user is performing the activity.

Step detector An event is triggered each time the user takes a step.
Orientation Returns the position of the device relative to the

earth’s magnetic north pole.
Location
Location event GPS coordinates (latitude, longitude and altitude)
Magnetic field Reports the ambient magnetic field along the three

sensor axes.
Proximity Event Measures the distance between the user’s head and the

phone. Depending on the phone, it may be measured
in centimetres (i.e., the absolute distance) or as labels
(e.g., ’near’, ’far’)

Software
Battery Charge
Event

Returns whether the phone is on charge and the type
of charger

Battery Monitor-
ing Log

Returns the phone’s battery level

A. iLog sensor list 138

Table A.2: List of features generated by aggregating raw sensor data in
windows of 30 minutes.

Feature name Type Description

Time
time_is_workday boolean True for the days from Monday to Fri-

day
time_is_morning boolean True for the hours between 6 am and

9 am
time_is_noon boolean True for the hours between 10 am and

1 pm
time_is_afternoon boolean True for the hours between 2 pm and

5 pm
time_is_evening boolean True for the hours between 6 pm and

9 pm
time_is_night boolean True for the hours between 10 pm and

5 am
time_sin_hour,
time_cos_hour

float Sine and cosine transformations of the
hour to encode a stronger connection
between two nearby hours1

Connectivity
bluetoothdevices_rssi_
{mean,var}

float mean and variance of the Received
Signal Strength Indicator (RSSI) of
the detected Bluetooth devices

bluetoothdevices_nunique integer number of unique Bluetooth normal
and low energy devices

wifi_connection_count integer number of times the device connected
to a WiFi network

wifi_is_connected boolean True if the devices connected to a
WiFi network at least once

wifinetworks_nunique integer number of unique networks detected

Activity
step_detection_count integer number of step detection events
activity_
{invehicle,onbycicle,onfoot,
running,still,unknown,
walking}

boolean True if the Google activity recognition
API has recognized the activity

accelerometer_avg_{x,y,z} float mean of all accelerometer values for
each axes separately

1Techinal blog on cyclical feature encoding https://developer.nvidia.com/blog/
three-approaches-to-encoding-time-information-as-features-for-ml-models/

https://developer.nvidia.com/blog/three-approaches-to-encoding-time-information-as-features-for-ml-models/
https://developer.nvidia.com/blog/three-approaches-to-encoding-time-information-as-features-for-ml-models/

A. iLog sensor list 139

accelerometer_magnitude_
{avg,var}

float mean and variance of the magnitude
of each sensor reading

orientation_avg{x,y,z} float mean of all orientation values for each
axes separately

orientation_magnitude_
{avg,var}

float mean and variance of the magnitude
of each sensor reading

Location
location_
{altitude,longitude,latitude}

float Averaged GPS coordinates

location_direct_distance float Distance between the first and last lo-
cation point

location_total_distance float total distance covered [26]
location_radius_of_gyrationfloat Deviation from the centroid of the

GPS points [121, 76, 183]
magneticfield_avg{x,y,z} float mean of all magneticfield values for

each axes separately
magneticfield_magnitude_
{avg,var}

float mean and variance of the magnitude
of each sensor reading

proximity_{mean,var} float mean and variance of the proximity
values

Software
battery_deltashift float Battery level difference between the

beginning and the end of the interval
battery_charge_count integer number of times the phone has been

connected to a charging source during
the interval

	List of Figures
	List of Tables
	Acronyms
	Abstract
	Introduction
	Motivation
	Problem
	Solution
	List of publications
	Reproducibility statement
	Outline

	Background and problem setting
	Personal situational context
	Context representation
	Context recognition in static world
	Context recognition in the wild
	Learning from user
	Learning from noisy data
	Learning from data streams
	Learning in an open world
	Learning incrementally

	Related works
	Conclusion

	I Learning in the wild
	Incremental Skeptical Learning
	Introduction
	Incremental classification in the wild
	Original formulation of skeptical learning
	Limitations

	isgp
	Gaussian Processes
	The isgp algorithm
	Advantages and limitations

	Experiments
	Synthetic experiment
	Location prediction

	Related work
	Open recognition
	Lifelong learning
	Learning under noise

	Conclusion

	Explainable Skeptical Learning
	Introduction
	Background
	Explainable interactive label cleaning
	The cincer algorithm
	Counter-example selection
	Counter-example selection with the Fisher information matrix
	Selecting pertinent counter-examples
	Advantages and limitations

	Experiments
	Data sets
	Models
	Q1: Counter-examples improve the quality of the data
	Q2: Fisher Information-based strategies identify the most mislabeled counter-examples
	Q3: Both influence and curvature contribute to the effectiveness of Top Fisher

	Related work
	Influence functions and Fisher information
	Other works

	Conclusion

	Knowledge Drift
	Introduction
	Hierarchical classification and knowledge drift
	Handling knowledge drift with TRCKD
	Step 1: Detection
	Step 2: Disambiguation
	Step 3: Adaptation

	Experiments
	Experimental details
	Hyperparameters
	Q1: Knowledge-aware adaptation improves performance
	Q2: Interaction is beneficial
	Q3: trckd works well in multi-drift settings
	Additional comparisons

	Related work
	Maximum mean discrepancy.
	Drift over graph data.
	Open world recognition.
	Novelty and anomaly detection
	Other topics.

	Conclusion

	II From the lab to the wild
	Context Recognition Architecture
	Introduction
	Personal context recognition architecture
	A recurrent network
	Memory
	Reasoning
	Interaction
	Execution policy
	Design principles

	Personal context procedures
	Scheduler
	Initialization
	Perceive the world and the user
	Relevance computation: load data from the memories
	Reasoning
	Memories update

	Related works
	Conclusion

	Skeptical Learning evaluation in the wild
	Introduction
	Use case
	Machine learning architecture
	iLog infrastructure
	Pre-processing of the sensor data
	Learning module
	User-machine interaction
	Performance monitoring

	Experiment design
	Research protocol
	Experiment setup

	Results
	Sensor data
	Time diaries
	Skeptical questions
	Evaluation question
	isgp performance

	Conclusion

	Conclusion
	Summary
	Discussion
	Benefits and limitations
	Ethics statement and societal impact

	Future research development

	Bibliography
	iLog sensor list

