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A B S T R A C T

Autonomous vehicles promise to revolutionize society and improve the daily life of many, making them a
coveted aim for a vast research community. To enable complex reasoning in autonomous vehicles, researchers
are exploring new methods beyond traditional engineering approaches, in particular the idea of drawing
inspiration from the only existing being able to drive: the human. The mental processes behind the human
ability to drive can inspire new approaches with the potential to bridge the gap between artificial drivers and
human drivers. In this review, we categorize and evaluate existing work on autonomous driving influenced by
cognitive science, neuroscience, and psychology. We propose a taxonomy of the various sources of inspiration
and identify the potential advantages with respect to traditional approaches. Although these human-inspired
methods have not yet reached widespread adoption, we believe they are critical to the future of fully
autonomous vehicles.
1. Introduction

The industry has frequently overlooked the role of human inspira-
tion in the design of autonomous vehicles. One common objection is
that humans cause traffic accidents, which is something autonomous
vehicles should definitively not draw inspiration from. However, the
major human causes of accidents are cognitive impairments such as
the influence of alcohol or drugs, tiredness, distraction, and reck-
lessness (Singh, 2015). Otherwise, human drivers cope well with the
driving task, efficiently evaluating traffic situations and generating
behaviors. In fact, an expert driver in normal conditions is rarely the
cause of an accident. Hence, replicating some of those abilities in a
vehicle that does not suffer from human imperfections, such as fatigue,
might be the way toward fully autonomous vehicles.

In this paper, we review existing work on autonomous vehicles that
draw inspiration from cognitive science, neuroscience, and psychology.
We analyze what it means to replicate cognition in autonomous ve-
hicles and show how that may differ with respect to how scientists
are informed by and use the source model of biological intelligence.
There is a multitude of different ways in which the intelligence of
biological agents have been and can be used to inspire the development
of autonomous vehicles. As will be shown in our review, the inspiration
differs with respect to the degree to which the implementation choices
are informed by the source model of the biological intelligence. The
large variation of where and how the inspiration is used paints a
picture that there is no principled or systematic way that the choice
of inspirations is made, but rather seem to be opportunistically chosen.
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It is our intention to contribute to the field by adding some termi-
nological structure, categorize the main types of inspiration and, to a
degree, evaluate the possible advantages of the inspiration. Although
our review does not include some of the technical details of the studies
and the results, the main focus of our review is the human inspiration
and the usefulness of such approaches. The reader is directed to other
survey papers for the technical methods for self-driving cars, such as
general self-driving cars surveys (Badue et al., 2021; Devi, Malarvezhi,
Dayana, & Vadivukkarasi, 2020; Paden, Čáp, Yong, Yershov, & Frazzoli,
2016; Pendleton et al., 2017) or specific such as deep learning for self-
driving cars (Grigorescu, Trasnea, Cocias, & Macesanu, 2020; Kuutti,
Bowden, Jin, Barber, & Fallah, 2020), or reinforcement learning (Aradi,
2020; Kiran et al., 2021).

The review is structured as follows. In Section 2, we present a
taxonomy of sources of inspirations, which identifies four levels of
abstraction. Sections 3 to 6 focus on each level of abstraction and
describe the related works. Lastly, Section 7 discusses the impact of
human inspiration for autonomous vehicles and the potential future
directions.

2. Background

To describe the cognitively inspired approaches in autonomous
driving, we tease apart two dimensions along which the inspiration
from biological agents can be categorized.
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Fig. 1. Taxonomy of inspirations. The columns represent the four levels of abstraction of the inspiration: behavioral (A), functional (B), architectural (C), and cellular (D). The rows
indicate the stages at which the inspiration is modeled: data (1), implementation (2), and theory (3). The table reports a selection of examples of inspiration from the collected
papers. In blue, the total number of analyzed papers in each class.
The first dimension describes the level of abstraction at which the
biological organism is taken as source of inspiration. The inspiration is
differentiated into four levels of abstraction: behavioral (A), functional
(B), architectural (C), and cellular (D). The behavioral level (A) refers to
complete agent-environment interactions, i.e., observations of humans
performing driving tasks. The functional level (B) takes us ‘‘inside’’ the
human and places the inspiration at the level of cognitive abilities, such
as those found in standard textbooks of cognitive psychology (including
but not limited to attention, perception, memory, problem solving and
decision making (Smith & Kosslyn, 2013)). The architectural level (C)
refers to global brain systems, prototypically the human or mammalian
brain. The cellular level (D) refers to approaches that takes inspiration
from the behavior of a single neuron or group of neurons.

The second dimension describes at which level of explanation the
inspiration is formulated. The description is loosely based on the level
of explanation in cognitive and psychological sciences (Guest & Martin,
2021), which translates into three stages at which the inspiration is
modeled: data (1), implementation (2), and theory (3). Data (1) is the
lowest stage and refers to the structure of the data perceived from the
environment, or how it flows and processes in the brain. The imple-
mentation stage (2) focuses on how to specify a descriptive formula
that can be translated into computational implementation. Theory (3)
is the highest stage and refers to more general theories of cognition
and behavior often formulated in natural language. An intrinsic feature
of this layered model is that each level of explanation is influenced
by the level above it. Thus, there often exists an explicit or implicit
theory of the behavior (e.g. cognition consists of a uni-directional flow
of information from sensing to acting) which influences the way it is
modeled at the implementation level (e.g. separate modules handle each
function). This makes the categorization on this dimension somewhat
difficult as the approach may encompass more than one level, but also
the scientist taking inspiration from the implementation level may be
unaware of the influence from the theory level. With that in mind, we
note that the review is only based on the explicit claims made in the
reviewed papers, not the implicit assumptions that may be inferred. It
is possible, for both dimensions, that inspiration are drawn from more
than a single level, but in the review (see Table 2), we point to a single
category that we see as the primary influence for each reviewed paper.
Fig. 1 shows the proposed taxonomy with the twelve classes in the
two dimensions. The table provides a prototypical example for each
category in the taxonomy, along with the number of papers identified
for the category.

In addition, the analyzed works adopt well-established methods that
are transversal to the categories of human imitation. We categorize and
2

Table 1
List of the main methodologies adopted in the collected papers, along with the
corresponding number of papers that employed each methodology and a unique code
that is referenced in Table 2.

Code # Methodology

AB 5 Agent-based modeling
AE 3 Autoencoder
AL 3 Adversarial learning
BC 3 Behavioral cloning
CI 4 Conditional imitation learning
CC 3 Computational cognitive architecture
CN 6 Convolutional neural network
CP 3 Classical sense-think-act pipeline
FN 3 Fuzzy neural networks
IL 6 Imitation learning
OA 5 Other algorithms
PG 8 Probabilistic graphical model
RL 6 Reinforcement learning
RN 3 Recurrent neural network
SP 7 Spiking neural network

code these methods in Table 1. While some works may combine more
than one of the listed methods, in Table 2 we indicate only the primary
adopted method.

3. Inspiration at behavioral level

We identify a first category of works aiming to learn driving be-
haviors by observing humans. This category encompasses the papers
of class A in Table 2. The following works do not focus on theories
explaining how humans drive; rather, they focus on imitating human
behaviors at a high abstraction level. The papers collected here vary in
the way imitation is realized. Fig. 2 gives a general overview of the
different methods to learn behaviors through imitation. In addition,
some papers also distinguish themselves in that they choose to imitate a
particular human driver rather than a generalized version derived from
a large dataset consisting of many human drivers.

The idea of learning through imitation has, in fact, a strong meta-
cognitive foundation. Imitation learning is a compelling research topic
in neuroscience, especially since the discovery of mirror neurons during
the end of the last century; in humans and other primates, mirror
neurons have a key role in the ability to imitate the actions of an-
other agent (Iacoboni et al., 1999; Rizzolatti, Fogassi, & Gallese, 2001;
Rizzolatti & Sinigaglia, 2008). Imitation learning has been spreading
also in artificial intelligence (Schaal, 1999), robotics, and autonomous
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Table 2
Selection of analyzed papers. For each paper, we indicate the purpose in the context of autonomous driving; the class of inspiration as in Fig. 1 (A = behavioral; B = functional;

= architectural; D = cellular; 1 = data; 2 = implementation; 3 = theory) ; the main method applied in the paper using the codes from Table 1 ; and the benefit provided by
he inspiration.
Paper Application/Purpose Class Method Benefit of inspiration

Chan, Partouche,
and Pasquier (2007)

Curve anticipation and negotiation A1 FN Use human driving data to extract rules for better negotiation of new unseen
roads

Gu, Hashimoto,
Hsu, Iryo-asano, and
Kamijo (2017)

Left turn at intersections with multiple
pedestrians

A1 PG Use human data to better recognize pedestrians’ behaviors and act accordingly

Li, Chang, and Chen
(2003)

Limited set of driving tasks, using a
miniature robotic vehicle

A1 PG Use human experience to design fuzzy rule based control for human-like
driving skills

Codevilla, Müller,
López, Koltun, and
Dosovitskiy (2018)

Driving policy for intersections following
human directives

A1 CI Take into account human’s internal states in the driving policy

Hawke et al. (2020) Driving policy in urban routes with simple
traffic

A1 CI Take into account human’s route commands in urban driving

Eraqi, Moustafa,
and Honer (2022)

Driving policy in lane keeping or switching A1 CI Take into account dynamic route commands in driving

Teng et al. (2023) Driving policy in CARLA simulated
environment

A1 CI Take care of interpretability

Hang, Lv, Xing,
Huang, and Hu
(2021)

Decision making in merging and overtaking A1 OA Use human driving data to extract metrics defining human-like driving styles

Omeiza,
Anjomshoae, Webb,
Jirotka, and Kunze
(2022)

Generate driving explanations A1 AB Use human driving commentary to learn automatic explanations

Xu et al. (2021) Motion planner in highway scenarios A1 OA Use human driving data to improve comfort, efficiency, and safety

Markelić et al.
(2011)

Advanced driver-assistance system, using a
real vehicle

A1 IL Use expert demonstrations to detect unusual human behaviors

Sharma, Tewolde,
and Kwon (2018)

End-to-end steering control A1 BC Reduce the amount of data needed to effectively training the model

Kumaar,
Navaneethkrishnan,
Hegde, Raja, and
Vishwanath (2019)

End-to-end steering control A1 BC Clone human behaviors to improve flexibility in response to long-term
dynamics

Hecker, Dai, Liniger,
Hahner, and Gool
(2020)

End-to-end driving agent A1 AL Discriminate between human driving data and generated output to produce
more human-like actions

Koeberle et al.
(2021)

Autonomous driving in roundabouts and
lane merging

A1 AL Discriminate between human driving data and generated output to produce
more human-like actions

Kuefler, Morton,
Wheeler, and
Kochenderfer (2017)

Autonomous driving in highway scenarios A1 AL Discriminate between generated actions and human data to produce
human-like emergent behaviors

Rhinehart,
McAllister, and
Levine (2019)

Autonomous agent A1 IL Generate expert-like behaviors without reward function crafting

Li, Ota, and Dong
(2018)

Decision making in scenarios with multiple
external human drivers

A2 BC Learn safer driving actions in trafficked scenarios

Liang, Wang, Yang,
and Xing (2018)

Long-term driving strategies in urban
environments

A2 RL Exploit expert human demonstrations to initialize the action exploration in a
reasonable space

Schulz, Mattar,
Hehn, and Kooij
(2021)

Object detection in blind corners A3 IL Use acoustic data to detect approaching vehicles behind blind corners before
they enter in line-of-sight

Zhang and Ohn-Bar
(2021)

Driving policy A3 IL Observe other human drivers to learn new maneuvers

Bagdatli and Dokuz
(2021)

Discretionary lane change B1 PG Use human driving data to identify the factors that prompt drivers to change
lane

Suresh and
Manivannan (2017)

Limited set of driving tasks, using a real
vehicle

B1 PG Use human driving data to identify logical states of scenarios

Ouyang, Cui, Dong,
Li, and Niu (2022)

Multi-sensor target detection B2 CN Real-time efficiency and high detection accuracy using visual attention

Buckman, Pierson,
Schwarting,
Karaman, and Rus
(2019)

Intersection negotiation B2 AB Decrease the individual waiting times and the overall group congestion by
measuring a social psychology metric

(continued on next page)
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Table 2 (continued).
Qiao, Schneider,
and Dolan (2021)

Behavior planning at urban intersections B2 RL Better convergence to an optimal policy with respect to traditional
reinforcement learning

Sun, Zhan,
Tomizuka, and
Dragan (2018)

Decision making in merging and overtaking B2 IL Use ‘‘courtesy’’ to produce trajectories well accepted by other human drivers

Riaz and Niazi
(2018)

Rear-end collision avoidance B2 AB Simulate levels of fear to reduce the number of driving rules

Butt, Riaz,
Mehmood, and
Akram (2021)

Rear-end collision avoidance B2 AB Simulate levels of fear to reduce the number of driving rules derived from
expert drivers

Pal, Mohandoss, and
Mitra (2019)

End-to-end driving agent B2 CN Reduce computation time with visual attention

Wei et al. (2021) End-to-end driving agent B2 CN Use visual attention to reduce computation time and focus on salient areas for
safety improvement

Kim, Rohrbach,
Darrell, Canny, and
Akata (2018)

Generate driving explanations B2 CN Use visual attention to synthesize appropriate driving commentaries

Da Lio, Donà,
Rosati Papini, and
Plebe (2022)

Autonomous agent accepting human
directives

B2 OA Mutual understanding of intentions for efficient collaboration with humans

Gonsalves and
Upadhyay (2021)

Autonomous agent, using a miniature
robotic vehicle

B2 RL Use the human driving cycle as a blueprint for implementation

Ha and
Schmidhuber (2018)

Autonomous agent, using a simplified
simulated vehicle

B2 RN Combine prediction with memory to learn in ‘‘hallucinated’’ scenarios

Czubenko,
Kowalczuk, and
Ordys (2015)

Autonomous agent B2 AB Emotions bias the decision making towards specific reactions for specific
situations

Zhang, Zhou, Liu,
and Hussain (2019)

Autonomous agent B2 CP Context-aware module adapting the driving strategy to different scenarios

Chen, Sun, Zhao, Li,
and Liu (2021)

Lane keeping B3 CC Improve transition smoothness in driver-vehicle cooperation using the HSIC
cognitive architecture

Saeed et al. (2019) Optimal route computation B3 FN Use cognitive memory to store route experiences for improved decision
making

Salvucci (2006) Computational model of driver behavior for
distraction recognition

B3 CC Better understanding of driver behavior using the ACT-R cognitive architecture

Xie, Chen,
Tomizuka, Zheng,
and Wang (2020)

Computational model of driver behavior (no
evaluation)

B3 CP Potential future adoption in human-like autonomous vehicles

Sprenger (2020) Decision making (no implementation) B3 OA Use ‘‘microdecisions’’ to potentially compensate the lack of proper
consciousnesses in intelligent vehicles

Wiedermann and
Leeuwen (2021)

Autonomous agent (no implementation) B3 CP Require ‘‘minimal machine consciousness’’ to achieve intelligent vehicles

Zakaria (2021) Autonomous agent with imperfect sensors B3 PG Improve response to surprising events using ‘‘neuronal units of thoughts’’
Plebe, Kooij,
Rosati Papini, and
Da Lio (2021)

Perception of driving space C1 AE Use cortical magnification to jointly exploit egocentric and allocentric spatial
representations

Kashyap, Fowlkes,
Krichmar, and
Member (2021)

Object- and ego-motion estimation C1 AE Estimate object motion from the ego-motion field using sparse representations
similar to the visual cortex

Plebe and Da Lio
(2020)

Learning representations of driving concepts C2 AE Achieve interpretable representations inspired by convergence–divergence
zones in the brain

Nezhadalinaei,
Zhang, Mahdizadeh,
and Jamshidi (2021)

Object detection and tracking C2 SP Better efficiency combining spiking neural networks, CNNs, and conditional
random fields

Pasquier and
Oentaryo (2008)

Decision making for limited set of tasks C2 FN Emergence of tactical driving skills using cerebellum-like control mechanisms

Kim and Langari
(2013)

Adaptive cruise control C2 CC Better inter-vehicle distance tracking performance using brain limbic system
based control

Xing, Zou, and
Krichmar (2020)

Autonomous navigation C2 RL More flexibility in time-critical navigation by imitating the function of
serotonin

Ahmedov, Yi, and
Sui (2021)

Autonomous agent C2 IL Improve interpretability and robustness using two ‘‘neural circuit policies’’ to
mimic the asymmetric hemispheres

Chen, Zhang, Shang,
Chen, and Zheng
(2017)

Autonomous agent C2 RN Bridge the gap from complex perception to control taking inspiration from
visual and motor cortices

(continued on next page)
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Table 2 (continued).
Tenison et al.
(2019)

Detection of traversable paths for navigation C3 OA Reduce computational burden using ‘‘Feynman machine’’ dynamic system

Hussain, Abdullah,
Yang, and Gurney
(2012)

Low-level motor control C3 PG Smoother and more efficient motor control using a controller switch inspired
by basal ganglia

Yang, Hussain, and
Gurney (2013)

Low-level motor control C3 PG Smoother and more efficient motor control using two controller switches
inspired by basal ganglia

Lechner et al.
(2020)

End-to-end lane keeping C3 RN Improve interpretability and robustness of the system using ‘‘neural circuit
policies’’ inspired by C. Elegans

Kashyap (2020) Stereo depth scene reconstruction D1 SP Adopt retinomorphic camera combined with TrueNorth neuromorphic
processora

López-Randulfe,
Duswald, Bing, and
Knoll (2021)

Radar-based object detection D1 SP Adopt spiking neural networks with weights derived analytically from Fourier
transforma

Maqueda,
Loquercio, Gallego,
García, and
Scaramuzza (2018)

Prediction of steering angle D1 CN Achieve better performance with retinomorphic cameras compared to standard
camerasa

Fischl et al. (2017) Autonomous driving with a miniature
robotic vehicle

D1 CN Adopt retinomorphic camera combined with TrueNorth neuromorphic
processora

Patton et al. (2021) Autonomous driving with F1Tenth vehicle D1 SP Adopt 𝜇Caspian neuromorphic processora

Taniguchi, Fukawa,
and Yamakawa
(2021)

Simultaneous localization and mapping D2 PG Extend existing SLAM models with hippocampus-like structures (to be
evaluated in future work)

Kaiser et al. (2019) End-to-end lane following D2 RL Adopt spiking neural networks trained with probabilistic sampling of synaptic
valuesa

Shalumov, Halaly,
and Tsur (2021)

LiDAR-driven collision avoidance D3 SP Adopt spiking neural networks organized into the Neural Engineering
Frameworka

Liu, Lu, Luo, and
Yang (2021)

Obstacle avoidance and target tracking D3 SP Adopt spiking neural networks trained in analogy with spike-timing-dependent
plasticitya

Bing, Meschede,
Chen, Knoll, and
Huang (2020)

End-to-end lane keeping and obstacle
avoidance

D3 SP Adopt Spiking neural networks trained in analogy with
spike-timing-dependent plasticitya

Banino et al. (2018) End-to-end autonomous navigation D3 RL Learn complex control policies from a sparse reward using grid-cell
representations

a Papers do not claim other benefits besides the strong biological plausibility (Sections 6 and 7 further discuss this point).
Fig. 2. Classification of imitation learning approaches. This classification is not intended to be exhaustive but rather gives a general overview of the topic in the context of
autonomous driving.
driving. However, while in robotics we find several implementations
of imitation learning based on mirror neurons (Demiris, Aziz-Zadeh,
& Bonaiuto, 2014; Lopes, Melo, Montesano, & Santos-Victor, 2010;
Tani & Ito, 2004), imitation learning approaches in autonomous driving
leverage different concepts.
5

3.1. Reinforcement learning and its variations

The predominant method for integrating imitation learning into au-
tonomous driving is reinforcement learning (RL). RL is a well-established
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framework for machine learning that has improved greatly in com-
bination with deep neural networks. The crucial hindrance to using
RL for imitation learning is that formulating an appropriate reward
function is tricky. Nonetheless, several strategies have been proposed—
we refer the reader to a recent survey on the topic (Ding, 2020). A
popular strategy is inverse reinforcement learning (IRL) (Ng & Russell,
2000), which can extract a reward function from observed expert
behaviors. The extracted reward function can be used in a standard RL
model to derive the policy. This expert imitation strategy is also called
apprenticeship learning (Abbeel & Ng, 2004). Unfortunately, IRL has
significantly intensive computational cost. Moreover, since the problem
is typically ill posed, the same observations can lead to different reward
functions. Liang et al. (2018) propose a variation of the approach,
called controllable imitative RL, and apply it to learn long-term driv-
ing strategies in urban environments. They exploit the expert human
demonstrations to initialize the action exploration of the RL algorithm
in a reasonable space.

3.2. Behavioral cloning

Another approach for imitation learning is behavioral cloning
(Torabi, Warnell, & Stone, 2018). In this case, it is not necessary
to formulate any reward function: the discrepancy between expert
actions and model policy is minimized by supervised training. A simple
behavioral cloning strategy is implemented in Sharma et al. (2018) with
a deep convolutional network trained by observing humans driving in
the TORCS simulator. Even if not explicitly mentioned, also (Li et al.,
2018) use behavioral cloning to predict steering angle and speed in
simulated trafficked scenarios. A notable shortcoming of simple end-
to-end behavioral cloning is that it is difficult for the target model
to derive driving policies from demonstrations of human driving,
since the perceptual input given by cameras is too ambiguous with
respect to the human driving decisions. Several attempts have been
proposed to address this problem. Kumaar et al. (2019) propose a more
sophisticated architecture made by long-term recurrent convolutional
networks, and they apply it in end-to-end system for steering control.
Similarly, Codevilla et al. (2018) find necessary to add information to
help the model learning the driving policy. They take into account the
expert’s internal states representing the long-term driving intentions.
In Hawke et al. (2020) behavioral cloning is enforced with the explicit
representation of driver’s route commands, with three possible values
for go-straight, turn-left or turn-right. The target scenario of this work
is urban driving with simple traffic conditions. The same conditioning
command is used by Eraqi et al. (2022) in a more sophisticated ap-
proach that fuse LIDAR and camera input. In addition, route commands
are generated automatically using CARLA simulator autopilot features.
Behavioral cloning conditioned by driver’s route commands is also
the choice in Teng et al. (2023), where the novelty is in taking care
of interpretability, which has become one of the hot topics for deep
learning in general, and particularly in AV applications (Kamath &
Liu, 2021). A certain degree of interpretability is achieved with two
submodels, the first one does not use conditional imitation learning and
produces a semantic interpretabile top view of the road scene, which
is fed into a second submodel that predicts lateral and longitudinal
commands, exploiting human imitation. Explainability is pursued
more explicitly by Omeiza et al. (2022), proposing a system that
synthesize spoken driving commentary, for informin the end-user about
driving operations. Their system is based on decision trees, where
planned commentary are derived by behavioral cloning from recorded
commentaries of human driving instructors.

A distinct approach is proposed by Pal et al. (2019), where the
cloned behavior is the eye gaze of human drivers. The information is
exploited to improve the perception computation time in the model.
Not just vision but also hearing can be imitated. In some cases, humans
can detect vehicles behind blind corners by using auditory cues. The
work of Schulz et al. (2021) show that it is possible to imitate a similar
sensing modality to detect approaching vehicles before they enter the
6

line-of-sight.
3.3. Adversarial imitation learning

A further method of learning by imitation is adversarial imitation
learning (Ho & Ermon, 2016). Here, the imitating model acts as the
generator network, while the discriminator network evaluates how
well the resulting action-value function matches the expert behavior.
Adversarial imitation learning is adopted by Kuefler et al. (2017) to
drive autonomously in highway scenarios, and by Koeberle et al. (2021)
for lane merging and roundabout scenarios. In Hecker et al. (2020),
adversarial imitation learning is used to better refine an autonomous
driving agent; as a result, the agent performs more human-like be-
haviors. In Rhinehart et al. (2019), model-based RL and imitation
learning are combined in a model that accomplishes tasks never seen
before, such as navigating to target regions and avoiding potholes.
Similarly, Xu et al. (2021) implement a highway motion planner that
combines traditional trajectory planning with an evaluation method
based on expert demonstration that leads to more human-like trajecto-
ries. Adversarial imitation learning and its variants allow the imitation
of expert drivers under several complex traffic scenarios. Their typical
shortcoming, however, is the limited robustness of the driving policy to
situations diverging from the training distribution, that prevents their
application in everyday traffic situations.

3.4. Direct derivation of human driving styles

There are works that do not leverage any imitation learning
strategy—they manually derive descriptive parameters from human
driving data. In an earlier attempt to perform basic autonomous ma-
neuvers, Li et al. (2003) develop a complex control based on fuzzy
rules, including hard-coded human driving skills derived from expert
drivers. Chan et al. (2007) implement a neuro-fuzzy architecture to
extract rules from human experts for better curve anticipation and ne-
gotiation. Gu et al. (2017) adopt a dynamic Bayesian network to assess
parameters describing pedestrian behaviors at crowded intersections.
The network decides whether is safe to cross the intersection based on
the gaps between pedestrians and the crosswalk. Hang et al. (2021) pro-
pose to use two non-cooperative game approaches—Nash equilibrium
and Stackelberg games—to implement a human-like decision making
algorithm for merging and overtaking. They model three human driving
styles (aggressive, conservative, normal) based on metrics extracted
from the NGSIM dataset. The direct derivation of human decision
making rules for driving is the best way to ensure the inclusion of
human driving styles in the artificial system, but at the price of not
integrating deep learning components, thus losing the efficiency of
today’s most efficient components in AV systems.

3.5. Which humans to imitate

When learning through imitation, a key question is the following:
who do you want to imitate? In the papers reviewed so far, the sources
of imitation are anonymous human drivers, usually collected in large-
scale datasets. However, there are exceptions. In Markelić et al. (2011),
the imitation comes from the specific human that drives the car that the
automated assistant system is running. The system learns the driver’s
behavior and becomes able to issue warning signals when the driver
deviates from their usual behavior. On the opposite side, Zhang and
Ohn-Bar (2021) propose to imitate all human drivers except for the
one riding the ego-car. Given a scene, the model transforms the other
vehicles’ observations into the ego point of view and infers the expert
actions. In this way, the authors aim to replicate the human ability to
observe others and learn new behaviors never performed before. An
interesting advantage of this approach is that it is possible to exploit a

dataset to the full by analyzing all the surrounding vehicles.
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Fig. 3. General overview of the flow of information among the main modules of ACT-R.

4. Inspiration at functional level

In the second category, we collect works that take human cognitive
abilities as a reference to develop autonomous driving systems. This
category encompasses the papers of class B in Table 2. The works
collected here draw inspiration from various aspects of human cogni-
tion, including attention, memory, consciousness, social cognition, and
decision making. Furthermore, some papers attempt to explore how
certain general theories of cognition can be applied in the context of
autonomous driving.

4.1. General theories of cognition

We identify a first group of papers that are grounded in various
general theories of cognition. The work of Salvucci (2006) commits to
one of the most famous and comprehensive cognitive architectures, the
Adaptive Control of Thought-Rational (ACT-R) by Anderson and Lebiere
(1998), represented in a summary form in Fig. 3. The ACT-R archi-
tecture was never intended for engineering applications, least of all
autonomous vehicles: the performance of models based on ACT-R is far
from the real-life requirements of the automotive industry. However,
Salvucci shows that a cognitive architecture can account for human
driving behavior. In Chen et al. (2021), another less known cognitive
architecture called Human-Simulated Intelligent Control (HSIC) (Zhou &
Bai, 1983) is used. The HSIC is not a general cognitive architecture like
ACT-R, but rather a control method based on human ‘‘kinesthetic intel-
ligence’’. A key feature of kinesthetic intelligence is the intermittency of
acting and waiting, typically exhibited by humans in a target tracking
task. Using this idea, Chen et al. realize a system for lane keeping. The
limitation of this system is in assuming a perfect knowledge of the lane
geometry, hence there is no integration with a realistic sensory system.

In Gonsalves and Upadhyay (2021), no specific cognitive theory is
cited. Nonetheless, their idea of cognition is spelled out clearly, and it
corresponds to a traditional view of cognition as consisting of a pipeline
of four stages: perception, scene generation, planning, and action,
sometimes referred to as the sandwich model of cognition (Hurley,
2001). They implement a system based on this pipeline and test it
on a miniature robot car equipped with two cameras. A traditional
view of cognition is also endorsed in Zhang et al. (2019), where the
pipeline is defined as perception, scene cognition, decision making, and
control. Although a traditional view of cognition may be a valid starting
point, current cognitive science have revealed an intimate relationship
between perception and action, that cast doubt on a strict interpretation
of the traditional pipeline as a model of human cognition.

At first glance, the pipeline in Ha and Schmidhuber (2018) also
appears to be tied to a traditional view of cognition, with the modules
visual (V), memory (M), and control (C). However, the novelty of the
work lies in the memory module, where the representations are in terms
7

of predictions of future sensory data. Since the model can generate
future predictions, it can also hallucinate novel road scenarios and train
itself on them. This ability reflects an intriguing function dreams have
in humans: sophisticated exercises of simulations of various aspects of
life. This phenomenological aspect of dreams is central in cognitive
theories of mental simulation (Windridge, Svensson, & Thill, 2021). The
idea of dreaming is also exploited in Da Lio, Donà, Rosati Papini, Biral
and Svensson (2020) and Plebe, Rosati Papini, Donà, and Da Lio (2019)
as a means of self-training a co-driver agent. The agent itself departs
from the traditional sense-think-act organization and instead uses a
layered control sensorimotor architecture modeled by the affordance
competition hypothesis (Da Lio, Donà, Rosati Papini and Gurney, 2020;
Plebe, Rosati Papini, Cherubini, & Da Lio, 2022).

There are works that attempt to build cognitive theories specifically
for the driving task. From several theoretical ideas, Xie et al. (2020)
extract three rules on the cognition of driving concerning the role of
stored knowledge, the goal-oriented nature of driving, and the flexi-
bility of behavior. Following these rules, they implement a model call
DRIVE, described in detail but without experimental results yet. Zakaria
(2021) proposes a new concept called neuronal unit of thoughts (NUTs).
NUTs is a mixed symbolic-subsymbolic architecture where nodes are,
at the same time, similar to neurons in a neural network and containers
of high-level semantic meaning. For example, connecting two NUTs
speed and sharp curve activates a third NUT slowdown. According to the
author, the model naturally improves the response time to surprising
events, and it is evaluated in the TORCS driving simulator. It seems
that the major limitation of NUT approach is in scaling to realistic road
conditions, no experiment seems to have been attempted other than the
simple TORCS simulator.

4.2. Decision making

The next group of papers focus on specific cognitive mechanisms,
rather than general cognitive theories as in the works presented so
far. One of the most inspiring cognitive processes is decision making.
In Suresh and Manivannan (2017), the decision-making system consists
of binary decision trees based on a set of human decision rules derived
from the literature. Bagdatli and Dokuz (2021), on the other hand,
conducted a psychological study to identify the factors that induce
humans to change lane. They design decision rules based on these
factors and implement the decision-making system using a fuzzy cog-
nitive map (Kosko, 1986). The work of Qiao et al. (2021) focuses on
the hierarchical nature of human decision-making. The higher level of
decision is prone to rational choices, whereas the lower level is more
oriented to control. The authors build a hierarchical reinforcement
learning to plan vehicle behavior at urban intersections, which shows
better convergence than traditional algorithms.

Emotions also play a key role in the decision process (Damasio,
1994). The work of Czubenko et al. (2015) adopts emotions to modify
the current set of possible decisions in a situation. For example, an
emotion of surprise enables the decision of emergency braking, which
is not available in a neutral emotional state. The emotion system is
implemented using fuzzy rules. In addition, Riaz and Niazi (2018) use
fuzzy logic to implement a system to avoid rear-end collisions. The
system takes into consideration only the emotion of fear, and is based
on a model of human fear popular in cognitive science (Ortony, Clore,
& Collins, 1990). The system is improved by Butt et al. (2021) by
designing the set of possible decisions according to a survey of experts.
A shortcoming of this group of papers is the lack of integration between
the decision process and a system with the efficiency given by deep
learning modules, necessary to scale to full driving conditions.

4.3. Attention and memory

Another crucial cognitive mechanism is attention (Lindsay, 2020),
which is investigated especially in the visual context (Braun, Koch,
& Davis, 2001; Carrasco, 2011). The work of Ouyang et al. (2022)
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expressly takes inspiration from saccades and implements a model
called SaccadeFork for target detection, achieving real-time efficiency
and high detection accuracy. The model uses a previous network (Law,
Teng, Russakovsky, & Deng, 2020), which adopts a sort of atten-
tion mechanism to detect object centers. A more elaborate approach
that combines saliency and convolutions is implemented in Wei et al.
(2021), where the attention module explicitly targets motion planning
(instead of generic perception tasks) and produces better results in
terms of safety. Attention through saliency in convolutions is also ex-
ploited in Kim et al. (2018), but with different purposes: the automatic
synthesis of textual explanations of the behavior of a self-driving vehi-
cle, the same task pursued by Omeiza et al. (2022) (see Section 3.2).
The work of Saeed et al. (2019) is inspired by another primary aspect
of cognition: memory organization (Baddeley, 1992). The authors pro-
pose a system for vehicle route planning with a detailed organization
that includes semantic, episodic, associative, short-term, and working
memory of route information.

4.4. Consciousness and social cognition

An intriguing mental property—the most elusive in
cognitive science—is consciousness (Chalmers, 1996; Dennett, 1992;
Tye, 1995). Sprenger (2020) argues that conscious decisions are the
result of micro-temporal processes below the threshold of conscious-
ness. Since autonomous driving agents cannot make conscious decision,
they can better rely on what Sprenger calls microdecisions. However,
his proposal is at the moment only speculative, with no demonstra-
tive implementation. On the opposite side, Wiedermann and Leeuwen
(2021) argue that fully autonomous systems need a certain level of
consciousness. The advocated minimal machine consciousness covers
capabilities like self-knowledge, self-monitoring, self-awareness, and
self-informing. Both papers are conceptual proposals that fall short of
experimental evidence.

Lastly, there are works that take inspiration from social cogni-
tion (Augoustinos, Walker, & Donaghue, 1995) and rely on the idea
that driving is essentially a social activity. Buckman et al. (2019) tackle
the problem of intersection negotiation by applying a metric called
social value orientation, which measures the willingness to help another
vehicle at one’s expense. By including this metric in the coordination
policy, individual waiting times decrease as well as the overall group
congestion. Prosocial behavior is also pursued by Sun et al. (2018),
who propose an artificial form of ‘‘courtesy’’. A courteous autonomous
agent balances its selfish objective with the potential inconvenience
it brings to the other drivers. For example, a selfish agent overtakes
first and forces the other driver to brake. By adding a courtesy term
to the cost computation, the agent leaves more space when it merges,
or it even yields to the other driver. An additional crucial aspect of
social cognition is how humans grasp a mutual understanding of their
intentions. In Da Lio et al. (2022), a co-driver is able to interpret
suggestions from the human driver in terms of what is affordable in
the current road situation. Depending on the situation, the system
either executes the desired behavior or vetoes the request if considered
dangerous.

5. Inspiration at architectural level

The next category of works draws on the mechanisms that take
place in the human brain when driving. This category encompasses
the papers of class C in Table 2. In several papers, inspiration comes
mainly from specific brain areas, including the cerebellum and the
basal ganglia. There are papers that draw inspiration from the way
representations are organized in the brain cortices. In addition, we
8

include a few works that look for inspiration in non-human brains. f
5.1. Subcortical areas

The work of Pasquier and Oentaryo (2008) leverages the prin-
ciples of cerebellum motion control (Ito, 1984) and realizes one of
the earliest attempts to learn a limited set of driving skills, such as
parking and U turns. Kim and Langari (2013) take inspiration from
two main components of the brain emotion circuits, i.e., the amyg-
dala and the orbito-frontal cortex (LeDoux, 2000). They simulate the
two components to realize a system for adaptive cruise control. The
artificial amygdala learns associations between sensory input and the
experienced situations—either negative or positive—while the artificial
orbito-frontal cortex prevents any inappropriate actions with inhibitory
signals.

The basal ganglia are the source of inspiration for a number of
works. Hussain, Gurney, Abdullah, and Chambers (2008) refer specif-
ically to the cortico-basal ganglia loops, which play a fundamental
role in reward and action selection (Haber, 2011), to implement a
vehicle controller. The controller is loosely based on an earlier compu-
tational model of action selection in the basal ganglia (Gurney, Prescott,
& Redgrave, 2001). The system switches between a set of possible
controllers—initially two, later extended to three (Yang, Hussain, &
Gurney, 2012)—depending of the demands of the current task. The
model is further refined in Yang et al. (2013), where two basal ganglia
deal separately with the longitudinal and lateral control. While in
the cortico-basal ganglia network the key neuromodulator for action
selection is dopamine, serotonin is the neuromodulator linked to im-
pulsivity control, punishment prediction, and harm aversion (Avery &
Krichmar, 2017)—although its precise role is still rather elusive (Hu,
2016). Xing et al. (2020) exploit the putative role of serotonin in
promoting patience for navigation and road following. They implement
an artificial serotonergic system on a small robot vehicle and show how
the system is more flexible under time-critical constraints. Despite the
undoubted interest of this study, it is clear that patience is only one of
the desirable characteristics of leadership policy, and it would therefore
be necessary to see how the method fits into an overall system.

5.2. Cortical areas

In the following works, inspiration comes from the way representa-
tions are organized in the brain cortices. Chen et al. (2017) simulate
representations in the visual and motor cortices using a combination of
convolutional and recurrent neural networks, and they apply an atten-
tion mechanism over an allocentric mapping of targets. Their strategy
allows the model to effectively bridge the gap from complex perception
problems to simple control commands. Concerning the brain organiza-
tion of representations, convergence–divergence zones (CDZs) (Damasio,
989; Meyer & Damasio, 2009) are an architecture of (biological)
eurons that combine representation learning and mental simulation.
he convergent component builds high-level conceptual representa-
ions from sensory stimuli, while the divergent component can reenact
he sensorial experiences linked to the representations; Fig. 4 pro-
ides an example. The simulative nature of representations is key to
aking concepts emerge in the brain (Olier, Barakova, Regazzoni, &
auterberg, 2017). This idea is already exploited in robotics (Dro-
iou, Ivaldi, & Sigaud, 2015), and is applied to autonomous vehicles
n Plebe and Da Lio (2020). They implement a CDZ-inspired convolu-
ional autoencoder to learn conceptual representations of ‘‘vehicle’’ and
‘lane’’, where the representations maintain semantic organization and
emporal coherence.

Another way of organizing neural representations comes from the
orsal visual pathway (Beyeler, Rounds, Carlson, Dutt, & Krichmar,
019). Here, the representations are sparse and linked to ego-motion.
here is ample evidence that the sparseness of the neuronal represen-
ation of stimuli is a highly efficient coding scheme in the cortex (Rolls

Tovee, 1995). This principle is applied by Kashyap et al. (2021)

or object- and ego-motion estimation in driving scenes. They obtain a
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Fig. 4. Example of flow of activation in convergence–divergence zones (CDZs). An auditory stimulus elicits an activity pattern in neuron ensembles in early auditory cortices,
which send converging forward projections (blue arrows) to higher-order CDZs. The CDZ in higher-order association cortices sends divergent back projections (red arrows) to CDZs
in various sensorimotor areas, including the visual cortices. The CDZs in early visual cortices reconstruct the activity patterns previously associated with the barking sound, for
example the appearance of a fluffy dog.
similar efficiency by introducing a sparsity measure in the loss function.
The result is that the model needs only about 5% of the neurons to
maintain accuracy in trajectory prediction. In addition to the represen-
tation structure, the primary visual cortex possesses another interesting
feature called cortical magnification (Duncan & Boynton, 2003). It con-
sists of a distortion of the retinal image with the purpose of focusing
the neural resources on the crucial part of the scene (Born, Trott, &
Hartmann, 2015). A similar idea is exploited by Plebe et al. (2021)
for perception of the road scene. They implement a warped mapping
of occupancy grids, obtaining a natural transition from egocentric to
allocentric spatial representations of road objects.

5.3. Non-human brain

This review primarily focuses on methods for autonomous vehicles
that draw inspiration from human cognition and brain function. How-
ever, while the ability to drive is crucial at higher levels of inspiration
(behavioral and functional), it does not appear to be a requirement at
lower levels, i.e., architectural and cellular inspirations. While all the
papers reviewed in this Section assume a human brain, it is important to
note that this is not a necessary condition in reality. Brain components
like the cerebellum or basal ganglia, mechanisms such as neuromod-
ulation, and neural organizations like convergence–divergence zones
are common among non-human animals, particularly mammals. There
is no specific driving-related development in the human brain that
is specifically exploited in these papers. Nevertheless, the majority of
these papers still assume the human brain as the source of imitation,
with only a few exceptions.

The neural system of the nematode Caenorhabditis Elegans is used
as a blueprint to design small artificial networks of 19 neurons called
neural circuit policies (NCP) (Lechner et al., 2020; Milford, 2020). The
small system of the C. Elegans is organized in a four-layer hierarchy
made of sensory neurons, interneurons, command neurons, and motor
neurons. A network of 19 neurons may seem ridiculous compared to
the usual number of parameters in deep neural networks. However,
the NCP neurons dramatically surpass the performance of traditional
artificial neurons, because the neural dynamics in NCPs come from
biologically plausible continuous-time ordinary differential equations.
For this reason, NCPs can be successfully employed in complex systems,
such as the one used by Lechner et al. (2020) for lane keeping control.
Also, Ahmedov et al. (2021) use NCPs but in combination with a
traditional convolutional neural network. They implement two CNN-
NCP stacks to mimic the arrangement of the brain into two slightly
asymmetric hemispheres.
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6. Inspiration at cellular level

In the last category of works, inspiration traces back to the cellular
level, i.e., the functioning of neurons in the human brain. This category
encompasses the papers of class D in Table 2. The papers collected
here draw inspiration from the mechanism of neuronal spikes, or action
potentials, and from how the timing and pattern of spikes across
neurons encode and convey information in the nervous system.

6.1. Spiking neural networks

Spiking neural networks (SNNs) (Izhikevich, 2003; Maass & Bishop,
1999) are the most consolidated framework for artificial neurons.
They behave more similarly to biological neurons than deep neural
networks and, at the same time, are simple enough to be deployed
in engineering applications. The neurons in SNNs encode more infor-
mation than traditional static neurons, combining spatial and temporal
relations (Sougné, 2001). This advantage, however, is counterbalanced
by the fact that SNNs are difficult to train because the neural trans-
fer function is usually non-differentiable, and thus stochastic gradient
descent cannot be used. For this reason, it is not easy to determine
if SNNs are beneficial in any case (Pfeiffer & Pfeil, 2018). Adopting
SNNs is frequently justified only by the fact that the networks are
biologically plausible. Undivided attention to biological plausibility is
reasonable when the SNN application also yields a better understanding
of behaviors and phenomena occurring in the brain. This is not the case
for autonomous driving, which requires more practical advantages.

Different approaches have been proposed to overcome the issue
of training SNNs. In Kaiser et al. (2016), the authors design small
networks with manually tuned connections. With this architecture, they
realize a simple system for lane following evaluated in a simulated en-
vironment. Based on this seminal paper, the same research team (Kaiser
et al., 2019) develops a learning rule using probabilistic sampling over
a set of possible synaptic values (Kappel, Habenschuss, Legenstein, &
Maass, 2015). The learning rule is implemented in an end-to-end system
for lane following.

A popular solution to SNN learning derives from a feature of the
human brain called spike-timing-dependent plasticity (STDP) (Markram,
Gerstner, & Sjöström, 2011). This process adjusts the strength of con-
nections between neurons in the brain on the basis of the relative
timing of the neurons’ spikes. Izhikevich (2007) proposes an artifi-
cial implementation of STDP modulated by reinforcement learning.
The proposal is the basis for another learning strategy called reward-
modulated STDP (R-STDP), adopted by Bing et al. (2018) in a system
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Fig. 5. A circuit board with 16 TrueNorth chips, designed by researchers at IBM under
DARPA’s Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE)
program (Srinivasa & Cruz-Albrecht, 2012).

for lane keeping and obstacle avoidance on a two-wheeled robot. A
refined implementation is in Bing et al. (2020), which adopts a standard
deep Q-learning algorithm for lane keeping and transfers the learned
policy to the SNN. Liu et al. (2021) present another variant of R-
STDP to train a system for target tracking and obstacle avoidance on
a mobile robot. They first train a standard deep neural network, then
convert the network into spiking neurons. In this way, however, the
theoretical advantage of temporal coding is lost. Similarly, Nezhadali-
naei et al. (2021) address object detection and tracking with a spiking
convolutional network combined with conditional random fields and
probabilistic particle filters. López-Randulfe et al. (2021) design a
derivation of synaptic weights in SNN based on the discrete Fourier
transform, for radar-based object detection.

An elegant way to escape from the issue of training SNNs is to avoid
learning at all. A well-established neural framework for neurocogni-
tive studies is Neural Engineering Framework (NEF) (Eliasmith, 2013;
Eliasmith & Anderson, 2003), where groups of SNNs are organized
in higher units called semantic pointers (Blouw, Solodkin, Thagard, &
Eliasmith, 2015) that can be used without any training. Shalumov et al.
(2021) adopt NEF for speed and steering control using LiDAR data.

Besides SNNs, there are other—less known—approaches coming
from the domain of dynamical systems. For example, the Feynman
machine (Laukien, Crowder, & Byrne, 2018) is a hierarchical temporal
memory-based stack of spiking autoencoders that captures features
of the cortex like incremental learning. It is used in Tenison et al.
(2019) for path detection, with processor specifications so low that
computation can be carried out on computers as small as a Raspberry
Pi. Another source of inspiration comes from the famous place cells and
grid cells in hippocampal formation (O’Keefe & Nadel, 1978; O’Keefe
& Recce, 1993), which act as cognitive representations of specific
locations in space. The works of Banino et al. (2018) and Taniguchi
et al. (2021) adopt similar grid-cell representations for navigation and
mapping applications.

6.2. Neuromorphic hardware

The main benefit of the papers presented in this category is to
pave the way for the integration of neuromorphic hardware—the ideal
complement to SNNs—into autonomous driving systems. Some works
that experiment with neuromorphic hardware are already available. A
relatively affordable neuromorphic chip is IBM’s TrueNorth (Fig. 5),
which features 1 million spiking neurons with 256 million synapses,
for as low as 20 milliwatts per square centimeter power density. Fischl
et al. (2017) employs the TrueNorth with a NEF model to realize a
complete driving system for a 6-wheel small mobile robot. TrueNorth
is also the choice of Kashyap (2020) for stereo depth scene reconstruc-
tion. Another small and low-cost neuromorphic chip is the 𝜇Caspian,
with 256 neurons and 4096 synapses (Mitchell, Schuman, & Potok,
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2020). Patton et al. (2021) use the 𝜇Caspian for autonomous driving
in an F1/10 vehicle, a small-scale robotic car.

In addition to neuromorphic chips, neuromorphic cameras (also
called event cameras or Dynamic Vision Sensors) are attracting increas-
ing attention (Brandli, Berner, Yang, Liu, & Delbruck, 2014). The
cameras are inspired by biological retinas and, instead of acquiring
standard images at a fixed rate, they output pixel-wise changes of
intensity asynchronously. The works of Fischl et al. (2017) and Kashyap
(2020) mentioned above make use of neuromorphic cameras. More-
over, Maqueda et al. (2018) adopt event cameras to predict the steering
angle of the ego vehicle. The goal of this work is not to develop
a framework to actually control a vehicle; the work aims to show
the advantages offered by neuromorphic cameras in the context of
autonomous driving.

7. Discussion

Today, research on autonomous driving is carried out in large part
using traditional methods from the fields of mechanical, electronic,
and computer engineering—disciplines that are distant from the topics
covered by neuroscience and cognitive science. However, it is a fact
that fully autonomous vehicles are still far from being achieved (Jain,
Del Pero, Grimmett, & Ondruska, 2021). This suggests that investigat-
ing alternative paradigms could be a promising direction, especially
paradigms inspired by the only existing agents capable of driving—
the human beings. Scientometric analyses (da Silva et al., 2020; Faisal,
Yigitcanlar, Kamruzzaman, & Paz, 2021; Gandia et al., 2019) show
how active research on autonomous driving is, especially since the
last decade. At the same time, it is evident that cognitive- and brain-
inspired studies are still marginal, accounting to about 1% of the overall
research on autonomous driving.

The recent leap forward made by autonomous vehicles is due to
advances in artificial intelligence, above all deep learning. Artificial
intelligence is founded on the principle of imitating human intelli-
gence. Artificial neural networks are also historically inspired by brain
circuits—although this distant origin is irrelevant in most current ap-
plications. In fact, the majority of works reviewed here adopt deep
neural networks, but this is no indication of the brain inspiration of
the approach. There are, indeed, papers that present deep learning
approaches that claim to be brain-inspired, although they do not refer
to cognitive or neuroscientific principles (Chen, Chen, Zhang, & Hu,
2019; Huh & Hossain, 2021; Li & Gao, 2018; Wang & Xia, 2021).

When committing to the idea of taking cognitive or neurobiological
inspiration, one has to face the problem of integrating the inspiration
with the available state-of-the-art techniques, such as deep learning.
Because of this, it is often challenging to compete on standard bench-
marks and measure the benefit of the approach. Inspiration at the
behavioral level, presented in Section 3, manifests a more tangible
benefit than the other categories, despite being the category with
less theoretical commitment. Methods inspired by external behaviors
of human drivers merge efficiently with well-established processing
pipelines, and they obtain competitive results compared to traditional
engineering algorithms. However, imitation at the behavioral level
hardly leads to radical innovations. On the other hand, inspiration
at the cellular level, presented in Section 6, promotes pioneering ap-
proaches that are strongly committed to neurological facts. Since these
approaches explore new research paths, they pay a price in terms of
being competitive with traditional methods. In fact, many papers do
not have comparative evaluations, and the most common benefit is the
promise of drastically reducing energy consumption.

There have been some criticism that building an AI-system based
on how a human is behaving is not the same (and not enough) as to
build an AI-system that behaves as how the human ought to behave.
According to Kim, Hooker, and Donaldson (2021), this may lead to
unethical behavior and other unwanted consequences in AI-systems.
This criticism is at least applicable to deep-learning approaches and the
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behaviorally inspired approaches at the data stage, as they are basically
building the behavior of the autonomous vehicle from observations of
how humans behave. To what extent it also applies to the approaches
that take inspiration from cognitive abilities, brains, or neurons is less
obvious and beyond the scope of this paper. It could also be noted
that there are other criticisms such that biological systems have a
kind of genuine understanding that is impossible to replicate in non-
biological artificial systems which might also apply to all levels of
inspiration (Ziemke & Sharkey, 2001). Another criticism is that current
state-of-the-art AI techniques will have difficulties replicating some
aspects of human cognition, in particular the ability to attribute to
and understand mental states of other humans—the so called Theory
of Mind (Aru, Labash, Corcoll, & Vicente, 2023). Indeed, the focus on
humans and animals and their behavior might be misleading altogether.
As noted by Forbus (2010): ‘‘Airplanes were created by a careful study
of how aerodynamics worked, not by studying the details of birds.
The deepest insights on how birds fly came ultimately from applying
aerodynamic principles discovered while trying to create airplanes . . . ’’.
We cannot exclude the possibility that when/if we finally develop a
fully autonomous vehicle, it might not have taken inspiration from
humans.

The works analyzed here do not definitively establish unequivocal
benefits from human inspirations. However, this review reveals a wide
spectrum of promising sources of inspiration. Almost every cognitive
function and area of the brain has captured the attention of research
efforts. In this analysis, we have examined numerous components
and mechanisms, including attention, memory organization, decision-
making, emotions, consciousness, social cognition, the hippocampus,
neuromodulation, the cerebellum, the amygdala, the orbito-frontal cor-
tex, the basal ganglia, convergence–divergence zones, sparse represen-
tations, cortical magnification, the neural circuitry of the C. Elegans,
spiking neural networks, and spike-timing-dependent plasticity.

7.1. Future directions

Given the current scenario surveyed in this paper and discussed in
the previous Section, it is challenging to outline the future directions
that human-inspired research on autonomous driving may take. It is
even more arduous to predict whether research driven by cognitive
science will ultimately yield long-term benefits. This review does not
attempt to engage in excessive speculation; instead, we offer some
observations.

On one hand, the current competition for a successful self-driving
system compels manufacturers to focus on immediate improvements
that can be achieved more easily through non-technological changes,
such as increasing datasets. From this short-term perspective, a less
demanding form of human imitation, such as behavioral cloning, can
be included. On the other hand, it appears that major paradigm break-
throughs are necessary to achieve full autonomous driving, and the
human-inspired approach is undoubtedly a strong contender since hu-
mans are currently the only agents driving in full autonomy.

There are indications that the level of inspiration that seems to
perform the least—the cellular level—may have the best long-term
prospects. Observers have pointed to neuromorphic computing as the
future of various applications, including autonomous vehicles (Roy,
Jaiswal, & Panda, 2019; Schuman et al., 2022). Moreover, inspiration
at the functional and architectural levels, while still limited in number,
has the advantage of drawing inspiration from a wide spectrum of
sources, as discussed in the previous Section. The breadth of explo-
ration at these levels is a promising factor for the emergence of a
research direction that garners a critical mass of attention. It is by
reaching this critical volume that medium-term success becomes possi-
ble. In conclusion, it is worthwhile to pursue research in the direction
of autonomous vehicles endowed with high-level cognitive capabilities
11

directly inspired by humans.
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