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Abstract
In recent years, the development of efficient numerical methods for the simulation of ki-
netic dynamics plays an important role. Besides deterministic methods, such as Lagrangian
schemes, Galerkin schemes and finite volume schemes, an important attention is given to
particles schemes. These methods are able to produce a good approximation of the density
function, and, by introducing stochasticity, they are able to capture the natural property
of the system such as randomness and uncertainties. They can also be suitable to solve the
issue of high dimensionality related to deterministic schemes and to substantially reduce
the related computational costs. In this thesis we will focus on the application of particles
schemes to different problems, developing novel methods to improve the efficiency of the
existent ones. In Chapter 2 we will focus on a particular problem related to magnetic con-
finement in Plasma Physics. We will introduce an optimal control problem and discretize it
by means of a particular particle scheme. In Chapter 3 we will formulate a follower-leader
kinetic model to simulate the collective motion of birds. We will show how it is possible to
improve the efficiency of classical stochastic algorithms in presence of non-locality. In Chap-
ter 4 we will consider a similar setting in the context of optimization and we will develop a
novel stochastic algorithm useful to minimize non-convex high dimensional functions. Fi-
nally, in Chapter 5 we will focus on a predator-prey model, developing an efficient version
of classical approximated stochastic algorithms which is able to preserve the accuracy.

vii
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Chapter 1

Introduction
The investigation of mathematical models that explain the collective behavior of groups
of animals, such as birds flocks [14, 64, 65, 89], fish schools [127], and insect swarms [22,
24, 35, 139], has been a considerable surge in interest. Beyond its significance in biology,
emerging collective behaviors have a substantial impact on a wide array of applications
that encompass the dynamics of numerous individuals or particles. These applications span
from computer science [140, 172], physics [118], and engineering [141] to the social sciences
and economics [12, 86, 168, 185]. Numerous conventional models describe these behaviours
starting from the individuals or particles level. Among the different frameworks proposed,
the three-zone model [45, 190] has been particularly used. Particles engage in three types
of interactions: repulsion, alignment, and attraction, depending on the relative location of
their neighboring agents. This is the case for example of opinion dynamics [10, 109], where
people are affected by others for instance in social networks or during political elections.
Another example is the case of flocking of animals, such as for instance fish schools, where
preys may organize in huge groups to escape from predators.

Figure 1.1: On the left a network diagram and on the right a fish school.

1.1 From ODEs to kinetic equations

From a mathematical view point, the dynamics at the individuals level can be described by
microscopic models which take into account of the evolution of the position xi and velocity

1
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vi of the i-th particle, for i = 1, . . . , N . The ODE system reads{
ẋi(t) = vi,

v̇i(t) =
∑N

j=1 Fi(t, xj(t), vj(t)),
(1.1.1)

where Fi(·) models the interaction forces between each agent i and all the other agents.
Among the classical models we recall the Cucker-Smale model [73, 74, 49] and the D’Orsogna-
Bertozzi model [90] which assume symmetric interactions between all the agents. Some ex-
tensions which do not involve symmetric interactions are given for example by the Mostch-
Tadin model [155], in which a weighted interaction force is considered. The weighted in-
fluence can be represented by a visual interaction cone [62, 94, 95], assuming agents can
interact just with the ones inside their vision area, or by metric and topological balls
[67, 31, 32, 123]. In metric interaction, each agent communicates just with the agents whose
distance from it is lower than a certain threshold, while in topological interaction, each
agent interacts just with its N∗ nearest neighbors. Direct simulation of the ODE system
can be extremely demanding, especially when the sample size is large and non-local inter-
actions are considered. From a mathematical modeling perspective, these issues have been
extensively explored within the kinetic research community [162, 50, 102, 123, 167, 185],
with the development of kinetic equations to simplify the computational complexity. Ki-
netic equations are mathematical formulations that describe the behavior and evolution
of systems with a large number of particles or constituents. These equations focus on un-
derstanding the evolution of the distribution of particles f(·) in phase space, considering
factors such as position and velocity. In particular, each particle with position and velocity
(x, v) is subjected to free transport, that is it change its position x with a position

x′ → x+ (t− t0)v, (1.1.2)

where t0 denotes the initial time and t the current time. In addition, each particle interacts
with another randomly selected particle with velocity w and both particles change their
velocity because of interaction according to the following binary interactions rules,

v∗ = v + αF(v, w),

w∗ = w + αF(w, v),
(1.1.3)

where α represents the interaction propensity, i.e. the strength of interaction, and F(·) is
the interaction force. The evolution of the density function f(·) of particle position x ∈ Rd
and velocity v ∈ Rd can be described by a Boltzmann type equation of the form

∂tf(x, v, t) + v · ∇xf(x, v, t) = Q(x, v, t). (1.1.4)

In (1.1.4) the term

v · ∇xf(x, v, t), (1.1.5)
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represents the effect of the free-transport of particles, while the term Q(f, f) represents
the effect of binary collisions and takes the following form

Q(x, v, t) =

∫
R2d

1

J
(f(x, v∗, t)f(y, w∗, t)− f(x, v, t)f(y, w, t))dwdy (1.1.6)

where (v∗, w∗) denotes the post interaction velocities of particles with velocity (v, w), F(·)
models the interaction force between the two agents, α > 0, and J is the Jacobian of the
transformation of (v, w) to (v∗, w∗).

1.2 Numerical methods for kinetic equations

From a numerical view point, the dynamics can be simulated by means of different numer-
ical schemes such as the Lagrangian schemes [72, 175], the finite volume schemes [71, 194]
and the Galerkin schemes [76, 151]. These methods produce an accurate approximation of
the density but may be computationally expensive. Indeed, tackling the numerical approx-
imations for the interaction term, especially in cases involving multi-dimensional integrals,
proves to be very challenging. In addition, the kinetic dynamics is difficult to be approxi-
mated on regular grids since the long-time behaviour of the system is not compactly sup-
ported. In contrast to the mentioned numerical schemes we find particles methods which
produce a good approximation of the density function with the advantage of reducing sub-
stantially the computational costs. Indeed, they can handle problems with a large number
of dimensions without a significant increase in computational complexity which instead
characterize the deterministic methods. Furthermore, by introducing stochasticity, they
allow to formulate numerical schemes that retain the majority of the physical properties
inherent in the original system such as for instance randomness and uncertainty. The idea
of these methods is to approximate the density by a large number of particles with position
and velocity (xi(t), vi(t)) for i = 1, . . . , N as

fN (x, v, t) =
1

N

N∑
i=1

δ(x− xi(t))δ(v − vi(t)) (1.2.1)

where δ(·) is the usual Delta-function. At time t = 0 particles are sampled from an initial
given distribution by generating a sequence of pseudo random numbers. To this aim one
can refer for instance to inverse transport methods or an acceptance-rejection methods
[162]. In the following we will present different particles methods.

1.2.1 Direct Simulation Monte Carlo (DSMC)

DSMC methods are an efficient class of numerical schemes used to simulate the probabilis-
tic dynamics given by kinetic equations. Schemes of this type have been first developed by
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Bird [28] and Nanbu [157, 158]. The method divides the simulation domain into compu-
tational cells and simulates the motion of particles through random sampling of collision
and interaction events. This statistical approach allows DSMC to capture the probabilistic
nature of collisions, however its accuracy strongly depend on the number of particles N ,
being of order O(N−1/2). In advance, due to its statistical nature, in low populated regions,
simulations can exhibit a numerical noise which may affect the results. Despite these chal-
lenges, the DSMC is an indispensable tool to capture the individuals behaviour and to face
the curse of dimensionality problem related to the computation of the interaction term.
The fundamental idea of Monte Carlo methods is a decoupling between the transport and
collision parts in the Boltzmann equation (1.1.4). The transport step solves the exact free
flow of the sampled particles with position and velocity (xi(t), vi(t)) in a time interval ∆t,
for any i = 1, . . . , N

xi(t) = xi(t) + ∆tvi(t). (1.2.2)

Then different variants of the Monte Carlo method can be used to solve the interaction
step by giving a probabilistic reformulation of the dynamics described by (1.1.4).

Asymptotic Nanbu algorithm. The idea is to introduce the approximated density
fn+1 at time tn+1 = (n+ 1)∆t as

fn+1 = (1 + ∆t) fn + ∆tQ+(fn, fn), (1.2.3)

where Q+(fn, fn) denotes the gain part of the discretized collision operator defined in
(1.1.6). Equation (1.2.3) can be explained as follows. With a probability ∆t particles in-
teract and change their velocity, with probability 1−∆t particles do not interact. At each
time t the density is reconstructed as in (1.2.1). A simple algorithm for the interaction step
is presented in the sequel.

Algorithm 1.2.1. [Asymptotic Nanbu algorithm]

1. Give N samples v0
i from the initial distribution f0, set Nt = T∆t to be the total

number of iterations, where T represents the final time.

2. for n = 0 to Nt

(a) for i = 1 to N

i. select randomly an index j 6= i,

ii. with probability ∆t update the velocity vi using the first relation in (1.1.3),

iii. with probability 1−∆t set vn+1
i = vni .

end for

end for

There exists a symmetrized version of this algorithm in which once that two particles
have been selected, with a certain probability both the velocities will be updated according
to the rules described in (1.1.3).
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Bird like algorithms. Another class of methods is the Bird like asymptotic schemes. The
primary distinction from the previously outlined algorithm lies in the fact that particles
are engaged in multiple interactions within a single time step. The method is based on
the observation that binary interactions undergo at time intervals which are exponentially
distributed. Hence, given a random number r ∼ U([0, 1]), we set

∆tc = − ln(r)

N
. (1.2.4)

A simpler technique relies on a constant time step that corresponds to the average time
between interactions and hence it is defined to be

∆tx =
∆t

Nc
=

1

N
(1.2.5)

where Nc = N∆t is the average number of interactions per time step. The symmetrize
version of this algorithm reads as follows.

Algorithm 1.2.2. [Symmetrize Bird like algorithm]

1. Give N samples v0
i from the initial distribution f0, set Nt = T∆t to be the total

number of iterations, where T represents the final time, and Nc = N∆t.

2. for n = 0 to Nt

(a) for k = 0 to Nc

i. for i = 1 to N

A. select randomly an index j 6= i,

B. update the velocity vi and vj using the first and second relation in
(1.1.3).

end for

end for

end for

Mean-field interaction algorithm. A method to directly simulate the Boltzmann
equation is the mean-field Monte Carlo algorithm, which at the particle level is equivalent
to microscopic simulations. At each step the idea is to select a random subset of particles
with size M for interactions, as opposed to having each particle to interact with another
randomly selected particle. The following algorithm briefly describes this procedure.

Algorithm 1.2.3. [Mean-field interaction algorithm]

1. Give N samples v0
i from the initial distribution f0, set Nt = T∆t to be the total

number of iterations, where T is the final time, and set M < N to be a subsample
size.
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2. for n = 0 to Nt

(a) for i = 1 to N

i. select randomly M indexes j 6= i,

ii. update the velocity vi as

vn+1
i = vni +

∆t

M

M∑
j=1

F(vni , v
n
j ). (1.2.6)

end for

end for

This algorithm allows to reduce the computational cost from O(N2), which corresponds
to the cost of a microscopic simulation, to O(NM). Note that if M = 1 we recover the
Asymptotic Nanbu algorithm previously described. Other versions of the mean-field Monte
Carlo algorithm can be derived by taking suitable averages in the algorithms for Boltzmann
models. We refer to [162] for further the details.

1.2.2 Particle-in-Cell schemes (PIC)

Particle-in-Cell (PIC) methods represent a class of numerical techniques widely employed
in the simulation of complex physical systems, particularly in the realm of plasma physics,
astrophysics, and high-energy particle interactions. PIC methods originated in the 1950s
and have since evolved significantly. The methods popularity stems from their ability to
capture kinetic effects and self-consistent interactions, making them particularly well-suited
for studying phenomena where the behavior of individual particles is crucial. These phe-
nomena include also the study of magnetized plasma [54, 96, 97, 120] on which we are
mainly interested in. In this context we assume the evolution of the plasma density func-
tion to be given by a particular collisionless kinetic equation, the Vlasov equation

∂f(t, x, v)

∂t
+ v · ∇xf(t, x, v) + (E(t, x) + v ×B(t, x)) · ∇vf(t, x, v) = 0, (1.2.7)

with E(t, x) and B(t, x) representing the electric and external magnetic field respectively,
which describes how the number of particles at a particular position and velocity in phase
space change. The Vlasov equation can be coupled with the Poisson equation

∆xφ(x, t) = 1− ρ(x, t), E(x, t) = −∇xφ(x, t), (1.2.8)

where φ(·) represents the electric potential, ρ(·) the charge density and E(·) the value of
the electric field, which relates the electrostatic potential to the charge density, linking
the dynamics of charged particles to the electric field they create. In the context of PIC
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simulations for Vlasov-Poisson systems, the computational domain is discretized into a
grid, and the evolution of the distribution function is tracked by representing it with a
finite number of computational particles. These particles move through phase space along
the characteristics of the system which are

dxi(t)

dt
= vi(t), xi(0) = x0

i ,

dvi(t)

dt
= vi(t)×B(t, xi(t)) + E(t, xm), vi(0) = v0

i ,

(1.2.9)

for any i = 1, . . . , N , with N representing the total number of particles. The approximated
density is then computed from the particle distribution as in (1.2.1), and the Poisson
equation is solved to obtain the electric field. There is also a modified version of the PIC
method frequently employed when the physics under examination remains in proximity to
an equilibrium state. For instance, this variant is commonly utilized in PIC simulations
of tokamak plasmas or particle accelerators. This method is called the δf method [16]. It
consists in expanding the distribution function in the neighborhood of a known equilibrium
f0 in f = f0 + δf and to approximate only the δf part with a PIC method. PIC methods
are in general stable and easily parallelizable allowing the simulation with huge number of
particles. They are also versatile and can be applied to a wide range of problems. As for
DSMC, the presence of noise due to stochasticity may impact the accuracy of the simula-
tion, especially in situations with low particles levels. In advance, we may pay attention in
imposing proper boundary conditions. Incorrect boundary treatments may introduce arte-
facts into the simulation results. Another challenge consists in the particle-mesh coupling
problem. Indeed, the computation of the approximated density fN (·) as in (1.2.1) does
not naturally give an expression for this function at all points of phase space. Thus for the
coupling with the field solver, which is defined on the mesh, a regularizing step is necessary.
To this aim we shall define convolution kernels which can be used for this regularization
procedure, see [180] for a detailed description. In the following we will present different
variants of the PIC methods.

First order semi-implicit scheme. The first simplest scheme that we might consider
to simulate the dynamics given by (1.2.9) is a combination between the backward and
forward Euler scheme. Given a fixed time step ∆t, an electric field E(t, x) and external
magnetic field B(t, x) we get

xn+1
i = xni + ∆tvn+1

i ,

vn+1
i = vni + ∆tvn+1

i ×B(tn, xni ) + ∆tE(tn, xni ),
(1.2.10)

for any i = 1, . . . , N , and n = 1, . . . , Nt with Nt representing the total number of iterations.
This method is semi-implicit and hence it is stable for all the choices of ∆t. Besides its
simplicity in the implementation, it is a first order method, and hence it is not enough ac-
curate to describe the long-term behavior of the solution. This approach can be generalized
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to produce second and third order semi-implicit schemes using Runge-Kutta methods, see
[97].

Boris scheme. It was originally presented by Boris in 1970, [121]. The algorithm reads as
follows. Given a time step ∆t, a fixed electric field E(t, x), an external magnetic field B(t, x)
and the initial position and velocity (x0

i , v
0
i ) of each particle i = 1, . . . , N , we compute

v
1/2
i = v0

i +
∆t

2

(
v0
i ×B(t, x0

i ) + E(t, x0
i )
)
. (1.2.11)

Then, for any n = 1, . . . , Nt, with Nt total number of iterations we compute

xn+1
i = xni + ∆tv

n+1/2
i ,

v
n+1/2
i = v

n−1/2
i + ∆tvni ×B(tn, xni ) + ∆tE(tn, xni ),

(1.2.12)

where vn+1
i = 1/2(v

n+1/2
i +v

n−1/2
i ). The scheme has second order accuracy, it is numerically

stable for any choice of ∆t and it preserves the symplectic structure of Hamiltonian systems,
which is beneficial for long-term accuracy in simulations. An alternative version of the Boris
scheme has been presented by Jean-Luc Vay in 2008, [189].

Verlet scheme. The Verlet scheme takes the name by its creator, who developed it in
the 1960s. The basic principle involves updating particle positions and velocities in two
steps, using informations from the current and previous time steps. Given a time steps ∆t,
an electric field E(t, x) and an external magnetic field B(t, x) we get for any n = 0, . . . , Nt,
with Nt the total number of iterations

v
n+1/2
i = vni +

∆t

2
F(t, xni , v

n
i ),

xn+1
i = xni + ∆tv

n+1/2
i ,

vn+1
i = v

n+1/2
i +

∆t

2
F(t, xn+1

i , vn+1
i ),

(1.2.13)

for any i = 1, . . . , N , with

F(t, x, v) = E(t, x) + v ×B(t, x).

It is a second order accurate symplectic scheme. However it may present some instabilities
for large time step sizes or in presence of stiff potentials. Several variations and extensions
of the basic Verlet scheme have been implemented, such as the velocity Verlet algorithm
and the leapfrog Verlet algorithm, [119].
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1.2.3 Stochastic algorithms for biochemical reactions

Another class of stochastic algorithms [146, 30, 88, 92] on which we might be interested in
includes the methods used to simulate biochemical reactions [88, 126]. Inside cells molecules
are constantly moving and colliding each other. The rate of collisions depends on the
number of species and molecules involved in the process. Besides chemical reactions, this
process can be observed also in interactions among individuals in biological systems, such
as competition or predator preys models. The description at individual or stochastic level
has been shown to be more realistic than the deterministic one. As mean-field models
capture the mean behavior of the system, the random effect included in stochastic models
lead the solution to oscillate around the equilibria and extinction may also occurs. For
a formal mathematical description, the idea is to consider a biological system consisting
of N species which interact according to specific reaction events. The aim of this class of
stochastic algorithms is to simulate the occurrence of these reaction events. In the following
we will present different versions of these algorithms, ranging from the so called “exact”
algorithms to their approximated version.

Direct stochastic simulations. The Direct stochastic algorithm, also known as Gille-
spie algorithm [111, 114, 113, 112], simulates the time evolution of a system by considering
individual reaction events and their associated rates. Each reaction is characterized by a
propensity function representing the likelihood of that particular reaction occurring per
unit time. The algorithm works as follows. At each time step, a reaction event is selected
on the basis of its propensity. Then the state of the systems is updated accordingly to the
reaction selected and the time steps size is tuned according to a random number genera-
tion technique. The process is repeated until the final time T is reached. Direct stochastic
simulations provides an exact simulation, selecting which reaction must occur and at which
time. However, they can be prohibitively expensive especially when the number of species
is large. To face with this problem the idea is to consider approximated algorithms, such
as the τ -leaping methods.

τ-leaping methods. Classical approximated algorithms, such as the τ -leaping methods,
can speed up the simulations provided by the Gillespie algorithm by allowing multiple
reactions to occur in the same time interval. However their efficiency and accuracy depends
on the parameters choice [169, 176, 178, 125]. The algorithm works as follows. At each
time step, which might also be considered to be fixed, the number of reactions that occur
is sampled from a Poisson distribution. Then, the species counts are updated accordingly
to the selected reactions events. The steps are repeated until the final time is reached.

Remark 1. • Extensions and improvements of the τ -leaping methods are well ex-
ploited in [146].
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• More details about the algorithms just mentioned and their implementation will be
provided in Chapter 5.

1.3 Overview

The aim of this thesis is to study and propose novel particles schemes, taking inspiration
from the ones described above, to simulate the dynamics in different contexts. We first
focus on a particular PIC method, useful to simulate the evolution of the plasma density,
and we design a control problem with the aim to let the plasma to assume a desider-
ated configuration, suppressing the instabilities that normally arise. Secondly, we focus on
follower-leader dynamics which can be observed in different situations. We show how it is
possible to improve the efficiency of a classical Asymptotic Nanbu algorithm in presence
of non-locality by describing a model in which topological interactions plays an important
role. Then, a similar setting is considered in the context of optimization. We develop a
novel stochastic algorithm based on the Asymptotic Nanbu algorithm and which is useful
to minimize non-convex high dimensional functions. Finally, we focus on a predator-prey
model and we develop an efficient version of classical approximated stochastic algorithms
which is able to preserve the accuracy. A more detailed description is given in the next
sections.

1.3.1 Instantaneous control of plasma via an external magnetic field in
a Vlasov-Poisson system

In Chapter 2, we focus on a model to describe the evolution of the plasma density in
presence of strong magnetic field. We consider the Vlasov-Poisson equation (1.2.7)-(1.2.8).
The study of magnetized plasma plays an important role in different physics situations
such as for example in the problem of plasma confinement in huge devices as for instance
the tokamak. Due to the presence of strong magnetic field different instabilities may arise
leading to the formation of vortices. On the other hand, the magnetic field can be seen
as a control aiming at leading the plasma density to assume a desiderated configuration.
We will derive different instantaneous controls with the aim of reducing the mass which
hits the boundaries in agreement with the results proposed in [138, 193, 15]. To simulate
the dynamics we use a particular PIC method, the one introduced in [97], which is a
semi-implicit scheme and hence has a huge stability area.

1.3.2 Follower-Leader dynamics

Secondly, we move to more intricate models which encompass the potential division of one
population into two populations, namely the followers and leaders. The level of leadership
may depend on different factors ranging from experience to prior knowledge. As an example
of such a dynamics we can consider the case of the evacuation of a crowd of individuals
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from an unknown environment [3, 8, 68, 7, 53, 19]. In this context, few informed agents,
say the leaders, are introduced in the crowd to drive people, the followers, toward a safety
region. It can be proven that by introducing leaders and by optimizing their strategies
[66, 69] it is possible to enhance the evacuation time. As another example we may consider
the dynamics at the cellular level where a group of cells, called leaders cells, can trigger a
migration process [191, 177]. In breast cancer for instance the invasion of healthy tissues
occurs due to the presence of particular cells, which can be distinguished from the other
by their epithelial genes [60]. Follower-leader dynamics can be observed also in migrating
animals groups. In honey bees swarms, only the so called “scout” bees know the final
position of the new honeybee nest [22, 23, 27]. In fishes shoal, we observe the presence
of “braver” or faster individual which are able to drive the whole group far away from a
potential danger or toward a selected target [58].

Non-local kinetic dynamic with emergent leaders

In Chapter 3 we present a model to describe the collective motion of birds at the kinetic
level. This model introduces spontaneous changes of direction within the swarm, indepen-
dent of external factors but rather influenced by the interaction between two dynamics
populations labelled as leaders and followers. The main idea is that each agent is poten-
tially a turn initiator, becoming a leader whose influence acts on his nearest neighbors. The
interest is on the phenomenon of transient leadership, which has been largely studied in
[1, 12, 142, 143, 154]. At each time agents can change their label, according to a stochastic
process. Each event is associate with a certain transition rate which, in general, is a non
linear function of the state. The main novelty of this work consists in the study of efficient
numerical methods to deal with the non-locality induced by topological types interactions
[14, 20, 31, 32]. To address this computational issues, we introduce a novel stochastic sim-
ulation algorithm based on the classical Asymptotic Nanbu algorithm. This method is able
to reduce the computational costs from quadratic to logarithmic by introducing a binary
tree and a k-nearest neighbor search over it.

Follower-leader dynamics in optimization

Follower-leader dynamics can be a useful tool also in global optimization problems. In recent
years, several numerical methods based on collective dynamics for the minimization of non-
convex high dimensional functions and opinion formation have been developed [186, 103].
The advantage of these methods, which are also called gradient free methods, is that
they can improve the efficiency of classical gradient based numerical optimization schemes
such as the Newton method or gradient descent method [39]. Hence, they can be used in
different applications, ranging from machine learning problems to engineering applications,
where the evaluation of the cost function can be extremely costly [39, 52]. Among them
we recall the simulated annealing, the particles swarm optimization algorithm (PSO) [117,
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Figure 1.2: On the left a honey bees swarm and on the right a birds flock.

135, 166], the genetic algorithm (GA) [115, 153], and the Consensus based optimization
algorithm (CBO) [48, 103, 104, 117, 165, 187]. In contrast with this last approach, whose
dynamics is of mean field type, we can find other methods such as the kinetic based
optimization (KBO) ones [21]. In Chapter 4 we introduce a novel particles method to bridge
the gap between the KBO and the genetic algorithm. In the KBO algorithm the dynamics
is described by a multidimensional Boltzmann equation and can be simulated towards
Asymptotic Nanbu algorithms. Each agent is subjected to an attraction term toward the
estimated position of the global minimizer at time t, which is a weighted mean over the
particles position computed according to Laplace principle [82]. The genetic algorithm takes
instead inspiration from the natural selection process that mimics biological evolution.
A population of agents is divided into two sub-populations, called parents and children.
Parents are assumed to be the agents occupying the best position over the cost function.
Via crossover and mutation processes they produce children for the next generation. Over
successive generation the population evolve toward an optimal solution. In this thesis,
the idea is to consider a population which is divided into followers (children) and leaders
(parents) and whose dynamics is similar to the one of the KBO. In particular, followers
will explore the space searching for the position of the global minimizer and are attracted
toward a randomly selected leader. Leaders instead move toward the estimated position of
the global minimizer which is computed according to Laplace principle. Labels are changed
in time by means of a stochastic process. Different numerical tests show that by developing
a particle method involving a dynamically change of labels, it is possible to improve the
efficiency of both the KBO and the genetic algorithm.

1.3.3 Biological competition models

Finally, the interest move to a different model involving two populations whose labels do
not change in time. In particular, we focus on the description of a predator-prey dynamics
starting from the individual or stochastic level [30, 33, 149, 150, 156]. Stochasticity, char-
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Figure 1.3: Two benchmark function for global optimization. On the left the 1d Rastrigin
function and on the right the 2d Levy function.

acterized by inherent randomness and uncertainty, is ubiquitous in ecological systems and
can have profound effects on population dynamics. As mentioned above, the approximation
of the evolution of the density function via classical stochastic algorithms can be extremely
demanding. Hence, in Chapter 5 we derive a novel stochastic algorithm which is able to
preserve the accuracy of classical algorithms but which improves the efficiency.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Instantaneous control strategies for
magnetically confined fusion plasma
The principle behind magnetic fusion is to confine high temperature plasma inside a de-
vice in such a way that the nuclei of deuterium and tritium joining together can release
energy. The high temperatures generated needs the plasma to be isolated from the wall of
the device to avoid damages and the scope of external magnetic fields is to achieve this
goal. In this chapter, to face this challenge from a numerical perspective, we study differ-
ent instantaneous control mathematical approaches to steer a plasma into a given spatial
region. From the modeling point of view, we focus on the Vlasov equation in a bounded
domain with self induced electric field and an external strong magnetic field. The main
feature of the control strategy employed is that it provides a feedback on the equation
of motion based on an instantaneous prediction of the discretized system permitting to
directly embed the minimization of a given cost functional into the particle interactions
of the corresponding Vlasov model. The numerical results demonstrate the validity of our
control approach and the capability of an external magnetic field, even if in a simplified
setting, to lead the plasma far from the boundaries.

The results collected in this chapter are in preparation.

2.1 Introduction

Plasma is an electrically conducting fluid where temperature is so high that electrons are
separated by their atoms and free to move [29]. This is called the fourth state of the
matter and, in this state, a gas looks macroscopically neutral meaning that it is composed
by roughly the same number of positive and negative charges while perturbation from
neutrality arises only at the microscopic level [55]. Since most of the visible universe appears
to be in the state of plasma, its behavior and properties are of intense interest to scientists
in many disciplines ranging from physics, engineering to mathematics. In this framework,
the development of numerical methods for solving plasma physics problems has attracted a
lot of attention in the recent years[59, 110, 181, 72, 100, 194, 84, 98, 77, 78]. In particular, it
is of great interest the study of magnetized plasma for its application in the so called fusion
devices [170, 108, 93, 75, 78, 116] such as Tokamaks or Stellarators. In these machines, a
strong magnetic field tries to contain the plasma during the fusion process of deuterium with

15
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tritium and to avoid the direct contact of the charged particles with the walls of the devices.
In order to describe such phenomenon, there exists many different models and associated
numerical methods [108, 13, 26, 41, 81, 116] which are able to characterize the many features
observed during the time evolution of a plasma. The choice of the appropriate model
depends on the spatial or temporal scale at which one is interested when studying the fusion
phenomenon [81]. An important role, in the context of the numerical approximation of these
models, has been played by the so-called asymptotic preserving methods [77, 78, 96, 97, 85]
in the recent past, which are able to efficiently deal with the different physical scales and by
methods able to treat quasi-neutrality in plasma [70, 63, 132, 17]. In this work, we consider
specifically one of the models commonly used to describe the evolution of a plasma when
far from equilibrium, i.e. when collisions are not enough to reach an equilibrium state. The
model is based on the Vlasov equation which describes the evolution of charged particles
in an electromagnetic field which can either be self-consistent or externally applied. This
reads for one single species of the plasma as [98]

∂f(t,x,v)

∂t
+ v · ∇xf(t,x,v) + F (t,x,v) · ∇vf(t,x,v) = 0, (2.1.1)

where
f = f(t,x,v), f : R+ × Rdx × Rdv , (2.1.2)

is the so-called distribution function giving the probability for the species of being in a
certain position of the dx dimensional in space and of the dv dimensional in velocity space
and where F (t,x,v) represents a force field which can take different forms. For example,
for the Vlasov-Poisson model, one has

F (t,x,v) =
q

m
E(t,x), E(t,x) = −∇xφ(t,x), −∆xφ(t,x) =

ρ(t,x)− ρ0(t,x)

ε0
,

(2.1.3)
where q is the elementary charge, m the mass of a a single particle, ε0 the permittivity,
E(t,x) represents the electric field, φ(t,x) the electric potential,

ρ(t,x) =

∫
Rdv

f(t,x,v)dv, (2.1.4)

the charge density and ρ0(t,x) a static neutralizing background. On the other hand, for
the Vlasov-Maxwell model one has

F (t,x,v) = E(t,x) + v ×B(t,x), (2.1.5)

where B(t,x) represents the magnetic field and where the equation (2.1.1) is coupled with
the solution of the Maxwell equation

∂E(t,x)

∂t
= c2∇x ×B(t,x)− J

ε0
, ∇x ·B(t,x) = 0,

∂B(t,x)

∂t
= −∇x ×E(t,x), ∇x ·E(t,x) =

ρ(t,x)− ρ0(t,x)

ε0
.

(2.1.6)
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with J = q
∫
Rdv f(t,x,v)dv the current density c the speed of light and the compatibility

condition which must hold true
∂ρ

∂t
+∇x · J = 0. (2.1.7)

The numerical solution of the fully three-dimensional Vlasov-Poisson (2.1.1)-(2.1.3) or
Vlasov-Maxwell system (2.1.1)-(2.1.6) is already in itself a major challenge because of
the huge size of the resulting system and the temporal and spatial scale related to its reso-
lution. In this work, we set ourselves in an intermediate situation between the Poisson and
the Maxwell model in which the magnetic field is given and external while the electric field
is obtained from the solution of the Poisson equation, i.e.

−∆xφ(t,x) =
ρ(t,x)− ρ0(t,x)

ε0
, B(t,x) = Bext(t,x),

F (t,x,v) = E(t,x) + v ×Bext(t,x), E(t,x) = −∇xφ(t,x).

(2.1.8)

At the numerical level, such dynamics can be discretized by means of different numerical
schemes, such as for example semi-Lagrangian schemes [72, 175, 194], finite difference-
finite volume methods [71, 71] or Galerking schemes [76, 99], which are able to produce an
accurate solution but in general have high computational costs. In contrast to the above
recalled techniques, we find particle methods such as the famous particle-in-cell (PIC)
methods [54, 96, 97, 121, 120, 80, 83, 87], which are able to produce a faster approximation
of the evolution of the plasma density based on a representation of the solution as a sum of
Dirac deltas or hybrid methods which tries to couple the advantages of deterministic and
particle solvers in one single method [43, 174].

Besides on the numerical method used for approximating the Vlasov model (2.1.1), the
main novelty of this work is to study efficient instantaneous control strategies based on the
external magnetic field Bext(t,x) obtained as a solution of an optimality principle, aiming
at minimizing the mass which hits the boundaries and/or the energy close to the walls
and to investigate the results of such strategy numerically. In literature, there exists some
attempts of studying the magnetic confinement of a plasma by numerical simulations,
however most of these research directions focus on hydrodynamic models [34] while the
control of microscopic models describing systems of charged particles and based on kinetic
equations is a direction which has almost not been explored in the past, we are aware of only
two contributions to this case [91, 15]. The first refers to the Vlasov equation coupled with
the Poisson equation while the second one refers to a case in which also the magnetic field
is considered. In fact, the precise scope of an external magnetic field, which is the case we
treat in this work, is to act as a control on the system, necessary to let the plasma assuming
a desired configuration. Depending on the situation, its strength can in principle induces
fast scale dynamics which have to be treated with ad-hoc numerical methods. In particular,
in [96], a semi-implicit PIC method, which enjoys a wide stability area with respect to the
spatial and temporal scales considered, has been proposed allowing the choice of larger
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time steps for the evolution of the dynamics which is well suited for our scopes as precised
later. The general form of the functional we aim to minimize reads as

J (Bext; f
0) :=

∫ T

0

(
L(f(t,x,v)) +

γ

2

∫
Ωx

‖Bext(t,x)‖2dx
)
dt, (2.1.9)

where Ωx ⊆ Rdx represents the space domain, L(f(t,x,v)) is a cost function, and γ acts
as a weight penalizing the magnitude of the control ‖Bext‖. For instance, by choosing

L(f(t,x,v)) =
∥∥∥∫

Ω
ψ(x,v)

(
f(x,v, t)− f̂(x,v, t)

)
dxdv

∥∥∥q, (2.1.10)

where Ω = Ωx×Ωv with Ωv ⊆ Rdv , for q > 0 means that we are looking to steer the moments
of the distribution functions towards a desired state, while the specific case ψ(x,v) =
1 corresponds to force the density of the plasma to be as close as possible to a given
configuration. Then, the general form of the control problem we aim to study is given by

min
Bext∈Badm

J (Bext; f
0)

subject to

∂tf(t,x,v) + v · ∇xf(t,x,v) + (E(t,x) + v ×Bext(t,x)) · ∇vf(t,x,v) = 0,

−∆xφ(t,x) =
ρ(t,x)− ρ0(t,x)

ε0
, E(t,x) = −∇xφ(t,x).

(2.1.11)

The above problem has been analyzed theoretically in [138, 193, 46, 122], where the mag-
netic field has been computed as the superposition of the fields that are generated from
different coils. A simplified configuration has been analyzed theoretically in [15] deriving the
control following a Lagrangian approach by solving the optimality system. While another
similar research direction has been recently explored in [91] where however the control is
performed over the electric field. Up to our knowledge instantaneous control methods of
the type described in [42, 6, 105] have never been investigated in this setting which is the
direction we aim to explore in this work. In more details here, we assume, as it will be
clarified later, that the external magnetic field may take different values on different parts
of the domain and for this specific choice we derive an instantaneous feedback control for
the plasma which permits to drive the system towards the desired state.

The rest of the chapter is organized as follows. In Section 2.2 we describe the geomet-
rical setting and we introduce the details of the control problem. In Section 2.3, we give a
general overview of the type of numerical scheme we choose to approximate our model. In
particular, we will focus on particle-in-cell methods together with well suited semi-implicit
discretizations. In Section 2.4, we discretize the control problem and we derive different
control strategies. In Section 2.5- 2.6, we propose different numerical examples in which we
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apply the control to the plasma dynamics. In Appendices 2.A and 2.B, we provide some
detailed descriptions of the numerical methods not given in the main text and we test the
numerical method on well known examples.

2.2 Problem setting

From now on, we restrict ourselves to a two dimensional setting, i.e. dx = dv = 2. This sit-
uation mimics a three dimensional axisymmetric toroidal device containing the plasma. To
give a precise definition of our simplified setting, we focus on a two dimensional horizontal
section of the three dimensional torus shown on the top of Figure 2.1. This is obtained from
the intersection of the x−y plane with the solid and it is shown on the bottom left of Figure
2.1. Finally, we restrict our analysis on a portion of this section which is approximated by
a rectangle to avoid unnecessary complications as shown in the same Figure on the bottom
right.

Figure 2.1: On the top the three dimensional torus, on the left bottom the toric section,
on the bottom right the simplified geometry considered.
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Over this depicted geometry, the external magnetic field is supposed to be such that

Bext(t,x) =
(
0, 0, Bext(t,x)

)
. (2.2.1)

Hence, the two dimensional Vlasov-Poisson equations reads as

∂f(t,x⊥,v⊥)

∂t
+ v⊥ · ∇x⊥f(t,x⊥,v⊥) + (E(t,x⊥) + v⊥ ×Bext(t,x⊥)) · ∇v⊥f(t,x⊥,v⊥) = 0,

E(t,x⊥) = −∇x⊥φ(t,x⊥), −∆x⊥φ(t,x⊥) = ρ(t,x⊥),

(2.2.2)

where x⊥ = (x, y) and v⊥ = (vx, vy), and where we took ρ0 = 0 and the scaling parameter
ε0 = 1 in the Poisson equation. In (2.2.2), f(t,x⊥,v⊥) represents a set of charged particles
lying on the x − y plane where periodic boundary conditions are imposed in x direction
while, if not otherwise stated, reflexive boundary conditions are imposed in y direction
mimicking the wall of the device. The aim is to control the dynamics described by (2.2.2)
with an external magnetic field in order to let particles assume a desired configuration
and to stay as far as possible from the walls. In order to reach this goal, the idea consists
in using the external magnetic field Bext(t,x) as a control variable. However, in order to
try to be realistic instead of considering Bext(t,x) we introduce a space discretization grid
with Nc cells, and we derive a control Bext

k (t) taking constant values in each of the cells
Ck, k = 1, . . . , Nc. In fact, from the practical point of view one cannot expect that the coils
used to generate the magnetic field would be capable of realizing very complex pointwise
field structures. Hence, we formulate the problem at the continuous level over a finite time
horizon [0, T ] as follows

min
Bext∈Badm

Nc∑
k=1

Jk(Bext
k ; f0), s.t. (2.2.2) is verified (2.2.3)

where Bext = (Bext
1 , . . . , Bext

Nc
) now represents the vector of z components of Bext(t,x⊥)

defined in (2.2.1) within each cell Ck, Badm is set of admissible controls such that Badm =
{Bext

k |Bext
k ∈ [−M,M ],M > 0, k = 1, . . . , Nc}, and the cost functional is defined as follows

Jk(Bext
k ; f0) =

∫ T

0

(
Dx
k(f, ψx)(t) +Dv

k(f, ψv)(t) +
γ

2
‖Bext

k (t)‖2
)
dt, (2.2.4)

with γ > 0 a penalization parameter of the control, and where the running cost aims at
enforcing a specific velocity and position of the particles as follows

D`k(f, ψ`) =
α`
2
‖mk[ψ`](t)− ψ̂`,k‖2 +

β`
2
σ2
k[ψ`](t), ` = {x, v}, (2.2.5)
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with ψ̂`,k ≡ ψ̂`,k(x⊥,v⊥) a target state, α`, β` ≥ 0, and mean and variance quantities

mk[ψ](t) =

∫
Ωk

ψ(x⊥,v⊥)f(t,x⊥,v⊥)dx⊥dv⊥,

σ2
k[ψ](t) =

∫
Ωk

‖ψ(x⊥,v⊥)−mk[ψ](t)‖2f(t,x⊥,v⊥)dx⊥dv⊥,

(2.2.6)

with Ωk = Ck × R2, k = 1, . . . , Nc. The purpose of the first term in (2.2.5) is to force the
mean state of the particles in each cell Ck, such as velocity and position, to a desidered
state ψ̂k, at same time the second term aims at reducing the variance of the particles
distribution in the cell. In Section 2.4 we will discretize the problem in (2.2.3) and we will
derive an instantaneous feedback control.

Remark 2. In the rest of the chapter we will use for simplicity the following notation
B(t, ·) = Bext(t, ·), B(t, ·) = Bext(t, ·), x = x⊥ and v = v⊥.

2.3 Particle-in-cell (PIC) Methods

Particle-in-cell methods are used to study the motion of N particles, which in this context
constitute the plasma density f(t,x,v). We approximate the plasma density at time tn+1

as

fN (tn+1,x,v) =
N∑
m=1

ωmδ(x− xn+1
m )δ(v − vn+1

m ), (2.3.1)

where δ(·) is the Dirac-delta function and ωm denotes the mass of each particle. The trajec-
tory of each particle m = 1, . . . , N is computed from the characteristic curves corresponding
to the Vlasov equation

dxm(t)

dt
= vm(t), xm(0) = x0

m,

dvm(t)

dt
= vm(t)×B(t,xm(t)) + E(t,xm), vm(0) = v0

m,

(2.3.2)

with E(t,xm) computed on the spatial mesh grid by solving the Poisson equation by means
of a finite difference method (see Appendix 2.A for further details). At each time t, the
approximated density is reconstructed considering the updated particles positions and ve-
locities. Here we focus on the first order semi-implicit PIC method proposed in [96] to
discretize the system of equations (2.3.2). Since the method is semi-implicit, it is uncon-
ditionally stable for a wider range of time step than an explicit method. The first step
consists in sampling the initial position and velocity of each particle from a given initial
distribution f0(x,v). To do so, we compute the total mass and the mass of each particle
as

mtot =

∫
R4

f0(x,v)dxdv, ωm =
mtot

N
, (2.3.3)
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where N denotes the total number of particles. Then we consider a space discretization
grid of size ∆x with mx nodes in the x direction and of size ∆y with my nodes in the y
direction. We determine the number of particles in each cell

Nk =
⌊ρk
N

⌉
, (2.3.4)

where b·e denotes the stochastic rounding, and

ρk =

∫
R2

f0(xk,v)dv, (2.3.5)

for any k = (j − 1)mx + i with i = 1, . . . ,mx and j = 1, . . . ,my, is the density in each cell,
with xk denoting the nodes of the space discretization grid. Finally, we set uniformly the
positions of the Nk particles inside each cell Ck, k = (j − 1)mx + i for i = 1, . . . ,mx and
j = 1, . . . ,my. Following a similar argument, we associate to each particle a certain velocity
on a grid with mvx ×mvy nodes, dependent of the initial distribution. Other methods to
realized the initial sampling are for instance the Inverse Transform Sampling technique,
or the Aceptance-Rejection algorithm, see [162]. Then, we consider a time interval [0, T ]
divided into Nt intervals of size h, we define tn = nh and we write for any m = 1, . . . , N ,

xn+1
m = xnm + hvn+1

m ,

vn+1
m = vnm + hvn+1

m ×B(tn,xnm) + hE(tn,xnm),
(2.3.6)

to simulate the evolution of the Vlasov equation. Finally we reconstruct the approximate
density as in (2.3.1). A complete analysis of this family of PIC numerical methods have
been proposed in [96].

2.4 Derivation of the instantaneous control

As mentioned in Section 2.2, we consider a space discretization grid with Nc cells of size
∆cx ×∆cy with ∆cx � ∆x, and ∆cy � ∆y, (see Figure 2.2), and we provide a feedback
control Bk, k = 1, . . . , Nc, based on a one-step prediction of the dynamics, which takes
constant values in each cell Ck.



2.4. DERIVATION OF THE INSTANTANEOUS CONTROL 23
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{
{ 

Figure 2.2: Space discretization grids. The finer continuous (blue) mesh represents the
discretization grid on which we reconstruct the density, the dashed (orange) mesh the cell
grid on which we will define the control Bk.

Hence, we formulate the discretized version of (2.2.3) in a short time horizon [t; t+ h]
as follows

min
B∈Badm

Nc∑
k=1

JNk (Bk), (2.4.1)

subject to the discretize dynamics

xn+1
i = xni + hvn+1

xi ,

yn+1
i = yni + hvn+1

yi ,

vn+1
xi = vnxi + hvnyiBk + hEnxi ,

vn+1
yi = vnyi − hv

n
xiBk + hEnyi ,

(2.4.2)

where B = (B1, . . . , BNc), and with Badm a set of admissible controls such that Badm =
{Bk|Bk ∈ [−M,M ],M > 0, k = 1, . . . , Nc}. By considering the discretized version of
(2.2.4), the functional in (2.4.1) reads as follows

JNk (Bk) = h
(
Dx
k(fN , ψx)(tn+1) +Dv

k(fN , ψv)(tn+1) +
γ

2
‖Bk‖2

)
, (2.4.3)

where

D`k(fN , ψ`) =
α`
2
‖mk[ψ`](t

n+1)− ψ̂`,k‖2 +
β`
2
σ2
k[ψ`](t

n+1), ` = {x, v}, (2.4.4)

with ψ̂`,k ≡ ψ̂`,k(x⊥,v⊥) a target state, α`, β` ≥ 0, fN the empirical density (2.3.1), and
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where the mean and variance quantities reads as follows

mk[ψ](tn+1) =

∫
Ωk

ψ(x⊥,v⊥)fN (tn+1,x⊥,v⊥)dx⊥dv⊥,

σ2
k[ψ](tn+1) =

∫
Ωk

‖ψ(x⊥,v⊥)−mk[ψ](tn)‖2fN (tn+1,x⊥,v⊥)dx⊥dv⊥,

(2.4.5)

with Ωk = Ck × R2, k = 1, . . . , Nc. By computing explicitly the terms in (2.4.5), and by
setting ψx = yn+1, ψv = vn+1

y , ψ̂x,k = ŷk and ψ̂v,k = v̂yk , we can rewrite the functional in
(2.4.3) as

JNk (Bk) =
αv

2
‖v̄n+1
y,k − v̂yk‖

2 +
βv

2Nk

∑
i∈Ck

‖vn+1
yi − v̄ny,k‖2

+
αx

2
‖ȳn+1
k − ŷk‖2 +

βx

2Nk

∑
i∈Ck

‖yn+1
i − ȳnk‖2 +

γ

2
‖Bn

k ‖2,
(2.4.6)

with

ȳk =
1

Nk

∑
j∈Ck

yj , v̄y,k =
1

Nk

∑
j∈Ck

vyj , (2.4.7)

denoting the mean position and velocity over cell Ck, k = 1, . . . , Nc, and where we assumed
α`h = α`, β`h = β` for any ` = {x, v}, and γh = γ. The following Proposition holds.

Proposition 1. The feedback control at cell Ck associated to (2.4.6) reads as follows

Bk = P[−M,M ]

(
N n,k

v +N n,k
x

γ +Dn,kv +Dn,kx

)
, (2.4.8)

with γ > 0, and

N n,k
v =αv(v̄ny,k + hĒny,k − v̂yk)v̄nx,k +

βv

Nk

Nk∑
i=1

[
(vnyi + hEnyi − v̄

n
y,k)v

n
xi

]
,

N n,k
x =αx(ȳnk + h(v̄ny,k + hĒny,k)− ŷk)v̄nx,k +

βx

Nk

Nk∑
i=1

[
(yni + h(vnyi + hEnyi)− ȳ

n
k )vnxi

]
,

Dn,kv =h

(
αv(v̄nx,k)

2 +
βv

Nk

Nk∑
i=1

(vnxi)
2

)
, Dn,kx = h2

(
αx(v̄nx,k)

2 +
βx

Nk

Nk∑
i=1

(vnxi)
2

)
,

(2.4.9)

P[−M,M ](·) denoting the projection over the interval [−M,M ], and where we assumed the
parameters to scale as follows

αx →
αx

h
, βx →

βx

h
, γ → γh. (2.4.10)
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In the limit h→ 0 the control at the continuos level reads,

Bk(t) = P[−M,M ]

(
1

γ

(
N k

v (t) +N k
x (t)

))
, (2.4.11)

with

N k
v (t) = αv(v̄y,k(t)− v̂yk)v̄x,k(t) +

βv

Nk

∑
i∈Ck

(vyi(t)− v̄y,k(t))vxi(t),

N k
x (t) = αx(ȳk(t)− ŷk)v̄x,k(t) +

βx

Nk

∑
i∈Ck

(yi(t)− ȳk(t))vxi(t)
(2.4.12)

Proof. We introduce the augmented Lagrangian

L(B, λ0, λ1) = −JNk (Bk)−
Nc∑
k=1

[λ0
k(Bk −M) + λ1

k(−Bk −M)], (2.4.13)

with λ0, λ1 Lagrangian multipliers. For any k = 1, . . . , Nc we solve the optimality system

∂BkL = 0,

λ0
k(Bk −M) = 0,

λ1
k(−Bk −M) = 0,

λ0
k ≥ 0, λ1

k ≥ 0,

−M ≤ Bk ≤M.

(2.4.14)

By scaling the parameters as in (2.4.10), by setting λjk → λjkh, for any j = 0, 1, k = 1, . . . , Nc

from the first equation in (2.4.14) we get

∂BkL =−
[
αv

(
v̄ny,k − hv̄nx,kBk + hĒny,k − v̂yk

) (
−v̄nx,k

)
+

+
βv

Nk

∑
i∈Ck

{(
vnyi − hv

n
xiBk + hEnyi − v̄

n
y,k

) (
−vnxi

)}
+

+ αx

(
ȳnk + h(v̄ny,k − hv̄nx,kBk + hĒny,k)− ŷk

) (
−v̄nx,k

)
+

+
βx

Nk

∑
i∈Ck

{(
yni + h(vnyi − hv

n
xiBk + hEnyi)− ȳ

n
k

) (
−vnxi

)}
+ γBk

]
− λ0

k + λ1
k = 0.

Then, if λ0
k = 0 and λ1

k ≥ 0, we get from the third equation in (2.4.14) Bk = −M . From
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the first equation in (2.4.14), setting Bk = −M we get

λ1
k =αv

(
v̄ny,k + hv̄nx,kM + hĒny,k − v̂yk

) (
−v̄nx,k

)
+

+
βv

Nk

∑
i∈Ck

{(
vnyi + hvnxiM + hEnyi − v̄

n
y,k

) (
−vnxi

)}
+

+ αx

(
ȳnk + h(v̄ny,k + hv̄nx,kM + hĒny,k)− ŷk

) (
−v̄nx,k

)
+

+
βx

Nk

∑
i∈Ck

{(
yni + h(vnyi + hvnxiM + hEnyi)− ȳ

n
k

) (
−vnxi

)}
− γM ≥ 0

(2.4.15)

from which we get

N n,k
v +N n,k

x

γ +Dn,kv +Dn,kx

≤ −M, (2.4.16)

with Nv, N n,k
x , Dn,kv , Dn,kx defined as in (2.4.9). If λ0

k ≥ 0 and λ1
k = 0, we get from the third

equation in (2.4.14) Bk = M . Following a similar argument from the lower bound we have

N n,k
v +N n,k

x

γ +Dn,kv +Dn,kx

≥M. (2.4.17)

If λ0
k = λ1

k = 0, from the first equation in (2.4.14) we get

Bk =
N n,k

v +N n,k
x

γ +Dn,kv +Dn,kx

, (2.4.18)

and from the forth equation we get

−M ≤ Bk ≤M. (2.4.19)

All in all we get Bk defined as in (2.4.8). In the limit h→ 0 we get Bk defined as in (2.4.11).

Remark 3. • The feedback control obtained from (2.4.11) can be equivalently derived
as an instantaneous control of the following functional on the interval [t, t+h], without
introducing the rescaling (2.4.10),

Jk(Bk) =
αv

2
‖v̄y,k(t+ h)− v̂yk‖

2 +
βv

2Nk

∑
i∈Ck

‖vyi(t+ h)− v̄y,k(t)‖2

+

∫ t+h

t

αx

2
‖v̄y,k(τ)− V̂k(τ)‖2 +

βx

2Nk

∑
i∈Ck

‖vyi(τ)− V̄k,i(τ)‖2
 dτ

+
γ

2

∫ t+h

t
‖Bk(τ)‖2 dτ,

(2.4.20)
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where we introduced the term

V̂k(τ) = η̂(ŷk − ȳk(τ)), V̄k,i(τ) = η̄(ȳk(τ)− yi(τ)), η̂, η̄ > 0.

Hence,we consider the following discretization

Jk(Bk) =
αv

2
‖v̄n+1
y,k − v̂yk‖

2 +
βv

2Nk

∑
i∈Ck

‖vn+1
yi − v̄ny,k‖2

+
hαx

2
‖v̄n+1
y,k − V̂

n
k ‖2 +

hβx

2Nk

∑
i∈Ck

‖vn+1
yi − V̄nk,i‖2 +

hγ

2
‖Bk‖2,

(2.4.21)

and we observe that the following reformulation is viable for the third term

hαx

2
‖v̄n+1
y,k − V̂

n
k ‖2 =

hαx

2

∥∥∥∥∥ ȳn+1
k − ȳnk

h
−
ỹnk − ȳnk

h

∥∥∥∥∥
2

=
αx

2h

∥∥ȳn+1
k − ỹnk

∥∥2

where ỹnk = ȳnk +hη̂(ŷk− ȳnk ). The same argument holds for the forth term of (2.4.21),
and assuming hη̂ = 1 and hη̄ = 1 we recover the cost functional in (2.4.6).

• To derive the different controls we consider an explicit discretization scheme. Once
that we have derived the value of Bk we will plug it into the semi-implicit scheme
that is used to evolve the dynamics.

2.5 Numerical experiments: validation test

The aim of this section is to show how to control the instabilities by means of a magnetic
field derived as in (2.4.8). We consider a two dimensional domain and we impose periodic
boundary conditions in x and either reflexive or Dirichlet boundary conditions in y. We
consider as initial density

f0(x, y) =
1√
2πσ

(
exp

(
−(y − cy)2

2σ2

)
+ exp

(
−(y + cy)

2

2σ2

))
, (2.5.1)

with cy = 1 and σ = 0.3, and we assume (x, y) ∈ [0, 40]× [−1.5, 1.5]. We sample N = 106

particles from the initial distribution with position (x0
i , y

0
i ), and we set v0

xi = 1 and v0
yi = 10

for any particle i s.t. y0
i ≥ 0, and v0

yi = −10 for any particle i s.t. y0
i < 0. In Figure 2.3 the

initial configuration.
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Figure 2.3: Approximation of the initial density.

We first assume to have no control and a constant magnetic field B = 1 acting on
the system. Then we test the problem supposing that the magnetic field is derived as the
solution of a control problem aiming at minimizing the percentage of mass which hits the
lower and upper boundaries. We suppose the domain on which the control is active to be
divided into Nc cells Ck, k = (jx − 1)Kx + ik, with ix = 1, . . . ,Kx and jx = 1, . . . ,Ky. In
the following tests we set Kx = 1 and Ky = 2. We let the dynamics to evolve up to time
T = 100, choosing h = 0.1 as time steps. We set mx×my, with mx = my = 64, as number
of cells for the space discretization and mvx × mvy , with mvx = mvy = 128, number of
cells in the velocity space. We then reconstruct the density at each time as in (2.3.1). To
test the control, we compute also the percentage of mass at the boundaries and inside the
domain and the total kinetic energy. In particular, the mass at the boundaries at time tn

is given by

mb(t
n) =

∫
Ωb

fN (tn,x,v)dxdv, (2.5.2)

with fN (·) defined as in (2.3.1) and Ωb = [−1.5,−0.625]∪ [0.625, 1.5], while the mass inside
the domain at time tn is defined to be

mn
i (tn) = 1−mn

b (tn). (2.5.3)

The kinetic energy at the boundaries at time tn is instead computed as

E(tn) =
1

2

∫
Ωb

v2fN (tn,x,v)dxdv, (2.5.4)

with fN (·) defined as in (2.3.1) and Ωb = [−1.5,−0.625] ∪ [0.625, 1.5].
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2.5.1 Test with reflexive boundary conditions in y

Test without control. In Figure 2.4 three snapshots of the dynamics at time t = 5,
t = 50 and t = 100. In red the velocity vector field. The mass oscillates around the centre
of the domain due to the fact that we impose reflexive boundary conditions in y.
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0.02

Figure 2.4: Test without control with B = 1. Three snapshots of the dynamics taken at
time t = 5, t = 50 and t = 100, described in equation (2.2.2). In red the velocity vector
field.

In Figure 2.5 we show on the left the mass percentages in time and on the right the
kinetic energy at the boundaries as a function of time computed as in (2.5.2)-(2.5.3), and
(2.5.4), respectively. Once that particles hits the boundaries, the energy increases.

Figure 2.5: Test without control with B = 1. On the left the mass percentages defined as
in equation (2.5.2)-(2.5.3) and on the right the kinetic energy at the boundaries defined as
in (2.5.4).
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Test with an instantaneous control of the particles velocity mean and variance.
We consider the case of an instantaneous control of the particles velocity mean and variance
derived as in (2.4.8) by setting αv = 1.5, βv = 0.1, αx = βx = 0, and γ = 10−3, before
scaling as in (2.4.10). We choose v̂y1 = 1 and v̂y2 = −1 as targets points in our control
problem to guarantee that the velocity points toward the centre of the domain. In Figure 2.6
in the first row three snapshots of the dynamics described by equation (2.2.2) at time t = 5,
t = 50 and t = 100. In red the velocity vector field. In the second row the correspondent
value of the magnetic field. The mass is forced to move toward the centre of the domain.
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Figure 2.6: Test with an instantaneous control of the particles velocity mean and variance
derived as in (2.4.8) by setting αv = 1.5, βv = 0.1, αx = βx = 0, and γ = 10−3, before
scaling as in (2.4.10). In the first row, three snapshots of the dynamics taken at time t = 5,
t = 50 and t = 100, described in equation (2.2.2). In red the velocity vector field. In the
second row, the value of the magnetic field in each cell.

In Figure 2.7 the value of the magnetic field in the cells Ck, k = 1, 2 as a function of
time. The control takes small values in early times and it oscillate in late time.
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Figure 2.7: Test with an instantaneous control of the particles velocity mean and variance
derived as in (2.4.8) by setting αv = 1.5, βv = 0.1, αx = βx = 0, and γ = 10−3, before
scaling as in (2.4.10). Value of the control Bk in each cell Ck, k = 1, 2 as a function of time.

In Figure 2.8 we plot the mass percentages in time, computed as in (2.5.2)-(2.5.3),
and the kinetic energy at the boundaries as a function of time computed as in (2.5.4).
Furthermore we zoom and plot in logarithmic scale the mass at the boundaries to highlight
the fact that the energy increases if a small percentage of mass hits the boundary.

Figure 2.8: Test with an instantaneous control of the particles velocity mean and variance
derived as in (2.4.8) by setting αv = 1.5, βv = 0.1, αx = βx = 0, and γ = 10−3, before
scaling as in (2.4.10). On the left the mass percentages defined as in equation (2.5.2)-(2.5.3),
and the mass at the boundaries in logarithmic scale, and on the right the kinetic energy
at the boundaries defined as in (2.5.4).
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Test with an instantaneous control of the particles position and velocity mean
and variance. We consider an instantaneous control of the particles position and velocity
mean and variance derived as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and
γ = 10−3, before scaling as in (2.4.10). We choose ŷk = 0 for any k = 1, 2 and v̂y1 = 1,
v̂y2 = −1 as target points, in such a way to force the mass to move toward the centre of
the domain. In Figure 2.9 in the first row three snapshots of the dynamics described by
equation (2.2.2) at time t = 5, t = 50 and t = 100. In red the velocity vector field. In
the second row the correspondent value of the magnetic field. The mass is forced to move
toward the centre of the domain.
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Figure 2.9: Test with an instantaneous control of the particles position and velocity mean
and variance derived as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−3,
before scaling as in (2.4.10). In the first row, three snapshots of the dynamics taken at time
t = 10, t = 70 and t = 150, described in equation (2.2.2). In red the velocity vector field.
In the second row, the value of the magnetic field in each cell.

In Figure 2.10 the value of the magnetic field in the cells Ck, k = 1, . . . , Nk as a function
of time. The control activates once that the mass move far away from the centre of the
domain.
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Figure 2.10: Test with an instantaneous control of the particles position and velocity mean
and variance derived as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−3,
before scaling as in (2.4.10). Value of the control Bk in each cell Ck, k = 1, 2 as a function
of time.

In Figure 2.11 we plot the mass percentages in time, computed as in (2.5.2)-(2.5.3),
and the kinetic energy at the boundaries as a function of time computed as in (2.5.4). We
add the plot of the mass at the boundaries in logarithmic scale. Even if part of the mass
hits the boundaries the energy decreases toward zero.

Figure 2.11: Test with an instantaneous control of the particles position and velocity mean
and variance derived as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−3,
before scaling as in (2.4.10). On the left the mass percentages defined as in equation (2.5.2)-
(2.5.3) and the mass at the boundaries in logarithmic scale, and on the right the kinetic
energy at the boundaries defined as in (2.5.4).
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2.5.2 Test with Dirichlet boundary conditions in y

Test without control. In Figure 2.12 three snapshots of the dynamics at time t = 5,
t = 50 and t = 100. In red the velocity vector field. The mass splits into two sub-masses that
reach the boundaries and get trapped due to the fact that we impose Dirichlet boundary
conditions in y.
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Figure 2.12: Test without control with B = 1. Three snapshots of the dynamics taken at
time t = 5, t = 50 and t = 100, described in equation (2.2.2). In red the velocity vector
field.

In Figure 2.13 we show on the left the mass percentages in time and on the right the
kinetic energy at the boundaries as a function of time computed as in (2.5.2)-(2.5.3), and
(2.5.4), respectively. Once that particles hits the boundaries, the energy increases.

Figure 2.13: Test without control with B = 1. On the left the mass percentages defined as
in equation (2.5.2)-(2.5.3) and on the right the kinetic energy at the boundaries defined as
in (2.5.4).



2.5. NUMERICAL EXPERIMENTS: VALIDATION TEST 35

Test with an instantaneous control of the particles velocity mean and variance.
We consider the case of an instantaneous control of the particles velocity mean and variance
derived as in (2.4.8) by setting αv = 1.5, βv = 0.1, αx = βx = 0, and γ = 10−3, before
scaling as in (2.4.10). We choose v̂y1 = 5 and v̂y2 = −5 as targets points in our control
problem to guarantee that the velocity points toward the centre of the domain. In Figure
2.14 in the first row three snapshots of the dynamics described by equation (2.2.2) at
time t = 5, t = 50 and t = 100. In red the velocity vector field. In the second row the
correspondent value of the magnetic field. The mass is forced to move toward the centre
of the domain.
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Figure 2.14: Test with an instantaneous control of the particles velocity mean and variance
derived as in (2.4.8) by setting αv = 1.5, βv = 0.1, αx = βx = 0, and γ = 10−3, before
scaling as in (2.4.10). In the first row, three snapshots of the dynamics taken at time t = 5,
t = 50 and t = 100, described in equation (2.2.2). In red the velocity vector field. In the
second row, the value of the magnetic field in each cell.

In Figure 2.15 the value of the magnetic field in the cells Ck, k = 1, 2 as a function of
time. The control takes small values in early times and it oscillate in late time.
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Figure 2.15: Test with an instantaneous control of the particles velocity mean and variance
derived as in (2.4.8) by setting αv = 1.5, βv = 0.1, αx = βx = 0, and γ = 10−3, before
scaling as in (2.4.10). Value of the control Bk in each cell Ck, k = 1, 2 as a function of time.

In Figure 2.16 we plot the mass percentages in time, computed as in (2.5.2)-(2.5.3),
and the kinetic energy at the boundaries as a function of time computed as in (2.5.4).
Furthermore we zoom and plot in logarithmic scale the mass at the boundaries to highlight
the fact that it does not hit the boundaries.

Figure 2.16: Test with an instantaneous control of the particles velocity mean and variance
derived as in (2.4.8) by setting αv = 1.5, βv = 0.1, αx = βx = 0, and γ = 10−3, before
scaling as in (2.4.10). On the left the mass percentages defined as in equation (2.5.2)-(2.5.3),
and the mass at the boundaries in logarithmic scale, and on the right the kinetic energy
at the boundaries defined as in (2.5.4).
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Test with an instantaneous control of the particles position and velocity mean
and variance. We consider an instantaneous control of the particles position and velocity
mean and variance derived as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and
γ = 10−3, before scaling as in (2.4.10). We choose ŷk = 0 for any k = 1, 2 and v̂y1 = 5,
v̂y2 = −5 as target points, in such a way to force the mass to move toward the centre of
the domain. In Figure 2.17 in the first row three snapshots of the dynamics described by
equation (2.2.2) at time t = 5, t = 50 and t = 100. In red the velocity vector field. In
the second row the correspondent value of the magnetic field. The mass is forced to move
toward the centre of the domain.
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Figure 2.17: Test with an instantaneous control of the particles position and velocity mean
and variance derived as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−3,
before scaling as in (2.4.10). In the first row, three snapshots of the dynamics taken at time
t = 10, t = 70 and t = 150, described in equation (2.2.2). In red the velocity vector field.
In the second row, the value of the magnetic field in each cell.

In Figure 2.18 the value of the magnetic field in the cells Ck, k = 1, . . . , Nk as a function
of time. The control activates once that the mass moves far away from the centre of the
domain.
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Figure 2.18: Test with an instantaneous control of the particles position and velocity mean
and variance derived as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−3,
before scaling as in (2.4.10). Value of the control Bk in each cell Ck, k = 1, 2 as a function
of time.

In Figure 2.19 we plot the mass percentages in time, computed as in (2.5.2)-(2.5.3),
and the kinetic energy at the boundaries as a function of time computed as in (2.5.4). We
add the plot of the mass at the boundaries in logarithmic scale. The behaviour is similar
to the one of the previous test.

Figure 2.19: Test with an instantaneous control of the particles position and velocity mean
and variance derived as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−3,
before scaling as in (2.4.10). On the left the mass percentages defined as in equation (2.5.2)-
(2.5.3) and the mass at the boundaries in logarithmic scale, and on the right the total energy
defined as in (2.5.4).
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2.6 Numerical experiments: Kelvin-Helmholtz instability

Here we analyze the Kelvin-Helmholtz instability [72, 181, 54, 110] which is the analogues
of the diocotron instability in an ideal fluid. We first show the evolution of the dynamics
without control in a section of a 3D torus imposing periodic boundary conditions in x and
Dirichlet boundary conditions in y, and assuming to have a strong magnetic field B acting
on the orthogonal plane. Then we test the instantaneous control derived in Section 2.4. We
consider the initial density

f0(x, y) =
1.5

2π
sech

( y

0.9

)
(1 + ε0 cos(3k0x+ ε1 sin(k0x))), (2.6.1)

with k = 0.15, ε0 = 0.1, ε1 = 0.001, x ∈ [0, 40], y ∈ [−5, 5], which is plotted in Figure 2.20.
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Figure 2.20: Approximation of the initial density.

We sample N = 106 particles from the initial density with position (x0
i , y

0
i ) and we

assume each particle i s.t. y0
i ≥ 0 to have velocity (v0

xi , v
0
yi) = (1, 0) and each particle

i s.t. y0
i < 0 to have velocity (v0

xi , v
0
yi) = (−1, 0). We let the dynamics to evolve up to

time T = 100, choosing h = 0.1 as time steps. We set mx × my, with mx = my = 64,
as number of cells for the space discretization and mvx × mvy , with mvx = mvy = 128,
number of cells in the velocity space. We then reconstruct the density at each time as in
(2.3.1). We assume the control to be active in the whole domain which is divided into Nc

cells Ck, k = (jx − 1)Kx + ik, with ix = 1, . . . ,Kx and jx = 1, . . . ,Ky. In the following
tests we set Kx = 1 and Ky = 10. As in the previous example, to test the efficiency of the
control we compute the percentage of mass at the boundaries and inside the domain as in
(2.5.2)-(2.5.3), and the energy as in (2.5.4) with Ωb = [−5,−4.8] ∪ [4.8, 5].
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2.6.1 Test without control

We consider the case in which the external magnetic field is fixed to be B = 1.5. In Figure
2.21 three snapshots of the dynamics at time t = 5, t = 10 and t = 100. In red the velocity
vector field. An instability occurs.

Figure 2.21: Test without control with B = 1.5. Three snapshots of the dynamics taken at
time t = 5, t = 50 and t = 100, described in equation (2.2.2). In red the velocity vector
field.

In Figure 2.22 we show on the left the mass percentages in time and on the right the
kinetic energy at the boundaries as a function of time computed as in (2.5.2)-(2.5.3), and
(2.5.4), respectively. We add also the plot of the mass at the boundaries in logarithmic
scale. The mass hits the upper and lower boundary and the energy increases.

Figure 2.22: Test without control with B = 1.5. On the left the mass percentages defined
as in equation (2.5.2)-(2.5.3) and the mass percentage at the boundaries in logarithmic
scale, and on the right the kinetic energy at the boundaries defined as in (2.5.4).
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2.6.2 Test with an instantaneous control of the particles velocity and
position mean and variance

We now assume to derive an instantaneous control of the particles velocity and position
mean and variance defined as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and
γ = 10−1, before scaling as in (2.4.10). We choose ŷk = 0, for any k = 1, . . . , 10, and
v̂yj = 1 for any j = 1, . . . , 5 and v̂yj = −1 for any j = 6, . . . , 10 as target points to confine
the mass at the centre of the domain. In Figure 2.23 in the first row three snapshots of
the dynamics described by equation (2.2.2) at time t = 5, t = 50 and t = 100. In red the
velocity vector field. The mass is confined in the centre of the domain. In the second row
the correspondent value of the magnetic field.
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Figure 2.23: Test with a an instantaneous control of the particles velocity and position
mean and variance defined as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, before
scaling as in (2.4.10). In the first row, three snapshots of the dynamics taken at time t = 5,
t = 50 and t = 100, described in equation (2.2.2). In red the velocity vector field. In the
second row, the value of the magnetic field in each cell.

In Figure 2.24 the value of the magnetic field in the cells Ck, k = 1, . . . , 10 as a function
of time. The control takes positive values at the boundaries of the domain and negative
values at the centre of the domain.
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Figure 2.24: Test with an instantaneous control of the particles velocity and position mean
and variance defined as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−1,
before scaling as in (2.4.10). Value of the control Bk in each cell Ck, k = 1, . . . , 10 as a
function of time.

In Figure 2.25 we plot the mass percentages in time, computed as in (2.5.2)-(2.5.3) and
the mass at the boundaries in logarithmic scale, and the kinetic energy at the boundaries
as a function of time computed as in (2.5.4).

Figure 2.25: Test with an instantaneous control of the particles velocity and position mean
and variance defined as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−1,
before scaling as in (2.4.10). On the left the mass percentages defined as in equation (2.5.2)-
(2.5.3), and the mass percentage at the boundaries in logarithmic scale, and on the right
the kinetic energy at the boundaries defined as in (2.5.4).

Finally, in Figure 2.26 on the left we compare the results in terms of kinetic energy at the
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boundaries for different values of γ up to time t = 3. The energy decreases proportionally to
γ. On the right the value of the kinetic energy at the boundaries up to time t = 5, assuming
to have no control and assuming to activate the control at time tact = 0, tact = 10 and
tact = 20. The kinetic energy starts decreasing once that the control is switched on.
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Figure 2.26: Test with an instantaneous control of the particles velocity and position mean
and variance defined as in (2.4.8) by setting αx = αv = 1.5, βx = βv = 0.1, and γ = 10−1,
before scaling as in (2.4.10). On the left the value of the kinetic energy at the boundaries
as γ varies. On the right the kinetic energy at the boundaries for γ = 10−1 and assuming to
activate the control at different times, where tact denotes the activation time of the control.

Appendix 2.A Discretization of Poisson equation

In order to calculate the electric field, we solve the Poisson equation in the interval [ax, bx]×
[ay, by], assuming x = (x, y), with periodic boundary conditions in x and Dirichlet boundary
conditions in y, that is

−∆φ(x, y) = ρ(x, y), for (x, y) ∈ (ax, bx)× (ay, by),

φ(x, ay) = φ(x, by) = 0, for x ∈ [ax, by],

φ(ax, y) = φ(bx, y), for y ∈ [ay, by],

(2.A.1)

We compute an approximation of the charge density ρ(x, y) at time t in each cell Ck,
k = (j − 1)mx + i, for i = 1, . . . ,mx and j = 1, . . . ,my. Secondly, we discretize equation
(2.A.1) using central finite difference and we write for any i = 1, . . . ,mx, j = 1, . . . ,my,

− 1
∆2
y

(φi,j−1 − 2φi,j + φi,j+1)− 1
∆2
x

(φi−1,j − 2φi,j + φi+1,j) = ρi,j ,

φi,1 = φi,my = 0, for i = 1, . . . ,mx,

φ1,j = φmx,j , for j = 1, . . . ,my,

(2.A.2)
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where
φi,j = φ(xi, yj), ρi,j = ρ(xi, yj), (2.A.3)

for any i = 1, . . . ,mx and j = 1, . . . ,my. We introduce two discretization matrices

Ax =
1

∆2
x



∗ ∗ ∗ ∗ ∗ ∗
1 −2 1 0 . . . 0

0 1 −2 1 0
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 1 −2 1
∗ ∗ ∗ ∗ ∗ ∗


, Ay =

1

∆2
y



∗ ∗ ∗ ∗ ∗ ∗
1 −2 1 0 . . . 0

0 1 −2 1 0
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 1 −2 1
∗ ∗ ∗ ∗ ∗ ∗


(2.A.4)

where, the first and last row of Ax and Ay should be opportunely modified to impose
periodic and Dirichlet boundary conditions, respectively. Then we solve

−A~φ = ~ρ, (2.A.5)

where we denote by φ̃k = φi,j each component of the vector ~φ and by ρ̃k = ρi,j each
component of the vector ~ρ, for any k = (j − 1)mx + i, i = 1 . . . ,mx and j = 1, . . . ,my and
where

A = (Idmy ⊗Ax) + (Ay ⊗ Idmx),

with Idmx , Idmy representing the identity matrix of size mx and my, respectively. Once
that we have computed the electric potential, we can compute the electric field which can
be written in discretized form as

~Ex = −(Idmx ⊗ Cx)~φ, ~Ey = −(Cy ⊗ Idmx)~φ, (2.A.6)

where Cx, Cy are discretization matrices for the first derivative. Finally, we associate to

each particle the values ~Ex, ~Ey which corresponds to their position over the grid.

Appendix 2.B Classical numerical tests

We consider here different classical tests (see for example [151, 96]). We assume to evolve
the dynamics up to time T . We define an initial density, we approximate it with N =
106 particles and we solve the Vlasov-Poisson equation with the particle-in-cell method
described in Section 2.3.

Linear Landau damping. We suppose to be in the one dimensional setting and we
consider as initial condition

f0(t, x, v) =
1√
2π

(1 + α cos (k0x))e−
v2

2 , (2.B.1)
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with α = 0.05 and k0 = 0.5, x ∈ [0, 4π], v ∈ [−6, 6]. We apply periodic boundary conditions
both in x and v. We choose a space discretization with mx = 32 and mvx = 128 nodes. We
evolve the dynamics up to time T = 10 with a time step h = 0.1. We set B = 0 in (2.2.2).
In Figure 2.27 the evolution in time of the potential energy

Epot(t) =

√∫
Rd
E2(x, t)dx, (2.B.2)

where E(·, ·) is the electric field in position x at time t. We observe the expected damping
effect whose oscillations decreases exponentially with rate γd = −0.1533 as reported in
[151].

Figure 2.27: Linear Landau damping: potential energy as a function of time defined as in
(2.B.2) and theoretical decrease of the oscillations with rate γd = −0.1533

Non linear Landau damping. We consider the initial condition (2.B.1) as in the linear
case, with a larger perturbation α = 0.2. We let the dynamics to evolve up to time T = 60
with a time step h = 0.1. In Figure 2.28, the time evolution of the potential energy (2.B.2).
After an exponentially decreasing phase which occurs with rate γd = −0.2920 we observe
an exponentially increasing phase which occurs with rate γi = 0.085. The decreasing and
increasing rates are chosen as reported in [151].
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Figure 2.28: Non linear Landau damping: potential energy as a function of time defined
as in (2.B.2), theoretical decay of the oscillations (γd = −0.2920) and theoretical increase
of oscillations (γi = 0.085)

Two stream instability. We consider the 1D case both in space and in velocity where
we impose periodic boundary conditions. We choose a space discretization with mx = 64
and mvx = 128 nodes. We suppose B = 0 in the Vlasov-Poisson equation (2.2.2). We define
the initial density to be

f0(t, x, v) =
1√
2π

(1 + α cos (k0x))

(
e−

(v−2.4)2

2 + e−
(v+2.4)2

2

)
, (2.B.3)

with α = 3 × 10−3, k0 = 0.2, x ∈ [0, 2π/k0], vx, vy ∈ R2d. We let the dynamics to evolve
up to T = 50 with time step h = 0.1. In Figure 2.29 the initial configuration and in Figure
2.30 three snapshots of the evolution of the dynamics at time t = 5, t = 20, t = 50. We
note that an instability occurs.
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Figure 2.29: Approximation of the initial configuration.

Figure 2.30: Two stream instability. Three snapshots of the dynamics taken at time t = 5,
t = 20 and t = 50, described in equation (2.2.2) with B = 0.

In Figure 2.31 the potential energy defined as in (2.B.2) as a function of time. The energy
increases exponentially with rate γi = 0.2258, in good agreement with the theoretical results
presented in [151].



48CHAPTER 2. INSTANTANEOUS CONTROL STRATEGIES FORMAGNETIC PLASMA

Figure 2.31: Two stream instability: potential energy as a function of time defined as in
(2.B.2) and theoretical increase of the oscillations (γi = 0.2258).

Diocotron instability. We now focus on the solution of the Vlasov-Poisson equation
with B = 10. We consider the 2D case in both space and velocity, with initial density

f0(x,v) =
1

2π

(
1 + α cos

(
k arctan

(y
x

)))
e

(
−4

(√
x2+y2−6.5

)2
)
e

(
−
v2x+v

2
y

2

)
, (2.B.4)

where α = 0.2, l = 7, (x, y) ∈ [−10, 10]× [−10, 10], vx, vy ∈ R2d. We set Dirichlet boundary
conditions both in x and in y. We let the dynamics to evolve up to time T = 200 with
time step h = 1 performing Nt = 2000 iterations. In Figure 2.32 the initial configuration.
In Figure 2.33 three snapshots of the dynamics taken at time t = 50, t = 100, t = 200. The
presence of a strong magnetic field leads to the formation of vortices, as expected.
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Figure 2.32: Approximation of the initial configuration.
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Figure 2.33: Diocotron instability. Three snapshots of the dynamics taken at time t = 50,
t = 100 and t = 200, described in equation (2.2.2) with B = 10.
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Chapter 3

Kinetic description of swarming dy-
namics with topological interaction
and emergent leaders
In this chapter, we present a model describing the collective motion of birds. We explore
the dynamic relationship between followers and leaders, wherein a select few agents, known
as leaders, can initiate spontaneous changes in direction without being influenced by ex-
ternal factors like predators. Starting at the microscopic level, we develop a kinetic model
that characterizes the behaviour of large crowds with transient leadership. One significant
challenge lies in managing topological interactions, as identifying nearest neighbors in ex-
tensive systems can be computationally expensive. To address this, we propose a novel
stochastic particle method to simulate the mesoscopic dynamics and reduce the compu-
tational cost of identifying closer agents from quadratic to logarithmic complexity using
a k-nearest neighbours search algorithm with a binary tree. Lastly, we conduct various
numerical experiments for different scenarios to validate the algorithm’s effectiveness and
investigate collective dynamics in both two and three dimensions.

The results presented in this chapter have been collected in [? ] and they have been sub-
mitted for publication.

3.1 Introduction

In the last decades, there has been a notable surge in interest regarding the study of
mathematical models describing collective behaviour of animals such as bacterial swarm
[139], self-organization in insects [89, 35], bird flocking [73, 163, 14, 145], and fish schooling
[127, 90]. This captivating area of investigation has garnered substantial interest, with
researchers increasingly delving into the complexities of emergent behaviours exhibited by
natural systems, but also spanned to a wider range of applications such as swarm of robots
[129, 61, 136], as well as social sciences and economics, [12, 168, 185, 86], vehicular and
pedestrian traffic [68, 2, 40].

These large ensemble of models incorporate rules governing the behaviour of individ-
ual entities within the system. By integrating such mechanisms, these models effectively

51
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capture the impact of each entity on others, taking into account their relative positions
and velocities. In this manuscript, our focus centres around the dynamics governing animal
swarms, building upon the recent model proposed in [65]. This model introduces sponta-
neous changes of direction within the swarm, independent of external factors like predators,
but rather influenced by a hierarchical interaction structure comprising two dynamic sub-
populations labelled as leaders and followers. The key concept is that each bird possesses
the potential to initiate turns and become a leader, consequently influencing its nearest
neighbours who adopt follower status. This change of labels is characterized as a stochastic
process, where each occurrence represents a random event. Our primary interest lies in ex-
ploring the phenomenon of transient leadership, wherein agents can alter their labels over
time, as examined for example in [4, 143], and also at different scales in [142, 154, 23, 64].
Here, we examine a simplified version of the second-order stochastic differential equations
presented in [65]. Specifically, we remove delay effects and consider that each agent (bird)
can interact with a maximum of M nearest neighbours, consistent with observations in
[14]. Our objective is to study such dynamics at the mesoscopic scale, formally introducing
a kinetic model of the swarms with topological-type interaction dynamics and deriving the
associated mean-field limit. For alternative mean-field and kinetic models with topological
interactions, we refer to [32, 31, 123], and for rigorous derivations, we refer specifically to
[79, 20]. Another primary objective of this study is to efficiently perform numerical sim-
ulations of high-dimensional non-local dynamics. One of the main challenges arises from
the presence of topological-type interactions, necessitating the implementation of ad-hoc
methods to reduce the complexity of the nearest neighbour search process. To address this
computational burden at the mesoscopic scale, we introduce a novel stochastic simulation
algorithm for the simulation of kinetic models such as, [162, 11, 47], in particular intro-
ducing the label switching feature, and adopting k−nearest neighbours search strategy,
following the approach proposed in [107]. By implementing this method, we successfully
reduce the computational complexity of the nearest neighbour search from quadratic to
logarithmic scale, significantly enhancing the efficiency of numerical simulations.

The chapter is organized as follows. In Section 3.2 we introduce the microscopic model
describing which are the forces that act on followers and on leaders. In Section 3.3, we
extend the study to the kinetic level, describing the evolution of the densities and how the
change of labels occurs. In Section 3.4, we introduce the algorithms that can be used to
simulate the binary interaction rules and the change of labels. In Section 3.4.2 we perform
two different validations experiments, testing both the accuracy and the efficiency of the
numerical methods introduced. In particular, we show how it is possible to reduce the
computational costs in dealing with non-locality. In Section 3.5 we simulate the dynamics
at the microscopic and kinetic level for both the two and three dimensional cases.



3.2. SWARMING MODELS WITH LEADERS-FOLLOWERS DYNAMICS 53

3.2 Swarming models with leaders-followers dynamics

We consider a large system of N interacting agents represented by points moving in a
d-dimensional space with an evolving hierarchy of interactions ruled by follower-leaders
dynamics. For every i = 1, . . . , N , let (xi(t), vi(t)) ∈ R2d denote position and velocity
of the i-th agent at time t, with d = 1, 2, 3, and λi(t) ∈ Λ ≡ {0, 1} the space of labels
indicating at time t the status of agent i to be either follower (F ) for λi(t) = 0, or leader
(L) for λi(t) = 1. Moreover we account for Nsrc fixed target positions located at xsrck ∈ Rd
for k = 1, . . . , Nsrc, indicating positions of interested for the swarm such as nest, or foraging
areas [22, 27].

We assume the system of agents evolving according to ODEs system,

ẋi = vi,

v̇i =
1

M

∑
{j : xj∈BM (xi;x)}

[
Arep(xi, xj) +

(
Aali(vi, vj) +Aatt(xi, xj)

)
(1− λi(t))

]
+
[
Asrc(xi) +Actr(xi) + S(vi)

]
λi(t), i = 1, . . . , N,

(3.2.1)

where we denoted by BM (xi; x) the ball centred at xi, with x = (x1, . . . , xN ), containing
the M nearest neighbors to i-agent, assuming that in case of ambiguity, e.g. more than one
agent is at the same distance from agent in position xi, we select the first M agents giving
priority according to the indexing order. Hence, the dynamics encodes different behaviours
according to the value of the label λi(t).

• For λi(t) = 0, we have follower-type interactions characterized by

– repulsion force

Arep(x, x′) = −Crep
x′ − x
‖x′ − x‖2

, (3.2.2)

– alignment force

Aali(v, v′) = Cali
(
v′ − v

)
, (3.2.3)

– and attraction force

Aatti (x, x′) = Catt
(
x′ − x

)
, (3.2.4)

where Crep ≥ 0, Cali ≥ 0 and Catt ≥ 0 are non-negative constants.

• For λi(t) = 1, we have leaders-type dynamics characterized by a repulsion force
defined as in equation (3.2.2) and by a self-propulsion friction term S(·) defined as

S(v) = Cv(s− ‖v‖2)v, (3.2.5)
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where s is a given characteristic speed and Cv ≥ 0. In presence of sources terms,
leaders are driven by

Asrc(x) = Csrc

Nsrc∑
k=1

ϕε(‖xsrck − x‖; r)
xsrck − x
‖xsrck − x‖

, (3.2.6)

where Csrc ≥ 0, xsrck denotes the position of the attraction source (nest, or food) and
ϕε(·) is a sigmoid function of the following type

ϕε(r; r) :=
1

1 + exp{(r − r)/ε}
, (3.2.7)

with regularization parameter ε > 0, modelling a perception area around the source
activating when the distance of the agent is below the threshold value r > 0. Fur-
thermore, leaders can be forced to move toward the centre of mass xc according to
the force

Actr(x) = Cctr

(
1− ϕε(‖xc − x‖; r)

) xc − x
‖xc − x‖

, (3.2.8)

where Cctr ≥ 0, and when the distance with respect to the centre of mass is larger
than r.

3.2.1 Stochastic process for leaders emergence

Agents have the ability to switch between being leaders and followers, and vice versa. Such
a change in status is treated as a stochastic process, where each occurrence represents a
random event governed by an assigned probability distribution. Each event is associated
with a transition rate, which quantifies the probability of its occurrence per unit time.
Therefore, for λ = (λ1, . . . , λN ), each label λi(t) will follow a jump process in this manner

• if λi(t) = 1 then it switches to 0 with rate πL→F (t, xi, vi, λi; x,v,λ),

• if λi(t) = 0 then it switches to 1 with rate πF→L(t, xi, vi, λi; x,v,λ),

where the transition rates πF→L(·), πL→F (·) in general are non-linear functions of the state
of the system. In what follows we will consider different choices for the labels’ switching
rules, ranging from random, density dependent and aiming at organizing agents toward a
common target. These choices will be detailed in Section 3.3.2.

3.3 Kinetic modelling of swarming dynamics

In this section, we will provide a kinetic description of the swarming model with leader
emergence and topological interaction, we refer to [12, 3, 143] for related studies in the
context of kinetic models.
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Thus, we associate to each agent a position and velocity (x, v) ∈ Rd × Rd and a
leadership-level λ, as a discrete binary variable in the label space Λ = {0, 1}. We are
interested in the evolution of the probability density function

f = f(x, v, λ, t), f : Rd × Rd × {0, 1} × R+ → R+ (3.3.1)

where t ∈ R+ denotes as usual the time variable. For each time t ≥ 0, λ ∈ {0, 1}, we have
the following marginal density

ρ(λ, t) =

∫
Rd×Rd

f(x, v, λ, t)d(x, v), (3.3.2)

which defines the quantity of agents with label λ at time t. In the sequel, we will assume
that the total number of agents is conserved, namely

ρ(1, t) + ρ(0, t) = 1. (3.3.3)

Likewise, we define the marginal density for agents in space and velocity

g(x, v, t) =
∑
λ

f(x, v, λ, t), λ ∈ {0, 1}. (3.3.4)

Next, we assume the density f(x, v, λ, t) to be solution of a kinetic equation accounting for
pairwise interactions among agents, and for labels transition.

Notational convention. To ease the writing, we will use an equivalent notation for
functions depending on λ, where we introduce the indexing given by the discrete label
space Λ, as follows

Fλ(·) := F (·, λ).

Then, for example, the density f(x, v, t, λ) will be denoted by fλ(x, v, t) or the mass ρ(λ, t)
by ρλ(t).

3.3.1 Povzner-Boltzmann-type model

We assume that each agent modifies its velocity through a binary interaction occurring
with an other agent within the topological ball Br∗(x, t), the ball centred in x whose radius
is defined, for a fixed t ≥ 0, by the following variational problem

r∗(x, t) = arg min
α>0

{∑
λ

∫
Bα(x,t)×Rd

fλ(x∗, v∗, t)dx∗dv∗ ≥ ρ∗
}
, (3.3.5)

where ρ∗ ∈ (0, 1] is the target topological mass, namely the ratio ρ∗ = M/N associated to
the microscopic model (3.2.1).
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Hence, we consider pairwise interactions among an agent with state (x, v, λ) ∈ R2d ×
{0, 1} and (x∗, v∗, λ∗) ∈ Br∗(x, t) × Rd × {0, 1}, where the post-interaction velocities are
given by {

v′ = v + αFλ(x, x∗, v, v∗),

v′∗ = v∗,
(3.3.6)

where v, v∗ ∈ Rd denote the pre-interaction velocities and v′, v′∗ the velocities after the
exchange of information between the two agents. In (3.3.6) we assume

Fλ(x, x∗, v, v∗) = Arep(x, x∗) +
[
Aali(v, v∗) +Aatt(x, x∗)

]
(1− λ)

+
[
Asrc(x) +Actr(x) + S(v)

]
λ.

(3.3.7)

For λ ∈ {0, 1}, the evolution in time of the density function fλ(x, v, t) is described by a
integro-differential equation of the Povzner-Boltzmann type [167, 102] as follows

∂tfλ(x, v, t) + v · ∇xfλ(x, v, t)− Tλ[f ](x, v, t) = Qλ(f, f)(x, v, t), (3.3.8)

where Tλ[f ](·) accounts for the evolution of the agents in the discrete label space and
Qλ(·, ·) is the interaction operator defined as follows

Qλ(f, f)(x, v, t) = η
∑
λ∗

∫
Br∗(x,t)×Rd

(
1

Jλ
fλ(x,′ v, t)fλ∗(x∗,

′ v∗, t)− fλ(x, v, t)fλ∗(x∗, v∗, t)

)
d(x∗, v∗),

(3.3.9)
where (′v,′ v∗) are the pre-interaction velocities, and the term Jλ denotes the Jacobian of
the transformation (v, v∗)→ (v′, v′∗) with (v′, v′∗) the post-interaction velocities, and η > 0
is a constant relaxation rate representing the interaction frequency.

3.3.2 Master equation for leaders transition

In the previous section, we have introduced the transition operator Tλ[f ](x, v, t) = T [f ](x, v, λ, t)
characterizing the evolution of the agents in the discrete space of labels Λ = {0, 1} (lead-
ers/followers). Such operator is defined as follows

T0[f ](x, v, t) =πL→F f1(x, v, t)− πF→Lf0(x, v, t),

T1[f ](x, v, t) =πF→Lf0(x, v, t)− πL→F f1(x, v, t),
(3.3.10)

where πF→L := πF→L(x, v, t; f) and πL→F := πL→F (x, v, t; f) are certain transition rates.

Thus the evolution of the transition process of labels can be described by the evolution
equation for ρλ(t) = ρ(λ, t),

d

dt
ρλ(t)−

∫
R2d

Tλ[f ](x, v, t) d(x, v) = 0. (3.3.11)
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From the definition of the transition operator Tλ[·] and (3.3.3) it follows the conservation
of the mass,

d

dt

∑
λ

ρλ(t) =
∑
λ

∫
R2d

Tλ[f ](x, v, t) d(x, v) = 0. (3.3.12)

In the sequel we list possible choices of transition rates in (3.3.10).

Constant rates. Leaders emerge with rate qFL > 0 and return to the followers status
with rate qLF > 0. Hence, the transition rates write as follows

πL→F = qLF , πF→L = qFL. (3.3.13)

Thus, we can rewrite equation (3.3.11) as

∂tρ1(t) = qFLρ1(t)− qLFρ0(t),

∂tρ0(t) = qLFρ1(t)− qFLρ0(t),
(3.3.14)

and find the stationary solution of equation (3.3.14) that is

ρ∞1 =
qFL

qLF + qFL
, ρ∞0 =

qLF
qLF + qFL

. (3.3.15)

Density-dependent rates. Leaders emerge with higher probability where the followers
density is higher and the leaders one is lower and they return to the followers status with
higher probability if the followers concentration around them is lower, similarly to [1]. The
transition rates reads

πL→F = qF (1−DF [f ](x, t)), πF→L = qL (1−DL[f ](x, t)), (3.3.16)

where qF , qL are constant parameters and the functions DF [f ](x, t) and DL[f ](x, t) repre-
sent the concentration of leaders and followers in position x and are defined as

DF [f ](x, t) = SF (t)

∫
R2d

e−
|x−y|2

δ2 f0(y, w)d(y, w),

DL[f ](x, t) = SL(t)

∫
R2d

e−
|x−y|2

δ2 f1(y, w)d(y, w),

(3.3.17)

with SF (t), SL(t) normalization constants to ensure that the above quantities are bounded
by one and with δ > 0.
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Target-oriented rates. Leaders emerge when their direction is oriented in the correct
direction toward a target position, x̄, such as the nesting or foraging area. We consider the
following rates

πF→L =

{
0, if α(x, v, t; f) < α,

1, if α(x, v, t; f) ≥ α,
πL→F =

{
0, if α(x, v, t; f) ≥ α,
1, if α(x, v, t; f) < α,

(3.3.18)
with α, α ∈ [−1, 1] and

α(x, v, t; f) = cos (∠ (x̄− x,G[f ](x, v, t))) , (3.3.19)

with ∠(·, ·) denoting the angle between two vectors. The functional G[f ](·) accounts for the
directional information of agents according to

G[f ](x, v, t) = S(v)−Xc[f ](x, t)− Vc[f ](x, v, t), (3.3.20)

where S(v) is the self-propulsion term, and the terms Xc[f ](·),Vc[f ](·) account for the
average influence induced by neighbours as follows

Xc[f ](x, t) =

∫
Br∗(x,t)×Rd

Aatt(x, x∗)fλ(x∗, v∗, t)dx∗dv∗,

Vc[f ](x, v, t) =

∫
Br∗(x,t)×Rd

Aali(v, v∗)fλ(x∗, v∗, t)dx∗dv∗,

with Aali(·, ·), Aatt(·, ·) defined as in equation (3.2.3)-(3.2.4). Note that in (3.3.20), when
the term G[f ] is partially aligned with the target direction x̄ − x, i.e., α(x, v, t; f) ≥ α,
agents switch to, or remain in, leader status, naturally steering their dynamics towards the
target x̄. Conversely, if α(x, v, t; f) ≤ α, the agent with position and velocity (x, v) remains
in, or is switched to, follower status. Figure 3.1 illustrates two possible configurations.

x

x− x
Target x

G[f ]

λ = 0

x

x− x
Target x

G[f ]

λ = 1

Figure 3.1: On the left the case in which agent x remains or switches to follower status
(λ = 0), and on the right the case in which it remains or switches to leader status (λ = 1).
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Remark 4 (Multiple-label case and continuous limit). We observe that the previous for-
mulation can be extended to include multiple levels of leadership, up to a continuous space
of labels [64, 4]. Hence, we consider λ ∈ Λ = {λ1, . . . , λN`} such that λk = k∆λ with λ1 = 0
and λN` = 1. The transition operator Tk[·] in the multiple-label case for k = 2, . . . , N` − 1
reads

Tk[f ](t) =
(
T +
k+1[f ](t)− T +

k [f ](t)
)
−
(
T −k [f ](t)− T −k−1[f ](t)

)
, (3.3.21)

and for the boundary values λ1 = 0, λN` = 1 we have

T1[f ](t) = T +
2 [f ](t)− T +

1 [f ](t),

TN` [f ](t) = T −N` [f ](t)− T −N`−1[f ](t).
(3.3.22)

In the above expressions

T +
k [f ](t) := πλk→λk−1

fk(t), T −k [f ](t) = πλk→λk+1
fk(t),

where we denoted by πλm→λn := πλm→λn(x, v, t; f) the transition rates from the state λm
to the state λn, and we used the shorten notation for the density fk(t) := f(x, v, λk, t) and
the transition operator Tk[f ](t) := T [f ](x, v, λk, t). Hence, the evolution of the density in
the label space is ruled by

d

dt
fk(t) = Tk[f ](t), k = 1, . . . , N`. (3.3.23)

Furthermore, from (3.3.21) we can retrieve a transition operator for a continuous label
space, λ ∈ [0, 1] by scaling the time by 1/∆λ and by considering the limit for N` →∞ and
∆λ→ 0 in equation (3.3.23),

∂tfλ(t) = ∂λ

[
T +
λ [f ](t)− T −λ [f ](t)

]
, (3.3.24)

for any λ ∈ [0, 1] where

T +
λ [f ](t) = lim

∆λ→0

T +
k+1[f ](t)− T +

k [f ](t)

∆λ
, T −λ [f ](t) = lim

∆λ→0

T −k [f ](t)− T −k−1[f ](t)

∆λ
.

Since at the boundary we have no inflow and outflow of mass, thanks to (3.3.22), we
have

∂λ

[
T +
λ [f ](t)− T −λ [f ](t)

]
= 0, λ ∈ {0, 1}. (3.3.25)

Finally, we can write the master equation for the density integrating (3.3.24) as follows

∂tρ(λ, t) = ∂λ

∫
R2d

[
T +
λ [f ](x, v, t)− T −λ [f ](x, v, t)

]
d(x, v), (3.3.26)

where, for transition operators of type T ±λ [f ](x, v, t) = κ±(λ)fλ(x, v, t), we retrieve the
transport equation for the density ρλ(t) in the label space in the following form

∂tρλ(t) = ∂λ

[ (
κ+(λ)− κ−(λ)

)
ρλ(t)

]
. (3.3.27)
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3.3.3 Mean-field asymptotics

In order to retrieve asymptotic behaviour of the Boltzmann-type equation (3.3.8), we resort
on a mean-field approximation of the interaction dynamics. Thus we introduce a grazing
collision limit for the interaction operator (3.3.9), following the approach in [162, 50].
Thus, we rescale the interaction frequency η and the interaction propensity α to maintain
asymptotically the memory of the microscopic interactions, as follows

α = ε, η =
1

ε
, (3.3.28)

for ε > 0, which corresponds to the case where the interaction kernel concentrates on
binary interactions producing very small changes in the agents velocity but at the same
time the number of interactions becomes very large. For now on, for simplicity we remove
the dependence on time t. We introduce the test function ψ(x, v) ∈ C1

0 (Rd × Rd) and we
write the weak form of the scaled kinetic equation (3.3.8)∫

R2d

(∂tfλ(x, v) + v · ∇xfλ(x, v))ψ(x, v)d(x, v)−
∫
R2d

Tλ[f ](x, v)ψ(x, v)d(x, v) =

1

ε

∑
λ∗

∫
R2d

∫
Br∗(x,t)×Rd

(
ψ(x, v′)− ψ(x, v)

)
fλ∗(x∗, v∗)fλ(x, v)d(x, v)d(x∗, v∗),

(3.3.29)

with scaled interactions (3.3.6) as follows

v′ − v = εFλ(x, x∗, v, v∗). (3.3.30)

Since as ε→ 0, we have v′ → v we can expand ψ(x, v′) in Taylor series centred in (x, v) up
to second order and rewrite the right hand side of equation (3.3.29) as

1

ε

∑
λ∗

∫
R2d

∫
Br∗(x,t)×Rd

(
ψ(x, v′)− ψ(x, v)

)
dfλ∗dfλ =

1

ε

∑
λ∗

∫
R2d

∫
Br∗(x,t)×Rd

∇vψ(x, v) · (v′ − v)df∗df +R(ε),

(3.3.31)

where we used the shorten notation dfλ∗ = f(x∗, v∗, λ∗)d(x∗, v∗), dfλ = f(x, v, λ)d(x, v),
and where R(ε) indicates the remainder which is given by

R(ε) =
1

2ε

∑
λ∗

∫
R2d

∫
Br∗(x,t)×Rd

 d∑
i,j=1

∂(i,j)
v ψ(x, v̄)(v′ − v)i(v

′ − v)j

 dfλ∗dfλ, (3.3.32)

with

v̄ = γv + (1− γ)v′,
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for some γ ∈ [0, 1]. Therefore, the scaled binary interaction term (3.3.31) reads∑
λ∗

∫
R2d

∫
Br∗(x,t)×Rd

∇vψ(x, v) · Fλ(x, x∗, v, v∗)dfλ∗dfλ +R(ε). (3.3.33)

Integrating equation (3.3.33) by parts and taking the limit ε→ 0 we have∑
λ∗

∫
R2d

∫
Br∗(x,t)×Rd

∇vψ(x, v) · Fλ(x, x∗, v, v∗)dfλ∗dfλ =

−
∑
λ∗

〈
∇v ·

[
fλ(x, v)

∫
Br∗(t,x)×Rd

Fλ(x, x∗, v, v∗)dfλ∗

]
, ψ(x, v)

〉
,

(3.3.34)

where we denoted the inner scalar product

〈h, φ〉 :=

∫
R2d

h(x, v)φ(x, v)d(x, v), (3.3.35)

for any function h(x, v), φ(x, v) for which the integral in (3.3.35) is well defined. By similar
arguments of [3], it can be shown rigorously that R(ε)→ 0, as ε→ 0. Thus, we can rewrite
equation (3.3.29) as follows

〈∂tfλ(x, v) + v · ∇xfλ(x, v)− Tλ[f ](x, v), ψ(x, v)〉 =

−
∑
λ∗

〈
∇v ·

[
fλ(x, v)

∫
Br∗(x,t)×Rd

Fλ(x, x∗, v, v∗)df∗

]
, ψ(x, v)

〉
.

(3.3.36)

Finally, we retrieve the mean-field equation as the strong form of (3.3.36)

∂tfλ(x, v) + v · ∇xfλ(x, v)− Tλ[f ](x, v) =

−∇v ·
[
fλ(x, v)

∫
Br∗(x,t)×Rd

Fλ(x, x∗, v, v∗)
∑
λ∗

fλ∗(x∗, v∗)d(x∗, v∗)
]
.

(3.3.37)

Summing over the values of λ in equation (3.3.37) the transition operator vanishes as in
(3.3.12) and we obtain the mean-field model for the total density g(x, v) as

∂tg(x, v) + v · ∇xg(x, v) = −∇v ·
[∑
λ

fλ(x, v)

∫
Br∗(x,t)×Rd

Fλ(x, x∗, v, v∗)g(x∗, v∗)d(x∗, v∗)
]
.

(3.3.38)

Remark 5. Note that the continuous mean-field model (3.3.37) and the microscopic one
(3.2.1) are equivalent when we consider the empirical distribution of the N -particles

fN (x, v, λ, t) =
1

N

N∑
i=1

δ(x− xi(t))δ(v − vi(t))δ(λ− λi(t)), (3.3.39)

where δ(·) indicates the Dirac-delta function.
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3.4 Stochastic particle-based approximation

We aim at solving the large system of agent (3.2.1) for N � 1, solving the mean-field model
(3.3.37) by means of the scaled Boltzmann equation in the asymptotic regime (3.3.28). In
particular, we aim at developing asymptotic stochastic algorithms for the simulation of the
swarming dynamics, such as in [11, 162]. These approaches, based on Monte-Carlo algo-
rithms are based of direct simulation Monte-Carlo methods (DSMCs) for kinetic equations
[158, 161]. We mention also Random Batch Methods (RBMs) which, similarly, have been
devised for simulating large systems of interacting agents [131].

3.4.1 Asymptotic Nanbu-type algorithm

In order to solve the mean-field dynamics we consider the Boltzmann-type equation (3.3.8)
in the scaling limit (3.3.28), and we split the dynamics evaluating in three different steps
the free transport, the label evolution and the interaction process, as follows (3.3.8)

∂tfλ(x, v) = −v · ∇xfλ(x, v) (3.4.1)

∂tfλ(x, v) = Tλ[f ](x, v) (3.4.2)

∂tfλ(x, v) = Qελ(fλ, fλ)(x, v). (3.4.3)

In order to approximate the time evolution of the density fλ(x, v, t) we assume to sample
Ns particles (x0

i , v
0
i , λ

0
i ) from the initial distribution. We consider a time interval [0, T ]

discretized in Nt intervals of size ∆t.

Transport step. First, we focus on the transport step in equation (3.4.1) and we ap-
proximate the solution at time tn+1 by

xn+1
i = xni + ∆tvni , i = 1, . . . , Ns (3.4.4)

Labels switching. Secondly, we simulate how the labels change denoting by fnλ the
approximation of fλ(x, v, n∆t), and writing the discrete version of the equation (3.4.2), for
the transition operator (3.3.10) as follows

fn+1
0 = (1−∆t πnF→L) fn0 + ∆t πnL→F fn1 ,

fn+1
1 = (1−∆t πnL→F ) fn1 + ∆t πnF→L f

n
0 ,

(3.4.5)

The following Algorithm 3.4.1 describes how to simulate equation (3.4.5) in a time interval
[0, T ] divided into Nt time steps.

Algorithm 3.4.1. [Labels switching]

1. Given Ns samples (x0
i , v

0
i , λ

0
i ) from the initial distribution f0

λ ;
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2. for n = 0 to Nt

(a) for i = 1 to Ns

i. compute the following probabilities rates

pL = ∆t πF→L, pF = ∆t πL→F ,

ii. if λni = 0,
with probability pL agent i becomes a leader: λn+1

i = 1,

iii. if λni = 1,
with probability pF agent i becomes a follower: λn+1

i = 0,

end for

end for

Interaction step. Finally, we consider the interaction step (3.4.3) decomposing the in-
teraction operator (3.3.9) in its gain and loss part,

Qελ(fλ, fλ) =
1

ε

[
Qε,+λ (fλ, fλ)− ρ∗fλ

]
,

where ρ∗ = M/N is the topological mass. Considering a forward discretization we obtain

fn+1
λ =

(
1− ρ∗∆t

ε

)
fnλ +

ρ∗∆t

ε

Qε,+(fnλ , f
n
λ )

ρ∗
. (3.4.6)

Equation (3.4.6) can be interpreted as follows. With probability 1− ρ∗∆t/ε an individual
in position x, velocity v and label λ will not interact with other individuals and, with
probability ρ∗∆t/ε, it will interact with another individual according to

vn+1
i = vni + εFλni (xni , x

n
j , v

n
i , v

n
j ), (3.4.7)

for any i = 1, . . . , Ns, and where (xnj , v
n
j ) is selected randomly among the nearest neighbours

belonging to the topological ball Br∗(xi, t). We will assume ρ∗∆t = ε to maximize the total
number of interactions and ensure that at each time step all agents interact with another
individual with probability one.

Note that the sampling procedure of agents from the topological ball Br∗(xi, t) can
have extremely high computational costs, especially when the sample size is large, since it
requires the explicit computation of the distances between each agent i and all the others
agents. In order to improve the computational efficiency of this step we propose a procedure
based on two steps: a) an approximation of the topological ball, b) k–Nearest Neighbours
(k–NN) search.

a) Topological ball approximation. To avoid the expensive procedure of computing the
topological ball over the whole sample, we consider a subsample of size Nc of the Ns selected
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particles such that Nc < Ns, and we define the approximation to radius of the topological
ball as follows

r̃∗(xi, t) = arg min
r>0

{
1

Nc

Nc∑
k=1

χBr(xi)(xk) ≥ ρ
∗

}
, (3.4.8)

where ρ∗ is the target topological mass.

b) k–NN search. We perform a k–NN search over a k-d binary tree. First, we construct
the binary tree on the subsample of size Nc in such a way to partition the space and
organize the points optimally dividing them according to their medians. We assume that
every leaf-node contains at most Nl points. Then, we use a k-NN algorithm to find the
ρ∗Nc nearest neighbours to a given agent i, using the tree structure. We will show in
the numerical experiments that this algorithm reduces the computational costs from the
original quadratic to logarithmic. We refer to [107] for further details about this procedure.

Algorithm 3.4.2 describes how to solve equation (3.4.6) in a time interval [0, T ] divided
into Nt time steps.

Algorithm 3.4.2. [Asymptotic Nanbu algorithm]

1. Give Ns samples (x0
i , v

0
i , λ

0
i ) from the initial distribution f0

λ ;

2. Set the value of the topological mass ρ∗ and of the subsample size Nc;

3. for n = 0 to Nt

(a) select a subsample of size Nc,

(b) construct a binary tree over the subsample, with leaf-nodes of size at most Nl

(c) for i = 1 to Ns

i. find the ρ∗Nc nearest agents using a k–NN search algorithm on the tree,

ii. select randomly an index j among the nearest neighbors,

iii. compute the velocity change vn+1
i as in equation (3.4.7),

iv. Update the position xi according to (3.4.4), with ρ∗∆t = ε.

end for

end for

3.4.2 Numerical validation

In this section we perform different numerical experiments to test both the accuracy and
the efficiency of the Asymptotic Nanbu Algorithm 3.4.2 with k–NN search.
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Accuracy. Consider a model in which Ns agents with position xi and velocity vi interact
with their nearest M neighbours without changing their labels and their position. Assume
agents are subjected just to alignment forces. Hence, their dynamics at the microscopic
level is governed by the following ODE for i = 1, . . . , Ns,

v̇i =
1

ρ∗
1

Ns

Ns∑
j=1

(vj − vi)χBM (xi;x)(xj), (3.4.9)

where ρ∗ = M/Ns is the target topological mass. At the kinetic level, suppose that agents
modify their velocity according to binary interactions. Assume that at any time step an
agent with position and velocity (x, v) meets another agent with position and velocity
(x∗, v∗) ∈ Br∗M

(t, x) where r∗M is defined as in (3.4.8). Its post-interaction velocity is given
by

v′ = v + ε(v∗ − v), (3.4.10)

where ε > 0 is a small parameter. Recall that the ball Br∗M (t, x) by definition contains a
certain percentage of mass, that we suppose to be ρ∗. If we denote by f(x, v, t) the density
of agents at time t with position x and velocity v, then the kinetic equation describing its
evolution reads

∂tf(x, v, t) = −∇v ·
[
f(x, v, t)

∫
Br∗(t,x)×Rd

(v∗ − v)f(x∗, v∗, t)dx∗dv∗

]
. (3.4.11)

The microscopic model in (3.4.9) can be solved exactly and the evolution of the velocity is
given by

vi(t) = vi(0)e−t + e−t
∫ t

0
v̄i(t)e

tdt, with v̄i(t) =
1

ρ∗
1

Ns

Ns∑
j=1

vj(t)χBM (xi;x)(xj).

(3.4.12)
We choose as initial distribution the sum of two 2d-Gaussian in the plane (x, v) one with
mean (−0.33,−0.16) and the other with mean (0.33, 0.16) and both with standard deviation
(0.12, 0.06). The dynamics at the kinetic level is simulated with Algorithm 3.4.2, where we
compute the velocity change as in equation (3.4.10). We suppose Ns = 105, and ε =
10−5, . . . , 100. We perform the computations assuming the subsample is made with the p =
100Nc/Ns% of the total mass, for a certain p. In Figure 3.2 we plot the initial distribution
in the v-x plane and the marginals in x and v.
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Figure 3.2: Validation test: initial configuration and its marginals in x and v.

Then, we run S = 100 simulations and we plot in figure 3.3 the mean and the standard
deviation as a shaded area of the velocity distribution at time T = 3 for Ns = 105,
ρ∗ = 0.01, 0.35, 0.75 and ε = 10−3 for different values of p.

Figure 3.3: Validation test: comparison between the solution to the kinetic equation in
(3.4.11) computed by means of Asymptotic Nanbu algorithm 3.4.2 and the exact solution
in (3.4.12). Mean (dashed line) and standard deviation (shaded area) of the velocity dis-
tribution computed over S = 100 simulations for different values of p. From the left to the
right ρ∗ = 0.01, 0.35, 0.75. Markers have been added just to indicate different lines.

In Figure 3.4 for different values of ρ∗, the L2-norm of the error between the solution to
the kinetic equation in (3.4.11), simulated by means of the Asymptotic Nanbu algorithm
3.4.2 (one simulation) for different values of p, and the exact solution in (3.4.12). Note that
we observe a saturation effect for ε ≈ 10−2.
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Figure 3.4: Validation test: L2- norm of the error between the solution to the kinetic
equation in (3.4.11) simulated by means of the Asymptotic Nanbu algorithm 3.4.2 (one
simulation) and the exact solution in (3.4.12). From the left to the right ρ∗ = 0.01, 0.35, 1.
Markers represent the error for the different values of ε.

Computational costs. We now compare the computational costs of the exhaustive
search and the k–NN search. The computational cost of an exhaustive search is O(dN2

s ),
where d is the space dimension and Ns the number of particles. Indeed, first one needs to
compute the distances between each point and all the others, with a cost of O(dN2

s ), and
then to sort them, with a cost of O(N2

s log(Ns)). The cost of a k–NN search is logarithmic
in time. First one needs to organize agents optimally with a k-d tree. The cost of this
operation is proportional to Nslog(Ns). Then the idea is to perform a search over the tree
to select which are the nearest agents. It can be shown (see [107]) that the k–NN search
algorithm examines the nodes in optimal order, that is in order of increasing dissimilarities,
and that the number of nodes that should be examined is proportional to ((ρ∗Ns)

1/d+ 1)d.
Hence, the total cost to construct a k-d tree and to perform the search over it is

O(max(((ρ∗Ns)
1/d + 1)dlog(Ns), Nslog(Ns)). (3.4.13)

In Figure 3.5 we see the comparison between the computational cost to perform one
exhaustive and one k–NN search as Ns varies for different values of ρ∗. We set Ns =
5 × 103, . . . , 1.5 × 104. The k–NN computational cost increases as ρ∗ increases. In Figure
3.6 we see a comparison between the computational costs of a k–NN search as Ns varies
for different subsamples percentage size p. We see that the computational cost decreases
proportionally to the subsample size.
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Figure 3.5: Comparison between the computational costs of the exhaustive search and the
k–NN search for different values of Ns. From the left to the right ρ∗ = 0.01, 0.35, 0.75.
Markers represent the computational costs relative to the different values of Ns.
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p = 100%

p = 2%
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Figure 3.6: Comparison between the computational costs of the exhaustive search and the
k–NN search for different values of Ns and of the percentage p of the subsample size. From
the left to the right ρ∗ = 0.01, 0.35, 0.75. Markers represent the computational costs relative
to the different values of Ns.

3.5 Numerical experiments

We present different numerical experiments simulating the two and three dimensional dy-
namics both at the microscopic and mesoscopic levels. The dynamics at microscopic level
is discretized by a forward Euler scheme with a time step ∆t = 0.01, whereas the evolution
of the kinetic dynamics is approximated by the Asymptotic Nanbu algorithm described in
3.4.2 with ε = 0.01. The time evolution of the labels is computed with Algorithm 3.4.1 at
both the microscopic and mesoscopic levels. In the microscopic case we set N = 400. In the
mesoscopic case we choose a sample of O(Ns) particles, with Ns = 5×105, and a subsample
of O(Nc) particles, with Nc = 104 that corresponds to a percentage p = 2% of the total
mass, for the approximation of the density. We assume the topological target mass to be
ρ∗ = 0.01. Table 3.1 reports the parameters of the model that remain unchanged in the
various scenarios. The other parameters will be specified later.
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Table 3.1: Model parameters for the different scenarios.
Crep Cali Catt Cv s r r ε

2D model 100 12 0.7 5 10 200 1 200

3D model 100 12 0.7 5 10 350 20 150

3.5.1 Numerical test in two spatial dimensions

We consider the swarming dynamics evolving on the spatial space (x, y) ∈ R2 and velocity
space (vx, vy) ∈ R2.

Test 2D with no food sources

Suppose the model includes no food sources, i.e. Csrc = 0, and no attraction to the centre
of mass, i.e. Cctr = 0. We simulate the dynamics up to time T = 500, and we report in
Figure 3.7 the initial configuration for both the microscopic and mesoscopic dynamics.

Follower
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0.5

1

1.5

2
10

-4

Figure 3.7: Initial configuration in the spatial 2D case with no food sources.

At time t = 0, agents are normally distributed with mean µ = 500 and variance σ2 = 252

and are in the followers status. Labels change according to the transition rates defined in
(3.3.13) with qFL = 2× 10−4 and qLF = 4× 10−3.

Microscopic case. In Figure 3.8 we report three snapshots of the dynamics at time
t = 50, t = 300 and t = 500, for the dynamics without leaders’ emergence (top row)
and with leaders’ emergence (bottom row). We observe that, without leaders, agents align
and form a compact swarm, whereas with leaders’ emergence we observe the formation of
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different groups. The splitting is not symmetric since leaders’ emergence occurs randomly
and this is reflected in the cluster formation.

Figure 3.8: Three snapshots of the 2D dynamics at the microscopic level described in (3.2.1)
with λ evolving with rates (3.3.13) taken at time t = 50, t = 300 and t = 500 and assuming
Cctr = Csrc = 0. In the first row, the dynamics without leaders. In the second row, the
dynamics with leaders assuming ρ∗ = 0.01. We represent in blue the agents in the followers
status and in red the ones in the leaders status.

Mesoscopic case. In Figure 3.9 we report three snapshots of the dynamics at time
t = 50, t = 300, t = 500. In the first row, the time evolution of the total density and in
red the velocity vector field of the leaders. In the second row, the evolution of the leaders’
density. The behavior is similar to the one of the microscopic case, where we observe
the formation of various clusters, and the emergence of leaders uniformly over the swarm
density.



3.5. NUMERICAL EXPERIMENTS 71

Figure 3.9: Three snapshots of the 2D dynamics at the mesoscopic level described in (3.3.37)
and simulated by means of the Asymptotic Nanbu algorithm 3.4.2 with λ evolving with
rates (3.3.13) as in Algorithm 3.4.1, taken at time t = 50, t = 300 and t = 500 and assuming
Cctr = Csrc = 0. In the first row, the dynamics of the total mass and in red the velocity
vector field of the leaders. In the second row, the leaders’ dynamics.

In Figure 3.10 the agents percentages for the dynamics with leaders.

% followers (meso)

% leaders (meso)

% followers (micro)

% leaders (micro)

Figure 3.10: Agents percentages. Markers have been added just to distinguish the different
lines.
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The videos of the simulations of this subsection are available at [VIDEO].

Test 2D: two food sources

Assume the model includes two food sources located in xsrc1 = (300, 500) and xsrc2 =
(1000, 500). Assume Cctr = Csrc = 0.75. Run the dynamics until time T = 200. In Figure
3.11 the initial configuration for the microscopic and mesoscopic case. We assume that
initially the 87.5% of agents is in the followers status. Among them the 75% is normally
distributed with mean µ = 550 and variance σ2 = 102 while the 12.5% is normally dis-
tributed with mean µ = 650 and variance σ2 = 502. The remaining 12.5% is in the leaders
status and it is normally distributed with mean µ = 800 and variance σ2 = 102. New
leaders emerge with higher probability where the followers concentration is higher. Leaders
return in the follower status with higher probability if the followers concentration around
their position is lower. Hence we consider density dependent transition rates defined in
equation (3.3.16) with qL = 4× 10−3 and qF = 3× 10−3.

Follower

Leader

Food source

0

0.2

0.4

0.6

0.8

1

10
-3

Food source

0

0.5

1

1.5

10
-4

Food source

Figure 3.11: Initial configuration in the 2D case with two food sources.

Microscopic case. In Figure 3.12 three snapshots of the dynamics at time t = 50,
t = 100, t = 200. Agents that at time t = 0 were in the leaders status change immediately
their labels since no followers are positioned around them. A large group is attracted by
one of the two food sources while the remaining part moves subjected just to attraction,
repulsion and alignment forces without being attracted by the other food source. Once this
smaller group moves far away from the main group, leaders start to be attracted to the
centre of mass. In late time, all agents join and move toward one of the two food sources.

chp3_https://drive.google.com/drive/folders/1VsO4ffzQvbMb5mvG3pHLoEpA-QyKlkbL?usp=share_link
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Figure 3.12: Three snapshots of the 2D dynamics at the microscopic level described in
(3.2.1) with λ evolving with rates (3.3.16) taken at time t = 50, t = 100 and t = 200 and
assuming Cctr = Csrc = 0.75. We represent in blue the agents in the followers status and
in red the ones in the leaders status.

Mesoscopic case. In Figure 3.13 three snapshots of the dynamics at time t = 50, t = 100,
t = 200. In the first row the time evolution of the total density and in red the velocity
vector field of the leaders. In the second row the time evolution of the leaders’ density. The
behaviour is similar to the one observed in the microscopic case.
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Figure 3.13: Three snapshots of the 2D dynamics at the mesoscopic level described in
(3.3.37) and simulated by means of the Asymptotic Nanbu algorithm 3.4.2 with λ evolving
with rates (3.3.16) as in Algorithm 3.4.1, taken at time t = 50, t = 100 and t = 200
and assuming Cctr = Csrc = 0.75. First row: evolution of the total density and in red the
velocity vector field of the leaders’ density. Second row: evolution of the leaders’ density.

In Figure 3.14 the time evolution of the percentages of leaders and followers for the
two dimensional spatial test with two food sources. The agents percentages have been
computed both by counting the effective number of followers and leaders per time steps,
and as stationary solution to the master equation (3.3.14). The densities reach the positive
equilibrium defined in equation (3.3.15). Indeed, the transition rates defined in (3.3.16)
can be approximated by constant values. In particular, for any fixed time t > 0, for any
λ ∈ {0, 1} and for any x ∈ Rd we have

πL→F (x, λ; f, t) = ᾱ(t), πF→L(x, λ; f, t) = β̄(t) (3.5.1)

where

ᾱ(t) = Ex (πL→F (·)) , β̄(t) = Ex (πF→L(·)) , (3.5.2)

with Ex(·) denoting the mean value with respect to x.
Similar results can be obtained for the 2D model without food sources since the transition
rates are constants values, by definition.
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% leaders

% followers

% leaders

% followers (predicted)

% leaders (predicted)

Figure 3.14: Agents percentages: microscopic (on the left) and mesoscopic (on the right)
two dimensional model with two food sources. In black and in red the agents percentages
computed by counting the effective number of followers and leaders per time steps. In blue
and in magenta the stationary solution to the master equation (3.3.14).

The videos of the simulations of this subsection are available at [VIDEO].

Test 2D: one food source

Assume the model includes one food source located in xsrc1 = (300, 500). Run the simulation
until time T = 120. Suppose labels change aiming at organizing agents toward a common
target, that in this case is supposed to be the food source xsrc1 . In particular, assume λ
varies with rates (3.3.18) with ᾱ = 0.7 and α = 0.3. In Figure 3.15 the initial configuration
for both the microscopic and mesoscopic case.

chp3_https://drive.google.com/drive/folders/1KZ2vOeMNzmx8MBMX-_0kulGGcjQr_shi?usp=share_link
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Figure 3.15: Initial configuration in the 2D case with one food source.

Microscopic case. In Figure 3.16 three snapshots of the dynamics at time t = 5, t = 20
and t = 50 with leaders and with G[f ](·) chosen as in (3.3.20). Followers are driven by
leaders and reach the target position.

Figure 3.16: Three snapshots of the 2D dynamics at the microscopic level described in
(3.2.1) with λ evolving with rates (3.3.18) taken at time t = 5, t = 20 and t = 50 and
assuming Cctr = Csrc = 0. We represent in blue the agents in the followers status and in
red the ones in the leaders status.

Mesoscopic case. In Figure 3.17 three snapshots of the dynamics at time t = 5, t = 20,
t = 50 with transition rates depending on the orientation according to (3.3.18). In the first
row, the evolution of the whole mass, and in red the velocity vector field of the leaders. In
the second row, the evolution of the leaders mass.



3.5. NUMERICAL EXPERIMENTS 77

0

0.2

0.4

0.6

0.8

1
10

-4

0

0.2

0.4

0.6

0.8

1
10

-5

Figure 3.17: Three snapshots of the 2D dynamics at the mesoscopic level described in
(3.3.37) and simulated by means of the Asymptotic Nanbu algorithm 3.4.2 with λ evolving
with rates (3.3.18) as in Algorithm 3.4.1, taken at time t = 5, t = 20 and t = 50 and
assuming Cctr = Csrc = 0. First row: evolution of the total density and in red the velocity
vector field of the leaders. Second row: evolution of the leaders density.

In Figure 3.18 we report in the first row the angle velocity distribution at time t = 100,
t = 120, t = 180 and in the second row the correspondent velocity vector field, outlining
the milling behaviour around the target positions x = xsrc1 . The videos of the simulations
of this subsection are available at [VIDEO].

3.5.2 Numerical test in 3D with two food sources

We consider the three dimensional model in space and velocity, simulating the swarming
dynamics up time T = 200. Initially agents are normally distributed with mean µ = 500
and variance σ2 = 252 in both spatial and velocity dimension, and are all in the followers
status. We report in Figure 3.19 the initial configuration for both the microscopic and
mesoscopic case. For the mesoscopic case, we also depict on the (x, y) plane the projection
of the spatial density.

chp3_https://drive.google.com/drive/folders/1RS0LyB18zSoyKqVmy99NBwsIyRvR-t_m?usp=share_link
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Figure 3.18: Angle velocity distribution (first row) and velocity vector field (second row) at
time t = 100, t = 120, t = 180 obtained by simulating the dynamics in (3.3.37) by means
of the algorithm 3.4.2 with λ evolving with rates (3.3.18) as in algorithm 3.4.1.

Figure 3.19: Initial configuration in the 3D case with food sources.

Assume the two food sources to be located in xsrc1 = (200, 500, 500) and xsrc2 =
(800, 500, 500). Suppose that leaders emerge with density-dependent transition rates as de-
fined in (3.3.16) and where we assume the constants to be qL = 4×10−3 and qF = 3×10−3.
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Microscopic case. In Figure 3.20 three snapshots of the dynamics at time t = 50,
t = 100, t = 200. First row: Ccentre = 0, Cfood = 0.75. Agents split in two groups moving
toward the two food sources. Second row: Cctr = 4, Csrc = 0.75. At final time agents move
toward one of the two food sources.

Figure 3.20: Three snapshots of the 3D dynamics at the microscopic level described in
(3.2.1) with λ evolving with rates (3.3.16) taken at time t = 50, t = 100 and t = 200. First
row, Cctr = 0, Csrc = 0.75. Second row, Cctr = 4, Csrc = 0.75. We represent in blue the
agents in the followers status and in red the ones in the leaders status.

Mesoscopic case. In Figure 3.21 we report three snapshots of the dynamics at time
t = 50, t = 100, t = 200 and in red the velocity vector field. We add also the density
distribution of the whole flock projected over the plane (x, y) and in red the leaders velocity
vector field. First row: Ccrt = 0, Csrc = 0.75. Second row: Cctr = 4, Csrc = 0.75. The
behaviour is similar to the one in the microscopic case.
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Figure 3.21: Three snapshots of the 3D dynamics at the mesoscopic level described in
(3.3.37) and simulated by means of the Asymptotic Nanbu algorithm 3.4.2 with λ evolving
with rates (3.3.16) as in Algorithm 3.4.1, taken at time t = 50, t = 100 and t = 200. First
row, Cctr = 0, Csrc = 0.75. Second row, Cctr = 4, Csrc = 0.75. In red the velocity vector
field.

The videos of the simulations of this subsection are available at [VIDEO].

3.6 Conclusions

In this chapter, we have studied collective behaviour of birds under a follower-leaders
dynamics, starting from a simplified version of the model presented in [65].Through the
emergence of leaders, we recover the ability to split the initial configuration and initiate
directional changes without the need of external influences. We derived a kinetic model to
effectively depict the motion of a large swarm with transient leadership and topological
interactions, and subsequently we simulated the dynamics introducing a novel stochastic
particle method. A significant emphasis was placed on studying topological interactions.
We tackled the issue of the numerical evaluation of nearest Neighbors reducing the compu-
tational costs of the search from quadratic to logarithmic by optimally organizing agents
in a binary tree and performing a k-NN search. Moreover, we directed our attention to
transient leadership, showcasing how labels can change over time, particularly for driving
agents towards a common target. Various strategies for leaders’ emergence were explored,
including continuous leadership levels, as introduced in Remark 4. Additionally, it would
be intriguing to describe the original model from a kinetic viewpoint, reintroducing delay,

chp3_https://drive.google.com/drive/folders/1RS0LyB18zSoyKqVmy99NBwsIyRvR-t_m?usp=share_link
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which, as demonstrated in [65], appears to play a crucial role in achieving desired config-
urations. Finally, several questions arise concerning the study of non-local terms in high
dimensions. For instance, it could be beneficial to further enhance the numerical scheme
implemented, focusing on other useful strategies for approximating topological interactions.
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Chapter 4

Kinetic based optimization enhanced
by genetic dynamics
In this chapter we propose and analyse a variant of the recently introduced kinetic based
optimization method that incorporates ideas like survival-of-the-fittest and mutation strate-
gies well-known from genetic algorithms. Thus, we provide a first attempt to reach out from
the class of consensus/kinetic-based algorithms towards genetic metaheuristics. Different
generations of genetic algorithms are represented via two species identified with different
labels, binary interactions are prescribed on the particle level and then we derive a mean-
field approximation in order to analyse the method in terms of convergence. Numerical
results underline the feasibility of the approach and show in particular that the genetic
dynamics allows to improve the efficiency, of this class of global optimization methods in
terms of computational cost.

The results presented in this chapter have been published in [9] .

4.1 Introduction

In recent years a new perspective on gradient-free methods for global optimization of non-
convex high-dimensional functions was established based on collective motion of particles.
The mathematical depiction of self-organizing dynamics has significant implications in var-
ious applications, including traffic flow, pedestrian dynamics, flock behavior of birds, cell
migration, and its primary focus lies in comprehending emergent properties of large inter-
acting systems across different scales, see for example [2, 18, 19, 50, 155]. Hence, this new
class of methods aims to exploit the collective dynamics of swarms to find global optimizers
as consensus points emerging from a system of interacting agents, where each agent repre-
sents an evaluation of the objective function. In this context, Consensus-based optimization
(CBO) is a global optimization method allowing rigorous proofs that the swarms concen-
trate arbitrarily close to the unique global minimizer of the objective function, we refer to
[48, 103, 104, 117, 165] and the overview in [186]. In CBO, differently from gradient-based
methods, such as stochastic gradient descent[39], the landscape of the objective functions
is explored via function evaluations only. Indeed, the objective value at the current position
and the current position of the agents is exchanged, with the help of a weighted mean value
which is constructed such that the Laplace principle [82] applies. The dynamics is tailored

83
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such that the agents confine towards the weighted-mean on the one hand, and randomly
explore the landscape on the other hand. This already indicates that the two components
of the dynamics need to be well-balanced to obtain desirable results. CBO was a first step
towards the mathematical understanding of metaheuristics for global optimization, such
as particle swarm optimization (PSO) methods, where second order dynamics is used for
the evolution of the particles [135, 166]. Recently, the gap between the first-order method
CBO and PSO was bridged in [117], further extensions were provided for systems with
memory or momentum effects [57, 187], for constrained optimization [37], multi-objective
problems [36, 137] and jump-diffusion processes [134]. More recently, kinetic-based opti-
mization (KBO) methods have been proposed in[21], where each agent with position x
moves subject to the following interaction rules

x′ = x+ νF (x̂(t)− x) + σFD(x)ξ, (4.1.1)

where x′ denotes the post iteration position, σF , νF are positive parameters which allow
to balance the exploitation and exploration of the swarm, ξ is a random perturbation
term, D(x) is a diffusion matrix and x̂(t) denotes the global estimate of the position of the
global minimizer at time t. In addition to this dynamics a drift towards the local best and
a local diffusion term is proposed in [21]. The corresponding dynamics is described by a
multidimensional Boltzmann equation and can be simulated with the help of Monte Carlo
algorithms [11, 162].

With this work, we aim at extending KBO algorithm reaching out towards genetic
algorithms (GA) [152, 183], a very popular class of metaheuristics that is widely used
in engineering. The GA models a natural selection process based on biological evolution
[115, 153]. To this end, individuals (parents) from the current population are selected
and their objective values (gene information) is combined to generate the next generation
(children). The selection process is usually driven by a survival-of-the-fittest idea, hence
over successive generations, the system is assumed to evolve towards an optimal solution.
Agents in promising positions, i.e., with small objective values, are labeled as parents and
the others are labeled as children. Parents do not modify their position, hence they survive
the iteration like in a survival-of-the-fittest strategy. In contrast, a child in position x
interacts with a randomly chosen parent in position x∗ and updates the position according
to the rules

x′ = x∗, with rate νF ,

x′ = x, with rate 1− νF . (4.1.2)

Here x′ denotes the post interaction position and νF > 0 is the jump rate. Furthermore,
mutations can occur, that means a child in position x encounters a random perturbation
of the form

x′ = x+ σF ξ, (4.1.3)
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where σF is a positive parameter and ξ random vector drawn from a normal distribution.
Slight modifications of the mutation process can be considered, assuming that all children
encounter a random perturbation of the type

x′ = x+ σFD(x)ξ, (4.1.4)

with diffusion matrix D(x).

Thus, to establish a relation between KBO and GA, we divide the swarm into two
species called followers (children) and leaders (parents) via a labeling strategy, evolving
according to different transition processes [4, 144]. In this setting, leaders are selected
analogously to parents in genetic algorithms, whereas the process of child’s generation is
substituted by the relaxation of the followers toward the leaders’ position. Then, the dy-
namics of KBO (4.1.1) is split between the leaders, which move toward the global optimum
estimate x̂, and the followers, which explore the minimization landscape. Furthermore, we
aim to improve the performance of these algorithms by relying on the higher flexibility of
the particle dynamics.

More details are presented in the following sections which are organized as follows: in
Section 4.2 we introduce the Genetic Kinetic based optimization methods focusing on the
description of the binary interactions rules which describes the dynamics. In Section 4.3,
we derive the mean field, in particular the evolution equations of the density functions of
the two species. In Section 4.2.2, we discuss different strategies of how to assign labels.
In Section 4.4, we provide a theoretical analysis including the exponential decay of the
variance and the convergence of the method to the global minimum. In Section 4.5, we
describe Nanbu’s algorithm which is used to obtain the numerical results presented in
Section 4.6. Here, we show different numerical experiments, testing the efficiency in terms
of success rate and number of iterations and compare the results of the GKBO algorithm,
to KBO and genetic algorithms.

4.2 Genetic kinetic based optimization (GKBO)

The GKBO method we propose in the following enhances kinetic based optimization, which
belongs to the class of consensus based algorithms, with ideas from genetic algorithms. To
this end, we assume to have a population divided into two groups, similar to the parent
and children populations in genetic algorithms. The two groups are specified with the help
of labels leading to a modified KBO dynamic with followers and leaders. The dynamics is
tailored in such a way that the the population clusters at the unique global minimum of
the possibly non-convex objective function E : Rd → R. Hence, in the long time limit the
dynamics solves the global optimization problem given by

min
x∈Rd

E(x), (4.2.1)
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where E is assumed to have a unique global minimizer. In more detail, each agent is de-
scribed by its position x ∈ Rd varying continuously and a binary variable for the leadership-
level λ ∈ {0, 1}. In the following we identify leaders with λ = 1 and followers with λ = 0.
We are interested in the evolution of the density function

f = f(x, λ, t), f : Rd × {0, 1} × R+ → R+ (4.2.2)

where t ∈ R+ denotes as usual the time variable. In the rest of the chapter we denote
f(x, λ, t) as fλ(x, t) and define

g(x, t) =
∑

λ∈{0,1}

fλ(x, t), (4.2.3)

to be the density of the whole population at time t. We assume that g(x, t) is normalized,
hence a probability measure and introduce the fractions ρλ ∈ [0, 1] with λ ∈ {0, 1} s.t.
ρ0 + ρ1 = 1 and fλ(x, t)/ρλ are probability measures as well.

4.2.1 Binary interaction between agents

A binary interaction of agents with state (x, λ) and (x∗, λ∗) is described by their post-
interaction positions given by

x′ = x+ (νF (x∗ − x) + σFD(x)ξ)λ∗(1− λ) + νL(x̂(t)− x)λ,

x′∗ = x∗, (4.2.4)

where σF , νF , νL, are positive parameters, ξ is a normally distributed random number and
D(x) is the diffusion matrix, defined to be either

D(x) = |x̂(t)− x|Idd, (4.2.5)

in the case of isotropic diffusion [165], or

D(x) = diag{(x̂(t)− x)1, . . . (x̂(t)− x)d}, (4.2.6)

in the case of anisotropic diffusion [52]. In equation (4.2.4)- (4.2.5)-(4.2.6) the term x̂(t)
is the global estimate of the best position of the minimizer. The term x̂(t) is computed
as a convex combination of particle locations weighted by the cost function according to
Laplace principle [82]. In case we consider the whole population, we have

x̂(t) =

∫
Rd xe

−αE(x)g(x, t)dx∫
Rd e

−αE(x)g(x, t)dx
, (4.2.7)

and Laplace principle yields

lim
α→∞

(
− 1

α

∫
Rd
e−αE(x)g(x, t)dx

)
= inf

x∈supp g(x,t)
E(x). (4.2.8)
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In the section on numerical results we will also consider variants, where the weighted mean
is computed with information of leaders or followers only. In (4.2.4) we use a compact form
to describe both the followers and leaders dynamics. In particular, if we assume λ = 0 (and
λ∗ = 1) we retrieve the followers dynamics,

x′ = x+ (νF (x∗ − x) + σFD(x)ξ) ,

x′∗ = x∗,

where x, x∗ denote the pre-interaction positions of a follower and a leader, respectively.
Followers are attracted toward a randomly selected leader and explore the space, searching
for a possible position of the global minimizer. On the contrary, if λ = 1, we retrieve the
leaders dynamics,

x′ = x+ νL(x̂(t)− x),

x′∗ = x∗,

where x, x∗ denote the pre-interaction positions of two leaders. Hence, leaders do not explore
the space but they relax their position toward the estimated position of the global minimizer
at time t, which is given by x̂(t), defined in (4.2.7).

Remark 6. Note that (4.2.4) implies that no follower-follower interactions are considered,
since if both λ and λ∗ are equal to zero the agents keep their positions.

Remark 7. The goal of these algorithms is to find the global minimizer by letting agents
concentrate on it. The exploration part slows down the convergence, especially for high
value of the diffusion parameters. In the GKBO algorithm, just one of the two populations,
the followers, is involved in the exploration process while the other agents, the leaders, are
reaching quite immediately consensus on the estimated position of the global minimizer.
Under these assumptions, the convergence process is speeded up, as we will see in the
numerical experiments in Section 4.6.1.

4.2.2 Emergence of leaders and followers

The emergence of leaders and followers is realized with the help of a transition operator
which acts as follows

T [f0](x, t) = πL→F (x, λ; f)f1(x, t)− πF→L(x, λ; f)f0(x, t),

T [f1](x, t) = πF→L(x, λ; f)f0(x, t)− πL→F (x, λ; f)f1(x, t), (4.2.9)

where πF→L(·) and πL→F (·) are certain transition rates, possibly depending on the current
states. In the simplest case, if we assume that leaders emerge with fixed rate πFL > 0 and
return to the followers status with fixed rate πLF > 0 then the transition rates reduce to

πL→F = πLF , πF→L = πFL. (4.2.10)
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However, we also cover more general cases, as for example proposed in [123], where each
agent in position x is associated with a weight

ω(x, t) =
1

N
# {y ∈ A(t) : |E(xmin)− E(y)| < |E(xmin)− E(x)|}

=
1

N

∑
λ∈{0,1}

∫
Rd
χ[0,1)

(
|E(xmin(t))− E(y)|
|E(xmin(t))− E(x)|

)
f(y, λ, t)dy,

with χ[0,1)(·) denoting the characteristic function of the interval [0, 1) and

xmin(t) = arg min
x∈A(t)

E(x),

where A(t) is the set of agents at time t. Assuming that agents with weight smaller than a
certain threshold ω̄, which depends on the amount of leaders that we would like to generate,
are in the leaders status while the others are in the followers status, then we can write the
transition rates as follows

πL→F =

{
1, if ω(x, t) > ω̄,

0, if ω(x, t) ≤ ω̄,
πF→L =

{
0, if ω(x, t) ≥ ω̄,
1, if ω(x, t) < ω̄.

(4.2.11)

The evolution of the emergence and decay of leaders can be described by the master
equation

d

dt
ρλ(t) +

∫
R2d

T [f ](x, λ, t) dx = 0, (4.2.12)

for λ ∈ {0, 1}, with ρλ(t) =
∫
Rd fλ(x, t)dx. From the above definition of the transition

operator T [·], it follows that
d

dt

∑
λ∈{0,1}

ρλ(t) = 0. (4.2.13)

In case of constant transition rates

πL→F (·) = πLF , πF→L(·) = πFL, (4.2.14)

we can rewrite equation (4.2.12) as

∂tρ1(t) = πFLρ0(t)− πLFρ1(t),

∂tρ0(t) = πLFρ1(t)− πFLρ0(t). (4.2.15)

which allows us to calculate its stationary solution explicitly as

ρ∞1 =
πFL

πLF + πFL
, ρ∞0 =

πLF
πLF + πFL

. (4.2.16)

Remark 8. The weighted strategy is inspired from the selection criterion of GA, where
parents are chosen to be the agents in best position w.r.t. the cost function. In the numerical
experiments we will also consider a mixed strategy, assuming that a certain percentage p̄
of the total amount of leaders change their label according to the weighted strategy and
the remaining ones changes their label randomly.
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4.3 Derivation of the mean-field equation

Combining the interaction and transition dynamic described in the previous section, we
obtain the evolution of the density function fλ(x, t) which is described by the integro-
differential equation of Boltzmann-type

∂tfλ(x, t)− T [fλ](x, t) =
∑

λ∗∈{0,1}

Q(fλ, fλ∗)(x, t), (4.3.1)

where T [·] is the transition operator and Q(·, ·) is the binary interaction operator defined
as follows

Q(fλ, fλ∗) = η

∫
R2d

(
1

J
fλ(x′, t)fλ∗(x

′
∗, t)− fλ(x, t)fλ∗(x∗, t)

)
dxdx∗, (4.3.2)

where (x′, x′∗) are the pre-interaction positions generated by the couple (x, x∗) after the
interaction (4.2.4). The term J denotes the Jacobian of the transformation (x, x∗) →
(x′, x′∗) and η > 0 is a constant relaxation rate representing the interaction frequency.
To obtain a weak-formulation, we consider a test function φ(x) and rewrite the collision
operator∫

Rd
Q(fλ, fλ∗)(x, t)φ(x)dx = η

∫
R2d

(
φ(x′)− φ(x)

)
fλ∗(x∗, t)fλ(x, t)dxdx∗. (4.3.3)

Hence, the weak form of (4.3.1) reads

∂

∂t

∫
Rd
fλ(x, t)φ(x)dx−

∫
Rd
T [fλ](x, t)φ(x)dx =

η
∑

λ∗∈{0,1}

〈∫
R2d

[
φ(x′)− φ(x)

]
fλ(x, t)fλ∗(x∗, t)dxdx∗

〉
. (4.3.4)

To simplify the computations, we assume to have constant transition rates (4.2.14) and to
be in the quasi-stationary state ρ∞λ i.e. ρλ ≈ ρ∞λ for any λ ∈ {0, 1} as in (4.2.16). Moreover,
we introduce the scaling parameter ε > 0 and consider

νF →
νF
ρ1
ε, νL →

νL
ρ1
ε, σF →

σF√
ρ1

√
ε, η → 1

ε
. (4.3.5)

This scaling corresponds to the case where the interaction kernel concentrates on binary
interactions producing very small changes in the agents position but at the same time the
number of interactions becomes very large.

To obtain the mean-field equation, we consider the Taylor expansion of the test function
φ(x′) centred in x given by

φ(x′)− φ(x) = ∇xφ(x) · (x′ − x) +
1

2
∆xφ(x)(x′ − x)2 +O(ε2), (4.3.6)
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and use it to rewrite (4.3.4) as follows

∂

∂t

∫
Rd
fλ(x, t)φ(x)dx−

∫
Rd
T [fλ](x, t)φ(x)dx =∑

λ∗∈{0,1}

{∫
R2d

(
νF
ρ1

(x∗ − x)λ∗(1− λ) +
νL
ρ1

(x̂(t)− x)λ

)
· ∇xφ(x)dfλdfλ∗

+
σ2
F

2

∫
R2d

D2(x)(1− λ)2λ2
∗∆xφ(x)dfλdfλ∗

}
+O(ε), (4.3.7)

where for simplicity we write dfλ = fλ(x, t)dx and dfλ∗ = fλ∗(x∗, t)dx∗. Now, taking the
limit ε→ 0, integrating by parts and rewriting the equation in strong form yields

∂

∂t
f0(x, t)− T [f0](x, t) =

σ2
F

2
∆x

[
D2(x)f0(x, t)

]
− νF∇x ·

[(m1(t)

ρ1
− x
)
f0(x, t)

]
,

∂

∂t
f1(x, t)− T [f1](x, t) = −νL

ρ1
∇x ·

[(
x̂(t)− x

)
f1(x, t)

]
, (4.3.8)

where D(x) is the diffusion matrix defined in (4.2.6)-(4.2.5), x̂(t) is the global estimate of
the global minimizer at time t defined in equation (4.2.7) and

m1(t) =

∫
R2d

xf1(x, t)dx (4.3.9)

denotes the centre of mass of the leaders at time t.

Remark 9. Multiplying both side of the second equation in (4.3.8) by x/νL integrating
and taking the formal limit νL → +∞, we get

m1(t)

ρ1
= x̂(t).

Plugging it into the first equation in (4.3.8), assuming T [f0](x, t) = 0, we recover the
equation that governs the dynamics in absence of leaders that is

∂

∂t
f0(x, t) =

σ2
F

2
∆x

[
D(x)2f0(x, t)

]
− νF∇x ·

[(
x̂(t)− x

)
f0(x, t)

]
. (4.3.10)

To summarize, the diagram in Figure 4.1 describes the relation between the three
algorithms at the particle and mean field level.

4.4 Moments estimates and convergence to the global min-
imum

Following the idea introduced in [21, 165] we provide moments estimates, showing that
the variance decreases exponentially to zero, and we prove the convergence of the method
toward the position of the global minimum. In this section we study the behaviour of the
two population dynamic, we therefore assume throughout this section ρ0, ρ1 > 0.
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Particle level

Mean field level

GKBO
(see (4.2.4))

Continuous
GA[183]

(see (4.1.2)-
(4.1.3)-(4.1.4))

KBO [21]
(see (4.1.1))

Mean field
CBO [48]

(see (4.3.10))

Mean field
GCBO

(see (4.3.8))

νL → 0,
D(x) = 1,
πFL, πLF as
in (4.2.11)

ε→ 0 ε→ 0

νL → ∞, ρ0 = 1,
πFL = πLF = 0

Figure 4.1: Diagram describing the relation between the KBO, the GKBO with weighted
and random strategies and the GA.

4.4.1 Evolution of the moment estimates

We define the first two moments of the total population by

m(t) = m0(t) +m1(t), e(t) = e0(t) + e1(t), (4.4.1)

respectively, where

m0(t) =

∫
Rd
x f0(x, t)dx, e0(t) =

∫
Rd
|x|2f0(x, t)dx,

m1(t) =

∫
Rd
x f1(x, t)dx, e1(t) =

∫
Rd
|x|2f1(x, t)dx, (4.4.2)

are the first two moments of the subpopulations fλ(x, t) for λ ∈ {0, 1} and

V (t) = v0(t) + v1(t), (4.4.3)

the sum of the variances of the subpopulations given by

v0(t) =

∫
Rd

∣∣∣x− m0

ρ0

∣∣∣2f0(x, t)dx, v1(t) =

∫
Rd

∣∣∣x− m1

ρ1

∣∣∣2f1(x, t)dx. (4.4.4)

Remark 10. For the following computations it is helpful to have in mind that

m(t) =

∫
Rd
x(f0(x, t) + f1(x, t))dx, e(t) =

∫
Rd
|x|2(f0(x, t) + f1(x, t))dx,
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but due to the nonlinearity

V (t) 6=
∫
Rd
|x−m(t)|2(f0(x, t) + f1(x, t))dx.

Proposition 2. Let us assume the transitions have equilibrated, that is, ρ0 ≡ ρ∞0 and
ρ1 ≡ ρ∞1 . Furthermore let E(x) positive and bounded for all x ∈ Rd, in particular, there
exist constants E , E > 0 such that

E := inf
x
E(x) ≤ E(x) ≤ sup

x
E(x) := E , (4.4.5)

and define σ̃ = kσ2
F bE , with bE = exp(α(Ē − E)), where k = d in the case of isotropic

diffusion and k = 1 in the case of anisotropic diffusion. If

νF = νL, νF > max

{
σ̃

2
,
ρ1

2

}
, (4.4.6)

it holds

d

dt
m(t) = νF (x̂−m)(t),

d

dt
V (t) ≤ (−2νF + σ̃)V (t) + (σ̃ρ0ρ1 − πLFρ1 − πFLρ0)

(
m0(t)

ρ0
− m1(t)

ρ1

)2

. (4.4.7)

Proof. Let us define for simplicity

Mλ(t) =
1

ρλ

∫
Rd
x fλ(x, t)dx, Eλ(t) =

1

ρλ

∫
Rd
|x|2fλ(x, t)dx,

Vλ(t) =
1

ρλ

∫
Rd

∣∣∣x−Mλ

∣∣∣2fλ(x, t)dx, (4.4.8)

for any λ ∈ {0, 1} such that

m(t) = ρ0M0(t) + ρ1M1(t), e(t) = ρ0E0(t) + ρ1E1(t),

V (t) = ρ0V0(t) + ρ1V1(t).

We begin by computing the evolution of the first moments

d

dt
m(t) = ρ0

d

dt
M0(t) + ρ1

d

dt
M1(t). (4.4.9)

For the first term of (4.4.9) we obtain

ρ0
d

dt
M0(t) =

∫
Rd
x∂tf0 =

=

∫
Rd
x
[
− πLF f1 + πFLf0 +

−∇x · (νF (M1 − x)f0) +
σ2
F

2
∆x

(
D2(x)f0

) ]
dx =

= −πLFρ1M1(t) + πFLρ0M0(t) + ρ0νF (M1 −M0)(t). (4.4.10)
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and for the second term in (4.4.9) it holds

ρ1
d

dt
M1(t) =

∫
Rd
x∂tf1 =

∫
Rd
x
[
πLF f1 − πFLf0 −∇x ·

(
νL
ρ1

(x̂− x)f1

)]
dx =

= πLFρ1M1(t)− πFLρ0M0(t) + νL(x̂−M1)(t). (4.4.11)

Together this yields

d

dt
m(t) = νFρ0(M1 −M0)(t) + νL(x̂−M1)(t), (4.4.12)

and recalling the definition of M0(t) and M1(t) in (4.4.8) we get

d

dt
m(t) = νLx̂(t)− νFm(t) +

(
νF
ρ0

ρ1
+ νF −

νL
ρ1

)
m1(t). (4.4.13)

By the first assumption in (4.4.6) we can recover the first equation of the statement.

For V (t) we have

d

dt
V (t) = ρ0

d

dt
V0(t) + ρ1

d

dt
V1(t). (4.4.14)

We investigate the terms separately. First, we obtain

d

dt
V0(t) =

1

ρ0

d

dt

∫
Rd
|x−M0(t)|2df0 =

2

ρ0

∫
Rd

(
x−M0(t),− d

dt
M0(t)

)
df0︸ ︷︷ ︸

=:I0

+
1

ρ0

∫
Rd
|x−M0(t)|2∂tf0︸ ︷︷ ︸

=:I1

. (4.4.15)

We note that I0 vanishes, since 2ρ−1
0

∫
Rd x − M0(t)df0 = 0. We divide I1 into its drift,

diffusion and transition parts to obtain

I1 =: I0
1 + I1

1 + I2
1 , (4.4.16)

with

I0
1 =

1

ρ0

∫
Rd
|x−M0(t)|2 (−νF∇x · ((M1(t)− x) f0)) dx =

=
2νF
ρ0

∫
Rd

(x−M0(t))(M1(t)− x)df0 =

= 2νF
(
M0(t)M1(t)− E0(t)−M0(t)M1(t) +M2

0 (t)
)

= −2νFV0, (4.4.17)
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and, by an application of Jensen inequality we get

I1
1 =

1

ρ0

∫
Rd
|x−M0(t)|2∆x

(
σ2
F

2
D2(x)f0

)
dx =

=
σ2
F

2ρ0

∫
Rd
k|x̂(t)− x|2df0 =

=
σ2
F

2ρ0

∫
Rd
k

∫
Rd

∣∣∣∫Rd(y − x)e−αE(y)g(y)dy∫
Rd e

−αE(y)g(y)dy

∣∣∣2df0 =

≤ σ̃

ρ0

∫
R2d

|y − x|2g(y)f0(x)dxdy =

=
σ̃

ρ0

(
ρ0E0(t) + ρ1E1(t)− (ρ0M0(t) + ρ1M1(t))2

)
=

=
σ̃

ρ0

(
V (t) + ρ0ρ1 (M0(t)−M1(t))2

)
, (4.4.18)

and finally,

I2
1 =

1

ρ0

∫
Rd
|x−M0(t)|2 (−πLF f1 + πFLf0) dx =

− πLF
ρ0

∫
Rd

(
x2 +M2

0 (t)− 2xM0(t)
)
df1 + πFLV0(t) =

− πLF
ρ0

(
ρ1V1(t) + ρ1(M0 −M1)2(t)

)
+ πFLV0(t), (4.4.19)

where we add and subtract ρ1M
2
1 (t) in the last term of I2

1 .
For V1(t) we have

d

dt
V1(t) =

1

ρ1

d

dt

∫
Rd
|x−M1(t)|2df1 =

2

ρ1

∫
Rd

(
x−M1(t),− d

dt
M1(t)

)
df0︸ ︷︷ ︸

=:I2

+
1

ρ1

∫
Rd
|x−M1(t)|2∂tf1︸ ︷︷ ︸

=:I3

. (4.4.20)

Similarly to the case I0 one can easily conclude that I2 vanishes. We divide I3 into the drift
and transition part to obtain

I3 = I0
3 + I1

3 , (4.4.21)

with

I0
3 =

1

ρ1

∫
Rd
|x−M1(t)|2

(
−νL
ρ1
∇x · ((x̂(t)− x) f1)

)
dx =

=
2νL
ρ2

1

∫
Rd

(x−M1(t))(x̂(t)− x)df1 =

=
2νL
ρ1

(
M1(t)x̂(t)− E1(t)−M1(t)x̂(t) +M2

1 (t)
)

= −2
νL
ρ1
V1, (4.4.22)
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and

I1
3 =

1

ρ1

∫
Rd
|x−M1(t)|2 (πLF f1 − πFLf0) dx =

= −πFL
ρ1

∫
Rd

(
x2 +M2

1 (t)− 2xM1(t)
)
df0 + πLFV1(t) =

= −πFL
ρ1

(
ρ0V0(t) + ρ0(M0 −M1)2(t)

)
+ πLFV1(t), (4.4.23)

where we add and subtract ρ0M
2
0 (t) in the last term of I2

3 .

Altogether, we get

d

dt
V (t) ≤ρ1

(
2νF + ρ0 −

2νF
ρ1

)
V0(t) + (−2νF + σ̃)V (t)+

+ (σ̃ρ0ρ1 − πLFρ1 − πFLρ0) (M0 −M1)2 (t). (4.4.24)

Using the assumptions, we recover the second inequality in (4.4.7).

Corollary 1. Let the assumptions of Proposition 2 hold, and in addition suppose that

νF > max

{
πLFρ1

ρ0(1− bĒρ1)
,
πFL
bĒρ0

}
, with bĒ = eα(E−Ē). (4.4.25)

Then it holds ∣∣∣m0(t)

ρ0
− m1(t)

ρ1

∣∣∣2 → 0, V (t)→ 0, as t→∞. (4.4.26)

Proof. Let us first study the behavior of |M0 −M1|2(t). We have

d

dt
|M0 −M1|2(t) = 2 (M0 −M1) (t)

d

dt
(M0 −M1) (t) ≤

≤ −2νF |M0 −M1|2(t) + 2(M0 −M1)(t) (C1M1(t)− C0M0(t)) =

= −2νF |M0 −M1|2(t)− 2

[
M0(t)
M1(t)

]T [ C0 −C0

−C1 C1

] [
M0(t)
M1(t)

]
, (4.4.27)

with

C0 = −πFL − νFρ0bĒ
ρ1

, C1 =
−πLFρ1 + νFρ0(1− ρ1bĒ)

ρ0ρ1
, (4.4.28)

and we used equations (4.4.10)-(4.4.11) and the estimate

x̂(t) =

∫
Rd xe

−αE(x)g(x, t)dx∫
Rd e

−αE(x)g(x, t)dx
≥ eαE

eαĒ

∫
Rd
x g(x, t)dx := bĒ m(t). (4.4.29)
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Note that, if condition (4.4.25) holds then C0, C1 > 0 and so

− 2

[
M0(t)
M1(t)

]T [ C0 −C0

−C1 C1

] [
M0(t)
M1(t)

]
≤ 0, (4.4.30)

since the above matrix is weakly diagonal dominant and hence positive semidefinite. Alto-
gether, we obtain the estimate

d

dt
|M0 −M1|2(t) ≤ −2νF |M0 −M1|2(t). (4.4.31)

and an application of Grönwall lemma yields

|M0 −M1|2(t) ≤ |M0 −M1|2(0)e−2νF t, (4.4.32)

which allow us to conclude |M0 −M1|2(t)→ 0 as t→∞.

In particular, this implies

|M0 −M1|2(t) ≤ |M0 −M1|2(0), (4.4.33)

which helps us to show the second statment. Indeed, we rewrite the second inequality in
(4.4.7) in integral form as

V (t) ≤ V (0) + C0
v |M0 −M1|2(0)

∫ t

0
ds− Cv

∫ t

0
V (s)ds, (4.4.34)

with C0
v = σ̃ρ0ρ1 − πLFρ1 − πFLρ0 and Cv = 2νF − σ̃. Moreover, we note that

t→ V (0) + C0
v |M0 −M1|2(0)t,

is a non-decreasing function. Hence, again using Grönwall lemma, we get

V (t) ≤
[
V (0) + C0

v |M0 −M1|2(0)t
]
e−Cvt, (4.4.35)

which implies V (t)→ 0 as t→∞.

The fact that V (t) vanishes in the limit t → ∞ allows us to conclude that the crowd
concentrates. However, the position of the concentration point is unknown. This position
is quantified in the following section.
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4.4.2 Convergence to the global minimum

In this section, we determine the conditions under which the mean value of the population
is a reasonable approximation of the global minimizer.

Proposition 3. Suppose the assumptions of Proposition 2 hold. Further, we assume that
E ∈ C2(Rd) and that there exist constants c1, c2 > 0 such that

sup
y∈R2

|∇E(y)| ≤ c1, sup
y∈R2

|∆E(y)| ≤ c2, (4.4.36)

and that the initial condition is well-prepared in the sense that the minimizer of E is in the
support of the initial population and

µ

M2
α(0)

≤ 3

4
, (4.4.37)

is satisfied with

Mα(t) =

∫
Rd
e−αE(x)g(x)dx, (4.4.38)

and

µ =2αe−αE
[
c1

√
2

(
νF +

νF
ρ1

)
+ c2σ

2
Fk

]
·

·
[
max

{
1

Cv
V (0) + γm

(
C0
v

C2
v

+
ρ0ρ1

2νF

)
,

2

Cv
V (0) +

4C∗

Cv
+

√
ρ0ρ1γm

νF

}]
, (4.4.39)

with

C0
v = σ̃ρ0ρ1 − πLFρ1 − πFLρ0, Cv = 2νF − σ̃, γm =

(
m0(0)

ρ0
− m1(0)

ρ1

)2

,

and C∗ is the maximal value of

t→ e−
Cv
4
t
√
C0
vγmt.

Then there exists x̃ ∈ Rd such that m(t)→ x̃ as t→∞ and

E(x̃) = E + r(α) +
log 2

α
, (4.4.40)

where r(α) = − 1
α log(Mα(0))− E → 0, as α→∞.

Proof. First, we show ∣∣∣ d
dt
m(t)

∣∣∣→ 0, (4.4.41)
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as t→∞. To this end, we rewrite

∣∣∣ d
dt
m(t)

∣∣∣ =
∣∣∣νF ∫

Rd

(
e−αE(x)

Mα(t)
− 1

)
x g(x)dx

∣∣∣, (4.4.42)

where we use the first estimate in (4.4.7) and the definition of x̂(t). Applying Jensen
inequality and using the estimate

x̂(t) ≤ e−α(E−Ē)

∫
Rd
xg(x, t)dx := bEm(t),

we get∣∣∣ d
dt
m(t)

∣∣∣ =
νF

Mα(t)

∣∣∣ ∫
R2d

xe−αE(x)g(x)g(x∗)dxdx∗ −
∫
R2d

x∗e
−αE(x)g(x)g(x∗)dxdx∗

∣∣∣ =

=
νF

Mα(t)

∣∣∣ ∫
R2d

(x− x∗)e−αE(x)g(x)g(x∗)dxdx∗

∣∣∣
≤ νF
Mα(t)

∫
R2d

|x− x∗|e−αE(x)g(x)g(x∗)dxdx∗ ≤

≤ bEνF
(∫

R2d

|x− x∗|2g(x)g(x∗)dxdx∗

)1/2

=

= bEνF
√

2
(
ρ0E0(t) + ρ1E1(t)− (ρ0M0(t) + ρ1M1(t))2

)1/2
=

= bEνF
√

2
(
V (t) + ρ0ρ1(M0 −M1)2(t)

)1/2 → 0, as t→∞, (4.4.43)

since both, V (t) and (M0 −M1)2(t), go to zero as t→∞. Thus, there exists x̃ ∈ Rd such
that

x̃ = m(0) +

∫ t

0

d

ds
m(s)ds = lim

t→∞
m(t). (4.4.44)

Let us now focus on the term Mα(t)

d

dt
M2
α(t) = 2Mα(t)

d

dt
Mα(t) = 2Mα(t)

∫
Rd
e−αE(x)∂tg(x, t)dx, (4.4.45)

with

∂tg(x, t) = ∂tf0(x, t) + ∂tf1(x, t) = −νF∇x ·
[
(M1 − x)f0(x, t)

]
+

+
σ2
F

2
∆x

[
D2(x)f0(x, t)

]
− νF
ρ1
∇x ·

[
(x̂(t)− x)f1(x, t)

]
, (4.4.46)
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where we recall that we assume νL = νF and

∑
λ∈{0,1}

T [fλ](x, t) = 0.

We consider the terms separately to obtain

I1 =− νF
∫
Rd
e−αE(x)∇x ·

[
(M1 − x)f0

]
dx =

= −νFα
∫
R2d

e−αE(x)∇E(x)(x∗ − x)df0df1 ≥

≥ −νFαe−αEc1
Mα(t)

Mα(t)

∫
R2d

|x∗ − x|dgdg∗ ≥

≥ −νFα
e−2αE

Mα(t)
c1

(∫
R2d

|x∗ − x|2dgdg∗
)1/2

≥

≥ −νFα
e−2αE

Mα(t)
c1

√
2
[
V (t) + ρ0ρ1(M0 −M1)2(t)

]1/2
, (4.4.47)

I2 =
σ2
F

2

∫
Rd
e−αE(x)∆x

[
D2(x)f0

]
dx =

= −
σ2
F

2
α

∫
Rd
e−αE(x)∆E(x)k|x̂(t)− x|2df0+

+
σ2
F

2
α2

∫
R2d

e−αE(x)∇xE(x)⊗∇xE(x)k|x̂(t)− x|2df0 ≥

≥ −
ασ2

F

2
kc2e

−αE
∫
Rd
|x̂(t)− x|2dg ≥

≥ −
ασ2

F

2
kc2e

−αE
∫
R2d

∫
|x∗ − x|2

e−αE(x∗)

Mα(t)
dgdg∗ ≥

≥ −
ασ2

F

2
kc2

e−2αE

Mα(t)

∫
R2d

|x∗ − x|2dgdg∗ ≥

≥ −
ασ2

F

2
kc2

e−2αE

Mα(t)

[
V (t) + ρ0ρ1(M0 −M1)2(t)

]
, (4.4.48)



100 CHAPTER 4. FOLLOWER-LEADER DYNAMICS IN OPTIMIZATION

and

I3 =− νF
ρ1

∫
Rd
e−αE(x)∇x ·

[
(x̂(t)− x)f1

]
dx ≥

≥ −ανF
ρ1

c1e
−αE

∫
|x̂(t)− x|dg ≥

≥ −ανF
ρ1

c1
e−2αE

Mα(t)

(∫
R2d

|x∗ − x|2dgdg∗
)1/2

≥

≥ −ανF
ρ1

c1
e−2αE

Mα(t)

[
V (t) + ρ0ρ1(M0 −M1)2(t)

]1/2
, (4.4.49)

where we use assumption (4.4.36), we integrate by parts, use Jensen inequality and the
previous estimates. Altogether, we estimate (4.4.45) as follows

dMα(t)

dt
≥ −2αe−2αE

[
c1

√
2νF

(
1 +

1

ρ1

)(
V (t) + ρ0ρ1(M0 −M1)2(t)

)1/2
+

+ c2σ
2
Fk
(
V (t) + ρ0ρ1(M0 −M1)2(t)

) ]
. (4.4.50)

Using the estimates for the mean and variance in (4.4.32)-(4.4.35) and integrating equation
(4.4.50) we get

M2
α(t) ≥M2

α(0)− 2αe−αE
[
c1

√
2νF

(
1 +

1

ρ1

)
+ c2σ

2
Fk

]
·

·max

{∫ t

0

[
V (0) + C0

vγms
]
e−Cvs + ρ0ρ1γme

−2νF sds,∫ t

0

√
[V (0) + C0

vγms] e
−Cvs + ρ0ρ1γme−2νF sds

}
. (4.4.51)

We integrate the first integral in (4.4.51) by parts to get∫ t

0

[
V (0) + C0

vγms
]
e−Cvs + ρ0ρ1γme

−2νF sds ≤ V (0)

Cv
+ γm

(
C0
v

C2
v

+
ρ0ρ1

2νF

)
.

Moreover, applying Hölder inequality to the second integral in (4.4.51) yields∫ t

0

√
[V (0) + C0

vγms] e
−Cvs + ρ0ρ1γme−2νF sds ≤

≤
2
√
V (0)

Cv
+ ‖
√
C0
vγmse

−Cvs
4 ‖∞

∫ t

0
e
−Cvs

4 ds+

√
ρ0ρ1γm

νF
≤

≤
2
√
V (0)

Cv
+

4C∗

Cv
+

√
ρ0ρ1γm

νF
,
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where C∗ := max
s∈R

√
C0
vγmse

−Cvs
4 and we use the fact that

√
a+ b ≤

√
a+
√
b,

for and a, b ≥ 0. Altogether, using assumption (4.4.37) we obtain

M2
α(t) ≥M2

α(0)− µ ≥ 1

4
M2
α(0), (4.4.52)

with µ defined as in equation (4.4.39). Thus

Mα(t) ≥ 1

2
Mα(0). (4.4.53)

In addition, since m(t)→ x̃ and V (t)→ 0 as t→∞ it holds,

Mα(t) =

∫
Rd
e−αE(x)g(x)dx→ e−αE(x̃), (4.4.54)

as t→∞ as a consequence of Chebishev inequality (see [48]). Thus

0 ≥ e−αE(x̃) ≥ 1

2
Mα(0) ⇐⇒ 0 ≥ −αE(x̃) ≥ log

(
Mα(0)

2

)
, (4.4.55)

that is

0 ≤ E(x̃) ≤ − 1

α
log(Mα(0)) +

log(2)

α
. (4.4.56)

Finally, 0 ≤ E(x̃) ≤ E as α→∞, since the first term tends to E thanks to Laplace principle
and log(2)/α vanishes in the limit.

Remark 11. We emphasize the following observations:

• In order to satisfy condition (4.4.37), V (0) and m(0) need to be small.

• Note that if we assume to have anisotropic diffusion the convergence is guaranteed
independently of the parameters choice and, in particular, of the dimension d. For
this reason, all numerical examples of the next section consider the anisotropic noise.

4.5 Numerical methods

In order to approximate the time evolution of the density fλ(x, t) we sample Ns parti-
cles (x0

i , λ
0
i ), i = 1, . . . , Ns from the initial distribution. We consider a time interval [0, T ]

discretized in Nt intervals of length h. The interaction step is solved by means of binary
interaction algorithms, see [160, 162] for details.
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We denote the approximation of fλ(x, nh) at time tn by fnλ (x). For any λ ∈ {0, 1} fixed,
the next iterate is given by

fn+1
λ (x) =

(
1− h

ε

)
fnλ (x) +

h

ε

∑
λ∗∈{0,1}

Q+
α (fnλ , f

n
λ∗)(x), (4.5.1)

where ε > 0 is a frequency parameter and Q+(fnλ , f
n
λ∗

) is the gain part of the collision
operator defined in (4.3.3). Equation (4.5.1) can be interpreted as follows: with probability
1 − h/ε an individual in position x does not interact with other individuals and with
probability h/ε it interacts with another randomly selected individual. In the following we
will assume h = ε.

In order to simulate changes of the label λ, we discretize equation (4.2.12). For any
fixed x ∈ Rd, we obtain

fn+1
0 (x) = (1− ε πF→L) fn0 (x) + ε πL→F fn1 (x),

fn+1
1 (x) = (1− ε πL→F ) fn1 (x) + ε πF→L f

n
0 (x), (4.5.2)

where πF→L(·) and πL→F (·) are the transition rates as defined in (4.2.10)-(4.2.11). The
details of the numerical scheme are summarized in Algorithm 4.5.1. Here, the parameters
δstall and jstall are used to check if consensus has been reached in the last jstall iterations
within a tolerance δstall. In more detail, we stop the iteration if the distance of the cur-
rent and previous mean x̂ is smaller then the tolerance δstall for at least jstall iterations.
In this case, the evolution is stopped before the total number of iterations has been reached.

Algorithm 4.5.1. [GKBO]

1. Draw (x0
i , λ

0
i )i=1,...,Ns from the initial distribution f0

λ(x) and set n = 0, j = 0.

2. Compute x̂0 as in equation (4.2.7).

3. while n < Nt and j < jstall

(a) for i = 1 to N

• Select randomly a leader with position ynk , k 6= i.

• Compute the new positions

xn+1
i = xni + νF ε

(
yn+1
k − xni

)
+ σF

√
εDξ (1− λni ) + ενL(x̂n − xni )λni ,

yn+1
k = ynk + νLε(x̂

n − ynk ). (4.5.3)

• Compute the following probabilities rates

pL = ε πF→L(xn+1
i , λni ), pF = ε πL→F (xn+1

i , λni ).
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• if λni = 0,
with probability pL agents i becomes a leader: λn+1

i = 1.

• if λni = 1,
with probability pF agents i becomes a follower: λn+1

i = 0.

end for

(b) Compute x̂n+1 as in equation (4.2.7).

(c) if ‖x̂n+1 − x̂n‖∞ ≤ δstall
j ← j + 1

end if

n← n+ 1

end while

The above algorithm is inspired from Nanbu’s method[157], for larger class of direct
simulation Monte-Carlo algorithm for interacting particle dynamics we refer to[11, 162].

4.6 Validation tests

In this section we test the performance of the GKBO algorithm in terms of success rate
and number of needed iterations. We consider the translated Rastrigin function with global
minimum in x̄ = 1 for the vast majority of the tests. In the last experiment we compare
the results for different benchmark functions (see [130] for a complete list). If not explicitly
specified, we run M = 20 simulations and, according to [21, 48], we consider a simulation
successful if

‖x̂(t)− x̄‖∞ ≤ 0.25. (4.6.1)

We set α = 5 ·106 and we adopt the numerical trick described in [104] to allow for arbitrary
large values of α. We assume N = 200 and that agents are initially uniformly distributed
in the hypercube [−4.12, 0]d, which does not contain the global minimum. At time t = 0
we suppose all agents are in the followers status and they change their label according
to equation (4.2.12). For the GKBO algorithm we set the total percentage of leaders is
ρ∞1 = 0.5, if not specified explicitly. Hence, the transition rates are defined as in equation
(4.2.10), with πLF = πFL = 0.2, if the emergence of leaders is random or as defined in
equation (4.2.11) if the labels change according to the weighted criterion defined in Section
4.2.2. We will consider also a mixed strategy with p̄ = 0.5, that is, among the total amount
of generated leaders, 50% change their labels according to the weighted strategy and the
remaining ones change their labels randomly. We let the dynamics in (4.2.4) to evolve
for Nt = 10000 iterations with ε = 0.1, where differently specified. We set jstall = 1000,
δstall = 10−4. We assume νF = 1, νL = 10 while the diffusion parameter and the dimension
change in the different tests and will be specified later.
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4.6.1 Test 1: Comparison of different followers / leaders ratios

Suppose σF = 4, d = 20. Table 4.1 reports the mean of the number of iterations and success
rate (in parenthesis) for the GKBO algorithm tested on the translated Rastrigin function
as the leaders mass at the equilibrium ρ∞1 , defined as in equation (4.2.16), varies. The
success rate and number of iterations for the KBO algorithm are 1 and 10000 respectively.
GKBO outperforms KBO in terms of the number of iterations. However, the success rate
of GKBO with random leader emergence deteriorates for ρ∞1 = 0.75.

Table 4.1: Mean of the number of iterations (success rate) for the GKBO algorithm tested
on the translated Rastrigin function as the leaders mass at the equilibrium ρ∞1 varies.

GKBO random GKBO p̄ = 0.5 GKBO weighted

ρ∞1 = 0.25 3008 (1) 3588 (1) 6421 (1)
ρ∞1 = 0.5 2898 (1) 3477 (1) 6612 (1)
ρ∞1 = 0.75 4252 (0.6) 4566 (1) 7741 (1)

4.6.2 Test 2: GKBO for different choices of x̂

We compare the results of the algorithm with x̂ as in (4.2.7) and slight modifications given
by

x̂F =

∫
Rd xe

−αE(x)f0(x, t)dx∫
Rd e

−αE(x)f0(x, t)dx
, or x̂L =

∫
Rd xe

−αE(x)f1(x, t)dx∫
Rd e

−αE(x)f1(x, t)dx
, (4.6.2)

which corresponds to the cases where the weighted mean depends only on the followers or
only on the leaders, respectively.

In Figure 4.2 the success rate and number of iterations as σF and d varies for x̂ (left),
x̂f (middle) and x̂L(right). In the first row, results for the case with random leaders gen-
eration are shown, in the second row the mixed leaders generation with p̄ = 0.5 and in
the third row the case with weighted leaders generation. Note that the performance of the
random strategy, especially for large values of the dimension d is higher if x̂F (t) is used
for the estimate of the global minimizer. This can be explained by a better exploration
phase of the particles during the evolution, whereas the leaders position x̂L may result in
a less accurate estimate, since labels change randomly. The weighted strategy with x̂L(t)
has computational advantages since leaders are chosen to be the agents with optimal po-
sition and the computation of the x̂L(t) requires a lower number of evaluations of the cost
function. This may be advantageous in particular if the evaluation of the cost function is
numerically expensive.
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Figure 4.2: Success rates for varying σF and d for the translated Rastrigin function with
dynamics simulated with the GKBO method for x̂ (left), x̂F (middle), x̂L (right). The first
row is with random leader emergence, second row with mixed strategy p̄ = 0.5 and third
row with weighted leader emergence.

4.6.3 Test 3: Comparison in d = 20 dimensions for varying σF

We fix d = 20 and let σF vary from σF = 0.1 to σF = 10 to compare the performance
of GKBO (equation (4.2.4)), standard GA (equation (4.1.2)-(4.1.3)), the modified GA
(equation (4.1.2)-(4.1.4)) and the KBO (equation (4.1.1)).

In Figure 4.3 the success rates and means of the number of iterations obtained with
the different algorithms in the case of the translated Rastrigin function is shown. Here,
test GKBO with x̂, x̂F and x̂L as defined above and study random leader emergence (left),
mixed leader emergence with p̄ = 0.5 (middle), and weighted leader emergence (right).
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Altough the success rates of KBO and the variants of GKBO behave similar, the GKBO
versions required less iterations. Moreover, we remark that the behavior of the GKBO with
weighted leaders generation and with x̂ as in equation (4.2.7) and of the KBO is similar,
as expected from our analysis.

Figure 4.3: Success rates and means of the number of iterations as σF varies and d = 20
for the translated Rastrigin function obtained with the different algorithms. On the left
leaders emerge randomly, in the, we consider mixed leader emergence with p̄ = 0.5, and on
the right, we have weighted leader emergence. The markers denote the value of the success
rates and numbers of iterations for different σF .

4.6.4 Test 4: Comparison of different leader emergence strategies

Let us fix d = 20 and consider the mixed leader emergence strategies as discussed in
Remark 8. In Figure 4.4 on the left we see the success rates for different values of σF and p̄,
on the right the number of iterations for different values of p̄ and for σF = 4, 5. In Figure
4.5 the success rate and minimum, maximum and mean iterations number for the GKBO
method with x̂ is shown for d = 20 as p̄ and σF vary.
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Figure 4.4: Different leader emergence strategies. On the left, success rates for varying σF
and p̄ and d = 20. On the right, max, min and mean number of iterations obtained in the
different simulations for d = 20 and σF = 4, 5 as p̄ varies. The markers denote the number
of iterations needed for different p̄ and tested on the translated Rastrigin function.

Figure 4.5: Different leader emergence strategies. Success rates and mean number of itera-
tions for d = 20 as σF varies and for different values of p̄, tested on the translated Rastigin
function. The markers denote the value of the success rates and number of iterations for
different σF .



108 CHAPTER 4. FOLLOWER-LEADER DYNAMICS IN OPTIMIZATION

4.6.5 Test 5: Comparison of different methods for varying d

We fix σF = 4 and vary the dimension d from 1 to 20. Figure 4.6 shows the success rates
and means of the number of iterations of the different methods in the case of the translated
Rastrigin function. GKBO uses x̂ as in (4.2.7).

Figure 4.6: Success rates and number of iterations as d varies for the translated Rastrigin
function obtained with the different algorithms. The markers denote the value of the success
rates and mean number of iterations.

4.6.6 Test 6: Comparison of the accuracy for varying frequency ε

Here we study the influence of the frequency parameter ε by comparing the accuracy of
the KBO and GKBO with weighted and random leader emergence. We run the test for
M = 100 simulations assuming the initial data to be normally distributed in the hypercube
[−4.12, 0]d, d = 20. The accuracy is computed as

‖x̂(t)− x̄‖∞, (4.6.3)

where x̄ is the actual value of the minimum. In Figure 4.7 the accuracy of the KBO
algorithm (left) for GKBO algorithm with random leader emergence (middle) and weighted
leader emergence (right) with ε = 0.01 (first row) and ε = 0.1 (second row). Note that in
both cases, the values of σF for which the method converges with the weighted GKBO and
the KBO algorithm is almost the same. If ε = 0.01 the accuracy of the weighted GKBO
is higher than the one of the KBO. If ε = 0.1 the random strategy performs better than
the other methods since the algorithm converges for almost all the values of σF considered.
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Figure 4.7: Accuracy of the KBO and of the GKBO algorithm as σF varies for d = 20 and
ε = 0.01 (first row), ε = 0.1 (second row) for the translated Rastrigin function. From the
left to the right, KBO, GKBO with random leader emergence and GKBO with weighted
leader emergence. The markers have been added to distinguish the lines.

Furthermore, if we look at the case σF = 4, all the methods converge but the random
strategy reaches higher levels of accuracy.

In Figure 4.8 the results in terms of success rate and number of iterations needed for
different values of ε are shown. If ε = 0.01 the success rate are of the GKBO methods is
smaller than the one of the KBO but the number of needed iterations is reduced. If ε = 0.1,
the success rate area is enlarged for the strategy with random leader emergence. With this
test we confirm the results obtained in Figure 4.7. Moreover, the number of iterations is
reduced with respect to the KBO and the GKBO method with weighted leader emergence.

4.6.7 Test 7: Comparison of different benchmark functions

In the previous subsection we tested the different algorithms and different parameter sets
with the translated Rastrigin function. Now, we choose σF such that both the KBO and the
GKBO algorithms have success rate equal to one in the previous studies and test different
benchmark functions in 20 dimensions. In Figure 4.9 the comparison of KBO and GKBO in
terms of success rate and mean number of iterations are shown. GKBO with both variants
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KBO

GKBO (random)

GKBO (weighted)

KBO

GKBO (random)

GKBO (weighted)

Figure 4.8: Success rates and means of the number of iterations as σF varies for ε = 0.01
(first column), ε = 0.1 (second column) for the translated Rastrigin function. The markers
have been added to distinguish the lines.

of leader emergence outperforms KBO in terms of the number of iterations.

4.7 Conclusion

We propose a variant of the KBO method for global optimization which is enhanced by
a transition process, inspired by genetic dynamics. These lead to a population divided
into two species which we call followers and leaders. We adapt the convergence analysis
to the new method and show in particular that the population concentrates in the long-
time limit arbitrarily close to the global minimizer of the cost function. Numerical results
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Figure 4.9: Success rate and mean iterations number for the different benchmark function
for fixed d = 20 and σF = 4.5. Markers denotes the value of the success rate and of the
iterations number for the different benchmark functions.

show the feasibility of the approach and the improvement of the proposed generalization
in terms of numerical effort. In particular, we measure the numerical effort in terms of
the number of iterations which are proportional to the number of function evaluations
used in the optimization process. Since GKBO outperforms KBO in this measure, the
proposed variant is especially attractive for optimization problems with expensive cost
function evaluations. This can be the case for example in engineering applications where
each cost function evaluation requires a time-consuming simulation, such as the solution
of high-dimensional PDEs with commercial codes.



112 CHAPTER 4. FOLLOWER-LEADER DYNAMICS IN OPTIMIZATION



Chapter 5

Efficient ensemble stochastic algo-
rithms for agent-based models with
spatial predator-prey dynamics
Experiments in predator-prey systems show the emergence of long-term cycles. Determin-
istic model typically fails in capturing these behaviors, which emerge from the microscopic
interplay of individual based dynamics and stochastic effects. However, simulating stochas-
tic individual based models can be extremely demanding, especially when the sample size
is large. Hence, we propose an alternative simulation approach, whose computation cost is
lower than the one of the classic stochastic algorithms. First, we describe the agent-based
model with predator-prey dynamics, and its mean-field approximation. Then, we provide
a consistency result for the novel stochastic algorithm at the microscopic and mesoscopic
scale. Finally, we perform different numerical experiments in order to test the efficiency of
the proposed algorithm, focusing also on the analysis of the different nature of oscillations
between mean-field and stochastic simulations.

The results presented in this chapter have been published in [5].

5.1 Introduction

The description of how biological populations interact and evolve in both space and time
is central to theoretical ecology, [106, 164, 148, 171, 156, 30]. To this aim, several math-
ematical models have been proposed to approximate the evolution of large ensembles of
interacting species, starting from microscopic stochastic agent-based dynamics, passing
from mesoscopic equations, up to macroscopic systems, such as reaction-diffusion systems.
This hierarchy of descriptions, at different scales, has been used extensively to model in-
teractions among species and their spatial spread beyond theoretical ecology, and it has
a profound impact in several fields such as epidemiology, [38, 192], biology, physiology
and medicine, [51, 179, 173], chemical reactions[125, 88], and in socio-economic systems
opinions, markets, veichular traffic and crowds [162, 68, 2].

In the present manuscript, we will focus on the efficient simulation of predator-prey
dynamics in population biology, such as [156, 56, 148]. One striking feature of population

113
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biology is the emergence of temporal cycles of species densities, [156, 159, 25]. Various
mechanisms can cause populations to oscillate, the most investigated being the cyclic dy-
namics that arise from the interactions between predators and preys (see ref. [33] and
references cited therein). Traditionally, these interactions have been studied in the context
of deterministic Lotka-Volterra-type models, [156, 159, 25]. In their simplest form, these
are coupled deterministic equations that include specific birth, death, competition and
predation processes, and they can show limit cycles behaviors for appropriate choice of pa-
rameters values. Long-term persistence of predator-prey cycles have been recently observed
in a series of well controlled microcosm experiments with freshwater organisms, [33]. Plank-
tonic rotifers cultured together with their prey unicellular green algae showed oscillatory
behaviors of both prey and predator densities that persisted for up to approximately 50 cy-
cles or ∼300 generations, [33]. Interestingly, dominant dynamics characterized by coherent
oscillations were interrupted by shorter episodes of irregular non-coherent oscillations, [33].
The experiments clearly demonstrate that sustained oscillations in population dynamics
do arise even in simple well-controlled ecosystems. They strongly indicate that stochastic
forces are at work to drive the reversible shift from coherent to non-coherent oscillatory
behaviours of observed populations, [33], but their role in driving population dynamics can
not be investigated within the context of deterministic predator-prey models.

This novel experimental evidence, therefore, calls for new theoretical explanations, and
we note that these might be found within the theoretical framework developed by McK-
ane and Newman (see [149, 150]). They studied individual based predator-prey models
described by simple stochastic processes of mortality, reproduction and predation, and
showed that large cycles of species densities persisted unless the number of individuals was
taken to be strictly infinite, [149, 150]. Biological cycles have been found to arise from a
novel resonance effect that include the statistical fluctuations of a given finite-size pop-
ulation, an effect that fade away when different realization of the model are averaged to
recover the mean-field behavior described by the classic deterministic predator-prey equa-
tions, [149, 150]. Finding the solution of stochastic individual-based models, however, can
easily become computationally challenging, above all when the final goal is to investigate
the dynamics of large, albeit finite, population sizes over hundreds of species generations.
Moreover, depending on the context of application, ad-hoc methods are of paramount im-
portance to capture the essential features of phenomena at various scale, see for example
[101, 126, 92, 182].

In the present work, to cope with the increasing complexity of the model we rely on
Monte Carlo methods, introducing a novel stochastic algorithm for the simulation of the
population dynamics with individual based models. We investigate the efficiency of the new
method on spatial predator-prey models and we compare the computational costs, also by
exploring in part the space of parameters, to that of different stochastic algorithms such
as the classic Monte Carlo, the direct method or the τ−leaping approach considered as
benchmarks [146, 111, 44].

The fundamental idea behind our work is that with classic approaches the whole popu-
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lation sample must be reconstructed any time interaction between individuals occurs with
the updated number of individuals. However, we show that there exists a maximum number
of interactions that can take place before updating the sample, and this allows us to reduce
the total number of time steps required for the whole simulation. As the consequence, the
new algorithm has a computational cost that is up to 2 orders of magnitude less than
those of the classic stochastic algorithms considered for a wide range of parameter values.
The simulations obtained with the new algorithm converge to the mean-field solutions for
increasing sample size N with error ∝ 1/

√
N , as also observed for classic algorithms, while

individual realizations for finite population sizes oscillates as observed by McKane and
Newman.

In Section 5.2 we present an individual-based stochastic model where predators compete
with preys and migration of individuals is allowed. We derive the master equation and
the mean-field equations which are obtained when the number of individuals is taken to
be strictly infinite. In Section 5.3 we present a novel ensemble stochastic algorithm and
we prove its consistency with the classical formulation. In Section 5.4 we show different
numerical experiments aimed at testing the new algorithm and at comparing it with the
classical approaches. We also partly investigate the stochastic persistency of the oscillatory
behavior shown by both predator and prey dynamics. Overall our approach can be exploited
to efficiently simulate stochastic agent-based models and thus to explore the emergence of
long-lasting persistent resonant effects in population dynamics. In 5.A we show how to
reduce the model to the homogeneous case, assuming that individuals are not allowed to
migrate. In 5.B we briefly report some of the classical exact and approximated stochastic
algorithms and we describe them in the homogeneous case.

5.2 Agent-based models with predator-prey interactions

We consider an agent based stochastic model of predation between two species with mi-
gration. We will show that for considerably large number of individuals the evolution of
this model reduces to a system of partial differential equations.

5.2.1 Spatially heterogeneous predator-prey model

We consider a stochastic process describing the evolution of individuals distributed in the
spatial domain Ω = [0, L] with L > 0, divided in Mc spatial cells. We assume that every
cell C`, with ` = 1, . . . ,Mc, has Nc components, where each component is realized in one of
the following states: predator (sA,`), prey (sB,`), or empty (sE,`). To describe the stochastic
dynamics, we consider cell C` and its nearest cells C`±1, for a fixed time t > 0 we define
different interaction events.

• Competition & Birth events. We sample a component in cell C` and with probability
q1 ∈ [0, 1] we let it interacts with another component, randomly chosen among the
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other Nc− 1 components in cell C`, according to the following birth and competition
rules with rates br, pr1, p

r
2

sB,`sE,`
br−→ sB,`sB,`, sA,`sB,`

pr1−→ sA,`sA,`, sA,`sB,`
pr2−→ sA,`sE`, (5.2.1)

where br, pr1, p
r
2 > 0 are constant parameters. We assume that if interactions occur

among two empty components then no change in the populations sizes is accounted.

• Migration event. We sample one component in cell C` and we assume that with
probability q2 ∈ [0, 1] such that q1 + q2 ≤ 1 it interacts with another component,
randomly chosen among the Nc positions in one of the nearest cells C`±1. Changes
in the state happen according to migration rates mr

1,m
r
2

sA,`sE,`±1
mr1−−→ sE,`sA,`±1, sB,`sE,`±1,

mr2−−→ sE,`sB,`±1,

sA,`±1sE,`
mr1−−→ sE,`±1sA,`, sB,`±1sE,`

mr2−−→ sE,`±1sB,`,
(5.2.2)

where mr
1,m

r
2 > 0. If interactions occur among predator/prey and empty components

or among two empty components then no changes in the populations sizes happen.

• Death event. We sample a component in cell C`, and we assume that with probability
(1− q1 − q2) it changes according to death rates dr1, d

r
2

sA,`
dr1−→ sE,`, sB,`

dr2−→ sE,`, (5.2.3)

where dr1, d
r
2 > 0. We suppose that if the selected component is empty then no change

is accounted.

We assume that at most one birth/competition, one migration and one death event can
occur at each time step. In order to introduce a master equation for such process, we
consider the vector state x = (A, β̂,E) ∈ R3Mc , where A = (A1, A2, . . . , AMc), β̂ =
(B1, B2, . . . , BMc), E = (E1, E2, . . . , EMc) account respectively the number of predators,
prey and empty spaces in each cell.

We first define the stoichiometry matrices V̂ , associated to single competition/birth
and death events, and V̂M , associated to migration events

V̂ =


0 1 −1
1 −1 0
0 −1 1
−1 0 1
0 −1 1

 , V̂M =


1 0 −1
−1 0 1
0 1 −1
0 −1 1

 .
Hence, the stoichiometry matrix of the full process over the lattice of Mc cells is defined
as follows,

Ṽ =

 V̂ ⊗ I
V̂M ⊗M−
V̂M ⊗M+

 , (5.2.4)
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where ⊗ denotes the Kronecker product, and I is the identity matrix of size Mc×Mc, and
M−,M+ are squared are square matrices of size Mc ×Mc defined as

M− =



0 0 . . . 0 0

1 −1 0
...

0 1
. . .

. . . 0
...

. . .
. . . −1 0

0 . . . 0 1 −1


, M+ =



−1 1 0 . . . 0

0 −1 1
. . .

...

0 0
. . .

. . . 0
...

. . .
. . . −1 0

0 . . . 0 0 0


.

Here, each row of the stoichiometry matrix (5.2.4) represents the changes in the populations
sizes due to the occurrence of the events described in (5.2.1)-(5.2.2)-(5.2.3) and each column
represents the predators, preys and empty components in each cell. Then, for any ` =
1, . . . ,Mc, we write the associated transition rates as follows

πv`0 (x) = 2brq1
B`
Nc

E`
Nc − 1

, πv`1 (x) = 2pr1q1
A`
Nc

B`
Nc − 1

,

πv`2 (x) = 2pr2q1
A`
Nc

B`
Nc − 1

, πv`3 (x) = dr1(1− q1 − q2)
A`
Nc
,

πv`4 (x) = dr2(1− q1 − q2)
B`
Nc
, πv`5 (x) = mr

1q2
A`
Nc

E`−1

Nc
,

πv`6 (x) = mr
1q2

A`−1

Nc

E`
Nc
, πv`7 (x) = mr

2q2
B`
Nc

E`−1

Nc
,

πv`8 (x) = mr
2q2

B`−1

Nc

E`
Nc
, πv`9 (x) = mr

1q2
A`
Nc

E`+1

Nc
,

πv`10 (x) = mr
1q2

A`+1

Nc

E`
Nc
, πv`11 (x) = mr

2q2
B`
Nc

E`+1

Nc
,

πv`12 (x) = mr
2q2

B`+1

Nc

E`
Nc
,

(5.2.5)

where we define the operators πv`j (x) = π(x+v`j |x) for any j = 0, . . . ,M . Here, M+1 = 13

is the total number of events described in (5.2.1)-(5.2.2)-(5.2.3) and v`j is the `j-th row

of the stoichiometry matrix Ṽ defined in (5.2.4), `j = ` + jMc for j = 0, . . . ,M . We
assume that migrations events are not allowed at the boundaries. Hence we introduce
A0, E0, B0, AMc+1, EMc+1, BMc+1 to be equal to zero, in order to properly define the tran-
sition rates associated to the boundary cells. The density P (x, t) describing the probability
of the state x evolves according to the master equation as follows

dP (x, t)

dt
=
∑
`j∈J

[
π(x|x− v`j )P (x− v`j , t)− π(x + v`j |x)P (x, t)

]
, (5.2.6)

where
J = {`+ jMc|j = 0, . . . ,M and ` = 1, . . . ,Mc}. (5.2.7)
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Remark 12.

• We assume that each spatial cell contains at most Nc components that can be either
preys or predators or empty spaces. Hence, even if predators and preys are restricted
to move only to empty neighbor sites, the model can include regions occupied both
by predators and preys. In the case of a lattice consisting of a single spatial cell,
we refer to spatial homogeneous model, where migration events are neglected and
maximal density per cell is Nc = N . We report in 5.A the corresponding agent-based
dynamics, and the associated master equation (5.2.6).

• We observe that the vector state x can be dimensionaly reduced if we assume to
remove the empty components, considering the relation E = Nc −A − β̂. However,
we prefer to give a more general description, to allow for further generalization, such
as models that may include empty sites with different nature.

5.2.2 Mean-field approximation

In order to recover the mean-field behavior of the stochastic process, we introduce the
empirical densities fNc` (t), gNc` (t), for ` = 1, . . . ,Mc, as the averaged quantities

fNc` (t) =
〈A`〉
Nc

=
1

Nc

Nc∑
A`=0

Nc∑
B`=0

Nc∑
E`=0

A`P (x, t),

gNc` (t) =
〈B`〉
Nc

=
1

Nc

Nc∑
A`=0

Nc∑
B`=0

Nc∑
E`=0

B`P (x, t),

(5.2.8)

where 〈·〉 denotes the expected value, and the empirical density for the empty component
can be recovered in each cell computing 1− fNc` (t)− gNc` (t).

Hence, multiplying the master equation by A` and by B`, and summing over all the
values of A`, B` and E` for any ` = 1 . . . ,Mc leads to the following Proposition.

Proposition 4. By standard assumptions of the mean-field limit we assume that for any
` = 1 . . . ,Mc, 〈A`B`〉 = 〈A`〉 〈B`〉,

〈
A2
`

〉
= 〈A`〉2,

〈
B2
`

〉
= 〈B`〉2, 〈A`±1B`〉 = 〈A`±1〉 〈B`〉

and 〈A`B`±1〉 = 〈A`〉 〈B`±1〉 then the time evolution of the empirical population densities
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fNc` , gNc` is given by

dfNc`
dτ

=2p̃r1
〈A`〉
Nc

〈B`〉
Nc − 1

− d̃r1
〈A`〉
Nc

+ m̃r
1

(
∆ε〈A`〉
Nc

+
〈A`〉
Nc

∆ε〈B`〉
Nc

− 〈B`〉
Nc

∆ε〈A`〉
Nc

)
,

dgNc`
dτ

=r
〈B`〉
Nc

(
1− 〈B`〉

qNc

)
− α〈A`〉

Nc

〈B`〉
Nc

+ m̃r
2

(
∆ε〈B`〉
Nc

+
〈B`〉
Nc

∆ε〈A`〉
Nc

− 〈A`〉
Nc

∆ε〈B`〉
Nc

)
,

(5.2.9)

where

∆εh` =
∑

s∈{`−1,`+1}

hs − h`
ε2

,

for any function h is the discrete Laplace operator, ε is the lattice spacing, τ = t/Nc, the
parameters are defined according to the following scaling

b̃r = brq1 p̃1
r = pr1q1 p̃2

r = pr2q1 d̃r1 = (1− q1 − q2)dr1

d̃2
r

= (1− q1 − q2)dr2 m̃r
1 = q2ε

−2mr
1 m̃r

2 = q2ε
−2mr

2,
(5.2.10)

and

r = 2b̃r − d̃2
r
, q = 1− d̃2

r

2b̃r
, α = 2(p̃r1 + p̃r2 + b̃r).

Finally the mean-field behavior is recovered for Nc � 1 as the result of the following
Theorem.

Theorem 5.2.1. Consider the discrete mean-field model (5.2.9) for Nc individuals. Then
taking the limit for Nc →∞, ε→ 0, the mean-field equations for the densities f(x, t) and
g(x, t),

∂τf = 2p̃1fg − d̃1f + m̃1(f∆g + (1− g)∆f),

∂τg = rg

(
1− g

q

)
− αfg + m̃2(g∆f + (1− f)∆g),

(5.2.11)

where each entry of the vectors f(x, t) and g(x, t) represents the predators and preys den-
sities in each cell C`, ` = 1, . . . ,Mc and

∆h(x, t) = lim
ε→0

∆εh

for any function h.

We refer to [149, 150, 188], for a detailed proof of the mean-field limit.

Remark 13. Note that under condition (1− q1 − q2)dr2 < (2q1b
r) model (5.2.11) corre-

sponds to the well known Lotka-Volterra equations with logistic growth term and diffusion,
[156].
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5.3 Efficient ensemble stochastic algorithms

The dynamics described by model (5.2.11) can be properly simulated with stochastic al-
gorithms. Exact stochastic algorithms predict which is the next firing event and at which
time it will fire, as for example in [111]. However, a direct implementation is often pro-
hibitively expensive since the final goal is the simulation of a large stochastic process. On
the other hand, classic approximated algorithms, such as the Monte Carlo algorithm and
the τ -leaping method, can speed up the simulations but their efficiency and accuracy are
strongly related to the choice of the time step that can vary in time or be inversely pro-
portional to the sample size. The main idea of the procedure is to fix a constant time step,
and to allow multiple events to happen at the same time. Hence, we describe the asso-
ciated stochastic process for the spatial heterogeneous predator-prey dynamics and show
its consistency with the previous description. Second we describe the ensemble stochastic
algorithm in the spatial homogeneous and heterogeneous setting.

5.3.1 Predator-prey model with ensemble interactions

At each time step t ≥ 0 consider two fractions q1, q2 ∈ [0, 1] such that q1 + q2 ≤ 1. Assume
that the following events can occur.

• Competition & Birth. Sample bq1Ncc components in each cell C`, ` = 1, . . . ,Mc

assuming that each one interacts with another component, randomly chosen among
the Nc positions in cell C` without repetition, according to the rules described in
(5.2.1).

• Migration. Sample other bq2Ncc components in any cell C`, different from the ones
previously selected, and let each one to interact with another state, randomly chosen
in cell C`±1 without repetition, according to the migration rules defined in (5.2.2).

• Death. The remaining Nc − bq1Ncc − bq2Ncc components in any cell C` change ac-
cording to death rules defined in equation (5.2.3).

Hence, in any infinitesimal time interval [t, t+ dτNc ], where dτNc := dtNc, a transition can
occur from the state with x = (A, β̂,E) individuals to the states with x + kv`j individuals

for any k = 1, . . . , Nc, where v`j is the `j-th row of the stoichiometry matrix Ṽ defined in
(5.2.4) for any ` = 1, . . . ,Mc, j = 0, . . . ,M . For k = 1, . . . N , the transition rates write as
follows

π(x + kv`j |x) =

k∏
i=1

πiv`j
(x) (5.3.1)
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where

πiv`0
(x) = 2brq1

B̃i
`

Ñc
i

Ẽi`
Ñ i
c

, πiv`1
(x) = 2pr1q1

Ãi`
Ñ i
c

B̃i
`

Ñ i
c

,

πiv`2
(x) = 2pr2q1

Ãi`
Ñ i
c

B̃i
`

Ñ i
c

, πiv`3
(x) = dr1(1− q1 − q2)

Ãi`
Ñ i
c

,

πiv`4
(x) = dr2(1− q1 − q2)

B̃i
`

Ñ i
c

, πiv`5
(x) = mr

1q2
Ãi`
Ñ i
c

Ẽi`−1

Ñ i
c

,

πiv`6
(x) = mr

1q2

Ãi`−1

Ñ i
c

Ẽi`
Ñ i
c

, πiv`7
(x) = mr

2q2
B̃i
`

Ñ i
c

Ẽi`−1

Ñ i
c

,

πiv`8
(x) = mr

2q2

B̃i
`−1

Ñ i
c

Ẽi`
Ñ i
c

, πiv`9
(x) = mr

1q2
Ãi`
Ñ i
c

Ẽi`+1

Ñ i
c

,

πiv`10
(x) = mr

1q2

Ãi`+1

Ñ i
c

Ẽi`
Ñ i
c

, πiv`11
(x) = mr

2q2
B̃i
`

Ñ i
c

Ẽi`+1

Ñ i
c

,

πiv`12
(x) = mr

2q2

B̃i
`+1

Ñ i
c

Ẽi`
Ñ i
c

.

(5.3.2)

Here we define the operators πiv`j
(x) = π(x+iv`j |x+(i−1)v`j ) for any i = 1, . . . , Nc, we use

the following notation Ỹ i = Y−i+1 for any state Y in the set {A`, B`, E`, A`±1, B`±1, E`±1, Nc}
and since migration outside the boundaries is not allowed, we introduceA0, E0, B0, AMc+1, EMc+1, BMc+1

to be equal to zero. The master equation associated to this process is derived in the fol-
lowing Proposition.

Proposition 5 (Consistency). The master equation can be written as

dP (x, s)

ds
=
∑
`j∈J

[
π(x|x− v`j )P (x− v`j , s)− π(x + v`j |x)P (x, s)

]
, (5.3.3)

where s = tNc, the set J is defined as in (5.2.7) and |J | = Mc(M + 1) is the number of
events that can occur.

Proof. The probability to be in the state with x individuals at time t+ τNc is given by two
contributions:

• the probability of staying in the state x at time t+ τNc that is

1−
∑
`j∈J

Nc∑
k=1

π(x + kv`j |x)dτkNc ; (5.3.4)



122CHAPTER 5. EFFICIENT STOCHASTIC ALGORITHM FOR PREDATOR-PREY DYNAMICS

• the probability of moving from the state with x individuals to the state with x+kv`j
individuals in the time interval [t, t+ τNc ], for any k = 1, . . . , Nc and `j ∈ J that is

∑
`j∈J

Nc∑
k=1

π(x|x− kv`j )dτ
k
Nc . (5.3.5)

Indeed, recall that for any i = 1, . . . , Nc a transition from the state with x+iv`j individuals
to the state with x+(i−1)v`j individuals in the infinitesimal time interval [t, t+τNc ] occurs
with probability πi`j (x)dτNc and hence the probability of moving from the state with x to
the state with x + kv`j individuals, for any k = 1, . . . , Nc, is

k∏
i=1

{
πiv`j

(x)dτNc

}
= π(x + kv`j |x)dτkNc ,

that is exactly the expression that appears in equation (5.3.4). Similarly we can derive
equation (5.3.5). Hence,

P (x, t+ dτNc) =
∑
`j∈J

Nc∑
k=1

[
P (x− kv`j , t)π(x|x− kv`j )dτ

k
Nc

]

+ P (x, t)

(
1−

∑
`j∈J

Nc∑
k=1

[
π(x + kvj |x)dτkNc

])
.

(5.3.6)

Rewrite explicitly the term for k = 1 in equation (5.3.6) to have

P (x, t+ dτNc)− P (x, t) = dτNc
∑
`j∈J

[
P (x− vj , t)π(x|x− vj)− P (x, t)π(x + vj |x)

]

+ dτkNc

∑
`j∈J

Nc∑
k=2

[
P (x− kvj , t)π(x|x− kvj)− P (x, t)π(x + kvj |x)

]
.

(5.3.7)

Dividing both sides of equation (5.3.7) by dτNc and letting dτNc → 0 we obtain the consis-
tency with the master equation (5.2.6), where the time variable is scaled by a factor Nc,
i.e. s = tNc.

Remark 14. We observe that thanks to the consistency result of Proposition 5, the cor-
responding mean-field approximation is equivalent to (5.2.11). According to (5.2.11) the
time scale of the mean-field dynamics is such that

τ = s/Nc = Nct/Nc = t,

then the time scales of the ensemble agent-based dynamics and of the mean-field dynamics
are equivalent.
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5.3.2 Efficient Monte-Carlo methods

The idea of the efficient Monte Carlo algorithm is to allow multiple events to occur at the
same time step that is supposed to be fixed and constant for any choice of Nc. Therefore,
as we will see in the numerical experiments, its accuracy is comparable with the one of
classic approximated algorithms but its efficiency is improved. In the following we will
focus first on the spatial homogeneous case, where a single cell is accounted (Mc = 1) and
Nc = N , second we will consider the full dynamics with spatial interaction. We refer to
5.A for further details on the homogeneous case.

Spatially homogeneous case Divide a priori the time interval considering a constant
time step τ that is independent of the sample size. Introduce a parameter µ ∈ [0, 1] and at
each time t assume that simultaneously bµNc individuals interact two by two. If the two
individuals are

• a prey and an empty space: with probability brτ a new prey born and occupies the
empty space;

• a predator and a prey: with probability pr1τ then a new predator born and with
probability pr2τ the prey dies and a new empty space is added to the system.

Assume that the remaining N−bµNc individuals are subjected to death events that happen
with probability dr1τ in the predators population and with probability dr2τ in the preys one.
Algorithm 5.3.1 defines the details of the efficient Monte Carlo algorithm.

Algorithm 5.3.1 (Efficient ensemble stochastic algorithm - homogeneous).

1. Define the sample, the initial time t = 0, the final time T , the time step τ and a
parameter µ ∈ [0, 1] .

2. while t < T

(a) Birth and competition events happen between bµNc individuals selected two by
two

sBsE
b−→ sBsB, sAsB

p1−→ sAsA, sAsB
p2−→ sAsE ,

according to probability b = brτ , pr1τ and pr2τ , respectively.

(b) The remaining N − bµNc individuals are subjected to death events

sA
d1−→ sE , sB

d2−→ sE ,

according to probability d1 = dr1τ and d2 = dr2τ , respectively.

(c) Update the sample.

(d) Set t← t+ τ .

repeat
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Spatially heterogeneous case We extend Algorithm 5.3.1 to the spatially heteroge-
neous case. Hence, the sample is divided in cells and populations are subjected also to
migration events. Migrations can occur either between cell C` and cell C`+1 or between cell
C` and cell C`−1 for any ` = 1, . . . ,Mc. The spatially heterogeneous Algorithm 5.3.1 reads
as follows

Algorithm 5.3.2 (Efficient ensemble stochastic algorithm).

1. Define the sample, the initial time t = 0, the final time T , the time step τ and two
parameters q1, q2 ∈ [0, 1] such that q1 + q2 ≤ 1.

2. while t < T

(a) In each cell C`, bq1Ncc individuals interact two by two and are subjected to birth
and competition events (5.2.1) that occur with probabilities b = brτ , p1 = pr1τ
and p2 = pr2τ ;

(b) In each cell C`, bq2Nc/2c individuals interact with bq2Nc/2c individuals sampled
in cell C`+1 and other bq2Nc/2c interact with bq2Nc/2c individuals sampled in
cell C`−1 according to (5.2.2), and migrate with probability m1 = mr

1τ for
predators and m2 = mr

2τ for preys;

(c) In each cell C`, the remaining Nc − bq1Ncc − bq2Ncc individuals are subjected
to death events (5.2.3) according to probabilities d1 = dr1τ and d2 = dr2τ ;

(d) Update the sample;

(e) Set t← t+ τ .

5.4 Numerical experiments

5.4.1 Test 1: Validation

In this section we present a comparison between the numerical solutions of the mean-field
equations and the stochastic simulations. In both the homogeneous and heterogeneous case,
stochastic simulations have been performed with the efficient version of the Monte Carlo
algorithm presented in Section 5.3. In the homogeneous case, the numerical solutions of the
mean-field equations are computed using the Matlab function ode45, [147], while in the
heterogeneous case with a combination of finite difference methods and numerical methods
for ODEs assuming periodic boundary conditions, [128]. The parameters choice for all the
tests in Section 5.4.1 is specified in Table 5.1. The sample size N and the total number of
individuals Nc in any cell change in any test and will be defined later.
Figure 5.1 shows a comparison between stochastic and mean-field solutions in the homo-
geneous case assuming the sample size to be N = 1000 and the initial predators and preys
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Table 5.1: Model parameters for the different scenarios.
br dr1 dr2 pr1 pr2 mr

1 mr
2 µ q1 q2

Homogeneous 0.1 0.1 0 0.25 0.05 - - 0.5 - -

Heterogeneous 0.1 0.1 0 0.25 0.05 0.5 0.5 - 0.3 0.3

density to be A0 = N/4 and B0 = N/2 respectively. Note that the solution of the mean-
field equations (5.2.11), without spatial dependence, converges to the stable equilibrium

f∗ =
2b̃rp̃r1 − b̃rd̃r1 − p̃r1d̃r2
2p̃r1(p̃r1 + p̃r2 + b̃r)

, g∗ =
d̃r1
2p̃r1

, (5.4.1)

that for the parameters choice of Table 5.1 takes the values f∗ = g∗ = 0.2.
Figure 5.2 shows that the error of the efficient Monte Carlo algorithm is proportional

to 1/
√
N , as the one of classic algorithms in both the predators (left) and preys (right)

cases. The errors eNf and eNg are defined as

eNf = ‖f(t)− fN (t)‖∞, eNg = ‖g(t)− gN (t)‖∞, (5.4.2)

where f(t), g(t) denote the mean-field solutions and fN (t), gN (t) denote the stochastic
solutions obtained with the efficient Monte Carlo algorithm at time t for a certain value of
N . Recall that f(t), fN (t) refer to the predators population while g(t), gN (t) to the preys
one.

Figure 5.1: Homogeneous predator-prey model: simulation of the processes described in
(5.A.1)-(5.A.2) with the efficient Monte Carlo algorithm and solutions of the spatial ho-
mogeneous mean-field equations (5.2.11) for N = 1000. Markers have been added just to
indicate different lines.
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Figure 5.2: Homogeneous predator-prey model: efficient Monte Carlo algorithm’s error
computed as in equations (5.4.2) for N = [10, . . . , 104]. The error is proportional to 1/

√
N

as the one of the classic Monte Carlo algorithm. Markers correspond to the values eNf , eNg
for a fixed N .

Let us now focus on the heterogeneous model and consider first the one dimensional
case. Assume that the dynamics evolves in an interval area of land [0, Lx], Lx > 0, divided
in Mc cells. Figure 5.3 shows three snapshots taken at time t = 5, t = 50 and t = 100 in
which the stochastic and mean-field solutions are compared. At time t = 5, A0 = Nc/4
predators and B0 = Nc/2 preys are concentrated in the same central cells. At time t = 50,
preys migrate in regions where the predators concentration is lower and predators decrease
their size and start to migrate to reach the regions occupied by preys. At time t = 100,
preys continue their migration increasing their size in the regions where the predators
concentration is lower. Figure 5.4 shows the asymptotic behavior of the two populations

Figure 5.3: Heterogeneous one dimensional predator-prey model: simulation of the processes
described in (5.2.1)-(5.2.2)-(5.2.3) with the efficient Monte Carlo algorithm and solutions of
the mean-field equations (5.2.11) for Nc = 1000. This figure shows three snapshots taken
at time t = 5 (left), t = 50 (centre), t = 100 (right). Markers have been added just to
indicate different lines.
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at the mean-field and stochastic level. Predators and preys migrate in the whole available
space reaching in each cell the value given by the equilibrium (5.4.1). Figure 5.5 shows

Figure 5.4: Heterogeneous one dimensional predator-prey model: asymptotic behavior (at
time t = 500) of predators (on the left) and preys (on the right) populations at the mean-
field and stochastic level for Nc = 1000. Markers have been added just to indicate different
lines.

that the error of the efficient Monte Carlo algorithm as a function of Nc is proportional to
1/
√
Nc, as the one of classic algorithms. The errors are computed as

eNcf =
〈

max
t
|f(x, t)− fNc(x, t)|

〉
x
, eNcg =

〈
max
t
|g(x, t)− gNc(x, t)|

〉
x
, (5.4.3)

where 〈·〉 denotes the expected value with respect to x.
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Figure 5.5: Heterogeneous one dimensional predator-prey model: efficient Monte Carlo
algorithm’s error computed as in equations (5.4.3) for Nc = [10, . . . , 104]. The error is
proportional to 1/

√
Nc, as the one of the classic Monte Carlo algorithm. Markers correspond

to the values eNcf , eNcg for a fixed Nc.

Let us now focus on the two dimensional case. Assume that the dynamics evolves in a
square area of land [0, Lx]×[0, Ly], Lx, Ly > 0 divided in C`x`y cells, for `x = 1, . . . ,Mx

c and
`y = 1, . . . ,My

c . Populations can born, compete, die and migrate in one of the four nearest
cells. The error computed as in equation (5.4.3) assuming x = (x, y) is still proportional to
1/
√
Nc, as shown in Figure 5.6.

Figure 5.6: Heterogeneous two dimensional predator-prey model: efficient Monte Carlo
algorithm’s error computed as in equations (5.4.3) for Nc = [10, . . . , 104]. The error is
proportional to 1/

√
Nc, as the one of the classic Monte Carlo algorithm. Markers correspond

to the values eNcf , eNcg for a fixed Nc.
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Figure 5.7 and Figure 5.8 show three snapshots describing the time evolution of preys
and predators densities at the mean-field and stochastic level in the heterogeneous two
dimensional case for Nc = 1000. At time t = 5, B0 = Nc/2 preys are concentrated in the
central cells and surrounded by A0 = Nc/4 predators. At time t = 100 predators migrate in
the central cells while preys reduce their size and start to migrate in the regions where the
predators concentration is lower. At time t = 150 preys are still migrating and increasing
their size. Predators on the contrary are reducing their size and migrating to reach the
regions in which preys are mainly concentrated.
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Figure 5.7: Heterogeneous two dimensional predator-prey model (preys population): sim-
ulation of the processes described in (5.2.1)-(5.2.2)-(5.2.3) with the efficient Monte Carlo
algorithm and solutions of the mean-field equations (5.2.11) in the two dimensional case for
Nc = 1000. This figure shows three snapshots taken at time t = 5 (top), t = 100 (middle),
t = 150 (bottom). On the left, mean-field solutions and on the right, stochastic simulations.
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Figure 5.8: Heterogeneous two dimensional predator-prey model (predators population):
simulation of the processes described in (5.2.1)-(5.2.2)-(5.2.3) with the efficient Monte
Carlo algorithm and solutions of the mean-field equations (5.2.11) in the two dimensional
case for Nc = 1000. This figure shows three snapshots taken at time t = 5 (top), t = 100
(middle), t = 150 (bottom). On the left, mean-field solutions and on the right, stochastic
simulations.
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In Figure 5.9 we see for simplicity just the asymptotic behavior of the predators pop-
ulation. One can show that both populations in long time migrate in the whole available
space reaching in each cell the value given by the equilibrium (5.4.1).

Figure 5.9: Heterogeneous two dimensional predator-prey model: asymptotic behaviour (at
time t = 500) of predators population at the mean-field (on the right) and stochastic (on
the left) level for Nc = 1000.

Remark 15. Note that the mean-field solutions of equations (5.2.11) present a damped
behavior in time while the stochastic solutions obtained with the efficient Monte Carlo
algorithm have a persistent behavior in time. One can prove that the stochastic persistency
is due to a resonant effect, [150]. We refer to section 5.4.4 for a dedicated test to analyzed
this behavior.

5.4.2 Test 2: Computational cost

Let us consider the homogeneous case and assume to fix the parameters µ = 0.5, br = 1,
dr1 = dr2 = 0.3, and to let the competition parameters pr1, p

r
2 to vary between 0.1 and 0.9.

Figure 5.10 shows that the computational cost of the efficient Monte Carlo algorithm is
lower than the one of the other algorithms. Figure 5.11 shows that the efficient Monte Carlo
algorithm, the direct method and the τ -leaping algorithm have a computational complexity
of order N in time while the one of the classic Monte Carlo algorithm is of order N2. Figure
5.12 shows the comparison between the computational costs of the stochastic algorithms in
the one dimensional heterogeneous case. The dynamics in (5.2.1)-(5.2.2)-(5.2.3) is simulated
for Nc = 100, q1 = 0.3, q2 = 0.3 and br = 0.1, dr1 = 0.1, dr2 = 0, pr1 = 0.25, pr2 = 0.05, letting
the migration parameters mr

1, mr
2 to vary between 0.1 and 0.9. The computational cost of

the efficient Monte Carlo algorithm is lower than the one of classic algorithms. Figure
5.13 shows the computational cost of the stochastic algorithms for different values of the
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Figure 5.10: Homogeneous predator-prey model: computational cost of efficient and classic
Monte Carlo algorithms, direct method and τ -leaping method as the competition param-
eters vary for N fixed. The dynamics in (5.A.1)-(5.A.2) is simulated for N = 500, µ = 0.5,
br = 1, dr1 = dr2 = 0.3, pr1 = pr2 = 0.1, . . . , 0.9. Markers represent the computational costs
relative to the parameters choice indicated.

Figure 5.11: Homogeneous predator-prey model: computational complexity of efficient
Monte Carlo algorithm, direct method and τ -leaping method (on the left), and classic
Monte Carlo algorithms (on the right) as N varies.The dynamics in (5.A.1)-(5.A.2) is sim-
ulated for N = 500, . . . , 4000, µ = 0.5, br = 1, dr1 = dr2 = 0.3, pr1 = pr2 = 0.5. Markers
represent the computational costs relative to the parameters choice indicated.

migration rates as Nc varies. On the left the computational costs for fixed migration rates
mr

1 = mr
2 = 0.1 and on the right for mr

1 = mr
2 = 0.9. Note that the computational cost of

the efficient Monte Carlo algorithm is always lower than the one of the classic algorithms.
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Figure 5.12: Heterogeneous one dimensional predator-prey model: computational cost of
efficient and classic Monte Carlo algorithms, direct method and τ -leaping method as the
migration parameters vary, for Nc fixed. The dynamics in (5.2.1)-(5.2.2)-(5.2.3) is simulated
for Nc = 100, q1 = 0.3, q2 = 0.3, br = 0.1, dr1 = 0.1, dr2 = 0, pr1 = 0.25, pr2 = 0.05, mr

1 =
mr

2 = 0.1, . . . , 0.9. Markers represent the computational costs relative to the parameters
choice indicated.

In Figure 5.14 a comparison between the computational costs of the stochastic algorithms

Figure 5.13: Heterogeneous one dimensional predator-prey model: computational cost of
efficient and classic Monte Carlo algorithms, direct method and τ -leaping method as Nc

varies. The dynamics in (5.2.1)-(5.2.2)-(5.2.3) is simulated for Nc = 100, . . . , 1000, q1 = 0.3,
q2 = 0.3, br = 0.1, dr1 = 0.1, dr2 = 0, pr1 = 0.25, pr2 = 0.05, mr

1 = mr
2 = 0.1(on the left),

mr
1 = mr

2 = 0.9 (on the right). Markers represent the computational costs relative to the
parameters choice indicated.
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in the two dimensional heterogeneous case. The dynamics is simulated for Nc = 50 fixed,
q1 = 0.3, q2 = 0.3, br = 0.1, dr1 = 0.1 dr2 = 0, pr1 = 0.25, pr2 = 0.05, letting the migration
parameters to vary between 0.1 and 0.9. Also in this case the efficient Monte Carlo algorithm
has a computational cost lower than the one of classic algorithms.

Figure 5.14: Heterogeneous two dimensional predator-prey model: computational cost of
efficient and classic Monte Carlo algorithms, direct method and τ -leaping method as the
migration parameters vary, for Nc fixed. The dynamics in (5.2.1)-(5.2.2)-(5.2.3) is simulated
for Nc = 50, q1 = 0.3, q2 = 0.3, br = 0.1, dr1 = 0.1, dr2 = 0, pr1 = 0.25, pr2 = 0.05, mr

1 =
mr

2 = 0.1, . . . , 0.9. Markers represent the computational costs relative to the parameters
choice indicated.

5.4.3 Test 3: Accuracy & performances

In the following we will compare the accuracy of the direct method with the one of the
efficient Monte Carlo algorithm and of the τ -leaping method. We first focus on the homo-
geneous case and we define the errors as

ENf = ‖fNDM (t)− fN‖∞, ENg = ‖gNDM (t)− gN‖∞, (5.4.4)

where fNDM (t), gNDM (t) denote the simulations obtained with the direct method and fN (t),
gN (t) denote the simulations obtained either with the efficient Monte Carlo or with the τ -
leaping algorithms for the predators and preys populations, respectively. Figure 5.15 shows
the errors ENf , ENg as N varies and for fixed birth, competition and death parameters
(see Table 5.1). Note that the error related to the simulations obtained with the efficient
Monte Carlo algorithm is lower than the one related to the simulated τ -leaping solutions for
almost every N . Note also that both errors decrease as the sample size increases reaching
a constant value when N is large enough.
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DM vs -leaping

DM vs efficient MC

DM vs -leaping

DM vs efficient MC

Figure 5.15: Homogeneous predator-prey model: accuracy of the efficient Monte Carlo and
of the τ -leaping algorithms with respect to the direct method as N varies. The dynamics
in (5.A.1)-(5.A.2) is simulated for N = 102, . . . , 5×106, µ = 0.5, br = 0.1, dr1 = 0.1, dr2 = 0,
pr1 = 0.25, pr2 = 0.05. Markers correspond to the values ENf , E

N
g computed as in equations

(5.4.4) for a fixed N .

The same results can be obtained in the heterogeneous case with the parameters choice
reported in Table 5.1, as show in Figure 5.16. Here, for simplicity we focus on the one
dimensional case and we define the errors as

ENcf =
〈

max
t
|fNc(x, t)− fNc(x, t)|

〉
x
, ENcg =

〈
max
t
|gNc(x, t)− gNc(x, t)|

〉
x
, (5.4.5)

where 〈·〉 denotes the expected value with respect to x.
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Efficient MC
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DM vs efficient MC

Figure 5.16: Heterogeneous predator-prey model: accuracy of the efficient Monte Carlo and
of the τ -leaping algorithms with respect to the direct method as Nc varies. The dynamics in
(5.2.1)-(5.2.2)-(5.2.3) is simulated for Nc = 102, . . . , 105, q1 = q2 = 0.3, br = 0.1, dr1 = 0.1,
dr2 = 0, pr1 = 0.25, pr2 = 0.05, m1 = 0.5, m2 = 0.5. Markers correspond to the values
Ef (Nc), Eg(Nc) computed as in equations (5.4.5) for a fixed Nc.

Figure 5.17 shows the trade off between the error Ef and the computational costs of
the efficient Monte Carlo algorithm and of the τ -leaping method in both the homogeneous
and heterogeneous case for the predators dynamics. Note that both errors decrease as
the computational time increases, that is as the sample size increases. Note also that in
the homogeneous case the computational cost is lower but the error is higher than in the
heterogeneous case. Here, for simplicity we focus on the predators dynamics but the same
results can be obtained if we focus on the preys dynamics.
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-leaping

Efficient MC

-leaping

Efficient MC

Figure 5.17: Homogeneous and heterogeneous one dimensional predator-prey model: trade-
off of error ENcf computed as in equation (5.4.4)-(5.4.5) vs computational cost of the efficient
Monte Carlo and of the τ -leaping algorithms as the computational cost varies. On the left
the trade-off in the homogeneous case, on the right in the heterogeneous case. Markers
correspond to the values ENcf in relation to the computational costs.

5.4.4 Test 4: Stochastic persistency

We have observed in Figure 5.1 that both mean-field solutions and stochastic simulations
present an oscillatory behavior. However, the nature of the oscillations seems to be different.
Following the idea in [150], we can prove that oscillations in predators and preys stochastic
simulations should be of order 1/

√
N , as the error of the Monte Carlo method, but indeed

are amplified by a large factor due to noise resonant effect.

In order to analyze the nature of oscillations we introduce the following linearized model
corresponding to a perturbation of the mean-field dynamics (5.2.9) in absence of spatial
diffusion, see also Appendix 5.A,

d

dt

[
fN

gN

]
= Ψ

[
fN

gN

]
+ Φξ, (5.4.6)

where Ψ is the Jacobian matrix of the mean-field equations evaluated at the equilibrium
(f∗, g∗), defined in (5.4.1), Φ corresponds to the following matrix

Φ =

 0
√

2p̃r1f
∗g∗ 0 −

√
d̃r1f
∗√

2b̃rg∗(1− f∗ − g∗) −
√

2p̃r1f
∗g∗ −

√
2p̃r2f

∗g∗ + d̃r2g
∗ 0

 ,
associated to the white noise vector ξ = [ξ1, ξ2, ξ3, ξ4]T , with ξi i.i.d distributed random
numbers with zero mean and variance 1/

√
N , [113],[184]. We focus on the predator density,
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we compute the Fourier transform of the mean-field density f(t), i.e. f̃(ω), and we derive
the power spectrum

P (ω) =
〈
|f̃(ω)|2

〉
=

Θ + Λω2

(ω2 − Ω2
0)2 + Γ2ω2

, (5.4.7)

where 〈·〉 is the expected value w.r.t. ξ. The parameters Θ,Λ,Ω0,Γ are defined as follows

Θ =
〈
[Ψ12(Φ21ξ1 + Φ22ξ2 + Φ23ξ3)−Ψ22(Φ12ξ2 + Φ14ξ4)]2

〉
Λ =

〈
[(Φ12ξ2 + Φ14ξ4]2

〉
, Ω2

0 = Ψ12|Ψ21|, Γ = |Ψ22|.

Note that P (ω) resembles the one of a damped harmonic oscillator, [124]. As shown in
Figure 5.18 on the left, the solution f(t) of the system of equations (5.4.6) without the
influence of noise behaves as an under-damped harmonic oscillator. The damped term is
Γ < 1 and oscillations decrease exponentially as Ã exp

(
−Γ

2 t
)

where Ã is the maximum
oscillations amplitude. This behavior recalls the one of the mean-field solutions. If we
introduce the noise term, we see in Figure 5.18 on the right that the oscillations amplitude
is influenced both by damped and resonant effects and the oscillations become sustained
as the one of the stochastic simulations shown in Section 5.4. Hence the resonant effect
is a consequence of the white noise that is not an external factor but it is due to the
stochasticity of birth, death and competitions events.

Signal

Figure 5.18: Predators density without noise (on the left) and with noise (on the right) as
solution of equations (5.4.6).

In Figure 5.19 the power spectrum computed as in equation (5.4.7) and the one ob-
tained averaging the results of 500 simulations of the processes described in (5.A.1)-(5.A.2)
computed with the efficient Monte Carlo algorithm and with the direct method for differ-
ent values of N and for the parameters choice reported in the first line of Table 5.1. Note
that the two simulated power spectra agree with the one computed as in equation (5.4.7),
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especially when N is large. Note also that the amplitude of the oscillations decreases as N
increases.

Simulated P( ) (efficient MC)

Simulated P( ) (DM)

P( ) (theory)

Simulated P( ) (efficient MC)

Simulated P( ) (DM)

P( ) (theory)

Figure 5.19: Homogeneous case: power spectrum computed as in equation (5.4.7) in red,
averaging 500 simulations of the processes described in (5.A.1)-(5.A.2) computed with the
efficient Monte Carlo algorithm in blue and with the direct method in black. On the left
N = 103 and on the right N = 105. Markers have been added just to indicate different
lines.

The same results can be obtained in the heterogeneous case in each cell C`, ` =
1, . . . ,Mc, as the time t varies. In Figure 5.20, we see an example of persistent oscilla-
tory behavior in stochastic simulations compared with the damped one of the mean-field
solutions in cell C`, ` = 25, 50 for Nc = 100, Mc = 100.
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Figure 5.20: Heterogeneous case: time evolution of the predators density in cell C`, ` =
25, 50. Parameters: Nc = 100, br = 0.1, dr1 = 0.1, dr2 = 0, pr1 = 0.25, pr2 = 0.05, mr

1 = mr
2 =

0.5, cell C`, ` = 25, 50. Markers have been added just to indicate different lines.

In Figure 5.21 on the left the power spectrum computed averaging the results of 500
simulations of the processes described in (5.2.1)-(5.2.2)-(5.2.3) in cell C`, ` = 25, 50 with
the efficient Monte Carlo algorithm for the parameters choice reported in the second line of
Table 5.1 for Nc = 100 and T = 2000. On the right, the average between the power spectra
computed in cell C`, ` = 1, . . . ,Mc obtained with the efficient Monte Carlo algorithm and
with the direct method. Note that also in the heterogeneous case the power spectrum recalls
the one of a damped harmonic oscillator. Note also that the two average power spectra
agree and so that the oscillations that characterize the simulations obtained with the two
algorithms are of the same nature.
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Simulated P( ) (efficient MC)

Simulated P( ) (DM)

Figure 5.21: Heterogeneous case: power spectrum. On the left, power spectrum computed
averaging 500 simulations of the processes described in (5.2.1)-(5.2.2)-(5.2.3) in cell C`,
` = 25, 50 obtained with the efficient Monte Carlo algorithm. On the right the average
between the power spectra computed in cell C`, ` = 1, . . . ,Mc obtained with the efficient
Monte Carlo algorithm (in blue) and with the direct method (in magenta). Markers have
been added just to indicate different lines.

5.5 Conclusion

Starting from the microscopic level it is possible to derive the master equation that describes
the time evolution of the probability of being in a certain state and the mean-field equations
that provide an average description of the behavior of the system which is valid only when
the sample size N is arbitrary large. Stochastic models instead describe the individuals
behavior of interacting species in a more realistic context. However, classic stochastic al-
gorithms have high computational costs, especially when the sample size increases. In this
chapter, we have presented a valid efficient stochastic algorithm that, compared to other
algorithms, has lower computational costs, and equivalent, or even better performances.
First we have proved its consistency providing a reformulation of the model and showing
that the mean-field equations are still valid. Then with different numerical experiments
we have proved that the efficient Monte Carlo algorithm produces solutions that oscillate
around the mean-field ones and that the error between stochastic simulations and mean-
field solutions as a function of N is still proportional to 1/

√
N . We have also shown which

is the main advantage of this new method proving that its computational cost is lower than
the one of classical algorithms for a huge set of parameters but its accuracy is preserved. In
the end, we have compared the oscillatory behavior of the stochastic and mean-field solu-
tions underling the differences in their oscillatory behavior. Due to the flexible formulation
of the ensemble stochastic algorithm it can be used not only to simulate the microscopic
dynamics of interacting biological entities, but further generalized to other agent-based



5.A. SPATIAL HOMOGENEOUS PREDATOR-PREY MODEL 143

models, with different interaction dynamics and different macroscopic limiting models.

Appendix 5.A Spatial homogeneous predator-prey model

We report here the agent-based model associated to spatial homogeneous dynamics.

Agent-based dynamics At each instant of time we select one individual and with prob-
ability µ ∈ [0, 1] we assume that an interaction occurs with another individual, randomly
chosen among the remaining N − 1, according to the following rules

sBsE
br−→ sBsB, sAsB

pr1−→ sAsA, sAsB
pr2−→ sAsE , (5.A.1)

where br, pr1, p
r
2 are birth, and competition rates, and when interaction occurs among two

empty components no change is accounted. Otherwise, with probability 1− µ, we assume
that the sampled individual changes according to death events with rates dr1, d

r
2, as follows

sA
dr1−→ sE , sB

dr2−→ sE . (5.A.2)

We suppose that if the selected component is empty then no changes in the populations
sizes happen. We assume that at most one birth/competition and one death event can
occur at each time step.

We focus on the evolution of the total number of predators and preys considering the
transition rates from state x = (A,B,E) to the states x + vj , where vj denotes the j-th
row of the stoichiometry matrix

V =


0 1 −1
1 −1 0
0 −1 1
−1 0 1
0 −1 1

 , (5.A.3)

whose columns represent predators, preys and empty components respectively and whose
rows represent the changes in the populations sizes due to the birth, competition and death
events described in (5.A.1)-(5.A.2). For such predator-prey dynamics the transition rates
write as follows

πv1(x) = 2µbr
B

N

E

N − 1
, πv2(x) = 2µpr1

A

N

B

N − 1
, πv3(x) = 2µpr2

A

N

B

N − 1
,

πv4(x) = (1− µ)dr1
A

N
, πv5(x) = (1− µ)dr2

B

N
,

(5.A.4)

where we define the operators πvj (x) = π(x + vj |x) for any j = 1, . . . ,M . Here, M = 5
denotes the total number of events described in (5.A.1)-(5.A.2). In Figure 5.22 we depicted
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(A,B,E) (A,B + 1, E)(A,B − 1, E + 1)

(A+ 1, B,E − 1)

(A− 1, B,E + 1)

(A+ 1, B − 1, E)

(A− 1, B + 1, E)

Figure 5.22: Neighbor states are connected to state (A,B,E) either with outgoing arrows
(red) for loss events, or with incoming arrows (blue) for gain events.

for A predators, B preys and E empty states all possible states x + vj after one step
of process (5.A.1)-(5.A.2). Neighbor states x + vj are connected to state x either with
outgoing arrows (red) for loss events, or with incoming arrows (blue) for gain events. Given
the probability P (x, t) to be in the state x with A predators, B preys and E empty spaces
at time t, its time evolution is governed by the associated master equation as follows

dP (x, t)

dt
=

M∑
j=1

[
(Evj − 1) (P (x, t)π(x + vj |x))

]
, (5.A.5)

where the step operator Ev acts on an arbitrary function f according to

Evj (f(x)) = f(x− vj). (5.A.6)

Mean-field type approximations In analogy to Section 5.2, the spatial homogeneous
mean-field approximation (5.2.11) can be derived from the master equation (5.A.5) intro-
ducing the empirical densities fN , gN as in (5.2.8).

A different approximation is obtained considering a Taylor expansion of (5.A.6) up
to second order. In this framework, the master equation (5.A.5) is approximated by the
following Fokker-Planck equation

dP (x, t)

dt
= −

3∑
i=1

∂xi

(
M−1∑
j=1

Aij(x)P (x, t)

)
+

1

2

3∑
i=1

∂xixi

(
M−1∑
j=1

Dij(x)P (x, t)

)
+

3∑
i=1

3∑
k=1
k 6=i

∂xixk

(
M−1∑
j=1

Cikj(x)P (x, t)

)
,

(5.A.7)
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where

Aij(x) = vijΠvj (x), Dij(x) = (vij)
2Πvj (x), Cikj(x) = vijv

k
jΠvj (x). (5.A.8)

Here vij denotes the (i, j) component of the stoichiometry matrix V and Πvl(x) = πvl(x)
for l ∈ {1, 2, 4} and Πv3(x) = πv3(x) + πv5(x). As stated in [113], [184], [112], equation
(5.A.7) is the Fokker-Planck equation associated to the Langevin equations

dxi
dt

=
M−1∑
j=1

(
Aij(x) +

√
Dij(x)ξj

)
, (5.A.9)

for i = 1, . . . , 3, where ξj , j = 1, . . . ,M − 1 are normally distributed random numbers with
zero mean and variance equal to 1/

√
N . Hence, multiplying both sides of equation (5.A.9)

by P (x, t)/N and summing over all the values of xi, i = 1, . . . , 3 we can write

dfN

dτ
= (βgN − δ)fN +

√
2p̃r1f

NgNξ2 −
√
d̃r1f

Nξ4,

dgN

dτ
= rgN

(
1− gN

K

)
− αfNgN +

√
2b̃rgN (1− fN − gN )ξ1

−
√

2p̃r2f
NgN + d̃r2ξ3 −

√
2p̃r1f

NgNξ2,

(5.A.10)

where we have substituted the value Aij and Dij defined in (5.A.8). Time is scaled according
to τ = t/N , and parameters are defined as β = 2µpr1, δ = (1−µ)dr1, α = 2µ(pr1+pr2+br),r =

2µbr−(1−µ)dr2, and K = 1− (1−µ)dr2
2µbr . Note that in the limit N →∞ the Langevin equations

in (5.A.10) collapse to the spatial homogeneous mean-field equations (5.2.11).

Appendix 5.B Monte Carlo algorithms for agent-based dy-
namics

We report some of the classic stochastic algorithms for agent-based models with predator-
prey interaction without spatial interaction. We refer to [111, 114, 56] for classical ap-
proaches, and to [146] for a comprehensive collection on stochastic algorithms for agent-
based dynamics.

Direct method The main idea of the direct method is to estimate which is the next
firing event j and at which time τ it will occur from the probability density function

p(τ, j|x, t) = aj(x)e−a0(x)τ . (5.B.1)

Here aj(x) = Nπ(x+vj |x) represents the propensity of the event j and a0 is the sum of all
the propensities. At each time t suppose to split the probability density function defined
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in equation (5.B.1) into the product of two probability functions, one for the firing time τ
and the other for the event j that occurs at time t+ τ , as follows

p(τ, j|x, t) = p1(τ |x, t)p2(j|τ,x, t), (5.B.2)

where

p1(τ |x, t) = a0(x)e−a0(x)τ , p2(j|τ,x, t) =
aj(x)

a0(x)
. (5.B.3)

Consider two uniformly distributed random numbers r1, r2 ∼ U(0, 1), the index of the next
firing event j can be computed as the smallest index such that

j∑
k=1

ak(x) ≥ r1a0(x). (5.B.4)

The time in which the next event happens can be computed from the first equation in
(5.B.3) as

τ =
1

a0(x)
ln(r−1

2 ). (5.B.5)

Algorithm 5.B.1 outlines the details of the direct method.

Algorithm 5.B.1 (Direct method).

1. Define the stoichiometry matrix V , the initial state x, the initial time t = 0 and the
final time T .

2. while t < T

(a) Compute the propensities aj , j = 1, . . . ,M .

(b) Consider two uniformly distributed random numbers r1, r2 ∼ U(0, 1).

(c) Select the index of the next firing event as in equation 5.B.4.

(d) Compute the time in which the next event fires as in equation 5.B.5.

(e) Set x = x + vj where vj is the j-th row of the stoichiometry matrix V defined
as in equation 5.A.3.

(f) Set t← t+ τ .

repeat
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Classic Monte Carlo algorithm The classic Monte Carlo method is an approximated
stochastic algorithm. It allows multiple events to occur at the same time step that is
supposed to be inversely proportional to the sample size N . Its computational costs increase
as the sample size increases and can be comparable with the ones of exact algorithms.
The main idea of the classic Monte Carlo algorithm is the following. Suppose to divide a
priori the time interval considering a constant time step τ/N . At each time t select two
components and assume that with probability µ ∈ [0, 1] a birth or a competition event can
occur. If the two selected components are

• a prey and an empty space: with probability brτ a new prey born and occupies the
empty space;

• a predator and a prey: with probability pr1τ a new predator born and with probability
pr2τ the prey dies and a new empty space is added to the system.

Extract another component and assume that with probability 1−µ a death event can occur.
If the selected component is occupied by a predator then with probability dr1τ the predator
dies and if it is occupied by a prey then with probability dr2τ the prey dies. Algorithm 5.B.2
defines the details of the classic Monte Carlo algorithm.

Algorithm 5.B.2 (Classic Monte Carlo algorithm).

1. Define the sample, the initial time t = 0, the final time T , the time step as τ/N and
a parameter µ ∈ [0, 1].

2. while t < T

(a) Select two components inside the sample.

(b) Assume that with probability µ birth and competition events happen

BE
b−→ BB, AB

p1−→ AA, AB
p2−→ AE,

where b = brτ , pr1τ and pr2τ .

(c) Select another component in the sample.

(d) Assume that with probability 1− µ death events happen

A
d1−→ E, B

d2−→ E,

with d1 = dr1τ and d2 = dr2τ .

(e) Update the sample.

(f) Set t← t+ τ/N .

repeat
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τ-leaping method The τ -leaping method is another approximated stochastic algorithm.
Its main idea is to assume that multiple events can happen in the same time interval that
is suppose to vary in time. Therefore this algorithm, as the Monte Carlo and the direct
method, has to cope with high computational costs. In the following we will describe more
in details how the τ -leaping algorithm works. Assume that more than one event can fire
simultaneously at any time step. The probability that kj events fires in the time interval
(t, t+ τ) follows a Poisson distribution of parameter aj(x)τ where aj(x) is the propensity
of event j and τ the time step. The number of firing events kj is generated by sampling
its corresponding Poisson distribution, Poi(aj(x)τ). The state can be updated according
to the following rule

x(t+ τ) = x(t) +
M∑
j=1

kjvj = x +
M∑
j=1

Poi(aj(x)τ)vj . (5.B.6)

The time step τ is updated according to a leap selection:

• choose an initial time step τ ;

• let 0 < ε < 1 and until ∆aj(x) := |aj(x(t+ τ))− aj(x(τ))| > ε set τ = τ/2.

Algorithm 5.B.3 outlines the details of the τ -leaping method.

Algorithm 5.B.3 (τ - leaping method).

1. Define the stoichiometry matrix V , the initial state x, the initial time t = 0 and the
final time T , the time step τ .

2. while t < T

(a) Compute the propensities aj , j = 1, . . . ,M .

(b) Consider M uniformly distributed random numbers k1, . . . , kM ∼ Poi(aj(x)τ).

(c) Update the state as in equation (5.B.6).

(d) Choose τ with leap selection.

(e) Set t← t+ τ .

repeat



Chapter 6

Conclusion and perspectives
In this thesis we have exploited different particles schemes to simulate the dynamics of
huge groups of agents through the derivation of kinetic equations and through stochastic
description. As we have seen, the numerical methods introduced in Chapter 1 can be used
to simulate the dynamics in different contexts. These methods present different advantages,
as for instance they can handle the problem of dimensionality in computing the interaction
term, or, thanks to their stochastic nature, they can be useful to preserve the natural as-
pects which characterize the dynamics, such as randomness and uncertainty. However, their
accuracy depends on the total number of particles used for simulations and in low popu-
lated regions they can produce distorted results. For what concern the control of plasma
instability exploited in Chapter 2 we might be interested in providing a theoretical study
of the controllability of the system, and in testing the results with high order schemes. We
might be also interested in deriving a finite horizon control of the system, and in study-
ing the Vlasov-Poisson equation with uncertainties via machine learning methods. Then,
several questions arise concerning the study of non-local interactions. As we have seen in
Chapter 3, topological interactions which induce non-locality can be efficiently simulated
by a k-nn search algorithm. However, the proposed numerical scheme can be further im-
proved by studying different ways to approximate this kind of interactions. Furthermore,
the numerical scheme proposed for global optimization in Chapter 4 can be also studied in
different contexts such as for instance in constrained optimization [37] or in models involv-
ing fractional diffusion [133]. Finally, the approximated stochastic algorithms introduced
in Chapter 5 might be further improved and generalized to other agent-based models.
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in ants when foraging under crowded conditions. Behavioral Ecology and Sociobiology,
61:17–30, 2006.

[90] M. R. D
’
ÄôOrsogna, Y.-L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-propelled

particles with soft-core interactions: patterns, stability, and collapse. Physical review
letters, 96(10):104302, 2006.

[91] L. Einkemmer, Q. Li, L. Wang, and Y. Yunan. Suppressing instability in a Vlasov–
Poisson system by an external electric field through constrained optimization. Journal
of Computational Physics, 498:112662, 2024.

[92] S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt. Simulation of stochastic
reaction-diffusion processes on unstructured meshes. SIAM Journal on Scientific
Computing, 31(3):1774–1797, 2009.

[93] A. Fasoli, S. Brunner, W. Cooper, J. Graves, P. Ricci, O. Sauter, and L. Villard.
Computational challenges in magnetic-confinement fusion physics. Nature Physics,
12(5):411–423, 2016.

[94] E. Fernández-Juricic, J. T. Erichsen, and A. Kacelnik. Visual perception and social
foraging in birds. Trends in Ecology & Evolution, 19(1):25–31, 2004.

[95] E. Fernández-Juricic, S. Siller, and A. Kacelnik. Flock density, social foraging, and
scanning: an experiment with starlings. Behavioral ecology, 15(3):371–379, 2004.

[96] F. Filbet and L. M. Rodrigues. Asymptotically stable Particle-In-Cell methods for
the Vlasov–Poisson system with a strong external magnetic field. SIAM Journal on
Numerical Analysis, 54(2):1120–1146, 2016.

[97] F. Filbet and L. M. Rodrigues. Asymptotically preserving Particle-In-Cell meth-
ods for inhomogeneous strongly magnetized plasmas. SIAM Journal on Numerical
Analysis, 55(5):2416–2443, 2017.
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