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Introduction

Complex systems permeate nature, appearing in everything from microscopic life forms

to the unpredictable dynamics of atmospheric phenomena [1, 2]. Characterized by the

intricate interplay of numerous components, these systems often exhibit emergent features

not easily predicted by the behavior of the individual parts. Among them, the ”rare event”

phenomenon stands out as a ubiquitous feature occurring with extremely small probability

yet in very rapid motion [3]. However, they are not prerogative to systems with many parts.

Indeed, one can also observe the same feature in the chemical reactions of a few atoms.

In the vast context of biological macromolecules, rare conformational rearrangements

(prototypes of rare events) are responsible for many crucial physiological functions in the

body of living organisms [4]. For example, they give rise to hemoglobin’s modulation in

affinity to Oxygen as the protein goes from the T state to the R state (or R→T) [5]. In

other ”not-so-favorable” cases, such transitions lead to the misfolding of α-synuclein protein,

instigating the formation of amyloid plaques and ultimately causing Parkinson’s disease [6].

Obviously, meticulous and detailed characterization of the mechanism behind these rare

transitions is not only theoretically fascinating but of practical importance, especially in

advancing drug development and in the wake of the Covid-19 pandemic.

In the quest to characterize the complex structure and dynamics of bio-molecules, an

in vivo study is arguably the most natural way to approach the problem. However, this

approach essentially requires the whole living organism (of which the molecule is only

a part) to seize its functioning while we probe different aspects of the molecular system.

Conversely, one could resort to in vitro methods which provide more control by first isolating

the molecule, e.g. using recombinant DNA techniques, and then exhaustively applying tools
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Introduction

such as NMR spectroscopy, to reveal different observables of the system in an equilibrium

ensemble [7]. Unfortunately, such an approach is fundamentally bound to introduce artifacts

and biases into the system as the cellular regulations and guidance on the molecule are

eliminated. Most importantly, neither in vivo nor in vitro experimental methods provide

the resolution to yield a complete characterization of structural changes with an atomic

level of detail.

In contrast, in silico studies retain virtually unparalleled controllability over the sys-

tem (the molecule) while they replicate (in principle) the entire dynamic of the cell in full

atomistic details [8]. In this realm, the computational ”microscope” of Molecular dynamics

(MD) has been arguably at the forefront for the past 50 years. Originally developed in the

context of condensed matter physics [9, 10], MD soon gained popularity in other areas such

as material science and biophysics [11, 12]. During this time, MD has evolved into an indis-

pensable tool in the computational studies of bio-molecular systems, owing to its capacity

to track the evolution of every atom at time resolutions hard to match in experiments [13].

The framework of MD comprises a set of algorithms and techniques necessary to in-

tegrate the Newtonian equations of motion for each atom of the system. The all-atom

forcefields involved, determined by empirical data and ab initio quantum mechanical (QM)

calculations, ensure realistic and accurate simulation of the dynamics [14, 15], while due

to the physical timescales imposed by the chemical bonds, the integration’s timesteps are

necessarily maintained on the order of ∼ 1-fs (femtoseconds). In principle, the latter would

be advantageous in allowing us to access the full range of biomolecules’ conformational

transitions that primarily occur at timescales ≳ 1-ps (picoseconds) [16]. However, in prac-

tice, these transitions involve a wide range of characteristic timescales, from bond length

vibrations at ∼ 1-fs to the scale of large structural changes such as protein folding at 1-ms

(milliseconds) and beyond. Thus, bridging this massive gap requires the simulations to

track the dynamics for ∼ 1012 − 1015 iterations to replicate crucial rare transitions. In

addition, the sheer number of calculations (e.g. to evaluate forces) involved in each step of

integration, from 3N ∼ 3 × 104 for small proteins to 3 × 106 for large complexes, incur a

heavy computational load in terms of memory. This is not to mention statistically the most

difficult challenge. In every in silico experiment, one needs to retrieve an ensemble of (long)

molecular trajectories to characterize a transition/reaction and obtain the thermodynamic

observables involved.

To address the computational load of simulating rare events, significant efforts have

been dedicated to devising machines and platforms specifically designed to accelerate and

also perform MD-based sampling [17]. One of the most influential platforms that has also

achieved remarkable results is the Folding@Home project [18]. First developed in 2000,

the primary focus of this distributed cloud computing platform has been to investigate the
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dynamics of proteins, most importantly in the folding process, and to identify their role in

various diseases subsequently. Two of the earliest nominal contributions of Folding@Home

were the structural study of the N17 domain of the Huntingtin Protein (Huntington disease)

and the investigation of the role of Aβ’s 42-residue variant in Alzheimer’s disease [19–21].

DE Shaw Research (DESRES), a privately held biochemistry research company, an-

nounced in 2008 the development of the first iteration of their supercomputer called An-

ton [22]. Anton-1 was specifically built to perform large-scale MD simulations for timescales

of order milliseconds (ms). While Folding@Home relied on distributed short-lived simula-

tions using their petaFLOPS1 platform to achieve aggregated 1-ms of simulation time [23],

thanks to its highly parallelized (and specialized) network of ASIC2 systems, Anton was

the first to break this crucial barrier using a single continuous simulation [24]. More im-

portantly, Anton achieved this feat using an explicit solvent forcefield, unlike the implicit

solvent utilized in Folding@Home’s simulations.

In 2010, Anton published their result on the simulation for more than 1 ms of Bovine

Pancreatic Trypsin Inhibitor’s (BPTI) near-native state dynamics [25]. Additionally, the

following year, they provided data on the folding process of 12 ”fast folder” molecules,

each with a folding time in the range of a few tens of microseconds (µs) or higher [26].

These results were shown to have substantial overlap with the experimental data that had

been gathered at the time. Both the Folding@Home and Anton simulations remarkably

proved that the existing forcefields are capable of identifying the native structure of pro-

teins (at least in the case of ones with spatially modest size) starting from the unfolded

configurations.

With Folding@Home’s announcement of exceeding 1.5 exaFLOPs of cumulative com-

putations in 2020, and Anton-3 becoming operational in the following year –reaching an

impressive performance of 20µs simulation of 1-million atoms in less than 4 hours–, special-

ized computing platforms remain central in the computational studies of biomolecules [27].

However, performing ms-long unbiased MD simulations using all-atom forcefields, even with

the development of GPU-accelerated MD software, is not yet an everyday routine. This

limitation is especially true considering the modest computer clusters available to the av-

erage scientific project in this field. Moreover, even supercomputers have great difficulty

performing ∼ 1-s of consecutive simulation for many atoms. It’s worth noting that this is

the scale where large proteins fold [28] and even quaternary structures, such as dimers, and

oligomers [16], start to appear. As we await the development of more powerful computers,

other means must therefore be developed to reduce the computational cost for in silico

studies and opens the door for more accessible scientific discoveries.

1Floating points operations per second
2Application-specific integrated circuits
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Going back to the 1970s, the advent of MD seemed promising to revolutionize macro-

molecular modeling, due to its (in principle) capabilities in simulating the entire equilibrium

dynamics in fine atomistic details. Such possibilities seemed more tangible as the commer-

cialized computers became more widespread. However, even by 1979 –when McCammon

et al., produced a staggering (at the time) 100-ps MD simulation of BPTI’s native struc-

ture [12]–, it was clear that in silico experiments required more efficient alternatives than

plain MD. As a consequence, in the past 40 years, a new category of computational meth-

ods, aptly named enhanced sampling methods, has emerged. These methods extend the

utility of MD simulations by employing different levels of theory and approximations –

with/out access to large computational resources– in the study of biomolecular systems,

and especially in rare conformational transitions.

To give a few examples: Umbrella sampling [29] or Steered MD [30] introduce an un-

physical force, either along a Collective Variable (CV) or on specific atoms, to ”push” the

system to the top of the free energy barrier. Alternatively, in the path-based sampling meth-

ods, the focus is to use MD to retrieve primarily trajectories that pertain to overcoming the

large free energy regions [31]; thus, avoiding the uninteresting exponential time the system

spends thermally fluctuating in the metastable basins. The enhanced sampling methods

have greatly improved the applicability of MD in the context of molecular sampling. In

some instances, they remain the only practically viable approach to obtaining information

on complex conformational transitions. Efforts to map the free energy landscape (FEL)

of B3 domain of protein G using experimental data and Metadyanmics1 [32], and usage of

Transition Path Sampling (TPS) to study the binding and unbinding pathways of a base

pair in a CGC DNA oligomer [33], are to name a few applications.

Despite all of this, the cost of simulating medium to large-scale biological systems still

remains insurmountable. The issue becomes more troublesome when focusing on the transi-

tions between structurally distant metastable states, such as association/dissociation events

or protein folding. It is worth mentioning that some of these challenges may be mitigated

by utilizing coarse-grained MD [34]. However, this comes at the cost of losing some of the

atomistic details that made computational approaches attractive in the first place compared

to more physical ”wet-lab” alternatives. In addition, defining and computing the effective

forces between the degrees of freedom of coarse-grained models is both theoretically and

computationally challenging. For example, until quite recently it was believed that the

existing protein coarse-grained models are unable to predict native structures or even rec-

ognize them among a set of decoy structures [35, 36]. Therefore, the quest remains open to

find computationally affordable and accurate methods for studying complex molecules and

their transitions.

1A method similar to Umbrella sampling but with adaptive biasing force as the sampling progresses.
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In the last two decades or so, Artificial Intelligence (AI) has revolutionized the field

of computing and all the scientific endeavors that are involved in it [37–40]. Machine

Learning (ML) tools have already made a significant impact on how we perform sampling,

analyze the data, and even how to make predictions. One famous example in Biophysics

and Biomolecular modeling in recent years is the AlphaFold’s Deep Learning (DL) model

that predicts the 3D folded structure of proteins from their amino acid sequences [41].

In other instances, ML or DL-based approaches are incorporated to: learn the forcefields

from QM calculations or molecular modeling [42, 43], expediting the sampling and state

detection with dimensionality reduction methods [44], and extracting thermodynamical

information [45]. As more practical examples, these methods have also been utilized for

drug development and discovery [46, 47]. With the rate that AI is ”diffusing” through

the scientific community on every level –theory, computational, and experiments– time can

only tell what would be the limitations of future frameworks and schemes for studying

bio-macromolecules.

On the other side of the computational methods spectrum over the last few years, quan-

tum hardware has grown exponentially both in size and performance [48–50]. Even though

the concept of quantum advantage has not yet been fully realized, it is not impossible to see

its onset in the near future [51, 52]. This led us to contemplate whether quantum comput-

ing (in its current not-optimal state) could provide new opportunities for sampling complex

molecular systems. Quantum computers (QCs) deal with quantum bits (qubits) instead of

the classical binary variables (bits). The Qubits allow for a quantum superposition of 0 and

1 states in contrast to bits, hence, the amount of information that can be stored in an equal

number of qubits would be exponentially larger. This feature, combined with quantum

entanglements between the qubits, allows to achieve computations at a much faster rate

with a QC than a classical computer (at least in principle). Therefore, perhaps it is timely

to address the question: Can MD, ML, and quantum computing be integrated together to

tackle outstanding problems in the sampling and simulation of complex biological molecular

systems? This question is exactly what we have aimed to answer in this thesis.

Our main interest in this endeavor is to develop a method that can study thermally ac-

tivated rare molecular transitions, yet, it has to remain agnostic to any a priori knowledge

of the system under study. Therefore, it can remain as universal as possible without requir-

ing a predefined application-specific CV. To this aim, by focusing our attention on path

sampling methods and specifically the Transition Path Sampling (TPS) framework [53], we

investigate the potential of introducing QC in this framework. TPS and its variants have

traditionally faced difficulty in generating significantly different pathways at an acceptable

rate when the associated rare events occur on a characteristic time-scale of ≳ 1µs. Conse-

quently, the resulting MC’s Markov chains is left with large auto-correlation values between

the sampled transition pathways. By utilizing the inherent properties of QC in conjunction
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with the enhancements of ML, we develop a novel TPS framework that directly tackles this

auto-correlation problem.

The thesis is organized as follows: In the Chapter 1, we begin by briefly reviewing some

of the previous approaches for enhancing molecular sampling. In particular, our focus would

be on the advantage of these methods for sampling rare events compared to simple plain

MD. The coarse-graining models and approaches are not discussed deliberately (except

mentioning of few examples) as they require more extensive discussion and essentially do

not fit with the notion of atomistic details we are after. By delving more into the detail of

TPS framework, we discuss some of the variants of this approach and their challenges, in

the context of studying rare transitions. We then give an overview of quantum computing

and in specific quantum annealing [54–58]. This allows us to finally introduce our novel

framework, graph Transition Path Sampling (gTPS), which tackles some of the challenges

of conventional TPS.

The Chapter 2 focuses on the in-depth explanation of the gTPS framework. First, we

explain how the iMapD algorithm [59] rely on ML’s manifold learning techniques, guides the

MD simulation to rapidly explore the configuration space of the system. We also mention

and discuss the relevant challenges of this algorithm that might affect the efficiency of our

framework. Then, we delve into the mathematical details of the rigorous approach we

have adopted to coarse-grain the dynamics of the system using the iMapD’s configurations.

This theory is subsequently encoded into a network of transitions where the configurations

act as the nodes and the edges carry the thermodynamics cost for the specific transition

between them. The discrete ensemble of transition pathways is then implemented in the D-

Wave’s quantum annealing machine [60, 61] by utilizing a special mathematical formulation

called the QUBO optimization [62, 63]. This serves us to finally lay out how the quantum

annealers(QA) –integrated into an MC process– can be employed to generate and sample

uncorrelated trial pathways representing rare transitions.

After discussing the details of gTPS framework, in Chapter 3, as a proof-of-concept, we

apply it to a customary benchmark system called Alanine dipeptide. Even with its modest

size, this molecule represents many of the amino acid residues in much larger and more

complex proteins. Therefore, it is able to demonstrate, as a benchmark, the capabilities of

our framework and validate our claims. In particular, after sampling the transition path

ensemble with gTPS, we first illustrate how the pathways in the network, in conjunction

with the coarse-grained representation, are able to correctly identify the low-energy regions

of FEL. Then, by performing an auto-correlation analysis, we demonstrate how quantum

computing is capable of generating pathways with a minimal correlation.

The successful application of Alanine dipeptide led us next to ponder whether current

quantum computing machines are capable of tackling larger and biologically more relevant
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molecules. To answer this question in Chapter 4, we first modify the iMapD algorithm by

adding a new scheme called ”Polar Star” shooting. This allows us to stabilize the overall

gTPS framework in application to a relatively larger Bovine Pancreatic Trypsin Inhibitor

molecule. Subsequently, by comparing the result of the modified version of iMapD and 1-ms

plain MD trajectory (provided by Anton supercomputer), we demonstrate the efficiency of

this approach in exploring the configuration space with 2 to 3 orders of magnitude lower

computational cost. Finally in this chapter, samples of transition pathways are provided

–utilizing the D-Wave annealer– which not only follow the regions of low free energy, but

are shown to require a lower cost than alternative approaches such as simulated annealing.

The application of Bovine Pancreatic Trypsin Inhibitor elucidates the capabilities of the

gTPS framework (and current quantum computing devices) in dealing with rare events that

occur on the scale of milliseconds. The next natural course of action is to investigate the

capability of our approach in sampling unfolding pathways for biological macromolecules.

We expect that the unfolding process possesses less difficulty than folding due to the pres-

ence of a large entropic barrier for the latter. To this aim, in the Chapter 5, we exhibit the

preliminary results of our ongoing investigations on two molecules: the Headpiece domain

of Villin, and the reduced molecule of BPTI.
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CHAPTER 1

Sampling Rare Transitions

In the past 40 years, various technologies have been developed to ease the task of sampling

the configuration space of biomolecular systems and their rare conformational transitions.

Apart from the specialized platforms for MD simulations (Anton and Folding@Home),

introduction of GPU-acceleration into MD software was another piece that greatly sped

up the computation [17]. Applications such as NAMD [64] (the first to introduce GPU-

acceleration) and GROMACS [65, 66] are two famous examples that have become household

names in the biophysics and biomolecular simulation community. In addition to this tech-

nological growth, the scientific effort has also been dedicated to developing frameworks for

more accelerated molecular sampling. Such efforts were revolutionized once the potential

of ML-based techniques for sampling gained more attention in the last two decades [40],

the idea being that any dataset with complex underlying patterns can be deciphered with

ML. Consequently, with the help of the right algorithm, it is believed that it is not only

possible to extract these patterns but simultaneously predict certain features for producing

new data. Clearly, the concept is very well fitted to the study of molecular systems, both

for extracting information efficiently –e.g. correct calculation of thermodynamic observ-

ables and reaction rates– and improving the exploration of statistically important regions.

Unfortunately, as discussed in the introduction, conformational transitions of medium to

large biomolecules are computationally at the edge of what we can achieve with current

methods. Therefore, novel ideas are still needed to improve on past technologies and help

us break this barrier, hopefully in an accessible way that does not strongly rely on access

to large computational power.

We want to dedicate this chapter to first briefly review some of the different enhanced
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Chapter 1. Sampling Rare Transitions

sampling methods that have been developed throughout the past years. Specifically, we di-

vide these methods into two categories: CV-based and CV-free approaches. Subsequently,

we mention methods that combine different enhancing concepts to potentially address the

challenges in one another. Some of the advances and improvements that have been achieved

using AI are also presented. Next, we turn our attention to a more in-depth discussion of

the TPS framework. By presenting the applications of TPS and its variants, we arrive at

the challenging issue of producing an ensemble of uncorrelated pathways for particularly

complex rare transitions. To tackle this issue, we first set the stage by providing a brief

introduction of quantum computing and in specific quantum annealing. Then, we intro-

duce our novel approach for studying rare transitions that combines ML, and quantum

annealing in order to tackle the autocorrelation problem of TPS. We postpone the in-detail

presentation of this framework to the next chapter.

1.1 Enhanced sampling methods

The theoretical modeling of complex systems undergoing a rare transition is oftentimes

illustrated as a point navigating a highly rugged and multidimensional FEL. The ruggedness

manifests the large degrees of freedom inherent to these systems. Initially, the representing

point is assumed to reside in a metastable state known as the so-called reactant state. Sur-

rounded by free energy barriers larger than the thermal energy induced by the environment,

the system continuously bounces around in this state. Occasionally, however, consecutive

thermal fluctuations may align such that the system climbs over the lowest energy section

of the barrier. At this juncture, there are two possible outcomes: either to turn back into

the reactant state or to move along the region of high energy, both with equal probability.

If the system decides to move forward, after a small series of fluctuations, it may eventually

arrive at a new metastable state, called the Product state [67](see Figure 1.1).

Given this model, the purpose of MD is to replicate the positions and velocities of a

complex system of interacting atoms as they evolve on this FEL. If we could somehow

ensure that the simulations were ergodic, then statistical mechanics would allow us to

replace ensemble averaging with time averaging in order to derive thermodynamic quanti-

ties. However, the existence of free energy barriers between two well-separated macrostates

greatly hampers the attempts to reach ergodicity in the simulations. As alluded to in the

introduction, especially in simulating rare transitions of large complex molecules, ergodic-

ity necessitates computational resources that are almost always not available in in silico

studies. For example, even with the help of supercomputers like Anton to provide ms-long

MD simulations, the chances are that we leave many relevant regions of configuration space

unexplored.
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1.1. Enhanced sampling methods

Due to the free energy barriers, a gap exists in the temporal scales of the dynamics

that separates the thermal oscillations in metastable states from the in-frequent transitions

between them. Therefore, when simulating with algorithms such as MD, we have to wait

a long time in order for them to sample an ensemble of trajectories corresponding to such

complex rare events. However, from a theoretical standpoint, the presence of a temporal

gap also implies that a low-dimensional set of CVs exists as functions of the configuration

space:

Y(Q) = f(x1, x2, . . . , x3N ) (1.1.1)

which are capable of capturing the slow dynamics of the system. Here, Q is a representative

point in the 3N dimensional configuration space. These variables act as coordinates for a

low-dimensional embedding where we can ”perfectly” (at least in principle) map metastable

states and the free energy barriers in between. More importantly, they allow us to gauge

the system’s time evolution for any reaction between these states. As a consequence, if we

somehow managed to obtain a priori the appropriate ”Reaction coordinates” (RCs), then

mapping of the free energy in different regions of this low-dimensional hypersurface could

be done relatively efficient [68]. Here, we must note that since our primary focus in this

thesis is to study rare transitions in (bio)molecular systems, we interchangeably use both

terms, CV and RC, as the corresponding coordinates of a reaction.

Due to such utility, it is unsurprising that many methods either incorporate a biasing

potential in terms of CVs to accelerate the sampling or use these functions a posteriori to

extract information from molecular trajectories –e.g. free energy calculations or reaction

rates. In fact, for the latter case, it would be significantly hard to characterize the ther-

modynamics or kinetics of the system without compacting the 3N -dimension configuration

space into a simpler low-dimensional one. In the following, we first focus on the methods

specially developed to accelerate the sampling along a chosen CV. Then, we discuss other

types of enhancing methods that strictly need no prior knowledge of the system.

1.1.1 CV-based enhanced sampling

One of the earliest approach in the context of enhancing MD-based sampling has been the

method of Umbrella Sampling. This method was initially developed in 1977 by Torrie and

Valleau in the context of importance sampling to study various phases of a Leonard-Jones

fluid [29, 69]. In the Umbrella Sampling method, we first divide the region in between the

reactant and product states along a selected CV, Y(Q), into windows. Here, we consider

a 1D case as illustrated in the Figure 1.2. Next, for each window i an individual harmonic
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Chapter 1. Sampling Rare Transitions

Δ𝐹 ≫ 𝑘𝑇

Figure 1.1: Schematic representation of a rare event in a rugged FEL. After spending an
exponential time in the reactant state, the thermal fluctuations of the system might lead to
overcoming the lowest section of the free energy barrier surrounding it. On the top of the
barrier, the system has an equal probability of returning to the reactant state or arriving
at a new product state.

potential with the spring constant K is added to the system’s energy function:

Vnew(Q) = U(Q) + U i
bias(Y(Q))

where U i
bias(Y(Q)) =

K

2
(Y(Q)−Yi)

2
(1.1.2)

Here, Yi denotes the value of Y(Q) at the center of i-th window, and U(Q) is the potential

energy of the system in equilibrium. We proceed by running an MD simulation for every

window using its the corresponding biased potential in Equation (1.1.2). These simulations

can be performed in parallel, which is a strength of Umbrella Sampling. In general, the

unbiased probability of the system for every value of Y is given by

P (Y) =

∫
dQ e−βV (Q) δ(Y′(Q)−Y)∫

dQ e−βV (Q)
(1.1.3)

where β = 1/kBT , dQ = dx1, dx2, . . . , dx3N , and V (Q) = U(Q) denotes the original

energy function of system. If we add a bias energy function to the whole system like in

11
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Reactant

Product

𝑈௦
 at each window

Figure 1.2: Schematic representation of Umbrella sampling algorithm. For every bias U i
bias

of window i along the RC Y (Q), the system is simulated according to the Equation (1.1.2).
In the end, by using Weighted Histogram Analysis, we calculate the free energy needed for
the reaction.

Equation (1.1.2), then the new probability is evaluated as

Pnew(Y) =

∫
dQ e−βVnew(Q) δ(Y′(Q)−Y)∫

dQ e−βVnew(Q)
(1.1.4)

After a little mathematical manipulation, we arrive at the identity

Pnew(Y) = P (Y)× e−βU i
bias(Y) × ⟨e−βU i

bias(Y)⟩ (1.1.5)

where

⟨e−βU i
bias(Y)⟩ =

∫
dQ e−βV (Q) e−βU i

bias(Y(Q))∫
dQ e−βV (Q)

(1.1.6)

Following the Equation (1.1.5), the free energy, F = (−1/kBT ) lnP , in an unbiased setting

is evaluated from the biased dynamics as:

Funbiased(Y) = Fbias(Y)− U i
bias(Y)− β ln ⟨e−βU i

bias(Y)⟩ (1.1.7)

The Equation (1.1.7) provides the theoretical ground to approximate the free energy of a

transition between two metstable states, once the MD simulations in the Umbrella Sampling

12
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are finished. In practice, the most popular way is the Weighted-Histogram Analysis Method

(or its modern variants) [70, 71] to combine the statistics of these independent samplings

in evaluating the last term in Equation (1.1.7). The successful applications of Umbrella

Sampling can be observed in studies of: the stability of 42-residue variant of Aβ in the fib-

ril phase [72]; base-pair opening in the double helix of B-DNA [73]; protein-ligand binding

affinity in the FKBP protein bounding with small molecules 4-Hydroxy-2-Butanone1 and

Tacrolimus (FK-506) [74]; the association/dissociation behavior of Glycophorin A embed-

ded in a lipid membrane using CG simulations [75].

Apart from Umbrella Sampling, two other widely adopted methods that accelerate

the sampling by applying a biasing force are SteeredMD and Metadynamics (MetaD).

SteeredMD forces the system to evolve away from its initial equilibrium condition using a

pulling force in the direction of one or multiple CVs. This inspiration comes from single-

molecule pulling experiments in atomic force microscopy [76]. The pulling force in this

method is very similar to Umbrella Sampling in being a harmonic function:

USMD
bias (Y(Q(t))) =

K

2
(Y(Q(t))− vt−Y(Qi))

2 (1.1.8)

where v is the velocity of pulling and Y(Qi) is the value of Y in the initial state. One

interesting feature of SteeredMD is that it can be used as a complementary method for

other methods, such as MetaD or Umbrella Sampling, in providing the initial and final

conformations. Furthermore, due to the affinity of the method to pulling experiments,

Jarzynski or Crooks relations can be utilized to calculate the free energy along any two-

state transition [77–79].

SteeredMD has, in particular, provided a reliable method in the calculation of binding

energy in in silico drug design [80]. To name two successful applications of this method in

this regard, we can point to the study of the unbinding affinity of Cyclin-dependent kinase

5 enzyme from inhibitors, an important target for the medicinal chemistry [81], and ligand

escape pathways in Acylaminoacyl-peptidase [82].

MetaD, thanks to its adaptive nature, provides a more robust approach for applying

the bias in the sampling compared to Umbrella Sampling and SteeredMD. Developed by

Laio and Parinello in 2002 [83], during a MetaD simulation, a Gaussian history-dependent

potential is applied to the system at a given rate along n-chosen CVs:

UMetaD
bias [Y(Q(t))] =

∑
λτ<t

A(λτ)e

∑n
i=1

−[Yi(Q(t))−Yi(Q(λτ))]2

2σ2
i (1.1.9)

In this expression, λτ is the simulation time of every Gaussian deposited previously at rate

τ up to t, A(λτ) denotes the height of these Gaussians, Yi(Q(λτ)) is the value of i-th

1An important intermediate for vitamin A and fragrances
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𝑈௦
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Deposited at time 𝜆𝜏

Figure 1.3: Schematic representation of MetaD sampling. At the rate of λτ , Gaussian
biases along the RC Y (Q) are deposited to the system. The cumulative sum of biases,
Equation (1.1.9), provide the energy for the system (the white circle) to overcome the
barrier in a rare reaction.

CV at time λτ , and σi is standard deviation of Y. All the τ ,λ, and σi should be deter-

mined before the sampling. The procedure of MetaD follows the illustration depicted in

Figure 1.3: Assuming a two-state system located in the reactant state, the deposited Gaus-

sians energetically fill the reactant basin and promote exploration of previously forbidden

configurations. Once the height of these Gaussians reaches the free energy barrier at the

transition state, the system ”rolls” into the product state. The deposition continues until

the product basin is also filled. Finally, the difference in potentials added in each state

determines the free energy profile of such transition. In the past 20 years, MetaD has been

quite influential in the molecular sampling [84, 85]. Applications such as the identification

of an intermediate in the folding of the X domain of phosphoprotein of measles virus [86],

and the study of ligand unbinding mechanisms in host-guest systems [87] are two (fairly)

recent examples.

Even though the CV-based approaches hold a special allure for enhancing the sampling

of molecular configurations, the caveat is that a universal and practical definition of such

coordinates still eludes us. Often, one relies on physical and chemical intuition to ”guess”

the optimal CV for the reaction under study. This may be easily achieved for relatively sim-

ple systems, such as minimally frustrated proteins, using structural functions like RMSD.

However, in more complex systems and reactions, it is highly nontrivial to recognize the

correct RC without performing exhaustive sampling using unbiased MD or an enhanced

sampling method that does not rely on CV definition. In such cases, the incorrect defini-
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Chapter 1. Sampling Rare Transitions

tion of the RC may lead to sampling even more inefficient than plain MD or inaccuracy in

the a posteriori analysis. In addition, while a certain guess of CV may well characterize a

specific reaction, another transition could be poorly described with the same coordinate [68,

84, 88].

1.1.2 CV-free enhanced sampling

Recplica Exchange Molecular Dynamics: The class of methods that do not rely on the

identification of CV to enhance the sampling contains approaches with different flavors. One

such approach is the idea of directly manipulating the temperature to facilitate overcoming

free energy barriers and exploration of previously forbidden regions. Arguably, the most

well known method that employs this idea is the Replica Exchange MD (RMED) or parallel

tempering [89]. In RMED, several instances (or replicas) of the system are simulated in

parallel but each at different temperature. Considering two of these simulations (i, j) which

are closest in temperature, at regular intervals, we exchange either their temperature or the

instantaneous configurations based on a Metropolis selection criteria:

P (i↔ j) = min

{
1, exp (Ei − Ej)

(
1

kBTi
− 1

kBTj

)}
(1.1.10)

where, E is the total energy of the system. RMED has been used to study: The influ-

ence of disulfide bridges in the fibril formation of Human Amylin [90, 91], dimer associa-

tion/dissociation rates [92], and folding of proteins [93–95].

Accelerated Molecular Dynamics: Another enhanced method that directly targets the

internal parameters of the simulations for better sampling is the Accelerated MD (AMD).

In AMD –developed by McCammon and coworkers [96]– a boost potential is added to the

system’s dynamics such that it activates every time the system’s potential energy falls below

a certain threshold Ethresh.:

Vnew(Q) = U(Q) + Uboost(Q)

Uboost(Q) =

{
0 if U(Q) ≥ Ethresh.

(Ethresh.−U(Q))2

α+Ethresh.−U(Q) if U(Q) < Ethresh.

(1.1.11)

where α controls the flatness of the boost potential as seen in Figure 1.4. By the end of

the AMD simulation, the equilibrium ensemble average of the system can be recovered by

reweighting according to the Boltzmann factor eβUboost . With this reweighting the average

of an observable is written as

⟨A⟩ = ⟨AeβUboost⟩
⟨eβUboost⟩ (1.1.12)

Applications of AMD has been seen in folding of Trpzip2 (a 13 residue protein) by Yang
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Figure 1.4: Schematic representation of AMD sampling. In this algorithm, a boosting
potential is activated every time the energy of the system falls below a threshold, Equa-
tion (1.1.11).

et al. [97], and four other fast folding proteins by McCammon and coworkers [98]. Further-

more, it has recently been applied to the study of ligand and peptide binding to proteins [99,

100] and recently one of its newer variants (called Guassian AMD) was used to study con-

formational changes in DNA complexes [101, 102].

State-based enhancing methods: The presence of a free energy barrier divides the

configuration space into two metastable states where the majority of MD-sampled config-

urations accumulate. In a highly frustrated system, the number of such long-lived states

generally scales with the system size, albeit not necessarily monotonically [103]. In such

systems, methods that rely on parallel and short simulations in different states have proven

more efficient than samplings using a very long simulation. To name some of the well-

known approaches that utilize this concept, we can mention Markov State Models (MSMs),

Milestoning, and the String method. However, since the last two also require CV definition,

we do not discuss these methods and only focus on MSMs here [68].

MSM is a powerful statistical framework that starts from an initial set of molecular

configurations, e.g. obtained from a previous long MD simulation. It then builds a set

of ”microstates” by performing a clustering on the initial dataset. This clustering can

be established by first lowering the dimension of the input data using methods such as

time-lagged Independent Component Analysis [104, 105] or Principal Component Analysis
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(PCA) [106], and then using, for example, KMeans [107]. Once the clustering is obtained,

a Markovian transition matrix is built between the microstates, either by running new sets

of MD simulations between them or utilizing the original long MD trajectory. One can next

coarse-grain the transition matrix by some form of spectral clustering, and obtain a coarser

description of states (macrostates), that would correspond to the slow dynamics of the

system. Finally, these macrostates can be further utilized to run a new set of simulations

that can improve the existing (coarse-grained) transition matrix or lead to the identification

of new states.

The most famous applications of MSMs to molecular simulations to date have arguably

been reported by the Folding@Home project, which intrinsically relies on the ability to

perform many short individual MD simulations for the sampling. Before Folding@Home

gained prominence, however, it was Luty and McCammon who first showed that it is possi-

ble to accelerate the sampling by studying an enzymatic reaction with a small MSM [108].

Besides the Folding@Home applications of MSMs, of which we only mentioned a few in

the introduction, this method has also been recently utilized to study the activation of

the G protein-coupled µ-opioid receptor [109], and protein-protein association/dissociation

between the Ribonuclease Barnase and its inhibitor Barstar [110].

Path-based enhancing methods: As the final general approach to enhance the sampling

of configuration space, the path sampling methods rely on retrieving only the transition

pathways in order to increase the computational efficiency while studying rare events. Ar-

guably, the most famous path-based method in the last 20 years has been the TPS frame-

work and its other variants such as Transition Interface Sampling or Forward Flux Sampling

methods. We will discuss in more detail the TPS framework in the next section. Apart

from TPS, another notable framework in the context of path-based sampling has been the

Discrete Path Sampling (DPS) [111, 112], which is akin to both TPS and MSM. In DPS, a

double-ended interpolation is performed between any reactant and product states such that

it finds stationary points of the potential energy. Then, using the doubly-nudged elastic

band framework we find the optimal pathways that connect these points. Finally, utilizing

the theory of DPS we can retrieve both the thermodynamic and kinetic of the transition.

Using DPS, it is also possible to perform one-ended searches in the configuration space to

locate new intermediate states and potentially new metastable states.

1.1.3 Hybrid methods and addition of Machine-Learning

Another common theme in enhanced sampling methods has been to combine the approaches

introduced above, in order to potentially address the challenges faced in certain methods.

One notable example which has received more attention is the MetaD. Motivated by the

idea behind REMD, parallel-tempering MetaD (PT-MetaD) was introduced by Parrinello
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and coworkers [113]. PT-MetaD initiates different replicas in order to facilitate easier

barrier crossing. In the same paper, PT-MetaD was demonstrated to be more efficient in

the folding of β-hairpin than MetaD. Later, both bias potential exchange [114] and CV

parallel tempering [115] were introduced to address the challenge of reactions occurring

along multiple distinct CVs. In the former, one consecutively exchanges a replica’s bias

potential that is along one variable, with another potential along a different CV. However,

in parallel tempering of CV, each replica simultaneously samples in the direction of multiple

variables, and we exchange the replica’s potentials. The idea of parallel tempering has also

been considered for Umbrella Sampling [116]. In a recent application to protein-protein

and lipid-protein interactions in membrane systems [117], this method was shown to have

a better convergence rate than normal Umbrella Sampling. Apart from replica exchange,

hybrid methods that combined MetaD with SteeredMD [118] or Umbrella Sampling [119–

121] have also been introduced. In regard to the latter combination, the more common idea

is to utilize MetaD for improving the sampling of different regions in configuration space.

Then, use the Umbrella Sampling to evaluate the free energy along the CVs of MetaD.

We now turn our attention to the ML-based additions to enhanced sampling methods.

In the study of rare transitions, any physical or computational knowledge available a priori

can be used to facilitate the sampling. However, once we encounter a new system, even

the definition of reactant and product states may be difficult to provide in order to uti-

lize system-agnostic methods e.g. TPS [68]. Considering this challenge, techniques such

as dimensionality reduction of ML are particularly useful to extract from an initial sparse

dataset the maximum amount of statistical information possible. In this context, we have

already mentioned the usage of PCA and tICA in MSMs for facilitating microstate detec-

tion. PCA is a linear dimensionality reduction method whose first component characterizes

the direction of the original space with the most variance. PCA was first utilized for molec-

ular data to estimate protein configurational entropy by characterizing the anharmonicity

of collective motions [68, 122, 123]. Obviously, linearity of PCA is limited when applied to

a molecular dataset, and to obtain a better approximation of the CVs more sophisticated

approaches must be adopted. In this regard, nonlinear methods like Kernel PCA [124], and

Iso Maps [125] have proven useful [126].

In more recent years and with the increase in applicability of GPU-accelerated compu-

tations, nonlinear DL-based methods such as autoencoders [127–131] have seen a rise in

popularity. Autoencoders are models that, using a Deep Neural Network (DNN), first en-

code the configurational data into a low-dimensional latent space and then decode through

a separate DNN back into molecular ambient space. The autoencoder attempts to minimize

the error between the synthetic configuration vector of the second DNN and the original vec-

tor. An example of such approaches is the Variational Autoencoder architecture [132, 133].

In the context of using ML/DL methods for sampling configurations, generative DNN mod-
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els such as Generative Adversarial Networks [134] and flow-based generative models [135]

have received particular attention. Examples of these two approaches can be seen in [136]

and [137] (as a Boltzmann Generator) respectively.

1.2 Transition Path Sampling

In rare events, the system attempts to overcome large free energy barriers that can

either involve high potential energy or high entropic bottlenecks. A convenient strategy to

sample these events is to search for dynamical bottlenecks through which the system passes

as it transitions from reactant to product. If the barriers are energetic in nature, then the

bottleneck would be the saddle-points of the potential energy. These points, which comprise

the ensemble of the transition state, can henceforth be utilized in Transition State Theory

(TST) –or its variants– to reveal the reaction coordinate and rate of transition. Conversely,

in complex systems with rugged and highly non-linear potential energy landscapes, this

view does not hold for a sufficient description of the rare transitions. Here, the entropic

barrier involves many points where some may be stationary in potential while most are not.

Therefore, by simply searching for the points with zero Laplacian of potential function, we

cannot identify the transition macrostate.

Luckily, Transition Path Theory –a natural successor to Transition State Theory– has

been developed to provide the correct mathematical description of rare transitions in such

cases. To this aim, TPT first introduces the notion of the committor function q(x) for all

the points in the transition region. Aptly named, this function signifies the commitment

probability of any trajectory that has passed through x, to be reactive. Consequently, q(x)

is considered to be one of the pivotal concepts in TPT and the optimal CV for any reaction

or transition [138]. Furthermore, utilizing the committor, TPT provides the formulation

of the probability density and current of reactive pathways in the transition region of the

configuration space. Despite the capabilities of TPT, the question still remains: How can

one provide these reactive trajectories as the system undergoes a rare event, in order to

then utilize TPT?

To answer this question, Transition Path Sampling (TPS) provides a computationally

sound approach that samples directly from the Transition Path Ensemble (TPE) available

in a complex rare event. The key enabling feature of TPS is to perform a random walk with

the help of the Monte Carlo (MC) algorithm, not in the configuration space but rather in

the trajectory space. Then, by focusing the MD simulation on retrieving only the reactive

trajectories, TPS samples the TPE ensemble without wasting simulation time for oscillatory

dynamics in metastable states. Remarkably, this enhanced sampling approach requires no

prior definition of CVs or unphysical forces. Only an unambiguous definition of the reactant
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Reactant
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Figure 1.5: Schematic representation of the TPS framework. Starting from a previously
retrieved transition path (the black line), we choose a configuration Qk randomly in the
reactive portion of the path. By perturbing Qk in the shooting move and obtaining Q′

k, we
initiate two new MDs, one forward and one backward in time (the red dashed line). The
combined trajectory of these two is accepted or rejected as new transition path based on
the Metropolis criterion in the TPS’s MC process.

and product state of the transition in the configuration space is needed. In the following,

we briefly present the steps of TPS and some of the kinetic information that it provides. We

also provide a (non-comprehensive) review of the advancements that have been achieved in

the past 20 years in both the original algorithm and its more recent variants.

Transition Path Ensemble

The Figure 1.5 depicts a possible reactive/transition pathway between schematic reac-

tant and product states: A trajectory that strictly arrives at the product state having been

started in the reactant. We denote the equilibrium probability density of any pathway (not

only reactive one) in the configuration space that takes the time T , as the P [XT ]. It is

convenient to discretize the trajectory into n time slices:

XT = {Q0,Q1,Q2, . . . ,Qn} (1.2.1)
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where T = nδt and, Qk is the microstates of the system occupied at time t = kδt along the

path. Assuming Markovian dynamics, this probability can be decomposed as:

P [XT ] =

(
n∏

k=1

p[Qk−1 → Qk]

)
ρ(Q0) (1.2.2)

where ρ(Q0) is the probability of the system initially residing in the microstate Q0.

To focus only on the reactive trajectories, we follow the expression

PRP [XT ] = hR[Q0]hP [XT ]P [XT ]/ZRP (1.2.3)

where hR(Q0) and hP (QT ) are the characteristic functions of Ω that determine if x is in

reactant or product respectively. This is achieved by

hM(x) =

{
0 if x /∈ M
1 if x ∈ M

(1.2.4)

With this choice therefore, the probability PRP [XT ] is only non-zero for the paths that

strictly start from reactant state and end in product state. However, the probability ratio

between the reactive pathways remains the same. As we have shrunken the accessible tra-

jectory, to maintain the normalization of probability density, we evaluate the new partition

function

ZRP =

∫
D[XT ]hR(Q0)hP (QT )P [XT ] (1.2.5)

Here, we recall the famous path integral identity

∫
D[XT ] =

∫
dQ0dQ1dQ2 . . . dQn

Transition Path Sampling

Having defined the notion of TPE, Dellago et al.[53], devised an MC search directly

in the trajectory space to sample transition pathways of the system. Starting from an

initial guess for a reactive path such as the black line in the Figure 1.5, the TPS algorithm

generates a new candidate trajectory (using a method discussed below), which it then

decides to either accept or reject depending on a Metropolis criterion. The detailed balance

condition associated with this criterion reads:

P(X old
T → X new

T )PRP (X old
T ) = P(X new

T → X old
T )PRP (X new

T ) (1.2.6)
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where P(X old
T → X new

T ) is the probability of generating a new path starting from the old

one. The P(X old
T → X new

T ) can be decomposed as

P(X old
T → X new

T ) = G(X old
T → X new

T )×A(X old
T → X new

T ) (1.2.7)

where G(X old
T → X new

T ) denotes the probability of generating X new
T from X old

T and A(X old
T →

X new
T ) is the acceptance probability. Placing back this definition into Equation (1.2.6), we

obtain the Metropolis acceptance rule:

A(X old
T → X new

T ) = min

{
1,

G(X new
T → X old

T )PRP (X new
T )

G(X old
T → X new

T )PRP (X old
T )

}
(1.2.8)

Considering that the old trajectory must always remain reactive, then we obtain

A(X old
T → X new

T ) = hR[Q
new
0 ]hP [Q

new
T ]min

{
1,

G(X new
T → X old

T )P (X new
T )

G(X old
T → X new

T )P (X old
T )

}
(1.2.9)

If the proposed trajectory is not reactive, it gets rejected, and the overall step is restarted.

In the case of reactivity, however, the acceptance probability A is evaluated, where for

A = hR[Q
new
0 ]hP [Q

new
T ] the trajectory is immediately accepted as the new transition path.

Otherwise, a random number is generated where the trajectory is accepted only if A is lower

than this number. By iteratively generating a new trajectory using the previously accepted

path, TPS obtains a Markov chain ensemble of transition pathways for the reaction.

To generate new paths with significant structural differences in the steps of TPS, a

valid approach is called the ”shooting move”. In the most general form of shooting [139],

we randomly perturb one of the configurations Qk (either the atoms’ velocities or the

positions) in the reactive portion of the old trajectory. Here, TPS initiates two trajectories

from the modified point Q′
k, one forward in time and one backward, such that they have

the same temporal length as the old trajectory. The probability of generating this move

can be expressed as:

G(X old
T → X new

T ) = Pgen(Qk → Q′
k)

n(=T/δt)∏
l=k+1

p[Q′
l−1 → Q′

l]

( k∏
l=1

p̄[Q′
l → Q′

l−1]

)
(1.2.10)

wherethe p̄[Q′
l → Q′

l−1] is the probability of Markov jumps in backward dynamics and

Pgen(Qk → Q′
k) denotes the probability of obtaining Q′

k from Qk. We assume symmetry

for the latter, and thus, its contribution in the acceptance probability is canceled out. By

placing the definition of G(p→ p′) into Equation (1.2.9) we obtain

A(X old
T → X new

T ) = hR[Q
new
0 ]hP [Q

new
T ]

min

1,
P (X new

T )
(∏n

l=k+1 p[Ql−1 → Ql]
) (∏k

l=1 p̄[Ql → Ql−1]
)

P (X old
T )

(∏n
l=k+1 p[Q

′
l−1 → Q′

l]
) (∏k

l=1 p̄[Q
′
l → Q′

l−1]
)
 (1.2.11)

22



Chapter 1. Sampling Rare Transitions

Here, we note that all the Markovian forward jumps are canceled out with the identical

terms in the P [XT ]:

A(X old
T → X new

T ) =

hR[Q
new
0 ]hP [Q

new
T ]min

{
1,
ρ(Q′

0)

ρ(Q0)

k∏
l=1

p[Q′
l−1 → Q′

l] p̄[Ql → Ql−1]

p[Ql−1 → Ql] p̄[Q
′
l → Q′

l−1]

}
(1.2.12)

Upon further assumption of microscopic reversibility

p̄[Ql → Ql−1]ρ(Ql) = p[Ql−1 → Ql]ρ(Ql−1)

in the dynamics, the expression for acceptance probability can be more simplified

A(X old
T → X new

T ) = hR[Q
new
0 ]hP [Q

new
T ]min

{
1,
ρ(Q′

k)

ρ(Qk)

}
(1.2.13)

Therefore, for the cases such as Langevin dynamics, the Metropolis criterion only depends

on the ratio of the equilibrium probability of the shooting configurations between the old

path and the new. In practice, we can first perturb the configuration Qk to obtain Q′
k, and

generate a random number from a uniform distribution in the interval [0, 1]. If this number

is lower than the ratio
ρ(Q′

k)
ρ(Qk)

we accept this modification. Then, we initiate a trajectory

from Q′
k for n − k steps (e.g. using an MD simulation), representative of the forward

segment of the dynamics. If this trajectory arrives at product state, then we initiate the

backward segment. In case the latter trajectory also arrives at the reactant state, then the

combined trajectory is accepted as a new transition path. Otherwise, we start over from a

new perturbation of Qk.

Extracting information from the TPE

In principle, the algorithm described above can generate an ensemble of transition path-

ways for any complex rare event without requiring any CV, and at a lower cost than using

a straightforward equilibrium MD simulation. However, once the ensemble is obtained fur-

ther calculations are needed to extract useful information such as kinetics. Here, we briefly

present two examples of valuable quantities that can be derived using the TPS approach.

We then mention few

Let us first discuss the calculation of transition rates. We begin by defining a correlation

function [53]

C(t) =
⟨hR(Q0)hP (Qt)⟩

⟨hR⟩
(1.2.14)
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1.2. Transition Path Sampling

where the ⟨.⟩ denotes an average over the TPE. C(t) reaches its asymptotic value for very

large times

C(t) ≈ ⟨hR(Qt)⟩
(
1− e−t/τr

)
(1.2.15)

where τr = 1/(kRP + kPR) denotes the reaction time with kRP being the rate of transition

from reactant to product state. If time-scales are well separated for a transition, then there

exist a time regime t≫ 1 where C(t) scales linearly with the transition rate:

C(t) ≈ kRP t (1.2.16)

Therefore, by monitoring the evolution of dC(t)/dt, the transition rate kRP can be identified

as the value of this quantity in the plateau regime. To evaluate this quantity in practice,

one could reformulate C(t) in terms of free energy differences at each time and then utilize

Umbrella Sampling to calculate them.

An alternative method to greatly improve the calculation of the rate is provided by

a modified version of TPS named the Transition Interface Sampling (TIS) [140]. In TIS

approach, the transition region is divided into interfaces (with the help of an order param-

eter) such that the boundary of reactant state is the first interface and the last one is the

boundary of the product. Then, the rate of transition is calculated as the effective positive

fluxes through these interfaces. This way TIS achieves a reduction of the computational

time required to evaluate the rates.

Other than the rates, TPS can also be utilized to calculate the committor probability

function q(r). A value of q(r) = 0 means no commitment at all from the trajectories

passing through r to arrive to the product state and q(r) = 1 indicates full commitment.

Conversely, the configurations with the committor values of 1/2 denotes the transition state

ensemble in the configuration space. Hence, evaluation of committor function provides the

optimal CV to characterize the transition.

The quantity q(r) is the stationary state of the time-dependent committor function

q(r, t). To calculate the q(r, t) from the ensemble of pathways provided by TPS, one can

count the number of trajectories that crossed r and after time t entered the product state.

This translates into the expression

q(r, t) =
1

N

N∑
i=1

h(i)P (Qt) (1.2.17)

where N denotes the number of the trajectories. Assuming that all the trajectories where

independently generated, then the standard deviation of this function can be written as

∆q(r, t) =

√
1

N
q(r, t)(1− q(r, t)) (1.2.18)
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Chapter 1. Sampling Rare Transitions

By following the evolution of this standard deviation we can terminate the calculation of

the committor function once we have reached the desired accuracy.

Applications of TPS and its variants

In the past 25 years since the inception of TPS, a wide range of successful applications

have been reported. Besides the initial studies on chemical reactions such as autoionization

of liquid water [141], one of the first applications to conformational changes of biomolecules

was reported in 2003. In this study by P.G. Bolhuis [142], the folding pathway of the

C-terminal of β hairpin of the G-B1 protein was studied with TPS and TIS, where the

result showed reasonable agreement with the experimental data. Another notable early

application was dedicated to the study of folding/unfolding pathways of the Trp-Cage,

a molecule exclusively designed to be a ”fast-folder” protein, originally constructed from

Exendin-4 protein back in 2002 [143]. In 2006, 5 years before equilibrium simulations

provided by Anton [26], Juraszek and Bolhuis [144] applied TPS to a system of Trp-Cage

solvated in explicit water and realized two distinct folding pathways for this molecule.

Subsequently, by applying TIS and one of its more efficient variants called Forward Flux

Sampling [145], they calculated the folding’s transition rates with good agreements with

experiments [146].

As discussed, TPS’s efficiency heavily depends on the adopted shooting move when

generating a new pathway. In these years, many approaches have been suggested to improve

on the original shooting method. One-way shooting [147] is one such approach, where one

generates only forward or backward segments of a new path and retains the complementary

segment from the previous trajectory. This approach, though, increases the possibility of

generating a new path with high accepting probability (A in Equation (1.2.11)) it requires

many iterations to de-correlate the generated pathways in the Markov chain. To face

this limitation, Spring shooting method [139] shifts the time-slice of the shooting in the

new trajectory some random frames away from the previous shooting time-slice. Here,

depending on the previous shooting to generate a new path in the backward (forward)

direction, the new shooting time-slice will be closer to the product (reactant) state, and

the newly generated path will accordingly be initiated in the forward (backward) direction.

As if in a spring, this method (schematically illustrated in Figure 1.6) pushes the shooting

time-slice toward the top of the free-energy barrier and, therefore, retains a high acceptance

rate but increases the efficiency in obtaining de-correlated paths. The introduction of

spring shooting has remarkably extended the domain of applicability for TPS to large

conformational changes, such as association/dissociation of the hydrophilic β-lactoglobulin

dimer, which has the experimental rate koff < 0.1s−1 [148, 149]. The idea of shooting from

the top of the energy barrier has also been considered in other approaches, such as the one
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1.2. Transition Path Sampling

Figure 1.6: The Spring shooting method. (left panel) Similar to one-way shooting, after
perturbing a configuration at random (the red circle), we initiate only one MD in the
direction for example forward in time (the heavy red line). Then, we join the opposite
segment of the previous path to the new trajectory (the thin black dashed line). However,
unlike one-way shooting, we perform the next shooting some time steps along the backward
direction of the old trajectory (the green circle). Finally, we perform a new MD in the
backward direction to get the heavy green line. (right panel) By joining these new segments
(red and green lines) to the part of old trajectory that connects the two shooting moves
(the small black line) we a get a new trajectory.

suggested by Jung et al.[150]. However, this approach requires the definition of an order

parameter in order to determine the vicinity of the barrier top.

Other notable challenges that can arise in TPS are the existence of distinct, well-

separated transition channels or multiple long-lived intermediate states between the reac-

tant and the product state. In the case of the former, a higher free energy barrier between

reaction channels can effectively result in a (meta) rare event in the MC sampling of the

path space. To tackle this challenge, other enhanced sampling methods can potentially be

integrated into TPS to allow for switching between multiple channels. Borrero et al.[151]

have devised such an approach based on Metadynamics. Starting from a randomly chosen

configuration, here, the shooting move applies a biasing force along a pre-defined CV that

identifies the direction toward the top of barrier. Then, a candidate trajectory is generated

following the original algorithm of TPS. After multiple successive shootings and generating

new paths, the force is built up such that in the next shooting the perturbed configuration

would be in the previously not sampled transition channel.

Apart from multiple channels, when intermediate long-lived states exist between the

reactant and product basins, the trial trajectories in TPS have a high chance of ”getting

stuck” in one or more of these states. Consequently, the acceptance rate rapidly decreases

in these instances and therefore, sampling reactive pathways becomes rather inefficient.

Already in 2008, Rogal and Bolhuis [152] had developed an extension of TPS using the
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interfaces in TIS. In their approach, global transition pathways between the initial and final

states were formed by combining multiple sample transition trajectories between interfaces

that signified the intermediates. This method was then revisited and improved with the

addition of Replica Exchange TIS method [153, 154].

Finally, let us briefly mention one of the AI-based improvements that have recently

been introduced to accelerating the sampling of pathways in TPS. Jung et al.[155] devel-

oped a scheme that utilizes a Deep Neural Network (DNN) model to guide the sampling

for generating transition paths with high acceptance probability. Starting from a successful

reactive pathway, the DNN parameterizes an initial guess for the committor function. Next,

a shooting move is initiated around the transition state indicated with the guessed com-

mittor. The algorithm then generates a new trajectory according to the steps of originial

TPS. Finally, depending on acceptance or rejection of the new trial pathway, the DNN is

updated to find a better parameterization of the committor. By studying the transitions

of two relatively small systems, Jung et al.demonstrated that this reinforcement learning

scheme is in fact more efficient in producing the pathways compared to original TPS. Re-

markably, Jung and coworkers managed earlier this year to enable this algorithm to even

dispose a mathematical expression for the committor function with the help of symbolic

regression [156].

1.3 Applying Quantum Computers to tackle the molecular
sampling problem

The mentioned challenges of TPS when applied to complex transitions occurring in

highly rugged energy landscapes can be summarized into two general categories:

(i) Efficiently generating viable trial trajectories at an acceptable computational cost.

(ii) Simultaneously, reducing the correlation of generated paths.

Once the two metastable states grow in distance (corresponding to a reaction time of≳ 1µs),

the probability of attracting new reactive trajectories decreases rapidly as we shoot away

from each state [31]. Consequently, the perturbation must remain appropriately small to

ensure a finite acceptance probability in the Metropolis criterion. Such a local stochastic

move obstruct the ability of TPS to sample from all the transition channels available to a

rare reaction. Therefore, the question is how to perform global moves in the MC sampling

of TPE while generating trajectories with high acceptance probability? Before answering,

we first introduce another piece of the puzzle, the quantum computing.

Any molecular system is first and foremost comprised of electronic and nuclear degrees

of freedom. However, solving the full QM wavefunction of a biomolecule to obtain the
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evolution and behavior in time is not practical on any classical computer. In quantum

chemistry, the exponential cost of computations in such problems renders the possibility

available only for cases with very few atoms and after various approximations (e.g. by using

Hartree-Fock method) [157]. Manin in 1980 [158], and Feynmann in 1982 [159] were the

first to propose the concept of utilizing a QM system to simulate the behavior of the atoms

in a molecule. Such universal quantum simulators were envisioned as devices that remedied

the curse of dimensionality in classical computation approaches to many-body problems. A

quantum simulator maps the Hamiltonian, containing electronic and nuclear interactions

in a molecule, into the couplings between its components. Then, it simulates/solves the

Schrodinger equation in time (in its most general form)

iℏ
∂|Ψ(t)⟩

t
= Ĥ(t)|Ψ(t)⟩

, where H(t) is the Hamiltonian of the molecule. This allows us to efficiently replicate

and study the behavior of the molecule under study. Efficiency here means, contrary to

the classical counterpart, that the required number of qubits (quantum bits) and quantum

operations scales utmost polynomially with the system’s size. The conjecture that quantum

computers can simulate QM systems without an exponential overhead was theoretically

proven in 1996 by Llyod [160].

Since 1996, a great effort has been dedicated to realizing such powerful devices and

algorithms that can fully wield their power. As an example of quantum algorithms which

are advantageous for biomolecular studies, we mention Quantum Phase Estimation that

has the potential to evaluate the energy required for ligand-protein and protein-protein

interactions [161, 162]. This is obviously not to mention the possibility of simulating the

entire molecule dynamic using its quantum Hamiltonian with a QC. However, technical

problems such as maintaining coherence time in the presence of environmental noise have

not yet allowed the development of fully fault-tolerant and large-scale QCs [157, 163].

Therefore, the application of the quantum algorithms has been limited, which often rely on

a large number of entangled qubits to remain coherent under execution of many quantum

operations [164].

To measure the performance of quantum computers against each other and older gen-

eration devices, ”Quantum Volume” was proposed by Moll et al., and later adopted by

IBM [165–167]. Quantum Volume evaluates the number of qubits nqb and the number of

cycles dn a random array of two-qubit gates can be performed consecutively on these qubits,

such that the output read-out (measurement) can be maintained without error on average

2/3 of the time. This means that a quantum computer that has 6 qubits and can maintain

such error only for 6 cycles of two-qubit gates, has the Quantum Volume of 26 = 64. At

the time of writing this thesis, the highest performance in terms of Quantum Volume is
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associated to ”Quantinuum’s H1-1” device based on Trapped-Ion qubits that has reached

219 = 524, 288 [168, 169] (19 qubits with 19 cycles of two-qubit gates). The IBM’s 127-qubit

computer, Eagle, which utilizes superconducting architecture has only reached 26 volume1.

However, to simulate a biologically relevant molecule and even without the presence of a

solvent, we most likely require more than 103 qubits just to encode the atom’s nucleus and

they have to remain coherent under a large number of gate cycles. A condition that seems

to be out of reach for any near term QC device.

Luckily, in the era of noisy intermediate-scale quantum machines, another class of novel

algorithms have emerged that aim for practicality instead of full quantum computer ap-

proaches. These methods employ a hybrid combination of classical computing and QC in

order to obtain solutions for problems where neither approach is sufficient independently.

Algorithms such as Variational Quantum Eigensolver (VQE) and QAOA2 are two exam-

ples from this class [161, 171, 172]. We do not aim to review these algorithms and their

respective applications in recent years. Rather, we want to follow their trails to develop a

method that can utilize the current NISQ devices for tackling existing problems in molecu-

lar sampling with classical computers. In particular, our main concern as mentioned earlier

is to sample the TPE of a rare reaction while producing uncorrelated trial pathways at

an acceptable computational cost. The hope here is that as the QCs are growing in size

the algorithms such as ours will have the edge in the foreseeable future for complex path

sampling calculations.

The pioneering applications of QC in the context of quantum chemistry and biology

strongly support this potential [171, 173–179]. However, these applications mostly com-

prised of very small size systems such as finding the ground-state of HeH+ compound, or

searching for folded structure of proteins and/or equilibrium configurations of polymers

using lattice models (again only at modest lattice size). In contrast to these cases, our goal

is to maintain the atomistic details provided by the current MD forcefields while examining

the advantage of current QCs. Considering this reason, we focus on quantum annealing

and the DWave annealer since it has the most working qubits available even though it is

not technically a universal QC [180]. Nevertheless, our approach has the potential to be

reformulated for any other types of QC, given they can provide a useful number of qubits.

1.3.1 Quantum computing: A brief overview

As mentioned QC is made out of qubits, a basic unit of quantum information [181]. A

single qubit is a two level quantum system that can take the form of (counter)clockwise

1The data on the latest generation of IBM’s quantum computer, the 433-qubit computer Osprey, is not
yet available [170]

2Quantum approximate optimization algorithm
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Classical bit Quantum bit

థ

Figure 1.7: The basic unit of information in classical and quantum computation. In classical
computation, the bit can be realized schematically as having a circuit either being closed
= 1-state or opened = 0. However, qubit is in a quantum superposition of the two states.
This in theory allows a QC to have exponential speed up in terms of computation over the
classical counterpart.

currents in superconductance, atomic or nuclear spins, or polarization of photons. The pure

state of a qubit can be represented as

|s⟩ = α|0⟩+ β|1⟩ (1.3.1)

where |α|2 and |β|2 determines the probability of the system being in 0 and 1 states re-

spectively. Here, the computational basis is assumed to be in the basis of Pauli’s σz matrix

such that

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
(1.3.2)

The geometric representation of the state in Equation (1.3.1) can be depicted by a vector

in Bloch sphere, Figure 1.7. Quantum computing and quantum simulators fall into two

categories: the digital and analog approaches. Digital QCs are the holy grail of quantum

computing as they allow for the manipulation and control of every single qubit. They

have been theoretically proven to provide the notion of universal quantum machine that

can formally run any quantum algorithm [182, 183]. In digital QC, the basic quantum

operation is presented as a quantum logic gate acting on single or multiple circuits which

represent the qubits Figure 1.8.(a). To give an example of the gates, the X -gate is a unitary

operator implementing the Pauli’s σx matrix (Figure 1.8.(b)) that flips the |0⟩ state to |1⟩ or
vice versa. Similarly, a two-qubit example would be the quantum CNOT gate (also known
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Figure 1.8: Quantum Circuit model of digital quantum computation. (a) In this model, ev-
ery qubit is depicted as circuit, while the quantum operations in terms of unitary operators
Û are realized through quantum logic gates. (b) The X-gate which is the gate responsible
for applying the Pauli’s σx operator on a qubit and flips the state of that qubit. (c) The CX
or quantum CNOT-gate. This gate flips a qubit’s state based on whether another qubit is
in the state |0⟩ or |1⟩. For more information on circuit model and quantum gates we refer
to [181].

as CX gate, Figure 1.8.(c) ), that flips the state of one qubit based on the result of another.

These gates are formally represented by:

X-gate =

(
0 1
1 0

)
CNOT-gate =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.3.3)

To simulate a system a digital QC, we first reformulate the unitary time evolution e−iĤt/ℏ

of the system in terms of the quantum gates. Here we assume that system is governed by a

time-independent Hamiltonian for simplicity. Next, by applying the Trotter decomposition

to the e−iĤt/ℏ we obtain

e−iĤt/ℏ =

Nt∏
i=1

(
e−iĤ∆t/ℏ

)
(1.3.4)

where t = Nt × ∆t. We then encode the initial configuration of the system |Psi(0)⟩ into

the QC’s qubits. By iterative application of e−iĤ∆t/ℏ (see Figure 1.9) we evolve the qubits

until we reach the cumulative time = t. The quantum measurement of the qubits after this

evolution will give us the final configuration |Ψ(t)⟩ that we were after. One major challenge
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Digital simulators

Analog simulators

Figure 1.9: A comparison between digital and analog approaches to quantum simulation.
First, we prepare the qubits of the QC according to the initial state of the system, for which
we are attempting to solve the Schrodinger’s equation. In the digital approach, one would
express the unitary time operator of the system, e−iHt/ℏ, in terms of quantum logic gates.
After Trotterization of this operator, then we apply Nt cycles of e−iH∆t/ℏ to the qubits,
where t = Nt∆t. In the end, quantities such as ⟨O(t)⟩ can be measured by performing
⟨ψ(t)|O(t)|ψ(t)⟩ on the final state |ψ(t)⟩ of the qubits. In the analog approach, on the other
hand, we tune (e.g. using laser pulses) the coupling between the components/qubits of the
quantum device according to Hamiltonian of the system H. In this method, the simulation
of Schrodinger’s equation is intrinsically achieved by letting the qubits evolve for time t
under the influence of H. This schematic representation of the two approach has been
adapted from [157].

that has faced all the physical realizations of a fault-tolerant universal QC is: How does

one retain the information stored in the qubits in the presence of unwanted noise? In the

classical (digital) computers, stability of the bits is guaranteed by following error-correction

protocols in computation which are implemented either in the low-level hardware or high-

level software [184]. Unfortunately, classical error-correction algorithms cannot be directly

migrated into a QC due to a fundamental theorem of QM called no-cloning theorem[185,

186]. This theorem forbids the creation of identical copies of an unknown quantum state

which is essential for classical error-correction. Despite of this limitation, back in 1995,

Shor published the first ever quantum error correcting code which allowed to side step the

no-cloning theorem by storing information simultaneously into 9 qubits [187]. Ever since,

quantum error correction has been an integral part of scientific and industrial effort to

build a fault-tolerant QC. However, all the modern approaches introduce an overhead on

the number of physical qubits required in order to produce a single fault-tolerant logical
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qubit. However, as the qubits increase, the noise due to the coupling to the environment also

increases. This is the reason why it is considerably difficult to realize a true fault-tolerant

digital QC that has a useful number of (logical) qubits.

Apart from the digital QCs, there is also the analog approach to quantum computing

that is more similar to purpose-built machines in classical computation [157]. In analog QCs,

the quantum operations are implemented through continuous interactions, such as magnetic

field gradients Figure 1.9. In simulations with an analog QC, the coupling between qubits

are prepared according to the Hamiltonian of a system H(0) at time zero, whose dynamic

we want to replicate (e.g. a molecule). Then, by evolving the interactions in the QC in

real time according to H(t), we directly solve/simulate the time-dependent Schrodinger

equation. Again, by measuring the state of each qubit at the end, we obtain the final state

of the system that we simulated.

The analog QCs offer the advantage of being more easily scalable as they do not require

individual manipulation of qubits. However, this also introduces challenges such as more

difficult error correction and sensitivity to noise. Moreover, analog quantum computing

can be universal only in certain conditions [188]. Nevertheless, analog can be a promising

approach for quantum simulation, as physical developments such as DWave’s quantum

annealer have demonstrated.

1.3.2 Quantum Annealing

Quantum annealing, or adiabatic quantum computation1, is a category of analog quan-

tum computing with a more specialized purpose. Quantum annealing is built to solve

classical combinatorial optimization problems, with applications ranging from computer

science problems to many body problems [180, 190]. One often can, in these problems,

cast the task of minimizing the cost function onto finding the ground state of a spin-glass

Hamiltonian. Such Hamiltonian has many local minima, and stochastic optimization meth-

ods implemented on a classical computer, like Simulated Annealing (SA) [191], have a hard

time searching for the global minimum. The dynamics in SA algorithm is based on thermal

fluctuations, and for ergodic systems, it has an upper bound time complexity of O(N) with

N being the system’s size. However, in spin glass’s Hamiltonian or traveling salesman’s

cost function, the heights of the barriers can grow exponentially O(2N ). Therefore, in these

problems, searching for the global minimum with SA effectively becomes a rare event [54].

Quantum annealing was found as an alternative that could potentially perform this task

more efficiently. The possibility comes from the fact that through the process of quantum

1We should note that quantum annealing is a broader term than adiabatic quantum computation. In fact,
quantum annealing allows for nonadiabatic transitions that would be present in a non-ideal experimental
setup. However, we have chosen to follow the tradition of considering quantum annealing in the restricted
sense of adiabatic quantum computation [58, 189].
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annealing, the quantum fluctuations allow for tunneling through the macroscopic barriers.

Therefore, by the end of annealing, there is a finite probability that the annealer is in the

ground state of the target Hamiltonian.

The quantum adiabatic theorem (QAT) is a central concept in quantum annealing [58,

192]. According to this theorem: ”A system remains in its instantaneous eigenstate as it

undergoes a sufficiently slow perturbation if there is a gap between its instantaneous eigen-

value and the rest of spectrum [193]”. Therefore, the ground state of a target Hamiltonian

Htarget may be found by preparing an Ising system in the ground state of an easy-to-prepare

HamiltonianH0. H0 must be chosen such that it does not commute withHtarget, e.g. having

been written in σx Pauli’s matrices. Then, by performing a very slow quantum switching,

we gradually transition the coupling between the spins from H0 to Htarget. QAT guarantees

to remain in the ground state of Htarget by the end of this process. Mathematically, this

transition can be encoded as a time-dependent Hamiltonian on the system

HQA(t) = A(t)H0 +B(t)Htarget (1.3.5)

Here the coefficient A(t) and B(t) encode the switching protocol. The specific form of these

functions is not important as long as we ensure that for switching time of [0, tf ], A(t) is

slowly reduced from A(0) = 1 to A(tf ) = 0 and B(t) is accordingly increased from B(t) = 0

to B(t) = 1.

Using adiabatic approximation one can prove the QAT, for which we refer to [194]

for the complete proof and only discuss the results here. The adiabatic approximation is

concerned with finding the solution of the time-dependent Schrodinger equation with the

Hamiltonian of Equation (1.3.5). Since our concern is to find the ground state of Htarget,

we assume that the initial wave function of annealer |ψ(0)⟩ (or any quantum simulator with

quantum annealing capabilities) is the pure ground state |ϕ0(0)⟩ of HQA(0). Following this

assumption, the adiabatic approximation states that:

max
0<t<tf

|⟨ϕi(t)|dH(t)
dt |ϕ0(0)⟩|

[∆0i(t)]2
≪ 1 for ∀i ≥ 1 (1.3.6)

is the necessary condition for the instantaneous state of the system to remain near to

the instantaneous ground state ⟨ψ(t)|ϕ0(t)⟩2 ≈ 1. Here, ∆0i(t) = |Ei(t) − E0(t)| is the

instantaneous energy difference between ground state and i-th state. In addition to this

result, in case the switching protocol is linearly dependent on time ( A(t) = 1 − t/tf and

B(t) = t/tf ), then adiabatic approximate determines the rate 1/tf of this procedure:

tf ≫ max
0<t<tf

|⟨ϕ1(t)|dH(t)
dt |ϕ0(0)⟩|

[∆01(t)]2
(1.3.7)
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Therefore, based on this result, to perform the transition adiabatically, the switching rate

should be much smaller than the jump frequency from the instantaneous ground state to

the first excited state.

QUBO encoding: To implement the optimization problem into a QA or a QC that can

perform annealing, one must first reformulate the cost function into the Hamiltonian of a

quantum Ising model (Htarget in Equation (1.3.5)). Many classical optimization problems

can be formulated as Quadratic Unconstrained Binary Optimization (QUBO), either by

natural application or by re-casting alternative formulations [195]. QUBO was shown to

be formally equivalent to a classical Ising model. This framework has found applications

(as early as the 1960s) in various fields, e.g. industry, economics, and science, and recently

has attracted more attention thanks to the advent of commercially available devices like

DWave [62].

As the name suggests, in QUBO, one deals with binary variables Γ = {0, 1}. The goal is
to find the configuration of variables that would minimize/maximize a 2-order polynomial

cost function. The function in question is expressed as

HQUBO =
∑
i,j

Qi,jΓiΓj +
∑
i

miΓi (1.3.8)

where the optimization problem is fully determined by the values of Qi,j and mi. Once the

QUBO formulation of our problem is established, we can conveniently transform the cost

function into an Ising Hamiltonian via Γ = (1− σz)/2:

HIsing =
∑
i,j

Ji,jσ
z
i σ

z
j +

∑
i

hiσ
z
i + const. (1.3.9)

where

Ji,j =
1

4
Qi,j & hi =

−1

2

mi +
∑
j

Qi,j


. σz here is a variable with values σz = {−1, 1}. To obtain the quantum Ising model we

simply promote the variables σz to Pauli matrices σ̂z.

1.3.3 graph Transition Path Sampling

We are finally in a position to present our novel framework for sampling transitions

pathways. In gTPS framework, ML-driven MD simulations are employed on a classical

computer to efficiently perform a preliminary, uncharted exploration of the relevant regions

of the molecule’s configuration space. Here, each snapshot (of the system) captured during

the exploration can identify a finite region of configuration space with a size comparable to
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the average nearest-neighbor configuration distance. This realization enables us to derive a

coarse-grained (CG) effective theory by assuming the Langevin dynamics as the underlying

microscopic theory.

The strength of this representation lies in its ability to evaluate the probability of

transitions as the product of probabilities for the system to visit a given ordered sequence

of finite-size regions. Thus, it can adapt itself to the non-Boltzmannian distribution of the

iMapD-generated dataset. Subsequently, we describe how this CG theory can be encoded

into an undirected graph, wherein the nodes identify different finite-size regions. Then, the

probability of a given reactive path is computed from the sum of the edges that connect

the initial and final nodes on the network.

In principle, transition paths in a graph may be sampled with classical computers with

a discrete version of the conventional TPS, where the trial trajectories are stochastically

generated, e.g., by kinetic MC [196]. However, the effectiveness of these methods falters

once the network increases in size and complexity. They would struggle to produce paths

that are significantly different than one another in a computationally efficient manner. As a

consequence, resulting Markov chains are susceptible to the same auto-correlation problem

facing the original TPS.

This challenge can be overcome by resorting to a quantum annealing machine such as

DWave to generate the trial paths in the Markov chain. In such an approach, transition

paths on the network can be encoded in a QC by assigning qubits to each node and edge

in the graph through QUBO formulation. The main point in using a QC approach is that

the initial state of the quantum computer can be easily prepared in order to simultane-

ously encode all the transition paths connecting two given points on the graph. Then, the

adiabatic switching process evolves the components of the computer toward a wave func-

tion associated with the most statistically significant transition paths. Thanks to quantum

fluctuations and quantum measurement, any time the QA is reset in its initial state, the

system loses memory of the previously generated path. Therefore, the trajectory obtained

at the end of the annealing process is completely uncorrelated to the previous one in the

Markov chain.

This way, the QA generates a new uncorrelated trial path at each measurement with

a high statistical weight. However, generally in realistic conditions (e.g., for suboptimal

choices of the time employed to perform the adiabatic switching procedure), the resulting

path distribution may not exactly correspond to that of the underlying Langevin dynam-

ics. Thus, we also incorporate a Metropolis acceptance/rejection criterion implemented

on a classical computer to correct for such a deviation. The salient features of gTPS are

illustrated in Figure 1.10.

While resorting to the intrinsic properties of the QA overcomes the autocorrelation
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Figure 1.10: Schematic representation of gTPS scheme introduced in this work. This
framework combines ML and MD performed on a classical computer and QC on a quantum
annealing machine. The interplay between these steps allows our scheme to sample the
full transition path ensemble without any use of unphysical biases. First, the ML-guided
MD explores rapidly the relevant regions of configuration space. Then, using our CG
representation of the dynamic, we encode the transitions of the system into a undirected
network between the configurations retrieved in the first step. Finally, using D-Wave’s
QA in a MC sampling process, we generate uncorrelated trial pathways that have a high
probability of being accepted in the Metropolis step. In the next chapter we delve more
in-detail through each step of the gTPS framework depicted here.

problem, our adopted ML approach promotes the discovery of multiple transition channels

by rapidly exploring the relevant regions of configuration space. Furthermore, the transition

network built by the CG effective theory allows for the path sampling algorithm to have

a global view of all the possible transition channels. Therefore, the hybrid approach of

gTPS can directly tackle outstanding problems of traditional TPS. Moreover, gTPS does

not require any simplification of the atomistic details provided by the MD, which is in

contrast to most of the previous applications of QC to molecular sampling.
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CHAPTER 2

Graph Transition Path Sampling
(gTPS): in-depth discussion

In Chapter 1, we presented a concise yet comprehensive summary of the TPS and other

enhanced sampling methods. We acknowledged their strength and the challenges they face

in sampling rare events. By recognizing the mounting difficulties encountered by conven-

tional TPS frameworks, QCs were then suggested as a new possible remedy. Finally, we

presented our newly developed framework that aims to tackle these challenges by harnessing

the power of both ML and quantum computing.

Our goal in this chapter is to delve deeper into the various theoretical aspects of gTPS,

dissecting each step and discussing potential efficacies. First, we discuss iMapD, the algo-

rithm that enables gTPS to expedite the exploration of the system’s FEL. The generated

conformations of iMapD provide a ground for building a mathematically rigorous effec-

tive theory based on Langevin dynamics. Utilizing Dominant Reaction Pathway [197, 198]

formalism enables us to represent this CG theory and the iMapD’s conformation with a net-

work of transition that covers the whole explored region of FEL. After encoding the vertices

and edges into the D-Wave machine, we finally present our MC process which generates

trial paths on the network with quantum annealing.

The validation of gTPS capabilities is left to the subsequent chapters, where the practical

implementation and considerations of the framework are also discussed.
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Chapter 2. In-depth discussion of gTPS framework

2.1 Uncharted exploration of free energy landscape

It is widely accepted that at thermal equilibrium, statistically relevant conformations of

molecular systems accumulate on a low-dimensional embedding within the ambient space

of molecular coordinates, so-called the intrinsic manifold (IM). To explore this manifold

efficiently, Intrinsic Map Dynamics (iMapD) provides an enhanced sampling scheme that

utilizes ML’s dimensionality reduction techniques. Developed by Chiavazzo et al.(2017) [59],

iMapD starts by learning the geometry of the observed segment of the IM using an initial

sampled set of configurations. It then exploits this information to identify strategic con-

figurations that increase the chance of discovering unidentified territories of the underlying

manifold, and through unbiased MD simulations initiated from these configurations, it in-

telligently guides the sampling process. The data-driven approach of iMapD obviates the

need for identification of CVs, applying any unphysical force, or a priori information on

the system, consequently distinguishing it from methods such as metadynamics.

In this section, we outline the main steps of the algorithm while reserving technical

details for the Appendix A to maintain clarity. Additionally, we discuss further the main

advantages of this algorithm within the gTPS framework while also acknowledging potential

pitfalls that may impact our applications.

2.1.1 iMapD framework

Parameterizing the intrinsic manifold and identifying the boundary of ob-

served regions: As in any ML-based method, we start by sampling an ensemble of

unbiased molecular trajectories. We operate under the assumption that representative

structures from the meta-stable states of interest are available, a condition often met in

practice, and from these configurations, we initialize our MD simulations. The generated

k configurations are then assembled into a set Cini = {Qi}i=1,...,k. Next, iMapD employs a

procedure known as Diffusion Map (DMAP) [199] which serves as a powerful tool to attain

dimensionality reduction and infer the local structure of the intrinsic manifold.

The DMAP space of a dataset is obtained by first building a transition matrix equiv-

alent to a random walk operator. In our implementations, the RMSD function serves as

the similarity measure of this matrix. After solving the associated eigenvalue problem of

this matrix, we retain a set of n (with n ≪ 3N) eigenvectors, Z = {ψ1, ψ2, . . . , ψn}, that
represent the DMAP components (DCs). These DCs provide a projection of high dimen-

sional data onto a low dimensional embedding such that each configuration Qk is mapped

onto zi = {ψ1(k), ψ2(k), . . . , ψn(k)} with ψj(k) being the k-th element of component ψj .

An illustrative application of DMAP to an arbitrary 3D dataset is presented in Figure 2.1.
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2.1. Uncharted exploration of free energy landscape

(a) (b)

x

y

z

Figure 2.1: (a) A 3D dataset as an illustrative example of identifying the underlying man-
ifold with DMAP. This data was produced by first generating random points on a plane
x, y ∈ [−5, 5]. Then the third dimension to each point was added by using the function,
z(x, y) = cos(y2 − 4)/(1 + e−x). (b) The projection onto the first two DCs.

It has been demonstrated [199, 200], owing to the relationship between the eigenvectors

of the Fokker-Planck operator and those of DMAP, the Euclidean distance between the

points of this embedded space approximate the diffusion distance between members of

Cini. Therefore, by exploiting this connection, a notion of the boundary for the kinetically

explored regions can be established by identifying the set of configurations CB that form a

convex hull [201] in the DMAP projection around the rest of Cini.

It’s noteworthy that we have not specified which eigenvectors in DMAP are the suitable

components. While the first non-trivial eigenvector characterizes the principal direction

of the IM, the subsequent dominant ones do not necessarily achieve the correct parame-

terization of other dimensions. They may be harmonic functions of the first eigenvector.

According to Chiavazzo et al.(2014) [202], it is relatively straightforward to identify the

uncorrelated components for 2D DMAPs using a visual test. In such cases, one looks at the

scatter plot of λ1ψ1 against λiψi. Here, if the projection appears 1 dimensional (in contrast

to having scattered points on a plane like in Figure 2.1) then λiψi must be a function of

λ1ψ1 and thus not independent. However, this test becomes troublesome once we move to

the cases that need higher dimensional DMAPs. We refer to [202] for further discussion.

In this thesis, we simply continue the iMapD’s original article [59] where they rely on a

2D DMAP space. In our applications, we identified that to this aim the first two dominant

eigenvectors remained sufficiently independent.

Extension beyond the boundary: After establishing the set CB, iMapD proceeds

with a ”shooting move” whose aim is to generate a new set of configurations beyond the
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Chapter 2. In-depth discussion of gTPS framework

observed regions of the IM. We first construct for each point QB
j ∈ CB a neighboring set

Bj that contains the nearest configurations based on RMSD. Here, employing PCA enables

iMapD to (approximately) navigate the surface in configuration space that is tangent to the

local divergence of FEL –hence orthogonal to the kinetic boundary surface (more details on

PCA in Appendix A.3). Once the principal components (PCs) for each Bj are determined,

we project both the average conformation

Qavg
j =

1

|Bj |
∑

Qm∈Bj

Qm

and the corresponding boundary point QB
j onto the low dimensional space spanned by the

PCs:

qB
j = LjQ

B
j

qavg
j = LjQ

avg
j

(2.1.1)

The Lj is the loading matrix formed by the p-most dominant PCs. Here, the value of p is

adaptively determined by using a threshold of how much variance the PCs should retain.

This can be mathematically expressed as

∑p
a=1 λa∑3N
a=1 λa

≤ threshold (2.1.2)

where λa denotes the a-th PCA eigenvalue with λa+1 ≤ λa. Given the projection in

Equation (2.1.1), iMapD then ”walks” along the direction identified by the PCs to generate

a new set of coordinates located beyond the kinetic boundary:

qnew
j = qB

j − qavg
j + c

qB
j − qavg

j

|qB
j − qavg

j | (2.1.3)

In this expression, c > 0 is a constant which determines how far from the boundary we are

willing to ”shoot”. Once new coordinates qnew
j are generated, the Cartesian coordinates

can be easily retrieved by the reverse transformation Qnew
j = qnew

j LT
j +Qavg

j .

The parameter c in Equation (2.1.3) plays a crucial role in iMapD algorithm (as illus-

trated in Figure 2.2). Large values of this parameter can lead to atomic coordinates Qnew
j

that deviate significantly from chemically viable configurations –violating the molecule’s

structural constraints. This issue is particularly pronounced in regions where the IM is

drastically curved and can lead to systematic errors (see Figure 2.2(b) ). To mitigate this

risk and potential breakdowns, we are forced to adopt an incremental value of c. However,

even with such a conservative choice, obtaining a chemically stable configuration necessi-

tates a corrective step by either running an energy minimization from Qnew
j or an extra
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Figure 2.2: Schematic illustration of a 1D manifold depicting iMapD’s ”shooting move”.
A large value of c may lead to a set of coordinates significantly distant from the manifold
of chemically viable configurations, essentially ”breaking” the molecule. This concern is
particularly relevant in the regions where the IM experiences a substantial curvature. As
a result, even the subsequent corrective step, e.g. in the form of energy minimization, may
struggle to restore the correct topology within a finite timeframe.

short burst of unbiased MD. We denoted the resulting chemically stable configurations as

Xnew
j .

Next iterations of iMapD: Finally, once the Xnew
j are obtained, the exploration is

continued by initiating new rounds of short, unbiased MD from these configurations, and

merging the data with Cini. To eliminate any directional bias due to randomness, e.g. when

sampling the saddle points of FEL, multiple MDs can be performed with different sets of

initial velocities, drawn from the Maxwell-Boltzmann distribution. Next, iMapD iteratively

performs the following:

(i) Identifying the boundary of explored regions of IM using the set of configurations

sampled in previous iterations.

(ii) Generating new configurations that lie beyond the boundary.

(iii) Restarting the unbiased sampling from these configurations and again merging the

new data to the previous set.

The algorithm is terminated once new meta-stable states or transition regions between

them have been identified. The overall scheme of iMapD is illustrated in a schematic

representation in Figure 2.3.
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Initial unbiased sampling

Boundary of 
explored regions
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Figure 2.3: A schematic overview of iMapD algorithm. First, utilizing DMAP we param-
eterize the underlying manifold of previously generated data. By identifying the kinetic
boundary in this manifold and subsequently generating configurations beyond that, iMapD
guides the MD simulation in exploring new areas of the IM.

2.1.2 Discussion on the application of iMapD

The framework outlined above achieves drastic acceleration in the sampling of statis-

tically relevant molecular conformations. To showcase the power of iMapD, Chiavazzo et

al.(2017) [59], provide a comparison with the result of a ms-long unbiased MD, investigat-

ing the dynamics and configuration space of the transmembrane helices of Mga2 dimers.

Mga2 is a protein in the endoplasmic reticulum of baker’s yeast cell that acts as the bilayer

lipid packing sensor [203]. Using a coarse-grained (CG) force field, Covino et al. [204] had

performed more than 3 milliseconds of MD to characterize the rotational dynamics of the

helices in response to changes in saturation. However, the dimers remained in contact form

throughout their simulation. In remarkable contrast, iMapD (with the same CG setup) was

not only able to recover the data of unbiased sampling but also generate multiple dimer

dissociation events, in just 10s of microseconds cumulative simulation time.

In the context of our new framework, iMapD offers an important enhancement: By

identifying the kinetic boundary and tracing the geometry of the of FEL in the shooting

move, iMapD increases the likelihood of observing (capturing snapshots of the system in)

all transition channels with comparable free energy. Moreover, due to its inherent (high)

parallelizability, one can initiate multiple shooting moves with different values of c to achieve

a more robust sampling as the exploration takes place. This flexibility may facilitate the
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2.1. Uncharted exploration of free energy landscape

exploration of even higher-energy metastable states (e.g. unfolded states of protein) and

transition regions. Despite these promising capabilities, it is essential not to overlook the

potential challenges and limitations of the algorithm.

Up to this point, we have not discussed how one could infer thermodynamic or kinetic

information from the iMapD data. Notably, the deliberate breaking of the detailed balance

to accelerate the sampling with iMapD does not allow the final dataset to be distributed

according to the Boltzmann weights of each configuration. Consequently, extracting ther-

modynamic and/or kinetic information by averaging the quantities is not feasible and neces-

sitates further simulations and analysis. Following this challenge, the authors [59] proposed

the application of methods such as Umbrella sampling to map out and interpolate the FEL

between configurations of Cfin. Moreover, MSMs were suggested for evaluating the kinetic

rates between identified metastable states. In the next section, we develop an alternative

method based on a rigorous mathematical formulation that enables the sampling of low-

free energy transition pathways between the metastable states. This method not only lacks

further extensive rate calculations –like in MSM– but it can also be done, in principle, in

parallel to iMapDs’ samplings thus requiring no additional simulations.

Another aspect that requires our attention is the impact of the parameter c in the

shooting move. As previously highlighted, careful considerations and preferably adopting

incremental values for c are essential to maintain the stability of the iMapD algorithm.

However, such restriction may impede the efficiency of the algorithm, specifically when

exploring the transition regions between distant metastable states. To circumvent this

issue, we have proposed a modification to the shooting move in Chapter 4. This new

scheme while stabilizing the algorithm and allowing us to adopt larger values of c, still

retains the original ”unsupervised” nature of iMapD.

For the sake of completeness, we revert our attention to the choice of dimension in

DMAP. In a general application, the dimension of the underlying manifold is not expected

to necessarily remain constant as the exploration progresses. For instance, in the folding

of a protein, the dimension of the folded state may be assumed to be d = 2 resembling

a flat surface. However, as the exploration proceeds it may encounter a transition region

with d = 1, analogous to a river in a narrow ravine between two mountains. Finally, in

the denatured state, the dimensions of the IM might increase (d ≥ 2) due to an increase in

entropy. While one possible approach is to take the largest dimension (the unfolded state in

this example) as the definitive dimension for the DMAP application, this assumes retaining

such information before applying iMapD, limiting the adaptability of the algorithm.

In this thesis, we did not explicitly address this issue and we refer to [205] for further

discussion on determining the dimensionality of the low-dimensional embeddings. However,

concerning our application of iMapD to the benchmark system in Chapter 3, it is widely
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Chapter 2. In-depth discussion of gTPS framework

accepted that the FEL of Alanine dipeptide can be characterized by its 2 CVs, the dihedral

angles ϕ and ψ [206]. Therefore, a 2D underlying manifold can be assumed for the applica-

tion of iMapD in this system. On the other hand for the second application in Chapter 4,

we adopted the first 2 dominant DCs, as it is computationally most efficient.

2.2 Building the transition network

The main challenge in iMapD concerning the identification of physical transition path-

ways was the lack of detailed balance condition between the configurations in the final

dataset. In this section, our objective is to construct a stochastic theory that can char-

acterize transitions and dynamics on the IM, while also adhering to the correct form of

microscopic reversibility.

To achieve this, we commence by selecting a subset of ν configurations S = {Q(s)
k }k=1,...,ν

out of Cfin. The main criterion here is to maintain a distribution as uniformly as possible

with respect to the RMSD distance. The selection can be achieved through simple structural

clustering, e.g. KMeans [107], or even more sophisticated techniques. Regardless of the

approach, the key is to associate to each configuration Q
(s)
k ∈ S a representative region of

the configuration space Rk with the size r = σ. Adopting σ equal to half the average RMSD

distance between the nearest-neighbors of S ensures that the union of all the finite-sized

regions R = ∪kRk covers the entire explored portion of the IM. We postpone the exact and

in-detail implementation of this step (illustrated in Figure 2.4) to the following chapters.

Having established the partitioning R, we proceed to develop an effective theory by

smearing the spatial scale of the microscopic dynamics up to the distance σ (size of indi-

vidual regions). Here, we employ the powerful formalism of the (stochastic) path integral

approach and the renormalization group theory, originally developed in the context of nu-

clear and subnuclear physics [207]. In this CG representation, the maximum time resolution

∆t would accordingly be the average time it takes for the system to diffuse, under the in-

fluence of microscopic dynamics, a distance σ in the configuration space.

Therefore our theory has the capacity to characterize the evolution of the system’s

trajectory as it jumps/transits between the finite space sub-regions of R. Moreover, due

to its formal equivalency to the microscopic theory, it inherently follows a detailed balance

condition as we will explain.
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𝑑

(a) (b)

(c)

𝑟 = 𝜎 =  
⟨𝑑⟩

2

𝑟

A hypersphere in 
configuration space

Figure 2.4: Illustration of how to utilize Cfin to construct regions of the configurations space
that partition the IM. (a) The final data set of iMapD, Cfin. (b) By performing a simple
clustering, a subset S is extracted. The configurations of S are expected to be distributed
as uniformly as possible with respect to RMSD. Each configuration is then associated with
a region Rk of size r = σ in the configuration space. (c) By choosing σ equal to half the
average distance between nearest neighbors of S the union of finite space regions effectively
covers the explored portion of the IM.

2.2.1 Coarse-grained dynamics of transitions

Let us begin by assuming that a set of over-damped Langevin equations govern micro-

scopically the structural dynamics of the molecule:

Q̇(t) =
−D
kBT

∇U(Q(t)) + η(t) (2.2.1)

The over-damped limit has been shown to be an appropriate assumption for time resolutions

of picoseconds or lower, where the conformational changes of (bio-)macromolecules occur

[208]. In this expression Q = (Q1,Q2, . . . ,QN ) represents a point in the configuration

space with Qi = (Q(i) x,Q(i) y,Q(i) z) and N the number of atoms. The Q̇ denotes the

velocity vector of this point, the U(Q) is the underlying potential energy function, and the

D = kBT
mγ is the diffusion coefficient, with m as the mass of each atom, γ as the viscosity

(assumed for simplicity to be uniform and isotropic), and kBT as the Boltzmann factor and

the temperature respectively. Finally, the η(t) is a vector of null average Gaussian noises

whose components follow the fluctuation-dissipation theorem:

⟨η(i)a(t)η(j)b(t′)⟩ = 2Dδabδijδ(t− t′) (2.2.2)

with η(i)a being the element of vector pertaining to Q(i)a.
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The stochastic differential Equation (2.2.1) leads to a probability distribution, which

obeys the well-known Fokker-Planck equation (FP):

∂P (Q, t)

∂t
= D∇.

(
∇+

1

kBT
∇U

)
P (Q, t)

= −HFPP (Q, t) (2.2.3)

and its Green’s function, the conditional probability P (Q, t|Qi), to observe the system in

configuration Q at time t subjected to Q(0) = Qi, accordingly follows

∂P (Q, t|Qi)

∂t
+HFPP (Q, t|Qi) = δ(Q−Qi)δ(t) (2.2.4)

It is convenient to substitute P (Q, t) = e−(U/2kBT )Ψ(Q, t) in Equation (2.2.3). This recast

the expression into a form equivalent to a Schrodinger equation in imaginary time:

−∂Ψ(Q, t)

∂t
= HeffΨ(Q, t) (2.2.5)

where the effective ”Quantum Hamiltonian” operator reads

Heff = −D∇2 +Veff (2.2.6)

with the effective potential

Veff =
D

4(kBT )2
(
|∇U |2 − 2kBT∇2U

)
(2.2.7)

Given this analogy to quantum mechanics, one can utilize the states |Q⟩ in the 3N Hilbert

space of the theory –P (Q, t) = e−⟨Q|Ψ(t)⟩–, to easily express the conditional probability

P (Q, t|Qi) in the form of a Feynman path integral

P (Qf , t|Qi) =e
− 1

2kBT (U(Qf )−U(Qi))⟨Qf |e−tHeff |Qi⟩ (2.2.8)

where next we perform a Trotter decomposition of the propagator, leading to

K(Qf , t|Qi) =⟨Qf |e−tHeff |Qi⟩

=

∫ [Mt−1∏
k=0

dQK

]
⟨Qk+1|e−Heffdt|Qk⟩ δ(Q0 −Qi) δ(QMt

−Qf )

=N
∫

D[Q]e−SOM (2.2.9)
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Here, we have divided the total time t into Mt differential steps, and

SOM =

∫ t

0
dτ

(
Q̇

2

4D
+Veff[Q(τ)]

)
(2.2.10)

denotes the so-called Onsager-Machlup action. The N is an irrelevant factor that appears

due to the change of variables from ηi (Gaussian noises) to Qi and essentially ensures the

normalization of
∫
dQ P (Q, t|Qi) = 1.

Next, to lower the spatial resolution of this stochastic theory, we define a set of so-called

CG states:

|Q} ≡
∫
dQ′ ϕ(Q′ −Q)|Q′⟩ (2.2.11)

The ϕ(Q) denotes a fast-decaying and smooth smearing function centered around 0, such

that |ϕ(Q)| |Q|≫σ−−−−→ 0. In the framework of the renormalization group theory, smearing the

position eigenstates to the scale σ is equivalent to lowering the spatial resolution by filtering

out large momentum states, with K ≳ 1/σ. This procedure which is commonly referred to

as “regularization”, can be conveniently achieved by adopting

ϕ̃(K) = e
−σ2K2

4 (2.2.12)

for the Fourier transform of ϕ(Q). The factor 1/4 is adopted for the sake of simple nor-

malization factors in the following equations. Consequently, in the configuration space we

obtain

ϕ(Q−Q′) =
e−

(Q−Q′)2

σ2

(σ
√
π)3N

(2.2.13)

Finally with this choice of ϕ(Q), the dot product

{Q|Q′} =

∫
dQ′′ϕ(Q−Q′′)ϕ(Q′ −Q′′)

=
e−

(Q−Q′)2

2σ2

(σ
√
2π)3N

= δσ(Q−Q′) (2.2.14)

exhibits a non-vanishing overlap between CG states, where we have adopted δσ(Q−Q′) as a

modified (smeared) Dirac delta function. In practice, the CG states |Qk} here are associated
with the configurations Qk in S and henceforth define the sub-regions Rk surrounding these

configurations.

Once the CG states are established, we derive the Feynman propagator of our theory

which corresponds to evaluating the Equation (2.2.8) however this time as a path integral

performed over the CG states |Q}. This reads

Kcg(Qf , t|Qi) = {Qf |Û(t)|Qi}, (2.2.15)
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where Û(t) = e−tĤeff . Following the standard derivation in Equation (2.2.9), we proceed

by carrying out a new Trotter decomposition:

Kcg(Qf , t|Qi) =

∫
dQ1 . . . dQNt−1

Nt−1∏
n=0

[
{Qn+1|Û(∆t)|Qn}

]
(2.2.16)

where Q0 = Qi, QNt
= Qf and the new time steps ∆t = t

Nt
are of the order of the time

resolution of the CG theory.

Let us focus on the elementary propagator {Qn+1|Û(∆t)|Qn}. As usual, by choosing

a sufficiently small discretization time, we can ignore commutations between kinetic and

potential operators and factorize the evolution operator

Û(∆t) ≃ e−T̂eff∆te−V̂eff∆t, (2.2.17)

where corrections are of higher order in ∆t. Using Equation (2.2.11), we obtain

{Qn+1|U(∆t)|Qn} =

∫
dz dz′

dK

(2π)3N

e−D∆tK2

eiK·(z′−z)ϕ(Qn+1 − z′)ϕ(Qn − z)e−∆tVeff(z) . (2.2.18)

which after taking the intergal on the momentum K it leads to

{Qn+1|U(∆t)|Qn} ∝
∫
dz dz′e−

(z−z′)2
4D∆t

− 1
σ2 ((Qn+1−z′)2+(Qn−z)2)e−∆tVeff(z) (2.2.19)

Here, we recall that ∆t is by definition the smallest time scale of our effective theory. Then

we posit that the Gaussian factor e−
m(z−z′)2

4D∆t remains finite only when the distance between

z and z′ lies within the spatial resolution of the CG theory, i.e ∼ σ. Consequently, it can

be effectively regarded as a Dirac’s delta function. Utilizing this assumption, we can carry

out the integral in dz′ in Equation (2.2.19) and obtain:

{Qn+1|U(∆t)|Qn} ≃ N e−
1

2σ2 (Qn+1−Qn)
2
∫
dz e

− 2
σ2

(
z−Qn+1+Qn

2

)2

e−∆tVeff(z) (2.2.20)

where N is an irrelevant factor. We can cast this expression in a more familiar form by

introducing a smeared effective potential defined as the following:

e−∆tVcg(X) ≡
∫
dz e−

2
σ2 (z−X)2e−∆tVeff(z). (2.2.21)

We emphasize that the average in the right-hand side is dominated by the configurations

with the lowest effective potential. From the definition of Veff in Equation (2.2.7), it follows

that these are configurations near mechanical equilibrium points, where the modulus of the
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2.2. Building the transition network

total force |∇U | is very small and the Laplacian of the potential energy is positive [209].

Finally, combining all terms, the elementary time propagator becomes

Kcg = {Qn+1|Û(∆t)|Qn} ∝ e
− 1

2σ2 (Qn+1−Qn)
2−Vcg

(
Qn+Qn+1

2

)
∆t
. (2.2.22)

Now, we first note that Kcg vanishes exponentially when the distance between Qn and

Qn+1 is larger than σ in e−
1

2σ2 (Qn+1−Qn)
2

. Furthermore, any structure of Vcg(Q) below the

short scale σ is smeared out due to the averaging involved in Equation (2.2.21). Therefore,

we may use the approximation Vcg

(
Qn+Qn+1

2

)
≃ Vcg (Qn), which yields

Kcg ∝ e−
1

2σ2 (Qn+1−Qn)
2−Vcg(Qn)∆t. (2.2.23)

Equation (2.2.23) qualitatively resembles the structure of the elementary propagator in the

microscopic theory in Equation (2.2.9),

⟨xn+1|Û(dt)|xn⟩ ∝ e−
1

4Ddt
(xn+1−xn)2−Veff(xn)dt. (2.2.24)

where for the sake of distinction we have adopted the form |x⟩ as the microscopic states.

However, it is important to note that the time discretization step dt in the microscopic

theory is generally orders of magnitude smaller than that of the CG theory, ∆t.

The CG propagator Equation (2.2.23) can be cast in a form that is completely ana-

log to the microscopic counterpart Equation (2.2.24) by introducing the effective diffusion

coefficient of the CG theory Dcg:

Dcg = σ2/(2∆t), (2.2.25)

defined in terms of the spatiotemporal resolution scales. After this substitution, we obtain

{Qn+1|Û(∆t)|Qn} ∝ e
− 1

4Dcg∆t
(Qn+1−Qn)

2−Vcg(Qn)∆t
(2.2.26)

By plugging back this expression into Equation (2.2.16), we finally obtain

Kcg(Qf , t|Qi) = N
∫
dQ1 . . . dQNt−1 e

−
∑Nt

k=1

(Qk+1−Qk)2

4Dcg∆t
+Vcg[Qk]∆t

(2.2.27)

We note that the formal connection between the microscopic description and the CG

theory also provides a practical approach to evaluate the Vcg without exactly calculating

the integral Equation (2.2.21). First, it is instructive to compute in microscopic theory,

the probability for the system –initially at some given position x– to remain within an
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Chapter 2. In-depth discussion of gTPS framework

infinitesimal volume after an infinitesimal time interval dt. To remove the dependence on

normalization factors, we conveniently compute this probability relative to the same quan-

tity in the purely diffusive limit (i.e. for free Brownian motion). Using the Equation (2.2.24)

we obtain:

R(x, dt) ≡ ⟨x|e−(T̂eff+V̂eff)dt|x⟩
⟨x|e−T̂effdt|x⟩

= e−Veff(x)dt. (2.2.28)

Thus, we can identify the Veff(x) as the escape rate from an infinitesimal volume centered

around x. Performing the same calculation in the CG theory –using Equation (2.2.26)–

leads to:

R(Q,∆t) ≡ {Q|e−(T̂eff+V̂eff∆t)|Q}
{Q|e−T̂eff∆t|Q}

= e−Vcg(Q)∆t. (2.2.29)

Here, the Vcg(Q) can be interpreted as the rate of escape (analog to the microscopic version)

from a region Rk around the configuration Qk, whose radius is the smallest spatial scale

of the CG theory. In practice, this rate of escape can be calculated for example by using

short MD simulations in iMapD and calculating the average first passage time T σ
avg of the

trajectory a distance ≥ σ from Qk.

2.2.2 Hamilton-Jacobi formulation of the coarse-grained theory

The elementary CG propagator, Equation (2.2.26), is reached by assuming that the spatial

scale of the theory adheres to the size of regions in R. Accordingly, we posited that the

highest temporal resolution must be the system’s average escape time ∆t = ⟨tesc.⟩ from

these regions. Alternatively, we can enforce this limit by directly regularizing the temporal

scale. To this aim, we focus on the Laplace transform of the propagator of the microscopic

theory Equation (2.2.9)

G(Qk, s|Qj) =

∫ ∞

0
dτe−sτK(Qk, τ |Qj) (2.2.30)

This expression essentially describes the probability of transitioning between Qj and Qk

in the frequency space with the characteristic frequency s (not considering the irrelevant

prefactor in Equation (2.2.8)). By adopting the correct frequency cut-off and transforming

it back into time coordinates, we expect to arrive at the CG propagator in Equation (2.2.29).

We now re-direct our attention to the transitions between configurations whose pairwise

distance is ∼ 2σ, or equivalently, from one region to its immediate neighbor Rk,Rj ∈ R.

Here, we assume σ to be sufficiently small that the majority of transitions occur along the

most dominant pathway Q̄ between Qk and Qj –associated to the respective regions.

According to Dominant Reaction Pathway (DRP) formalism [197, 210] (briefly reviewed

in Appendix A.1), the Q̄ is identified using the saddle-point approximation on the prop-
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2.2. Building the transition network

agator K(Qk, τ |Qj). This approximation yields a Newton-type equation of motion along

the DRP

¨̄Q

2D
= ∇Veff(Q̄), (2.2.31)

where Q̄(τ) obeys the boundary conditions Q(0) = Qj and Q(t) = Qk. This implies the

conservation of the effective energy

Eeff =
Q̇

2

4D
−Veff(Q) (2.2.32)

along the path Q̄(τ). In turn, the conservation of effective energy allows us to equivalently

express the DRP with an action that is independent of time. Using the Hamilton-Jacobi

(HJ) theory, the most probable path between Qk and Qj is the one that minimizes the

action

K(Qk, τ |Qj) ∼ eEeffτ−SHJ[Q̄], (2.2.33)

where SHJ[Q̄] is the so-called Hamilton–Jacobi (HJ) functional,

SHJ[Q̄] =

∫ Qk

Qj

dl
√
D
(
Eeff +Veff[Q̄(l)]

)
, (2.2.34)

and dl is the Euclidean distance travelled along the trajectory Q̄. Putting this back into

Equation (2.2.30) we get

G(Qj , s|Qj) = N
∫ ∞

0
dτ e(Eeff−s)τ e

−
∫Qk
Qj

dl
√

D(Eeff+Veff[Q̄(l)])
(2.2.35)

where N is an irrelevant prefactor.

Even though the effective energy along the DRP is conserved, it still depends on the

overall time that the path would take, Eeff = Eeff(τ). Since our focus is on the transitions

with spatial distance 2σ, we expect the integral in Equation (2.2.35) to be dominated by

the saddle point t̄ where Eeff(t̄) ≃ s. This approximation leads to

G(Qk, s|Qj) ≈ N e
−

∫Qk
Qj

dl
√

D(s+Veff[Q̄(l)])
(2.2.36)

Conversely, using this expression in DRP theory, the time taken by the most probable path

Q̄(l) can be written as:

tj,k =

∫ Qj

Qj

dl√
4D
(
Veff[Q̄(l)] + s

) . (2.2.37)
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Chapter 2. In-depth discussion of gTPS framework

In the context of the CG theory, we expect the average transition times ⟨tj,k⟩ to be on the

order of the temporal scale of the theory ∆t. Therefore, one can obtain the time of transition

between {Rk,Rj} by assuming a maximum cut-off frequency s0 ∼ 1/∆t = 1/⟨tj,k⟩ in

Equation (2.2.36).

Now, we return to the representation of the reactive pathways in the configuration space

using the partitions R. In this viewpoint, the transitions correspond to crossing in order a

given sequence of finite regions

Ri0 → Ri2 → . . .→ RiN

while going from the region i0 associated to the reactant to the iN associated to the product

(Figure 2.4). Hence, a transition path in the coarse-grained theory is specified by the integer

vector I = (i1, . . . , iNI
), where ik is the region visited at step k. The expression for the

conditional probability to perform a transition from i0 to iN using the effective theory in

Equation (2.2.29) reads:

Pcg(iN , t|i0) ∝ Kcg(QiN , t|Qi0), (2.2.38)

where the Qik
is the configuration representing the region Rik . However, considering the

assumption that the transitions between regions occur along the most dominant path, we

can evaluate the relative weight of every transition pathway I with the HJ formulation of

CG theory:

P (I) ∝ e
−

∑N−1
k=0 ∆l(ik, ik+1)

√
1

Dcg

(
Vcg(Qik

)+s0
)

(2.2.39)

where the ∆l(ik, ik+1) is the Euclidean distance between the configurations Qik
,Qik+1

.

Accordingly, the time of transition along such a pathway can be calculated as:

t ≃
N−1∑
k=0

∆l(ik, ik+1)
1√

4Dcg

(
Vcg(Qik

) + s0
) (2.2.40)

It is important to emphasize that this description of the time along a transition path, does

not capture the exponential time spent by the system to explore metastable regions. Thus,

it can only be used to estimate a lower bound for the transition path time, where jumping

from one region to its neighbor involves crossing only a single free-energy barrier.

This feature represents an important difference between the gTPS theory and the MSM

approach since the latter yields a complete representation of the relaxation kinetics. On

the other hand, defining a MSM is significantly more computationally expensive, since it

involves computing the full transition matrix. However, in our approach, we only require
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(a) (b)





Figure 2.5: (a) A network of transitions connecting the partitions R on the IM. (b) A
possible reactive pathway is depicted that traverses these regions as it transitions from the
regions associated with the reactant and product states.

to compute the Vcg using the escape time from the finite space regions, which can theoret-

ically be computed simultaneously with the iMapD. We also that corrections to the DRP

approximation are only logarithmic in the path’s action [211]. Therefore, as long as σ does

not exceed atomistic spatial dimensions ∼ 1Å we do not expect any significant difference

between the probability calculated using the HJ action and time-dependent action.

2.2.3 Network of transitions

The HJ formulation above allows us to represent the dynamics of our CG theory using

an undirected network that connects the neighboring regions. To this end, each finite region

Rik is assigned to a vertex k, while the edge connecting the vertices i and j is assigned a

weight wij ( Figure 2.5 ):

wij =
|Qi −Qj |
2
√
Dcg

(Li + Lj), Li =
√
Vcg(Qi) + s0 (2.2.41)

This way, the probability of a given coarse-grained path I is evaluated by the negative

exponent of the sum of the weights of all the edges forming the path I:

P (I) ∝ e−W (I) = e
∑

{i,j}∈I wi,j (2.2.42)

In these expressions, we have adopted a trapezoidal rule for the discretization of the integral

along the paths.

2.3 Sampling transition pathways

The undirected graph of finite-size regions R empowered with the CG description of

the dynamics, provides an ensemble of discretized transition pathways between the reactant
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Chapter 2. In-depth discussion of gTPS framework

and product states. To sample this ensemble, we posited in Chapter 1 that a QA could

be utilized to generate ”uncorrelated” pathways. Our argument was that the existence

of inherent quantum fluctuations in these devices, leads to de-correlation in the sampling

every time we initiate the annealing procedure. Of course, this is guaranteed only when

the number of possible pathways that are also significantly different is sufficiently large.

To demonstrate this in the following, we first utilize QUBO mathematical formulation

to encode both the network and its transition pathways into the D-Wave annealer. Then,

we integrate the D-Wave sampling step into an MC process implemented on a classical

computer. Here, we do not require a fully fair sampling of the space of possible paths,

which is one of the challenges in quantum annealer-based sampling [212–214]. Rather, we

employ a suitable reweighting procedure to achieve the correct detailed balance condition,

while we explore the space of accessible states.

2.3.1 Quantum mechanical encoding of discrete-TPE

Following the procedure for quantum annealing in Section 1.3.1, we need to formulate

the problem of sampling from the discrete TPE into an Ising Hamiltonian suitable for D-

Wave annealer. Such a function essentially should gauge all the pathways in the ensemble

according to their statistical weights, i.e. the more probable paths are represented by the

lower energy eigenstates. To this end, we present here a QUBO formulation that exactly

performs this ranking by searching for the ”optimal path” (equivalently the shortest path)

between any two vertices of an undirected network. We note that a similar formulation for

the case of a graph with directed edges can also be written, hence, all the following proce-

dures are equally applicable to alternative approaches –e.g. to encode networks produced

by MSMs.

Let us begin by denoting the vertices and the edges of the network with two sets of

binary variables, Γi and Γi,j , respectively. Here both i and j run over all the vertices of

the graph. In this representation, if Γi = 1 (Γi = 0), then the i-th vertex is (is not) visited

by the transition path on the graph. Γij is always 0 if the i and j are not adjacent in the

graph. If i and j are adjacent, then Γi,j = 1 when the path contains the i → j or j → i

transition. We are specifically interested in configurations of the binary variables in which

the set of non-vanishing entries of Γi and Γij form a topologically connected path, i.e., a

continuous line starting from the given initial vertex and terminating in the chosen final

vertex.

To generate configurations according to e−W (I) in Equation (2.2.39), we consider the

following function:

HQUBO = αHC +HT. (2.3.1)
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2.3. Sampling transition pathways

HC is the constraint Hamiltonian, a positive semi-definite function that is at its minimum

HC(Γi,Γi,j) = 0 only if the entries of the binary variables satisfy the path topology. What

we mean by the correct topology condition can be fulfilled by choosing [215]:

HC = Hs +Ht +Hr, (2.3.2)

where

Hs = 1− (Γs)
2 +

(
Γs −

∑
k

Γsk

)2

,

Ht = 1− (Γt)
2 +

(
Γt −

∑
k

Γtk

)2

,

Hr =
∑
j ̸=s,t

(
2Γj −

∑
i

Γj,i

)2

.

(2.3.3)

In this formulation, Hs and Ht enforce the topology related to the source s and target t

vertices. We know that in every path between these two, exactly one edge of the path

would be incident on either one of them. Then it is easy to see that Hs (or Ht) is at its

minimum when Γs = 1 (Γt = 1) and only one term in the summation is Γs,k′ = 1 (Γt,k′ = 1).

Conversely, for the rest of vertices along any given path they are required topologically to

have one incoming and one outgoing edges. Therefore, the Hr, which controls the flux

conservation for all the vertices other than s or y, is at its minimum zero only when for

every i, Γi = 1 and exactly two variables Γi,k1 and Γi,k2 are equal to 1 in the (second)

summation. Finally, in Equation (2.3.1) the HT =
∑

ij wij Γij is the so-called target-

function that HQUBO attempts to minimize. By definition, HT yields the path action W (I)

whenever the configuration of the variables Γi and Γi,j satisfy a path topology, i.e. HC = 0.

The parameter α in Equation (2.3.1) controls the relative strength of the constraint

Hamiltonian, HC, against the HT. In the quantum mechanical sense, this parameter

can introduce a gap between the energies of HQUBO. Configurations of binary variables

that correspond to real paths occupy the states of HQUBO whose maximum energy is

max(HT) = Cmax. The Cmax denotes the cost of the largest weighted path possible be-

tween the source and target vertices. Immediately above this state, resides another one

with eigenvalue = 2α that corresponds to all the binary variables equal to zero, s.t. HT = 0

and HC = 2. In order to discourage any optimization algorithm from accessing ”not-path-

like” configurations while searching for the shortest weighted path, it is necessary to adopt

2α > Cmax. However, we obviously cannot know the Cmax beforehand.

Separately, caution must be taken while adjusting parameters such as α in realistic

annealing machines, e.g. D-Wave. In particular, apart from energetically distinguishing

between the states, this parameter has to be sufficiently small since realistic machines are
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not able to arbitrarily access large energy scales. This may not be alarming at first as

the pre-processing schemes usually implemented in such machines rescales all the energy

couplings to match the physical limitation of the device. However, this can introduce unwar-

ranted biases in the annealing process or, concerning our goal of using D-Wave for sampling,

obscure accessing certain states who have slightly higher energy than the minimum. Con-

sidering both challenges, we heuristically assign 2α =
∑

i,j wi,j in both applications of this

thesis. This guarantees to satisfy 2α > Cmax condition while not being too much restrictive

concerning the relative scale of energies between HC and HT.

Now, in principle to implement the HQUBO into qubits of D-Wave, we need to switch

the binary expression first into a generalized Ising model –following the substitutions Si =

2Γi − 1, Si,j = 2Γi,j − 1– and subsequently promote it to its quantum representation –by

replacing the classical Ising variables with Pauli σz operators. However, in practice, the

programming toolkit provided by D-Wave (OCEAN) is already capable of performing the

transformation from QUBO all the way to the quantum Ising model. Thus, we simply rely

on OCEAN for encoding the HQUBO into the D-Wave machine.

2.3.2 Sampling pathways with Quantum Annealing

We are now in a position to undertake the task of sampling the TPE by performing

the quantum annealing, as implemented in the D-Wave machine. Following the standard

procedure in Section 1.3.1, the qubits are initialized in the ground state of a Hamiltonian

H0 that is easy to prepare theoretically and experimentally. The structure of H0 was not

relevant as long as it did not commute with HQUBO, and therefore allowed for quantum

fluctuations to penetrate the barriers of the cost function associated with HQUBO. Sub-

sequently, D-Wave gradually evolves the coupling of the qubits from H0 toward HQUBO,

which replaces Htarget in Equation (1.3.5).

In an ideal closed system and for sufficiently slow annealing, adiabatic theorem Equa-

tion (1.3.6) ensures that the system remains in its instantaneous ground state throughout

the transition. Naturally, by the end of transition at t = tfin., the final state |Φfin.⟩ of the

system is expected to be the ground state of the QUBO Hamiltonian. Then, performing the

quantum measurement in the computational basis of individual qubits (the basis of {σz}
operators) reads out the configuration dictated by |Φfin.⟩. However in realistic conditions

where annealers like D-Wave operate, the probability of landing onto the ground state re-

mains < 1 even in the limit of very long switching times. Several factors contribute to this.

For one, the couplings between the system and its environment often induce dissipative

and non-adiabatic corrections in the annealing process. Moreover, hardware limitations

such as sub-optimal topological connectivity of the qubits produce unintended biases in the

result [216].
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Such errors have prompted efforts to investigate the potential of these devices as sam-

plers for classical Boltzmann distributions [217, 218]. Especially, since there exist theoretical

and experimental arguments that support this possibility [219–221]. However, if the cou-

pling to the environment is particularly strong, experiments also indicate that the system’s

relaxation at the end of annealing would not be according to the user-defined parameters,

B(tfin.)HQUBO [218]. Rather, the state of the system may freeze at some time tfreeze, be-

tween the completion of annealing schedule tfin. and the time of the critical point tc where

the annealer experiences the minimum energy gap (∆01 in Equation (1.3.7)). We recall

that B(t) is the instantaneous coupling of the annealer to the HQUBO (Htarget in Equa-

tion (1.3.5)) s.t. B(tfin.) ≫ A(tfin.). Luckily, in a quasistatic regime, the final states of this

frozen annealing coincide with a modified Boltzmann distribution, however, according to

B(tfreeze)HQUBO where B(tfreeze) ≫ A(tfreeze) [218]. Therefore, it is logical to assume that

there exists a regime of switching times in which the distribution of the paths generated

by multiple hybrid energy minimization has a finite overlap with e−HQUBO . Here, without

a lack of generality, we have additionally assumed the physical temperature of the machine

and B(tfin.) cancel out each other so that (kBT )dwaveB(tfin.) ≈ 1.

Following this argument, to account for the environment-induced fluctuations, we may

utilize the machine itself to evaluate the condition probability of generating any path at

any given switching time, P (I|tfin.). With the help of this probability, we then devise a

Metropolis criterion in an MC scheme that corrects for biases and errors when exploring the

space of transition pathways. Moreover, since the interplay between quantum fluctuations

and measurement is fundamentally ever-present in any QA process, the anticipation is for

the sampling to ”forget” previous iteration every time we initiate a new annealing cycle.

Therefore, as long as the space of accessible states is large enough, the resulting Markov

chain contains uncorrelated pathways that also obey the correct detail balance condition

between one another.

The conditional probability P (I|tfin.) generally depends on the details of the quantum

annealing machine and is challenging to compute using theoretical arguments. This barrier

could be overcome by performing a moderate number of annealing sweeps with D-Wave,

for each value of tfin.. The spectrum of the target Hamiltonian HT is expected to be non-

degenerate since the weights in the graph wi,j are in general all different. In addition, we

previously showed that for large values of the parameter α in Equation (2.3.1), all the low-

lying states of HQUBO correspond to paths with correct topology. Therefore, each low-lying

eigenvalue E of the QUBO Hamiltonian is related to the action of a single path, E =W (I).

Then, by performing a frequency histogram of the energies E using the paths that we obtain

with multiple annealings at fixed tfin., P (I|tfin.) can be directly inferred from P (E|tfin.). In
the specific, by calculating the average E and the standard deviation ∆E of the energy, we
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can estimate P (E|tfin.) by the lowest-order cumulant expansion as

P (E|tfin.) ≃
1√
2π∆

e−
(E(I)−E)2

2∆2 (≃ P (I|tfin.)) (2.3.4)

The reason for the lowest-order approximation is the limited time generally available with

D-Wave hardware, and therefore it be improved systematically by including higher orders

in the cumulant expansion.

Once the conditional probability P (I|tfin.) is established, the road for sampling is open,

so to speak. In a classical computer-based MC, when dealing with systems in equilibrium,

one would generally invoke a detail balance condition T (I2|I1)e−W (I1) = T (I1|I2)e−W (I2),

where T (I2|I1) is the transition probability from the path I1 to the path I2 in the under-

lying stochastic process. We choose to generalize this dynamic to include the variation of

switching times tfin. in the Markov chain. We expect that such a modification is necessary

due to the limited Quantum Processing Unit (QPU) time of D-Wave. In particular, by

performing the majority of annealings at tfin. ∼ t0 where t0 is a tunable parameter specific

to each particular problem, we attempt to find a reasonable compromise between accuracy

(slow switching) and efficiency (low consumption of QPU time). The new detailed balance

condition reads ρ(I1, tfin.) T (t
′
fin., I2|tfin., I1) = ρ(I2, t

′
fin.) T (tfin., I1|(t′fin., I2), where ρ(I1, tfin.)

is the new equilibrium distribution. Our MC dynamics must be defined in such a way as

to ensure that the equilibrium distribution is

ρ(tfin., p) = pt(tfin.)× e−W (I), (2.3.5)

where pt(tfin.) is an equilibrium probability centered around t0, chosen to guarantee the ac-

curacy and efficiency of QPU usage. Following this new condition, to obtain the Metropolis

acceptance/rejection, we write the transition probability as a product of a trial move prob-

ability τ(I2, t
′
fin.|I1, tfin.) and a corresponding acceptance probability A(I2, t

′
fin.|I1, tfin.). We

posit the following form for the transition probability

τ(I2, t
′
fin.|I1, tfin.) = κ(t′fin.|tfin.) P (I2, t′fin.), (2.3.6)

where κ(t′fin.|tfin.) is the probability for the switching time to go from tfin. to t
′
fin. in a Monte

Carlo step, while we impose from Equation (2.3.4), P (p|tfin.) = P (E|tfin.). Combining all

terms together, we obtain the acceptance rule:

A(I2, t
′
fin.|I1, tfin.) = min

[
1,
P (tfin.|t′fin.)
P (t′fin.|tfin.)

P (I1|tfin.)
P (I2|t′fin.)

pt(t
′
fin.)e

−W (I2)

pt(tfin.)e−W (I1)

]
(2.3.7)

As the last piece of our MC scheme, in our simulations, we chose to update tfin. according

to Brownian dynamics with a harmonic drift term:

ti+1
fin. = tifin. − δtk(tfin. − t0) +

√
2δtξi, (2.3.8)

59



2.4. Discussion

𝑸𝑼𝑩𝑶
for finding the shortest path

Pegasus architecture
D-Wave hardware
(network of physical qubits)

(a) (b)

Figure 2.6: (a) Encoding of the network of transition into D-Wave annealing machine using
the QUBO formulation. (b) In QUBO, every vertex and edge of the network is represented
as a binary variable. If a vertex/edge is present in the path, its associated binary variable
takes the value 1, otherwise 0.

where ξi is a Gaussian distributed random variable of null mean and unitary variance and

δt is an incremental switching time change.

The overall scheme of utilizing QA in the pipeline of gTPS framework is summarized

and illustrated in Figure 2.6 and Figure 2.7.

2.4 Discussion

The intricate interplay between the components of our novel framework facilitates the

sampling of the transition pathways in a molecular conformational reaction. The unique

strength of the gTPS comes from the fusion of iMapD’s data-driven approach for rapid

uncharted exploration of FEL and the quantum annealing’s ability –as implemented in the

DWave’s machine– to generate minimally correlated pathways. This ultimately yields an

ensemble of discrete pathways which by design traverse along the low-energy regions of

the FEL, thus maintaining a high acceptance probability in the MC process. As such, we

believe gTPS is bound to overcome both of the long outstanding challenges of conventional

TPS algorithms mentioned in Section 1.3.1.

Moreover, the incorporation of quantum annealing to generate the reactive paths marks

an important difference concerning previous frameworks of TPS. Assuming iMapD is capa-

ble of obtaining configurations along every possible channel for a reaction, then the initial
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௦௪ ଵ ଷଶ

Quantum annealing

Preparing every qubit according to  

=

Measurement

Trial path

Figure 2.7: Illustration of how a (quasi)- adiabatic switching procedure on a quantum
annealing machine yields uncorrelated trial paths on the graph.

quantum state of the annealer holds in superposition the entire ensemble of pathways cor-

responding to these channels –present in the network of transition. Thus, the gTPS can

identify globally the more optimal pathways in the transition network (lower statistical

weight) in contrast to classical methods such as kMC which are only able to search locally

for these paths using their stochastic approach. This can be considered somewhat as a sim-

ilar theoretical shift as when the original TPS was introduced as an MC approach which

samples directly the trajectory space instead of configuration space [53]. Additionally,

gTPS achieves all of these with no simplification or reduction of the system under study

in its applications in contrast to other methods involving QCs. To validate and illustrate

the capabilities of this approach, we discuss in the next chapter its first application to a

benchmark molecule, Alanine dipeptide.

In another significant advancement, in Chapter 4, we introduce a modification designed

to enhance the stability of the shooting move in the iMapD algorithm. This additional

piece enabled gTPS to seamlessly explore the near-native-state transitions of a much larger

molecule with an order of magnitude higher number of atoms than alanine dipeptide. No-

tably, the same system was previously studied using the special supercomputer, Anton, and

by running more than 1 ms of plain MD simulation. Our refined version of iMapD man-

ages to capture conformations in all observed conformational states present in the Anton

trajectory, with the exception of the least populated state. Furthermore, using a modest

amount of QC time, we obtain transition pathways that closely mimic the same conforma-
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tional transitions as in Anton data. Lastly, we have dedicated one chapter to the ongoing

applications of gTPS to the unfolding of proteins.

The diagram of iMapD and gTPS algorithms are included in Appendix A.5.

2.4.1 The gTPS’s pathways and experiments

Prior to finishing this chapter, we briefly allude to the structural and dynamical observ-

ables that one could obtain using the gTPS framework. The kinetic rate of reaction is often

one of the first quantities of interest reported in computational studies involving TPS or its

variants. As mentioned in Section 2.2, the DRP formalism, while capable of evaluating the

thermodynamic cost of transitioning between finite size regions (statistical weights in the

transition network), is solely able to estimate a lower bound for the transition path time, i.e

the average time it takes to complete a reaction along a productive path. This is because

the connections in the network of finite-size regions are established under the assumption

that the corresponding transitions (between two connected regions) occur only by overcom-

ing a single free energy barrier and as such the thermodynamic cost of the transition can

be evaluated as the average of Scg
HJ between the two regions. Naturally, this approach does

not contain the necessary kinetic information that accounts for multiple-barrier crossing

or relaxation between multiple regions. Therefore, gTPS cannot generate real dynamical

trajectories where experimental observables such as reaction rates can be evaluated. In

contrast, in conventional discrete TPS methods, the information on barrier crossings and

relaxation is inherently provided to the kMC process in the form of the transition matrix,

to generate the pathways. Alternatively, biophysical experiments can precisely determine

the time it takes the system to exit one state and arrive at the next which then can be

compared with the prediction of gTPS. Unfortunately, the transition path time is less infor-

mative than the reaction rate. Indeed, it depends only logarithmically on the height of the

energy barrier. As a result, while transition rates of protein structural rearrangements can

vary over many orders of magnitude, the corresponding transition path times are typically

within 1 to a few microseconds.

On the other hand, the kinetic rate is not the only experimentally verifiable observable

of interest. Capturing certain conformational changes (e.g the order in which the protein’s

structural motifs form) or identifying intermediate metastable states along a reaction are

two other examples that are regularly looked for in computational studies [222–224]. In the

folding process of large multidomain proteins (including membrane proteins), the presence

of long-lived and partially folded intermediate states is in many cases a rate-limiting factor

in the reaction and can make the molecule prone to aggregation and misfolding [224].

Therefore, it is necessary to structurally characterize these metastable states on the folding

pathway and understand their role in the kinetics. In particular, the identification of
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these states has become a potential new avenue for drug discovery/development as can be

observed from companies such as Sibylla Biotech [225].

Meanwhile, the underlying mechanism of the folding process of different proteins can-

not be explained in a unifying fashion e.g. by only using the nucleation growth model.

This mechanism may very well hold for small single-domain proteins whose folding can be

approximate as that of a two-state system (unfolded-folded) [226]. However, in the case of

knotted proteins, or the ones with disulfide bridges, or large membrane proteins, the struc-

tural evolution of the molecule during folding involves a more complex description [223].

Since the gTPS pathways predominantly favor the low free energy regions, we believe

their configurations provide a particularly reliable way to identify metastable states along

a reaction. To this aim, one possible approach would be retrieving those highly visited

configurations in the obtained TPE. Furthermore, the transition state (Section 1.2) of a

reaction can be readily identified by finding the configuration in the Dijkstra path from

which the probabilities of arriving at product and reactant states are equal (according to

Section 2.2.3) [210].

Concerning the conformational evolution along a reaction, we again expect that relying

on the low energy pathways of gTPS reveals more easily the essential structural changes of

a system such as the order of the α-helix or β-sheet formation in the folding of a protein.

We argue that since these pathways are devoid of configurations in high free energy regions,

therefore they are less prone to introduce artifacts in the analysis of the structure. We also

suspect that as such, these configurations are more valuable for identifying CVs associated

with a reaction.
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CHAPTER 3

Case study: benchmarking with
Alanine dipeptide

In the preceding chapters, we presented the theory behind the framework of gTPS which

aims to address the outstanding issues of conventional TPS algorithms. In this chapter,

to verify this claim and further demonstrate the capabilities of our framework, we apply

gTPS to a benchmark system called Alanine dipeptide (ALA). ALA is a relatively small

molecule with 22 atoms. Extensive experimental and computational studies have shown

that this molecule shares several chemical features in common with the polypeptide chain

of proteins. For example, the structure in metastable states on the ALA’s free energy

surface –characterized by its torsion angles ϕ and ψ– closely mirror the ”allowed/favorable”

conformations of amino acids in proteins (excluding Proline and Glycine residues), as the

latter form α-helices and β-sheets. This resemblance is why the αR and β (C5) states of

ALA’s landscape have been given these names [206].

Moreover, the existence of a methyl side chain in ALA is representative of all the com-

monly occurring amino acids except Glycine [227, 228]. The protein-like features and simple

structure of ALA make it an excellent prototype for studying the dynamics of backbone

atoms. It continues to be a popular choice for benchmarking newly developed algorithms

in computational studies of biomolecular systems and is often among the first systems used

for tuning/learning force field parameters.

ALA’s remarkable characteristics make it an ideal starting point for us to test the

capabilities of gTPS framework. Furthermore, its modest size allows it to perform quantum

computing calculations on existing D-Wave machines. Consequently, we utilize gTPS to
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Figure 3.1: Free energy Landscape of alanine dipeptide, projected onto its two main dihedral
angles. This figure was generated by simulating alanine dipeptide for 1 µs at T = 300 K,
and in explicit TIP3P water. Contour lines are drawn every 3 kJ.

simulate the C5 → αR transition of ALA.

3.1 Applying gTPS to alanine dipeptide

3.1.1 Exploring ALA’s intrinsic manifold

We start by sampling from the two metastable states using OpenMM [229]. One simula-

tion starts from the C5 region at the top left corner of the Ramachandran plot in Figure 3.1

and another from αR in the vicinity of ϕ = −75, and ψ = −20. The Figure 3.1 was calcu-

lated from a frequency histogram of 1 µs of equilibrium MD at T = 300K, generated using

OpenMM, in the AMBER99SB force field with explicit TIP3P water. The contour lines of

this figure will be used as a reference in all the projections of ALA configurations on the

dihedral angles surface (Ramachandran plot). After the initial sampling, we evaluate the

DMAP for each set of configurations separately to obtain a low-dimensional representation.

We then identify the boundary in this representation to initialize new simulations beyond

the region that has already been sampled. We measure the pairwise distance between

configurations by calculating RMSD between the backbone atoms after having removed

global translations and rotations. This calculation was done using the MDAnalysis pack-

age in Python [230, 231]. At every iteration of iMapD, we assigned the scaling parameter

ϵ = µ(dij) − σ(dij) (see Appendix A.2), where µ(dij) is the average of RMSD and σ(dij)

is the standard deviation. The same measure µ(dij)− σ(dij) was also used in the shooting
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3.1. Applying gTPS to alanine dipeptide

Figure 3.2: Final result of the exploration with iMapD. The neon-pink colored points signify
the configurations whose potential energy is higher than the median 85.84kBT

moves to identify the neighboring configurations for every boundary point.

The exploration proceeds according to the steps of iMapD in Section 2.1: Initiating

unbiased sampling from each new configuration and then merging all the new data to the

previous one. By iterating over DMAP evaluation at every step, finding new configurations,

and sampling we populate the transition region between C5 and αR states. We eventually

terminate the iterations when the configurations explored starting from the two initial

metastable state overlap, i.e., when at least two configurations have RMSD closer than

0.3 Å. The final set of iMapD’s configurations form the set, Cfin., and are depicted in

Ramachandran plot in Figure 3.2. In this figure, we have singled out the configurations

with potential energy higher than the median.

Numerical details: In all simulations of iMapD, the molecule was placed in a square

box with 2.85-nm base vector, solvated with the TIP3P water model using again AM-

BER99SB forcefield. We energy-minimized the initial configuration using the L-BFGS al-

gorithm implemented in OpenMM with tolerance on the square mean root of all force com-

ponents at 500 kJ (nm mole)−1. Simulations were performed at a temperature T = 300K,

using a Langevin integrator with friction coefficient γ = 91ps−1 and timesteps of ∆t = 2 fs.

The initial sampling bursts in the two metastable states were 200 ps long starting in C5

state and 20 ps for αR. All the subsequent runs were 1 ps long.
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3.1.2 Constructing network of transitions

Next, in the gTPS framework, we partition the configuration space between the αR and

C5 states to form the set of finite regions R. Then, leveraging the CG theory describing

transitions between these regions, we build a network of connectivity over R. Our concern

here is to maintain sparse partitioning to ensure compatibility with the D-Wave quantum

annealer. In particular, minimizing the required qubits for encoding the network reduces

the likelihood of the thermalization and decoherence issues we mentioned in Section 2.3.

The process begins by excluding configurations from Cfin. with potential energy higher

than the median U(Q) > 85.84 kBT ( Figure 3.2 ). Second, we calculated the DMAP of all

remaining samples and projected them on the first two DCs, obtaining the set Z = {zk}
(Figure 3.3(b)). We then proceeded by identifying the two configurations in Z with min-

imum RMSD from the initial configurations lying in two basins C5 and α, denoted as zi

(corresponding to Qi in the original space) and zf (Qf ). Starting from zi, we kept the

nearest point zk1 satisfying Ddiff(zk1, zi) > Dthresh
diff , and removed from Z all the configu-

rations with lower Ddiff . Here Ddiff (diffusion distance) is the Euclidean distance between

points in the space spanned by the two DCs (more details in Appendix A.2). We used

Dthresh
diff = 7.5 × 10−4 inspecting the histogram of nearest neighbor pairwise diffusion dis-

tances among the points in Z, Figure 3.4. This ensures that any point considered kinetically

similar to zi and zk1 are removed (following the description of DMAP in Appendix A.2). We

continued by applying the same procedure between remaining configurations in Z and zk1,

and therefore identifying iteratively the set Zs = {zi, zk1zk2, . . . , }. We also make sure that

we have included zf (representing Qf ) in the Zs. By the end of this procedure and lifting

back to the original configuration space, we obtained the set S = {Qi,Qk1,Qk2, . . . ,Qf}
of ν = 83 configurations. This reduced dataset is illustrated both in DMAP space and in

the Ramachandran plot in Figure 3.5.

In the next stage, we build a graph having as nodes the sparse set of configurations S.
In this graph, we argued that only those configurations that are structurally and kinetically

close should be connected. We used two criteria to ensure this condition. Two nodes should

be connected if their diffusion distance is smaller than 0.01 and their RMSD closer than

0.8 Å. Both thresholds were chosen heuristically from the histogram of pairwise diffusion

distances and RMSD calculated on the set of configurations generated by iMapD (depicted

in Figure 3.6). We should note that these values guarantee to have a single connected

network on S where every node has at least 2 incident edges. Additionally, we point out

that in both histograms the existence of two meta-stable basins is evident from the two

peaks in the distribution of distances. Next, we calculate the weights wi,j of the edges in

this graph, Equation (2.2.39). To evaluate the Vcg and consequently the weights for our

first illustrative example, we resorted to a simple phenomenological approach instead of
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(a)
(a) (b)

Figure 3.3: (a) Ramachandran plot of iMapD data after removing the configuration with
potential energy higher than the median. (b) DMAP embedding of points whose potential
is below the median,shown as a function of the first two DCs.

exactly following the procedure provided in Chapter 2. Namely, we first smeared out the

short-distance structure of Veff through a window averaging over the groups of points that

lay close in the space span by the two DCs in Figure 3.3.(b). Let us denote the value Veff

in each window k as (Vcg)k = ⟨Veff⟩k. Depending on which window the configurations of

S would be located, we assigned to each the value of (Vcg)k respectively. The results can

be seen in Figure 3.7. Next, we assigned s0 in Equation (2.2.39) as the absolute value of

min(Vcg) and calculated the weights of every edge in the network. To ensure that a single

path is not overly represented due to the exponential nature of its probability, we rescaled

all the weights by dividing their values by the largest link wmax. The network of transition

between the configuration in the reduced data set S can be seen in Figure 3.8.

3.1.3 Sampling transitions paths from C5 to αR

Now that we have a fully realized network between the Qi and Qf we can proceed to

sample the paths that represent a transition between C5 to αR. To implement our hybrid

classical/quantum Monte Carlo scheme, we encode the QUBO Hamiltonian HQUBO that

was defined by our graph onto the DWave quantum annealer. As explained in Section 2.3,

we utilized the OCEAN programming suite provided by DWave themselves for this step.

Our encoding required 578 qubits, given by the sum of the number of nodes and edges of

our network. To generate trial paths, we rely on the hybrid solver available with DWave,

which combines quantum annealing with classical simulating annealing. We should note

that in this case, the tfin. is now identified with the total hybrid solver’s computing time

and not the QPU time.
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(a)

Figure 3.4: Ddiff histogram for nearest neighbors. Dthresh
diff = 7.5× 10−4 contains more than

98% of nearest neighbor pairwise distances. In downsampling the iMapD dataset to build
the finite space regions R we adopt this value as the minimum diffusion distance allowed
between the configurations.

Num. of attempts Correct topology Wrong topology Success rate

117 69 48 0.59

Table 3.1: Summary of the transition path generation on D-Wave to calculate the histogram
reported in Figure 3.9

We proceed by estimating the conditional probability P (I|tfin.) in Equation (2.3.7) using

a direct calculation on D-Wave using Equation (2.3.4). The result of this calculation is

summarized in Table 3.1 and can be observed in Figure 3.9. In the latter, we report the

average value of the energy E and its standard deviation ∆(E) for every tfin.. Following

the MC procedure in Section 2.3, in the next step we initiated three independent Markov

chains from arbitrary paths generated by separate runs of hybrid solver at 30 s, tfin. = 180 s,

and 240 s, corresponding to 1̃ s, 6̃ s, and 8̃ s of QPU time, respectively. We evolved tfin.

according to Eq. (2.3.8) with k = 2× 10−4 s−1 and t0 = 150s and then accepted or rejected

the new paths according to Eq. (2.3.7). We also recall that α =
∑

ij wij in the HQUBO.

With this choice, on average, over 60% of the annealing sweeps led to configurations of

binary variables Γ with a correct path topology (summarized in Table 3.2). In Figure 3.10

we show the change in path action Wp and the hybrid minimization time tfin., along our

three Markov chains. As these results show, the MC algorithm occasionally accepts trial

moves with a higher action. They also show that longer annealing times do not always
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(b)(a)

Figure 3.5: Reduced iMapD data projected on (a) the first two DCs and (c) Ramachandran
plot.

Monte Carlo steps Accepted paths Wrong topology Rejected paths

Markov chain 1 9 7 0 2
Markov chain 2 13 8 2 3
Markov chain 3 20 10 4 6

Table 3.2: Summary of the Markov chains sampling process on D-Wave.

yield paths with lower actions. This is expected, since the P (E|tfin.) distributions have

significant overlap, which can be inferred from Figure 3.9. By projecting all the paths onto

the Ramachandran plot, we can observe in Figure 3.12 that the transition paths generated

by our scheme are consistent with the FEL of ALA. In panel (a) we illustrated the first

and last accepted transition paths of one of the generated Markov chains. Both paths

correctly connect the two meta-stable states, navigate the low-free energy regions of the

surface, and cross the barrier at its lowest point. In panel (b) we report how often all the

sampled transition paths have passed each node of the network, i.e., the statistical weight

of the corresponding configuration in the transition path ensemble. Even though all the

paths go through the transition state, due to the presence of fluctuations, a relatively small

portion also visits configurations with relatively high free energy. The deterministic least

action that we also calculated using the Dijkstra algorithm (Figure 3.11) can only detect

the global minimum of the functional Wp. In contrast, our TPS algorithm accounts for

fluctuations that lead to the full transition path ensemble.

Auto-correlation between the sampled path: The main strength of our hybrid

classical/quantum scheme is that it allows us to efficiently obtain independent transition

paths. Following the arguments in Section 1.3 and Section 2.3, the only source of correlation

70



Chapter 3. Case study: benchmarking with Alanine dipeptide

(a) (b)

Figure 3.6: (a) Histogram of pairwise Ddiff (b) and of pairwise RMSD calculated on all
configurations sampled by iMapD.

between these paths can be due to the stochastic evolution of the minimization time tfin.

(Eq. (2.3.8)), otherwise gTPS produces uncorrelated paths in the Markov chain. To quantify

the degree of correlation in the trajectory of sampled paths, we consider the auto-correlation

function G(N):

G(N) =

1

NMC

NMC∑
k=1

[〈
1

|E|
−→
Γ (k +N).

−→
Γ (k)

〉
−
〈

1

|E|
−→
Γ (k +N)

2
〉〈

1

|E|
−→
Γ (k)

2
〉
.

]
(3.1.1)

In this equation, the
−→
Γ (k) represents the vector of all binary variables encoding the edges

of the graph (the set of {Γi,j}i,j=1,...,ν) generated at the k-th Monte Carlo step and we are

implicitly assuming periodic boundary conditions, i.e.,
−→
Γ (NMC + 1) =

−→
Γ (1). Here, NMC

is the number of Monte Carlo steps, and |E| denotes the number of edges present in the

graph. Finally, N is the distance in the Monte Carlo chain. The average ⟨f⟩ is intended

over many Monte Carlo trajectories. In practice, however, the computing time that was

available to us on the D-Wave quantum computer was sufficient to generate only 3 Monte

Carlo trajectories. Since such limited statistics does not allow us to estimate the averages in

Eq. (3.1.1), we chose not to perform the average and directly analyze the behavior of G(N)

for each independent trajectory. In Figure 3.13 we plot the behavior of G(N) (evaluated

relatively to its initial value G(0) ) for each independent Markov chain. These results clearly

indicate that the correlation of the generated trajectories is suppressed after just a single

Monte Carlo step.

Due to the absence of autocorrelation, the cost of generating an ensemble of N inde-

pendent transition paths scales like ∼ Ns
a , where s is the cost of a single Monte Carlo step

and a is the average acceptance ratio. In our case, s amounts to about 120 seconds of total
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(b)(a)

Figure 3.7: The original Veff (a) and the average version which we assign as the Vcg (b). To
average Veff, we used the embedding of configurations on the first two DCs, and averaged
over configurations that were close to each other.

computing (of which about 4 seconds of QPU time) and a ≃ 60%. Therefore, to produce

an ensemble of about 100 independent transition paths for this system, our Monte Carlo

scheme would require slightly more than 5 hours of total hybrid computing time, including

about 10 minutes of QPU time.

3.2 Discussion

Through the application of gTPS to the alanine dipeptide molecule, we have demon-

strated its ability to enhance the sampling of the full pathway ensemble during a conforma-

tional transition. More notably, our examination of the C5 → αR transition has shown that

the gTPS-generated paths correctly follow the low energy regions of FEL while maintain-

ing minimal correlation within the Markov chain. We attribute this crucial feat to gTPS’s

distinct approach in formulating the problem of sampling TPE. Notably, the TPE is often

heterogeneous, displaying multiple transition channels corresponding to alternative molec-

ular mechanisms. gTPS –by utilizing iMapD– rapidly explores all the transition channels

that are accessible (concerning their relative free energy) and samples statistically relevant

molecular structures in these regions. This approach provides us with a more global and

comprehensive view of the IM and the conformational transition.

Subsequently, gTPS builds a discrete representation of TPE by utilizing the effective

description of the dynamics directly derived from the iMapD data. This unique formu-

lation enables us to encode the discrete TPE into a quantum computer. Leveraging the

inherent features of the device –namely quantum fluctuation and measurement– allows us
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Figure 3.8: Network of transitions plotted on the Ramachandran plot. Nodes correspond to
reduced data set S, and edges connect configurations that are kinetically and structurally
close. The number of vertices and edges are |V | = 83 and |E| = 495, respectively.

to generate uncorrelated trial pathways in an MC process. By acknowledging the physical

limitations of the device, we extend the metropolis criterion to include the conditional prob-

ability P (E|tfin.) calculated from the device itself. This in return facilitates the sampling of

transition pathways correctly according to their relative statistical weight on our network.

Finally, we acknowledge that the steps of gTPS were intentionally not strictly followed

in the application to the benchmark system of ALA. Specifically, while constructing the

network, we deviated from the instruction provided in Section 2.2 for calculating the Vcg.

This deliberate choice was grounded in the understanding that ALA, being a relatively small

molecule, accordingly possesses a geometrically simple effective potential surface. Therefore,

a window averaging on the IM is a valid approximation. This was subsequently confirmed

as the generated transition paths on the network in Figures 3.11 and 3.12 correctly follow

the regions of low free energy.

In the next chapter, we investigate the scalability of gTPS by studying its application to

the rare transition of a much larger molecule. There we also perform the gTPS framework

in full (calculating Vcg according to Equation (2.2.29)) and showcase further the validity of

our approach.
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Figure 3.9: Average value and standard error of the mean of the energy E obtained by
multiple quantum annealing processes at fixed values of tfin.. These results are used to
estimate P (E|tfin.) to the lowest order in the cumulant expansion approximation.

(b)(a)

Figure 3.10: (a) Evolution of the path action Wp and (b) annealing time tfin. along the
Monte Carlo paths generated using the hybrid classical/quantum annealing implemented
on D-Wave.
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(a) (b)

Figure 3.11: The most probable path, calculated via the Dijkstra algorithm, in (a) DMAP
embedding and (b) Ramachandran plot.
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Figure 3.12: (a) Sample of transition pathways for the C5 → αR transition of ALA obtained
from D-Wave in an MC process. The red line denotes the first (top) and last (bottom)
trajectory in one of the Markov chains. (b) Transition path density, which was evaluated
for the ensemble of trajectories calculated from the paths in all the Markov chains of our
MC. The solid orange line is the most probable path, Figure 3.11.
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3.2. Discussion

Figure 3.13: The ratio of auto-correlation function G(N)/G(0) plotted as a function of
Monte Carlo steps N for three independent Markov chains.
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CHAPTER 4

Case study: Bovine Pancreatic
Trypsin Inhibitor

In Chapter 3, by resorting to a small GPU desktop and DWave quantum annealer, we

successfully demonstrated the ability of the gTPS framework to generate transition paths

that explore different regions of configuration space. The critical question is whether our

method, implemented on the existing quantum hardware, can accurately simulate transi-

tions too complex to be investigated by plain MD even on large GPU computer clusters. In

this chapter, we present the application of gTPS onto Bovine Pancreatic Trypsin Inhibitor

(BPTI, PDB code: 5PTI), a substantially larger polypeptide chain than ALA. Our objec-

tive is to study the rare transitions of this molecule near its native structure. Previously,

the Anton special-purpose supercomputer [25] had fully characterized the same system us-

ing more than 1-ms long plain MD simulation. We utilize their result as a benchmark for

the gTPS application.

BPTI is a 58-residue globular protein (with 892 atoms), that serves as an inhibitor of

proteolytic enzymes such as trypsin, as its name implies. Naturally produced in the bovine’s

pancreas, its relatively small size has rendered this molecule one of the most studied proteins

both computationally and experimentally. BPTI has played a pioneering role in research,

being among the earliest proteins to have its crystal structure identified and the first to

be simulated using MD [232, 233]. With a research span of 50 years, BPTI offers valuable

insights into the study of the folding process, especially for the disulfide-rich proteins due

to its 6 Cystine (Cys) residues.

In 2010, D. E. Shaw et al. [25], utilized the supercomputer Anton to simulate the
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dynamics of BPTI for 1 ms at the temperature of 300K starting from the crystallographic

structure. By performing a kinetic clustering on a time auto-correlation function, they

analyzed the long-time behavior along their molecular trajectory. Their result revealed 5

structurally distinct states in their data. We present the average configurations in these

states in Figure 4.5. Notably, in the two most populated states, the average structure of one

corresponds to the crystallographic structure and the other exhibits a left-handed disulfide

bridge between the Cystine residues 14 and 38. The existence of the latter had already been

confirmed by NMR experiments. Additionally, three states that had not been predicted by

any experiments were also identified. Their distinct characteristics include a larger exposed

surface area to the water solvent, different rotation rates of aromatic side chains, and the

breaking of the hydrogen bonds in the small α-helix near the N-terminus. While iMapD

may not allow for such a detailed dynamical analysis, we rely on several structural features

to demonstrate that iMapD successfully explores the majority of states observed by Anton,

missing only the least populated one.

4.1 Polar Star scheme

Before delving into the application of gTPS, it is crucial to acknowledge the compu-

tational challenges of exploring the energy landscape of biological macromolecules with

iMapD. Notably, the efficiency of this algorithm, as mentioned in Section 2.1, heavily is

tied to the computational cost of generating new viable molecular configurations in the

shooting move. One is required to adopt an incremental value for the parameter c (which

determines the strength of shooting, Equation (2.1.3)) and perform an energy minimization

to obtain a chemically correct configuration, Xnew. However, under such constraints, we

encountered difficulties in efficiently sampling conformations that were significantly differ-

ent than the native structure of BPTI. To remedy this issue, we introduce an important

improvement to the iMapD algorithm that we refer to as the ”Polar Star” scheme. This

enhancement is designed to make the algorithm more efficient and robust, enabling its

applications to realistic systems, such as protein BPTI.

The key idea is to employ a specific type of biased simulation called Ratchet-and-pawl

MD [234–236] (rMD) to drive the MD simulation toward a viable molecular configuration

X starting from the boundary configuration QB
j . In an rMD simulation, the equations

of motion of the macromolecular system are modified by introducing a history-dependent

biasing force defined as:

Fi
B(x, qm(t)) = −krMD∇iq(x)(q(x)− qm(t))θ[q(x)− qm(t)] (4.1.1)

Here, the θ(x) is the Heaviside step function, and x = (x1, . . . ,xN ) denotes the set of atomic
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coordinates. The q(x) is a CV whose maximum value attained up to time t is denoted by

qm(t).

The CV q(x) is usually calculated via the contact map of instantaneous configuration

x during the rMD simulation:

q̃(x) =

∑
|i−j|>35(Cij(x)− C0

ij)
2∑′

i,j C
0 2
ij

, (4.1.2)

In this equation, Cij(x) is a switching function that approaches 1 when atom i and j are

in contact and vanishes when they are far apart. In particular, we use:

Cij(x) =
1−

(
rij
r0

)6
1−

(
rij
r0

)10 . (4.1.3)

Here, rij = |xi − xj | and r0 = 4.5 Å is a threshold reference distance and C0
ij are entries

of the contact map of the target state that we want rMD to reach. We note the restriction∑
|i−j|>35 in Equation (4.1.2), which excludes from the summation pairs of atoms that

belong to neighboring amino acids. This restriction is introduced to avoid the biasing force

acting on atom pairs, which are subject to strong correlations determined by the local

chemical structure of the chain. When applying rMD to protein folding, the C0
ij is often

calculated using the native structure of the protein. However, in the application of rMD to

Polar Star, the target contact map is defined as:

C0
ij = Cij(Q

new
k ) (4.1.4)

where Qnew
k is the set of Cartesian coordinates of a point outside the boundary of the

explored region, generated with the original shooting move Equation (2.1.3).

Now, in rMD simulation, the system evolves as in plain MD as long as the dynamics

spontaneously progress towards configurations with a smaller q(x). Conversely, a harmonic

biasing force, defined by Equation (4.1.1), switches on every time the overlap between the

instantaneous Cij(x) and the target C0
ij decreases. Therefore, such simulation initiated

from the boundary point QB
i , rapidly yields a new viable molecular configuration outside

the boundary, with a contact map close to C0
ij .

This ”Polar Star” scheme1, schematically illustrated in Figure 4.1 dramatically improves

the efficiency of the iMapD algorithm. Notably, by ”dragging” the QB
i along the curvature

of FEL, it eliminates the existing restriction on the strength of the ”shooting move”, i.e.

1The name ”Polar Star” is based on the analogy with the ancient navigation scheme based on pointing
towards a star (outside the Earth’s surface manifold) to orient the sailing direction.
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𝑸𝒏𝒆𝒘
ᇱ

Boundary of 
explored region

rMD

𝑿𝒊
𝐁

Figure 4.1: Schematic illustration of the Polar Star scheme, which has taken its name from
the old marine navigation system. After performing the original shooting move of iMapD,
we use rMD to ”drag”QB

i toward theQnew. By the end of rMD, we obtain a new chemically
viable configuration Xnew which has a very close contact map to Qnew.

the values of the parameter c. In fact, by performing iMapD with different large values of

c, this modification enabled us to cope with the existence of different length scales in the

macromolecule’s energy landscape.

We also emphasize that the bias for the rMD dynamic is not chosen heuristically by

the user. Instead, it is determined once iMapD produces the new set of coordinates outside

of the boundary of previously sampled regions. Therefore, the new scheme of exploration

remains fully uncharted and faithful to the original algorithm.

4.2 Applying gTPS to BPTI

4.2.1 Exploring BPTI’s intrinsic manifold

After implementing the Polar Star modification into iMapD, we initiate the exploration

of BPTI’s manifold. We start the algorithm by initially solvating the crystal structure of

the molecule in a square box of size 6-nm with 6744 molecules of TIP3P water using the

forcefield AMBER99SB-ILDN, implemented in GROMACS [66]. The system was neutral-

ized with 6 ions of chloride. Next, we performed energy minimization and equilibrated the

system at 300 K in the NVT ensemble for 200-ps with an integration step of 1 fs. We

resorted to a stochastic velocity rescaling thermostat, with coupling constant 0.1 ps−1. Fi-
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nally, we simulated for 10-ns in the same NVT ensemble. Configurations were saved every

100-ps.

An additional challenge in exploring the protein energy landscape is the co-existence of

structures at different length scales. To cope with this issue, we integrated the results of

iMapD simulations performed at 3 different values of shooting strengths c = 0.5, 0.75, 1.0.

The contact map was calculated using the MDTraj package in Python [237]. To perform

rMD simulations, we relied on an in-house modified version of GROMACS. Equivalently,

this calculation could be performed using the publicly available PLUMED plugin[238].

For each choice of c, we performed 30 iMapD exploration cycles. In each cycle, 5

individual 1-ns long MD simulations were performed starting from configurations outside

the boundary generated by the Polar Star. In each exploration cycle, the scaling parameter

ϵ (Equation (A.2.1)) that defines the DMAP kernel was set to the average value of pairwise-

RMSD between all the configurations sampled by iMapD up to that cycle.

After obtaining the combined dataset of the three separate runs of iMapD Cfin. (corre-
sponding to ∼ 3µs of cumulative simulation time), our first objective was to assess whether

the iMapD algorithm can discover protein conformations close to those observed in the

Anton simulations. In particular, using Q (fraction of native contacts) and RMSD, we

projected the data of iMapD and Anton onto the space spanned by these two CVs. We

note that the energy-minimized structure in the first frame of Anton data was used as a

reference (and as analog to the native structure) for the calculation of these CVs. This

projection hereafter is called the Q-RMSD plot.

The heatmap of the FEL calculated from Anton molecular trajectory in the Q-RMSD

plot is depicted on the Figure 4.2. The contour lines of this figure will be used as the

background for all the illustrations in the Q-RMSD plane. The Figure 4.3 illustrates that

Cfin. entirely covers (and even surpasses) the FEL. Moreover, we project the Anton trajectory

on one of the mentioned CVs, the RMSD, depicted in Figure 4.4.(a). Namely, the plain

MD trajectory can be seen to traverse multiple transitions between the 5 conformational

states. In panel (b1) to (b3), each iMapD run (projected onto the same CV) appears to

visit some of these states as the exploration takes place.

Here, we must note the important addition of the Polar Star moves to iMapD. In

particular, based on the result of Figure 4.4(b1) for shooting strengths of c ≤ 0.5, it is

evident that iMapD even with the new modification has some difficulty in overcoming the

energy barrier and necessitates an increase of c. However, in the original shooting move,

c = 0.5 is already a high value concerning the stability of iMapD algorithm. Therefore, this

result can be taken as evidence of the efficiency provided by the Polar Star modification.

Finally, in panel (c) of Figure 4.4, we report the cumulative distribution of RMSD eval-

81



4.2. Applying gTPS to BPTI

Figure 4.2: The heatmap of FEL near the native structure of BPTI. This was calculated
using the frequency histogram of Anton’s trajectory.

uated from a frequency histogram of all the configurations in the plain MD and iMapD

trajectories. This comparison highlights that iMapD does not yield the Boltzmann distri-

bution at room temperature and thus breaks the detailed balance.

Before continuing the application of gTPS to BPTI, we briefly discuss an analysis based

on multiple structural features to demonstrate that iMapD has indeed visited most of the

states observed in the Anton simulation. Additionally, we address an interesting question:

Could the exploration of iMapD be achieved with comparable accuracy, using plain MD

simulations at high temperatures?

Comparison between the structures in iMapD and Anton MD trajectory

As mentioned, the key structural differences between the 4 states other than the native

structure include (i) the left-handed chirality of the Cys14-Cys38 disulfide bridge, (ii) the

rotation rate of some of the aromatic side chains, (iii) changes in the exposed area of the

molecule to the water and (iv) the unfolding of the small α-helix located at the N-terminus.

Thankfully, representative configurations from each of these metastable states were provided

in the supplementary material of [25] and are reported in panel (a) of Figure 4.5. The color

code is consistent with the one adopted in the original paper.

To examine whether our iMapD exploration led to visiting the same states, we first

gathered all the configurations generated by iMapD which satisfied Q> 0.9 and RMSD< 2Å
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Figure 4.3: The dark blue dots are all the configurations of BPTI generated during the
iMapD exploration performed with three different values of c (0.5, 0.75, and 1.0). Each
iMapD run was performed for 30 cycles. The contour lines in the background highlight the
structure of the free-energy landscape evaluated from a frequency histogram in Figure 4.2

from the structures provided by Anton, representative of each state. The configurations

that satisfy the proximity criterion for multiple states were assigned to the one with the

smallest RMSD distance. These sets of iMapD configurations are reported in panel (b) of

Figure 4.5. According to this criterion, we could not find any iMapD configuration near

state-3 (purple dot in Figure 4.5.(a) ). We stress that this state is by far the shortest-lived

among those detected in plain MD simulations.

Since iMapD breaks microscopical reversibility we could not rely on the dynamical analy-

sis reported in [25] to assess the meta-stability of the configurations explored by iMapD. We,

therefore, relied on an analysis of structural properties to check that the iMapD configura-

tions associated with each state, are actually consistent with those found in the metastable

states of Anton. In particular, the left-handed chirality of Cys14-Cys38 is one of the main

differences between the two largest populated states, state-0 (depicted as the red dot in Fig-

ure 4.5(a) , occupied by 56% of Anton trajectory) and state-1 (the crystallographic state,
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(a)

(bଵ)

(bଶ)

(bଷ)

(c)

Figure 4.4: (a) The time series of the RMSD from the first frame (evaluated on backbone
atoms) for Anton’s plain MD trajectory. This frame is taken as a definition of the native
state. (b1)-(b3) The equivalent time series evaluated along the exploration cycles of the
iMapD, with three different values of the parameter c which controls the amplitude of the
translation that drives the system outside the explored region. The oscillations visible in
the RMSD time series of iMapD are associated with different exploration cycles. (c) The
distributions of RMSD generated by plain MD and iMapD. This plot depicts the deviation
of iMapD exploration from Boltzmann distribution.

blue dot in Figure 4.5(a), occupied 27% of the time). This property which can be charac-

terized by the dihedral angle χ3 ≈ −90, was evaluated for configurations in all the 4 groups

of iMapD configurations, as reported in Figure 4.6. The left-handed disulfide bond in the

configurations structurally very close to state-0 provides evidence that iMapD visited this

state. Similarly, the characteristic structural properties of state-3 and state-4 observed in

[25] were found in the configurations generated by iMapD, as shown in Figure 4.6. Another

structural analysis, similar to the one reported in [25], involved the values of χ2 dihedral

angles in the aromatic side chains. We observed the same angles in the iMapD sets of

configurations, as reported in Figure 4.7.

Comparing iMapD to high-temperature MD

As a final note on the application iMapD to BPTI, we compare its exploration of the

IM with an exploration based on high-temperature plain MD. To this end, in Figure 4.8, we

report the results of 300 ns of iMapD (corresponding to the specific choice c = 1) with three
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(a) (b)

Figure 4.5: (a) The 5 configurations provided as supplementary material of [25]. They
represent the 5 states observed in Anton plain MD trajectory. (b) We collected the con-
figurations in iMapD data that satisfied Q> 0.9 and RMSD< 2Å from the structures in
(a). These represented the configurations in the 5 states of Anton. Based on these criteria,
we were not able to identify any configuration in the state-3, which was coincidentally the
least populated state in Anton’s trajectory.

equally long plain MD simulations, performed at T = 340, 360, and 380 K, respectively.

For Q> 0.9 and RMSD< 1.5Å, all of these simulations follow the global shape of FEL in

the Q-RMSD plane. However, the configurations generated by high-temperature MD are

in general confined in a region with Q≳ 0.85, while the iMapD data reach configurations

with a lower fraction of native contacts and larger RMSD to the native state. Furthermore,

for Q< 0.9 region, the high-temperature MD configurations drift towards the region with

RMSD> 2Å (except for a branch of data at T = 380K), which is scarcely visited at room

temperature. Conversely, the configurations generated by iMapD (which are based on short

MD simulations at T = 300K) more faithfully profile the low free-energy regions, all the

way to Q< 0.8 and RMSD> 2.5Å.

4.2.2 Constructing network of transitions

Obtaining the vertices of the network

Next in gTPS, to harvest from Cfin a subset of configurations representative of finite

regions in R, we followed a different approach than the one discussed for ALA. Namely, we

applied and compared 3 different methods of structural clustering [107, 239]: KMeans, Hi-

erarchical clustering (HC) with unweighted average linkage, and HC with Centroid linkage.

We placed two criteria to identify the best clustering for this step: (i) the distribution of
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Figure 4.6: The Cys14-Cys38 bridge dihedral angles (χ3) for the configurations of iMapD
data that correspond to each state of Anton. Consistent with [25], we verify that all the
states except state-1(crystallographic) contain configurations with left-handed bridges.

nearest-neighbor RMSD calculated over the centroids of the clusters should be narrowest,

denoting a uniform spacing of the centroids, and (ii) The centroids of the clusters should

be uniformly distributed in the Q-RMSD plane. However, we still have to consider the

limitation of DWave hardware that the coherence and henceforth performance decreases as

the number of required qubits increases. Due to this reason, we maintained the number of

clusters to ν = 80 which is similar to the case of ALA.

The KMeans approach aims to cluster the data while minimizing the average intra-

cluster Euclidean distance between members of each cluster. Formally, the objective func-

tion that we try to minimize is:

argmin
ζ

m∑
k=1

∑
i∈ζk

|Qi − µi|2 (4.2.1)

where ζ is the set of m-clusters, and µi is the centroid of each cluster defined as:

µi =
1

|ζj |
∑
j∈ζi

Qj (4.2.2)

In our application, KMeans was performed using the scikit-learn [240] package with Cα-

atoms’ coordinates taken as the main initial features of the data set. We set the algorithm

to find the optimum clustering after 20 runs of randomly initializing the centroid of the

clusters using the ”kmeans++” built-in method. The algorithm was then terminated once,

in successive iterations, the distance between the consecutive cluster centers fell below 0.1Å.

The centroid of the KMeans’ clusters can be observed in Figure 4.9(a) where each panel
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Figure 4.7: The distribution of χ2 dihedral angles in certain aromatic side chains of BPTI.
This figure corresponds to the same analysis done in [25].

shows the representative configurations in the Q-RMSD plane (top) and the distribution of

nearest neighbors (bottom).

Alternatively, in HC, we start by taking every point as an isolated cluster. Then, at each

step, we form new clusters by connecting those that previously had the minimum ”linkage”

distance. For HC with unweighted average linkage –UPGMA method–, this distance is

defined as

D(A,B) =
1

|A||B|
∑
Xa∈A

∑
Xb∈B

d(Xa, Xb) (4.2.3)

where (in our application) the d(Xa, Xb) is the RMSD of the backbone atoms. Conversely, in

the Centroid version of HC –UPGMC method–, the dissimilarity/distance between clusters

is taken as the Euclidean distance between the centroid of each cluster

D(A,B) = |µA − µB| (4.2.4)

where µK = (1/nK)
∑

Xk∈K Xk. This linkage distance can be alternatively expressed start-

ing from the RMSD distances between configurations:

D(A ∪B,C) = a1D(A,C) + a2D(B,C)− a3D(A,B) (4.2.5)
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Figure 4.8: Configurations generated by 300 ns of plain MD at three different high tem-
peratures and 300 ns of cumulative iMapD exploration at (c = 1), projected onto the
Q-RMSD plane. This result demonstrates an advantage of iMapD instead of increasing the
temperature for enhancing the molecular configuration. In iMapD, since every short MD
is performed at 300K when we follow the gradient of FEL in the shooting step, we remain
more faithful to regions of low free energy.

where

a1 =
|A|

|A|+ |B|

a2 =
|B|

|A|+ |B|

a3 =
|A||B|

|A|+ |B|

(4.2.6)

Such an expression is practically more useful as it allows to utilization pre-computed pair-

wise RMSD matrices instead of taking Euclidean coordinates of configurations as the argu-

ment.

For both HC approaches, we relied on the SciPy package [241] with default values for

all the parameters. After obtaining the set of clusters (in each method), we collected those

configurations that possessed the lowest intracluster RMSD distance as the centroid of each
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(a) (b) (c)

Figure 4.9: Results of clustering iMapD configurations using (a) KMeans, (b) HC with
Average linkage, and (c) HC with Centroid linkage. In all panels, Q-RMSD plots on the
top depict the representative configurations characterized by the least average intra-cluster
RMSD as the centroid of clusters. On the bottom, we have plotted the nearest neighbor
RMSD distance between these centroids. Based on these results, we have chosen HC with
Average linkage as the representative of R regions in the gTPS framework.

cluster. The results are reported in Figure 4.9 (b-c).

Based on a comparison between all the panels of Figure 4.9, we identify the clustering

of the UPGMA method as the one that better meets the two criteria we were looking for.

We denote S as the set of configurations representing the centroids of the resulting clusters

in UPGMA. Next, we continue by utilizing S to build the network of transitions for BPTI.

The Figure 4.10 depicts the centroid configurations of the clustering test overlap onto the

whole iMapD dataset.

Connecting the vertices

In the next step of the gTPS framework, we adopted the procedure indicated by Equa-

tion (2.2.29) in Section 2.2 to calculate the Vcg. Namely, we first established σ –the radius

of finite space regions in R– as the half RMSD between the nearest neighbors configurations

in S, i.e. σ = 0.8Å. Next, by running 100 individual plain MD simulations (t = 500-ps),

we evaluated the average time T σ
avg it takes for the MD to appear σ RMSD distance from

every Q ∈ S. As explained in Section 2.2, the inverse of this quantity, which signifies the

89



4.2. Applying gTPS to BPTI

Figure 4.10: The dark blue dots are all the configurations of iMapD and the orange dots
are the ν = 80 representative centroids obtained after clustering in Figure 4.9.

rate of escaping the regions in R, also determines the Vcg(Q):

Vcg(Q) =
1

T σ
avg

(4.2.7)

The result of this calculation can be observed in Figure 4.11, wherein panel (a) illustrates

the average escape time in ps, and panel (b) provides the heatmap of Vcg in Q-RMSD

plane for configurations in S After obtaining the Vcg, we build the connections between

the centroids or vertices in S (representative of finite size regions R) by first establishing

edges between those that satisfy relative RMSD ≤ σ. Similar to the application of ALA,

we argued that every vertex in this network must retain at least 2 edges (except the source

and target vertices) connecting it to the rest. This is an essential criterion for visiting every

vertex (and henceforth every region inR) while sampling pathways. Therefore, to guarantee

this, we next identified every vertex with degree < 2 and established connection(s) from it

to the utmost 2 of its neighbors –albeit with RMSD> σ. Finally, to ensure the topological

connectivity of the graph, we linked each disconnected component to its nearest neighbor
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Figure 4.11: The results of the calculation of the CG effective potential Vcg
eff associated

with each node of the graph (i.e. the clustered data shown in Figure 4.10). (a) Vcg was
calculated as the inverse of node lifetime. (b) The value of Vcg in the Q-RMSD plane.

using their vertices with minimum RMSD.

Once the network was established, we calculated the weights of each edge using Vcg and

the Section 2.2.3.

4.2.3 Sampling transitions paths in the basin of BPTI’s native structure

To sample pathways from the transition network in the basin of BPTI’s native state,

we again resort to the DWave annealing machine. For this task, we first identified the

two configurations in S that in the Q-RMSD plane had the largest distance yet overlapped

with the FEL contour lines. Then, after assigning them as the source and target nodes for

the paths, we implemented the corresponding HQUBO into the DWave machine according

to gTPS. The required number of qubits for encoding our network was 207 (equal to the

number of edges and vertices). This was a significant reduction compared to the case of

ALA.

Before initiating the MC sampling in gTPS, it is necessary to evaluate the conditional

probability P (I|tfin.) (Equation (2.3.7)). Following the application of gTPS to ALA, this

step requires a substantial amount of QPU time (about 4 minutes cumulatively). Unfortu-

nately, for the application of gTPS to the BPTI molecule, we only possessed the commonly

available time for computation with the DWave machine (20 minutes of hybrid solver usage

or equivalently about 40 sec of QPU time). Therefore, as such we could not fully apply the

gTPS framework. Nevertheless, we utilized the DWave hybrid solver to generate multiple

high-probability transition paths to assess the validity of the overall framework of gTPS in

the present application.
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(a) (b)

Figure 4.12: (a) Comparison between the statistical weight of the paths generated with
D-Wave annealing, and the most probable path obtained by Dijkstra. All the generated
paths with annealing only take O(1)-s of QPU time and have weights within factor 2 of the
Dijkstra path. (b) In contrast, in our experiments with classical optimization algorithms
of SA, only ∼ 10% of the paths had low weights/action (the blue dots), with the majority
being 1−2 orders of magnitude higher than the Dijkstra path. However, it requires O(103)-s
of computation on a single-core classical computer. It is worth noting that this result also
demonstrates the gap provided by HQUBO formulation in Section 2.3.

In our annealing cycles, the generation of a single transition path required O(101) s of

hybrid solver time (corresponding to O(1) s of QPU time). For comparison, we have also

performed several analog calculations resorting to fully classical simulated annealing (as

implemented in OCEAN). Even after increasing the sweeping number to 106, which took

O(103) s of computational time on a single core, most of the obtained paths have relatively

low statistical weight: indeed, their action Wp is typically two orders of magnitude larger

than that of the least-action path. However, a small portion of these paths (roughly 10%)

has an action within a factor two of that of the least action path. In contrast, the actions

of all the paths generated with the hybrid quantum-classical are within a factor 2 from

that of the least action path (Figure 4.12 ) In Figure 4.13.(a), we assess the most probable

pathway in our network obtained by the Dijkstra algorithm against the corresponding

transition observed in Anton’s trajectory. Panel (b) reports some of the unique stochastic

trajectories obtained by QA in DWave. In Figure 4.14, we have depicted all the D-Wave

paths (whose weights are shown in Figure 4.12) and compared them against the Dijkstra

path. As expected, Anton’s MD trajectory, the most probable path, and the stochastic

trajectories evaluated using DWAVE, all reach the final destination by traveling along the

low-free energy region. However, upon closer inspection, a significant portion of the MD

trajectory can be seen to accumulate in the vicinity of one of the frames in the gTPS

network, indicating the presence of a meta-stable state. This observation highlights the
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(a) (b)

Figure 4.13: (a) The blue line follows the configurations in the transition pathway con-
necting two distant points in the plane selected by the RMSD to the native state and the
fraction of native contacts, obtained by plain MD using the Anton supercomputer. Except
for the beginning and the end of the line, the rest depicts the result of an average of over
50 ns-long windows. The solid black line is the most probable path computed in the gTPS
scheme, calculated using the Dijkstra algorithm. Selected representative conformations
along this path are also included. To illustrate the evolution, these conformations (Black)
are superposed onto the native structure (Red). (b) Some representative gTPS transition
pathways were sampled using the DWAVE quantum computers and compared with the
Dijkstra path.

potential limitation of the gTPS framework, discussed in Section 2.2, as it solely considers

overcoming a single free-energy barrier in transitions and may overlook the exploration of

metastable states. Meanwhile, in Section 2.2, we also discussed how gTPS yields the

lower bound of the transition path time for the stochastic trajectories on the network of

transitions. For the least action path shown in panel (a) of Figure 4.13, we obtain a lower-

bound estimate t ∼ 500 ps using Equation (2.2.40). This time scale cannot be directly

compared with the transition path time observed in the corresponding plain MD trajectory

since the latter involves overcoming more than one energy barrier. However, we analyze the

MD transition pathway by projecting it onto the RMSD to the native state and isolating

the sections involving a transition between metastable basins. Based on this simple analysis

we found the strict transition time of the blue line in Figure 4.13.(a) (excluding the time in

a metastable state) to be t ∼ 1.2 ns. Hence, the transition time observed in MD is about

a factor of 2 longer than the lower bound estimate provided by gTPS. This is illustrated in

Figure 4.15.
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Figure 4.14: Additional transition paths computed using the DWAVE quantum computer
and compared with the most probable path obtained with the Dijkstra algorithm.

4.3 Discussion

This chapter was dedicated to the first application of the gTPS framework to a macro-

molecular system of biological relevance. In particular, we investigated rare structural

rearrangements near the native structure of BPTI that spontaneously occur on a millisec-

ond time scale. Our main objective was to demonstrate the capability of current quantum

computers and, overall the gTPS framework in investigating challenging protein transitions

with full atomic resolution.

By utilizing Anton’s trajectory and a modified version of the iMapD algorithm, we

demonstrated that gTPS can retrieve conformations of BPTI observed in the plain MD

simulation, however, with orders of magnitude lower computational cost. Subsequently,

we encoded our effective description of the dynamics into a small network of transition.

We note that the constraint on the size of the network is mainly due to the physical

limitations present in current QC hardware. Then, we performed several QA cycles with
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(b )(b )

(a)

Figure 4.15: (a) The plain MD transition path for the conformational transition of BPTI
shown in Figure 4.13. (b) projected on the RMSD from the first frame of Anton’s trajectory.
The 8 red points have been used to estimate the barrier-crossing time scale tt ∼ 1.2 ns.

DWave to generate trial transition pathways on the network. The result demonstrated

that the DWAVE quantum computer can indeed generate viable paths at an affordable

computational cost (with a QPU calculation time of a few seconds per path). Moreover,

the results in Figure 4.14 and 4.13 depict how these paths correctly predict the regions of

low free energy.

Amplifying the iMapD’s shooting move with the Polar Star scheme enabled us to stabi-

lize the overall application of gTPS. We were able to demonstrate the efficiency provided by

this addition as we gradually increased the parameter c in Figure 4.4. This result, in com-

bination with the validity of our network of transition in correctly identifying the regions of

low free energy, motivated the following question: ”Can we utilize the gTPS framework to

sample transition pathways along the unfolding of a protein?”. We should point out that

between folding and unfolding mechanisms, we intuitively expect that the latter would pose

a lower level of difficulty to investigate. Since starting from a denatured state, a protein

system has to overcome a large ”entropic” barrier to reach the folded state, we reason that

iMapD would probably be less effective in studying the folding mechanism. To answer this

question in the next chapter, we discuss the preliminary results of applying gTPS to the

unfolding of two separate molecules.
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CHAPTER 5

Ongoing investigations

Understanding the folding/unfolding of proteins is one of the central goals of studies on

biological macromolecules. Starting from the ribosomes in what is often referred to as a

coiled/denatured/unfolded conformation, proteins have to rearrange their structure in a

unique 3D shape to become functional in the body of living organisms. Many numerical

and computational approaches (of which we gave just a few examples in Chapter 1) have

been mainly developed to address the task of characterizing the underlying mechanism of

this rare event.

Following the successful applications of gTPS in previous chapters, we are currently

investigating the unfolding of the 35-residue subdomain of the chicken Villin headpiece

(HP35, PDB code: 2f4K). This molecule is one of the smallest natural polypeptide chain

that autonomously folds into a globular structure with an experimental folding rate of

∼ 4µs [242]. The reversible folding/unfolding process of this system has been studied with

Anton using 128µs of plain MD [26]. In the last two decades, several other studies have

also investigated the folding of this molecule which has become a standard benchmark

system. Notably, it has been shown that HP35 folds through 3 general channels: (Channel-

I) Characterized by the helix-2 and helix-3 segments forming their native structure first

(Figure 5.1.(a)), then the helix-1 is formed. This is the mostly observed pathway in the

folding of HP35 [26, 243]. (Channel-II) Conversely, the helix-1 and helix-2 can be formed

first and then helix-3 [26, 244]. (Channel-III) Most recently a new possible pathway was

reported where all three helices cooperatively form their native bond structure [245]. We

note that, out of the three, this pathway seldom occurs in the folding of HP35 and in fact,

it was not observed in the data of Anton.
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Helix-1
[residue 3-10]

Helix-2
[residue 15-19]

Helix-3
[residue 22-33]

(a) (b)

F

U

Path I

Path III

Path II

Figure 5.1: (a) The HP35 subdomain of Villin protein. The three helices whose order of
formation determines the folding pathway are indicated. (b) The initial sampling of HP35
unfolding with iMapD, at c = 1.0, 5.0, for a cumulative simulation time of ∼ 2µs. The
data is projected onto the RMSD with respect to the Helix-1 and Helix-3’s Cα atoms.
Here, F denotes the folded state and U denotes the unfolded state. Previous computational
studies revealed that 3 main folding channels exist for this molecule. The 3 red lines in this
plot show a schematic illustration of possible pathways in each channel. The path (Path-X)
notation is according to in which channel (Channel-X) they can appear. In Channel-I, which
is the most observed in previous studies, Helix-3 and Helix-2 form their native contacts first
and then Helix-1 is formed. Alternatively in Channel-II, Helix 1 and 2 are the ones to form
first. Channel-III is the only one that does not follow a hierarchical formation of helices’
native contacts.

We employ all these results as a suitable ground to examine whether gTPS can in fact

sample transition pathways for a reaction that occurs through multiple distinct channels.

Namely, in both of previous applications, our focus was to investigate whether gTPS is

capable of correctly characterizing the low free energy regions for a reaction. Therefore,

we were not particularly concerned that in those cases the transition effectively occurred

through one channel. However, after observing success of gTPS, folding/unfolding of HP35

with 3 transition channels is arguably a suitable next application in which to test our

framework. In Figure 5.1.(b), we have shown our initial application of iMapD to HP35

and a schematic representation of 3 previously identified folding pathways. In Figure 5.2,

samples of iMapD configurations in 3 important folding intermediates along each pathway

are depicted.

Meanwhile, we have also initiated a separate numerical experiment concerning the un-

folding pathways of BPTI protein. As mentioned in the previous chapter, this molecule,

due to its size and its chemical structure that contains 3 pairs of Cystine residues, has

been extensively studied as a folding model for many disulfide-rich proteins. Due to the
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Figure 5.2: Sample iMapD configurations that reside in 3 important intermediates along
the HP35 folding pathways. These intermediates are adapted from [245].

present of these bridges which play a stabilizing role for the folded structure of BPTI [246,

247], the folding (unfolding) can only be achieved experimentally through an oxidative (re-

duced) buffer which allows for forming and breaking of the bonds. In particular, starting

from native state N in the unfolding pathway, the solvent exposed disulfide bridge Cys14-

Cys38 first has to be reduced to form an intermediate known as NSH
SH. Then, remarkably

the kinetically preferred mechanism for the unfolding involves intramolecular disulfide rear-

rangements rather than direct sequential reduction of the remaining disulfide bonds [248].

This means that in the transition pathway, we first observe intermediates such as N ′, where

Cys14-Cys38 is reformed and Cys5-Cys55 bridge is reduced, before observing conformations

with only one disulfide bridge. We have depicted the widely accepted pathways for oxidative

folding and reductive unfolding of BPTI in Figure 5.3. In the application of gTPS to the

unfolding pathway of BPTI, we replicate the reductive environment by manually removing

the bonds from the molecule and adding a hydrogen atom to the sulfur atom of the Cys-

tine residues before performing the iMapD simulation. In such an approach, the distances

between the disulfide bridges signify the breaking and forming of the disulfide bridges. To

the best of our knowledge, a computational study on this system using unbiased sampling
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(a) (b)

Figure 5.3: The folding/unfolding pathways based on experimental studies. (a) The un-
folding pathways in an oxidative environment. The representation here is a combination
of the results of Weissmann and Kim [249] and Mousa et al. [246]. The [.] indicates which
disulfide bridges are formed in the conformations of a state. The R indicated the reduced
BPTI conformation and N the native (b) The unfolding pathway as suggested by Men-
doza et al. [248]. In both folding and unfolding pathways, the NSH

SH is a rate-limiting step.
Furthermore, the dashed arrows indicate a very slow kinetic rate along the respective tran-
sition. Therefore, for folding, the majority of the transition takes place through N′ state.

does not exist and often biased methods are utilized to recover the experimental behavior

of bond rearrangements described above. It would be both fascinating and illuminating to

test if gTPS can recover unfolding/folding pathways that involve the same behavior. We

believe success, in this case, could mark an advancement in validating the utility of current

NISQ devices for computational studies in biomolecular sampling. The preliminary results

of gTPS (only the application of iMapD) on this system can be observed in Figure 5.4 and

Figure 5.5.
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NSH
SH (cyan color)

[5-55] <3.5 Å
[30-51] <3.5 Å
[14-38] >10 Å

N’ (olive color)
[14-38] <3.5 Å
[30-51] <3.5 Å
[5-55] >10 Å

(red color)
[14-38] <3.5 Å

[5-55] >10 Å
[30-51] >10 Å

N* (yellow color)
[5-55] <3.5 Å
[14-38] <3.5 Å
[30-51] >10 Å

(lime color)
[5-55] <3.5 Å
[14-38] >10 Å
[30-51] >10 Å

(pink color)
[30-51] <3.5 Å

[5-55] >10 Å
[14-38] >10 Å

Figure 5.4: The application of iMapD to the BPTI molecule with all the disulfide
bonds removed. The dark blue dots are the result of 4 separate runs of iMapD with
c = 1.0 , 2.0 , 5.0 , 10.0 which was made possible using our Polar Star shooting method.
The cumulative time needed to obtain this data was ∼ 7.5µs. In our simulations, the mini-
mum distance between sulfur atoms was measured to be 3.0Å. Therefore, we consider 3.5Å
as the distance that corresponds to an existing bond between the sulfurs. With this in mind
and also considering 10Å as the threshold for a broken disulfide bridge, we have colored the
iMapD configurations that correspond to the states in Figure 5.3.(a). We have indicated
the respective criteria for each state in the box corresponding to it. We note that the hi-
erarchical expansion of the projected configurations on the Q-RMSD space seems to follow
the folding pattern indicated by experiments. In particular, immediately after the basin of
the native state, the cyan-colored dots appear which indicate the NSH

SH state. Furthermore,
we can observe that iMapD has spent more time in the most dominant pathway for the
folding, as both the N∗ state and the state with only [Cys5-Cys55] bridge have remained
rather unobserved.
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Native conformation

Figure 5.5: Representative configurations of the 3 important states for the folding/unfolding
mechanisms. These configurations have been chosen randomly from those who satisfied the
criteria for each state (indicated in the corresponding box). The native structure and
the conformation with the highest RMSD from the native have also been shown. The
Cys residues are indicated by the gray ball and stick representation. The sulfur atoms
corresponding to the native disulfide bonds are indicated with the same color. Specifically,
sulfur atoms of [5-55] bond are indicated by the color cyan, [14-38] with yellow, and [30-55]
with red.
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CHAPTER 6

Conlusion

In this thesis, we established a novel computational framework, gTPS, for sampling the

full transition path ensemble of rare molecular conformational transitions. gTPS integrates

the data-driven method of iMapD for rapid exploration with an MC importance sampling

scheme that exploits the potential of quantum computing. This unique feature allows gTPS

to tackle outstanding problems in computational methods based on classical computation.

In the specific, the dimensionality reduction techniques in iMapD allow us to efficiently

navigate the uncharted portions of the configuration space without needing to define a

CV or biasing force. However, the original formulation of iMapD is heavily limited by

the restrictions on the shooting parameter c. Addressing this limitation in Chapter 4, we

introduced our modified version of iMapD with the addition of the Polar Star scheme to

the algorithm’s shooting move. Polar Star strictly uses the configurations generated during

the shooting move of the iMapD to initiate an rMD simulation. Then, in every step of

the simulation, it generates an instantaneous configuration that lies outside of previously

observed regions of the IM while adhering to the chemical and topological constraints

imposed by the structure of the molecule. Therefore, Polar Star method eliminates the

restriction of maintaining an incremental value on c and as such greatly enhances the

iMapD algorithm. What is important here is that this modification does not obstruct

the generality of iMapD (and its unsupervised nature) in application to different systems,

specifically in the cases wherein we have no prior insight into the relevant CVs.

By borrowing the renormalization group approach from nuclear and sub-nuclear physics

in the next step of gTPS, we proceed to develop a CG representation of the microscopic

dynamics following the underlying assumption of the Langevin equation. In this effective
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theory, every configuration of iMapD is associated with a finite space region of the con-

figuration space whose union covers the entire portion of IM observed by the uncharted

exploration. Subsequently, by encoding our CG theory into the weights of an undirected

graph between these regions, we build a transition network where the probability of ob-

serving any path is directly determined by the summation of the weights along that path.

We emphasize the most important difference between this approach and that of MSMs: the

method of gTPS does not require estimating the whole stochastic transition matrix/rate

matrix. Instead, it only requires computing the lifetime of each node, a task that can be ef-

ficiently carried out even as the iMapD’s exploration is taking place. On the other hand, we

acknowledge that gTPS can only provide limited information about the kinetics compared

to MSMs.

After establishing the network, a QUBO formulation for finding the shortest path on

a network allows us to encode the network and the path sampling problem into an actual

QA named D-Wave. We integrated this method of utilizing a QC into an MC sampling

scheme where the QA generates trial pathways for us. Our main motivation was that –as

we argued in Section 1.3.1 and Section 2.3– the intrinsic quantum fluctuation and measure-

ment of the quantum adiabatic switching implemented in D-Wave, would fundamentally

decorrelate the sampling every time we perform a trial pathway. Meanwhile, compacting

the transition information into a network and subsequently using quantum superposition

to encode ”all” the pathways into the QA, is the key in allowing MC sampling to perform

”global” moves. We recall from Section 1.3, how such an approach was effectively out of

the reach of conventional TPS methods. Finally, by utilizing the D-Wave itself to calculate

the acceptance/rejection probability of a Metropolis criterion, we account for the physical

noise of the machine due to coupling to its environment [217, 218]. Therefore, it guaranteed

that we obtained the correct statistical weight in every trajectory we sampled.

In Chapter 3, we presented the first application of gTPS to a molecular system by

studying the C5 → αR transition of ALA. Even though ALA is relatively small compared to

other biological macromolecules, it retains many crucial features that resemble those present

in the much larger counterpart systems. Conversely, its modest size is perfectly fitted as

a benchmark system as the first application of gTPS. We demonstrated how a coherent

combination of our CG theory embedded in an undirected network and encoding provided

by the QUBO formulation, allows us to successfully sample ”uncorrelated transition paths”

for ALA’s C5 → αR transition that follow the low energy regions of FEL. Even though in

this benchmark, we restricted our sampling to 23 transition paths, in general, the number

of trajectories is only limited by the available computational resources. This achievement

marked an essential advancing step in tackling outstanding challenges in conventional TPS

approaches that are based on classical computers.
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Success in the case of ALA prompted us in Chapter 4 to further investigate the potential

of our approach and test its scalability. There, we presented the application of gTPS to

near-native conformation rearrangements of BPTI which is considerably a larger system

than ALA. The transitions in the basin of native conformation of BPTI spontaneously

occur in the time scale between micro and milliseconds. Previously, it was made possible to

study these computationally only by utilizing the specialized supercomputer Anton [25]. On

the other hand, gTPS, by employing a few GPUs on a classical computer cluster and a few

hundred qubits on the DWAVE was able to characterize, with the same atomic resolution,

these rare transitions.

The algorithm we presented in this thesis is designed to sample the full transition path

ensemble. The transition path ensemble is often heterogeneous, displaying several alter-

native transition channels, corresponding to alternative molecular mechanisms. Therefore,

concerning the capabilities of gTPS in this regard, we are currently studying its application

to the unfolding transition of the HP35 domain of chicken Villin headpiece and the reduced

molecule of BPTI. Both cases contain new unexplored challenges wherein we wish to test

gTPS. First, we are seeking to test if gTPS can indeed search through all the transition

channels available. Second, in the specific case of BPTI, the folding occurs in the time

scales of minutes in oxidative buffer and in the scale of hours for the unfolding in reduc-

tive buffers. Therefore, it would be interesting to check if gTPS can successfully retrieve

pathways for such a distant and complex transition.

While significant effort has been made towards designing quantum algorithms for quan-

tum many-body problems, only a few applications of quantum computing to classical

molecular sampling problems have been reported to date [157, 250]. As we mentioned,

most of these attempts assume a simplified molecular representation, among which lattice

discretization [178, 251–256]. Our algorithm shows that quantum computers can be suc-

cessfully applied to investigate challenging protein transitions with full atomic resolution

and in explicit solvent. In particular, the DWAVE quantum computer can generate viable

transition pathways at an affordable computational cost (with a calculation time of a few

seconds per path depending on the size of the network, using the OCEAN’s hybrid solver).

A very important quest to be pursued in this phase of the development of quantum

technologies is identifying possible new fields of applicability. In the future, heterogeneous

platforms for high-performance computing might emerge that fully rely on integrated ML

and quantum computing approaches. These new machines will require scientific advance-

ments to be able to fully take advantage of their strengths. As the size of quantum com-

puting hardware continues to grow in size and performance, we may hope that within the

foreseeable future, the approach introduced in this work may provide a computationally

efficient scheme to perform path sampling calculations for complex macromolecular transi-
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tions. Due to the suppression of autocorrelation time, we expect that, for sufficiently large

networks, our hybrid scheme may ultimately have an edge over classical stochastic methods.
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APPENDIX A

Appendix

A.1 Dominant Reaction Pathways

In the Dominant Reaction Pathway (DRP) approach [197, 210], we are concerned with

obtaining the pathways that contribute the most to the propagator P (Qf , t|Qi) in Equa-

tion (2.2.8). We start by assuming that the initial and final configurations

Q(ti) = Qi

Q(tf ) = Qf

(A.1.1)

are located in the reactant and product states respectively, hence the P (Qf , t|Qi) will

solely pertains to the reactive pathways. Next, to identify the dominant pathway Q̄(t) we

minimize the SOM through applying the variational principle:

δSOM[Q(t)] = δ

∫ tf

ti

˙Q(t)
2

4D
+Veff[Q(t)] = 0 (A.1.2)

which leads to the Euler-Lagrange equation

¨̄Q(t)− 2D ∇Veff[Q̄(t)] = 0. (A.1.3)

In principle, numerical integration of Equation (A.1.3), subjected to the boundary condi-

tions in Equation (A.1.1), leads to the path of least action or the DRP. However, in practice

due to the separation of time scales, the task of evaluating even a single DRP typically re-

quires integration over ∼ 3N × t(react)
t(min) = 3N × 1012 time-steps. Here the t(react) is the
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average time for the reaction to occur –e.g seconds in typical protein folding– and t(min) is

the minimum time scale present in the dynamic ∼ 1-picosecond [257]. Evidently performing

such a task is computationally challenging.

Fortunately, we can ”side-step” this issue by reformulating the problem into an alterna-

tive description that does not involve integration over time. The key is to realize that the

DRP path described by Equation (A.1.3), coincides with the dominant path in a family of

pathways along which the ”effective energy”

Eeff =
Q̇

2

4D
−Veff[Q] (A.1.4)

remains conserved. We note that this effective energy is different than the total physical

energy E. In particular, the friction and noise present in Langevin dynamics does not allow

E to remain conserved.

The Eeff allows us to parameterize the same family of pathways using the energy-

dependent Hamilton-Jacobi (HJ) action (instead of time-dependent Newtonian dynamics):

SHJ =

∫ Qf

Qi

dl

√
1

D
(Eeff +Veff[Q]) (A.1.5)

Therefore, once the value of effective energy is established, we then proceed to numerically

minimize the target function

SHJ =
∑
j

∆lj,j+1

√
1

D
(Eeff +Veff[Qj ])− λP (A.1.6)

to obtain the DRP. Here ∆lj,j+1 =
√
(Qj+1 −Qj)

2 is the Euclidean distance between

subsequent steps and P =
∑

j(∆lj,j+1 − ⟨∆l⟩) is a penalty function to keep the ∆lj,j+1

close to their mean value [258, 259].

The advantage of utilizing SHJ over SOM is due to the replacement of differential time

steps with incremental (spatial) displacements dl along each trajectory Q(t). Contrary to

the former in the dynamics of macromolecules’, the length scales generally do not exhibit any

gap. Therefore one may expect that the number of elementary steps required to converge

to the path of least action in the discretized SHJ is much lower than in its counterpart

SOM. In fact, in the example of protein folding, the transition typically occurs in an overall

displacement of order O(102) bigger than the smallest spatial scale of the protein, the size

of a single atom. Needless to say, identifying the DRP(s) by numerically minimizing the

HJ action Equation (A.1.5) is drastically simpler compared to the Newtonian description

of Equation (A.1.3).
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We finish this section by deriving an expression for the time it takes for the system to

traverse the DRP (or any other pathway that conserves the Eeff) in the HJ formalism. The

velocity of the system along any pathway is given by

|Q̇| = dl

dt
(A.1.7)

By recalling the alternative expression in Equation (A.1.4), we obtain

dl

dt
=
√
4D(Eeff +Veff) (A.1.8)

which will lead to

∆ti→f =

∫ Qf

Qi

dl√
4D(Eeff +Veff)

(A.1.9)

This is the expression for the traveling time of the system along the DRP pathway.

A.2 How to build the Diffusion maps?

Assuming to have a dataset C with N members and each with d dimensions, we start

by building a Gaussian kernel

K(Qi, Qj) = e−
d(xi,xj)

2

ϵ (A.2.1)

where xi, xj ∈ C. The d(xi, xj) denotes an affinity function which is supposed to be a local

measure of dissimilarity. In all the applications that we have discussed in this thesis, we

have adopted RMSD as our affinity function, however in general, it might be advantageous

to assign a more case-specific measure. Since the matrix elements in Equation (A.2.1) are

analog to the single-step transition probabilities of a random walker that travels between

the data points [200], the scaling factor ϵ effectively controls which xi and xj are allowed

to be connected.

Next, we build the diffusion matrix P

Pij =
1

D0.5
i

K(Qi, Qj)
1

D0.5
j

(A.2.2)

where Dii =
∑

j Kij (consequently Dii =
∑

j Kij). In the next step, we solve the eigenvalue

problem Pψ = λψ and retrieve the p = d×N eigenvectors, {ψ1, ψ2, . . . , ψp}, that are referred
to as DMAP components. The lowest eigenvalue λ0 and the lowest eigenvector ψ0 are trivial

and in terms of diffusion are related to the equilibrium condition.
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A.3 Principal component analysis

PCA is a dimensionality reduction technique that performs an orthogonal linear trans-

formation on the dataset (contained in N × d matrix X) [260]. The components of PCA

are directions in the original space of data and they are ordered according to the amount of

variance they entail. The transformation in question is defined by the set of p≪ N vectors

of size d, {wi}i=1,...,p where the dot product of projection of dataset on wi

ci = (Xwi)
TXwi = wT

i X
TXwi (A.3.1)

defines the variance of data in the direction of vector wi. Therefore, to identify the first

component of PCA we must identify the vector that maximizes ci:

w1 = argmax[wTXTXw] (A.3.2)

The subsequent k component can be found by first removing the variance contained in the

previous k − 1 components:

Xk = X −
k−1∑
i=1

Xwkw
T
k (A.3.3)

Then, we can apply the same procedure as above to find the new component that contains

the maximum variance in Xk:

wk = argmax[wTXT
kXkw] (A.3.4)

Alternatively, we also recognize that XTX is the covariance matrix of the data [260].

Therefore, solving the eigenvalue problem of this matrix would provide the eigenvectors

and eigenvalues which are respectively the wi and the variance ci.

A.4 Dijkstra algorithm

The Dijkstra algorithm is concerned with analytically calculating the shortest path from

a source vertex vs to the target vertex vt. For simplicity, we assume to have a completely

connected network that connects the two vertices (no isolated node). The algorithm goes

as follows:

1. All the vertices in the graph except vs are assigned a tentative distance dt. The

tentative distance is going to evaluate the length of shortest path from vertex vs to
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any other vertex. In the initial cycle: Since the only path known is from vs to itself,

its distance is dt(vs) = 0 and every other vertex has dt = ∞. Initially, we assign all

the vertices except vs as unvisited. The vs is marked as visited and also the current

vertex.

2. (Applies to all the steps) From the currently visiting vertex, we calculate the respective

tentative distance of all of its neighbors. Assume we are currently at vertex va with

tentative distance of dt(va) = 10 and vb is one of its neighbors that is connected

to va via an edge of weight wab = 2. The tentative distance of vb (at the current

step) is then dt(vb) = dt(va) + wab = 12. However, it could happen that in previous

steps dt(vb) was calculated to be greater than 12. In this case then, we discard the

previous tentative distance calculated and update dt(vb) = 12. Otherwise, we retain

the previous distance from before.

3. After updating all the new tentative distances, we move from va to its neighbor that

has the lowest tentative distance, e.g. vc, and has the status of ”unvisited”. Then,

we label va as previously visited and update label of vc to currently visiting. Then

we go back to the step II.

4. The algorithm is terminated once the currently visiting vertex is the target vertex vt.

A.5 Diagram of iMapD and gTPS algorithms

We have diagrammatically illustrated the algorithms of iMapD and gTPS below.
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[137] F. Noé et al., “Boltzmann generators: Sampling equilibrium states of many-body sys-
tems with deep learning,” Science, vol. 365, no. 6457, 2019. doi: 10.1126/science.
aaw1147. [Online]. Available: https://doi.org/10.1126%2Fscience.aaw1147.

[138] R. Elber et al., “Calculating iso-committor surfaces as optimal reaction coordinates
with milestoning,” Entropy, vol. 19, no. 5, p. 219, 2017. doi: 10.3390/e19050219.
[Online]. Available: https://doi.org/10.3390%2Fe19050219.

[139] Z. F. Brotzakis and P. G. Bolhuis, “A one-way shooting algorithm for transition
path sampling of asymmetric barriers,” The Journal of Chemical Physics, vol. 145,
no. 16, 2016. doi: 10.1063/1.4965882. [Online]. Available: https://doi.org/10.
1063%2F1.4965882.

[140] T. S. van Erp et al., “A novel path sampling method for the calculation of rate
constants,” The Journal of Chemical Physics, vol. 118, no. 17, pp. 7762–7774, 2003.
doi: 10.1063/1.1562614. [Online]. Available: https://doi.org/10.1063%2F1.
1562614.

[141] P. L. Geissler et al., “Autoionization in liquid water,” Science, vol. 291, no. 5511,
pp. 2121–2124, 2001. doi: 10.1126/science.1056991. [Online]. Available: https:
//doi.org/10.1126%2Fscience.1056991.

[142] P. G. Bolhuis, “Transition-path sampling of β-hairpin folding,” Proceedings of the
National Academy of Sciences, vol. 100, no. 21, pp. 12 129–12 134, 2003. doi: 10.
1073/pnas.1534924100. [Online]. Available: https://doi.org/10.1073%2Fpnas.
1534924100.

[143] X. Ding et al., “Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, re-
verses hepatic steatosis inob/ob mice,” Hepatology, vol. 43, no. 1, pp. 173–181, 2005.
doi: 10.1002/hep.21006. [Online]. Available: https://doi.org/10.1002%2Fhep.
21006.

[144] J. Juraszek and P. G. Bolhuis, “Sampling the multiple folding mechanisms of trp-
cage in explicit solvent,” Proceedings of the National Academy of Sciences, vol. 103,
no. 43, pp. 15 859–15 864, 2006. doi: 10.1073/pnas.0606692103. [Online]. Available:
https://doi.org/10.1073%2Fpnas.0606692103.

[145] R. J. Allen et al., “Sampling rare switching events in biochemical networks,” Phys-
ical Review Letters, vol. 94, no. 1, 2005. doi: 10.1103/physrevlett.94.018104.
[Online]. Available: https://doi.org/10.1103%2Fphysrevlett.94.018104.

124

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://doi.org/10.1021/acs.jpclett.9b02173
https://doi.org/10.1021/acs.jpclett.9b02173
https://doi.org/10.1021%2Facs.jpclett.9b02173
https://doi.org/10.1021%2Facs.jpclett.9b02173
https://doi.org/10.1126/science.aaw1147
https://doi.org/10.1126/science.aaw1147
https://doi.org/10.1126%2Fscience.aaw1147
https://doi.org/10.3390/e19050219
https://doi.org/10.3390%2Fe19050219
https://doi.org/10.1063/1.4965882
https://doi.org/10.1063%2F1.4965882
https://doi.org/10.1063%2F1.4965882
https://doi.org/10.1063/1.1562614
https://doi.org/10.1063%2F1.1562614
https://doi.org/10.1063%2F1.1562614
https://doi.org/10.1126/science.1056991
https://doi.org/10.1126%2Fscience.1056991
https://doi.org/10.1126%2Fscience.1056991
https://doi.org/10.1073/pnas.1534924100
https://doi.org/10.1073/pnas.1534924100
https://doi.org/10.1073%2Fpnas.1534924100
https://doi.org/10.1073%2Fpnas.1534924100
https://doi.org/10.1002/hep.21006
https://doi.org/10.1002%2Fhep.21006
https://doi.org/10.1002%2Fhep.21006
https://doi.org/10.1073/pnas.0606692103
https://doi.org/10.1073%2Fpnas.0606692103
https://doi.org/10.1103/physrevlett.94.018104
https://doi.org/10.1103%2Fphysrevlett.94.018104


Bibliography

[146] J. Juraszek and P. G. Bolhuis, “Rate constant and reaction coordinate of trp-cage
folding in explicit water,” Biophysical Journal, vol. 95, no. 9, pp. 4246–4257, 2008.
doi: 10.1529/biophysj.108.136267. [Online]. Available: https://doi.org/10.
1529%2Fbiophysj.108.136267.

[147] K. B. Lipkowitz, Ed., Reviews in Computational Chemistry (Reviews in Computa-
tional Chemistry), en, 2nd ed. Nashville, TN: John Wiley & Sons, Sep. 2010.

[148] Z. F. Brotzakis and P. G. Bolhuis, “Unbiased atomistic insight into the mechanisms
and solvent role for globular protein dimer dissociation,” The Journal of Physical
Chemistry B, vol. 123, no. 9, pp. 1883–1895, 2019. doi: 10.1021/acs.jpcb.8b10005.
[Online]. Available: https://doi.org/10.1021%2Facs.jpcb.8b10005.

[149] D. Mercadante et al., “Bovine β-lactoglobulin is dimeric under imitative physiolog-
ical conditions: Dissociation equilibrium and rate constants over the pH range of
2.5–7.5,” Biophysical Journal, vol. 103, no. 2, pp. 303–312, 2012. doi: 10.1016/j.
bpj.2012.05.041. [Online]. Available: https://doi.org/10.1016%2Fj.bpj.2012.
05.041.

[150] H. Jung et al., “Transition path sampling of rare events by shooting from the top,”
The Journal of Chemical Physics, vol. 147, no. 15, 2017. doi: 10.1063/1.4997378.
[Online]. Available: https://doi.org/10.1063%2F1.4997378.

[151] E. Borrero and C. Dellago, “Avoiding traps in trajectory space: Metadynamics en-
hanced transition path sampling,” The European Physical Journal Special Topics,
vol. 225, no. 8-9, pp. 1609–1620, 2016. doi: 10.1140/epjst/e2016- 60106- y.
[Online]. Available: https://doi.org/10.1140%2Fepjst%2Fe2016-60106-y.

[152] J. Rogal and P. G. Bolhuis, “Multiple state transition path sampling,” The Journal
of Chemical Physics, vol. 129, no. 22, 2008. doi: 10.1063/1.3029696. [Online].
Available: https://doi.org/10.1063%2F1.3029696.

[153] T. S. van Erp, “Reaction rate calculation by parallel path swapping,” Physical Re-
view Letters, vol. 98, no. 26, 2007. doi: 10.1103/physrevlett.98.268301. [Online].
Available: https://doi.org/10.1103%2Fphysrevlett.98.268301.

[154] D. W. H. Swenson and P. G. Bolhuis, “A replica exchange transition interface sam-
pling method with multiple interface sets for investigating networks of rare events,”
The Journal of Chemical Physics, vol. 141, no. 4, 2014. doi: 10.1063/1.4890037.
[Online]. Available: https://doi.org/10.1063%2F1.4890037.

[155] H. Jung et al., Artificial intelligence assists discovery of reaction coordinates and
mechanisms from molecular dynamics simulations, 2019. arXiv: 1901.04595 [physics.chem-ph].

[156] H. Jung et al., “Machine-guided path sampling to discover mechanisms of molecular
self-organization,” Nature Computational Science, vol. 3, no. 4, pp. 334–345, 2023.
doi: 10.1038/s43588-023-00428-z. [Online]. Available: https://doi.org/10.
1038%2Fs43588-023-00428-z.

[157] A. Baiardi et al., “Quantum computing for molecular biology,” ChemBioChem,
vol. 24, no. 13, 2023. doi: 10.1002/cbic.202300120. [Online]. Available: https:
//doi.org/10.1002%2Fcbic.202300120.

[158] Y. Manin, “Computable and uncomputable,” Sovetskoye Radio, Moscow, vol. 128,
p. 28, 1980.

[159] R. P. Feynman, “Simulating physics with computers,” International Journal of The-
oretical Physics, vol. 21, no. 6-7, pp. 467–488, 1982. doi: 10.1007/bf02650179.
[Online]. Available: https://doi.org/10.1007%2Fbf02650179.

125

https://doi.org/10.1529/biophysj.108.136267
https://doi.org/10.1529%2Fbiophysj.108.136267
https://doi.org/10.1529%2Fbiophysj.108.136267
https://doi.org/10.1021/acs.jpcb.8b10005
https://doi.org/10.1021%2Facs.jpcb.8b10005
https://doi.org/10.1016/j.bpj.2012.05.041
https://doi.org/10.1016/j.bpj.2012.05.041
https://doi.org/10.1016%2Fj.bpj.2012.05.041
https://doi.org/10.1016%2Fj.bpj.2012.05.041
https://doi.org/10.1063/1.4997378
https://doi.org/10.1063%2F1.4997378
https://doi.org/10.1140/epjst/e2016-60106-y
https://doi.org/10.1140%2Fepjst%2Fe2016-60106-y
https://doi.org/10.1063/1.3029696
https://doi.org/10.1063%2F1.3029696
https://doi.org/10.1103/physrevlett.98.268301
https://doi.org/10.1103%2Fphysrevlett.98.268301
https://doi.org/10.1063/1.4890037
https://doi.org/10.1063%2F1.4890037
https://arxiv.org/abs/1901.04595
https://doi.org/10.1038/s43588-023-00428-z
https://doi.org/10.1038%2Fs43588-023-00428-z
https://doi.org/10.1038%2Fs43588-023-00428-z
https://doi.org/10.1002/cbic.202300120
https://doi.org/10.1002%2Fcbic.202300120
https://doi.org/10.1002%2Fcbic.202300120
https://doi.org/10.1007/bf02650179
https://doi.org/10.1007%2Fbf02650179


Bibliography

[160] S. Lloyd, “Universal quantum simulators,” Science, vol. 273, no. 5278, pp. 1073–
1078, 1996. doi: 10.1126/science.273.5278.1073. [Online]. Available: https:
//doi.org/10.1126%2Fscience.273.5278.1073.

[161] Y. Cao et al., “Quantum chemistry in the age of quantum computing,” Chemical
Reviews, vol. 119, no. 19, pp. 10 856–10 915, 2019. doi: 10.1021/acs.chemrev.
8b00803. [Online]. Available: https : / / doi . org / 10 . 1021 % 2Facs . chemrev .

8b00803.

[162] A. Kitaev et al., Classical and Quantum Computation. American Mathematical So-
ciety, 2002. doi: 10.1090/gsm/047. [Online]. Available: https://doi.org/10.
1090%2Fgsm%2F047.

[163] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2,
p. 79, 2018. doi: 10.22331/q-2018-08-06-79. [Online]. Available: https://doi.
org/10.22331%2Fq-2018-08-06-79.

[164] M. Suchara et al., “QuRE: The quantum resource estimator toolbox,” in 2013 IEEE
31st International Conference on Computer Design (ICCD), IEEE, 2013. doi: 10.
1109/iccd.2013.6657074. [Online]. Available: https://doi.org/10.1109%
2Ficcd.2013.6657074.

[165] N. Moll et al., “Quantum optimization using variational algorithms on near-term
quantum devices,” Quantum Science and Technology, vol. 3, no. 3, p. 030 503, 2018.
doi: 10.1088/2058-9565/aab822. [Online]. Available: https://doi.org/10.
1088%2F2058-9565%2Faab822.

[166] C. H. Baldwin et al., “Re-examining the quantum volume test: Ideal distributions,
compiler optimizations, confidence intervals, and scalable resource estimations,”
Quantum, vol. 6, p. 707, May 2022, issn: 2521-327X. doi: 10.22331/q- 2022-
05-09-707. [Online]. Available: https://doi.org/10.22331/q-2022-05-09-707.

[167] K. Miller et al., An improved volumetric metric for quantum computers via more
representative quantum circuit shapes, 2022. arXiv: 2207.02315 [quant-ph].

[168] Quantinuum website claiming quantum volume of 219 for their h1-1 quantum com-
puter. https://web.archive.org/web/20230924011854/https://www.quantinuum.
com/news/quantinuum-h-series-quantum-computer-accelerates-through-3-

more-performance-records-for-quantum-volume-217-218-and-219, Accessed:
2023-09-24.

[169] S. A. Moses et al., A race track trapped-ion quantum processor, 2023. arXiv: 2305.
03828 [quant-ph].

[170] Ibm website announcing the 433-qubit quantum computer, osprey. https://web.
archive.org/web/20231002100729/https://research.ibm.com/blog/next-

wave-quantum-centric-supercomputing, Accessed: 2023-11-02.

[171] A. Peruzzo et al., “A variational eigenvalue solver on a photonic quantum processor,”
Nature Communications, vol. 5, no. 1, 2014. doi: 10.1038/ncomms5213. [Online].
Available: https://doi.org/10.1038%2Fncomms5213.

[172] E. Farhi et al., A quantum approximate optimization algorithm, 2014. arXiv: 1411.
4028 [quant-ph].

[173] C. Hempel et al., “Quantum chemistry calculations on a trapped-ion quantum sim-
ulator,” Physical Review X, vol. 8, no. 3, 2018. doi: 10.1103/physrevx.8.031022.
[Online]. Available: https://doi.org/10.1103/physrevx.8.031022.

126

https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126%2Fscience.273.5278.1073
https://doi.org/10.1126%2Fscience.273.5278.1073
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021%2Facs.chemrev.8b00803
https://doi.org/10.1021%2Facs.chemrev.8b00803
https://doi.org/10.1090/gsm/047
https://doi.org/10.1090%2Fgsm%2F047
https://doi.org/10.1090%2Fgsm%2F047
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.1109/iccd.2013.6657074
https://doi.org/10.1109/iccd.2013.6657074
https://doi.org/10.1109%2Ficcd.2013.6657074
https://doi.org/10.1109%2Ficcd.2013.6657074
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1088%2F2058-9565%2Faab822
https://doi.org/10.1088%2F2058-9565%2Faab822
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://arxiv.org/abs/2207.02315
https://web.archive.org/web/20230924011854/https://www.quantinuum.com/news/quantinuum-h-series-quantum-computer-accelerates-through-3-more-performance-records-for-quantum-volume-217-218-and-219
https://web.archive.org/web/20230924011854/https://www.quantinuum.com/news/quantinuum-h-series-quantum-computer-accelerates-through-3-more-performance-records-for-quantum-volume-217-218-and-219
https://web.archive.org/web/20230924011854/https://www.quantinuum.com/news/quantinuum-h-series-quantum-computer-accelerates-through-3-more-performance-records-for-quantum-volume-217-218-and-219
https://arxiv.org/abs/2305.03828
https://arxiv.org/abs/2305.03828
https://web.archive.org/web/20231002100729/https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://web.archive.org/web/20231002100729/https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://web.archive.org/web/20231002100729/https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038%2Fncomms5213
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/physrevx.8.031022
https://doi.org/10.1103/physrevx.8.031022


Bibliography

[174] Y. Cao et al., “Quantum chemistry in the age of quantum computing,” Chemical
Reviews, vol. 119, no. 19, pp. 10 856–10 915, 2019. doi: 10.1021/acs.chemrev.
8b00803. [Online]. Available: https://doi.org/10.1021/acs.chemrev.8b00803.

[175] S. N. Genin et al., “Quantum chemistry on quantum annealers,” 2019. arXiv: 1901.
04715 [physics.chem-ph].

[176] C. Outeiral et al., “The prospects of quantum computing in computational molecular
biology,” WIREs Computational Molecular Science, vol. 11, no. 1, May 2020. doi:
10.1002/wcms.1481. [Online]. Available: https://doi.org/10.1002/wcms.1481.

[177] S. McArdle et al., “Quantum computational chemistry,” Reviews of Modern Physics,
vol. 92, no. 1, 2020. doi: 10.1103/revmodphys.92.015003. [Online]. Available:
https://doi.org/10.1103/revmodphys.92.015003.

[178] C. Micheletti et al., “Polymer physics by quantum computing,” Physical Review
Letters, vol. 127, no. 8, 2021. doi: 10.1103/physrevlett.127.080501. [Online].
Available: https://doi.org/10.1103/physrevlett.127.080501.

[179] Y. Shen et al., “Quantum implementation of the unitary coupled cluster for simu-
lating molecular electronic structure,” Physical Review A, vol. 95, no. 2, 2017. doi:
10.1103/physreva.95.020501. [Online]. Available: https://doi.org/10.1103%
2Fphysreva.95.020501.

[180] A. D. King et al., “Quantum critical dynamics in a 5,000-qubit programmable spin
glass,” Nature, vol. 617, no. 7959, pp. 61–66, 2023. doi: 10.1038/s41586-023-
05867-2. [Online]. Available: https://doi.org/10.1038%2Fs41586-023-05867-2.

[181] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2012. doi: 10.1017/cbo9780511976667. [Online].
Available: https://doi.org/10.1017%2Fcbo9780511976667.

[182] A. C.-C. Yao, “Quantum circuit complexity,” in Proceedings of 1993 IEEE 34th
Annual Foundations of Computer Science, IEEE. doi: 10.1109/sfcs.1993.366852.
[Online]. Available: https://doi.org/10.1109%2Fsfcs.1993.366852.

[183] A. Molina and J. Watrous, “Revisiting the simulation of quantum turing machines by
quantum circuits,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 475, no. 2226, p. 20 180 767, 2019. doi: 10.1098/rspa.
2018.0767. [Online]. Available: https://doi.org/10.1098%2Frspa.2018.0767.

[184] N. Glover and T. Dudley, Practical error correction design for engineers, en. Data
Systems Technology Corporation, 1991.

[185] D. Dieks, “Communication by EPR devices,” Physics Letters A, vol. 92, no. 6,
pp. 271–272, 1982. doi: 10.1016/0375- 9601(82)90084- 6. [Online]. Available:
https://doi.org/10.1016%2F0375-9601%2882%2990084-6.

[186] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature,
vol. 299, no. 5886, pp. 802–803, 1982. doi: 10.1038/299802a0. [Online]. Available:
https://doi.org/10.1038%2F299802a0.

[187] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,”
Physical Review A, vol. 52, no. 4, R2493–R2496, 1995. doi: 10.1103/physreva.52.
r2493. [Online]. Available: https://doi.org/10.1103%2Fphysreva.52.r2493.

[188] T. S. Cubitt et al., “Universal quantum hamiltonians,” Proceedings of the National
Academy of Sciences, vol. 115, no. 38, pp. 9497–9502, 2018. doi: 10.1073/pnas.
1804949115. [Online]. Available: https://doi.org/10.1073%2Fpnas.1804949115.

127

https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://arxiv.org/abs/1901.04715
https://arxiv.org/abs/1901.04715
https://doi.org/10.1002/wcms.1481
https://doi.org/10.1002/wcms.1481
https://doi.org/10.1103/revmodphys.92.015003
https://doi.org/10.1103/revmodphys.92.015003
https://doi.org/10.1103/physrevlett.127.080501
https://doi.org/10.1103/physrevlett.127.080501
https://doi.org/10.1103/physreva.95.020501
https://doi.org/10.1103%2Fphysreva.95.020501
https://doi.org/10.1103%2Fphysreva.95.020501
https://doi.org/10.1038/s41586-023-05867-2
https://doi.org/10.1038/s41586-023-05867-2
https://doi.org/10.1038%2Fs41586-023-05867-2
https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1017%2Fcbo9780511976667
https://doi.org/10.1109/sfcs.1993.366852
https://doi.org/10.1109%2Fsfcs.1993.366852
https://doi.org/10.1098/rspa.2018.0767
https://doi.org/10.1098/rspa.2018.0767
https://doi.org/10.1098%2Frspa.2018.0767
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.1016%2F0375-9601%2882%2990084-6
https://doi.org/10.1038/299802a0
https://doi.org/10.1038%2F299802a0
https://doi.org/10.1103/physreva.52.r2493
https://doi.org/10.1103/physreva.52.r2493
https://doi.org/10.1103%2Fphysreva.52.r2493
https://doi.org/10.1073/pnas.1804949115
https://doi.org/10.1073/pnas.1804949115
https://doi.org/10.1073%2Fpnas.1804949115


Bibliography

[189] W. Vinci and D. A. Lidar, “Non-stoquastic hamiltonians in quantum annealing via
geometric phases,” npj Quantum Information, vol. 3, no. 1, 2017. doi: 10.1038/
s41534-017-0037-z. [Online]. Available: https://doi.org/10.1038%2Fs41534-
017-0037-z.

[190] E. Farhi et al., “A quantum adiabatic evolution algorithm applied to random in-
stances of an NP-complete problem,” Science, vol. 292, no. 5516, pp. 472–475, 2001.
doi: 10.1126/science.1057726. [Online]. Available: https://doi.org/10.1126%
2Fscience.1057726.

[191] S. Kirkpatrick et al., “Optimization by simulated annealing,” Science, vol. 220,
no. 4598, pp. 671–680, 1983. doi: 10.1126/science.220.4598.671. [Online].
Available: https://doi.org/10.1126%2Fscience.220.4598.671.

[192] M. H. S. Amin, “Consistency of the adiabatic theorem,” Physical Review Letters,
vol. 102, no. 22, 2009. doi: 10.1103/physrevlett.102.220401. [Online]. Available:
https://doi.org/10.1103%2Fphysrevlett.102.220401.

[193] M. Born and V. Fock, “Beweis des adiabatensatzes,” Zeitschrift für Physik, vol. 51,
no. 3-4, pp. 165–180, 1928. doi: 10.1007/bf01343193. [Online]. Available: https:
//doi.org/10.1007%2Fbf01343193.

[194] A. Messiah, Mechanics V1 P. Nashville, TN: John Wiley & Sons, Jan. 1976.

[195] F. Glover et al., “Quantum bridge analytics i: A tutorial on formulating and using
QUBO models,” Annals of Operations Research, vol. 314, no. 1, pp. 141–183, 2022.
doi: 10.1007/s10479-022-04634-2. [Online]. Available: https://doi.org/10.
1007%2Fs10479-022-04634-2.

[196] N. Eidelson and B. Peters, “Transition path sampling for discrete master equations
with absorbing states,” The Journal of Chemical Physics, vol. 137, no. 9, 2012.
doi: 10.1063/1.4747338. [Online]. Available: https://doi.org/10.1063%2F1.
4747338.

[197] P. Faccioli et al., “Dominant pathways in protein folding,” Physical Review Letters,
vol. 97, no. 10, 2006. doi: 10.1103/physrevlett.97.108101. [Online]. Available:
https://doi.org/10.1103%2Fphysrevlett.97.108101.

[198] P. Hauke et al., “Dominant reaction pathways by quantum computing,” Physical
Review Letters, vol. 126, no. 2, 2021. doi: 10.1103/physrevlett.126.028104.
[Online]. Available: https://doi.org/10.1103%2Fphysrevlett.126.028104.

[199] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computational Har-
monic Analysis, vol. 21, no. 1, pp. 5–30, 2006. doi: 10.1016/j.acha.2006.04.006.
[Online]. Available: https://doi.org/10.1016%2Fj.acha.2006.04.006.

[200] R. R. Coifman et al., “Geometric diffusions as a tool for harmonic analysis and
structure definition of data: Diffusion maps,” Proceedings of the National Academy
of Sciences, vol. 102, no. 21, pp. 7426–7431, 2005. doi: 10.1073/pnas.0500334102.
[Online]. Available: https://doi.org/10.1073%2Fpnas.0500334102.

[201] F. P. Preparata and M. I. Shamos, Computational Geometry. Springer New York,
1985. doi: 10.1007/978-1-4612-1098-6. [Online]. Available: https://doi.org/
10.1007%2F978-1-4612-1098-6.

[202] E. Chiavazzo et al., “Reduced models in chemical kinetics via nonlinear data-mining,”
Processes, vol. 2, no. 1, pp. 112–140, 2014. doi: 10.3390/pr2010112. [Online]. Avail-
able: https://doi.org/10.3390%2Fpr2010112.

128

https://doi.org/10.1038/s41534-017-0037-z
https://doi.org/10.1038/s41534-017-0037-z
https://doi.org/10.1038%2Fs41534-017-0037-z
https://doi.org/10.1038%2Fs41534-017-0037-z
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126%2Fscience.1057726
https://doi.org/10.1126%2Fscience.1057726
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126%2Fscience.220.4598.671
https://doi.org/10.1103/physrevlett.102.220401
https://doi.org/10.1103%2Fphysrevlett.102.220401
https://doi.org/10.1007/bf01343193
https://doi.org/10.1007%2Fbf01343193
https://doi.org/10.1007%2Fbf01343193
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1007%2Fs10479-022-04634-2
https://doi.org/10.1007%2Fs10479-022-04634-2
https://doi.org/10.1063/1.4747338
https://doi.org/10.1063%2F1.4747338
https://doi.org/10.1063%2F1.4747338
https://doi.org/10.1103/physrevlett.97.108101
https://doi.org/10.1103%2Fphysrevlett.97.108101
https://doi.org/10.1103/physrevlett.126.028104
https://doi.org/10.1103%2Fphysrevlett.126.028104
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016%2Fj.acha.2006.04.006
https://doi.org/10.1073/pnas.0500334102
https://doi.org/10.1073%2Fpnas.0500334102
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007%2F978-1-4612-1098-6
https://doi.org/10.1007%2F978-1-4612-1098-6
https://doi.org/10.3390/pr2010112
https://doi.org/10.3390%2Fpr2010112


Bibliography

[203] S. Ballweg and R. Ernst, “Control of membrane fluidity: The OLE pathway in focus,”
Biological Chemistry, vol. 398, no. 2, pp. 215–228, 2016. doi: 10.1515/hsz-2016-
0277. [Online]. Available: https://doi.org/10.1515%2Fhsz-2016-0277.

[204] R. Covino et al., “A eukaryotic sensor for membrane lipid saturation,” Molecular
Cell, vol. 63, no. 1, pp. 49–59, 2016. doi: 10.1016/j.molcel.2016.05.015.
[Online]. Available: https://doi.org/10.1016%2Fj.molcel.2016.05.015.

[205] M. Belkin et al., Graph laplacians on singular manifolds: Toward understanding
complex spaces: Graph laplacians on manifolds with singularities and boundaries,
2012. arXiv: 1211.6727 [cs.AI].

[206] J. Hermans, “The amino acid dipeptide: Small but still influential after 50 years,”
Proceedings of the National Academy of Sciences, vol. 108, no. 8, pp. 3095–3096,
2011. doi: 10.1073/pnas.1019470108. [Online]. Available: https://doi.org/10.
1073%2Fpnas.1019470108.

[207] P. Lepage, How to renormalize the schrodinger equation, 1997. arXiv: nucl- th/
9706029 [nucl-th].

[208] E Pitard and H Orland, “Dynamics of the swelling or collapse of a homopolymer,”
Europhysics Letters (EPL), vol. 41, no. 4, pp. 467–472, 1998. doi: 10.1209/epl/
i1998-00175-8. [Online]. Available: https://doi.org/10.1209%2Fepl%2Fi1998-
00175-8.

[209] M. Sega et al., “Quantitative protein dynamics from dominant folding pathways,”
Physical Review Letters, vol. 99, no. 11, 2007. doi: 10.1103/physrevlett.99.
118102. [Online]. Available: https://doi.org/10.1103%2Fphysrevlett.99.
118102.

[210] M. Sega et al., “Quantitative protein dynamics from dominant folding pathways,”
Physical Review Letters, vol. 99, no. 11, 2007. doi: 10.1103/physrevlett.99.
118102. [Online]. Available: https://doi.org/10.1103%2Fphysrevlett.99.
118102.

[211] G. Mazzola et al., “Fluctuations in the ensemble of reaction pathways,” The Journal
of Chemical Physics, vol. 134, no. 16, 2011. doi: 10.1063/1.3581892. [Online].
Available: https://doi.org/10.1063%2F1.3581892.

[212] M. S. Könz et al., “Uncertain fate of fair sampling in quantum annealing,” Physical
Review A, vol. 100, no. 3, 2019. doi: 10.1103/physreva.100.030303. [Online].
Available: https://doi.org/10.1103/physreva.100.030303.

[213] M. Yamamoto et al., “Fair sampling by simulated annealing on quantum annealer,”
Journal of the Physical Society of Japan, vol. 89, no. 2, p. 025 002, 2020. doi: 10.
7566/jpsj.89.025002. [Online]. Available: https://doi.org/10.7566/jpsj.89.
025002.

[214] V. Kumar et al., Achieving fair sampling in quantum annealing, 2020. arXiv: 2007.
08487 [quant-ph].

[215] T. Krauss and J. McCollum, “Solving the network shortest path problem on a quan-
tum annealer,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–12, 2020.
doi: 10.1109/tqe.2020.3021921. [Online]. Available: https://doi.org/10.1109%
2Ftqe.2020.3021921.

[216] M. H. S. Amin et al., “Role of single-qubit decoherence time in adiabatic quantum
computation,” Physical Review A, vol. 80, no. 2, 2009. doi: 10.1103/physreva.80.
022303. [Online]. Available: https://doi.org/10.1103/physreva.80.022303.

129

https://doi.org/10.1515/hsz-2016-0277
https://doi.org/10.1515/hsz-2016-0277
https://doi.org/10.1515%2Fhsz-2016-0277
https://doi.org/10.1016/j.molcel.2016.05.015
https://doi.org/10.1016%2Fj.molcel.2016.05.015
https://arxiv.org/abs/1211.6727
https://doi.org/10.1073/pnas.1019470108
https://doi.org/10.1073%2Fpnas.1019470108
https://doi.org/10.1073%2Fpnas.1019470108
https://arxiv.org/abs/nucl-th/9706029
https://arxiv.org/abs/nucl-th/9706029
https://doi.org/10.1209/epl/i1998-00175-8
https://doi.org/10.1209/epl/i1998-00175-8
https://doi.org/10.1209%2Fepl%2Fi1998-00175-8
https://doi.org/10.1209%2Fepl%2Fi1998-00175-8
https://doi.org/10.1103/physrevlett.99.118102
https://doi.org/10.1103/physrevlett.99.118102
https://doi.org/10.1103%2Fphysrevlett.99.118102
https://doi.org/10.1103%2Fphysrevlett.99.118102
https://doi.org/10.1103/physrevlett.99.118102
https://doi.org/10.1103/physrevlett.99.118102
https://doi.org/10.1103%2Fphysrevlett.99.118102
https://doi.org/10.1103%2Fphysrevlett.99.118102
https://doi.org/10.1063/1.3581892
https://doi.org/10.1063%2F1.3581892
https://doi.org/10.1103/physreva.100.030303
https://doi.org/10.1103/physreva.100.030303
https://doi.org/10.7566/jpsj.89.025002
https://doi.org/10.7566/jpsj.89.025002
https://doi.org/10.7566/jpsj.89.025002
https://doi.org/10.7566/jpsj.89.025002
https://arxiv.org/abs/2007.08487
https://arxiv.org/abs/2007.08487
https://doi.org/10.1109/tqe.2020.3021921
https://doi.org/10.1109%2Ftqe.2020.3021921
https://doi.org/10.1109%2Ftqe.2020.3021921
https://doi.org/10.1103/physreva.80.022303
https://doi.org/10.1103/physreva.80.022303
https://doi.org/10.1103/physreva.80.022303


Bibliography

[217] M. H. Amin, “Searching for quantum speedup in quasistatic quantum annealers,”
Physical Review A, vol. 92, no. 5, 2015. doi: 10 . 1103 / physreva . 92 . 052323.
[Online]. Available: https://doi.org/10.1103/physreva.92.052323.

[218] M. Benedetti et al., “Estimation of effective temperatures in quantum annealers for
sampling applications: A case study with possible applications in deep learning,”
Physical Review A, vol. 94, no. 2, 2016. doi: 10 . 1103 / physreva . 94 . 022308.
[Online]. Available: https://doi.org/10.1103/physreva.94.022308.

[219] Z. Bian et al., “The ising model: Teaching an old problem new tricks,” D-wave
systems, vol. 2, pp. 1–32, 2010.

[220] M. H. Amin, “Searching for quantum speedup in quasistatic quantum annealers,”
Physical Review A, vol. 92, no. 5, Nov. 2015, issn: 1094-1622. doi: 10 . 1103 /

physreva . 92 . 052323. [Online]. Available: http : / / dx . doi . org / 10 . 1103 /

PhysRevA.92.052323.

[221] A. Perdomo-Ortiz et al., “Determination and correction of persistent biases in quan-
tum annealers,” Scientific Reports, vol. 6, no. 1, Jan. 2016, issn: 2045-2322. doi: 10.
1038/srep18628. [Online]. Available: http://dx.doi.org/10.1038/srep18628.

[222] S. L. Quaytman and S. D. Schwartz, “Reaction coordinate of an enzymatic reaction
revealed by transition path sampling,” Proceedings of the National Academy of Sci-
ences, vol. 104, no. 30, 12253–12258, Jul. 2007, issn: 1091-6490. doi: 10.1073/pnas.
0704304104. [Online]. Available: http://dx.doi.org/10.1073/pnas.0704304104.

[223] F. Wang et al., “Folding mechanism of proteins im7 and im9: Insight from all-atom
simulations in implicit and explicit solvent,” The Journal of Physical Chemistry
B, vol. 120, no. 35, 9297–9307, 2016, issn: 1520-5207. doi: 10.1021/acs.jpcb.
6b05819. [Online]. Available: http://dx.doi.org/10.1021/acs.jpcb.6b05819.

[224] F. Dingfelder et al., “Slow escape from a helical misfolded state of the pore-forming
toxin cytolysin a,” JACS Au, vol. 1, no. 8, 1217–1230, 2021, issn: 2691-3704. doi:
10.1021/jacsau.1c00175. [Online]. Available: http://dx.doi.org/10.1021/
jacsau.1c00175.

[225] G. Spagnolli et al., “Pharmacological inactivation of the prion protein by targeting a
folding intermediate,” Communications Biology, vol. 4, no. 1, 2021, issn: 2399-3642.
doi: 10.1038/s42003-020-01585-x. [Online]. Available: http://dx.doi.org/10.
1038/s42003-020-01585-x.

[226] M. Tsytlonok and L. S. Itzhaki, “The how’s and why’s of protein folding interme-
diates,” Archives of Biochemistry and Biophysics, vol. 531, no. 1–2, 14–23, 2013,
issn: 0003-9861. doi: 10.1016/j.abb.2012.10.006. [Online]. Available: http:
//dx.doi.org/10.1016/j.abb.2012.10.006.

[227] M. Feig, “Is alanine dipeptide a good model for representing the torsional preferences
of protein backbones?” Journal of Chemical Theory and Computation, vol. 4, no. 9,
pp. 1555–1564, 2008. doi: 10.1021/ct800153n. [Online]. Available: https://doi.
org/10.1021%2Fct800153n.

[228] T. Head-Gordon et al., “A theoretical study of alanine dipeptide and analogs,” In-
ternational Journal of Quantum Chemistry, vol. 36, no. S16, pp. 311–322, 2009. doi:
10.1002/qua.560360725. [Online]. Available: https://doi.org/10.1002%2Fqua.
560360725.

130

https://doi.org/10.1103/physreva.92.052323
https://doi.org/10.1103/physreva.92.052323
https://doi.org/10.1103/physreva.94.022308
https://doi.org/10.1103/physreva.94.022308
https://doi.org/10.1103/physreva.92.052323
https://doi.org/10.1103/physreva.92.052323
http://dx.doi.org/10.1103/PhysRevA.92.052323
http://dx.doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1038/srep18628
https://doi.org/10.1038/srep18628
http://dx.doi.org/10.1038/srep18628
https://doi.org/10.1073/pnas.0704304104
https://doi.org/10.1073/pnas.0704304104
http://dx.doi.org/10.1073/pnas.0704304104
https://doi.org/10.1021/acs.jpcb.6b05819
https://doi.org/10.1021/acs.jpcb.6b05819
http://dx.doi.org/10.1021/acs.jpcb.6b05819
https://doi.org/10.1021/jacsau.1c00175
http://dx.doi.org/10.1021/jacsau.1c00175
http://dx.doi.org/10.1021/jacsau.1c00175
https://doi.org/10.1038/s42003-020-01585-x
http://dx.doi.org/10.1038/s42003-020-01585-x
http://dx.doi.org/10.1038/s42003-020-01585-x
https://doi.org/10.1016/j.abb.2012.10.006
http://dx.doi.org/10.1016/j.abb.2012.10.006
http://dx.doi.org/10.1016/j.abb.2012.10.006
https://doi.org/10.1021/ct800153n
https://doi.org/10.1021%2Fct800153n
https://doi.org/10.1021%2Fct800153n
https://doi.org/10.1002/qua.560360725
https://doi.org/10.1002%2Fqua.560360725
https://doi.org/10.1002%2Fqua.560360725


Bibliography

[229] P. Eastman et al., “OpenMM 7: Rapid development of high performance algorithms
for molecular dynamics,” PLOS Computational Biology, vol. 13, no. 7, R. Gentleman,
Ed., e1005659, 2017. doi: 10.1371/journal.pcbi.1005659. [Online]. Available:
https://doi.org/10.1371/journal.pcbi.1005659.

[230] N. Michaud-Agrawal et al., “MDAnalysis: A toolkit for the analysis of molecular dy-
namics simulations,” Journal of Computational Chemistry, vol. 32, no. 10, pp. 2319–
2327, 2011. doi: 10.1002/jcc.21787. [Online]. Available: https://doi.org/10.
1002%2Fjcc.21787.

[231] R. Gowers et al., “MDAnalysis: A python package for the rapid analysis of molecular
dynamics simulations,” in Proceedings of the Python in Science Conference, SciPy,
2016. doi: 10.25080/majora-629e541a-00e. [Online]. Available: https://doi.
org/10.25080%2Fmajora-629e541a-00e.

[232] M. Karplus and J. A. McCammon, “Molecular dynamics simulations of biomolecules,”
Nature Structural Biology, vol. 9, no. 9, pp. 646–652, 2002. doi: 10.1038/nsb0902-
646. [Online]. Available: https://doi.org/10.1038%2Fnsb0902-646.

[233] J. A. McCammon et al., “Dynamics of folded proteins,” Nature, vol. 267, no. 5612,
pp. 585–590, 1977. doi: 10.1038/267585a0. [Online]. Available: https://doi.org/
10.1038%2F267585a0.

[234] E. Paci and M. Karplus, “Forced unfolding of fibronectin type 3 modules: An analysis
by biased molecular dynamics simulations.,” Journal of Molecular Biology, vol. 288,
pp. 441–459, 3 May 1999, issn: 0022-2836. doi: 10.1006/jmbi.1999.2670, ppublish.

[235] C. Camilloni et al., “Hierarchy of folding and unfolding events of protein g, ci2,
and acbp from explicit-solvent simulations.,” Journal of Chemical Physics, vol. 134,
p. 045 105, 4 Jan. 2011, issn: 1089-7690. doi: 10.1063/1.3523345, ppublish.

[236] G. Bartolucci et al., “Transition path theory from biased simulations.,” Journal of
Chemical Physics, vol. 149, p. 072 336, 7 Aug. 2018, issn: 1089-7690. doi: 10.1063/
1.5027253, ppublish.

[237] R. T. McGibbon et al., “Mdtraj: A modern open library for the analysis of molecular
dynamics trajectories,” Biophysical Journal, vol. 109, no. 8, pp. 1528 –1532, 2015.
doi: 10.1016/j.bpj.2015.08.015.

[238] G. A. Tribello et al., “Plumed 2: New feathers for an old bird.,” Computer Physics
Communications, vol. 185, pp. 604–613, 2014.

[239] F. Murtagh and P. Contreras, Methods of hierarchical clustering, 2011. arXiv: 1105.
0121 [cs.IR].

[240] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[241] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-
0686-2.

[242] J. Kubelka et al., “Sub-microsecond protein folding,” Journal of Molecular Biology,
vol. 359, no. 3, 546–553, Jun. 2006, issn: 0022-2836. doi: 10.1016/j.jmb.2006.03.
034. [Online]. Available: http://dx.doi.org/10.1016/j.jmb.2006.03.034.

[243] H. Lei et al., “Folding free-energy landscape of villin headpiece subdomain from
molecular dynamics simulations,” Proceedings of the National Academy of Sciences,
vol. 104, no. 12, 4925–4930, Mar. 2007, issn: 1091-6490. doi: 10 . 1073 / pnas .

0608432104. [Online]. Available: http://dx.doi.org/10.1073/pnas.0608432104.

131

https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1002%2Fjcc.21787
https://doi.org/10.1002%2Fjcc.21787
https://doi.org/10.25080/majora-629e541a-00e
https://doi.org/10.25080%2Fmajora-629e541a-00e
https://doi.org/10.25080%2Fmajora-629e541a-00e
https://doi.org/10.1038/nsb0902-646
https://doi.org/10.1038/nsb0902-646
https://doi.org/10.1038%2Fnsb0902-646
https://doi.org/10.1038/267585a0
https://doi.org/10.1038%2F267585a0
https://doi.org/10.1038%2F267585a0
https://doi.org/10.1006/jmbi.1999.2670
https://doi.org/10.1063/1.3523345
https://doi.org/10.1063/1.5027253
https://doi.org/10.1063/1.5027253
https://doi.org/10.1016/j.bpj.2015.08.015
https://arxiv.org/abs/1105.0121
https://arxiv.org/abs/1105.0121
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.jmb.2006.03.034
https://doi.org/10.1016/j.jmb.2006.03.034
http://dx.doi.org/10.1016/j.jmb.2006.03.034
https://doi.org/10.1073/pnas.0608432104
https://doi.org/10.1073/pnas.0608432104
http://dx.doi.org/10.1073/pnas.0608432104


Bibliography

[244] R. Harada and A. Kitao, “The fast-folding mechanism of villin headpiece subdo-
main studied by multiscale distributed computing,” Journal of Chemical Theory
and Computation, vol. 8, no. 1, 290–299, Dec. 2011, issn: 1549-9626. doi: 10.1021/
ct200363h. [Online]. Available: http://dx.doi.org/10.1021/ct200363h.

[245] E. Wang et al., “A novel folding pathway of the villin headpiece subdomain hp35,”
Physical Chemistry Chemical Physics, vol. 21, no. 33, 18219–18226, 2019, issn: 1463-
9084. doi: 10.1039/c9cp01703h. [Online]. Available: http://dx.doi.org/10.
1039/c9cp01703h.

[246] R. Mousa et al., “Bpti folding revisited: Switching a disulfide into methylene thioac-
etal reveals a previously hidden path,” Chemical Science, vol. 9, no. 21, 4814–4820,
2018, issn: 2041-6539. doi: 10.1039/c8sc01110a. [Online]. Available: http://dx.
doi.org/10.1039/c8sc01110a.

[247] T. E. Creighton, “Conformational restrictions on the pathway of folding and un-
folding of the pancreatic trypsin inhibitor,” Journal of Molecular Biology, vol. 113,
no. 2, pp. 275–293, 1977. doi: 10.1016/0022-2836(77)90142-5. [Online]. Available:
https://doi.org/10.1016%2F0022-2836%2877%2990142-5.

[248] J. A. Mendoza et al., “Effects of amino acid replacements on the reductive unfolding
kinetics of pancreatic trypsin inhibitor,” Biochemistry, vol. 33, no. 5, 1143–1148,
Feb. 1994, issn: 1520-4995. doi: 10.1021/bi00171a013. [Online]. Available: http:
//dx.doi.org/10.1021/bi00171a013.

[249] J. S. Weissman and P. S. Kim, “Reexamination of the folding of bpti: Predominance
of native intermediates,” Science, vol. 253, no. 5026, 1386–1393, Sep. 1991, issn:
1095-9203. doi: 10.1126/science.1716783. [Online]. Available: http://dx.doi.
org/10.1126/science.1716783.

[250] G. Mazzola, “Sampling, rates, and reaction currents through reverse stochastic quan-
tization on quantum computers,” Physical Review A, vol. 104, no. 2, 2021. doi:
10.1103/physreva.104.022431. [Online]. Available: https://doi.org/10.1103/
physreva.104.022431.

[251] A. Perdomo-Ortiz et al., “Finding low-energy conformations of lattice protein mod-
els by quantum annealing,” Scientific Reports, vol. 2, no. 1, 2012. doi: 10.1038/
srep00571. [Online]. Available: https://doi.org/10.1038/srep00571.

[252] L.-H. Lu and Y.-Q. Li, “Quantum approach to fast protein-folding time,” Chinese
Physics Letters, vol. 36, no. 8, p. 080 305, 2019. doi: 10.1088/0256-307x/36/8/
080305. [Online]. Available: https://doi.org/10.1088/0256-307x/36/8/080305.
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