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Abstract

The possibility to enable spatial perception to electronic devices gave rise to a number of
important development results in a wide range of fields, from consumer and entertain-
ment applications to industrial environments, automotive and aerospace. Among the
many techniques which can be used to measure the three-dimensional (3D) information
of the observed scene, the unique features offered by direct time-of-flight (d-ToF) with
single photon avalanche diodes (SPADs) integrated into a standard CMOS process re-
sult in a high interest for development from both researchers and market stakeholders.
Despite the net advantages of SPAD-based CMOS d-ToF systems over other techniques,
still many challenges have to be addressed. The first performance-limiting factor is rep-
resented by the presence of uncorrelated background light, which poses a physical limit to
the maximum achievable measurement range. Another problem of concern, especially for
scenarios where many similar systems are expected to operate together, is represented
by the mutual system-to-system interference, especially for industrial and automotive
scenarios where the need to guarantee safety of operations is a pillar. Each application,
with its own set of requirements, leads to a different set of design challenges. However,
given the statistical nature of photons, the common denominator for such systems is
the necessity to operate on a statistical basis, i.e., to run a number of repeated acquisi-
tions over which the time-of-flight (ToF) information is extracted. The gold standard to
manage a possibly huge amount of data is to compress them into a histogram memory,
which represents the statistical distribution of the arrival time of photons collected dur-
ing the acquisition. Considering the increased interest for long-range systems capable
of both high imaging and ranging resolutions, the amount of data to be handled reaches
alarming levels.

In this thesis, we propose an in-depth investigation of the aforesaid limitations. The
problem of background light has been extensively studied over the years, and already a
wide set of techniques which can mitigate the problem are proposed. However, the trend
was to investigate or propose single solutions, with a lack of knowledge regarding how
different implementations behave on different scenarios. For such reason, our effort in
this view focused on the comparison of existing techniques against each other, highlight-
ing each pros and cons and suggesting the possibility to combine them to increase the
performance. Regarding the problem of mutual system interference, we propose the first
per-pixel implementation of an active interference-rejection technique, with measure-
ment results from a chip designed on purpose. To advance the state-of-the-art in the
direction of reducing the amount of data generated by such systems, we provide for the
first time a methodology to completely avoid the construction of a resource-consuming
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histogram of timestamps. Many of the results found in our investigations are based
on preliminary investigations with Monte Carlo simulations, while the most important
achievements in terms of interference rejection capability and data reduction are sup-
ported by measurements obtained with real sensors.

Keywords
Direct time-of-flight (d-ToF); Light Detection and Ranging (LiDAR); Single Photon
Avalanche Diode (SPAD); Complementary Metal-Oxide Semiconductor (CMOS).
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Chapter 1

Introduction

Among the 5 human senses, sight is a pillar. More than 80% of the information we
collect from the surrounding comes from vision [1], and it is a common belief to be
our most valued sense [2], which is also confirmed by its domination over the research
interest in the field of sensory modalities [3]. Among the many properties of the sur-
rounding environment which can be elaborated thanks to vision, the awareness of the
third dimension is the most important one, as it affects the physical interaction we have
with the external world. For such reasons, it is straightforward and intuitive to extend
such possibilities to our technological means, through the implementation of devices
which can measure the three-dimensional (3D) information from the observed scene.

The applications of three-dimensional (3D) imaging span a wide range of industries
and disciplines, each presenting challenges and opportunities. Perhaps one of the most
challenging and prominent applications of 3D imaging is in the domain of automotive
LiDAR, where the ability to accurately perceive the surrounding environment in three
dimensions is critical for ensuring the safety and autonomy of vehicles and pedestrians.
From detecting obstacles to navigating complex urban environments, LiDAR systems
represent one of the most promising technologies which is currently being deeply de-
veloped. Similar challenges, in particular concerning safety of operations, are posed by
the possibility to use 3D imaging systems within industrial automation and robotics,
where applications such as object tracking, quality control and robotic navigation in
dynamic environments are nowadays possible. Another interesting field of application
is represented by the entertainment industry leveraging on 3D imaging technologies to
create immersive augmented reality (AR) and virtual reality (VR) experiences, where
the capture and rendering of highly detailed 3D environments and objects enhances the
sense of presence and realism for users.
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In this work, in particular, we focus on sensors for 3D imaging implemented in
Complementary Metal-Oxide Semiconductor (CMOS) technology based on the direct
Time-of-Flight (d-ToF) measurement technique with Single Photon Avalanche Diode
(SPAD) technology.

SPADs offer several distinctive advantages over traditional 3D imaging technologies,
making them particularly performing in such field. Perhaps the most notable feature
of SPADs is their high sensitivity, allowing for the capture of faint signals in low-light
conditions (down to the single photon), essential for all applications where the signal of
interest may be dramatically low in terms of power, such as in long-range LiDAR appli-
cations. Furthermore, another key characteristic of SPADs in this view is the ultra-fast
response time, typically in the order of picoseconds, which is an essential requirement
to guarantee the desired level of precision in the estimation of the time-of-flight. In
addition, SPADs can nowadays provide sufficiently low noise values, in terms of both
dark count rate and timing jitter, to ensure the expected performance to a considerable
extent. In addition to their intrinsic properties, SPADs offer a crucial advantage in 3D
imaging applications through the possibility to be fully integrated in standard CMOS
processes. This allows for high data processing capabilities to be implemented, expand-
ing the possibilities given by such high performance detectors (in particular with the
most advanced technology nodes). Moreover, a standard CMOS process represents a
platform suitable for industrial production, making them an economically viable choice.

In automotive LiDAR applications, SPAD-based imaging systems must adhere to
strict criteria across several fronts. They must ensure an extended range capability,
enabling the detection of objects at distances exceeding 200 meters. This long range
capability is crucial for ensuring early identification of potential hazards and obstacles
on the road. Moreover, these systems require high resolution capabilities, in the range
of centimeters, essential for precise localization and identification of objects, especially
in densely cluttered urban environments. Alongside this, they must operate at frame
rates high enough to ensure timely updates of the surrounding environment, facilitat-
ing the smooth operation of autonomous driving systems. Furthermore, robustness is
paramount, necessitating the ability to function in various environmental conditions.
Among this, the capability to operate in a wide range of external illumination con-
ditions is crucial, in particular considering extremely challenging cases of direct glare
from other similar systems, giving rise to potential failures due to interferences. Un-
fortunately, many of the requirements for successful operations of SPADs within an
automotive LiDAR application contrast to each other. For such a reason, the investi-
gation must take into account various aspects, so as to consider the application as a
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whole, bearing in mind that the goal is to provide the system with as many features as
possible to be adaptable to a wide range of scenarios.

In particular, we concentrate on the study of techniques to advance the state-of-the
art in the field, focusing on three aspects: mitigation of the negative effects of back-
ground light, rejection of mutual interference and reduction of the amount of generated
data. The results are supported by numerical (Monte Carlo) simulations and measure-
ments with real sensors. The main outcomes of our work can be summarized as follows.
First, we provide an in-depth investigation of how different background-rejection tech-
niques compare to each other, demonstrating that the combination of different tech-
niques applied on top of each other can improve the performance. Additionally, we
identify the technique [4] which, alone, can guarantee the best performance over a wide
range of operating conditions. Then, we demonstrate for the first time the in-pixel
implementation of an active interference-rejection technique, with measurement results
from a sensor designed in a 110 nm CIS (CMOS Image Sensor) process. Concerning the
problem of data reduction, we provide results from the aforementioned sensor, which
implements a smart readout technique able to output only valid data from the sensor.
We also demonstrate, for the first time, the possibility to obtain the Time-of-Flight
(ToF) information without the need to build a memory and power-hungry histogram of
timestamps, paving the way for sensors with unprecedented resolutions and compact-
ness.

This thesis is organized as follows. In the remainder of this chapter, we provide a
high-level overview of the structure and main features of a Single Photon Avalanche
Diode (SPAD), as it represents the fundamental photon-sensitive element on which our
results are based. In Chapter 2, we provide a comprehensive review of the most impor-
tant related works in the field of SPAD-based CMOS sensors for d-ToF applications,
spanning from the first milestones where a SPAD is used in d-ToF measurements up to
the most recent architectures. As several of our investigations and results are based on
simulations, Chapter 3 provides in-depth insights on the structure and development of
the numerical Monte Carlo simulator we used through our work. In Chapter 4 we report
on a thorough discussion of how different background-rejection techniques compare to
each other, focusing on the impact of circuital implementation and identifying the tech-
nique which can guarantee the best performance over a range of operating conditions.
Chapter 5 is dedicated to the implementation details and measurement results of a 1x64
pixel linear sensor implemented in 110nm CIS process, which integrates interference-
rejection capability at pixel level with an optimized readout architecture. Our last
contribution, which focuses on the possibility to obtain a histogram-free SPAD-based
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LiDAR with reduced amount of hardware resources is deeply investigated in Chapter 6.
A conclusive summary with remarks and future perspectives, along with recommenda-
tions for further research, is provided in Chapter 7.

1.1 Single Photon Avalanche Diode (SPAD)

A SPAD is a p-n junction designed to be operated in reverse bias well above its break-
down voltage [5]. In such conditions, a single electron-hole pair generated in the deple-
tion region is accelerated by the electric field and by impact ionization a macroscopic
self-sustained avalanche is created. If the electron-hole pair is generated by an impinging
photon (by means of the photoelectric effect), the rising edge of the current avalanche
indicates its arrival time. Due to the sub-nanosecond scale of such phenomenon, the
arrival time of photons can be determined with very high temporal resolution. After the
avalanche current has been detected, the current flow needs to be stopped for mainly
two reasons. First, no additional photons can be detected during an ongoing avalanche.
Second, the amount of current flowing in the reverse-biased junction would lead to
permanent damage of the structure. For such reasons, the SPAD is always coupled
to a so-called quenching circuit. The quenching process, which can be either passive
or active, stops the ongoing avalanche by temporarily setting the junction voltage be-
low the breakdown. Once the current flow ceases, the junction reverse voltage is set
again above breakdown to enable the detection of further photons. There are a number
of physical parameters characterizing the performance of a SPAD. In this section, we
will first introduce the main concept behind passive and active quenching techniques.
Then, the most important SPAD parameters are considered, i.e. the Photon Detection
Efficiency (PDE), Dark Count Rate (DCR) and afterpulsing.

1.1.1 Passive quenching

Passive Quenching Circuits (PQCs) represents the earliest and simplest way of control-
ling the behavior of a SPAD avalanche. In this scheme, the SPAD is connected in series
with a high resistive load (called quenching resistor) and whenever an avalanche oc-
curs, the voltage drop developed across the quenching resistor by the avalanche current
reduces the excess bias voltage below a level where the probability of impact ioniza-
tion of the electron-hole pairs is insufficient to self-sustain the current avalanche [5].
A principle schematic of a passively quenched SPAD is represented in Figure 1.1-(a).
Considering a quenching resistor of value RD, the quenching time can be computed as
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follows [5]:

Tq = (Cd + Cs)Rd//RQ , (1.1)

where Cd is the SPAD junction capacitance, Cs is the parasitic capacitance (with re-
spect to ground of the diode terminal) and Rd is the diode resistance. In Figure 1.1-(b),
a passive quenching scheme for a SPAD integrated into a CMOS process is shown. In
this case, the quenching resistor is substituted with a transistor controlled by a voltage
VQ. By tuning the VQ control voltage it is possible to adjust the junction discharge
time, commonly referred to as the SPAD dead-time (Tdead). Between the SPAD anode
and the digital comparator, an additional transistor, controlled by a voltage VC , can
be required to clamp the SPAD anode voltage to be compliant with the following logic,
which usually runs at lower supply voltage.

The main drawback of passively-quenched SPADs is that photon sensitivity (as
defined and discussed in Section 1.1.3) is not constant during an avalanche recovery.
As soon as the avalanche occurs, the diode current falls below the self-sustaining value,
resulting in a maximum voltage value at the SPAD anode VA ≈ VEX , so that VS−VA ≤
VBD and the capacitances Cd and Cs start to be recharged by the current flowing in the
quenching resistor (Figure 1.1-(a)) or the quenching transistor (Figure 1.1-(b)). In such
a situation, the SPAD sensitivity is nearly zero at the beginning of the recovery process
(VS −VA ≤ VBD) and exponentially rises to the maximum value as the SPAD voltage is
restored. During this process, any other impinging photon have a progressively higher
probability of being detected and triggering a new avalanche. Any other additional
detection occurring during the SPAD recovery is of particular concern considering that
the voltage pulse which is created by the passive quenching circuit needs to cross a
voltage threshold to be properly detected by the following circuits. If the new avalanche
occurs when the voltage signal has not back-crossed the comparator threshold, the
quenching process is restarted and the output voltage pulse is extended. If the photon
flux is too high, the SPAD can be eventually paralyzed impairing the photon detection
process. In Figure 1.2, the temporal evolution of the SPAD voltage, VA, is shown. After
the second photon detection, a third photon triggers an avalanche, restoring the SPAD
anode voltage to VEX before it re-crosses the comparator threshold, resulting into an
elongated electrical pulse output. Despite the issues which may occur due to the re-
triggering behavior, passively quenched SPADs are still used in today’s applications due
to their compactness, ease of implementation and reliability [6–10].
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Figure 1.1: Passive quenching scheme. In (a), a principle schematic with a resistor RQ as
the quenching element, while in (b) a solution commonly used for SPADs integrated into a
CMOS process is shown. In this case, the quenching operation is exploited by means of a
transistor controlled by a voltage VQ. By tuning the control voltage it is possible to change
the transistor conductivity, effectively controlling the SPAD quench time. Between the SPAD
anode and the digital comparator, a clamp transistor, controlled by voltage VC , is required to
limit the voltage swing.

1.1.2 Active quenching

The limitations imposed by PQCs can be overcome with Active Quenching Circuits
(AQCs) [5, 11], where the onset of an avalanche is sensed and an active control loop
reacts back to the SPAD junction controlling the bias voltage. With this circuit topol-
ogy it is possible to drive the bias voltage below the breakdown, so that the quenching
duration is not affected by statistical fluctuations of avalanche multiplication as in
PQCs [12]. A principle schematic of an AQC is shown in Figure 1.3-(a). In such imple-
mentation, the avalanche is sensed by a fast comparator which triggers a monostable
connected in feedback to the SPAD anode, actively controlling the quench process. A
more detailed implementation is shown in Figure 1.3-(b). The onset of an avalanche
is sensed at the SPAD anode (node VA). The voltage pulse is first rectified by means
of an inverter, running at a supply voltage VHV (usually 3.3V). The rectified voltage
pulse is level-adjusted by means of a level shifter and enters a first monostable M1.
The first monostable creates a pulse VQ of duration Tdead which actively quenches the
SPAD below the breakdown voltage, i.e., VSPAD = VS − VHV , with VHV > VEX . After
the pulse from monostable M1, a second fast pulse by monostable M2 is used to reset
the SPAD voltage back to VS = VBD + VEX , closing the quench phase. ACQs allows
external control of the SPAD state, to realize gated SPAD operations. In this case, an
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Figure 1.2: Re-triggering issue in passively quenched SPADs. In (a), the SPAD anode
voltage, VA, is shown. As soon as a photon triggers an avalanche, the anode voltage rises to
VEX , effectively quenching the avalanche. The SPAD capacitances Cd and Cs are recharged
by means of the quenching resistor/transistor, gradually restoring the SPAD voltage to the
nominal value of VS = VBD + VEX . If a photon impinges during the SPAD recharge phase,
it may trigger a second avalanche which is not sensed by the following electronics, as the
comparator threshold is not back-crossed again. In (b), the SPAD sensitivity (in terms of
PDP) over time is shown. Even though the sensitivity is lower soon after an avalanche, a
re-trigger may occur in case of high photon flux operations.

external signal can control the state of the quenching voltage VQ, forcing the SPAD in
an OFF state for the desired amount of time. This functionality is of particular interest
in gated Fluorescence Lifetime IMaging (FLIM) [13,14] or whenever any prior informa-
tion is known about the measurement conditions, for example in gated applications for
d-ToF measurements [6]. Gated operations can also be achieved with PQCs by masking
the output of the front-end based on an external gating signal. The key contrast with
ACQs lies in how they handle the SPAD: in ACQs, the SPAD is consistently turned
off, ensuring it always begins in an active (ON) state once the gating ends. In contrast,
PQCs merely mask the SPAD’s output during gating without ensuring its state upon
gating signal deassertion.

Despite the clear advantage over PQCs, AQCs are more complex and require a bigger
silicon area, as more transistors are required for the quench/reset phases and for the
monostable circuits which drive them. Therefore, their implementation in sensors with
imaging capabilities needs to be carefully evaluated, and in principle it is advantageous
when non-idealities of SPADs such as afterpulsing may be of concern for a particular
measurement process, as for example in photon-starved applications like the detection
of entangled photons for quantum physics experiments [15, 16], or in high precision,
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single point d-ToF measurements [17]. A comparison between passive/active quenching
schemes in terms of the capability to estimate the correct photon flux is shown in
Figure 1.4. The limit of a passively quenched approach is evident when the photon flux
is too intense that the re-triggering phenomenon occurs, limiting the effective count
rate.

RS
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M1 M2

(a) (b)

Figure 1.3: Active quenching principle schematic (a) and detailed implementation (b) with
quench and reset transistors.

1.1.3 Photon Detection Efficiency (PDE)

The Photon Detection Efficiency (PDE) is defined as the ratio between the number
of electrical pulses at the SPAD output and the number of impinging photons on the
SPAD active area [18, 19], at a given wavelength. The PDE defines the behavior of a
SPAD in terms of light sensitivity, which is of paramount importance in all applications
where the intensity of the signal of interest is particularly low, as, for example, in flash
Light Detection and Ranging (LiDAR) systems where a diffuse illumination scheme is
employed, resulting into a low returning echo intensity.

The PDE can be expressed in two ways. With a first definition, it is expressed as
the product between the photon absorption efficiency, η, and the avalanche triggering
probability PT [18]. Zappa et al. [18], defines the absorption efficiency as

η = (1−R)e−αD(1− e−αW ), (1.2)

where α, W , D and R are physical parameters of the SPAD structure. In particular,
α is the silicon absorption coefficient, W indicates the thickness of the depletion region,
D is the junction depth and R is the reflection coefficient for the interface between
air and silicon. The avalanche triggering probability PT also depends on a number of
physical parameters intrinsic to the specific SPAD structure [18] and can be computed
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Figure 1.4: Comparison between passive/active quenching schemes performance in terms of
output count rate. For high photon flux, the actively quenched SPAD reaches a plateau, while
the passive quench approach result in a decrease of the output count rate, due to the paralysis
effect occurring from the SPAD re-triggering during recharge.

by integrating the derivative of the probability Pn(x) and Pp(x) that an electron (n) and
a hole (p) generates an infinite number of descendants while travelling in the depletion
region from a position x, thus creating an avalanche, as defined by McIntyre [20]. With
such a definition, it is possible to estimate the PDE beforehand, with the knowledge of
all the required physical parameters of the SPAD.

An alternative definition is given in the work from Moreno-García et al. [19], where
no knowledge of intrinsic SPADs parameter is required, as it is based on a laboratory
characterization approach:

PDE =
A−DCR

P
, (1.3)

where A is the rate of avalanches observed at the SPAD output, DCR is the mea-
sured dark count rate and P is the rate of impinging photons on the active area.

Being the PDE dependent on the absorption coefficient of silicon, the sensitivity
over the spectrum of different light wavelengths is not constant. Figure 1.5 shows the
measured SPAD PDE versus wavelength for different breakdown voltages from the work
of Moreno-García et al [19]. The PDE depends upon the depth of the junction, and
a typical SPAD exhibits its peak in the visible region around λ = 450 nm [19, 21,
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22], gradually decreasing when approaching the beginning of the Near InfraRed (NIR)
region.

Considering the increasing interest in the application of SPADs for automotive appli-
cations, there have been several studies to enhance the sensitivity in the non-visible re-
gion of the spectrum, which achieved more than 20% PDE at 905nm wavelength [23–25].

Figure 1.5: SPAD PDE versus wavelenght with SPADs designed in a 110nm CIS process,
from the work of Moreno Garcia et al. [19].

1.1.4 Dark Count Rate (DCR) and afterpulsing

An ideal SPAD would provide electrical pulses only upon the detection of photons
impinging on the active area. Real devices, however, exhibits avalanches even in com-
pletely dark environments, thus not generated by an absorbed photon, resulting into a
baseline detector noise. There are two sources of noise in SPAD detectors: dark count
events and afterpulsing events.

Dark count events can be generated by carriers produced by thermal, tunnelling
and trap-assisted effects by means of generation-recombination processes within the
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semiconductor lattice, that are able to trigger an avalanche indistinguishable from a
photon-generated one. Dark count events are Poissonian distributed and constitutes
the primary source of SPAD internal noise. The main performance-limiting factor of a
SPAD used for LiDAR applications is given by a high DCR, which results into a reduc-
tion in the average amount of time available to detect photons. Except in the case of
high intensity, DCR is usually a well manageable non-ideality as its statistical distribu-
tion is the same as for background light. For such reason, DCR can also be exploited as
a source of entropy for the generation of true random numbers [26]. Being mainly driven
by thermal effects, DCR is temperature-dependent, increasing exponentially as temper-
ature rises [27, 28]. Another DCR source, which is less dependent on temperature, is
via carrier injection by band-to-band tunneling. This source of DCR has been shown
to be non-negligible especially during the transition to more scaled CMOS technology
nodes [29,30]. A thorough examination of the phenomenon is provided by Xu et al. [31].
Typical values of low-noise SPADs designed to be compliant with CMOS process (con-
sidering a typical 3V excess bias) lie in the range [0.18, 0.83] Hz/µm2 [19, 21,22].

Afterpulsing, beside DCR, is the second source of noise in SPAD detectors. Dif-
ferently from DCR, afterpulsing-related events occur when carriers travelling in the
depletion region during an avalanche are trapped in local defects of the lattice struc-
ture (also called "traps") and released after a certain amount of time. Differently from
DCR (which obeys the rules of a Poisson process), afterpulsing is a correlated noise, as
the carriers which eventually re-trigger an avalanche, belongs to a previous detection
event. An effective way to reduce the impact of afterpulsing is to increase the SPAD
dead-time [18], in order to increase the number of carriers released from the traps be-
fore the SPAD can be retriggered. In particular, active quenching schemes are more
effective than passive approaches, as in the former the SPAD is forced below break-
down for the entire duration of the dead-time, while in the latter the SPAD voltage
gradually recovers toward breakdown, thus impairing the traps release process [18]. As
afterpulsing is an unwanted behavior, it is desirable to keep its probability (PAP ) as
low as possible. In the work from Ziarkash et al. [32], several commercial SPADs were
tested and characterized in terms of afterpulsing probability, resulting in a PAP in the
range [0.01, 8.5]%. Concerning the impact of the type of quenching scheme employed,
it is very interesting to notice that in the work from Farina et al. [33], the impact
of a well designed AQC enables the use of aggressive dead times down to 10 ns with
a PAP ≃ 1.5%, as opposed to the work from Xu et al., where a similar performance
(PAP ≃ 0.85%) has been obtained with a far more longer dead time of 150 ns.
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Chapter 2

Related work

In this chapter, we provide an overview of the literature to properly place our work in
context. We analyze several architectures proposed over the years concerning SPAD-
based d-ToF sensors, highlighting the most important achievements and milestones in
the field.

2.1 Pioneering results

Pioneering results with SPAD-based CMOS d-ToF sensors have been obtained by Cris-
tiano Niclass et al. in the research group lead by Professor Edoardo Charbon at the
École Polytechnique Fédérale de Lausanne (EPFL). In one of the very first implemen-
tations [34], the possibility to obtain the 3D map of objects with a simple geometrical
structure has been demonstrated. Measurements have been achieved by means of an
8 × 4 SPAD array, with external time-to-digital conversion and resistor-based passive
quenching scheme. A substantial resolution improvement has been achieved by reduc-
ing the pixel pitch by means of a quenching transistor, which also enables a fine control
of the SPAD dead-time, resulting in a 32× 32 SPAD array [35] capable of 3D mapping
complex objects. On a similar sensor with the same physical resolution [36], an imaging
resolution of 64×64 pixels is obtained by micro-scanning the array matrix to effectively
double the resolution. With a further integration effort, a physical resolution of 64×48

pixels has been demonstrated [37], where a further advance in the state-of-the-art is
obtained thanks to an event-driven readout architecture which improves the readout
time if compared to standard solutions based on a sequential scanning.

Despite sub-millimeter ranging resolution has been demonstrated with CMOS inte-
grated SPAD arrays, research efforts focused on the on-chip or even in-pixel integration
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of photon timestamping circuits, paving the way for true fully integrated SPAD-based
d-ToF sensors.

In the work from Stoppa et al. [38], an early attempt at integrating photon times-
tamping capability is demonstrated by means of a 1× 64 SPAD array where each pixel
integrates a Time-to-Analog Converter (TAC), with a reported maximum range of 5 m
with centimeter precision. A substantial improvement in terms of imaging resolution is
presented by Niclass et al. [39], with an array of 128 × 128 actively-quenched SPADs
embedding a bank of 32 on-chip TDCs, with a reported maximum range of 3.75 m and
sub-cm accuracy. Richardson et al. [40] propose for the first time a fully integrated
SPAD array, with a resolution of 32× 32, where each pixel, of 50 µm pitch, integrates
a SPAD and a ring oscillator-based Time to Digital Converter (TDC) plus memory
elements. A similar approach, with the same 32 × 32 pixel resolution, is proposed
by Stoppa et al. [41], with the possibility to obtain both photon intensity and timing
information by means of a per-pixel Time to Analog Converter.

2.2 Main challenges

Once the possibility to integrate per-pixel timing capability has been demonstrated, the
research interest in SPAD-based CMOS d-ToF sensors moved toward the investigation
of techniques aimed at reducing the negative impact of background light, as it represents
one of the biggest performance limiting factor of such systems.

One of the most effective and widespread techniques which can effectively reduce
the negative impact of background light is known as photon coincidence technique.
With the photon coincidence technique, the impact of background photons is reduced
by exploiting their temporal sparseness as measured at the output of several detectors.
This technique requires the use of at least two SPADs, with a dedicated circuitry that
is able to provide a trigger when at least two photons are detected within a tempo-
ral frame called coincidence window. In that case, the event is considered as part of
the foreground, and a timestamp is extracted to measure the distance. Conversely,
the isolated photons are considered background, and discarded. The first attempt to
implement this detection strategy can be found in the work from Niclass et al. [42],
where the technique is implemented in the analog domain. However, the full potential
of photon coincidence detection is revealed in another work from the same authors [43],
where the output of 12 neighboring SPADs is combined into a digital adder, achiev-
ing 3D images with 340 × 96 pixels resolution for a maximum range of 100 m under
80 klux of background illumination intensity. While that detector is designed to work
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in a scanning system (thus relying on a collimated laser source), a novel work has been
presented by Perenzoni et al. [10] with a 64×64 pixel array designed for a more challeng-
ing flood illumination of the scene. Background rejection capability is guaranteed by
the presence of 8 SPADs per pixel, building a digital-silicon photomultiplier (d-SiPM)
with digital logic to exploit temporal proximity of photon detections. The reported
maximum range is 300 m with centimeter precision under background intensity of up
to 100 MPhotons/s/pixel. In the literature, several implementations of this technique
have been proposed [4, 6, 10, 43], and by properly balancing the number of SPADs, the
detection threshold and the detection time window, it is possible to adapt to a wide
range of background light intensities.

Another technique is known as time-gating, where by means of a search procedure
several sub-ranges of the scene are measured, increasing the SNR at the expense of
an increased acquisition time. With this technique, the SPAD is enabled only during
the current sub-range, thus neglecting any other previous and following photon detec-
tions [6,44,45]. The efficacy of this technique has been demonstrated of particular inter-
est for specific applications like Fluorescence Lifetime Imaging (FLIM) [13, 14, 46–50]
and Raman spectroscopy [51–53], where the measurement range is limited to some
tens of nanoseconds and a reliable guess of the localization in time of the phenom-
ena of interest is available. Concerning ranging applications, however, the benefit of
this technique in terms of SNR increase is counter-balanced by the negative impact on
measurement complexity and integration time, as the range is typically in the order of
microseconds and no previous knowledge of an approximate target location is available
to properly address the gating mechanism. A descriptive representation of both the
photon coincidence and time gating techniques is shown in Figure 2.1.

A more recent approach which proved to be effective in mitigating the impact of
background light is represented by the use of retriggerable, multi-event TDCs in combi-
nation with multi-event histogramming techniques [54,55]. Thanks to the possibility to
acquire more than one photon per laser shot, the probability to capture signal photons
even under high background levels is increased. Effectively, the negative impact of back-
ground light is mitigated without the need to actively reject photons. An even more
advanced implementation, making use of the recently presented Synchronous Summa-
tion Technique (SST) by Patanwala et al. [56], in combination with a multi-event TDC,
proved to outperform other pulse combining techniques which are commonly used in
coincidence detection implementations.

In many scenarios, it is expected to have several systems operating together, thus
encompassing the possibility of mutual system-to-system interference. For such a rela-
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Figure 2.1: Example representation of the photon coincidence (a) and time gating (b) tech-
niques. In (a), background photons can be discarded thanks to their temporal sparseness.
Exploiting the temporal proximity of photons arrival times result in the increase of probabil-
ity of detection of the correct arrival time, representative of the target ToF. In (b), a time
gated detection approach is shown. Differently from the photon coincidence, the first photon
is always considered and timestamped. By shifting in time the starting instant of the acqui-
sition window, it is possible to detect laser photons even in presence of strong background
light. After every temporal shift, the SNR increases, with a direct benefit on the probability
of detection of the laser photons. As opposed to the photon coincidence technique, however,
the acquisition process requires longer time, as several iterations are needed to span the entire
acquisition window.
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tively young challenge, already several solutions have been proposed in the literature.
In the work from Ximenes et al. [8], interference is attenuated by means of a Phase-Shift
Keying (PSK) modulation of the laser pulse emission time. A similar solution is pre-
sented in the work by Grollius et al. [57], where an adaptive Pulse Position Modulation
(PPM) based on a random generator is used. With both approaches the laser emission
time is randomized in time and any other source of interference with a different phase
modulation is spread in the histogram of timestamps below the level of the signal of
interest. Another technique for interference rejection is based on the concept of Code
Division Multiple Access (CDMA). With this technique, at least two laser pulses are
emitted with a known timing signature, which differs from device to device and shall be
recognized to collect the signal of interest. This technique has first been implemented
on analog devices with low integration capability [58] or on indirect time-of-flight sys-
tems (i-ToF) using either commercial modules [59] or bulky experimental setups based
on avalanche photodiodes (APD) [60]. Recent integration of a CDMA interference re-
jection architecture in SPAD-based d-ToF systems in standard CMOS process has been
proposed by Seo et al. [7], where the coding information of two successive laser pulses
is exploited in the histogram of timestamps. In further recent developments, the ca-
pability to detect the laser timing signature has been integrated directly in-pixel, thus
avoiding the need to transmit potentially information-less data and build a histogram
of timestamps with highly reliable data [61]. With a PSK modulation of the emitted
laser pulse [8], interference is not eliminated, but only attenuated, where the efficiency
of attenuation depends on the number of phase shifts of the modulation. On the other
hand, it has the advantage of requiring only one laser pulse, as opposed to the CDMA-
based approach [7,61], where (at least) two laser pulses with a known timing signature
are emitted. This approach, however, allows for a complete cancellation of interfering
sources, as unknown detections are eliminated rather than attenuated. An example of
behavior of both PSK/PPM and CDMA-based approaches is shown in Figure 2.2.

2.3 Integration challenges

In the recent years, the researcher’s interest in SPAD-based d-ToF systems focused on
improving the performance in mainly two directions. First, they focused on the possibil-
ity to integrate as much functionality as possible at pixel level, in particular concerning
the timing measurement capability (TDC or TAC). Then, huge developments have
been obtained in terms of resistance against external factors such as background light
and interferences. In view of this, the maturity of such systems and the reliability
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Figure 2.2: Comparison between PSK/PPM (left) and CDMA (right) approaches to re-
duce the impact of interferences in SPAD-based LiDAR systems. The main advantage of the
PSK/PPM approach is that full laser power can be employed, but the interference is detected
anyway and only with a sufficient modulation depth it can be attenuated below the level of the
signal of interest. With a CDMA approach, a laser power penalty occurs as at least two laser
pulses per acquisition are required. On the other hand, interference is actively eliminated,
resulting in a better SNR with respect to the PSK/PPM approach and reduced amount of
data to be transferred.

demonstrated through successful integration into commercial CMOS processes started
to attract the interest from several market segments, from industrial [62], automo-
tive [63], space [64] and consumer applications, asking for increased imaging, ranging
and depth resolutions. As a natural consequence, the amount of generated data has
started to hinder the development of such systems, making it necessary to investigate
new solutions aimed at reconciling resolution and speed of operation.

The main strategy which was devised by many researchers to reduce the bandwidth
requirement on the amount of data which is transferred from the chip to the controller
(usually a Field Programmable Gate Array (FPGA) or micro controller (µC)) is to
integrate the histogram, or part of it, directly on chip [9, 55, 65–72]. Two approaches
have been proposed, which can integrate either a portion of the histogram (partial
approach) or the entire histogram (full approach) on silicon.

With the so-called partial approach [7,66–68,70–73], a reduced histogram memory is
available on-chip, therefore requiring a search procedure to identify the location of the
ensemble of histogram bins containing the laser peak. In the literature, two techniques
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Figure 2.3: Comparison between zooming (left) and sliding (right) partial histogramming
approaches.

have been described to implement a partial histogram behavior. With the so-called
zooming technique [7, 66, 67, 71], at the beginning of the measurement the reduced set
of histogram bins is spread across the entire distance range. By counting the number
of photons detected on each bin, the reduced set of histogram bins is concentrated
over several iterations on a shorter range, thus achieving the desired resolution on
the estimated target distance. With the other technique, called sliding, the subset
of histogram bins is already set to the desired resolution, thus covering only a small
portion of the range. Again by means of several iterations, the subset of histogram bins
slides across the entire range, and the number of photons at each iteration is used to
estimate the target distance. A graphical representation of the main differences between
a zooming and sliding partial histogramming approaches is shown in Figure 2.3. Finally,
a full histogram approach has been demonstrated with resource sharing and the use of
a 3D-stacked design approach by reallocating the same histogram circuitry to several
pixels, as described by Kumagai et al. [69].

In the literature, other techniques to reduce the amount of data generated and han-
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dled by SPAD-based d-ToF systems have been proposed. Ingle et al. [74] propose a
novel approach based on race logic which can provide an equi-depth histogram where
the photon counts from several SPAD detections are divided into quantiles (in partic-
ular, the median value is used). By cascading several binner circuits, it is possible to
reconstruct the equi-depth histogram of photon arrival times from which the ToF is
extracted. This approach, however, has been only tested with simulated data and no
physical realization of the binner circuit implemented with race logic has been provided.
In the work from Gutierrez-Barragan et al. [75], an on-the-fly compressive histogram
approach is presented. In this work, the amount of memory reduction is the same as for
partial histogram approaches with the advantage of ensuring a better accuracy in the
localization of the histogram peak. However, it requires a high in-pixel compute effort,
since several multiply-add operations must be executed in real-time for each new times-
tamp. Sheehan et al. [76] propose a sketching approach based on the Fourier transform,
which does not scale with either the number of photons or the timestamp resolution and
does not effectively build a histogram of timestamps. However, this approach, which
also was not validated with hardware, requires the real-time computation of the Fourier
features which is hardly integrable at the pixel level.
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Numerical modelling of SPAD-based
CMOS d-ToF sensors

Direct Time-of-flight (d-ToF) systems extract the distance estimating the time the light
takes to travel from a pulsed emitter to the target and then back to a time-resolved
photon detector. Such systems can build highly accurate and precise 3D images at
a relatively low cost using solid-state image sensors in Complementary Metal-Oxide
Semiconductor (CMOS) technology. Recent advances in Single-Photon Avalanche Diode
(SPAD) detectors in CMOS technology show that high-sensitivity, low-noise devices can
be combined with dense logic in small areas taking advantage of advanced process nodes,
down to 40 nm [77], even in combination with 3D stacking [55], and the race towards
a fully autonomous car driving system has raised an enormous interest in SPAD-based
LiDAR technology.

Figure 3.1 shows an example structure of a SPAD-based d-ToF system, which in-
cludes the pulsed light emitter, the time-resolved photon detector, the optical elements
to illuminate the target and collect the light echo, the target to be measured and the
environment in which the target is placed.

The core of such a 3D imaging system is represented by a SPAD-based CMOS
image sensor where each pixel is able to extract a distance measurement from the time
elapsed between the emission of a laser pulse and the detection of the reflected light.
Each application, however, has its own set of specifications which leads to the design of
very different systems concerning both the architecture of the CMOS sensor and the set
of external components such as optical elements and laser source. The performance of
such systems is not easily predictable, in particular when the design of the single pixel is
not trivial and aims at introducing smart features like background rejection [10,43,78–
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Figure 3.1: Block diagram of a d-ToF system.

80], interference suppression [58] or partial on-chip memory/histogramming [66,81–83].
Additionally, expensive solutions like 3D stacking [8,55,77] and microlenses [84] are to
be carefully evaluated before being employed. Consequently, it is desirable to tailor
the design to meet the required specifications avoiding the risk to obtain either poor
or overkilling performance. For the aforesaid motivations, the availability of a system
simulator to help the preliminary design phase is of great importance [85], [86]. In this
chapter, we present the design of a Monte Carlo simulator with the aim to emulate the
output of a d-ToF SPAD-based CMOS flash LiDAR sensor. The model is based both
on analytical equations modeling the optical concept and the target topology including
the background light and a numerical Monte Carlo engine that generates Poissonian
events modeling the impinging photons. Starting from the timestamps of the generated
photons, many pixel structures can be simulated giving the designers the freedom to
foresee the most suited architecture to fullfil the requested specifications.

3.1 Simulator architecture overview

A block diagram representing the simulator structure with its main components is re-
ported in Figure 3.2. The simulator models the flash LiDAR system by generating
random arrival times of detected photons. The first step toward the simulation of a
single ToF measurement is the computation of the optical power budget, which mainly
depends on the physical properties of the system and the environment: optics (a lens
with a given F#, a certain transmittance τopt and a bandpass filter with bandwidth λfilt),
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emitter (with a given power envelope P (t), a wavelength λe and a beam divergence θe),
target features (assuming Lambertian surface with reflectivity ρtarget) and spectrum of
background light Ee,λ. Through the computation of the optical power budget it is pos-
sible to obtain the optical flux on the array focal plane. Starting from the knowledge
of the optical flux, it is possible to generate the time envelope of detected events. In
particular, photons can be modeled as a Poisson process, where the number of events
in a time T follows a Poisson distribution, and the inter-arrival times are exponentially
distributed. According to the number of detectors per pixel, a train of SPAD detec-
tion events is therefore created, which will be processed by the pixel architecture. The
SPAD detector is identified by its fundamental parameters: photon detection probabil-
ity (PDP), dark count rate (DCR) and, according to the quenching scheme, a certain
dead-time Tdead. The distance information is retrieved by the pixel through a times-
tamping circuit, usually a time-to-digital converter (TDC) [87] or a time-to-amplitude
converter (TAC) [88], that measures the timing information of the impinging photons.
However, other features are usually implemented to reduce the impact of background
light such as time gating, photon correlation in time domain and multiple laser shots
within the same acquisition window to increase the frame rate. Then, the Monte Carlo
engine will produce a single ToF value by processing the incoming train of photons
detected by the pixel structure under investigation. Eventually, a histogram of ToF
values is created and a distance extraction algorithm is applied to produce the final
distance measurement.

Optical model

F# λfilt

Train of SPAD

detection events
Physical model

Emitter model

P(t) λe θe

SPAD model

PDP DCR Tdead

Target + background

ρtarget Ee,λ

Pixel structure
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Corr. logic
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Algorithm
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measurement
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Figure 3.2: Numerical model architecture and main building blocks.
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3.2 System features modeling

The aim of this Section is to provide details and mathematical background regarding
the modeling of the building blocks of a d-ToF LiDAR system. First, the optical sys-
tem is modeled to provide analytical expressions for the computation of the impinging
optical power on each detector pixel. Then, the modeling of the illumination source
is investigated and a methodology is proposed to reconstruct the laser emission power
envelope.

3.2.1 Optical model

The amount of optical power impinging on the SPAD-based detector is due to the
contribution of the illumination source, background light, target reflectivity and target
distance. The optical model is developed considering the computation of the optical
power budget for a single pixel, which can be easily extended to the entire array upon
the knowledge of the illumination pattern employed. The standard case considers the
illumination pattern to be matched along the detector field of view in both horizontal
and vertical direction. Different or more sophisticated approaches can be employed and
easily taken into account in the optical model through the computation of the optical
power density on the target surface. The developed optical model takes into account
the following parameters:

• Target topology, assumed to be a Lambertian surface with a given reflectivity
value.

• Illumination source, a laser with emitted pulse power Ptx, divergence θe and square
or circular spot shape.

• Optical system, composed of a lens with f-number F# = flens/dlens and a field of
view over the horizontal (FOVH) and vertical (FOVV ) direction.

• Ambient optical power density due to the background light level.

The power reaching the pixel can be expressed as the amount of radiant exitance
Mlens collected by the lens multiplied by the area which is observed by the pixel on the
target side Ascene:

Ppix = Mlens · Ascene, (3.1)
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where the term Mlens of (3.1) is computed considering the target to diffuse a certain
radiant exitance Mtarget according to Lambert’s cosine law. Supposing the target is
observed with a lens subtending an angle 2α, the amount of radiant exitance which is
collected is obtained from the integration in spherical coordinates:

Mlens = Mtarget ·
∫ 2π

0

∫ α

0
cosθsinθdθdφ∫ 2π

0

∫ π/2

0
cosθsinθdθdφ

= Mtarget · sin2α.

(3.2)

The term Mtarget of (3.2) is due to the contribution of both the illumination source
and the background light. Concerning the illumination source, we consider it to be at
a certain distance z with a given power Ptx and a given divergence θe with a square
or round spot shape. Concerning the background light, we consider the fraction of
the sun irradiance spectrum Ee,λ through an optical bandpass filter with bandwidth
[λ2−λ1] which is placed on top of the sensor. Since the spectrum of the solar radiation
is not constant, the amount of solar radiant flux which can be detected by the sensor
is obtained by integration. Consequently, Mtarget equals to:

Mtarget =


Ptx

4·(z·tan(θe/2))2 square spot
Ptx

π·(z·tan(θe/2))2 circular spot∫ λ2

λ1

Ee,λdλ = PD,BG background light

(3.3)

z

dlens/2 α

Figure 3.3: Optical system concept. The light belonging to both the laser emitter and the
background is assumed to be diffusely scattered and observed within an aperture of 2α from
the collecting lens.

From the analysis of the geometry of Figure 3.3, the term sin2α of (3.2) can be
expressed as a function of the lens diameter dlens and the target distance z as:
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sin2α =
d2lens

4z2 + d2lens
. (3.4)

The radiant exitance collected by the lens is then given by:

Mlens = Mtarget ·
d2lens

4z2 + d2lens
. (3.5)

The term Ascene of (3.1) can be computed considering the lens to project the area of
a M × N array over the target with an aperture angle given by the lens field of view
FOV over the horizontal (FOVH) and the vertical (FOVV ) direction:

Ascene =
2z · tan(FOVH/2)

M
· 2z · tan(FOVV /2)

N
. (3.6)

Equation 3.6 can be rearranged to show the pixel area Apix instead of the array dimen-
sions considering that the lens field of view can be expressed as:

FOV =

2 · arctan(M · PitchH/2flens) horizontal

2 · arctan(N · PitchV /2flens) vertical
(3.7)

The terms PitchH and PitchV refer to the physical size of the pixel. By substituting
each contribution of the field of view from (3.7) into (3.6), we obtain the following
expression for the term Ascene:

Ascene = PitchH · PitchV ·
(

z

flens

)2

= Apix ·
(

z

flens

)2

,

(3.8)

which is no more dependent on the array size. Consequently, the computation of the
optical budget for each single pixel is valid until the pixel is completely contained within
the lens focal plane. While the array size is meant to properly evaluate the impinging
power, the simulator works on a single pixel basis: on the single pixel, all the different
conditions of the optical power budget can be set, such as different reflectivity, distance,
background, optics parameters, etc. The amount of optical power impinging on the pixel
is reduced considering the lens transmittance τopt and the target reflectivity ρtarget, the
latter being supposed uniform over the portion of target area which is subtended by the
pixel. Alternatively, to model a non-uniform target surface, it is possible to consider an
average reflectivity value ρtarget, which is observed by the pixel projection over the target
surface. Furthermore, the amount of optical power impinging on the SPAD surface is
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reduced considering the pixel fill-factor FF . Considering the illumination source with
a circular spot shape we obtain the following expression:

Ppix,source =
τopt · ρtarget · FF · Ptx · Apix

π · F 2
# · tan2(θe/2) · (4z2 + d2lens)

. (3.9)

Considering the background light:

Ppix,bg =
τopt · ρtarget · FF · PD,BG · Apix · z2

F 2
# · (4z2 + d2lens)

. (3.10)

Regarding the background light, it is possible to obtain more accurate results by con-
verting the amount of power belonging to each lambda component of the solar radiation
spectrum at sea level. With the knowledge of the impinging optical power, it is possible
to compute the average photon rate, i.e. the λ parameter of the Poisson process used
to statistically model the photon arrival times. The average photon rate is obtained by
dividing the power by the photon energy, given by Ep = h·c

λc
, where h is the Planck’s

constant, c is the speed of light (assumed to be in vacuum) and λc is the laser central
wavelength. The average photon rate is translated into an average event rate at the
output of the SPAD detector considering two additional parameters: the SPAD PDP
and the SPAD dead-time. In particular, the SPAD dead-time sets an upper limit to
the maximum achievable event detection rate which may be orders of magnitude lower
than the impinging photon detection rate. The effect of SPAD dead-time have been
included and extensively discussed in Section 3.3.

The presence of a scattering medium and its implications on both the 2D intensity
image and the 3D depth map has not been considered in this analysis. Regarding the
3D depth map, it can be partly included as an attenuation factor [89] in (3.9) and (3.10)
and as a spread in time of the received laser echo [90]. The potential blurring effect on
the 2D image, however, can not be included as the simulator works considering a single
pixel.

3.2.2 Illumination source - modeling of the laser emission profile

At a first approximation, it is possible to consider the illumination source to provide a
constant power during the pulse time interval. More realistic results, however, can be
obtained by modelling the laser illumination source to provide the true time envelope
of the photons emission time. The underlying inhomogeneous Poisson process has
been simulated starting from the laser power emission profile (which can be either
provided with the emitter datasheet or measured with a conventional Time-Correlated
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Figure 3.4: The area of the laser power envelope represents the emitted pulse energy, which is
modeled as a probability density function giving the integrated photon flux for each discretized
time bin.

Single Photon Counting (TCSPC) setup). Figure 3.4 shows an example of the temporal
evolution of the power of a laser emitter as a function of time.

The area of this curve represents the amount of energy emitted per single laser pulse,
E, which can be turned into the total number of emitted photons: Nph = E·λ

h·c . The
curve has to be normalized to have unitary area, consequently being considered as a
probability density function (PDF). Then, the obtained PDF is discretized into N bins,
each of them being sufficiently narrow (in the order of some tens of picoseconds) to
have sufficient granularity in the reconstruction process. For each bin, we consider the
source to emit photons with a rate:

RATEi =
PDF (i)

Nph

. (3.11)

Then, we generate one random photon timestamp according to an exponential distri-
bution and we consider it valid if it falls into the corresponding time bin, otherwise it
is discarded. By iterating this procedure for a high number of trials, it is possible to
reconstruct the laser pulse time envelope. Since we are modeling the photon detection
process of a SPAD, it is important to take into account the pile-up effect due to the
detector dead time. Being the laser pulse width typically shorter than the SPAD dead
time, the true time envelope can be reconstructed if pile-up is avoided, thus being in the
single photon regime. Figure 3.5 shows an example of the experiment run for different
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Figure 3.5: Example of the reconstruction of a laser time envelope. For each sub-figure, the
attenuation value and the ratio between detected events and total trials (triggering rate) is
reported. Up to Att = 1013, the reconstructed time envelope is heavily distorted by pile-up
effect, where all timestamps are compressed into few time bins. For higher attenuation values,
the pile-up distortion becomes negligible and it is possible to recover the true time envelope.

power attenuation values. The number of histogram counts have been normalized to
better show the pile-up effect, where most of the recorded timestamps are compressed
toward early values. The attenuation value is calculated as the ratio between the total
emitted power and the fraction of power returning back to the pixel (as specified in
Section 3.2.1), and the intensity of pile-up effect is reported for each sub-figure as the
average number of detections over the total number of trials. The simulator is capable
of properly reproducing a variety of detection scenarios, spanning from strong pile-up
to photon starved conditions.

The considerations regarding the pile-up effect and the power attenuation values we
made in this section are oriented to demonstrate that the reconstruction method we
proposed is able to generate the true laser pulse shape. In a real scenario, however, it is
not always possible to recover the true laser pulse envelope. Depending on the distance
extraction algorithm that is employed, the amount of distortion of the recorded laser
pulse echo may introduce systematic errors in the distance detection process. This is
of particular importance when distance extraction algorithms based on histogram peak
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detection are used. Referring to Figure 3.5, a simple peak detection algorithm would
provide a detection at t ≃ 1.7ns with the lowest attenuation value of 1010, while with
the highest attenuation value 1015 the detection would be located at t ≃ 2.5ns, resulting
in a distance error between the two cases of ≃ 0.12m.

3.3 Monte Carlo simulation

In this section, we first provide a description of the methodology used to efficiently gen-
erate timestamps from a Poisson process. Then, a discussion on how to time-compensate
the generated timestamps to meet a precise detection paradigm is provided. Eventually
we discuss important aspects to properly evaluate the results of the simulation process.

3.3.1 Generation of SPAD-related events

When the intensity of the photon flux is known it is possible to generate a train of SPAD
detection events from the Poisson process. The Poisson approximation is considered
valid since the SPAD dead-time Td is much longer than the coherence time τc of the
light source, which can not therefore be resolved [91]. The photon interarrival times are
generated from the Poisson process (of parameter λ) considering the probability that
the first arrival time T is greater than t, which is given by:

P (T > t) = P (N(t) = 0)

= e−λ·t,
(3.12)

where P (N(t) = 0) expresses the probability of observing zero events in the interval
[0, t], derived from the more general formulation:

P (N(t) = k) =
e−λt(λt)k

k!
. (3.13)

The interarrival time t is obtained inverting (3.12):

t =
−ln(P (T > t))

λ
, (3.14)

where P (T > t) is replaced with a random number from the uniform distribution
in the unit interval U((0, 1]). SPAD detection events are then generated from the
cumulative sum of N interarrival times, up to the desired simulation time. Those
events originate from both photon detection mechanisms of illumination source and
background light and the generation of dark counts from the SPAD itself. From the
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simulation perspective, and considering the additivity property of Poisson processes, it
is possible to generate and superimpose two trains of photon arrival times. The first
one contains the background timestamps, from both the environment illumination and
dark count events of the detector, with a duration equal to the entire measurement
window and a parameter λ = λbg + λdcr. The second one is needed for the photons
belonging to the illumination source (with a duration equal to the laser pulse width)
with a parameter λ = λsrc.

The photon arrival times generated from the Poisson process needs additional ad-
justments to account for the SPAD dead-time. This effect can be included by removing
all events with a time difference smaller than the SPAD dead-time. This method, how-
ever, is not computationally efficient as it requires the generation of a certain number
of photon arrival times which would be be eventually decimated. Additionally, it is
not possible to vectorize the decimation process, thus the efficiency drops due to the
need to employ a for-loop. A different method, which is computationally efficient and
avoids the decimation process making use of vectorized software operations, can be em-
ployed. With this method we generate a maximum number Nmax of detectable events
(i.e. photons detected by the SPAD) within a time interval ∆T considering the dead
time Td:

Nmax = ∆T/Td. (3.15)

Then, a sequence of Nmax photon arrival times is generated using the result found in
(3.14):

t = {t0, t1, ..., tn} , n = Nmax − 1 (3.16)

Eventually, each photon arrival time is shifted in time to account for the SPAD dead-
time as follows:

ti → ti + i · Td , (3.17)

where i = {0, 1, ..., Nmax − 1}.

From a mathematical point of view, the proposed method achieves the same result
one would obtain by considering the distribution of interarrival times in the case of a
detector deadtime Td:
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e−λ·(t−Td), t ≥ Td (3.18)

In particular, (3.18) is valid from the second timestamp on, since (only) the first event
can be detected before the detector deadtime Td. Interarrival times are again obtained
by inversion:

t =
−ln(P (T > t)) + λ · Td

λ
, (3.19)

where also in this case, P (T > t) is replaced with a random number from the uniform
distribution in the unit interval U((0, 1]). At this point, the simulator provides the
timestamps of the photons detected by the SPAD detector. Usually, a time-to-digital
converter (TDC) is used to measure the time elapsed between photon detections and
provide digital codes that are collected into a histogram. TDCs are mainly charac-
terized by two metrics: quantization error (dependent on the timing resolution) and
linearity, in terms of differential nonlinearity (DNL) and integral nonlinearity (INL).
The quantization error is included in the model with a rounding operation of the ratio
between the photon timestamp and the TDC timing resolution. Regarding the linearity
information, it is possible to include their effects upon the knowledge (or a prediction)
of the TDC performance that will be used in the final system. In this work, we have
included the effect of the differential nonlinearity by applying a non-uniform rounding
to the generated timestamps, thus artificially increasing the probability to obtain an
even rather than an odd digital code, as this is the most common scenario for a TDC
based on a ring-oscillator, which is the most common structure employed at pixel-level.
With the availability of a complete DNL characterization it is also possible to model the
behavior of each single TDC code, tailoring the timestamping behavior to the actual
implementation. Additional parameters modeling timing uncertainties are included as
well. In particular, we consider a global jitter value representative of the entire mea-
surement setup which is drawn from the normal distribution and is added to the final
timing measurement.

3.3.2 Synchronous and asynchronous SPAD model

In SPAD-based d-ToF systems, there exists mainly two ways to drive the single-photon
detectors and recover the target range information. The choice between the two SPAD
driving criteria has to be made according to several parameters, such as the maximum
expected range and the type of sensor (single-point or 2D imager). The first method,
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called synchronous, allows for easier and more compact implementation, but it is limited
to short range applications. For long-range operations, the asynchronous method is
usually employed. In this section, we provide a comparative evaluation between the
two, focusing in particular on the asynchronous one, as it is the method of choice for
long-range, challenging scenarios.

Synchronous SPAD

In the synchronous driving scheme, the SPAD is enabled synchronously with the start
of the measurement window (typically in coincidence with the laser pulse emission), and
the time of flight measurement is stopped with the first detected photon. Then, the
SPAD is forced in an OFF state by the quenching circuit, and eventually recharged for
the next measurement cycle. Such driving scheme is typically employed for short range
applications with moderate background illumination. A pictorial representation of a
synchronous SPAD driving scheme is reported in Figure 3.6-(a). This driving method
has both advantages and disadvantages. Concerning the advantages, it allows for a sim-
pler hardware implementation and low average power consumption, as independently
of the intensity of photon flux only one photon (thus, only one avalanche) can be de-
tected per laser cycle. Regarding hardware implementation, it enables the utilization of
small transistors for actively recharging all SPADs through a rapid synchronous global
signal. This stands in contrast to passive quenching implementations, which typically
requires larger transistors (in terms of channel length L). Another benefit is the 100%
sensitivity of the sensor at the beginning of the acquisition, as all SPADs are activated
synchronously with the emission of the laser pulse. On the other hand, it is limited by
several disadvantages. In case of very high background photon flux, it is more likely
that the first photon detection belongs to a background photon, thus severely limiting
the probability of detection of a laser photon. For the same reason, as the method
allows for up to one detected photon per laser cycle, it is not compatible with strategies
(as the photon coincidence technique) which aims at reducing the probability of being
blinded by background light, as the SPAD can not be further recharged within the same
laser cycle. Another disadvantage arises from the simultaneous activation of all SPADs,
leading to a potential (temporally localized) surge in power consumption.

Asynchronous SPAD

In the asynchronous driving method each SPAD is driven in a free-running fashion, in-
dependently from the timing of the acquisition window, and after each photon detection
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Figure 3.6: Graphical representation of a synchronous and asynchronous SPAD detection
paradigm.

is automatically recharged (after a dead-time Tdead) allowing for a multitude of photons
to be detected for each laser cycle. By employing this driving method, it is possible to
effectively utilize background rejection schemes like the photon coincidence technique.
In situations where a detection is likely caused by background light and needs to be
discarded, having a rechargeable SPAD becomes essential. For such reasons, it is very
well suited for long range LiDAR operation, where the laser echo could be potentially
located at any time during the acquisition window. Another advantage, as opposed to
the synchronous method, is that it is compatible with multi-event TDCs [54–56], allow-
ing for on-chip histogramming capabilities. The main drawback of this driving method
is the increased power consumption, as the SPADs are free-running and can detect pho-
tons even during the sensor readout phase (which shall be, in principle, avoided to save
power). An example of asynchronous SPAD detection is depicted in Figure 3.6-(b).

Careful attention is required to properly simulate a train of SPAD detection events
considering the asynchronous scheme. In particular, there exist two scenarios with this
method. In the first scenario, the acquisition starts when the SPAD is active, i.e., not in
dead-time. In this case, the generation procedure described in Section 3.3.1 can be used
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as it is. In the opposite scenario, the acquisition starts when the SPAD is within its
dead-time period, as a photon detection occurred before. In this case, the time of arrival
of the first useful photon (which is exponentially distributed) would be delayed for the
amount of remaining dead-time period. In this case, then, the simulation of the train of
SPAD detection events would follow the same rules as described in Section 3.3.1, time-
shifted by a correction offset which is drawn from a uniform distribution U([0, Tdead]).
Whether to add or not the correction offset depends on the probability that the SPAD is
within its dead-time period, which depends on the combination between the dead-time
itself (Tdead) and the magnitude of the background photon flux λB. This probability can
be computed as the ratio between the amount of time TOFF during which the SPAD is
within its dead-time period (which coincides with Tdead), and the average rate of events
in the asynchronous scheme, which equals to T = 1

λB
+ Tdead. Then, the probability

that the SPAD is within its dead-time period at a given time instant is given by:

POFF =
TOFF

T

=
λBTdead

1 + λBTdead

(3.20)

Hybrid method

For the sake of discussion, and to make a clearer distinction between the synchronous
and asynchronous SPAD driving methods, we discuss a further one, which we call
hybrid method. This third method has little or even no practical use in real-world
cases; however, the discussion helps provide a deep understanding of the differences
between the two former methods.

The main point with an asynchronous driving method is the (asynchronous) timing
relationship between the always-on, free-running SPAD (whose timing is dictated by the
impinging flux of photons) and the regular time-base which drives the sensor acquisition
phases. Therefore, the SPAD is always active, even during such sensor phases where
it is not strictly necessary to detect photons. A plausible inference suggests that the
SPAD should be driven in a free-running fashion only within each laser cycle, i.e., it
can be synchronously enabled by the front-end circuitry and then let in free running for
the whole duration of the acquisition window (where the laser echo return is expected
to be). In such a case, power consumption can be reduced, as the SPAD would be kept
OFF during other sensor acquisition phases (as during data readout) where there is
no interest in detecting photons. This approach, which we call hybrid, blends elements
from both pure synchronous and asynchronous driving methods. However, it can not
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be employed due to a significant limitation. In this case, the SPAD would be activated
at the beginning of the acquisition window and thus ready to detect a photon; then, it
would eventually trigger and after the dead-time Tdead it would be recharged, thus being
ready to detect another photon. If we consider, on a time basis, the probability that
the SPAD is active (i.e., not in dead-time), we have an oscillating behavior as shown in
Figure 3.7, which reports this probability for each time instant, in the hypothesis that
the SPAD is enabled at time t = 0 and in presence of a constant flux of background light
with different intensities. As shown, this probability has an oscillating behavior which
eventually sets. The magnitude of oscillation and the settling time depends upon the
incoming photon flux. In case of a high photon flux, as it would be easily expected for
an outdoor automotive scenario, the settling time is in the range of few microseconds,
where, with a periodicity equal to the dead-time, the SPAD would be periodically
unable to detect further photons. This amount of time corresponds to a distance range
of hundreds of meters, which is typical for automotive applications, where the SPAD
would be periodically impaired. After the initial settling time, the SPAD eventually
gathers a constant probability of being active for each time instant, making it suitable
for reliable operation.

For this reason, only a pure asynchronous SPAD driving scheme can ensure a con-
stant sensitivity over time and proper operation over the whole measurement range.

3.4 Experimental results

The model has been validated against a d-ToF system based on the detector described
in [10]. Distance measurements have been carried out indoor in controlled conditions.
The simulation parameters, reported in Table 3.1, have been tuned to match the char-
acteristics of the detector together with the selected optics and laser source. The laser
pulse shape has been estimated using a TCSPC setup to obtain the temporal envelope
of the emitted optical power, as shown in Figure 3.8. The total emitted energy of the
laser pulse has been estimated using a fast photodiode [92].

The Monte Carlo simulator implements the pixel structure of the detector of choice,
which exploits temporal correlation between photon detections to improve background
rejection. The digital Silicon Photomultiplier (d-SiPM) structure has been accurately
modeled to include the effect of bandwidth limitation due to the OR-tree pulse com-
biner [10], together with the smart triggering logic that generates the rolling time win-
dow to detect temporal correlation within the stream of pulses. We also model the
nonlinearity of the TDC. Due to the very low laser pulse energy available, distance
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Figure 3.7: Settling behavior of the probability that a SPAD is active over time under three
different photon flux intensity for the hybrid driving method. At time t = 0, the SPAD is
turned on, and thus it is always active and ready to detect a photon. The probability becomes
stable after an initial settling time, which depends on the photon flux intensity. The periodicity
of the oscillations is given by the SPAD deadtime, which has been set to 100 ns. In the case of
a very high background photon flux (e.g., 108ph/s), the SPAD would be periodically unable
to see further photons during the settling time, severely impairing the possibility to detect the
laser return echo during this timeframe.

measurements have been carried out within a maximum range of ≃ 1.9 m using poly-
tetrafluoroethylene (PTFE) tape as target with ≃ 75 % Lambertian reflectivity [94].
A comparison that validates the power budget and the Monte Carlo photon genera-
tion model is shown in Figure 3.9. The first subplot reports the average number of
detected pulses, which is a direct indication of the impinging optical flux. The second
subplot reports the measurement precision, computed as the standard deviation of a
collection of 250 distance measurements. Each distance measurement, obtained without
photon temporal correlation, is extracted from a population (histogram) of 1000 single
d-ToF values by applying a centroid-based algorithm [10] to both the measured data
and simulated data.

A second comparison between measured and simulated data is provided considering
background illumination to exploit the photon correlation logic. In some cases, the
signal power level may be orders of magnitude lower with respect to the background
power, as reported in Figure 3.10 where we show the relationship between signal and
background for three different background power density on the target side of 1 W/m2,
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Table 3.1: Simulation parameters

Parameter Value Unit
Pixel

PDP† 25 %
Fill factor 26.5 %
Pixel Area 3600 µm2

Dead time 15 ns
Median DCR‡ 6.8 kHz
TDC LSB 250 ps

Emitter
Central wavelength 405 nm
Pulse energy 6.2 pJ
Pulse FWHM ≃250 ps
Beam divergence ≃1.7 ◦

Optical elements
Filter bandwidth FWHM 10 nm
Transmittance 66 %
Focal length 6 mm
Diameter 5 mm

Environment
Reflectivity 75 %
Background flux ≃90 MPh/s/pixel

System
Nr. histogram points 1000
Global jitter FWHM†† 1500 ps

† Value from [93].
‡ Value from [10].
†† estimated from the entire measurement setup.

7 W/m2 and 50 W/m2. The possibility to exploit photon correlation to drastically
reduce the intensity of the background noise is fundamental to recover the signal in-
formation. Figure 3.11 reports one histogram for both measured (a) and simulated (b)
data, with a background flux of ≃ 90 MPh/s/pixel (corresponding to a power density
on the target of ≃ 6.9 W/m2) and no correlation between detected photons. Most com-
mon algorithms to extract the distance result from the histogram would fail because,
as it can be noticed, the signal peak is below the noise level. The repetitive noise in
the histogram is due to the DNL of the TDC, resulting in a systematic error between
even and odd codes [10]. This effect has been included in the model by applying a
non-uniform rounding to the generated timestamps before being transformed into TDC
codes. By exploiting the temporal correlation between photons it is possible to reduce
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Figure 3.8: Comparison between the measured (a) and one realisation (b) of the simulated
laser pulse envelope (250 ps FWHM, measured energy of ≃ 6.2 pJ).

the intensity of the background noise and recover the signal peak. Figure 3.12 shows
the resulting histogram after the temporal correlation of Nph = 2 photons when a time
window Twin ≃ 2.3 ns is applied.

3.5 Summary

A comprehensive, complete, Monte Carlo simulator for d-ToF systems has been de-
scribed and validated against an existing setup. All the components of a complete ToF
detection system can be modeled to provide a solution to foresee the final product in
terms of both costs and achievable performance. Many different pixel structures and
detection paradigms can be easily included in the simulation flow enabling the pos-
sibility to implement the most promising solution already in the design phase of the
detector. The capability of the simulator has been proven against an existing setup,
with good match between simulated and measured data.
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41



3.5. Summary

(a)

20 40 60 80 100
0

50

100

(b)

20 40 60 80 100
0

50

100

10 20 30 40 50 60 70 80 90 100
0

50

100

(c)

Meas
Sim

Time [ns]

C
ou
nt
s

Figure 3.12: Histograms with temporal correlation of 2 photons within a time window of
≃ 2.3 ns: measured data (a) and simulated data (b), comparison of the two histograms after
median filtering (c).
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Chapter 4

Analysis and comparative evaluation
of background rejection techniques

In Chapter 3, we provide deep insights of the structure of a mixed physical/numerical
simulator we developed to aid the design of modern SPAD-based d-ToF systems. The
effectiveness of a system simulator proved to be fundamental in the definition of a
LiDAR system architecture by providing designers with the flexibility to predict the
performance in a wide range of possible configurations [86, 95, 96], which would be
otherwise extremely difficult if not impossible. In this chapter, we make extensive use
of simulations in the context of one of the most important aspects of modern SPAD-
based LiDAR systems: the capability to deal with uncorrelated light from the external
environment.

Being d-ToF an active sensing technique, the presence of photons from background
illumination with uncorrelated timing relationship with respect to the emission time
of the laser pulse represents a severe performance-limiting factor. In the design of a
modern, competitive SPAD-based d-ToF sensor, it is mandatory to implement effective
solutions to mitigate the negative effect of this phenomenon ensuring proper sensor
operation in a wide range of scenario.

While already several solutions have been deployed over the years [6,8,10,43], there
is a lack of knowledge concerning if (and how) different techniques could be possibly
operated together to increase their efficacy in rejecting background-related photons and
maximize the detection of photons from the laser source.

In this chapter we try to fill this gap of knowledge by presenting an analysis and
comparative evaluation of three background-rejection techniques implemented in CMOS
processes for SPAD-based LiDAR systems, using both Monte Carlo simulations and
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laboratory measurements. The first technique, known as photon coincidence technique,
uses the temporal proximity of multiple detections to reject background light and max-
imize the detection of photons belonging to the reflected laser pulse. With the second
technique, named Auto-Sensitivity (AS) technique, background light is rejected by au-
tomatically reducing the SPAD photon-detection probability (PDP), in order to avoid
sensor saturation due to the intense environment illumination. The third technique we
consider is the last-hit detection, which is able to detect and timestamp the last event
impinging on the sensor over the acquisition window rather than the first, maximizing
the system performance for long distance targets.

More specifically, in our analysis we first compare the photon coincidence against
the AS technique and show that the reduction of SPAD sensitivity, or photon detection
probability (PDP), required by the AS technique to achieve the same level of perfor-
mance as that of photon coincidence is unfeasible with the current technology. Then,
we operate the same two techniques together, showing an increase in the maximum dis-
tance range with respect to each technique considered in isolation. Measurements taken
in a laboratory setup confirm the results obtained with the Monte Carlo simulator. We
then focus on three different implementations found in the literature for the photon co-
incidence detection [4,10,43,55], showing how performance is affected based on how the
photon coincidence is exploited. Finally, we present a comparison between the standard
first-hit detection paradigm with the last-hit detection strategy, confirming the validity
of the proposed technique in favoring the detection of long distance targets. The results
also show that last-hit, on average, outperforms the first-hit detection, and thus it is a
potential candidate to be the primary detection strategy in d-ToF SPAD-based LiDAR
systems.

The results that we present have been obtained with a Monte Carlo simulator that
uses an analytical model for the computation of the optical power budget and a numer-
ical engine to emulate a train of photon detections [97]. This approach is justified, since
several models for SPAD-based d-ToF LiDAR systems have been proposed in the liter-
ature [86, 95–97], showing a high level of confidence and thus giving the possibility to
study several features of the system without the need for instrumentation and physical
setups. Nevertheless, we do complement the simulations with actual laboratory mea-
surements, where possible with our setup, which support and confirm the analytical
results.

This chapter is organized as follows. In Section 4.1, we provide an in-depth analysis
of the three considered background-rejection techniques. Results from both simulation
and measurements are detailed in Section 4.2. Considerations on the possibility to
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Figure 4.1: Example of photon coincidence detection with five SPADs and an event validated
with two triggers.

automatically adapt the settings for the coincidence detection technique are discussed
in Section 4.3, while conclusive remarks are provided in Section 4.4.

4.1 Background rejection techniques

In this section, we illustrate the working principle, key parameters and circuit im-
plementation for the photon coincidence, the Auto-Sensitivity and last-hit detection
techniques.

4.1.1 Photon coincidence technique

With the photon coincidence technique, the impact of background photons is reduced
by exploiting their temporal sparseness as measured at the output of several detectors.
This technique requires the use of at least two SPADs, with a dedicated circuitry that
is able to provide a trigger when at least two photons are detected within a temporal
frame called coincidence window. In that case, the event is considered part of the fore-
ground, and a timestamp is extracted to measure the distance. Conversely, the isolated
photons are considered background, and discarded. An example of implementation of
this process is depicted in Fig. 4.1, using a total of five SPADs.

From a logical point of view, the output of each SPAD triggers a pulse upon each
photon detection. The width of the pulse, indicated with Twin, can be set by the
user and defines the temporal window of validity during which photon detections are
considered coincident. Overlapping pulses indicate that detections have occurred close
enough in time to be considered coincident. In the example, a photon-detection event
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Table 4.1: Summary of photon coincidence circuits.

Ref/year Type Coincidence levels full coincidence
OR-based [10] - 2017 OR tree + counter N ≥ 2, N ≥ 3, N ≥ 4 no

XOR-based [55] - 2019 XOR tree + dual-edge counter N = 0, 1, 2, 4, 8 no
Adder-based [43] - 2013 Full and half adders N ≥ 2 yes

Neighbor-based [4] - 2021 Primary + N Secondary pixels P + 1, P + 2 yes

is validated on SPADs nr. 3 and 4, assuming that coincidence requires at least two
SPADs, since their pulses overlap in time. The total number of SPADs employed in the
coincidence detection process, as well as the threshold N of concurrent outputs required
for coincidence, depend upon the implementation and the desired level of background
rejection capability to be achieved. In the following section, we discuss several ways
this method can be implemented in practice.

Comparison of photon coincidence circuits

In the literature, this technique has been implemented in many ways. While the under-
lying idea is the same, the performance could be highly affected by the way in which
the coincidence of events is exploited by means of CMOS circuits.

We consider several implementations, each with its own pros and cons. In the
following, we will refer to them as OR-based [10], XOR-based [55], Adder-based [43] and
Neighbor-based [4]. A summary reporting the type of logic employed, the achievable
coincidence levels and a short description is reported in Table 4.1.

The main difference between the considered coincidence detection circuits consists
in how multiple photon detections are managed and how the coincidence is exploited.
With the OR-based and XOR-based implementations, the detections from a multitude
of SPADs are converted into electrical pulses, and conveyed at the clock input of a
digital counter by means of a tree of digital gates. Then, according to the number
of pulses within the user-defined temporal window Twin, an event can be validated or
not. The main difference between the implementations of the OR-based and XOR-based
solution is the type of digital tree used to convey the electrical pulses. The OR-based
implementation uses a tree of OR gates to derive a single signal from several SPADs.
Because of the inclusive way the OR gate works, if the SPAD signal were to stay active
after the detection, the output of the tree would remain at the high level, and none of
the following detections would be able to propagate through the tree and be counted.
To avoid this, the output from each SPAD has to be transformed into a narrow pulse
beforehand. In the referenced implementation, a monostable circuit with a pulse width
of approximately 400 ps is employed. The output of the tree, i.e., the combined 400 ps

46



Chapter 4. Analysis and comparative evaluation of background rejection techniques

pulses from each SPAD, is then conveyed to the clock input of a digital counter to keep
track of all the events. Conversely, in the XOR-based implementation, the combination
tree is made with XOR gates: in this case, the arrival of each new photon causes the
output of the tree to always change state (from 1 to 0, or from 0 to 1), thus encoding
the detection into a rising or falling edge of the signal. With the implementation of a
dual-edge digital counter, the monostable circuit is then no longer necessary.

Both the OR-based and XOR-based approaches present advantages and disadvan-
tages if compared to each other. The main disadvantage of the OR-based implemen-
tation is that if the average photon rate from the multitude of SPADs is comparable
to the equivalent bandwidth implied by the monostable pulse width, different pulses
can merge with each other in the OR-tree, reducing the effectiveness of the coincidence
detection scheme as some pulses are missed by the counter. With the XOR-based ap-
proach, thanks to the absence of the monostable circuit, a much higher bandwidth can
be guaranteed if compared to the OR-based approach. On the other hand, in case of
very strong photon flux, the OR-based approach would give at least one detection event
(even though no coincidence can be exploited), as opposed to the XOR-based approach
in which nearly simultaneous events would cancel out each other, completely impairing
the measurement process.

A potential drawback of both the OR-based and XOR-based implementations is
that the photon coincidence is not exploited over the entire set of detected photons. In
particular, the validation window of duration Twin is opened by the first detected photon.
Whether or not the validation threshold N , i.e., the number of detections required to
consider the event valid, is reached, none of the other pulses which are present within
the current coincidence window is able to open a new coincidence evaluation window.
A new coincidence window can then be re-opened only after the current one is closed.
In other words, the coincidence windows do not overlap. With this implementation
scheme, we can say that the circuit is not able to exploit the full coincidence.

A different approach is employed in the Adder-based implementation, which relies
on a combinational circuit made of half-adders (HA) and full-adders (FA). In this imple-
mentation, each photon detection produces a fixed pulse of either 4 or 8 nanoseconds
(thus Twin is fixed), which is fed into a network of full-adders (FA) and half-adders
(HA). In practice, the network counts how many pulses are active at any given time, in
a way similar to the logical working principle discussed in Section 4.1.1. In the refer-
enced implementation, the threshold is fixed to N ≥ 2 and the circuit is able to exploit
the full coincidence since there is no prioritization of pulses as in the OR-based and
XOR-based implementation.
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While in the OR-based, XOR-based and Adder-based implementations all of the
SPADs involved in the photon coincidence exploitation are peers, a new concept has
been developed in the Neighbor-based implementation. In this latter case, each pixel
contains a single SPAD, and the coincidence is exploited by considering the output of
its neighbors. In particular, each valid event requires a prior detection in the current, or
Primary (P) pixel, followed by a defined number of detections within the Twin window
in the neighboring, or Secondary (S) pixels. The main advantage of this technique is
that each pixel needs to accommodate only a single SPAD, resulting in a more compact
design without sacrificing the capability to exploit the photon coincidence.

Another implementation, designed to operate the sensor using a continuous-sampling
TDC, is called Synchronous Summation Technique (SST) and proved to outperform
both the OR-tree and XOR-tree based approaches in terms of detected photon rate [56].
The technique was implemented on FPGA by Patanwala et al. [56], with a proposed
integration in silicon by Van Blerkom [98]. Even though the results are promising, we
decided not to further consider it in this work, as we are focusing on approaches which
are integrated and characterized at the CMOS level.

A timing diagram showing a detailed example of the neighbor-based, XOR-based and
OR-based implementations is shown in Fig. 4.2.

4.1.2 Auto-Sensitivity (AS) technique

One way to reject background light is to selectively adjust the photon detection prob-
ability (PDP) of the detector, a measure of its sensitivity. In the Auto-Sensitivity
technique [4], the SPAD PDP is reduced when the number of detected photons falling
within a time calibration window (Tcalib) exceeds a specific threshold.1 The circuit is
implemented at the pixel level by means of a dual excess bias SPAD front-end realized
with 3.3 V thick oxide transistors and a photon counter. Fig. 4.3 illustrates the imple-
mentation schematics at the transistor-level, showing two SPAD recharging paths that
can be selected according to the desired sensitivity level. Fig. 4.4 shows on the left how
the main signals involved (Vph, Vinv and RH/RL) change depending on the level of sen-
sitivity, high or low, that is selected. The same figure on the right shows the detection
probability (PDP) as a function of the wavelength for several excess bias voltages Vex.
For high sensitivity, the SPAD anode is discharged to ground during the reset phase

1Going the other way, i.e., increasing the PDP when the number of detected photons is below the
threshold, would not work, since the technique is designed to avoid saturating the sensor before the
reflected laser pulse is back. If the background is low, sensitivity would be increased, possibly resulting
in high background noise, without the possibility to then reduce it.
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Figure 4.2: Timing diagram showing a detailed example of behavior of each of the three
implementations selected for comparison, assuming a threshold of N ≥ 2 photons within a
time window Twin. In the neighbor-based implementation, as the coincidence exploitation is
constrained to a detection in the Primary (P) pixel, only photons P2 and P3 will trigger a
detection event, while photons P4 and P5 are not considered (even though they have temporal
proximity within Twin). With the XOR-based implementation, however, each photon detection
is considered and thus both photon pairs P2 − P3 and P4 − P5 trigger a coincidence event.
With the OR-based implementation, each photon detection is converted into a single electrical
pulse of duration Tpulse, resulting in a bandwidth limitation. Because of that, only photon
pair P4 − P5 is recognized as a coincidence event, while the coincidence information from the
pair P2 − P3 is lost.
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by transistor M1. Conversely, to set a lower sensitivity, the SPAD is reset to a tunable
reference voltage Vsens through the M2-M3 pair. Therefore, depending on the selected
path (through signals RH , RL, RL), the SPAD excess bias voltage Vex, i.e., the potential
above the breakdown voltage, is set either to Vspad − Vbd or to Vspad − Vbd − Vsens,
maximizing or minimizing the SPAD PDP (where Vbd is the SPAD breakdown voltage).

When the AS is activated, the pixel starts counting the number of photons in high
sensitivity, and switches to low sensitivity if N ≥ 15 photons are detected within
Tcalib [4]. The high sensitivity setting can be restored with the pixel reset signal (not
shown in the schematics for simplicity). We point out that the level of PDP reduction
is limited by the maximum applicable Vsens, which also affects the speed of the circuit.
In fact, despite the large transistor sizes, a higher Vsens results in lower conductivity for
the nMOS transistor M0, which might be unable to set the recharging voltage within a
short time. Moreover, in case of low sensitivity, the pMOS transistors of the level shifter
(needed to interface the 3.3 V domain with the 1.2 V domain of the downstream logic)
become slower because of the reduced input voltage swing [Vsens, 3.3 V ]. At the same
time, the output pulse time delay variation between high and low sensitivity must not
exceed the Time-to-Digital-Converter (TDC) resolution in order to preserve the photon
timestamp information. Because of these reasons, the maximum applicable Vsens is
limited to 2.4 V. Therefore, the PDP can be scaled by only a factor of 1.25, as reported
in the plot in Fig. 4.4, which shows the PDP as a function of the wavelength and of the
excess bias voltage Vex (which in turn depends on Vsense).

While the level of background light intensity is the primary factor which triggers
the AS control circuit to switch the sensitivity setting, also the selected wavelength
of operation has a non-negligible impact with this technique. Considering the higher
sensitivity of SPADs in the visible region of the spectrum, saturation (and so the AS
setting change) is expected earlier than in an equivalent system operating in the near
infrared (NIR) region.

The AS technique was originally proposed for a flash LiDAR scenario [4]. Because
the amount of background light is independent of the acquisition configuration, the
same considerations apply also for a scanning scenario, which is the one selected for the
analysis of this work.

4.1.3 Last-hit detection

In SPAD-based d-ToF systems, the reduced pixel area limits the memory available for
storing timestamps to a few, typically one, events and the conventional acquisition
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Figure 4.3: Transistor-level implementation of a dual-sensitivity front-end circuit, showing
the SPAD recharge path selected for maximum sensitivity (through transistor M1) and the
SPAD recharge path for the reduced sensitivity (through transistor M2/M3).
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Figure 4.4: Timing diagram showing the main signals of the SPAD front-end circuit in high
(Hi) and low (Lo) sensitivity and the behavior of the SPAD PDP for different excess bias
voltages Vex at different wavelengths. The Vex corresponding to the low sensitivity setting is
given by the difference between the high sensitivity setting (6 Volts in the example) and the
maximum Vsense of ≃2.4 Volts, resulting in a lower value of Vex of ≃3.5 Volts (the actual low
sensitivity PDP value is thus interpolated).

scheme considers the first detected event to be stored into the histogram of timestamps
for the ToF extraction. In the work proposed by Manuzzato et al. [4], however, a
novel acquisition scheme is proposed which considers the last detected event. This
criterion has been developed to favor the detection of long-distance targets, i.e., when
the returning laser echo is expected towards the end of the acquisition window. In that
work, the last-hit detection strategy is implemented on a per-pixel basis by means of
a special memory controller. Upon a detection, the current timestamp is saved into
an in-pixel memory, and the TDC is quickly reset to measure the next event. If a
new event is detected, the memory is overwritten with the latest information, and the
process is repeated up to the end of the acquisition window. This acquisition scheme
can be operated in conjunction with other background-rejection techniques such as the
photon coincidence and Automatic-Sensitivity, as it operates at the end of any event
validation circuitry, or even with pile-up reduction techniques such as the asynchronous
imaging method proposed in the work by Gupta et al. [99].
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Due to the underlying Poissonian nature of the incoming photons, the background-
related histogram of timestamps that results when a sensor is operated under the last-hit
detection strategy is a mirrored version of the “first-hit” histogram. In addition, the
peak of the probability of detection will be found towards the right hand side of the
horizontal axis, i.e., towards the end of the acquisition window, if we assume the tar-
get is far. This strategy increases the signal to noise ratio of the system. Intuitively,
this can be justified by the fact that, during the continuous process of detection and
overwrite of the last-hit detection, background-related events are overwritten continu-
ously and the probability that the last detected event belongs to the target reflection is
higher as the target distance increases. For this reason, the detection of targets which
have their echoes near the end of the acquisition is more robust. A comparison of
histograms for a target located at 1/3 and 2/3 of the measurement range using both
first-hit and last-hit detection is shown in Fig. 4.5, with an increase in the signal peak
when the last-hit detection is considered with a long-distance target. Even though the
last-hit detection has been designed to favor long-distance targets, the SNR benefits
also for short distance targets, as shown in Fig. 4.5-b. The selection criteria between
the first or last detection strategy depends upon several variables, such as target dis-
placement, reflectivity, amount of optical power and background intensity, resulting in
a complex decision scheme which makes an in-pixel real-time decision hardly feasible.
Consequently, the decision boundary between first or last detection strategy is deter-
mined at the system level, upon the analysis of the histogram of timestamps to properly
select the most suitable configuration. If an a-priory decision has to be taken, the last
detection strategy is more advantageous, as higher priority is given to the signal of a
long distance target, as it will be shown in the results presented Section 4.2.3.

4.2 Results

In this section, we study the behavior of the background rejection techniques under
investigation through the Monte Carlo simulator [97] as described in Chapter 3. Simu-
lation helps us evaluate the performance over a wide range of parameters. In particular,
the simulator produces a train of simulated photon-detections upon the computation
of the optical power budget, given a list of parameters describing the LiDAR system.
We consider a set of real-world parameters inspired by a typical automotive LiDAR
scenario in scanning mode [43,100], reported in Table 4.2.

Regarding the optical configuration of the system, in particular referring to the
photon coincidence technique, we assumed a uniform pulse energy over the selected
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Figure 4.5: Qualitative comparison of simulated histograms with first-hit (a) and last-
hit (b) detection strategies for a target at 1/3 (100 ns) and 2/3 (200 ns) of the measurement
range (300 ns). The SNR for the long-distance target is in favor of the last-hit detection
strategy. Additionally, even considering the whole range, the SNR with the last-hit detection
strategy is more uniform, as opposed to the SNR in first-hit.

pixels for all of the implementations selected for our comparison [4, 10,55].
In Section 4.2.1, we compare the performance of the AS technique against the pho-

ton coincidence, showing the latter to be outperforming. Additionally, we show that
the overall performance can increase if the AS and photon coincidence techniques are
applied together.

A deeper analysis which focuses on the comparison of different implementations of
the photon coincidence is reported in Section 4.2.2, showing the overall system per-
formance can improve by up to 50% with the best performing coincidence detection
scheme. The analysis of the last-hit detection is presented in Section 4.2.3, showing
that this technique can be potentially selected as the main detection strategy due to
its intrinsic advantages with respect to the classical first-hit detection.

Considering one of the photon coincidence implementations selected in this work,
i.e., the Neighbor-based implementation from [4], we have included both implementa-
tions available in the sensor, to show that both can be used with successful results.
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In particular, the configuration with one Primary (P) pixel and four Secondary (S)
pixels is selected for the analysis of Section 4.2.1. The second configuration, with eight
Secondary (S) pixels is selected for the other two set of analysis, in Sections 4.2.2 and
4.2.3.

4.2.1 Auto-Sensitivity vs. photon coincidence

The first set of simulations compares the performance of a system implementing the
AS technique against a system implementing the photon coincidence. In particular, we
simulated scenarios where the target is not visible in standard conditions (i.e., with the
detection of the first photon) due to the combination of distance (50 m and 100 m),
reflectivity (ρ = 50% and 90%) and background illumination (50 kLux) saturating the
histogram of timestamps from which the ToF is extracted. The AS technique works
by automatically decreasing the SPAD PDP if a background intensity over a certain
threshold is detected. For this reason, we executed a sweep on the PDP parameter
to understand by how much it shall be decreased to reach the same performance (in
terms of percentage of correct measurements) of a system implementing the photon
coincidence technique. In the evaluation of results, a measurement is considered correct
if its deviation from the ground truth is within a given threshold, which was set equal
to ± 10 cm. The results are depicted in Fig. 4.6 for the different combination of
parameters, and show that the performance of the AS technique reaches (and in some
cases, exceeds) the performance of the coincidence technique only for extremely low
values of PDP (the required PDP would be ≃0.05%). This is equivalent to a decrease
factor of ≃ 100 times with respect to the nominal PDP value of ≃ 5%, which, as
discussed, cannot be implemented with the architecture of Section 4.1.2.

The second set of simulations explores if and by how much the performance can be
improved if the AS technique is used together with the photon coincidence. The sim-
ulation envisages a very high target reflectivity (ρ = 90%) with a moderate (50 kLux)
and low (10 kLux) background intensity and target distance in the range from 10 m to
130 m and from 140 m to 340 m, respectively. The results are illustrated in Fig. 4.7,
showing an increase in the maximum measurement range from 50 m to 100 m and
from 270 m to 310 m in the two cases, considering a threshold at 80% of probability
of correct measurement. This result is significant, and shows that despite its low per-
formance when used alone, decreasing the SPAD sensitivity reduces the probability of
being blinded by the reflected background light and thus increases the measurement
range when combined with photon coincidence. In this case, the application of the AS
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Figure 4.6: Probability of correct measurement as a function of the SPAD PDP. The amount
of PDP decrease required to reach the performance of the photon coincidence technique is
unfeasible with the proposed AS technique, since the minimum PDP which can be reached
would be ≃ 4% (considering a reference PDP of ≃ 5% at λ = 940 nm).

technique decreased the SPAD PDP from the reference value of ≃ 5% to ≃ 4%, which
is in line with the proposed architecture of Section 4.1.2.

The obtained results have been qualitatively verified in a lab setup employing the
detector described in [4]. The setup is shown in Fig. 4.8, and consists of two targets
where the second is illuminated by a collimated fiber optics halogen lamp. Measurement
results are shown in Fig. 4.9. In Fig. 4.9-(a), no background rejection technique is used,
and the target illuminated by the halogen lamp shows a hole in the final 3-D image,
since the laser return was completely covered by background photons, resulting in the
complete loss of the ToF information. In Fig. 4.9-(b), the AS technique alone was
activated, showing almost no improvement due to the too low decrease of the SPAD
PDP (from ≃ 5% to ≃ 3%). In Fig. 4.9-(c), the photon coincidence technique was
applied, considering at least two photons within a temporal window Twin of ≃ 2 ns
with the Neighbor-based implementation. In this case, the ToF information from the
illuminated target area is only partially recovered. Finally, in Fig. 4.9-(d), the AS
technique was also applied, and the concurrent decrease of the SPAD PDP with the
application of the photon coincidence technique allowed for a complete recovery of
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Figure 4.7: Probability of correct measurement as a function of target distance for two differ-
ent background intensities. The AS technique, if used together with the photon coincidence,
improves the maximum measurement range. Considering a threshold at 80% of probability
of correct measurements, the range can be increased from 50 m to 100 m and from 270 m to
310 m in the two cases, respectively.

the ToF information from the histogram of timestamps. The combination is therefore
shown to work better also in practice. Besides, Auto-Sensitivity does not degrade the
information when not needed. In fact, AS works on a per-pixel basis, therefore the
PDP is reduced only for those pixels with the strongest illumination. Conversely, the
photon coincidence technique is a global setting of the array, thus preventing a complete
image reconstruction if several illumination levels are present at the same time on the
observed target area.

4.2.2 Comparison of photon coincidence circuits

With the photon coincidence technique, photon detection events are qualified to trigger
a distance measurement only if their number and their temporal proximity exceeds a
user-defined threshold. With this criteria, background-related events which are more
likely to be sparse in time can be rejected improving the quality of the measurement.
This detection process has been implemented in many ways and performance can be
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Table 4.2: List of parameters used in the Monte Carlo simulation.

Parameter Value Unit Description
Tdead 50 [ns] SPAD dead-time
DCRa 0.4 [Hz/µm2] SPAD dark-count rate
PDP b 5 [%] SPAD PDP
zb 100 [m] target distance
T b
win 1 [ns] coinc. window width

SPADn 4+1c n.a. nr. of SPADs
Pixpitch 50 [µm] pixel size
FF 10 [%] pixel fill-factor
Ptx 50 [W] laser peak power
Tw 5 [ns] laser pulse width
ϕe 0.28 [deg] laser beam divergence
BW 10 [nm] bandpass filter width
τopt 90 [%] optics transmittance
F# 1.2 n.a. optics F-number
ρbtarget 10 [%] target reflectivity
BGb,d

level 50 [kLux] background level
λ 940 [nm] wavelength
Ns 500 n.a. nr. of simulation points

a Value from [19].
b Default values, changed in the simulation.
c Coincidence configuration from [4].
d Background power obtained from ASTM G173 standard.

greatly affected by design choices. In this section we focus on simulation results trying
to enhance the differences between three implementations of the coincidence detection
circuit. In particular, we consider the OR-based, XOR-based and the Neighbor-based as
already described in Section 4.1.1. The fourth implementation, Adder-based has shown
very similar results to the XOR-based and thus it will not be reported in the plots. The
main reason for this finding is that in both cases the pulses received from the various
SPADs are not merged together as in the OR-based approach. This, however, occurs
when considering the range of parameters used in simulations, as even the XOR-based
approach, for extremely high values of flux, would suffer from the issue of merging
between nearly simultaneous SPAD pulses. As previously outlined, the main difference
between the Adder-based and OR/XOR-based approaches is the possibility to exploit
the full coincidence. In this case, however, this has not been observed as typically the
coincidence window is as long or even shorter than the laser pulse, leaving no possibility
of restarting the coincidence within the same laser pulse.

The simulator settings for this comparison have been tuned to the worst-case sce-
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1
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Figure 4.8: Laboratory setup for the qualitative evaluation of AS and coincidence techniques.
Target nr. 2 was illuminated by a collimated fiber optics halogen lamp, emulating a highly
reflective target reflecting an intense background illumination. In order to place the system
close to a realistic scenario, the optical bandpass filter was removed.

nario for d-ToF LiDAR systems. In particular, we set a background intensity of
100 kLux with a target reflectivity of 10 % and a distance sweep between 20 m and
200 m. In order to perform a fair comparison and enhance the differences between
the selected photon coincidence circuits, we set the same number of SPADs for all of
the three selected circuits (thus not following the real implementation), i.e., 8 SPADs
over which the coincidence is exploited (8+1 for the Neighbor-based). Also, for the
sake of comparison, we did not consider hardware limitations of rise and fall times of
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Figure 4.9: Qualitative measurement showing the reference 3D image in four cases. In (a),
no background-reduction techniques are applied, in (b) and (c), the AS technique and photon
coincidence are applied independently, and in (d) the two techniques are applied together,
allowing for a full recovery of the 3D information.

electrical signals (being a common denominator to all of them), but we only consid-
ered the bandwidth limitation of the OR-based implementation which comes from the
monostable circuit.

In the simulations, for each distance point in the range from 20 m to 200 m, we
selected three different values of the coincidence window width, Twin, of 1 ns, 2 ns
and 3 ns and for each value we selected three different thresholds for the coincidence
detection (N = 2, N = 3, N = 4 for the OR-based and XOR-based and P+1, P+2, P+3
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for the Neighbor-based). Consequently, we have a total of 27 simulation scenarios over
which the performance is evaluated in terms of the probability of correct measurement.
For the sake of compactness, we show only the most interesting cases which are worth
reporting, highlighting the differences between the different implementations. For the
final evaluation of the different implementations, we decided to use a threshold equal
to 80% of measurement success rate, which we identify with the symbol Pok.

In the first setting (Twin = 1 ns), the only implementation providing results above
Pok with all the selected threshold values (N = P + 1, N = P + 2 and N = P + 3) is
the Neighbor-based, while the other two provide results above this threshold only with
N = 3 and N = 4. The overall best performance, however, comes from the XOR-based
implementation with a threshold of N = 4, yielding a minimum probability of correct
measurement of 75%, as opposed to the minimum provided by the Neighbor-based of
40%. Considering the OR-based and XOR-based implementations with a threshold of
N = 3, for distances up to ≃120 m the XOR-based performs better, while the opposite
holds afterward (as shown in Figure 4.10). This is explained by the bandwidth reduction
given by the monostable circuits required by the OR-based implementation, which, in
this case, filters also background light, providing a performance increase. However,
the bandwidth limit given by the monostable circuit is overall a performance-degrading
factor: in this configuration (Twin = 1 ns), the OR-based implementation does not work
with a threshold of N = 4, due to the limit posed by the 400 ps monostable pulses.
Additionally, as shown in Figure 4.10, the OR-based implementation with N = 3 shows
a reduced probability of correct measurement also at short ranges. This misbehavior
can be again attributed to the bandwidth limitation given by the monostable pulses
propagating through the compression OR-tree. If the flux of photons is too high, the
pulses are too close and merge, losing the information on the actual number of detected
photons.

In the second setting (Twin = 2 ns), the overall best performance is yielded by the
Neighbor-based implementation with a minimum of 80% of success rate. Also in this
case, it is interesting to notice the effect of the monostable bandwidth limitation of
the OR-based implementation. As shown in Figure 4.11, with a threshold of N = 3

photons, the bandwidth limit helps in rejecting also background light, yielding better
performance than the XOR-based one. The opposite holds when a threshold of N = 4

photons is used: in this case the XOR-based outperforms the OR-based.
In the third setting (Twin = 3 ns), the overall system performance begins to degrade

due to the higher integration time over which the coincidence is exploited, letting more
background-related events to be falsely validated. In this case, the implementation
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scheme which overall performs better is the Neighbor-based : this is explained by the
fact that, with this scheme, SPADs are not peers, but the validation of photon-detection
events is constrained to a detection in one specific SPAD, that is the primary one.
Consequently, with the highest coincidence window width considered in this work, the
additional filtering level given by this particular implementation results in an overall
performance that is higher than the other two schemes.

To evaluate the overall performance of the three coincidence detection implementa-
tions, we consider for each scheme the number of times the probability of correct mea-
surement is greater than or equal to Pok. This serves as an overall indication of which
circuit implementation performs better over a wide range of settings, both in terms of
coincidence window width Twin and the desired level of coincidence (the threshold N).
Results are shown in Figure 4.12, indicating that the implementation scheme which
overall performs better is the Neighbor-based, with a performance ≃ 2.08 times higher
than the OR-based. Considering the absolute performance, the Neighbor-based results
in the ≃ 55.5% of the total amount of distance points with a probability of success
measurement higher than or equal to Pok, followed by the XOR-based (≃ 37.7%) and
the OR-based (≃ 26.6%).

4.2.3 Last-hit detection characterization

The last-hit detection strategy has been specifically designed to deal with long distance
targets [4]. With the classical detection paradigm (first-hit), the probability of detecting
a background event increases with the target distance. Conversely, with the last-hit
technique, the opposite holds, since the priority is given to the last detected event
which is more likely to belong to the target as its distance increases, as explained in
Section 4.1.3.

Similarly to the results shown in Section 4.1.1, the combination of the last-hit detec-
tion with other background-rejection techniques outperforms the performance obtained
with each individual technique. In particular, we show the results from the combination
with the photon coincidence.

The last-hit has been characterized against the first-hit technique by considering
the same simulation environment as reported in Table 4.2, with a modified setting to
emulate the worst conditions for the detection of long distance targets, i.e., a background
intensity BGlevel of 100 kLux and a target reflectivity ρtarget of 10%. We characterize the
performance over distance considering three different values for the coincidence window
width Twin with the architecture of [4]. The complete list of modified parameters is
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Figure 4.10: Comparison between OR-based and XOR-based implementations showing how,
for the same threshold (N = 3), the bandwidth limitation of the monostable pulses of the
OR-based helps as an additional background-rejection factor. On the other hand, for N = 4,
this technique never works with the selected coincidence window width Twin of 1 ns.

reported in Table 4.3.
The results are shown in Figure 4.13, where the probability of correct measurement

(success rate) is reported for the three different values of Twin. The benefit of the last-
hit detection in rejecting background light is clear: almost the same success rate of
near targets in first-hit detection can be obtained for the long distance targets, even
though the received optical power is lower. Concerning the performance with different
values of Twin, we observe an almost specular behavior for shorter Twin values. In those
cases, it is expected that the control unit of the ToF system is capable to detect a
change in the SNR and switch from first to last-hit accordingly. With a 2 ns long Twin,
however, the last-hit mode reaches a success rate of more than 80% over almost the
whole range. While the probability of detecting a background photon follows an exact
specular behavior with first and last-hit detections, the signal gains from the use of the
last-hit mechanism, and in particular it equalizes the SNR over the measurement range,
as shown in Fig. 4.14. This can be explained by the fact that the last-hit mechanism
gives priority to late photons, somehow compensating for the exponential decay of the
signal power as the target moves away from the LiDAR system. This is clearly visible
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Figure 4.11: Comparison between OR-based and XOR-based implementations with a co-
incidence window width Twin = 2 ns, for a threshold of N = 3 (left) and N = 4 (right).
The bandwidth limitation of the OR-based, as a collateral effect, brings a little performance
improvement with N = 3, but it is overwhelmed by the XOR-based implementation with
N = 4.

in Fig. 4.5: using the last hit mode, the peak height remains the same as the target
moves from 1/3 to 2/3 of the range, even if the echo power at the receiver end is reduced
due to the increased distance. Consequently, for particular design constraints where the
system cannot implement too many options, the last-hit mode could be eligible to be
the only detection scheme available.

The behavior in terms of SNR has been analyzed employing a formulation inspired
by Koerner [101]

SNR =

Γ ·
N∑

i=ToF

H(i)√
1/N ·

N∑
i=ToF

H(i)

, (4.1)

where H is the histogram of timestamps, N is the number of bins between the time of
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Figure 4.12: Global performance of the three different coincidence detection implementations
considered. The Neighbor-based, thanks to the additional rejection capability given by the
constraint that the detection must happen on the Primary pixel (N = P + 1, P + 2, etc)
results in a 1.46 times higher performance with respect to the XOR-based, which in turn
outperforms the OR-based approach by a factor of 1.43.

flight (ToF ) and the end of the laser pulse (ToF + TW ), and:

Γ =
λS

λB + λS

(4.2)

is the ratio between the signal intensity (λS) and the total light intensity over the sensor
(λB + λS). In the employed formulation, the signal is computed as the total number
of signal photons, while the noise as the standard deviation of the average number of
total counts per time bin, to encompass for the shot noise of photon counts.

The performance in terms of SNR in the configuration of Figure 4.13-c is shown in
Figure 4.14. In the plot, an SNR threshold which guarantees a measurement success
rate of at least 80% is drawn with a dotted black line, showing that the system SNR in
last-hit detection is almost flat and enough to guarantee the performance over almost
the entire range, as opposed to the SNR in first-hit detection which drops below the
threshold at approximately half range.
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Table 4.3: List of modified parameters used in the Monte Carlo simulation for the charac-
terization of the last-hit technique.

Parameter Value Unit Description
N 3 n.a. Coinc. threshold
Twin [1; 1.5; 2] [ns] coinc. window width

SPADn 8+1 n.a. number of SPADs [4]
ρtarget 10 [%] target reflectivity
BGlevel 100 kLux background level

Coinc. scheme [4]-2021 n.a. Selected coinc. scheme
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Figure 4.13: Performance comparison of first and last-hit detection techniques with Twin =
1 ns (a), 1.5 ns (b) and 2 ns (c).
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Figure 4.14: SNR behavior of first and last-hit detection with Twin of 2 ns, showing an
almost flat SNR for the last-hit detection that guarantees a success rate of at least 80% over
almost the whole range.

Considering the information obtained from the whole dataset, we show in Figure 4.15
the percentage of simulation points where the measurement success rate is higher than
80%, categorized for each of the (a), (b) and (c) cases of Figure 4.13. Considering
the two techniques independently from each other (i.e., assuming it is not possible
to switch them to increase the success rate), the global performance is higher with
the last-hit detection strategy by approximately 7.4%. Considering, however, a ToF
system capable to select the best setting for each target distance, the overall system
performance increases by a substantial +77.8% with the implementation of the last-hit
detection.

4.3 Automatic adaptation of pixel parameters

SPAD-based LiDAR systems are expected to operate in a wide range of scenarios, from
photon-starved up to strong pile-up conditions even within the same observed scene.
For this reason, it would be desirable that each pixel can select the best configuration
in terms of automatic sensitivity and coincidence technique.
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Figure 4.15: Global performance of first and last-hit detection strategies. Considering the
two techniques independently from each other (i.e., assuming it is not possible to switch from
one to the other), the last-hit detection achieves anyway global performance higher than 7.4%
than the first-hit.

Concerning the AS technique, it has already been demonstrated [4] that a per-pixel,
real-time adaptation is possible, even with a fixed threshold for the number of counted
photons to threshold the intensity of background light.

The photon coincidence technique prevents sensor saturation from background-
related events occurring before the arrival time of the useful signal. As detailed earlier
in this chapter, the technique involves detecting coincident events within a user-defined
temporal window. Ideally, the duration of the temporal window should match the width
of the laser pulse, as only within this specific time frame coincident events are expected
to occur. In the case where the intensity of background illumination exceeds a certain
threshold, false coincident events may be triggered. While shortening the temporal win-
dow would decrease the likelihood of false triggers caused by background light, it would
also lead to the rejection of photons from the reflected laser light, further compromising
the ToF measurement. For such a reason, it is reasonable to assume the coincidence
window as a fixed parameter, and therefore set the intensity of the coincidence filtering
by means of the number of photons N . In existing many implementations [4, 6, 43, 55],
the setting of the coincidence parameters is fixed and applied uniformly to the whole
array of pixels. Considering that usually SPAD-based LiDAR systems need to operate
in high dynamic range conditions, an optimal solution would envisage per-pixel settings,
possibly with an automatic, real-time approach to set the coincidence threshold N . A
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similar approach has been developed by Beer et al. [80], where a per-pixel adjustment
of the coincidence threshold is implemented. In this approach, however, the per-pixel
adjustment require a sensor data readout, resulting in potentially long (fraction of sec-
onds) time scale to adjust the coincidence parameter and thus hardly adaptive to fast
changes in the scene illumination. A real-time, per-pixel approach in this sense can
be implemented by taking inspiration from the implementation of the AS technique by
Manuzzato et al. [4], which uses a pre-measurement calibration phase in which photons
from background light are counted directly in pixel within a user-defined integration
window to automatically decrease the SPAD sensitivity. A similar approach can be
implemented to provide a pixel-level awareness of the magnitude of background illumi-
nation, to automatically adjust the coincidence by tuning the number of events to be
considered (N), without the need to transfer data out from the sensor. To optimize
the measurement duty cycle, the automatic calibration procedure can also be executed
in parallel to the sensor data readout, thanks to the possibility to operate SPADs in a
free-running fashion.

4.4 Summary

In this analysis, three background-rejection techniques for SPAD-based d-ToF systems
have been analyzed and compared with each other. If considered alone, the AS tech-
nique proves effective only with a drastic reduction of the SPAD PDP, which is unfea-
sible with the proposed circuit [4]. On the other hand, a significant improvement in
both range and probability of correct detection can be obtained by combining the two
techniques. An in-depth comparison of three different circuit implementations of the
photon coincidence technique shows how performance can be affected by design choices,
with the Neighbor-based approach being overall the winning approach. Eventually, the
analysis on the last-hit technique shows a significant performance increase if the proper
detection strategy is dynamically selected by the system. Additionally, we show that
this technique could anyway be selected as the main one in a SPAD-based LiDAR sys-
tem if required by design constraints. The results from the Monte Carlo simulator have
been qualitatively verified with a laboratory setup using a sensor implementing two of
the techniques.
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Chapter 5

A SPAD-based linear sensor with
in-pixel temporal pattern detection for
interference and background rejection
with smart readout scheme

In Chapter 4, several background-rejection techniques from both other researcher’s
works [10, 43, 55] and works from our research activity [4] have been compared against
each other in simulations, focusing in particular on the possibility to properly combine
them to improve the sensor performance. While background light rejection remains
one of the most concerning issues of SPAD-based LiDAR systems, the increased inter-
est in their application for Advanced Driver Assistance Systems (ADAS) introduced a
new challenge, i.e., the capability to reject interfering information from similar devices
operating in the same environment.

In this chapter, we report on preliminary characterization results from a 1x64 pixel
SPAD-based linear sensor for d-ToF applications, designed to efficiently reject both
background light and interferences from similar devices. The sensor has per-pixel, real-
time interference and background rejection capability and it is coupled with a smart
readout scheme. Each pixel is composed by 4 SPADs with passive quenching, a digital
logic circuit to exploit photon temporal coincidence with a threshold of up to 3 photons
for background rejection, a finite state machine for the detection of temporal laser
patterns for the rejection of interfering signals generated by other similar devices and
a 16-b time-to-digital converter with 150 ps timing resolution that can be repurposed
for intensity measurements. The sensor implements a smart readout scheme capable to
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output only pixels with meaningful data, i.e., detection events that have been validated
by the photon temporal coincidence circuit and/or the laser pattern detection circuit.

The interference rejection is based on the emission of two laser pulses with a known
timing signature as in [7], but in this sensor it is implemented directly on a pixel basis
in a compact form and operates in real time, thus no post-processing is required on
the histogram of timestamps. The benefit of an active, in-pixel interference rejection is
twofold. First, also background light can be rejected, resulting in an increased signal
to background ratio in the final histogram. Second, power consumption can be reduced
as the TDC is activated only when two photon detections occur within the expected
time frame, resulting also in a more robust operation against pile-up distortion, as the
probability of saturating the TDC channel is reduced.

This chapter is organized as follows. A detailed description of the array architecture
is provided in Section 5.1, focusing in particular on the pixel architecture (Section 5.1.1)
and on the readout scheme (Section 5.1.2). Preliminary characterization results are then
reported in Section 5.2, while in Section 5.3 we discuss on the best operating conditions
where the proposed scheme is more effective and its potential limitations. Conclusions
and perspectives for future improvements are discussed in Section 5.4.

5.1 Architecture

In this section, we describe the sensor in detail, focusing on the pixel architecture and
on the readout scheme.

5.1.1 Pixel architecture

The pixel, designed in a 110 nm 4M CMOS Image Sensor (CIS) technology, is composed
by 4 SPADs arranged as a mini digital silicon photomultiplier. Each SPAD is passively
quenched by 2 thick-oxide transistors to recharge the SPAD and properly clamp the
voltage to 1.2 V to be compliant with the following circuitry. Each SPAD is paired
with a monostable circuit to create a temporal window for the coincidence detection
circuit, which is realized in pure digital logic. A threshold of N=1/4, N=2/4 and
N=3/4 events can be selected via Serial Peripheral Interface (SPI) programming. The
output from the coincidence detection is fed into the measurement control circuit, which
implements a finite state machine for the detection of the laser signature. The laser
temporal signature can be set with 4-bit granularity, i.e., up to 16 combinations are
possible. The per-pixel TDC is based on a fine-coarse architecture, where the coarse
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timing measurement is given by an 8-bit counter with 100 MHz clock delivered by the
FPGA controller and the fine timing by a ring oscillator with 150 ps timing resolution.
The TDC 8-bit counter can be repurposed to count the number of detected photons for
intensity measurements. When the sensor is operated to recognize the laser pattern to
reject interference, the TDC is triggered only when the second laser pulse is correctly
detected, reducing unnecessary power consumption.

The measurement control circuit generates a VALID flag whenever a photon-detection
event occurs. If the laser pattern detection feature is disabled, a VALID flag is gener-
ated by the first incoming event, which can be either the first detected photon (if no
coincidence threshold is applied) or the first 2 or 3 photons detected within the coinci-
dence window generated by the monostable circuit. The VALID flag is needed by the
smart readout scheme to optimize the bandwidth by reading only pixels with validated
data. The chip micrograph, array architecture and pixel block diagram are shown in
Figure 5.1.

5.1.2 Readout architecture

The trend for the latest SPAD-based d-ToF sensors is to increase range, depth and
imaging resolution to achieve long-range measurements with a finer depth and geomet-
rical detail [6,77,102]. This, however, result in an increase on the total amount of time
required to transfer the data generated by the sensor. In contrast to this, additional
features for background and interference rejection, as implemented in the proposed
chip design, result in a reduction of the amount of generated data, as information from
background-related photons or interferences can be discarded. For those reasons, a clas-
sical scheme where the entire array is read out is not optimized, as pixels with either
non-validated data or background data are anyway considered, resulting in an increased
readout time, negatively affecting the sensor frame rate.

Previous works tried to solve those problems with different approaches. Zarghami
et. al [15] proposed a row skipping feature and a threshold-based approach to enable
the sensor readout only when a minimum selectable number of pixels have triggered.
A different approach from Field et al. [103] has been proposed which makes use of
a valid flag and pixel address to completely skip pixels with invalid data during the
readout phase. With this approach however, the additional overhead over the number
of timestamp bits is significant, adding 11 bits of overhead for 10 bits of timestamp
data.

Within the design of the chip, we propose a new readout scheme which consists of
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Figure 5.1: Chip micrograph, array architecture and pixel block diagram. The array of
pixels is implemented in a 110 nm 4M CIS technology within a multi-project chip. Due to
the reuse of the TDC from a previous project, pixel size is not optimized, resulting in a final
pitch of 40 x 180 µm2. The in-pixel measurement control block, with laser signature detection
capability, has an area occupation of 28 x 14 µm2. By considering the device from Manuzzato
et al., [4], which is realized in the same technology node with a pixel pitch of 48 x 48 µm2, the
occupation of this block takes 17% of the total pixel area, thus allowing its integration also in
a 2D array.

two phases: the first phase is meant to transfer 1 bit per pixel to inform the controller
FPGA about which pixels contain valid data. In the second phase, only pixels with
validated data are read out, thus suppressing zeros. The first readout phase is therefore
only needed for the controller FPGA to associate each data values with the pixels
that generated it, with a minimum overhead of only 1 bit per pixel. A graphical
representation of the proposed readout scheme is shown in Figure 5.2.
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Figure 5.2: Graphical representation of the proposed readout scheme considering a row of
pixels. In the first readout phase a 1 bit flag information is transferred for each pixel. In
the second phase, only pixels with flag equal to ’1’ are actually transferred, minimizing the
readout time.

We compare our approach against two address-based approaches as follows:

• Full address-based readout: the sensor implements pixel skipping feature enabling
the readout only for pixels containing valid data. The pixel position is encoded
by adding the full address coordinates to identify row and column.

• Half address-based readout: similarly to the full address-based readout, skipping
feature is implemented. However, only half bits encoding the pixel address are
needed, since the row selection information is provided by means of dedicated
signalling directly in the readout phase.

• Binary mask-based readout: in our approach, pixel skipping feature is imple-
mented. However, no address is required, as for each pixel a binary flag indicates
with the value of ’1’ if valid data is contained, otherwise the value is ’0’. Only
if the binary flag has value ’1’, the selected pixel outputs its timestamp data,
otherwise the next pixel is selected. The binary flag is readout anyway to assign
each pixel data to the correct array coordinates.

For the comparison, we consider a 64×64 pixel array with 16 bits timestamp. Ta-
ble 5.1 provides details about the additional overhead required for each scheme and
specifies the total amount of readout bits. We compare our methods against the other
by using two different references: a complete readout (100 % of the data is readout
regardless of the true sensor activity) and an ideal readout, where only the values of
triggered pixels are readout without any additional overhead to account for their posi-
tion. The results are provided in Figure 5.3, where the percentage of readout data is
shown with respect to the percentage of triggered pixels. Due to their variable amount
of overhead, the two address-based readout schemes perform better up to ≃ 8 % and
≃ 16 % of triggered pixels, respectively. From this point on, the binary mask-based

75



5.1. Architecture

Table 5.1: Comparison parameters for readout schemes considering a 64×64 pixel array with
16-bit timestamp. The number of triggered pixels is indicated with Ntrig. The address-based
readout schemes feature a variable quantity overhead to encode the valid pixels, while the
proposed approach provides a lighter fixed-quantity overhead which is globally optimum over
the whole range of triggered pixels.

Readout type Overhead Readout bits
Type Quantity

Full address variable Ntrig×12 Ntrig × (12 + 16)
Half address variable Ntrig×6 Ntrig × (6 + 16)
Binary mask fixed 64×64 64×64+Ntrig × 16
Full readout – 0 64×64×16

scheme outperforms thanks to its limited overhead encoding only one additional bit
per-pixel. Additionally, the advantage of the two address-based schemes with respect
to a complete readout ends when the percentage of triggered pixels reaches ≃ 56 %
and ≃ 72 %, respectively. From that point on, the additional overhead makes a com-
plete readout convenient, thus limiting the dynamic range of array activity where such
scheme is beneficial. On the other hand, the proposed binary mask-based readout is
convenient up to ≃ 94 % of triggered pixels, adding in the worst case of 100 % array
activity a modest +6 % of readout data. At 100 % array activity, the address-based
methods add a considerable +37,5 % and +75 % of readout data, respectively, thus
completely jeopardising any previous advantage. In the case of even larger array sizes,
which are nowadays becoming more and more common due to the advancements in 3D
stacking and newer technology nodes, the advantage of the proposed readout scheme
becomes even higher if compared to the other approaches. This is due to the fact that
the per-pixel overhead is constant (1 bit per pixel), while for the address-based readout
it scales logarithmically with the size of the array.

The proposed readout scheme is the one that better approaches the ideal case,
making it a good candidate to be employed and always used in a wide range of scenario,
from photon-starved to saturated-array conditions. Moreover, it well matches with the
in-pixel implementation of the laser signature detection, as the generation of data from
the sensor can be highly reduced with such a strong filtering. Consequently, the benefit
in terms of performance is twofold: on one side, the reliability of the timestamp detected
with the in-pixel finite state machine for the laser pattern detection is increased, and on
the other side the reduced amount of data (mainly due to the filtered events) results in
a decrease of the required readout time, with benefits in terms of frame rate and power
consumption.
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Figure 5.3: Comparison of different readout schemes in terms of percentage of readout data
for a range of triggered pixels between 0 % and 100 %.

5.2 Characterization

In this section, characterization results focusing on the in-pixel laser pattern detection
and readout circuit performance are shown.

5.2.1 In-pixel laser pattern detection characterization

The in-pixel laser pattern detection feature has been first characterized on a single pixel
basis using only the coarse TDC (100 MHz counter) information by means of two low-
power picosecond pulsed lasers. The first laser was meant to be the signal source, while
the second was used as an interferer. A picture describing the experimental setup is
shown in Figure 5.4. The sensor is operated in the presence of background light, without
any optical bandpass filter in front of the detector and with a coincidence threshold of
N=2 photons.

The results of the first characterization are shown in Figure 5.5, demonstrating that
an interference with a histogram peak 18.5 dB higher than the signal of interest is
almost completely eliminated, with a suppression of 42.5 dB. On the other hand, the
signal of interest gained 10 dB with respect to the case where no laser pattern matching
detection was applied, demonstrating that the in-pixel active detection of laser temporal
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Figure 5.4: Picture of the experimental setup to test the in-pixel interference-rejection ca-
pability with the signal laser (a) and the interfering laser (b). Each laser has been set with its
own timing signature: for the signal of interest, the two laser pulses are separated 80 ns from
each other, while for the interfering signal the pulses separation is 90 ns.

patterns also helps in reducing uncorrelated background light.
Then, the entire array has been characterized with the 3D measurement of a scene

profile, using the fine resolution given by the 150 ps in-pixel ring-oscillator and employ-
ing two 25 W 905 nm lasers for the emission of the temporal laser pattern. A third laser
was pointed toward a portion of the scene, to emulate the interference from a second
device. Results are shown in Figure 5.6.

With a third measurement we targeted the background-rejection capability of the
sensor by focusing on the combination between the photon coincidence technique and
the in-pixel laser pattern detection. The sensor was operated without optical bandpass
filter and a 180 W halogen illuminator was used to flood the scene with background
photons. Without any background/interference rejection features, it was impossible to
reconstruct the 3D profile of the scene. The 3D information was recovered completely
with the photon coincidence technique (operated with a threshold of N=2/4 photons),
but still several background events are allowed to trigger a coincidence, increasing the
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Figure 5.5: First experimental validation of the interference-rejection capability of the device.
Histograms (a) and (b) show the contribution of interference (a) and signal (b) alone, while
in (c) the joint effect of the two sources is shown (with laser signature detection disabled). To
stress the interference-rejection capability, the interference histogram peak is 18.5 dB higher
in amplitude than the peak of the signal of interest. When the in-pixel interference-rejection
is enabled (d), the interfering signal is almost completely suppressed by 42.5 dB, whereas the
signal of interest gains 10 dB with respect to case (c), enabling the possibility to build an
interference-free histogram directly from pixel data.

amount of data generated by the sensor and thus the required readout time. By enabling
the laser pattern detection on top of the photon coincidence, it was anyway possible
to reconstruct the 3D profile of the scene and at the same time dramatically reduce
the amount of false triggers, with a reduction of data of ≃ 98% with respect to the
previous case. By considering the laser peak to background ratio of the histogram, the
combination of the laser pattern matching on top of the photon coincidence detection
allowed to gain ≃ 23 dB, thus increasing the robustness of the measurement. Results
are shown in Figure 5.7.

5.2.2 Readout performance assessment

The readout architecture has been characterized in two ways. The first characterization
aimed at showing the capability of the sensor to output only pixels with meaningful data.
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Figure 5.6: Measurement of the profile of a scene composed by 2 boxes with different size
and distance (range 0-2m). The first measurement (a) is a reference obtained without any
interfering signal and with pattern detection disabled. In the second measurement (b), the
interfering laser is pointed toward the first box with an earlier timing with respect to the
signal laser, resulting in a complete loss of information from the illuminated portion of the
target. In the third measurement (c), the in-pixel laser pattern detection was enabled allowing
to completely recover the lost information, as the interfering laser timestamps are actively
discarded in favor of the signal laser timestamps, which have the correct timing. For each
measurement, the histogram of one pixel under the interfering portion of the target is shown.

For this measurement, a target (flat panel) was illuminated completely by background
light and a collimated laser source was used to illuminate only a portion of it, resulting
in only 2 pixels of the array to be shined with laser photons. First, no background-
rejection technique was applied nor laser pattern matching detection, resulting in a
probability of detection of almost 1 for all pixels. Then, photon coincidence detection
was enabled with a threshold of N=2 photons, and a general reduction of the probability
of detection is observed, but still allowing background-only pixels to be triggered. In
the last measurement, the in-pixel laser pattern detection was enabled on top of the
photon coincidence, reducing the probability of detection on pixels not illuminated by
the laser source to a negligible level, allowing to only output data from the subset of
pixels illuminated by the laser. Results are shown in Figure 5.8.

In the second characterization, only background light was considered and the sensor
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Figure 5.7: Measurement of the 3D profile of a scene with high background light. In (a),
only the photon coincidence technique was enabled, with a threshold of N=2/4 photons. In
(b), the laser pattern detection was enabled on top of the photon coincidence, resulting in
≃ 98% data reduction with respect to (a). The laser peak to background ratio is ≃ 50 dB in
(a) and increased up to ≃ 73 dB in (b).

internal frame rate was measured by controlling the intensity of the light source. Results
are shown in Figure 5.9, showing the capability of the sensor to adapt to different levels
of photon activity.

5.3 Operating conditions and limits

As discussed previously, the proposed interference rejection scheme works by emitting
two consecutive laser pulses which must be detected within the same measurement
cycle to validate the ToF measurement against background light or interfering sources.
This architecture poses a well defined limit over the operating conditions where it is
beneficial as opposed to the conditions where performance may be degraded even more.

Concerning the emission of two laser pulses, this may result in a potential violation
of eye-safety limits, thus requiring to either lower the peak power or emission frequency.
On the receiver side, the detection of two consecutive laser pulses may be unlikely if the
signal strength is not sufficiently high. For such reasons, the proposed scheme is best
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Figure 5.8: Measured per-pixel activity (in terms of probability of detection) with the pro-
posed readout scheme. With a minimum 1-bit overhead per pixel, it is possible to output only
pixels with validated data. In (a), the readout ratio is almost 100% as no data filtering tech-
nique was applied. In (b), the enabling of the photon coincidence technique allows to reduce
the readout ratio down to 66%, with a visible readout peak activity over pixels number 17
and 18, as they coincide with the reflected laser footprint. In (c), the additional enabling of
the in-pixel laser pattern matching detection allows to recover the information from the only
two illuminated pixels, further reducing the readout ratio down to a minimum of 2.25%.

suited to be implemented within a scanning LiDAR architecture, as the possibility to
use a collimated laser source (resulting in a favorable signal to noise ratio) maximizes
the probability of signals detection. Concerning the measurement range, for similar
reasons the interference rejection feature is expected to provide the best results in the
medium-low range, as the expected return of signal intensity degrades quadratically
with the distance.

Nevertheless, the proposed sensor architecture leaves the user complete freedom
in the selection of the best combination of background/interference rejection features,
as every functionality (number of threshold photons, coincidence window, interference
rejection) can be used and tuned independently from each other, maximizing the pos-
sibility to find the optimal setting for a given scenario.

As discussed in Chapter 4, the proper combination of two (or more) detection tech-
niques can improve the performance of the system. Considering the wide range of
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Figure 5.9: Measured sensor internal frame rate (thus not considering PC processing time)
for different number of triggered pixels, demonstrating the capability of the proposed readout
scheme to adapt to the level of photon activity.

scenarios in which a SPAD-based LiDAR system is expected to work, from photon-
starved up to strong pile-up conditions, it is advisable to design such systems with the
maximum number of features. This would provide them with the highest flexibility to
adapt to different conditions, increasing the possibility of successful measurements.

Concerning the readout scheme, as discussed in Section 5.1.2, we demonstrate that
it represents the solution that best approaches an ideal readout for the widest range of
sensor activity. Therefore, only when the sensor is nearly saturated in terms of active
pixels (i.e., pixels with valid data), it is advisable to disable the feature and use a
standard readout approach.

5.4 Summary

In this chapter, a SPAD-based d-ToF linear sensor with the first in-pixel interference
rejection capability has been demonstrated. In combination with the dedicated read-
out architecture, it enables the acquisition of interference-free data with an optimized,
adaptive, readout time. The sensor capability to reject interference from other laser
sources has been demonstrated by preliminary results in a laboratory setup, as well as
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the opportunity to use the interference rejection feature on top of the classical photon
coincidence to reduce background light to a negligible level, resulting in a measured
42.5 dB interference suppression and up to 23 dB signal gain with a measured data
compression ratio of ≃ 98%. The pixel pitch in its actual form factor is not optimized
for the evolution into a 2D array and for such reason we envisage a further development
with a more compact TDC to extend the proposed pixel architecture into a 2D imager
array.
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Chapter 6

SPAD response linearization:
histogram-less LiDAR and high
photon flux measurements

In Chapter 4 and Chapter 5, we focused on two major limitations of modern SPAD-
based LiDAR systems, i.e., the presence of uncorrelated background light and interfer-
ences from other devices. In this chapter, we deal with another performance-limiting
factor, that is the continuously increasing amount of generated data. By means of exten-
sive use of system modelling (both analytical and numerical), we define a new concept
for SPAD-based d-ToF systems, which is eventually supported by real measurement
data from an existing sensor.

The demand for SPAD-based d-ToF sensors with continuously higher imaging and
depth resolutions directly conflicts with the amount of data which is generated and must
be handled. A typical d-ToF measurement operation includes the construction of a per-
pixel histogram of timestamps from the repetition of several laser shots. Therefore, the
amount of data from this process scales linearly with the imaging resolution (number of
pixels) and the depth range and resolution (number of bits per timestamp and number
of histogram bins). Without the need to go for sensors with megapixel-level resolution,
even relatively low resolutions can demand significant amounts of memory. For instance,
a low-resolution sensor (64x64 pixels) with 16-bit timestamps [10] width and 8-bit
histogram depth, would require ≃ 2.15 × 109 bit of memory, which is hardly feasible
to have and manage even on high-end µC and FPGAs. In addition to the memory
requirement, also the data rate could reach very high levels. In the context of a typical
flash LiDAR architecture featuring 128x128 imaging resolution [6], 14-bit TDC depth
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and a modest imaging rate of 25 FPS, the resulting data rate would be ≈ 1.4× 109 bits
per second, significantly exceeding the capabilities of commonly used communication
standards.

In addition to the challenges of data quantity and data rate, and considering that
ADAS is currently one of the most interesting and emerging field of application for
SPAD-based LiDAR systems, guaranteeing reliable and safe operation under high pho-
ton flux conditions is the other key enabling factor for the successful deployment of this
technology.

The main issue of a very high photon flux, which can be easily present in outdoor
scenario with very high sunlight illumination, is the distortion of the histogram of times-
tamps due to the well-known pile-up phenomena, resulting in an intensity-dependent
ToF computation. This intensity-dependent distortion in the histogram of timestamps
is due to the non-linear response of the system to the incident flux of photons over time,
which in turn depends on the dead-time of SPAD detectors and timestamping circuits.

In this chapter, we propose a SPAD response linearization method that can ad-
dress both the issue of data rate and the problem of pile-up distortion arising from
high photon flux. The proposed SPAD linearization method, which is supported by a
rigorous mathematical model, can extract the 3D information from a set of acquired
timestamps without the need to build a histogram and sustain high photon fluxes en-
abling the possibility to operate beyond the standard limit of 5% detection rate [104]
for pile-up distortion. The method can be implemented using only two registers and
one accumulator for each pixel. With such a low amount of resources, the per-pixel
memory requirement is reduced by more than 3 orders of magnitude compared to stan-
dard d-ToF architectures (off-chip histogram) [6, 8], and by a factor of ≃ 5 compared
to architectures with on-chip, full histogramming capability [105]. The goal is reached
in two steps. First, we propose and evaluate an algorithm to efficiently extract the
target distance from a set of timestamps based on a simple on-the-fly average opera-
tion, which does not require the allocation of a histogram memory. Then, since the
proposed algorithm works on the assumption that the detector response is linear, we
present two acquisition schemes that can be easily implemented on chip and emulate
the behavior of a single photon detector with no dead-time, providing the desired linear
response to the input flux of photons. The proposed method is supported by analyti-
cal and numerical (Monte Carlo) models and has been validated experimentally up to
a distance of 3.8 meters (mainly limited by the sensor used for characterization [17])
under a background light equivalent to 85 klux and beyond the standard 5% rule for
pile-up distortion [104].
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Table 6.1: List of parameters for a typical d-ToF acquisition.

Parameter Unit Description
λB s−1 Background events rate
λS s−1 Reflected laser events rate
TW s Laser pulse duration
ToF s Time of flight

6.1 Preliminary validation

In this section, we present the principle of operation of a SPAD-based d-ToF system
with preliminary considerations and Monte Carlo simulations on the histogram-less
approach which will be further developed in the paper.

6.1.1 Typical d-ToF operation

A typical d-ToF image acquisition requires a pulsed laser and a time-resolved, single
photon image sensor with photon timestamping capabilities. It works by sending peri-
odic laser pulses and then measuring the arrival time, or timestamp, of the first detected
photons reflected by the target following each pulse. Due to space and bandwidth limi-
tations, the number of photon timestamps generated per laser pulse is typically limited
to one.

In principle, a single laser pulse, and thus a single timestamp, would be sufficient to
estimate the time of flight. However, due to the presence of uncorrelated background
events (from both external light sources or internal SPAD DCR) and of shot noise,
the first detected photon may not be from the laser pulse, so that several repetitions
are needed to discriminate the different contributions. To do so, the timestamps mea-
sured during the acquisition process are collected in a histogram memory that records
how many times each timestamp has been observed. This provides a convenient repre-
sentation of the temporal distribution of the arrival times, as shown in the example of
Figure 6.1. In a system capable of acquiring only one photon (the first), the distribution
of the arrival times is a piece-wise exponential curve, where each segment is described
by:

Pi(t) = Ai · e−λi·t (6.1)

whose intensity (rate) λi depends on the intensity of background light, dark counts
and laser echo. Table 6.1 summarizes the most important parameters of the detection
process.
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Figure 6.1: Simulated distribution of timestamps in a typical d-ToF system able to record
1 photon per acquisition, with a ToF of 20 ns and a laser pulse duration TW of 4 ns. The
histogram is composed of 105 timestamps, with a bin size of 100 ps. Superimposed to the
Monte Carlo simulation, we show also the analytical exponential distribution.

The ToF is typically estimated from the histogram by finding the location of its
peak or of a sharp rising edge, which likely belongs to the reflected laser pulse. The
histogram of timestamps contains all the relevant information to properly estimate
the time of flight, and represents the gold standard processing technique in the field
of SPAD-based d-ToF systems. Unfortunately, the histogram requires a considerable
amount of resources in terms of memory, bandwidth and power, as it requires the
readout of every timestamp from the sensor for processing by an external controller
(FPGA or µC). Even with the latest implementations where the histogram is available
on-chip, the required amount of resources is considerable. As an example, a 10-m-range
128 × 128 LiDAR system with a 100 ps time resolution and 8 bit histogram depth
requires approximately 10 MB of memory.

6.1.2 Histogram-less approach

Intuitively, if no background events are present, and neglecting the width of the laser
pulse, we could estimate the time-of-flight without the need to build a histogram. This
can be achieved by simply calculating the average of the continuous stream of laser-only
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timestamps. To extend the above method to scenarios where background events are
also present, we need to eliminate their contribution to the average. Again, intuitively,
this can be accomplished by dividing the measurement into two acquisitions. The first
is performed with the laser turned off, and is used to estimate the contribution of the
background light only, by computing the average t̄bg of the recorded timestamps. The
same operation is repeated in the second acquisition with the joint contribution of
background and laser timestamps, resulting in a total average time t̄tot. In principle,
the time of flight could be estimated as a linear combination of the averages1 as

ToF ∝ ktot · t̄tot − kbg · t̄bg , (6.2)

with the contribution of the background canceling out. The coefficients ktot and kbg

depend on the number of detected photons, hence they are affected by shot noise, with
a direct impact on the measurement precision.

This approach, however, relies on the superposition property which does not hold,
as SPADs are non-linear detectors.

More specifically, the problem lies in the dead time of the detection process, which
depends upon the SPAD dead-time itself, on the limited bandwidth of the timestamping
circuit and also on the limited memory available, blinding the measurement channel
for some time after each detection. With this limitation, the detection of a photon
belonging to the laser echo does prevent a later photon from being potentially detected,
resulting in a distortion of the statistics. In particular, the amount of background
photons which contribute to t̄tot in the second acquisition (with the laser turned on)
is underestimated. This behavior can be observed on the histograms of Figure 6.2,
where the distribution of timestamps in different scenarios are compared, emphasizing
the estimation error. Furthermore, the greater the laser echo intensity, the higher the
number of background photons that are underestimated.

This can also be seen analytically by computing explicitly the cumulative distribu-
tion function F of the random variable T associated to the first photon detection time,
defined as F (t) := P(T ∈ [0, t]). If t ∈ [0,ToF] then the incoming photon necessarily
belongs to the background, hence

F (t) = P (T ∈ [0, t]) = 1− e−λBt

1For the precise formulation, see equation (6.6).
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Figure 6.2: Simulated distribution of timestamps in a typical d-ToF acquisition. In (a) and
(b), the distributions of background-only events (with rate λB) and laser-only events (with
rate λS), respectively, are shown. In (c), the distribution of the combination of background
and laser events is reported, graphically showing that the superposition property does not
hold due to the non-linear behavior of the detection process. In particular, the portion of
background events after the laser peak are underestimated, as only one photon per acquisition
can be detected. For each contribution, the amplitude terms of the exponential (A0, A1, A2

and A3) are reported, with A3 < A0 due to the SPAD non-linearity.

If t ∈ (ToF,ToF + TW ], then

F (t) = P(T ∈ [0,ToF]) + P(T ∈ (ToF, t])

= 1− e−λBToF + e−λBToF (1− e−(λS+λB)(t−ToF))
Finally, for t > ToF + TW we have:

F (t) = P(T ∈ [0,ToF]) + P(T ∈ (ToF,ToF + TW ]) + P(T ∈ (ToF + TW , t])

= 1− e−λBToF + e−λBToF (1− e−(λS+λB)TW
)
+ e−λBToFe−(λS+λB)TW

(
1− e−λB(t−ToF−TW )

)
The probability density f of the distribution of T , where F (t) =

∫ t

−∞ f(u)du, can be
easily computed by means of the formula f(t) = F ′(t), yielding:

f(t) =


λBe

−λBt t ∈ [0,ToF]

(λS + λB)e
λSToFe−(λS+λB)t t ∈ (ToF,ToF + TW ]

λBe
−λSTW e−λBt t > ToF + TW
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while the average first arrival time is given by

E[T ] =
∫ +∞

0

tf(t)dt =
1− e−λBToF

λB

+
e−λBToF(1− e−(λS+λB)Tw)

λS + λB

+
e−λSTW e−λB(ToF+TW )

λB

(6.3)
As shown in Equation (6.3), the average detection time depends non-linearly on two
parameters (λS and ToF ). This confirms that it is not possible to uniquely extract the
ToF from the aforementioned acquisition method, since the average of the timestamps
acquired in the second acquisition, t̄tot, which is governed by the probability of detection
of laser photons, also depends on the λS parameter, which depends not only on the
ToF, but also on the target reflectivity. One could try to compensate for the error,
however this requires measuring also the intensity of the received laser light (which
affects the error), introducing an extra variable which is hard to estimate, invalidating
the procedure.

Conversely, a linear detector, with no dead-time, is able to timestamp every pho-
ton which falls within the acquisition window. In this case, the histograms shown in
Figure 6.2 become linear in time, as shown in Figure 6.3.

0 50 100
0

200

400

600

800

1000

C
o
u
n
ts

(a)

0 50 100

Time [ns]

0

200

400

600

800

1000
(b)

0 50 100
0

200

400

600

800

1000
(c)

Figure 6.3: Distribution of timestamps obtained with a linear detection process, i.e., with
no dead-time limitation due to both SPAD and TDC. The distributions are uniform, since
we are now considering the absolute arrival time of detected photons with respect to the
beginning of the acquisition window. This approach enables the secure subtraction of the
background contribution in (a) from the combined measurement in (c). The result is the
isolated contribution from the laser light alone (b), which carries the ToF information. As the
superposition property holds in this case, there no longer is an under-weighting condition of
background counts after the laser pulse peak in the histogram (c).

One can then extract the ToF with the proposed two-step procedure. In the first
step, we measure the total number of background events, Nbg, and their average absolute
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arrival time, t̄bg. In the second step, with the combination of both background and laser
events, we measure the total number of events and their average absolute arrival time,
denoted Ntot and t̄tot. Because the superposition property holds, the difference Ntot−Nbg

is equal to the amount of photons from the reflected laser source. We can then extract
the ToF by properly weighting each average timestamp measurement with the relative
photon count contribution:

Ntot · ttot = Nbg · tbg + (ToF + tl) · (Ntot −Nbg) (6.4)

where tl is the average arrival time of the laser photons referred to the laser emission
time in the absence of background light (i.e., λB = 0 and ToF = 0). The value tl is
a characteristic parameter of the laser source, which can be experimentally estimated
by means of an initial calibration. The proposed extraction method does not require
the allocation of histogram memory, and needs only two counters to store Nbg and Ntot,
and two accumulators to compute t̄bg and t̄tot reducing the memory requirements by
more than three orders of magnitude compared to recent long-range high-resolution
d-ToF sensors [6, 8]. We can further reduce the amount of resources down to a single
accumulator, needed to store t̄tot, and two counters for Nbg and Ntot, because a constant
background throughout the acquisition window leads to an average background time
t̄bg of Tacq/2. In this case, Equation (6.4) turns into the simpler form:

Ntot · ttot = Nbg ·
Tacq

2
+ (ToF + tl) · (Ntot −Nbg) (6.5)

which yields:

ToF =
Ntott̄tot −Nbg

Tacq

2

Ntot −Nbg

− tl (6.6)

We have simulated this extraction method with a Monte Carlo simulator [97] by
sweeping the parameters λS and λB in the range [106−108] and [105−109], respectively.
For each pair of λS and λB values, 104 measurements have been acquired with the ToF
value set to 25 ns. The resulting ToF, obtained from Equation (6.4), is shown in
Figure 6.4 with the correct estimation over a wide range of λB, λS pairs, failing only
when the λS/λB ratio is too low even for a classic histogram-based approach.

In the next section, we provide a rigorous mathematical analysis which proves the re-
sults briefly introduced with Equation (6.6) from the underlying statistical distribution
of photons.
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Figure 6.4: Preliminary Monte Carlo simulation results showing the ToF computed with the
proposed acquisition method with the hypothesis of an ideal linear detector over a full scale
range (acquisition window) of 100 ns. The ToF can be properly estimated over a wide range
of λB, λS pairs. With the minimum λS value considered for the simulation (106 events/s), the
ToF estimation becomes very noisy, but still centered around the correct value of 25 ns. If the
signal intensity were zero, the ToF estimation would be centered around zero, as the contri-
butions from the two measurements (with and without background) cancel out reciprocally.

6.2 Mathematical analysis

This section proves the validity of the method described above analytically. In the
following, we shall denote the duration of the acquisition window by Tacq, assume the
laser echo to entirely occur within it, i.e., Tacq ≫ ToF + TW , and denote the time-
dependent intensity of the laser pulse by the function λS : [0, TW ] → R. The flux
of photons can be modeled by a counting process (Nt)t∈[0,Tacq ] obtained as the sum
of two independent Poisson processes: (NB

t )t∈[0,Tacq ], with intensity λB, describing the
background flux of photons, and (NS

t )t∈[ToF,ToF+TW ], describing the signal. In particular,
the process (NS

t )t∈[ToF,ToF+TW ] is modeled through an inhomogeneous Poisson process
with time dependent intensity (λ̃S(t))t∈[ToF,ToF+TW ] given by λ̃S(t) := λS(t − ToF).
Hence, the overall flux of photons reaching the SPAD is given by an inhomogeneous
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Poisson process (Nt))t∈[0,Tacq ] with varying intensity λ given by

λ(t) =

λB t ∈ [0,ToF) ∪ [ToF + TW , Tacq]

λB + λ̃S(t) t ∈ [ToF,ToF + TW )

Hence, we can prove that, given n photons detected in the interval I = [0, Tacq], the n

detection times are independent and distributed on [0, Tacq] with a distribution density
function f : [0, Tacq] → R given by

f(t) =



λB

λBTacq +

∫ TW

0

λS(u)du

t ∈ [0,ToF) ∪ [ToF + TW , Tacq]

λB + λS(t− ToF)

λBTacq +

∫ TW

0

λS(u)du

t ∈ [ToF,ToF + TW )

(6.7)

Indeed, by considering a partition {Ij}j=1,...,m of the interval I = [0, Tacq], the inde-
pendence of the increments of the inhomogeneous Poisson processes (Nt)t∈[0,Tacq ] yields

P(N(I1) = n1, . . . , N(Im) = nm |N(I) = n) =

m∏
j=1

e−λIj
(λIj)

nj

nj!

e−λ[0,Tacq ]

(
λ[0,Tacq ]

)n
n!

(6.8)

where, for an interval I = [a, b] ⊂ R we adopted the notation λI :=
∫ b

a
λ(t)dt and we

assumed
∑m

j=1 nj = n. By a straightforward computation, the right hand side of (6.8)
can be written as

P(N(I1) = n1, . . . , N(Im) = nm |N(I) = n) =
n!

n1! · · ·nm!

m∏
j=1

(
λIj

λ[0,Tacq ]

)nj

the latter being equivalently obtained in terms of n independent and identically dis-
tributed continuous random variables T1, . . . , Tn with density f given by (6.7). In other
words, the arrival times {Ti}i=1,...,n of the n photons provide a statistical sample for the
distribution (6.7).

94



Chapter 6. SPAD response linearization: histogram-less LiDAR and high photon flux
measurements

The distribution (6.7) has a mean µ given by

µ =

∫ Tacq

0

tf(t)dt =
1

λBTacq +
∫ TW

0
λS(t)dt

(
λBT

2
acq

2
+ ToF

∫ TW

0

λS(t)dt+

∫ TW

0

tλS(t)dt

)
(6.9)

Clearly, since µ is a linear function of ToF, it can easily be inverted. By denoting with
α the ratio

α :=
λBTacq

λBTacq +

∫ TW

0

λS(t)dt

(6.10)

we get an equation providing the time-of-flight as a function of the other characteristic
parameters of the process:

ToF =
1

1− α

(
µ− α

Tacq

2

)
− tl (6.11)

where tl =
∫ TW
0 tλS(t)dt∫ TW
0 λS(t)dt

is the average arrival time of the laser photons referred to the

laser emission time in the absence of background light (i.e., λB = 0 and ToF = 0).
If n photons are detected within the interval [0, Tacq], the sample mean t̄tot of their

detection times provides an unbiased estimator for µ. The main issue with this approach
is the estimation of the parameter α, which depends on λB and λS, the latter being
affected by a high level of uncertainty since it is related to the intensity of the laser echo.
Because the total number of photons detected in the time interval [0, Tacq] is a Poisson
random variable with average λBTacq +

∫ TW

0
λS(t)dt and, analogously, the number of

background photons detected in the time interval [0, Tacq] is a Poisson random variable
with average λBTacq, we can estimate both parameters by observing a realization of
both processes. More precisely, let us first switch off the laser source and collect the
number Nbg of photons arriving during the interval [0, Tacq], then let us switch on the
laser source and collect the total number Ntot of photons arriving during the interval
[0, Tacq]. The observed values Nbg and Ntot are respectively an estimate for λBTacq and
λBTacq +

∫ TW

0
λS(t)dt, while their ratio is an estimate α̂ :=

Nbg

Ntot
for the parameter α

defined in (6.10). By replacing the parameters µ and α with their estimates t̄tot and α̂
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in formula (6.11), we obtain the following estimator for ToF:

T̂oF =
1

1− α̂

(
t̄tot − α̂

Tacq

2

)
− tl (6.12)

=
Ntott̄tot −Nbg

Tacq

2
Ntot −Nbg

− tl (6.13)

which coincides with (6.6).

6.3 Acquisition schemes

The simulation results obtained in Section 6.1.2 are based on the assumption that the
photon detection process is ideal, i.e., with no dead-time and with a linear response over
the incoming flux of photons. In a real-world scenario, however, detectors are limited
by the dead-time between subsequent detections, resulting in a non-linear response.
To implement the proposed extraction method, we propose a novel SPAD acquisition
scheme which emulates the behavior of a linear detector. More in detail, we propose two
ways to obtain a linearized SPAD response from a real SPAD. Both methods are based
on the assumption that the underlying statistical processes are stationary and ergodic.
In particular, we assume that there are no major fluctuations of the characteristic
parameters of the process during the acquisition time. Similarly to an equivalent-time
sampling oscilloscope, both methods rely on repeating the observation multiple times
to emulate the response of a SPAD detector with no dead time. In Section 6.3.1
and 6.3.2, we describe the working principle of each method and propose a possible
implementation. Then, in Section 6.3.3, we provide the mathematical proof that both
acquisition methods are capable of correctly sampling the distribution of photon arrival
times.

6.3.1 Acquisition scheme #1: Acquire or discard

The first acquisition scheme relies on a simple (albeit inefficient) mechanism which re-
quires no additional resources in terms of the SPAD driving circuit. The acquisition
works over multiple runs, each requiring multiple observations. The first timestamp
of every run is considered valid, memorized, and used to increment either Nbg or Ntot,
depending on the current phase of the acquisition, and update ttot. Then, in the next
observations, timestamps are considered valid, and used to update the algorithm pa-
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Figure 6.5: Example of SPAD response linearization with the acquire or discard acquisition
method and a synchronous SPAD operation. In (a), each photon arrival time is represented
by a red arrow and the order of arrival is indicated. The first run starts with the acquisition of
photon #1, resulting in timestamp t1. Photon #2 is discarded, since its arrival time is earlier
than photon #1. The next recorded information comes instead from photon #3, which is later
than photon #1, and sets the new minimum time. The run proceeds with the same criteria
resulting in the stream of photon arrival times t1, t2, t3 and t4 from photons #1, #3, #7 and
#8, which is a single realization of the emulated response of the linearized SPAD detector. On
the right, a principle schematic is proposed, showing the lightweight usage of resources, with
only one comparator and one register required on top of the processing circuit. The acquire or
discard acquisition method is simple but inefficient, as most of the photons arrival times are
discarded, resulting in longer acquisition times.

rameters, only if they are higher than the largest previous timestamp, otherwise they
are discarded. The procedure is iterated until the last photon within the acquisition
window Tacq is timestamped. The necessary condition to conclude the current lin-
earization cycle is the absence of detected photons before Tacq. This implies that the
next photon will occur after the acquisition window, thereby validating that the last
recorded photon marks the conclusion of the current linearization cycle. The process
is then repeated multiple times to increase statistics. Figure 6.5 shows an example of
a run, including all the discarded events, and a possible implementation. While the
implementation is straightforward, the method is inefficient because the majority of the
detected photons may end up being discarded.

6.3.2 Acquisition scheme #2: Time-gated

The time-gated acquisition scheme works by delaying the activation of the SPAD to
start from the previously acquired timestamp, until no photon is detected before the end
of the acquisition window. With this approach, there is no need to discard timestamps,
allowing for a faster acquisition. This, however, comes at the expense of a more complex
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Figure 6.6: Example of SPAD response linearization with the time-gated acquisition method.
With this approach, no photon timestamp is discarded thanks to the delayed activation of the
SPAD for each timing measurement. During the charge delay phase, the SPAD front-end is
forced OFF, thus photons can not be detected. For each measurement, the first timestamp is
detected and used to increment either Nbg or Ntot and update the average time ttot. At the
same time, the charge delay phase value is updated accordingly for the next measurement. As
opposed to the acquire or discard method, more hardware resources are needed to build the
delay element which controls the activation of the SPAD.

hardware implementation, which needs a time-activated gating scheme, for instance
using a programmable delay line. An example of acquisitions is shown in Figure 6.6,
together with a possible implementation.

6.3.3 Discussion on implementation, expected performance and

mathematical analysis

While providing the same result, it is clear that the implementation cost and the perfor-
mance of the two acquisition schemes are different. With the acquire or discard scheme,
almost no hardware modification is required to an already existing SPAD sensor. How-
ever, because of the decimation process, the efficiency of the acquisition could be very
low. This also depends on the intensity of the incoming rate of events: the higher the
rate, the higher the probability to have smaller timestamps which block the detection
process. On the other hand, the time-gated scheme requires a delay line and the SPAD-
gating, but the efficiency is much higher since no decimation process occurs. To show
the difference in terms of efficiency of the two proposed acquisition schemes, we run
a Monte Carlo simulation with background light flux in the range [106, 108] events/s
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(corresponding to approx. [0.64, 64] klux) with the aim to linearize the SPAD response
over an acquisition window Tacq of 100 ns. As shown in Figure 6.7-(a), at the highest
rate of 108 events/sec, the amount of timestamps to be acquired to cover the acquisi-
tion window Tacq for the acquire or discard scheme is more than 3 orders of magnitude
higher compared to the more efficient time gated scheme. From the simulation, we can
also identify the maximum number of measurements which can be executed by the two
acquisition schemes to sustain an operation frame rate of 30 Frames Per Second (FPS).
The time-gated scheme can average the linearized SPAD response up to N = 3 · 104

times over the whole range of background light event rate. On the other hand, with
the same number N of acquisitions, the acquire or discard scheme can only support
up to ≈ 2.4 · 107 events/s of background rate. Figure 6.7-(b) shows a comparison in
relative terms against an ideal SPAD coupled to an ideal TDC, thus being capable of
timestamping all photons impinging on the sensor surface over the acquisition window
at once. Both the acquire or discard and time gated schemes are meant to work with
a real SPAD, which in this case can timestamp at most one photon per acquisition
window. For such a reason, if the acquisition schemes are compared against an ideal
system, a loss of photons occurs, which can be limited by the time gated scheme at
≈90% in the worst case of photon flux.

Concerning the implementation complexity, the time-gated scheme requires a finely
controlled delay element, which may be expensive on a per-pixel basis. Proper balance
between the linearization efficiency and implementation complexity can be obtained
with a mixture between the two acquisition schemes. This can be accomplished by
employing a coarse but simple delay architecture for the gating mechanism (e.g., a
clock-based counter), which activates the SPAD one clock cycle before the last recorded
timestamp. Then, the linearization process is concluded by relying on the acquire or
discard scheme to cover the remaining amount of time. The efficiency is still guaranteed,
as the acquire or discard scheme starts at most one clock cycle before the last recorded
timestamp, and not from the beginning as in the standalone implementation.

From a mathematical point of view, both acquisition methods allow sampling the
correct distribution of the photon arrival times (Tn)n≥1. Let Tn denote the occurrence
time of the n−th event, i.e., the arrival of the n-th photon. This can be defined as the
infimum of the set of times t such that the number of arrivals Nt in the interval [0, t] is
greater than or equal to n:

Tn := inf{t ≥ 0 : Nt ≥ n}, n ≥ 1
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Figure 6.7: Result of Monte Carlo simulation comparing the two proposed acquisition
schemes in terms of efficiency for increasing values of background light flux (λB) in the range
[106, 108] events/s. In (a), we compare the acquisition schemes in absolute terms. On the
left axis, we show the number of timestamps required to linearize the SPAD response over an
acquisition window Tacq of 100 ns. On the right axis, we show the total time required for the
two methods to collect N = 3 · 104 measurements to average the linearized response of the
SPAD N times. The horizontal line indicates a limit of ≈ 33.3 ms, for an equivalent operation
frame-rate of 30 FPS. With the time gated scheme, the required frame rate can be guaranteed
over the entire range of background light flux, while considering the acquire or discard scheme,
the maximum sustainable flux is limited to ≈ 2.4 · 107 events/s. In (b), we compare the acqui-
sition schemes in relative terms against an ideal system composed by an ideal SPAD with an
ideal TDC, showing the percentage of photons lost during the linearization process over the
acquisition window Tacq. The loss of photons occurs as both acquisition schemes works with
a real SPAD, which in this case can timestamp at most one photon per acquisition.

By definition, NTn = n. We can therefore derive an equivalent representation of the
random variables Tn. Indeed, for n ≥ 2, the time Tn of occurrence of the n−th event
can be obtained as the infimum of the set of times t greater than Tn−1 (the time of
occurrence of the (n− 1)-th event) such that the increment Nt −NTn−1 , the number of
events occurring in the interval (Tn−1, t], is greater than 1. Therefore
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T1 := inf{t ≥ 0 : Nt ≥ 1}

Tn := inf{t ≥ Tn−1 : Nt −NTn−1 ≥ 1}, n ≥ 2

which corresponds to the results of the acquisition schemes described previously.

6.3.4 Comparison with state-of-the-art

In this section, we compare our histogram-less acquisition method with state-of-the-art
SPAD-based LiDAR sensors in terms of memory requirement, scalability and tolerance
to high background light flux. For all comparisons in this section, we consider for our
method 16 bits of counters depth (i.e., up to 65535 counts for Nbg and Ntot, respectively)
and then 3 times the number of TDC bits (1xTDC bits required for the TDC word itself,
and then 2xTDC bits to properly size the accumulator memory). First, we compare
against standard sensors, i.e., sensors that require the raw timestamps to be read out
to build the necessary histogram of timestamps off-chip. To provide a fair comparison,
we do not consider the sensor resolution, which changes from chip to chip, but only
the amount of memory required to build the histogram for one pixel. In the works we
consider for our comparison [4,6,8,43,63], we extrapolate the total amount of per-pixel
memory based on the number of reported TDC bits and on an 8-bit histogram depth for
all of them. We then compare our solution to sensors that offer full on-chip histogram
capability [54,105,106]. Also in this case, we consider the amount of memory reported
in each work necessary to build the histogram of timestamps for one pixel. Results
are reported in Figure 6.9, where an average memory reduction factor of ≈ 2129 and
≈ 136 for standard and full on-chip histogram sensors, respectively, is obtained. More
comparison details, including minimum and maximum memory reduction factors are
reported in Table 6.2.

Similarly to our method, partial histogram approaches [55, 66, 67, 72] are also quite
effective in reducing the memory requirements. Nevertheless, our approach not only
outperforms them with a memory reduction that ranges from 67% [55] to 3% [72], but
also performs better in many other important aspects. In fact, unlike previous work,
our approach does not have any of the following needs:

• The need to find the laser peak in time using a zooming or a sliding search
procedure, which is at the basis of every partial histogram approach [107].
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• The need to share hardware resources (TDCs, memory) among pixels in the same
column [66] or in the same cluster [72], to reduce the area usage.

• The need for area consuming processors to manage the algorithm underlying the
partial histogram technique and that can only be implemented using advanced
3D integrated technologies with single-pixel access [55].

All these translate into higher measurement time and laser power penalty as more
acquisitions are needed than a standard full-histogram approach [107], and higher costs.

Our method, given the very limited amount of required memory resources, is also
advantageous in terms of scalability to higher sensor resolutions, and also in terms of
range extension. As an example, a standard histogram-based sensor with 15-bit TDC
requires memory to store up to 32767 histogram bins per pixel. If the measurement
range is doubled, the additional TDC bit results in an increase of 100% on the memory
requirement. Conversely, with our approach, the amount of memory increase to double
the range is limited to only ≈ 3.9%.

While the advantage in terms of reduction of memory/hardware resources is ev-
ident, careful considerations are needed regarding performance in terms of accuracy
and precision. Unlike a standard full-histogram approach, the proposed method does
not have direct access to the full statistics of photon arrival times. This results, when
considering the same number of timestamps (i.e., laser pulses), in a degradation of
accuracy and precision. The approach, however, is advantageous in any case, thanks
to the benefit provided by the linearization process, especially in conditions of strong
background light. This can be observed in Figure 6.8, where we present the results of
a simulation set on a real setup [43]. While accuracy error can be compensated in post
processing (especially with the proposed linearization method, which is almost immune
against signal pile-up distortion), precision worsen if considering the same amount of
timestamps or laser pulses to extract the ToF information, as the full statistic of photon
arrival times is available only with a histogram-based approach. On the other hand,
the linearization process allows us to detect photons from the reflected laser pulse at
higher distances than a standard approach, resulting in correct distance estimation over
the whole range. The reason for this behavior is that pile-up distortion due to strong
background light is completely compensated, making it possible to detect signal pho-
tons even at long distances. In the context of the proposed simulation, this result in
≈+53% range increase.

Concerning the tolerance to high background light flux, both detection processes
can sustain very high flux regimes, with a limit determined by the finite resolution TTS
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Figure 6.8: Comparison of accuracy and precision performance between a standard full-
histogram and the proposed histogram-less approaches. In (a) and (b) we show the maximum
range achieved by the full-histogram and histogram-less approaches, respectively. In (c) and
(d) we show the accuracy error in absolute and relative terms, respectively, while in (e) and (f)
the absolute and relative precision errors are shown in logarithmic scale. By considering the
same number of timestamps (i.e., laser pulses) a standard full-histogram approach outperforms
the proposed histogram-less method in terms of precision, yielding 0.01 % vs 1.4 % at the
longest achievable distance of ≈ 23.58 m and ≈ 40.03 m, respectively. On the other hand, the
advantage offered by the time linearization of the SPAD response reflect in an increase of the
measurement range of up to ≈ 53 %.

of the timestamping circuit. This limit translates to the requirement 1
λB+λS

≫ TTS, i.e.,
TTS must be small enough that the probability of more than one photon falling into
the same time bin is negligible. By considering a threshold on this probability, we can
extract the maximum flux of photons λmax which can be sustained by our detection
process.

The probability to have more than one photon per time bin of duration TTS can
be computed as P (n > 1) = 1 − P (n = 0) − P (n = 1). Considering that events
belongs to a Poisson distribution of parameter λmaxt, the probability is expressed as
P (n > 1) = 1− e−λmax·TTS · (1+λmax ·TTS). By setting a threshold of less than 1%, and
considering TTS = 100 ps, the maximum photon flux that can be sustained is equal to
λmax ≃ 1.48 · 109 ph/s. Compared to the maximum flux required by a standard system
which must comply with the 5% rule, and with the hypothesis of an acquisition window
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Table 6.2: Minimum, average and maximum memory reduction factor of the proposed
histogram-less acquisition method against standard d-ToF sensors (off-chip histogram) [4,6,8,
43,63] and sensors with on-chip full histogram capability [54,105,106].

Standard sensors Full on-chip histogram
Min. Avg. Max. Min. Avg. Max.

69.4 [63] 2129.5 6553.6 [4] 4.7 [105] 135.9 331.3 [106]

Tacq of 100 ns, our detection process can sustain a photon flux ≃ 3000 times higher.
As the ToF is extracted without direct access to the complete statistics of photon

timestamps (i.e., the histogram), the contributions to the ToF due to multiple targets or
multipath reflections cannot be distinguished as they linearly contribute to the average
timestamp value extracted after the linearization process. A foreseen countermeasure
is the implementation of an additional system-level gating scheme (thus, on top of the
one required for the SPAD linearization), where by means of an approximate knowledge
of the target(s) location, the timing localization of the LiDAR acquisition is properly
steered to avoid the mixture of multiple contributions. On the other hand, the two
acquisition schemes proposed in this work do not prevent the construction of a histogram
of (linearized) timestamps, supporting the complete distinction of multiple targets and
multipath reflections.

6.4 Measurement results

The proposed acquisition scheme has been validated with measurements using real data
from an existing single-point SPAD-based d-ToF sensor, with an architecture similar
to the one from Perenzoni et al. [17], which in addition offers on-chip histogramming
capability. The sensor is fabricated in a standard 150 nm CMOS process with the
SPAD technology developed in the work by Xu et al. [93]. The histogram features
1024 bins with 10-b depth, and a TDC resolution of 100 ps. The SPADs are enabled
synchronously with the beginning of the acquisition window and the first measured
timestamp for each acquisition increments the corresponding histogram bin. After a
user-selectable number of acquisitions, the histogram is read out and unpacked. Then,
the unpacked data is shuffled to recover a realization vector of the arrival times of the
detected photons.

Background events were generated by means of a ≈180 W fiber-coupled halogen
illuminator pointed directly toward the sensor, while a black matte panel with low
reflectivity (≈10%) was selected as target, with a distance range from 1 m up to 3.8 m.
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Figure 6.9: Comparison of the amount of per-pixel memory required by our histogram-
less acquisition method against histogram-based d-ToF sensors. In (a), we consider standard
sensors where every timestamp is read out and the histogram is built off-chip [4, 6, 8, 43, 63].
In (b), we consider sensors with full on-chip histogram capability [54,105,106].

A picture of the setup is shown in Figure 6.10, with indications on the main components.
First, we focus on the validation of the linearization behavior of the proposed acqui-

sition scheme by considering only background light. Then, we consider the combination
of background and laser together, as in a real scenario, and we compute the ToF with
the proposed histogram-less acquisition scheme.

6.4.1 Preliminary considerations

As we base our measurements on the re-engineering of an existing d-ToF sensor, prelimi-
nary considerations are needed before providing further details on measurement results.
The sensor measures the arrival time of the first detected photon for each laser pulse,
as described in Section 6.1, which is stored in an on-chip histogram memory. Since the
sensor measures the arrival time of the first photon, the statistical distribution is expo-
nential, thus we are considering relative arrival times. A statistically valid realization of
the incoming timestamps is obtained by unpacking and randomly shuffling the content
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Halogen 
illuminatorLaser source

Control board (FPGA)
d-ToF sensor

Background light 
output

Figure 6.10: Measurement setup with the FPGA control board, d-ToF system and halogen
illuminator for the generation of background light pointed directly toward the sensor.

of the histogram memory. The obtained realization is a vector of relative arrival times,
which is the starting point of our measurement analysis.

In Section 6.3, we described two possible acquisition schemes. The acquire or discard
scheme, even though is intrinsically inefficient, can be straightforwardly used with our
dataset as it requires no hardware modification over the already existing SPAD-based
d-ToF system. The time-gated scheme, while more efficient, requires a time-gating
circuit which is not implemented in our sensor.

The first set of measurements focuses on background events only. In this case, there
is a single source of events with intensity λB, so we can apply the time-gated scheme
by computing the cumulative sums of timestamps to obtain absolute arrival times from
relative ones. On the other hand, when events from background and laser are combined,
as in a real measurement scenario, it is not possible to mimic the behavior of the time-
gated scheme by means of the cumulative sum operation. In that case we rely on the
acquire or discard scheme.

6.4.2 Measurements with background light only

We set the intensity of background light from a minimum of ≈ 6.5 ·106 up to ≈ 133 ·106

events/s. This is the rate of events at the output of the SPAD, which therefore takes
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into account all physical parameters of concern of a typical d-ToF system [97]. Con-
sidering an acquisition window of 100 ns, specific from the sensor [17], the equivalent
average number of detections within Tacq equals ≈ 0.65 and ≈ 13.3 for the minimum and
maximum background light intensity, respectively. In both cases, this is much higher
than the conventional limit of 5% events [104] (13 and 266 times higher, respectively),
showing the high resistance of our method against pile-up distortion. By considering the
equation which links the intensity of background events, λB, with the physical param-
eters of the system [97], it is possible to derive the equivalent background illumination
level, in kilolux, up to a maximum of ≈ 85 kilolux. Measurement results are shown
in Figure 6.11, showing a relative deviation from the reference background intensity
extracted from the exponential fit of the original histogram of less than ±0.5 % over
the whole range of values.
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Figure 6.11: Linearization of the SPAD response with background events only. For each
value of background flux, 8 · 106 timestamps are acquired from the sensor. In (a), an example
of linearized histogram is shown together with the original one (exponentially distributed) for
a background flux of ≈ 100 · 106 events/s. In (b), we show the flux of background events
estimated from the linearized histogram of timestamps, λlin against the flux estimated from
an exponential fit on the original histogram of timestamps, λfit. In (c), for each value of
background flux, the entire dataset was split in 200 subsets to analyze the homogeneity of the
linearization process, while in (d), the relative deviation from the background flux measured
from the original histograms is shown, used as a reference, demonstrating a relative deviation
below ±0.5 % over all data subsets.
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6.4.3 Measurements with background and laser light and ex-

traction of the ToF

Our first goal is to show that the underestimation of background counts which occurs
in a standard d-ToF system can be completely recovered with our acquisition scheme.
This is demonstrated in the first measurement, displayed in Figure 6.12, which compares
a traditional acquisition with the acquire or discard scheme, qualitatively showing the
linearization process by means of the linearized histogram of timestamps.
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Figure 6.12: Qualitative measurement showing the linearization process of the proposed
acquisition scheme. In (a), the original histogram of timestamps is shown in logarithmic scale,
where the drop of counts which occurs after the laser peak is clearly visible. In (b), the
histogram obtained with the acquire or discard scheme proves the efficacy of the linearization
process, which fully compensates for the non-linearity of the detector. The length of the
linearized histogram is shorter than the original dataset, as we decided to stop the linearization
earlier to reduce the data loss which naturally occurs with the acquire or discard scheme. Due
to the intrinsic inefficiency of this scheme, the histogram peak in (b) is attenuated by ≈ 34 dB
with respect to the original dataset in (a). In (c), the two histograms are shown together after
normalization.

We then quantitatively evaluated the linearization process by estimating the inten-
sity of background light from both portions of the histogram, i.e., before and after the
laser peak. For this characterization, we used the ≈10% reflectivity target (black matte
panel) at 2.5 m distance from the sensor. The results are depicted in Figure 6.13, show-
ing a relative deviation from the ground truth (estimated from an exponential fit on
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the original dataset) below ±4 %.
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Figure 6.13: Quantitative characterization of the linearization process considering four dif-
ferent values of background flux, from ≈ 27.6 · 106 events/s up to ≈ 133 · 106 events/s (cor-
responding to approx. [17.6,85] klux) with a target distance of 2.5 m. For each value of
background flux, 2.5 ·106 timestamps are acquired from the sensor. In (a), the relationship be-
tween the background fluxes computed before the laser peak is shown, where λfit,L comes from
an exponential fit on the original histogram, while λlin,L comes from the linearized histogram.
In (b), the same relationship is shown but considering the portion of background events after
the histogram peak. For each portion, the relative deviation of the flux extracted from the
linearized histogram of timestamps is shown, demonstrating an estimation error below ±4 %
over the whole range. The application of the acquire or discard acquisition scheme results in
a data reduction factor of ≈ 7.5 and ≈ 165 for the minimum and maximum background light
flux, respectively.

In a different measurement, we verify the resistance of the proposed SPAD lineariza-
tion method against pile-up distortion. To do so, we acquire several timestamps from
the reflected laser pulse with a detection rate of 90%, which is 18 times higher than
the conventional limit of 5%. The results, shown in Figure 6.14, proves the efficacy
of our linearization method in challenging pile-up conditions where a standard sen-
sor would fail. A measurement acquired with a conventional Time-Correlated Single
Photon Counting (TCSPC) setup is shown as reference.

The last set of measurements shows the extracted ToF without the need to build
a histogram of timestamps. For each measured distance, we run the linearization al-
gorithm 250 times to have sufficient statistics to compute accuracy and precision. For
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Figure 6.14: Characterization of the behavior of the proposed SPAD linearization method
under strong pile-up conditions. The histogram obtained from the linearized vector of times-
tamps is compared against the original histogram (built from the detection of the first arrival
time) and against a reference measurement obtained with a conventional TCSPC setup. In the
histograms obtained from our sensor timestamps, the bin width is 100 ps, while the reference
measurement from the TCSPC setup has 4 ps timing resolution. The proposed SPAD lin-
earization method allows us to recover the full shape of the laser envelope even if the detection
rate is 18 times higher than the conventional limit of 5%.

each run of the algorithm, we average the results from N = 1.5 ·104 vectors of linearized
SPAD timestamps, to emulate an equivalent 30 FPS operation rate, as outlined in Sec-
tion 6.3.3 and with Figure 6.7. For all measurements, the same ≃ 10% reflectivity target
(black matte panel) was used, in the range from 1 m to 3.8 m, to emulate a challenging
scenario for a typical SPAD-based d-ToF system. First, we evaluate the behavior of the
ToF extraction process without background light. The results, depicted in Figure 6.15,
show good agreement between the extracted ToF and the ground truth. Then, we
repeat the measurements with the inclusion of background light by setting the halogen
illuminator to generate a background light flux of 7.7·106 events/s and 120·106 events/s.
The values of background light flux are considered at the output of the SPADs of the
sensor, and they correspond to an illumination level of ≃ 15 kilolux and ≃ 75 kilolux,
respectively. Results are shown in Figure 6.16 and 6.17, demonstrating the validity of
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the proposed histogram-less ToF estimation in a real setup.
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Figure 6.15: Measurement results with no background light, showing the ToF extracted
without the need to build a histogram of timestamps. The relative accuracy is below ±0.5%,
while the relative precision is below 0.25% for all measurements.

6.5 Summary

In this chapter, we demonstrate how to extract the time-of-flight information in a SPAD-
based direct time-of-flight system without the need to build a resource and bandwidth-
hungry histogram of timestamps. Moreover, the proposed method is resistant against
high photon fluxes and can withstand detection rates three orders of magnitude higher
than the conventionally recognized limit of 5%. The acquisition method, which is based
on the linearization of the SPAD response, is suitable for integration in CMOS technol-
ogy using low resources and is therefore scalable to large arrays, since it can be easily
integrated per-pixel. The proposed extraction method has been completely character-
ized, first with Monte Carlo numerical simulations. The method is also mathematically
justified, and we demonstrated its validity with real measurements, by repurposing an
existing d-ToF sensor and using real data to extract the ToF. The proposed extraction
method can be implemented at least in two ways, by means of the acquire or discard
or time-gated detection schemes. While the acquire or discard scheme allows for the
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Figure 6.16: Measurement results with low background light flux (λB = 7.7 · 106 events/s),
showing the extracted ToF without the need to build a histogram of timestamps. The relative
accuracy is in the range [-0.2,2] %, while the worst relative precision is 6% at the highest
distance of 3.8 m.

least usage of resources, it suffers from long integration times especially when the flux
of photons is too high. On the other hand, the time-gated scheme can guarantee a more
efficient acquisition at the expense of a per-pixel controllable delay element. Concern-
ing the ToF extraction method, we demonstrated its validity by using an extremely low
amount of resources, as only two counters and one accumulator are required.
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Figure 6.17: Measurement results with high background light flux (λB = 120 ·106 events/s),
showing the extracted ToF without the need to build a histogram of timestamps. The relative
accuracy is in the range [-9,6.7] %, while the worst relative precision is 21% at 3 m. With
this high background light flux (corresponding to ≈ 75 kilolux), and the decision to use a low
reflectivity target (≈ 10%), the maximum achieved range decreased to 3.4 m.
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Chapter 7

Conclusion

In this thesis, we investigate on techniques, architectures and methods to advance the
state-of-the-art in the field of SPAD-based CMOS d-ToF systems, focusing in particular
on three aspects: mitigation of the negative effects of background light, rejection of mu-
tual interference and reduction in the amount of generated data. The main achievements
are summarized following the order of chapters in Section 7.1, while final considerations
and perspectives for future work are provided in Section 7.2.

7.1 Results

7.1.1 Modelling of SPAD-based d-ToF systems

SPAD-based CMOS d-ToF systems present a high degree of complexity and their per-
formance depend upon a number of physical parameters. For such a reason, a system
simulator represents a doable method to foresee the most suited architecture avoiding
the risk to obtain either insufficient or overkilling performance. Additionally, some of
the results presented in this thesis required the comparison of many architectures in
different operating conditions, which could not be easily possible without the use of a
system simulator.

The system simulator we thoroughly described in Chapter 3 employs a mixed
physical-numerical model to emulate the response of a SPAD-based d-ToF sensor [97].
The physical model is used to estimate the so-called optical power budget, i.e., the
total amount of optical power returning back to the detector during a time-of-flight
measurement, which depends upon the parameters of the receiving and emitting op-
tics, the laser power, the SPAD sensitivity and fill-factor and the target reflectivity,
assuming a Lambertian diffusion of the scattered light. With the knowledge of the im-
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pinging optical power then, a numerical Monte Carlo engine emulates a train of SPAD
detection events, assuming photon detection times follow a Poisson distribution. The
simulator can successfully emulate the behavior of both synchronous and asynchronous
SPAD driving mechanisms, together with the possibility to model an arbitrary laser
pulse shape. The model has been validated against an existing SPAD-based d-ToF
sensor [10], showing a good agreement in matching results from a real system.

7.1.2 Comparative evaluation of background-rejection techniques

Background light represents a limiting factor for SPAD-based d-ToF systems, in par-
ticular concerning their implementation in the automotive sector for ADAS. Over the
years, already several approaches have been proposed to reject background light. How-
ever, the trend was to propose and evaluate different techniques independently from
each other, with a lack of knowledge whether a possible combination of them could
improve the performance.

For such reason, in Chapter 4 our effort focused on understanding whether or not
two or more techniques can be combined with each other, and what the effect on the
final measurement is [108]. Additionally, we tried to understand the impact of hardware
implementation in the performance of a widely-known background rejection technique
(photon coincidence) [109]. Several of the results from this investigation have been
obtained by using the system simulator presented in Chapter 3.

The results we obtained can be summarized as follows:

• If compared one against the other, the photon coincidence technique outperforms
the Automatic-Sensitivity (AS) technique, as the required level of PDP decrease
goes beyond what can be reasonably obtained with the current technology.

• The combination of the AS technique on top of the photon coincidence can im-
prove the performance by increasing the measurement range. In the context of the
system setup selected for this study (a scanning d-ToF architecture), the range
can be increased by up to 50 m with moderate background light intensity.

• Among the three selected hardware solutions to implement the photon coincidence
technique, the neighbor-based approach [4] provides the best performance.

• The last-hit detection technique demonstrated to outperform both the AS and
the photon coincidence techniques, in particular when the target is located toward
the end of the measurement range, achieving an almost flat SNR response over
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the distance range. Nevertheless, also this technique can be used together with
both photon coincidence and AS techniques.

7.1.3 Interference rejection

The diffusion of SPAD-based d-ToF systems in both industrial and automotive sce-
nario, where several similar systems are expected to operate simultaneously, posed a
great challenge as mutual system-to-system interference could lead to a decrease in
performance and safety of operations.

Within the context of this thesis, we addressed this issue with the design of a
prototype sensor in a 110nm CIS process [61], with a linear array of 64 pixels, described
in Chapter 5. Despite at least two interference-rejection systems have been proposed
in the literature [7, 8], the proposed design, to the best of our knowledge, proposes for
the first time cancellation of interferences directly in-pixel, with a series of benefits in
terms of measurement reliability and generation of data. Moreover, a smart readout
scheme has been implemented to take advantage of the reduced amount of generated
data when interference and background-rejection techniques are operated.

The main achievements from the designed sensor are summarized as follows:

• For the first time, interference can be rejected directly in-pixel. This enables
the construction of an interference-free histogram of timestamps, reducing at the
same time the amount of generated data and increasing the reliability of the
measurement. From the measurements on the fabricated device, interference can
be almost completely suppressed by -42.5 dB in the final histogram of timestamps.

• The interference-rejection technique implemented in the device can also be used
to reject background light, in particular if combined with the photon coincidence
technique. The measured laser peak to background ratio in challenging back-
ground illumination conditions increased by up to 23 dB, almost completely elim-
inating the background contribution in the final histogram of timestamps.

• To take advantage of the general reduction of generated data, a dedicated readout
architecture has been implemented, which is quasi-optimum in terms of efficiency
and allowed up to a measured 97.75% of readout bandwidth saving in the most
challenging scenario.
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7.1.4 Histogram-less and high-flux LiDAR

The increasing demand for high depth and imaging resolutions and extended measure-
ment range, pushes the classical histogram-based d-ToF approach to its limit, due to
the enormous amount of data which has to be transferred, stored and elaborated to
extract the time-of-flight information.

In this thesis, an extensive investigation aimed at overcoming this limitation has
been presented in Chapter 6. Thanks to the linearization of the SPAD response over
time, it is possible to achieve a histogram-less approach to compute the time-of-flight,
which can be implemented with a modest amount of hardware resources [110]. Addition-
ally, the linearized SPAD response naturally overcomes the pile-up distortion problem,
enabling safe operation of LiDAR even under high photon flux conditions.

The most important achievements are summarized as follows:

• A SPAD linearization process has been studied and verified using real data. The
linearization process can be carried out in at least two ways. The first method
guarantees the least amount of resources by using a comparator and a single slot
of memory, but results in a potentially long acquisition time. The second method
requires more hardware, as a finely-controlled delay element is required, allowing
for a much shorter acquisition time. A third method, blends elements of the other
two, providing the best trade-off between complexity and acquisition time.

• A histogram-less approach for SPAD-based LiDAR has been studied and verified
using real data from an existing d-ToF sensor. The computation of the time-
of-flight can be executed by using only an accumulator and a pair of counters,
thanks to the assumption of a linearized SPAD response over time. The time-of-
flight has been computed from real measurement data up to a distance of 3.8 m,
guaranteeing 30 FPS of acquisition rate.

• The linearized SPAD response enables the acquisition even under prohibitive pile-
up conditions, overcoming the standard limit of 5% detection rate, providing
benefits in terms of acquisition time and ease of experiment setup for TCSPC
applications. According to measurement results, it is possible to recover the true
envelope of the laser profile even under detection rates higher than 90%.
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7.2 Future work and research

In Chapter 4, we demonstrate that the performance of SPAD-based LiDAR systems
(in terms of both probability of correct measurement and SNR) can increase with the
proper combination of two background-rejection techniques. Additionally, we show that
another technique, especially when the target is located toward the far-end of the mea-
surement range, can provide the best performance over the others. Given the diverse
operational environments expected for LiDAR systems —including variations in tar-
get distance, reflectivity, background illumination, illumination type, etc.—, a specific
technique could provide better performance than a different one for any combination
of the aforesaid factors. Consequently, an ideal SPAD-based LiDAR should be capa-
ble of dynamically selecting the most suitable background-rejection technique, ensuring
maximum performance across a broad spectrum of external conditions.

At the current state-of-the-art, this kind of decision is taken at a higher hierarchical
level, usually at the controller level by analysing the resulting histogram of timestamps
or final 3D image, making it difficult to quickly and dynamically react to a change in
external conditions. Moreover, it is a common choice to select the same background-
rejection technique for the entire array of pixels (via SPI programming), even though
different portions of the imaged area may require an ad-hoc setting.

For such reasons, a promising direction for future research involves the implementa-
tion of dynamic and per-pixel selection techniques, enabling the sensor to quickly and
autonomously adjust its settings based on external conditions, possibly taking advan-
tage of the advancements in 3D-stacked solutions and machine learning techniques.

In Chapter 5, we demonstrate the possibility to integrate at pixel level interference-
rejection capability, together with an optimized readout architecture which takes ad-
vantage of the natural decrease in the amount of generated data when such technique
is applied. The principle was tested in a real environment by means of a dedicated
prototype sensor. The prototype sensor is a linear array of 64 pixels, thus limiting the
possibility to obtain 3D images only with the implementation of a scanning setup.

The natural continuation of this research, which has been already planned for the
upcoming activities, is the extension of the prototype chip to a bidimensional array of
pixels, with a resolution of at least 64x64 pixels, to take advantage of a flash illumination
of the scene. The extension from a linear to a 2D configuration requires the re-design of
the readout architecture, to include the concept of vertical scanning of the array, and the
re-design of the in-pixel control circuit, to be able to include the required functionality
within a 2D array. The envisaged pixel pitch will be < 45µm.
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In Chapter 6, we show a novel approach to SPAD-based LiDAR, where by means
of the linearization of the SPAD response, a histogram-less approach can be achieved.
The approach is verified by means of models and supported by real data, obtained by
repurposing an existing d-ToF sensor.

The proposed linearization method has been studied and verified by considering a
synchronous SPAD detection approach. Future planned research will investigate the
possibility (and challenges) to obtain the same result but considering an asynchronous
SPAD detection scheme. We also envisage additional measurements in different condi-
tions of SNR and background intensity and an in-depth comparison with other existing
techniques (e.g., partial/full on-chip histogramming, time-gating, etc.). Moreover, fu-
ture work will include the design and fabrication of a device where both the SPAD
linearization procedure and the histogram-less ToF extraction are implemented in pixel
by dedicated circuitry.
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