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Abstract— The very high spectral resolution in hyperspectral 

images (HSIs) offers an opportunity to detect subtle land-cover 

changes. However, the availability of HSIs acquired from 

different platforms requires the development of change 

detection (CD) methods capable of processing HSIs with 

different spatial resolutions. In this paper, we propose a general 

end-to-end subpixel convolution-based residual network 

(SPCNet) to accomplish the CD task between high spatial 

resolution (HR) and low spatial resolution (LR) HSIs. To 

effectively tackle the resolution matching issue, a super 

resolution (SR) block with an efficient subpixel convolution 

layer is introduced to upscale the LR feature maps into HR 

maps. The subpixel convolution layer can fully explore the 

subpixel context information by learning an array of upscaling 

filters. Moreover, the designed SPC module is embedded into 

the LR branch to generate more discriminative representations. 

More importantly, the SPC module as a plug-and-play unit has 

the potential to be embedded into other baseline networks to 

enhance the feature learning capability. Experimental results on 

four HSI datasets demonstrate the effectiveness of the proposed 

SPCNet. 

 

Index Terms— Change detection, deep learning, multiscale 

images, residual network, subpixel convolution, hyperspectral 

images, remote sensing. 

I. INTRODUCTION 

HSIs are valuable data sources to monitor global changes 

for Earth observation [1]. CD methods can recognize the 

differences in multitemporal HSIs acquired over the same 

geographical area at multiple times [2], [3]. They can be 

extensively exploited in many research activities, such as 

forestry and agriculture monitoring [4], [5], land sprawl 

dynamic analysis [6], [7], [8] and natural disaster damage 

assessment [9], [10], [11].With the successful launch of 

satellites such as NASA Earth Observation-1 (EO-1), the 

Chinese Gaofen-5 satellites, and the Italian Space Agency 

PRISMA, the availability of HSIs at a global scale has 

significantly increased. Accordingly, CD in HSIs has 

received increasing attention in recent years. 

Over the past few decades, many conventional methods 

have been proposed to detect changes in bitemporal HSIs. In 
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general, these methods can be divided into three main 

categories: algebra-based methods, transformation-based 

methods, and post-classification comparison methods. 

Typical algebra-based methods, such as image subtraction 

[12], image ratio [13], and change vector analysis (CVA) [14], 

are sensitive to radiation and noise, which compromises the 

CD accuracy. The representative transformation-based 

methods include iteratively reweighed multivariate alteration 

detection (IR-MAD) [15], slow feature analysis (SFA) [16], 

and principal component analysis (PCA) [17]. Although 

transformation-based methods can transform 

high-dimensional HSIs into other feature spaces and thus 

reduce the redundancy, they have a drawback in the need to 

select appropriate threshold values to detect land-cover 

changes. With regard to post-classification comparison 

methods [18], [19], the class maps generated by the 

classification of two images independently are compared 

pixel-by-pixel to obtain the changed regions [20], [21], [22]. 

A common drawback of post-classification comparison 

methods is that the CD result is directly affected by the 

propagation of classification errors on both images. 

Recently, deep learning-based methods have been 

introduced for addressing the HSI task [23]. In [24], a 

Caps-TripleGAN framework is proposed by exploring the 

1-D structure triple generative adversarial network 

(TripleGAN) for sample generation and integrating CapsNet 

for HSI classification. Wang et al. [25] proposed a unified 

multiscale learning framework, which contains a multiscale 

spatial-channel attention mechanism and a multiscale shuffle 

block to improve the problem of land-cover map distortion in 

HSI classification. Wang et al. [26] proposed an 

SSA-SiamNet method to adaptively extract features from 

input patch pairs of HSIs for CD. In [27], a multilevel 

encoder-decoder attention network is proposed, which fuses 

the hierarchical features from all of the convolutional layers 

to detect changes in the HSIs. In [28], a three-direction CNN 

(TDSSC) that contains a change tensor that decomposes along 

the spectral direction and two spatial directions, is developed 

for HSI CD. In [29], the recurrent three-dimensional (3D) 

fully convolutional network (Re3FCN) merges the 

superiorities of a 3D fully convolutional network and a 

convolutional long short-term memory. It is developed to 

extract joint spectral-spatial-temporal features. Wang et al. 

[30] proposed a general end-to-end two-dimensional-CNN 

framework (GETNET), which uses a mixed-affinity matrix as 

the input to detect binary changes in HSIs. Nonetheless, the 

abovementioned methods were developed for bitemporal 

HSIs with the same spatial resolution and do not sufficiently 

consider the use of subpixel context information. 
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In general, conventional and deep learning-based CD 

methods are applied to bitemporal HSIs acquired by the same 

sensors with the same spatial resolution. However, they are 

not adequate to address CD when HSIs acquired by different 

sensors with different spatial resolutions are considered [31]. 

For example, this case occurs if an HR HSI of a certain region 

is available at time T1 but only an LR HSI of the same area is 

available at time T2. In these cases, it is necessary to design 

CD methods that can effectively analyze bitemporal HSIs 

with different spatial resolutions. These methods should 

address two main challenges: spatial resolution matching and 

design of specific CD algorithms. 

To address the spatial resolution matching issue, the most 

intuitive method is downsampling the HR HSI to make LR 

images, or interpolating the LR HSI to the HR HSI to obtain 

two HSIs with the same spatial resolution. Then, common CD 

methods can be applied to detect changes [31]. However, on 

the one hand, the downsampling step leads to a lack of 

detailed spatial information. On the other hand, common 

interpolation methods, such as linear, bilinear, and bicubic, 

are not able to bring additional spatial information to solve the 

reconstruction problem. Therefore, it is necessary to develop 

information reconstruction strategies that make full use of 

subpixel information to detect land cover changes in 

bitemporal HSIs with different spatial resolutions. 

Different from the abovementioned interpolation methods, 

subpixel-based methods have been explored to accomplish 

the CD task for remote sensing images. For example, Liu et al. 

[32] proposed an SR-based CD network that combines 

adversarial learning and stacked attention modules for CD on 

high-resolution images with different spatial resolutions. In 

[33], a novel approach that combines the subpixel mapping 

based on a backpropagation neural network and soft 

classification was proposed to address subpixel land-cover 

change detection for multispectral images with different 

spatial resolutions. In [34], an iterative method to detect 

changes for multispectral images at different spatial scales 

was proposed. It involves endmember estimation, spectral 

unmixing, land-cover fraction change detection, and super 

resolution land-cover mapping. However, when considering 

the problem of CD in bitemporal HSIs, to the best of our 

knowledge, the case of images with different spatial 

resolutions has seldom been considered. 

Based on the abovementioned analysis, we propose a 

subpixel convolution-based residual network (SPCNet) for 

CD in bitemporal HSIs with different spatial resolutions. In 

greater detail, the main contributions of this paper are as 

follows: 

1) A general end-to-end SPCNet framework is proposed to 

solve the CD problem in bitemporal HSIs with different 

spatial resolutions, which can fully extract the subpixel 

information from LR HSIs. 

2) An SR block with a subpixel convolution operator, 

which learns an array of upscaling filters, is introduced 

to upscale the LR feature maps into HR images. It fully 

exploits the subpixel context information and generates 

more discriminative representations. 

3) The SPC module is designed as a plug-and-play unit and 

has the potential to be embedded into other baseline 

networks to enhance the feature learning capability in 

other HSI processing tasks. 

The remainder of this paper is organized as follows. 

Section II describes the proposed SPCNet method in detail. 

Section III reports the experimental results of the proposed 

method. Section IV discusses further issues and draws the 

conclusions of the paper. 

 

II. METHODOLOGY 

D
o
w

n
 s

a
m

p
le

C
o
n

c
a
te

n
a

te

Res Block

SR Block

 
 

 
 

U
p

 s
a
m

p
le

SPC Module

1

HRH

2

LRH
'

2

LRH

'

2

LRI

1I
HR

2

LRI

2

HRI

2

SRI

L
a

b
e
l

r
2
 channels

Pixel Shuffling Operator

Input HSI Pair SPCNet

 
Fig. 1. Overview of the proposed SPCNet for CD on HSIs with different spatial resolutions. 

 

Fig.1 shows an overview of the proposed end-to-end CD 

framework based on the SPCNet to detect land-cover changes in 

HSIs with different spatial resolutions. First, modified residual 

blocks are stacked to form an improved ResNet, which is the 
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baseline to detect land-cover changes. Second, a pixel shuffling 

operator is embedded to form the SR block, which upscales the 

LR feature maps into HR maps. Third, the SPC module is 

designed to generate more discriminative subpixel-based 

representations from LR feature maps. Finally, the 

subpixel-based features of the LR HSI and the pixel-based 

features of the HR HSI are concatenated and given as input to the 

modified ResNet. 

The four main parts of the proposed SPCNet method, i.e., the 

SR block, the SPC module, the Res block and ResNet, as well as 

the loss function and the optimization strategy, are introduced in 

the next subsections. 

A. SR Block 

The two HSIs with different spatial resolutions acquired at 

times T1 and T2 are represented as 1

HRH  and 2

LRH , respectively. 

Let us assume that the same number b of spectral bands is 

associated with both 1

HRH  and 2

LRH . The spatial sizes of 1

HRH  

and 2

LRH  are h1×w1 and h2×w2, respectively, where 
2 1h h  and 

2 1w w . 2

LRH  is interpolated as follows: 

 
'

2 2( )LR LRH up H=  (1) 

where ( )up  is the bicubic interpolation operator and the size of 

'

2

LRH  is h1×w1×b. To make full use of the spatial context 

information, a set of patches from 1

HRH  and 
'

2

LRH  is 

constructed by combining a center pixel and its s surrounding 

pixels, thus producing patches 1

HRI  and 
'

2

LRI  with size s×s×b. 

To reduce the interference of redundant information caused by 

the interpolation strategy and the related processing, 
'

2

LRI is 

transformed as follows: 

 
'

2 2( )LR LRI down I=  (2) 

where ( )down  is downsampling operation, which exploits the 

same strategy as that used in the interpolation operation to 

restore the original spectral information as much as possible. 

The patch size of 2

LRI  is d×d×b and d s . 

To fully extract subpixel context information, a subpixel 

convolution layer is introduced to upscale the LR feature maps 

2

LR
I into the HR output features into 2

SR
I  [35][35]. The subpixel 

convolution layer can be expressed as follows: 

 
' 1

2 2 2( ) ( ( ) )SR L LR L LR

L Lf W f b−= =  +I I I  (3) 

where 
Lf denotes the L-th network layer, and LW , Lb are 

learnable network weights and biases, respectively.

represents a periodic shuffling operator, which rearranges the 

elements of a d×d×c×r2 tensor to a tensor with rd×rd×c shape. 

Moreover, r is an upscale factor that is set to 2 for experiments in 

Section Ⅲ. Mathematically, the operation can be described 

as follows: 

 
, ,( ) / , / , mod( , )

mod( , )

ix y c i

i

T T x r y r c r y r

c x r

=        

+ 
 (4) 

These patterns are periodically activated during the convolution 

of the filter across the patch depending on different subpixel 

locations: mod( , )x r , mod( , )y r , where x, y are the output pixel 

coordinates in the HR space. mod( )  represents the modulo 

operator, which returns the remainder of dividing two numbers, 

and ci is the i-th filter channel. 

In the proposed method, the SR block is designed to extract 

effective subpixel features and includes a convolutional layer, a 

batch normalization (BN) operation, a operation, and a 

LeakyReLU activation function. The specific arrangement of the 

SR block is shown in Fig. 1 and can be calculated as: 

 2 2( ( ( ( ))))SR LRg f=I I  (5) 

where ( )   represents the LeakyReLU activation function, and 

( )g  denotes the transform of the convolution and BN 

operations. 

B. SPC Module 

The proposed SPC module is arranged according to Fig. 1. 

First, the intermediate subpixel features are summarized as 

follows: 

 2 2( ( ))SR LRf=I I  (6) 

where ( )f   represents the convolution operation, and ( )  is 

the series of operations of the SR block. Then, the 

subpixel-based features 2

SR
I  can be transformed as follows: 

 2 2 2 2( ) ( ( ) ( ))HR LR SR SRf MaxPool AvgPool=  +I I I I  (7) 

where ( )MaxPool   and ( )AvgPool   represent the max-pooling 

and avg-pooling operations, respectively, and “·” denotes 

elementwise multiplication. Note that this designed SPC module 

with auxiliary subpixel context information can be extended 

directly to the other frameworks. 

C. Res Block and ResNet 

ResNet has been introduced to robustly improve the 

performance of CNNs with a very deep architecture. It is an 

extension of the CNN with shortcut connections that promotes 

the propagation of gradients. Many residual units are stacked to 

form deep residual networks to avoid gradient extinction [36]. 

In our approach, the residual unit is modified specifically for 

the HSI CD task. Instead of the identity shortcut connection 

present in the traditional residual unit, in the designed residual 

block a connection with 1×1 convolutional and BN operations is 

employed. More specifically, a dropout layer is adopted in the 

modified residual unit to avoid the overfitting problem. The 

improved residual unit can be described as follows: 

 
+ = ( ))) ))( + (1 g( gl l lh G f h h  (8) 

where lh  and 1lh +  are the input and output features of the lth 

unit, respectively. ( )G  represents the ReLU activation function 

and dropout operation. 

As shown in Fig. 1, the subpixel-based features of the LR 

branch and the pixel-based features of the HR branch are 

concatenated to be given as input to the designed ResNet. In this 

study, the CD problem is modeled as a binary classification task. 

Thus, a fully connected layer, including two filters and a sigmoid 

activation function, is adopted as the end of the proposed 

architecture. It provides as outputs a binary label that indicates 

whether the pixel has changed or not. 
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D.  Loss Function and Optimization 

An appropriate loss function is crucial to optimizing the 

designed network during model training. The cross entropy 

function can measure the dissimilarity between the ground-truth 

labels and the predicted probabilities. Therefore, binary cross 

entropy is commonly utilized for model training in binary 

classification [37]. Accordingly, the binary cross entropy is 

adopted as the loss function of the proposed SPCNet method. It 

is defined as follows: 

 
1

1
ˆ ˆ[ log( ) (1 ) log(1 )]

i i

M

BCE i i

i

Loss y y y y
M =

= −  + −  −  (9) 

where M represents the number of patch pairs in a mini-batch 

during the model training. iy  and ˆ
iy  denote the ground-truth 

label and the predicted probability for the i-th patch pair, 

respectively. The labels of the unchanged and changed patch 

pairs are set to 0=
i

y  and 1=iy , respectively. Stochastic 

gradient descent and backpropagation are applied to update the 

parameters in the designed network. 

III. EXPERIMENTS 

A. Description of Datasets 

To assess the performance of the proposed SPCNet method, 

four HSI datasets were used in the experiments: Farmland, River, 

Hermiston, and Bay Area. The first three datasets were acquired 

by using the Hyperion sensor onboard the EO-1 satellite. The 

Hyperion sensor covers wavelengths that range from 0.4 to 2.5 

μm with 242 spectral bands. It provides HSIs with a spectral 

resolution of approximately 10 nm and a spatial resolution of 

approximately 30 m. The Bay Area dataset was acquired by an 

Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) 

from NASA’s Jet Propulsion Laboratory (JPL). AVIRIS covers 

the spectral range from 0.4 to 2.5 μm with 224 spectral bands. 

The AVIRIS HSIs have a spatial resolution of 20 m and a 

spectral resolution of 10 nm. 

The first dataset, named Farmland, covers a farmland area in 

Yancheng, Jiangsu Province, China. The bitemporal HSIs were 

acquired on May 3, 2006, and April 23, 2007. The spatial extent 

is 450×140 pixels, and 155 bands are selected for CD after 

removing noisy bands. Crop rotation represents the main 

changes in this dataset. 

The second dataset, named River, contains a river region in 

Jiangsu Province, China. The bitemporal HSIs were acquired on 

May 3, 2013, and December 31, 2013. The spatial size is 

463×241 pixels, and 198 bands are considered after the removal 

of noisy bands. The changes in the dataset are mainly related to 

the removal of sediment from the river. 

The third dataset, named Hermiston, encompasses an 

irrigated agricultural field in Hermiston City, Umatilla Country, 

Oregon, USA. The pair of HSIs was acquired on May 1, 2004, 

and May 8, 2007. The images have a size of 307×241 pixels and 

contain 154 bands after noisy band removal. The changes in this 

dataset are caused mainly by the regulation of irrigation areas. 

The fourth dataset, named Bay Area, covers an area in the 

San Francisco Bay Area, California, USA. The bitemporal HSIs 

were acquired in 2013 and 2015. The image size is 600×500 

pixels and the number of spectral bands is 224. 

The bitemporal HSIs have the same spatial resolution in the 

above four datasets. However, bitemporal HSIs with different 

spatial resolutions are needed for subsequent experiments. 

Therefore, we first downsample the original HR image in T2 to 

simulate the corresponding LR version of the T2 image. The 

scale factor is the spatial resolution ratio between the LR and HR 

image pairs. The original HR T1 image and the corresponding 

LR T2 image form the multiresolution dataset. Examples of 

true-color compositions of three spectral channels of images 

with different spatial resolutions for the four datasets are shown 

in Fig. 2. The use of these downsampled images has some 

limitations but allows us to accurately assess the performance of 

the proposed SPCNet and compare it with the performances of 

other techniques. 

B. Experimental Setup 

The optimizer is based on the root mean square propagation 

(RMSprop). The number of total epochs is 200, and the initial 

learning rate is set to 0.001. The batch size is 64 for the Farmland 

and Bay Area datasets and 128 for the River and Hermiston 

datasets. The learning rate decays by a factor of 10 every 50 

epochs. An NVIDIA GeForce RTX3090 GPU was employed to 

conduct the experiments. The proposed SPCNet was 

implemented on the TensorFlow and Keras framework. 

For a fair comparison, we randomly select 5% of the samples 

from the Farmland, River, and Hermiston datasets and 1% of the 

samples from the ground references of the Bay Area dataset as 

training sets. The remaining samples are used as test sets. In the 

experiments, all of the input data were standardized to zero mean 

values with unit variance, and 10 independent tests were 

performed to avoid biased estimation. 

To quantitatively assess the detection performance, we 

adopted the overall accuracy (OA), kappa coefficient (Kappa), 

precision (Pr), recall (Re), and F1-score (F1) as evaluation 

metrics [26]. 

C. Parameter Setting 

In the proposed SPCNet method, several hyperparameters can 

affect the training model and, further, the CD results. They 

include the kernel numbers of convolutional filters, the patch 

size, the training sample proportion, and the scale factor. In this 

section, these hyperparameters are analyzed in detail. The 

impact of a certain parameter was explored by fixing the values 

of the other parameters. 

1) Impact of the kernel numbers 

The kernel numbers of the convolutional filters are related to 

the representation capacity and the computational cost of the 

SPCNet method. In the proposed SPCNet, the kernel number in 

each convolutional layer is the same except for the SR block. 

Different kernel numbers (i.e., 4, 8, 16, 24, 32, 64) were 

examined in preliminary experiments. As shown in Fig. 3(a), as 

the kernel numbers increase from 4 to 32, the OA values also 

increase in all four datasets. Compared with 32 kernels, 64 

kernels increase the model complexity, but the accuracy is not 

significantly improved. Thus, the kernel number is fixed to 32 

for all four datasets.  

2) Impact of the patch size 

The size of the input patch pair is related to the amount of 

spatial information surrounding the center pixel. To evaluate the 

influence of different patch sizes on the SPCNet, we considered 
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a set of four patch sizes: 5×5, 7×7, 9×9, and 11×11. As shown in 

Fig. 3(b), as the patch size increases, the OA value decreases 

gradually in all of the datasets except for the Bay Area dataset. In 

our study, the patch size was set to 5×5 in all datasets. 

 

    
(a)                                      (c)                                                                 (e)                                                                              (g) 

    
(b)                                      (d)                                                                 (f)                                                                              (h) 

Fig. 2. The four HSI datasets used in the experiments (bands 33, 22, and 11 as RGB). (a) HR Farmland image at time T1 and (b) LR Farmland image at time T2. (c) HR 

River image at time T1 and (d) LR River image at time T2. (e) HR Hermiston image at time T1 and (f) LR Hermiston image at time T2. (g) HR Bay Area image at time 
T1 and (h) LR Bay Area image at time T2. The scale factor of the LR image is set to 2. 

 

 
HermistonFarmland River Bay Area  

(a)                                                                                 (b)                                                                                  (c) 

Fig. 3. OA values obtained by the SPCNet with different hyperparameter values for the four datasets: (a) the kernel numbers, (b) the patch size, (c) the batch size. 
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SPCNet ResNet  

(a)                                                             (b)                                                              (c)                                                              (d) 
Fig. 4. OA values obtained by ResNet and SPCNet with different proportions of training samples for (a) the Farmland dataset, (b) the River dataset, (c) the Hermiston 

dataset, and (d) the Bay Area dataset. 

 

 
SPCNet ResNet  

(a)                                                             (b)                                                              (c)                                                              (d) 

Fig. 5. OA values obtained by ResNet and SPCNet with different scale factors for (a) the Farmland dataset, (b) the River dataset, (c) the Hermiston dataset, and (d) the 

Bay Area dataset.  
 

3) Impact of the batch size 

To explore the influence of the patch size on the proposed 

SPCNet, a set of batch sizes (32, 64, 128, 256, 512) were 

examined. From Fig. 3(c), one can observe that the OA values do 

not change significantly under different batch sizes, which 

suggests that the proposed SPCNet is robust to the batch size. 

The optimal batch size is 64 for the Farmland and Bay Area 

datasets and 128 for the River and Hermiston datasets. 

4) Impact of the proportion of training samples 

To demonstrate the generality of the proposed SPCNet 

method, we examined different proportions of training samples 

(0.1%, 0.5%, 1%, 5%, 10%, and 15%) for ResNet and SPCNet in 

all four datasets. As shown in Fig.4, the OA values of ResNet 

and SPCNet increased by increasing the proportion from 0.1% to 

15% for the four datasets. In general, the proposed SPCNet 

method improves the OA value compared with ResNet. 

5) Impact of the scale factor 

To evaluate the effectiveness of the proposed SPCNet method, 

we considered a set of scale factors (1, 2, 3, 4, and 5) between the 

spatial resolutions of T1 and T2 images. From Fig. 5, one can see 

that as the scale factor increases, due to the decrease in the 

spatial resolution of the HSI at T2 time, the OA value decreases 

gradually in all datasets. As expected, the proposed SPCNet 

method is effective in detecting changes from bitemporal HSIs 

with the same spatial resolution (the scale factor is set to 1). 

D. Comparison with Other Methods 

To verify the effectiveness of the proposed SPCNet method, 

we compare it with eleven benchmark methods, which include 

CVA [38], SVM [39], SiamNet [26], SSA-SiamNet [26], 

GETNET [30], Sub-2DCNN [40], Con-2DCNN [40][40], 

Con-3DCNN [41], Sub-RSSAN [42], Con-RSSAN [42], and 

ResNet. In SVM, the radial basis function kernel was selected in 

the four datasets. The input images for the Sub-2DCNN and the 

Sub-RSSAN are the result of subtracting the HR image and the 

interpolated LR image. For Con-based methods (i.e., SVM, 

Con-2DCNN, Con-3DCNN, Con-RSSAN, and ResNet), the HR 

image and the interpolated LR image are concatenated and given 

as input to the model. For deep learning-based methods, the 

specific parameter settings refer to [26]. 

1) Quantitative comparison 

Table 1 reports the CD accuracy of different methods on the 

four datasets. By analyzing the table, we can derive the four 

following observations. 

First, the CVA method provides the smallest accuracy for the 

four datasets, especially for the River and Bay Area datasets. 

Compared with supervised approaches, CVA is a classic 

unsupervised method. It does not require any training samples 

that prevent us from accurately distinguishing various changes. 

Second, the accuracies of deep learning-based methods are 

superior to that of the SVM method on all datasets except for the 

Farmland dataset. The reason is that different from the SVM that 

exploits the spectral information, deep learning-based methods 

can make full use of the spatial-spectral context information and 

generate more discriminative features. This process facilitates 

the detection of land-cover changes. 

Third, compared with the SiamNet and GETNET methods, 

other deep learning methods provide metric values with lower 

standard deviations and are more centralized around the means. 

This finding indicates the stability of the algorithm. 
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Finally, the proposed SPCNet enhances the performance of 

ResNet on all datasets. More precisely, the increases in OAs for 

the Farmland, River, Hermiston, and Bay Area datasets are 

0.41%, 0.28%, 0.42%, and 0.30%, respectively. The reason for 

these improvements is that the proposed SPCNet extracts more 

discriminative features through the subpixel convolution 

operation, which improves the CD accuracy. 

2) Qualitative comparison 

Ground-reference maps for the four datasets are shown in 

Panels (m) of Figs. 6-9, where the white, black, and gray parts 

describe changed, unchanged, and unknown pixels, respectively. 

Moreover, Figs. 6 to 9 show the CD maps obtained by different 

methods on the four datasets for a comparative qualitative 

comparison. Areas that have the main differences in the maps 

are indicated by red squares and circles. Overall, the CVA maps 

contain more noise than those of the other supervised methods, 

which indicates the importance of the training information in 

detecting changes. Generally, compared with the SVM method, 

the CD maps of deep learning-based techniques are much more 

similar to the ground-reference map, which confirms the 

effectiveness of using the spectral-spatial context information. 

Furthermore, the CD map produced by the proposed SPCNet 

method is the closest to the ground-reference maps on all 

datasets. This aspect is consistent with the quantitative results in 

Table 1. 

3) Computational cost 

A number of trainable parameters and floating-point 

operations (FLOPs) are used to describe the computational cost 

of the deep learning-based methods. Table 2 lists the 

computational costs of ten deep learning-based methods. 

Obviously, GETNET requires the largest number of parameters 

and FLOPs among the nine methods for the four datasets. The 

reason is that the input data of GETNET are large patches with 

size c×c×1. Overall, the modified ResNet involves the lowest 

number of parameters and FLOPs among all methods, which 

indicates the superiority of the improved ResNet as a baseline. 

Furthermore, the proposed SPCNet, which improves the CD 

accuracy, shows an acceptable slight increase in the model 

complexity. 

 
Table 1 Accuracy of different CD methods on the four considered datasets 

(Bold values indicate the highest accuracies for each variable and each dataset) 

Dataset Method 
Metrics 

OA (%) Kappa×100 F1 (%) Pr (%) Re (%) 

Farmland 

CVA 96.18 90.83 93.54 91.78 95.37 

SVM 97.73 94.49 96.09 96.34 95.84 

SiamNet 96.980.29 92.650.76 94.770.56 95.340.37 94.201.39 

SSA-SiamNet 97.040.36 92.800.68 94.870.49 95.450.24 94.300.76 

GETNET 97.560.16 94.050.42 95.770.62 96.380.44 95.160.51 

Sub-2DCNN 97.740.04 94.510.09 96.100.14 96.070.22 96.140.15 

Con-2DCNN 97.580.06 94.130.14 95.830.10 95.840.19 95.830.13 

Con-3DCNN 97.590.08 94.130.25 95.820.37 96.540.31 95.110.23 

Sub-RSSAN 97.440.04 93.780.08 95.580.05 95.640.08 95.530.06 

Con-RSSAN 97.500.05 93.920.12 95.670.09 96.280.12 95.080.13 

ResNet 97.250.07 93.310.18 95.240.13 95.600.21 94.890.27 

Proposed SPCNet 97.660.05 94.300.14 95.940.09 96.550.22 95.340.31 

River 

CVA 82.96 39.79 47.45 32.42 88.52 

SVM 96.31 73.81 75.77 88.15 66.44 

SiamNet 96.570.25 76.860.19 78.720.25 85.060.51 73.260.41 

SSA-SiamNet 96.700.31 78.880.25 80.680.43 82.170.57 79.240.62 

GETNET 96.500.26 76.680.61 78.570.53 84.050.49 73.760.95 

Sub-2DCNN 96.650.04 78.500.30 80.330.28 82.010.11 78.720.50 

Con-2DCNN 96.610.04 78.480.17 80.340.15 81.080.41 79.610.14 

Con-3DCNN 96.570.09 77.260.59 79.120.62 83.930.72 74.840.89 

Sub-RSSAN 96.880.04 79.880.24 81.580.22 83.610.56 79.660.52 

Con-RSSAN 96.680.04 78.370.20 80.180.18 83.300.44 77.290.33 

ResNet 96.730.04 79.140.44 80.930.42 82.010.59 79.881.25 

Proposed SPCNet 97.010.09 80.290.93 81.910.89 86.431.62 77.930.25 

Hermiston 

CVA 92.94 77.48 81.70 98.22 69.94 

SVM 95.65 87.04 89.79 95.35 84.84 

SiamNet 95.900.24 88.250.56 90.900.32 90.590.66 91.210.35 

SSA-SiamNet 96.220.34 89.020.43 91.450.43 93.180.71 89.770.52 

GETNET 95.580.27 87.500.41 90.37028 88.750.96 92.050.89 

Sub-2DCNN 96.170.04 88.890.12 91.350.09 92.810.30 89.940.21 

Con-2DCNN 96.480.45 89.930.13 92.200.11 92.220.21 92.170.30 

Con-3DCNN 96.100.41 88.680.58 91.190.32 92.870.51 89.560.46 

Sub-RSSAN 95.670.04 87.480.10 90.260.08 91.530.20 89.030.18 

Con-RSSAN 95.850.06 88.000.18 90.670.15 91.970.13 89.400.31 

ResNet 96.140.05 88.860.26 91.340.19 92.230.48 90.470.46 

Proposed SPCNet 96.560.04 90.050.13 92.260.10 93.510.44 91.060.05 

Bay Area 

CVA 82.15 64.81 80.81 94.99 70.32 

SVM 94.78 89.53 95.07 96.02 94.14 

SiamNet 97.530.74 95.030.81 97.710.65 96.550.63 98.900.95 

SSA-SiamNet 97.620.69 95.210.96 97.760.57 98.080.71 97.450.83 
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GETNET 93.850.56 87.650.75 94.260.43 94.180.53 94.330.76 

Sub-2DCNN 96.950.18 93.870.22 97.120.19 97.970.21 96.280.27 

Con-2DCNN 97.580.13 95.130.25 97.720.12 98.130.17 97.320.12 

Con-3DCNN 97.080.28 94.150.55 97.240.35 98.320.61 96.190.43 

Sub-RSSAN 96.910.27 93.800.42 97.080.42 98.110.51 96.070.59 

Con-RSSAN 97.310.33 94.600.64 97.450.38 98.620.47 96.320.75 

ResNet 97.980.48 95.960.97 98.110.45 98.600.45 97.620.58 

Proposed SPCNet 98.280.12 96.550.24 98.390.11 98.920.24 97.850.10 

 

      
(a)                                  (b)                                  (c)                                (d)                                 (e)                                  (f) 

       
(h)                                 (i)                                 (j)                               (k)                               (l)                                 (m)                                  (g) 

Changed Unchanged
 

Fig. 6. CD maps produced by different methods on the Farmland dataset: (a) CVA, (b) SVM, (c) SiamNet, (d) SSA-SiamNet, (e) GETNET, (f) Sub-2DCNN, (g) 
Con-2DCNN, (h) Con-3DCNN, (i) Sub-RSSAN, (j) Con-RSSAN, (k) ResNet, (l) Proposed SPCNet, and (m) Ground-reference map. 
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(a)                                  (b)                                  (c)                                (d)                                 (e)                                  (f) 

       
(g)                                 (h)                                 (i)                                 (j)                               (k)                               (l)                                 (m) 

Changed Unchanged
 

Fig. 7. CD maps produced by different methods on the River dataset: (a) CVA, (b) SVM, (c) SiamNet, (d) SSA-SiamNet, (e) GETNET, (f) Sub-2DCNN, (g) 

Con-2DCNN, (h) Con-3DCNN, (i) Sub-RSSAN, (j) Con-RSSAN, (k) ResNet, (l) Proposed SPCNet, and (m) Ground-reference map. 
 

    
(a)                                                (b)                                                   (c)                                                 (d) 

    
(e)                                                (f)                                                   (g)                                                 (h) 
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(i)                                                (j)                                                   (k)                                                 (l)                                                 (m) 

Changed Unchanged
 

Fig. 8. CD maps produced by different methods on the Hermiston dataset: (a) CVA, (b) SVM, (c) SiamNet, (d) SSA-SiamNet, (e) GETNET, (f) Sub-2DCNN, (g) 

Con-2DCNN, (h) Con-3DCNN, (i) Sub-RSSAN, (j) Con-RSSAN, (k) ResNet, (l) Proposed SPCNet, and (m) Ground-reference map. 

 

     
(a)                                                (b)                                                   (c)                                                 (d) 

     
(e)                                                (f)                                                   (g)                                                 (h) 

     
(i)                                                (j)                                                   (k)                                                 (l)                                                 (m) 

Changed Unchanged Unknown
 

Fig. 9. CD maps produced by different methods on the Bay Area dataset: (a) CVA, (b) SVM, (c) SiamNet, (d) SSA-SiamNet, (e) GETNET, (f) Sub-2DCNN, (g) 
Con-2DCNN, (h) Con-3DCNN, (i) Sub-RSSAN, (j) Con-RSSAN, (k) ResNet, (l) Proposed SPCNet, and (m) Ground-reference map. 

 

Table 2 Computational costs of different methods on the four considered datasets 
(Bold values indicate the lowest computational cost results for each variable and each dataset) 

Dataset 

Method 

SiamNet 
SSA- 

SiamNet 
GETNET 

Sub- 

2DCNN 

Con- 

2DCNN 

Con- 

3DCNN 

Sub- 

RSSAN 

Con- 

RSSAN 
ResNet SPCNet 

Farmland 
Parameters(K) 87.84 88.60 93420 55.43 73.13 155.07 49.25 103.05 34.47 80.42 

FLOPs (M) 39.36 39.60 55080 52.81 104.24 1130 41.25 83.63 88.98 90.88 
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River 
Parameters (K) 106.42 107.18 154180 48.94 91.71 159.19 63.65 135.14 37.22 94.18 

FLOPs (M) 134.15 134.80 90910 100.13 132.77 1470 52.87 107.72 186.75 213.47 

Hermiston 
Parameters (K) 110.15 111.52 92180 55.14 99.49 72.07 37.17 79.53 34.40 80.10 

FLOPs (M) 104.95 105.60 54350 52.48 103.57 1120 40.99 83.09 177.74 181.03 

Bay Area 
Parameters (K) 166.08 167.32 198270 75.30 139.81 277.03 72.68 156.25 38.88 102.50 

FLOPs (M) 151.40 152.05 116910 75.71 150.02 1670 59.98 122.72 96.04 116.32 

E. Ablation Analysis 

To verify the effectiveness of the proposed SPCNet method, 

we implemented an ablation study in which the hyperparameters 

were set according to Section III-C. 

1) Analysis with and without downsampling strategies 

To investigate the importance of using the downsampling 

strategy in the proposed SPCNet method, we carried out 

experiments without using it. To ensure the feature size 

matching of the method without the downsampling strategy, a 

convolution layer with kernel size 3×3 is used at the T2 branch. 

As shown in Fig. 10, the CD results of the SPCNet with and 

without the downsampling strategy are relatively similar for the 

Farmland and River datasets. In contrast, the accuracy of the 

proposed SPCNet with the downsampling strategy is superior to 

that of without it for the Hermiston and Bay Area datasets. From 

Table 3, one can see that the computational costs in terms of the 

training parameters and FLOPs with the downsampling 

operation are smaller than those without, which confirms the 

superiority of the proposed method with the downsampling 

operation. 

2) Analysis of different downsampling strategies 

Different downsampling strategies, including bilinear, nearest 

neighbor, and bicubic are considered to analyze their influence 

on the CD accuracy in the proposed SPCNet method. As shown 

in Table 4, the CD results with the three downsampling 

strategies are close in the four datasets. This finding illustrates 

the robustness of the proposed SPCNet to the downsampling 

strategy. Note that the bicubic strategy is employed in the 

proposed SPCNet method. 

3) Analysis of the pooling strategy 

We explored the influence of different pooling strategies on 

the CD results of the proposed SPC module. Four potential 

pooling strategies were considered in this paper, which were the 

individual average pooling operator (Avg), individual max 

pooling operator (Max), sum of average pooling and max 

pooling operators (Avg+Max), and concatenated average 

pooling and max pooling operators ([Avg, Max]). The strides of 

MaxPool and AvgPool operators are set to 1. When different 

pooling strategies are used in the proposed SPCNet, all of the 

other configurations are kept fixed. As shown in Table 5, the 

performances obtained with different pooling strategies are 

relatively close, which indicates that the SPC module is robust to 

the pooling strategy. Overall, Avg+Max is the most suitable for 

adoption in the proposed SPCNet. 

 

 

 
With downsampling strategy Without downsampling strategy  

(a)                                                             (b)                                                             (c)                                                             (d) 
Fig. 10. Accuracy of the proposed SPCNet with and without downsampling strategies for the (a) Farmland dataset, (b) River dataset, (c) Hermiston dataset, and (d) 
Bay Area dataset. 

 

Table 3 Computational costs of the proposed SPCNet with and without downsampling strategies 

Downsampling 

strategies 

Farmland River Hermiston Bay Area 

Parameters 

(K) 

FLOPs 

(M) 

Parameters 

(K) 

FLOPs 

(M) 

Parameters 

(K) 

FLOPs 

(M) 

Parameters 

(K) 

FLOPs 

(M) 

With 80.42 90.88 94.18 213.47 80.10 181.03 102.50 116.32 

Without 121.12 137.77 145.89 332.61 120.55 274.22 160.87 183.56 

 
Table 4 Results obtained by the proposed SPCNet with different downsampling strategies 

(Bold values indicate the most accurate results for each variable and each dataset) 

Downsampling 

strategies 

Farmland River Hermiston Bay Area 

OA 

(%) 

Kappa 

×100 

F1 
(%) 

OA 

(%) 

Kappa

×100 

F1 
(%) 

OA 
(%) 

Kappa

×100 

F1 
(%) 

OA 
(%) 

Kappa

×100 

F1 
(%) 

Bilinear 97.63 94.24 95.91 96.97 80.39 82.04 96.41 89.67 91.98 98.20 96.39 98.31 

Nearest Neighbor 97.50 93.93 95.69 97.03 80.38 82.00 96.43 89.66 91.95 98.24 96.47 98.35 

Bicubic 97.66 94.30 95.94 97.01 80.29 81.91 96.56 90.05 92.26 98.28 96.55 98.39 
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Table 5 Results obtained by the proposed SPCNet with different pooling strategies 

(Bold values indicate the most accurate results for each variable and each dataset) 

Pooling 
strategies 

Farmland River Hermiston Bay Area 

OA 

(%) 

Kappa 

×100 

F1 

(%) 
OA 

(%) 

Kappa

×100 

F1 

(%) 

OA 

(%) 

Kappa

×100 

F1 

(%) 

OA 

(%) 

Kappa

×100 

F1 

(%) 

Avg 97.56 94.05 95.77 96.89 79.96 81.66 96.45 89.75 92.03 98.30 96.58 98.40 

Max 97.65 94.29 95.95 96.90 79.73 81.42 96.33 89.38 91.74 98.38 96.74 98.48 

Avg+Max 97.66 94.30 95.94 97.01 80.29 81.91 96.56 90.05 92.26 98.28 96.55 98.39 

[Avg, Max] 97.65 94.31 95.96 97.03 80.85 82.48 96.32 89.39 91.76 98.31 96.61 98.42 

 

IV. DISCUSSION AND CONCLUSIONS 

In this paper, we have proposed a general end-to-end SPCNet 

method to accomplish the CD task in bitemporal HSIs with 

different spatial resolutions. In the proposed SPCNet method, a 

modified ResNet is used as a baseline to detect land-cover 

changes. The subpixel convolution layer can fully extract the 

subpixel context information by learning an array of upscaling 

filters. Then, the designed SR block that contains an efficient 

subpixel convolution layer is introduced to upscale the LR 

feature maps into HR feature maps. Furthermore, the designed 

SPC module, which integrates the SR block and other related 

operators, is embedded into the LR branch to generate more 

discriminative representations. Compared with other benchmark 

methods, the improvement in terms of the CD accuracy obtained 

by the proposed SPCNet is mainly due to the application of the 

designed SPC module that can generate more discriminative 

representations of the subpixel context information. The 

proposed method represents a general end-to-end CD framework 

for bitemporal HSIs with different spatial resolutions. 

As shown in Fig. 3(b), the HSIs acquired by the EO-1 satellite. 

(i.e., the Farmland, River, and Hermiston datasets) show a 

similar trend between the CD accuracy and the patch size. 

However, this trend is different for the Bay Area dataset 

acquired by AVIRIS. The apparent difference between the EO-1 

satellite and AVIRIS is the spatial resolution. Therefore, it is 

worthwhile to further investigate the relation between increases 

in the CD results and the spatial resolution. The proposed 

SPCNet method has the potential to accomplish the CD task with 

other data sources, such as MSI, VHR images, and SAR images. 

In these cases, the hyperparameters, such as the kernel number, 

the batch size, and the patch size should be properly determined. 

For example, unlike HSI, MSI and SAR images have few 

spectral bands, and thus, it is reasonable to reduce the kernel 

numbers. For VHR images, the patch size can be increased to 

acquire more correlation with the surrounding pixels. 

The designed SPC module can be extended as a plug-and-play 

unit to other baseline networks and other HSI processing tasks, 

such as heterogeneous image fusion [43], hyperspectral 

unmixing [44], and subpixel mapping [45]. For different tasks, a 

key parameter is the scale factor for different resolution remote 

sensing images. In contrast, it would be interesting in future 

research to explore the relation between the number of SR 

blocks in the SPC module and the scale factor. 

It is worthwhile to note that the experiments carried out on the 

proposed SPCNet method used synthetic LR images. This 

approach is a limitation of the current experimental setup. As a 

future development, we plan to test the proposed method on real 

bitemporal images that have different spatial resolutions. 

Moreover, we will explore the generalization of the method to 

multiple CD. In addition, the proposed SPCNet is a supervised 

method. 
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