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ABSTRACT 
 
Early detection and intervention are theorized to facilitate better outcomes in 

autistic children. However, response to early intervention varies considerably 

between individuals, some children show significant improvement, while others 

show minimal response to the intervention. Some pre-treatment individualized 

characteristics as well as intervention-specific factors were theorized to moderate 

outcomes, but literature revealed often mixed findings making difficult to 

understand whether and to what extent these factors facilitate learning during 

treatment. To parse the heterogeneity of the autistic population, recent studies 

have also attempted to investigate biological factors related to clinical and 

behavioral profiles. However, to date it is unknown whether and how biological 

information can provide insight into the variability of treatment outcomes. With 

this in mind, we attempted to expand the current knowledge by first investigating 

whether pre-treatment child’s characteristics and blood leukocyte gene expression 

patterns could predict developmental trajectories during treatment. Leveraging a 

cohort of 41 autistic toddlers who received the same early intervention and 

provided a blood sample, we were able to analyze the effect of starting treatment 

very early (i.e., <24 months) on treatment trajectories. We also provided for the 

first-time evidence that both pre-treatment blood leukocyte gene expression 

patterns and clinical-behavioral characteristics are important for predicting 

developmental change during intervention, and that pretreatment epigenetic 

mechanisms such as histone acetylation may be a key biological process that 

influence how a child respond to early intervention. Lastly, we carried out a 

mega-analysis of a large international consortium, isolating individual child 

characteristics and treatment related factors to examine their key role in 

moderating child developmental trajectories throughout the course of early 

intervention. The final dataset comprised 645 autistic toddlers who received two 

types of interventions either Early Start Denver Model (ESDM) or other treatment 
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as usual/community interventions (TAU/COM). This mega-analysis provided 

strong evidence that individual factors, such as cognitive level and age at 

treatment start, predict most outcomes, and on-average, ESDM may promote 

some developmental skills better than COM/TAU. Taken together, these results 

advance our understanding of “what works, for whom, for what and why” 

questions, identifying new biological predictors and providing an alternative 

methodology that can effectively examine the individual variability of treatment 

outcomes.   
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Chapter 1: Introduction 

 

1.1 Heterogeneity in Autism Spectrum Disorder 

 

Autism spectrum disorder (ASD), henceforth ‘autism’, is one of the most 

common neurodevelopmental disorders, characterized by core challenges in social 

communication, as well as restricted interests and repetitive behaviors and 

differences in sensory function (Diagnostic and Statistical Manual of Mental 

Disorders, 2013). However, autistic individuals may also have difficulties in 

adaptive behavior, language and cognitive skills. Current estimates suggest that 

about 78 million people meet the criteria for autism worldwide (Lord et al., 2022), 

although this prevalence varies by biological sex, with males being more likely 

(approximately four times more) to be affected (Zeidan et al., 2022). While the 

diagnostic criteria attempt to maximize clinical consensus, they also mask a wide 

heterogeneity in terms of severity of symptoms, level of cognitive and 

communication abilities. But going beyond, the hallmark of heterogeneity in 

autism is its multilevel-level presentation, applicable in biology, outcomes and 

treatment responses, and it is not only present between autistic individuals but 

also within individuals across development (Charman et al., 2017; Lombardo, Lai, 

et al., 2019; Lombardo & Mandelli, 2022).  

 

One of the most important reasons why understanding heterogeneity is 

crucial is to be able to account for the wide variability of treatment responses in 

autistic individuals, whereas some children make significant gains after 

intervention, while others show a minimal or no response (Godel et al., 2022; 

Lombardo, Lai, et al., 2019). Considerable attention has been given to early 
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behavioral intervention, since most of the clinicians, researchers and also autism 

community agree that behavioral interventions delivered during early periods 

should be available to help autistic children grow and realize their potential and to 

increase the likelihood of long-term life satisfaction (Leadbitter et al., 2021; 

Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020). Although 

literature has presented mixed and heterogenous findings, early interventions are 

considered evidence-based treatment approaches developed for autistic children. 

Some reviews and meta-analyses showed significant improvements on cognition, 

adaptive abilities and language after intervention (Fuller et al., 2020; Rodgers et 

al., 2021; Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020; 

Sandbank, Bottema-Beutel, Crowley, Cassidy, Feldman, et al., 2020; Warren et 

al., 2011),  while others displayed limited treatment effects (Crank et al., 2021; 

Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020). Given the 

significant amount of time and resources required for the intervention, enrolling 

autistic children in intervention programs from which they will not benefit leads 

to negative implications for the children, their families, and the community. 

However, the limited knowledge of variables that influence treatment response 

makes very difficult to predict to what extent a child will improve during 

treatment. Until now it is unclear whether and to what extent factors such as the 

type of intervention approach, treatment specific components and child’s 

characteristics facilitate learning during treatment. (Godel et al., 2022; Vivanti, 

Prior, et al., 2014). The lack of one single treatment approach which works for all 

autistic children and the wide individual variability in treatment response suggest 

to develop more individualized guidelines for intervention, which allow to choose 

the appropriate program based on the individual profile of the child at the 

beginning of treatment (Vivanti et al., 2013; Vivanti, Prior, et al., 2014). In this 

regard, recent works have also focused on identifying biological factors able to 

parse the heterogeneity of the autistic population in order to provide information 

on the variability of treatment responses and create more personalized guidelines 

(Lombardo, Eyler, et al., 2019, 2021; McPartland et al., 2020). But to date, no 
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valid biological factors have been found to be significantly related to clinical and 

behavioral profiles which are meaningful for clinical practice (Lord et al., 2020, 

2022). In line with the precision medicine framework, the present work aims to 

extend and improve upon previous findings to address not only the question of 

treatment effectiveness at the group level, but also to focus on individual 

responses and how to predict them before the intervention starts.  

 

Early intervention approaches are considered effective when they help to 

maximize the child's potential by facilitating the development and learning new 

skills important for supporting independence before the child reaches school age 

(Rodgers et al., 2021). The treatment outcome measures used among studies are 

usually related to specific intervention targets or scores on broader standardized 

assessments of developmental skills. However, most previous researches in this 

area has often focused on distal measures that capture specific developmental 

domains and core autism features, such as changes in standardized tests of autism 

symptom severity, adaptive, cognitive and language skills, which are usually 

considered important for demonstrating the effectiveness of intervention (Chen et 

al., 2022; M.-C. Lai et al., 2018). Although the constructs examined as short-term 

outcomes are consistent across studies, there are significant differences in the 

choice of which predictors are reported. And even when similar sets of predictors 

and outcomes are investigated, the role of predictors is highly variable. An 

important source of inconsistency present among studies is due to different 

methodological and measurement choices. Previous studies have reported that 

how researchers operationalize and measure intervention goals in social 

communication affects whether intervention effects are found or not (Colombi et 

al., 2019; Yoder et al., 2013). Also for measuring cognitive functioning, for 

example, there are multiple instruments used, and there is considerable 

inconsistency in the way scores are used for statistical analysis (Towle et al., 

2020). Therefore, the use of different outcome measures and the choice of 

different predictor variables among studies have a large impact on the variability 
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of findings (D. Zachor & Ben-Itzchak, 2017). Here the focus is on the most 

studied pre-intervention factors, available in the common practice, for predicting 

each of the outcome domains commonly used in autism intervention research, 

including autism severity, cognitive abilities, and adaptive behavioral abilities. To 

reduce to some extent the additional factors contributing to the heterogeneity of 

treatment outcomes, the findings listed below come from the most widely adopted 

evidence-based intervention approaches, that will be addressed also in the next 

chapters, such as Early Intensive Behavioural Intervention (EIBI) and related 

variants (Lovaas, 1987a), and the Naturalistic Developmental Behavioural 

Interventions (NDBIs) (Schreibman et al., 2015). 

 

This introductory chapter provides a brief critical overview of predictive 

factors of early intervention outcomes to better elucidate the starting point for 

improving the knowledge on “what works, for whom, for what and why” 

questions (Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020; 

Vivanti, Prior, et al., 2014). Specifically, the extent to which factors such as 

clinical and biological characteristics, and specific treatment components may 

influence outcomes in the context of early intervention is examined. These 

predictors might be associated with outcomes in two ways: prognostically when 

factors hold some value in predicting child developmental change over time 

regardless of the type of intervention received; or predictively when the influence 

of certain characteristics on treatment response varies according to the type of 

intervention program received (Bent et al., 2023; Vivanti, Prior, et al., 2014). To 

enable this distinction, research on predictors of treatment outcomes should use 

study designs that compare different intervention programs to distinguish between 

moderators of response, specifically related to the treatment type received, and 

general prognostic factors, which are associated with outcomes (Vivanti, Prior, et 

al., 2014). Although this approach is important from the perspective of precision 

medicine, only a few studies were able to report the specificity of predictors to 

one treatment program versus another (Bent et al., 2023; Rodgers et al., 2020a; 
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Rogers et al., 2019, 2021; Stahmer et al., 2011). Most previous studies examining 

moderating factors of treatment outcome have discrepancies in reporting 

practices, a narrow set of individual participant characteristics, and a limited 

statistical power. All these limitations may have hidden all the existing 

associations between participant-intervention factors and intervention effect 

(Crank et al., 2021; Lord et al., 2022), thus is still very difficult to determine 

whether a factor that moderates child development during treatment is sensitive 

only to the context of that specific treatment. 

 

 

1.2 Treatment specific factors 

  
Treatment response is expected to be associated with treatment-related 

factors, but it is not yet entirely clear how these factors work. Although numerous 

studies have been conducted on early intensive interventions, findings still differ 

widely, making it hard to identify which treatment components promote a positive 

change in the child (Rodgers et al., 2020a). Currently, it is difficult to understand 

which intervention approaches, intensity, and duration foster the greatest effects, 

since in all types of evidence-based early intervention, the inter-individual 

variability of treatment response is high. 

 

1.2.1 Treatment type 

 

To date, there is no pharmacological treatment for the main symptoms of 

autism, and the nature of interventions intended to help autistic children is mainly 

psychoeducational, psychosocial, or behavioral (Landa, 2018). Among these types 

of interventions, there is no standard treatment for autism that is unanimously 

accepted as the one that works best. The most frequently used programs are 
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"treatment as usual" (TAU), which are community-based treatments that follow 

local guidelines. They usually include a combination of interventions based on 

different non-autism-specific special education services, such as occupational 

therapy, sensory integration therapy, speech therapy and classroom aide. 

However, these approaches have limited effectiveness and are not evidence-based, 

thus more structured and comprehensive interventions are usually preferred (Asta 

& Persico, 2022). The primary most studied evidence-based approaches to early 

intervention are: EIBI and NDBI. This work solely focuses on results from these 

two approaches NDBI and EIBI and related variants, findings from approaches 

other than those mentioned above are not included, as they are beyond the scope 

of this work. EIBI is a package of manualized treatment, delivered on an 

individual basis for 20-40 hours per week, using techniques and technologies 

guided by the traditional principles of applied behavior analysis (ABA) (Reichow 

et al., 2018). The set of techniques used (such as breaking skills down into their 

basic components) focus on stimulus discrimination and positive reinforcement in 

order to promote learning and shifting the child's developmental trajectory toward 

a more positive one during the early period (Lovaas, 1987a; Rodgers et al., 

2020b). Treatments based on ABA principles have become progressively more 

popular, especially after the publication of the promising results of Lovaas' study 

in 1987 (Lovaas, 1987a) where the use of EIBI, with a specific teaching procedure 

such as discrete trial teaching (DTT), promoted higher cognitive and educational 

functioning than children receiving less intensive behavioral intervention or other 

types of treatment. Since then, studies using ABA principles have multiplied 

(Asta & Persico, 2022). To the point that, this intervention approach has become 

the most studied for the autistic population in the past 40 years, and therefore, 

EIBI and other highly structured ABA-based interventions are more commonly 

recommended for children with autism (Sandbank, Bottema-Beutel, Crowley, 

Cassidy, Dunham, et al., 2020). Several meta-analyses have been conducted, most 

of them found that children who received EIBI treatment had better outcomes 

than children in the comparison groups; the most pronounced improvements were 
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observed mainly in adaptive behavior and cognitive functioning (Sandbank, 

Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020) and language 

(Makrygianni & Reed, 2010; Reichow et al., 2018). Taken together, highly 

structured ABA-based interventions studies supported their effectiveness in 

improving a wide range of outcomes, however only a small fraction of past 

studies have explored the treatment effects using randomized clinical trials 

(RCTs) designs and masked personnel and participants; moreover the majority of 

outcomes were taken from caregiver report (Sandbank, Bottema-Beutel, Crowley, 

Cassidy, Dunham, et al., 2020). Thus, the current state of evidence on EIBI and 

related ABA-based intervention variants, suggests that robust conclusions on the 

effectiveness are still limited by the low methodological quality of primary studies 

(Reichow et al., 2018).  

 

Meanwhile, the current field is expanding the knowledge by including 

NDBI approaches, which are considered a subsequent adaptation of the original 

EIBI model that incorporates traditional ABA-based principles within a more 

naturalistic and developmentally informed framework (Rodgers et al., 2021). 

These approaches emphasize the use of strengths-based models to teach skills in 

line with developmental principles, within a social context that is emotionally 

meaningful to the child. For example, using natural rewards that incorporate the 

child's interests and choices during play or other daily activities (e.g., when the 

child says "car",  he is rewarded by giving him a toy car to play rather than a 

candy for the correct labelling) (2021-2023 IACC Strategic Plan for Autism 

Research, 2023; Schreibman et al., 2015). Examples of NDBI models which have 

been most studied include Early Start Denver Model (ESDM), pivotal response 

training, Project ImPACT (Improving Parents As Communication Teachers), 

Joint Attention Symbolic Play Engagement and Regulation (JASPER), enhanced 

milieu teaching, Incidental Teaching, reciprocal imitation training, and Early 

Social Interaction (ESI) model. Although these naturalistic intervention packages 

share common theoretical underpinnings, they differ from each other since some 
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are more comprehensive interventions, addressing a wide number of 

developmental domains (e.g., ESDM), while others are more targeted 

interventions, addressing a specific developmental area such as social 

communication (e.g., JASPER) (Schreibman et al., 2015). In previous meta-

analyses this emerging category of interventions has shown promising effects 

across a wide range of developmental domains such as social communication, 

language and cognitive skills (Crank et al., 2021; Fuller et al., 2020; Sandbank, 

Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020; Tiede & Walton, 2019); 

moreover when compared with other intervention approaches it has shown to be 

the most supported approach by RCT studies providing evidence of improvement 

in social communication and language skills. NDBI studies are also the least 

prone to use caregiver report as the primary measure of intervention effectiveness; 

indeed, excluding low quality outcomes which come from caregiver reports, the 

development of social-communication skills remains significant (Sandbank, 

Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020). Compared with other 

intervention approaches for autistic children, this body of evidence is relatively 

methodologically rigorous. However NDBI studies are still constrained by some 

methodological and quality limitations, such as the prevalence of outcomes 

subject to high detection bias and the use of proximal and context-bound outcome 

measures (Crank et al., 2021; Fuller et al., 2020; Sandbank, Bottema-Beutel, 

Crowley, Cassidy, Dunham, et al., 2020). Thus, further studies are needed to 

accumulate evidence of NDBI effects. 

 

In the theoretical framework of NDBI approaches, the ESDM (Rogers, S. 

J., & Dawson, G., 2010) has emerged as a promising and cost-effective early 

intervention for the needs of autistic children as young as 12 months. (Cidav et al., 

2017). Using a set of manualized treatment procedures and a comprehensive 

curriculum, ESDM aims to facilitate improvement in multiple developmental 

domains and in key areas involved in autism challenges (Fuller et al., 2020; 

Rogers, S. J., & Dawson, G., 2010, p. 201).  The intervention program can be 
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delivered either individually or in groups (Vivanti, Paynter, et al., 2014) by 

trained professionals or parents (Rogers et al., 2012) in-person or via telehealth 

(Vismara et al., 2018); and the level of intensity can be relatively low or high 

(Cidav et al., 2017; Colombi et al., 2018; Estes et al., 2015; Rogers et al., 2021; 

Wang et al., 2022). Research on the ESDM includes several RCT studies, some 

have reported that participation in the ESDM intervention resulted in significant 

improvements, compared to control groups, in cognitive functioning (Dawson et 

al., 2010, 2012; Estes et al., 2015), autistic symptoms (Dawson et al., 2012; Estes 

et al., 2015), adaptive behavior (Dawson et al., 2010, 2012; Estes et al., 2015), 

and language abilities (Dawson et al., 2010, 2012; Rogers et al., 2019). However, 

not all RCT studies reported similar results, some showed partially replicated or 

nonsignificant results in similar treatment outcomes (Rogers et al., 2012, 2019, 

2021). 

 

Systematic reviews of the empirical research on the ESDM have also 

shown overall positive results. Waddington and collaborators included 15 studies 

using a range of group and single-case designs, and reported promising findings in 

cognitive skills and language abilities, while results for adaptive behaviors and 

autism symptom severity were mixed (Waddington et al., 2016). A second review 

of 10 studies found that despite the wide variability of study designs, intervention 

agents, setting, intensity and duration, children receiving ESDM intervention 

showed improvements. Significant gains were found in the areas of cognitive 

functioning, language, adaptive behaviors, and social communication, however 

findings regarding whether the ESDM was more effective than other treatment 

options were mixed (Baril & Humphreys, 2017). Notably most of studies included 

in these works were considered limited in terms of quality and rigor. To expand 

and refine results of these reviews a number of meta-analyses were conducted by 

including more recently published studies, focusing on comparative studies; and 

using a meta-analytic approach that allowed quantitative understanding of effects 

on specific outcome domains. (Fuller et al., 2020; Wang et al., 2022; Yu et al., 
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2020). Fuller and colleagues (2020) conducted a systematic review and meta-

analysis of the effects of ESDM intervention including 12 studies (quasi 

experimental or randomized control trials). Findings revealed that participants 

who received the ESDM showed significant more gains in cognition and language 

domains compared to children in the control group, however no significant effects 

for autism symptomology and adaptive behavior were observed. Despite the 

overall positive effects reported in language and cognitive areas, this result should 

be taken with caution, because of the high heterogeneity observed in the sample 

and the limited scientific rigor of the study designs (Fuller et al., 2020). Another 

meta-analytic work based on 14 RCTs aimed to investigate differences when 

comparing types of ABA-based interventions such as applied behavior analysis 

(ABA), ESDM, discrete trial training (DTT) and Picture Exchange 

Communication Systems (PECS). Authors found that the small number of studies 

included in the analysis limited the ability of examining each type of 

intervention’s strengths and weaknesses in terms of developmental outcomes (i.e. 

only five ESDM studies were included in the comparison with other 

interventions) (Yu et al., 2020). Therefore, they could not provide a reasonable 

conclusion on the superiority of the ESDM compared to other mainstream ABA-

based approaches, which is in line with the current available literature (Bent et al., 

2023; Rogers et al., 2021, p. 202; Vivanti & Stahmer, 2021). Recently Wang and 

collaborators (2022) evaluated the effect of ESDM in Western and Asian 

countries, including 11 high-quality RCTs. Findings suggested that ESDM 

intervention led to significant improvements in cognitive domains, autism 

symptoms, and language (Wang et al., 2022). Results for cognition and language 

are consistent with previous meta-analyses (Fuller et al., 2020), suggesting that 

ESDM promotes more positive progress in these domains, while the improvement 

in autism symptoms is not consistent with previous results reported by Fuller and 

colleagues. This difference might be related to the fact that Wang and 

collaborators employed only RCT studies, while previously quasi-experimental 

designs were also included (Fuller et al., 2020). Furthermore, the use in Asian 
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countries of the Childhood Autism Rating Scale (CARS) to measure autism 

symptoms instead of the Autism Diagnostic Observation Schedule-Second 

Edition (ADOS-2) (Lord et al., 2000) may have caused an increase in effect size, 

since the CARS measurement is a rating scale that is a more subjective tool. To 

conclude, authors tried to explore potential moderating variables of intervention 

effects, they found that the effect sizes of autism symptoms and language were 

moderated by country (Asian countries had larger effect sizes than in Western 

countries), but they failed to find any other relevant relationship between 

moderator variables due to the low number of studies (Wang et al., 2022). 

 

To improve methodological quality of analyses, it seems necessary to 

consider more data from different studies, and to include as few measurement 

tools as possible, to ensure comparability among participants (Eckes et al., 2023; 

Wang et al., 2022). Although RCT studies are the gold standard for meta-analysis, 

providing the least-biased estimates of efficacy, results should be interpreted 

cautiously due to the small number of studies present in the literature and the 

possible low statistical power resulting from them. Past literature has shown that 

small sample size means that the variability in estimated effect size is consistent, 

irrespective of what the true effect is (Lombardo, Lai, et al., 2019). Therefore, the 

picture depicted by RCTs, if not including a large number of studies, may not be 

representative of the autistic population. Furthermore, to assess more precisely the 

treatment effect, the investigation of multiple potential moderating variables is 

required, because the variability of individual responses within the same type of 

intervention is high and, as described above, often varies across studies leading to 

different conclusions about group-level efficacy/effectiveness (Rogers et al., 

2021; Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020; 

Sandbank, Bottema-Beutel, Crowley, Cassidy, Feldman, et al., 2020). To better 

understand the intervention response, it is necessary to know whether the 

difference between treatment groups varies based on pre-treatment characteristics, 

i.e., allowing analysis of the statistical interaction between selected characteristics 
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and treatment type (Lord et al., 2005). However, analyses which attempt to 

identify child and intervention factors as potential moderators of treatment 

outcomes are scarce and inconclusive. This is due to the inconsistent reporting of 

informative predictors, the insufficient sample sizes and also because RCTs often 

intentionally set strict inclusion and exclusion criteria to control for variability 

(i.e. children with a very low cognitive skills are often excluded from studies) 

(Colombi et al., 2019; Lord et al., 2022; Russell et al., 2019). Overall, low quality 

of evidence seems to be a common problem in autism intervention studies, and 

this limits the informative value of studies in this field, suggesting that to date 

there is limited evidence to indicate whether specific child characteristics might 

distinguish response to one early autism intervention approach versus another. 

Future research should be improved by using novel research designs to answer the 

question ‘What works for whom?’ (Bent et al., 2023; Crank et al., 2021; Eckes et 

al., 2023; Rodgers et al., 2021). 

 

1.2.2 Treatment intensity 

 
Many professionals suggest that the delivery of intervention should be 

intensive (e.g. provided for 20-40 hours per week for over a year or longer) to 

increase the potential for improving outcomes for autistic children (Lord, 2001; 

Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020). However, 

the evidence supporting this widespread recommendation is often contradictory 

and difficult to be interpreted. These guidelines are originated from some studies 

that have found interventions must have a combination of early and intensive 

components to be effective. For example, initial study led by Lovaas and 

colleagues (1987a) found that children younger than 4 years old who received 40 

hours per week of behavioral intervention had greater cognitive outcomes than 

those who received only 10 hours per week (Lovaas, 1987a). Although this was 

one of the first influential studies, the quality of results was affected because 

subjects were not randomly assigned to groups. Subsequent studies have further 
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investigated the importance of more intensive intervention during the critical 

period of development. Granpeesheh and collaborators (2009) have assessed 

treatment progress for 245 autistic children receiving EIBI services; results 

showed that children aged 2 - 7 years made significant gains in the acquisition of 

new skills as treatment hours increased, while children in the older group 7-12 

years no significant relationship was found between treatment hours and the 

number of behavioral goals mastered (Granpeesheh et al., 2009). Consistently 

with these results, a randomized controlled trial have reported that more hours of 

intervention for both ESDM and TAU groups predicted significantly better scores 

on cognitive outcomes and autism severity scores, for toddlers at risk for autism 

aged 14 to 24 months (Rogers et al., 2012). Therefore, the combination of early 

age and high intensity together seems to significantly influence treatment 

outcomes. However, evidence on how much and for how long a given early 

intervention should be delivered is scant, and only a few systematic comparisons 

addressing these questions have been conducted to date (Lord et al., 2022). With 

this aim, Rogers and colleagues conducted a recent study (2021) including three 

different sites with 2 years old autistic children. They compared two types of 

intervention at two different moderately high intensities (15 or 25 hours of 

ESDM; 15 or 25 hours of EIBI) for 12 months. Findings revealed that overall 

treatment type and intensity have no main effects on child outcomes, but there 

was a little evidence that initial severity moderated effects of treatment intensity 

on autism severity change, in one of the three sites included in the analysis 

(Rogers et al., 2021). On the other hand, another methodologically rigorous early 

intervention study has tested whether lower intensities can promote significant 

outcomes. Pickles and collaborators have tested the long-term follow-ups of 

Preschool Autism Communication Trial (PACT) (J. Green et al., 2010) a parent-

mediated social communication intervention for children aged 2–4 years delivered 

at low intensity. Findings revealed that even at lower intensities early 

intervention, such as PACT, can promote improvements in core autism symptoms 

(Pickles et al., 2016).  
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Notably, several meta-analysis studies have been carried out to investigate 

within large scale studies, whether the duration and intensity of the intervention 

moderate treatment effects. Overall, the results reported so far are widely 

heterogeneous. For example, some initial meta-analysis showed that treatment 

intensity was associated with treatment gains in both cognitive functioning and 

adaptive behavior outcomes (Eldevik et al., 2010; Makrygianni & Reed, 2010). A 

recent meta-analytic work (2020a), with comparative studies including both RCTs 

and non-randomized comparative studies, found that receiving early high-

intensity ABA-based intervention leads to slightly greater improvements in 

cognitive and adaptive behavior scores than those receiving low-intensity, TAU or 

eclectic interventions (Rodgers et al., 2020a). Similarly, another meta-analysis of 

ABA-based interventions, with mostly quasi-experimental designs, showed that 

the influence of treatment intensity on adaptive behavior outcome is significant 

but it decreases with older age (Eckes et al., 2023). However, the validity of all 

the examinations described is limited by the fact that quasi-experimental studies 

included in meta-analyses cannot provide reliable results about the causal effect of 

intervention factors.  

 

With this aim, a meta-analysis of early interventions, which reviewed only 

RCTs and excluded studies with a high risk of bias, found that the intensity of 

early intervention and duration did not reveal any significant effects. However, 

this could be ascribed to the fact that the unequal number of studies and 

participants included in the subgroup analyses may have limited the power to 

identify any actual effects of this moderator on treatment outcomes (Daniolou et 

al., 2022). The lack of evidence that treatment intensity moderated outcomes is 

also reported by NDBI meta-analyses, which have investigated the effect of 

cumulative intensity on cognitive, adaptive behavior, autism symptomatology and 

language outcomes (Crank et al., 2021; Hampton & Kaiser, 2016; Sandbank, 

Bottema-Beutel, Crowley, Cassidy, Feldman, et al., 2020). More specifically, 



 15 

Fuller and collaborators have examined the effect of intervention-level 

characteristics in ESDM studies on treatment responses. Also here, authors found 

that neither the length nor intensity of the dosage were significantly related to the 

magnitude of the outcomes (Fuller et al., 2020). As suggested by the authors of 

aforementioned meta-analyses (Crank et al., 2021; Fuller et al., 2020; Sandbank, 

Bottema-Beutel, Crowley, Cassidy, Feldman, et al., 2020), it should be noted, that 

the inability to find evidence supporting this association is not definitive proof of 

its absence. The association between treatment intensity and gains in autistic 

children is indeed likely complicated by other factors, such as the risk of small 

study bias, the risk of misreporting total intervention hours in parent-implemented 

interventions studies and the study quality weakness due to quasi-experimental 

non-randomized study designs. All of these factors may have limited the ability to 

detect a potential association between intervention intensity and outcomes (Crank 

et al., 2021). Given that, future analyses of early interventions should continue to 

quantify intervention components and analyze the differences they might have on 

outcomes. 

 

To date, we do not have reliable high-quality data from past studies on 

which to base decisions about what specific type of intervention and at what 

intensity, treatment may have a significant impact on a child's progress. A few 

studies investigated whether the effect of treatment intensity varies according to 

treatment type  (Rodgers et al., 2020a) and baseline child characteristics (Eckes et 

al., 2023; Rogers et al., 2021). Future work is needed to investigate the effects of 

treatment type and intensity according to individual child characteristics to guide 

clinical practice in choosing the early intervention program (Rogers et al., 2021; 

Vivanti, Prior, et al., 2014). This, would be critical especially when intensive 

treatments are too expensive, and common recommended interventions are 

unlikely to produce significant changes (M.-C. Lai et al., 2018). 
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1.3 Biological factor 

 

Although there is a growing body of evidence showing that some 

treatment approaches provide support for autistic children, it remains unknown 

how and why evidence-based treatments work, both in terms of mechanisms of 

change and active ingredients (Lord et al., 2022). Although the precision medicine 

approach in autism intervention may not rely on biomarkers, the question of 

which underlying biological features may be relevant for predicting treatment 

outcomes remains. To test this question, recent works (Lombardo, Eyler, et al., 

2019, 2021; Loth et al., 2016, 2017; McPartland et al., 2020) have focused on 

identifying biological factors able to stratify the autistic population, which could 

also provide information on the variability of intervention responses. This area of 

research aims to use biomarkers (e.g., neurobiological factors) as key targets to 

inform behavioral interventions and create more personalized guidelines. 

However, such targeted treatments for specific biological subtypes in autism have 

not yet been developed, as to date no valid biomarkers have been found to be 

significantly predictive of clinical and behavioral features to be translated into 

routine clinical practice (Lord et al., 2020, 2022). 

 

Furthermore, an important goal for the current research field is to show 

whether and how early intervention influences the brain development. Previous 

studies have described how the development of brain circuits for social and 

language skills is shaped by the interaction between the child and the social 

environment during early sensitive periods (Dawson, 2008; Kuhl, 2007; Kuhl et 

al., 2005; Mundy & Rebecca Neal, 2000). Therefore, investigating which 

biological mechanisms are responsible for behavioral changes during 

environmental manipulation, such as early intervention, it may reveal a better 

understanding of why some individuals improve more than others during the 

intervention. With this regard, although the literature is scarce, one promising way 
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to provide a comprehensive understanding of the mechanisms behind the 

effectiveness of intervention, is to integrate biological measures into the design of 

treatment studies (Cicchetti & Curtis, 2015; Dawson et al., 2012).  

 

Neuroimaging and neurocognitive biomarkers studies, including magnetic 

resonance imaging (MRI), functional near-infrared spectroscopy (fNIRS), 

electroencephalography (EEG) and eye tracking are growing in the field of autism 

research (Jones et al., 2019; Webb et al., 2020, p. 201). These tools have also been 

embedded into early intervention RCTs to elucidate the underlying neural 

mechanisms that may predict changes during development (McGlade et al., 2023). 

 

For example, Dawson and colleagues (2012) have conducted an RCT 

study, where they showed the efficacy of ESDM for autistic toddlers and they 

have also included EEG activity measures as treatment outcomes (Dawson et al., 

2012). This study has demonstrated for the first time that early intervention, such 

as ESDM, is related with normalized brain activity patterns, which are correlated 

with gains in social behavior. However, this study has not included pre-

intervention measures, thus is not possible to examine the EEG changes related to 

intervention, and it is unknow whether brain activity patterns moderate the 

response to treatment. The first systematic review that examined whether early 

interventions lead to changes in neurocognitive markers of EEG and eye tracking 

(McGlade et al., 2023), concludes that the findings were inconsistent due to small 

numbers of participants and methodological concerns. 

 

Since autism represents a highly heterogeneous condition that differs in 

cause, course, response to treatment, and outcome (Lombardo & Mandelli, 2022); 

further studies are needed to understand the biological processes related to 

developmental changes. This would help to create and choose more tailored 

intervention approaches, designed for individuals that have similar biological 

characteristics (Dawson, 2008). Although this goal is still in development, it 
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represents a shift toward precision medicine based on individual biological 

factors, which it is hoped will ultimately help untangle the complexity of 

heterogeneity in treatment responses. 

 

 

1.4 Pre-treatment clinical-behavioral and demographic 

characteristics 

 

There is an extensive literature investigating pre-treatment clinical-

behavioral and demographic characteristics to answer the questions about for 

whom and when early interventions are most effective. Most of these studies do 

not inform about treatment-specific response, but rather indicate the relationship 

between child characteristics and developmental changes during treatment (Lord 

et al., 2005). Although previous studies have found various individual factors to 

be potentially predictive of outcomes, there is still no clear consensus on what the 

active elements of change are in the context of early intervention (Vivanti, Prior, 

et al., 2014). Therefore, the question of which individual characteristics are 

associated with children's intervention outcomes often remains unanswered, as 

available information diverges among studies. 

 

1.4.1 Age at treatment start 

 

The age at which a child starts intervention has been often identified as a 

prognostic factor for several treatment related outcomes. Scholars and 

practitioners have consistently stated that intervention should be delivered as early 

as possible, starting at the diagnosis of autism or even earlier, because the earlier 

children start treatment programs, the better the outcomes (Reichow, 2012; Towle 

et al., 2020; Warren et al., 2011). For this reason, early diagnosis is now strongly 
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encouraged since early behavioral signs begin to manifest before 18 months 

(Pierce et al., 2011, 2021) and autistic children can be diagnosed by 24 months 

(Zwaigenbaum et al., 2015). However, the possible advantages of early diagnosis 

and treatment are the focus of an ongoing debate because the evidence supporting 

"earlier is better" are mixed and sometimes difficult to interpret due to the 

complex relationships between all the predictor variables involved in the 

outcomes. For example, the cognitive functioning at baseline is an individual 

factor commonly associated with later outcomes, so it may overlap with the 

individual effect of early age start, if the shared variance between these two 

variables is not controlled with statistical or design methods (Siu et al., 2016; 

Towle et al., 2020). Uncertainties also include community-based or "treatment as 

usual" (TAU) interventions, which are usually associated with significantly 

weaker gains than highly controlled intervention studies in academic settings. For 

this reason, it remains unclear whether children undergoing community-based 

intervention benefit from earlier diagnosis and intervention. Generally, the 

replicability of effectiveness of early intervention in nonacademic community 

settings needs further investigations (Nahmias et al., 2019; T. Smith et al., 2015a; 

D. A. Zachor & Ben Itzchak, 2010).  

 

Moreover, there are studies have reported that chronological age is not 

associated with most common outcomes associated with treatment, such as autism 

severity, adaptive, cognitive and language skills. For example, Eapen and 

collaborators investigated predictors of outcomes in 49 preschool children 

enrolled in ESDM group delivered intervention. In their findings age at onset was 

related to parent-reported  autism symptoms measures, but they did not found any 

association with change scores on any other outcomes examined in the study 

(Eapen & Crncec, 2016; Towle et al., 2020). Vivanti and colleagues examined the 

effectiveness of the ESDM in a long-day care community setting in 27 autistic 

preschoolers compared to a different treatment program (a similar community 

long-day care service) received by 30 peers. They found that chronological age 



 20 

did not predict cognitive, adaptive behavior and autism severity scores (Vivanti, 

Paynter, et al., 2014). Also, Contaldo and colleagues (2020) provided 

individualized and group ESDM sessions to 32 autistic children and found no 

significant associations between age of the child at intake and language skills 

developed during treatment (Contaldo et al., 2020). Hayward and collaborators 

(2009) examined outcomes after one year of intensive one-to-one University of 

California at Los Angeles Applied Behavior Analysis (UCLA ABA) treatment, 

provided by therapists (n=23), or intensive treatment model, managed by parents 

(n=21). They found that all correlations between age at start and outcome 

measures such as cognitive, language and adaptive behaviour abilities were non-

significant (Hayward et al., 2009). Also in a systematic review of 11 EIBI studies, 

authors reported that chronological age was not associated with cognitive 

outcomes in any of the studies assessed (Howlin et al., 2009).  

 

With regards to meta-analysis findings, a recent work led by Crank and 

collaborators (2021), evaluated the extent to which NDBI intervention effects 

vary as a function of chronological age. They found that none of the summary 

effects on cognitive, adaptive behavior, language and autism symptomatology 

outcomes were moderated by the child's age at the start of the intervention, thus 

no evidence was found that developmental gains during NDBIs lessen with the 

progress of age, at least until the age of 6 years (the highest mean age in the 

included studies) (Crank et al., 2021). With regards to language outcomes 

(expressive language, receptive language and composite language score), previous 

meta-analytic work (Hampton & Kaiser, 2016; Sandbank, Bottema-Beutel, 

Crowley, Cassidy, Feldman, et al., 2020) found that age at baseline is not a 

significant moderator of intervention effect on language skills. Furthermore, in 

one of the largest individual participant data meta-analysis (IPD-MA), authors 

have evaluated the effectiveness of early intensive ABA–based interventions for 

491 pre-school autistic children compared with TAU or eclectic intervention. 

Their findings suggest that there is a lack of conclusive evidence whether age may 
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influence the effectiveness of ABA-based or eclectic intervention on cognitive 

and adaptive behavior outcomes, however all analyses had very wide confidence 

intervals indicating a substantial uncertainty of findings (Rodgers et al., 2021). 

 

By contrast, to support early intervention decision making, there are 

several rationales, which recommend combining both early start and intensive 

level of intervention, regardless of the type of treatment and the specific child 

symptoms or behavioral characteristics (Godel et al., 2022). First of all, early 

intervention is designed to take advantage of experience-dependent 

neuroplasticity during critical periods (Piven et al., 2017). Early neuroplasticity is 

a crucial brain property which creates and organizes neuronal connections and 

enables learning in response to the child's experiences with the environment. 

Through the interaction with the environment the brain is able to process synaptic 

connections and cortical specialization (Johnson, 2011; Nelson, 2000). Thus, early 

intervention can be considered as a highly specialized enrichment environment 

that, through experience, potentially allow for greater developmental 

improvements (Dawson, 2008). In addition to the early neuroplasticity theory, 

there are several empirical considerations that point to the relevance of the timing 

of intervention in various models of early interventions. 

 

The effect of age at treatment start was also examined in a complete 

crossover RCT study with 82 autistic children enrolled in the Early Social 

Interaction (ESI), a model implemented by parents. The authors investigated the 

effects of individual-ESI when it begins at 18 or 27 months of age and also 

comparing with the effects of group-ESI, which is less intensive, as an active 

control condition. Children assigned to individual ESI at 18 months exhibited 

larger improvements than those who started individual ESI at 27 months in social 

communication, receptive and expressive language and daily living skills. This 

RCT showed that even a small-time difference of 18 months compared with 27 

months, may have an impact on child outcomes. This result was not present in the 



 22 

group-ESI, excluding the possibility of maturation effects (Guthrie et al., 2023). 

To understand timing effect of community-based early intervention, Gabbay-

Dizdar and collaborators have assessed longitudinal changes in core autism 

spectrum disorder symptoms of 131 children, diagnosed at 1.2–5 years of age. 

Findings showed that the percentage of children who improved in autism 

symptom severity was significantly higher in the group of children diagnosed 

before 2.5 years (65%) compared to the children diagnosed after this age (23%) 

(Gabbay-Dizdar et al., 2022). In another study Smith and collaborators (2015a) 

examined EIBI in nonacademic community agencies including 71 autistic 

children. They found that even after controlling for all other covariates (autism 

severity, cognitive and adaptive skills), lower age at baseline predicted better 

outcomes for cognitive, adaptive behavior skills and autism symptom severity 

scores (T. Smith et al., 2015a). Also, in an RCT study of parent-delivered 

implementation of ESDM, in 98 toddlers at risk for autism, authors found that for 

both ESDM and TAU groups younger age at intake predicted higher cognitive 

outcomes (Rogers et al., 2012). Another RCT compared ESDM in an inclusive 

classroom setting (n= 22) versus specialized classrooms (n= 22). The role of age 

at treatment start in predicting various outcome measures was analyzed for each 

group. Across both inclusive and specialized settings age of starting was 

significantly associated with verbal cognition, where younger children have 

higher gains in language skills than older children. No significant associations 

were found between the other outcome measures (adaptive behavior, non-verbal 

cognitive outcomes) and age at intake. (Vivanti et al., 2019). The same group, led 

by Vivanti and colleagues, tested the hypothesis that preschoolers who fall within 

the age range suggested by ESDM (i.e., 18-48 months) have more favorable 

outcomes than children involved in the same ESDM program but older than 48 

months. They included 32 children aged 18–48 months and 28 children aged 48–

62 months receiving the ESDM for one year. Findings suggested that both groups 

undergoing significant improvement with respect to non-verbal cognition, autism 

symptom severity and adaptive behavior skills. However, the younger group of 
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children get higher verbal skills compared to the older group, and the association 

between verbal cognition score and age at start was moderated by verbal skills at 

the baseline (Vivanti et al., 2016). 

 

To conclude, because of the vast number of studies and meta-analyses 

with conflicting results, it remains to be clarified whether children who start 

treatment at a younger age have greater gains than those who receive treatment 

later in life; and if advancing age limits the amount of change that can be achieved 

with the intervention during childhood. However, early diagnosis and early 

intervention continue to be of paramount importance, but further research will be 

needed to clarify the equivocal nature of the existing literature. 

 
1.4.2 Cognitive level at the baseline 

 

Children's cognitive level is considered one of the most reliable prognostic 

factors of later outcomes. Individual differences in cognitive abilities are 

correlated with important life outcomes, including educational and occupational 

achievement and health (Davies et al., 2011). Available evidence indicates that 

pre-treatment cognitive skills are also the most often reported predictors of 

outcomes in the context of autism early intervention (Hayward et al., 2009; D. 

Zachor & Ben-Itzchak, 2017). Cognitive ability is considered a highly heritable 

trait, although it can be influenced by the learning environment, such as early 

intervention (Ben-Itzchak et al., 2014; Gräff & Tsai, 2013). For this reason, 

cognitive domain is often examined both as a predictor and as an outcome 

measure. 

 

Usually the higher initial cognitive level is believed to have the greatest 

influence on outcome domains, creating a "rich getting richer" phenomenon, in 

which children with significant developmental delays show less treatment benefit, 

than their more advanced peers (Sandbank, Bottema-Beutel, Crowley, Cassidy, 
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Feldman, et al., 2020; Towle et al., 2020). One of the first study showing 

favorable long-term outcomes of EIBI conducted by Lovaas and collaborators, 

showed that children with more positive outcomes in terms of intellectual and 

educational functioning had a higher cognitive level at treatment start (Lovaas, 

1987a). Since then, studies on cognitive predictors have increased in number, but 

they were not always consistent in their results.  

 

For example, a large study of 332 children, aged 2–7 years, enrolled in the 

community-based intensive behavioral intervention, has explored the degree to 

which child’s characteristics at intake are related to children’s outcomes. Authors 

found that initial cognitive level was the strongest predictor of cognitive, adaptive 

behaviour and autism severity outcomes (Perry et al., 2011). Howlin and 

collaborators (2009), in a systematic review of EIBI have found that cognitive 

ability at baseline was related to progress in 4 out of 11 studies included (Howlin 

et al., 2009) and similarly, in a more recent systematic review, cognitive skills 

appeared to be predictive of greater gains in EIBI approaches (Asta & Persico, 

2022). Furthermore, Ben-Itzchak, Watson and Zachor (2017) compared the 

influence of baseline cognitive skills on outcome trajectories. Children were 

enrolled in early ABA-based intervention and divided in higher (DQ ≥70) and 

lower (DQ <70) cognitive groups. Authors showed that both groups decreased in 

autism symptom severity, suggesting that gains in this domain are not related to 

the baseline cognition. However, only the high cognitive (DQ ≥70) group 

significantly improved in adaptive behavior abilities, while the increase in verbal 

skills and fine motor abilities occurred just in the lower (DQ <70) cognitive group 

(Ben-Itzchak et al., 2014). Remarkably, in a subsequent review on ABA-based 

intervention studies, Zachor and Ben-Itzchak found that cognitive skills at intake 

predict both adaptive behavior and autism severity outcomes (D. Zachor & Ben-

Itzchak, 2017). A recent RCT tested effects of ESDM compared to TAU on 118 

autistic children, investigating also if treatment effect of two groups were 

moderated by baseline child’s characteristics.  Authors found that cognitive level 



 25 

at baseline moderated the effect of ESDM compared to TAU on autism severity 

outcome. Suggesting that as cognitive level at baseline increased, the ESDM 

group decreased autism severity scores compared to the TAU group, and the 

opposite happened as cognitive score at baseline decreased (Rogers et al., 2019). 

This is one of few studies that compared the effect of initial cognitive level across 

different treatment groups. 

 

Unlike what has been observed in previous studies, a retrospective 

analysis of low intensity ESDM intervention showed that children who benefited 

most from early intervention were those with a lower cognitive level at baseline. 

Authors divided 21 toddlers at risk for autism in two groups based on cognitive 

score at baseline (<75) and (³75). Findings revealed that only the group of 

children with cognitive scores (<75) had a significant increase in the cognitive 

and language scores, while in the second group with cognitive scores (³75) did 

not show significant improvement (Devescovi et al., 2016). Consistently, other 

works focusing on ESDM intervention found an association between lower 

cognitive level at baseline and higher cognitive improvements. Robain and 

colleagues (2020), investigated the role of cognitive level at start as a predictor of 

treatment outcomes in 22 children enrolled in ESDM and 38 children included in 

community intervention. Findings showed that in both groups lower cognitive 

abilities at baseline were associated with higher cognitive gains over time, 

compared with children who had higher cognitive abilities at start. To be noted, 

children showing more cognitive gains over time were the ones who decrease 

maladaptive behaviors during treatment (Robain et al., 2020). The same group in 

a subsequent study investigated developmental trajectories of autistic 

preschoolers, who received 2 years of individualized and intensive ESDM 

intervention. Using a cluster analysis, authors were able to discriminate 3 groups 

based on their cognitive level at baseline and the rates of cognitive change over 

time. One group of children at baseline had higher cognitive scores and by the end 
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of intervention displayed greater cognitive gains, with no cognitive delay. The 

other two groups both had severe cognitive delay at baseline, but they had very 

different outcomes. The first group showed significant adaptive and cognitive 

skill gains (named optimal responders) while the second group, showed lower 

progress in cognition and adaptive behavior (named minimal responders). 

Notably, optimal responders already exhibited more progress in cognition and 

adaptive functioning than minimal responders after 6 months of intervention 

(Godel et al., 2022). A potential explanation for this phenomenon might be that 

children with lower cognitive functioning at baseline were also those with higher 

potential for progress, compared to children with higher levels of cognitive 

functioning at baseline (Robain et al., 2020). In addition, children in the lower 

cognitive level group may have experienced behaviors that have a strong impact 

on test performance at baseline, which could potentially mask the actual cognitive 

functioning. With improvements in other areas, such as attention and cooperation, 

these children may have less difficulties in presenting more fully their true 

cognitive potential (Ben-Itzchak et al., 2014). However, one consideration to 

point out is that most of the studies included here refer to short-term outcomes (6 

months to 2 years at most). Therefore, it cannot be inferred that the greater 

magnitude of improvements evident in children with cognitive delay necessarily 

reflects long-term outcomes. Further long-term investigations might be useful to 

explain whether these changes may represent a real change in developmental 

trajectories. 

 

However, not all studies agree with this conclusion, there are studies and 

meta-analyses which did not found any kind of associations between pre-

treatment cognitive level and intervention outcomes. This is the case of some 

meta-analyses of ABA interventions (Makrygianni & Reed, 2010; Reichow, 2012; 

Reichow & Wolery, 2009; Rodgers et al., 2020a, 2021; Virués-Ortega, 2010), 

where authors found inconclusive evidence that baseline cognitive ability 

influence the developmental progress during intervention. Also, among ESDM 
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studies the predictive influence of baseline cognitive ability on treatment 

outcomes is also unclear. As mentioned above, some studies reported significant 

associations (Devescovi et al., 2016; Godel et al., 2022; Robain et al., 2020; 

Rogers et al., 2019), while others found that baseline cognitive score is not 

associated with treatment related gains (Rogers et al., 2021; Vivanti et al., 2013). 

Due to the inconsistency of meta-analyses and individual study findings, a 

definitive statement on the prognostic value of pre-treatment cognitive level is 

needed. 

 

 

1.4.3 Biological sex 

 

Previous literature indicates the existence of a number of sex-related 

differences in the diagnosis and presentation of behavioral and clinical 

characteristics of autism (Crank et al., 2021). Prevalence data have estimated that 

males are 3-4 times more likely to receive an autism diagnosis than females 

(Loomes et al., 2017); and girls are often diagnosed at a later age than boys 

(Begeer et al., 2013). One possible explanation of prevalence and age at diagnosis 

differences may be the different presentation of core symptoms and 

developmental outcomes in boys and girls (M.-C. Lai et al., 2015; M.-C. Lai & 

Szatmari, 2020). For example, autistic girls may show a different type of 

restricted interests and repetitive behaviors than boys (M.-C. Lai et al., 2015), a 

recent work suggests that items that best discriminate boys are the stereotyped 

behaviors and restricted interests, while items which best discriminate girls are 

those related to compulsive, sameness, restricted, and self-injurious behaviors 

(Antezana et al., 2019). In terms of social communication domain differences, it 

has been reported that from early age autistic girls tend to imitate, interact and 

engage more in imaginative and pretend play than autistic boys. These different 

behaviors may mask other difficulties that females might have in social 
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communication abilities (R. M. Green et al., 2019). Furthermore, females are 

reported to “camouflage” autism symptoms more than males, it is shown that 

autistic girls with higher cognitive levels are those often underdiagnosed while 

girls who exhibit behavioral problems or low cognitive ability are more likely to 

get a diagnosis (Bargiela et al., 2016; Pathak et al., 2019). In an observational-

clinical assessment setting such as the ADOS (Lord et al., 2000) camouflaging 

may lead to less severe scores, since social-communication atypicality is hidden 

from the assessor (M. C. Lai et al., 2019; Waizbard-Bartov et al., 2021). In 

addition to these reasons, it should be noted that diagnoses are based on 

definitions and diagnostic tools developed and validated using predominantly 

male samples, so the real ratio of males to females in autism is presumably 

underestimated. 

 

Since biological sex accounts for important heterogeneity in autism (M.-C. 

Lai et al., 2015, 2018), it seems reasonable to investigate whether treatment 

outcomes may also vary between males and females. With this aim, some 

intervention trials have tested if there is a significant relationship between sex and 

treatment outcomes, however they did not find a clear association between these 

two variables (Crank et al., 2021; McVey et al., 2017). These results should not be 

considered definitive because of the very little exploration of this topic and the 

small samples of females in the existing trial literature, which make the power to 

examine the moderating effect of sex insufficient (M.-C. Lai et al., 2018; McVey 

et al., 2017). More evidences are needed to develop evidence-based sex-informed 

intervention for autistic individuals. Girls might also need different or more 

individualized approaches to intervention to account for their strengths and needs. 

With increased awareness, knowledge and with improvements in screening and 

diagnostic methods, more autistic females are likely to be identified at a younger 

age, giving them the opportunity to benefit from early intervention (2021-2023 

IACC Strategic Plan for Autism Research, 2023). Therefore, it is important that 

future studies, having a large number of females within the sample, investigate 
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whether being male or female may have a differential effect on the outcomes 

related to early intervention programs. 
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1.5 Structure of the thesis 

 

The purpose of the following chapters is to expand and improve upon 

previous knowledge on early intervention research, unpacking “what works, for 

whom, for what and why” questions. Since there is no consensus on clinical-

behavioral factors and no prior knowledge on biological characteristics which 

predict outcomes in the context of autism early intervention, it is important to 

investigate all factors outlined above and describe their effects on developmental 

change during treatment. Moreover, as several authors have suggested, autism is 

best described in terms of atypical development rather than a static entity 

(Chevallier et al., 2012; Dawson, 2008; Klintwall et al., 2015). However, to date, 

there are only a few large-scale intervention studies describing variability at the 

individual level with respect to time (Chen et al., 2022). Given that, our work is 

focused on developmental trajectories, which are a useful way to conceptualize 

the rate at which children learn during treatment (Klintwall et al., 2015).  

 

With this aim, Chapter 2 describes our work conducted in collaboration 

with University of California, San Diego, where we investigated whether pre-

treatment clinical and biological characteristics are able to predict individual 

developmental trajectories. Here we used gene expression patterns of blood 

leukocytes as possible biological predictors. This choice is based on the growing 

literature that has shown blood leukocyte gene expression activity may be a good 

proxy for assessing brain-relevant biological mechanisms and may be associated 

with different phenotypes in autism. (Gazestani et al., 2019; Lombardo et al., 

2018). Therefore, by incorporating gene expression measures into our study 

design, we examined whether they were informative of children's developmental 

trajectories during treatment and which brain-relevant mechanisms were 

associated. For this investigation we selected a cohort of 41 autistic toddlers who 

all received the same standardized intervention at a very young age and provided 
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a blood sample and clinical-behavioral measures before the start of treatment. We 

computed individual treatment slopes based on the rate of children learning skills 

and we evaluated how well pre-treatment clinical-behavioral measures may be 

predictive of individual treatment slopes, in contrast to blood leukocyte gene 

expression features. To our knowledge this is the first time that is investigated 

whether and how information at the genomic level can predict treatment outcome. 

Results are described in Chapter 2, where a full description of findings is 

provided. 

 

Given the current lack of agreement in the literature, we then focused our 

attention exclusively on the most studied putative predictors in early intervention 

research in order to answer to primary questions – such as, what works, for whom, 

and for what. To better answer the "for whom" question we conducted an 

individual participant data meta-analysis (IPD-MA) or ‘mega-analysis’ 

(Eisenhauer, 2021) of a large international early intervention consortium. In 

contrast to meta-analyses, this is an alternative approach which allows the 

isolation of individual factors to explore their key role in moderating children's 

developmental trajectories throughout the course of early intervention. In this 

work we included 11 international datasets, with longitudinal data on early 

intervention, comprising 645 autistic toddlers between 12 and 60 months of age at 

treatment start. Participants received two types of interventions either Early Start 

Denver Model (ESDM) or other treatment as usual/community (COM/TAU) 

interventions, with variable levels of intensity. Longitudinal data, common to 

most datasets, such as measures of cognitive skills, adaptive behavior abilities and 

autism symptom severity were used as treatment outcomes. Here, we examined 

the influence of a variety of treatment-specific factors such as type and intensity 

of treatment, as well as child’s characteristics at the baseline, such as age, 

cognitive level and biological sex, for predicting developmental trajectories 

during treatment. 

 



 32 

Finally, Chapter 4 briefly summarizes the findings of the thesis and 

discuss some of limitations, as well as potential future directions.  
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Chapter 2: Pre-treatment clinical and gene 

expression patterns predict developmental change 

in early intervention in autism. 

 

Chapter 2 has been published as: Michael V. Lombardo*, Elena Maria 

Busuoli*, Laura Schreibman, Aubyn C. Stahmer, Tiziano Pramparo, Isotta Landi, 

Veronica Mandelli, Natasha Bertelsen, Cynthia Carter Barnes, Vahid Gazestani, 

Linda Lopez, Elizabeth C. Bacon, Eric Courchesne and Karen Pierce. (2021) Pre-

treatment clinical and gene expression patterns predict developmental change in 

early intervention in autism Molecular Psychiatry. doi: 10.1038/s41380-021-

01239-2 

* These authors contributed equally: Michael V. Lombardo, Elena Maria Busuoli. 

 

 

2.1 Introduction 

 

Early detection and intervention in autism are topics of paramount 

importance because of the enormous potential to capitalize on the brain’s 

enhanced plasticity during early development as a mechanism to positively impact 

outcomes (Dawson, 2008). While it is becoming increasingly clear that the 

biology of autism starts in early prenatal development (Courchesne et al., 2019, 

2020) and that early behavioral signs begin to manifest before 18 months (Miller 

et al., 2017; Pierce et al., 2011), the mean age of diagnosis is still lagging far 

behind at 3–4 years of age (Baio et al., 2018; Maenner et al., 2020). In contrast to 

this reality, we have recently shown that diagnostic stability at much earlier ages 

is indeed high (Pierce et al., 2019), and thus the ability to detect and start 
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treatment earlier is feasible (Pierce et al., 2021). Some have suggested that 

detection and intervention before 24 months are key in order to capitalize on early 

neuroplasticity to facilitate optimal outcomes (Pierce et al., 2021; Webb et al., 

2014). The impact of starting intervention earlier would likely be more total 

positive gains for the child (indexed by the absolute level of improvement). 

However, a less obvious, but perhaps equally important effect of earlier 

intervention could be a decrease in the variability of treatment responses at a 

group level. If this were the case, the reduction in treatment response variability 

might allow for more precise predictions about treatment outcomes. 

Understanding the ingredients that moderate and predict early intervention 

treatment response is of the utmost importance, especially given the current state 

of the field, where there is notably large heterogeneity in how children may 

respond to treatment (Vivanti, Prior, et al., 2014, p. 201). While the field has 

noted that some early interventions have an impact at a group level (French & 

Kennedy, 2018; Zwaigenbaum et al., 2015), what is less clear is how to predict an 

individual’s specific response to the treatment and how to make that prediction 

before treatment begins. Understanding individual-level predictors of treatment 

response, particularly pre-treatment individual characteristics, is a key objective 

for precision medicine (Collins & Varmus, 2015; Lombardo, Lai, et al., 2019) 

applied to autism. Ideally, we would like to know what child specific 

characteristics are present before an intervention starts, in order to help us 

optimally predict how that specific intervention may affect the child. There are 

indications that some pre-treatment characteristics such as level of play, language, 

social cognitive abilities, IQ, autism symptom severity, and adaptive behavior 

may be important for moderating treatment response (Contaldo et al., 2020; 

Kasari et al., 2012; Landa, 2018; Rogers et al., 2012; T. Smith et al., 2015a; 

Vivanti et al., 2013; D. Zachor & Ben-Itzchak, 2017). In contrast to the many 

clinical studies that have been carried out on these phenotypic characteristics, 

biological predictors of treatment responses. remain largely unknown, leaving 

open the possibility that individual intrinsic biological characteristics of a child 
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may also moderate their response to treatment. If we better understood such 

treatment-relevant and individualized biological characteristics, this might yield 

unique insights into how and why some treatments work better for some children, 

but not others. In this work, we examine the effect of relatively early (<24 

months) versus later (≥24 months) treatment start and how this may affect total 

gains and variability in treatment response. We also investigate whether pre-

treatment standardized clinical behavioral measures and blood leukocyte gene 

expression patterns moderate how quickly a child will respond to early 

intervention. We operationalize treatment response here as the rate at which 

children respond over time and will refer to this concept from here on as 

“treatment slopes.” Blood leukocyte gene expression offers up a powerful in-vivo 

alternative to clinical behavioral measures, as it helps to map out biological 

mechanisms of brain relevance but in a peripheral non-neural tissue. While the 

brain is largely an inaccessible tissue to assay mechanisms like gene expression in 

living patients, blood leukocyte gene expression has revealed a number of 

interesting brain-relevant characteristics that can be related to different 

phenotypes in living patients. Leukocyte expression patterns can be used in a 

classifier to predict diagnostic status (Pramparo, Pierce, et al., 2015), correlate 

with total brain size (Pramparo, Lombardo, et al., 2015), and are related to large-

scale functional neural system response to speech (Lombardo et al., 2018), the 

patterning of thickness and surface area in the cerebral cortex (Lombardo, Eyler, 

et al., 2021), and social symptom severity (Gazestani et al., 2019). Differentially 

expressed genes in blood leukocytes are part of extended gene networks that are 

linked to highly penetrant autism-related mutations (Gazestani et al., 2019). 

Another revelation is that blood leukocyte genes associated with autism tend to be 

within a class of broadly expressed genes that are highly expressed in the brain 

and many other tissues (Lombardo et al., 2018). Broadly expressed genes are one 

class of important autism-associated genes that primarily have peak levels of 

expression during prenatal development (Courchesne et al., 2020; Gazestani et al., 

2020). Given the sensitivity of blood leukocyte gene expression activity as a tool 
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for assessing the living biology behind autistic toddlers (Courchesne et al., 2019), 

we reasoned that there may be pre-treatment gene expression patterns in autistic 

toddlers that may be predictive of treatment slopes. In this study, we used the least 

absolute shrinkage and selection operator (LASSO) regression (Tibshirani, 1996) 

to model how clinical behavioral measures or gene expression patterns may be 

predictive of treatment slopes. LASSO is an important modeling strategy here for 

its use of L1 regularization, which acts to penalize largely uninformative features 

and results in a sparse solution that allows the user to isolate the specific subset of 

features that are highly predictive. To better understand treatment-relevant genes, 

we ran further analyses to test if these genes highly interact at the protein level, 

whether they overlap with known autism-related genomic and epigenomic 

mechanisms, and how they are expressed spatially throughout the brain. 

 

2.2 Materials and Methods 

Participants 

 

This study was approved by the Institutional Review Board at the 

University of California, San Diego. Participants and families in this study were 

recruited as part of a larger multidisciplinary research project examining early 

neurobiological features and development of autism at the University of 

California, San Diego. Toddlers with a high likelihood for an autism diagnosis 

were identified from one of two sources: general community referral (e.g., 

website or outside agency) and a population-based screening method called Get 

SET Early (Pierce et al., 2011, 2021). Using this population-based screening 

approach, toddlers with a high likelihood for an autism diagnosis as young as 12 

months were identified in pediatric offices with a broadband screening 

instrument—the Communication and Symbolic Behavior Scales-Developmental 

Profile Infant Toddler Checklist (Wetherby & Prizant, 2001). 
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Toddlers were evaluated and tracked every 6 months until their third 

birthday when a final diagnosis was given. Licensed clinicians with expertise 

evaluating and diagnosing autistic toddlers made final diagnoses based on clinical 

judgment and by incorporating criteria for autism on the Autism Diagnostic 

Observation Schedule (ADOS) (Lord et al., 2000; Pierce et al., 2019). Toddlers 

who were determined to be high likelihood for autism were offered intervention 

through our UCSD treatment program. Seventy-two families were referred for 

intervention, and 49 families chose to receive treatment in our program. Of the 49 

children who received treatment from our program, 41 children (33 males, 8 

females, mean age at the start of treatment = 22.77 months, SD age= 4.08, range= 

13–27 months) also had a blood sample taken before the start of treatment and 

were therefore included in analyses for this work. Additional participant pre-

treatment clinical information can be found in Table 1. Data from this study have 

been previously reported in Bacon et al. (2014), although this prior paper only 

focused on treatment and clinical behavioral data and did not examine gene 

expression. 

 

Early intervention program 

 

In order to reduce confounds that could be associated with differences 

associated with treatment type and administration, all toddlers received the same 

in-home treatment program using the Strategies for Teaching Based on Autism 

Research (STAR) curriculum (Arick et al., 2015). The STAR program is a 

comprehensive behavioral intervention program with a curriculum designed 

specifically for autistic children and includes instructional strategies of Discrete 

Trial Training (Lovaas, 1987a; Maurice et al., 1996; T. Smith, 2001), Pivotal 

Response Training (Koegel et al., 1987; Koegel, Robert L., 1988), and teaching in 

Functional Routines (Brown et al., 1987; McClannahan & Krantz, 2010). In an 
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effort to improve the developmental appropriateness of the curriculum for these 

very young children, the STAR curriculum was augmented with developmental 

approaches applied through Project ImPACT. Project ImPACT is a manualized 

curriculum developed by Ingersoll and Dvortcsak (Ingersoll & Dvortcsak, 2010) 

used to target social-communication goals in young autistic children. Project 

ImPACT focuses on the relationship between adult responsivity and children’s 

social-communicative development. In the Project ImPACT curriculum, an early 

childhood interventionist (ECI) combines naturalistic behavioral strategies and 

developmental strategies. For example, the interventionist would respond to all 

communicative attempts by the child as if they were purposeful and recast 

expanded communication to facilitate communicative growth. 

 

Treatment delivery  

 

Each child received 6–12 hours per week (mean = 9.01, SD =1.53) of 

direct one-on-one intervention with a trained ECI at home until 36 months of age. 

ECIs were bachelor’s degree or undergraduate-level research assistants with 

previous experience with young autistic children. Each ECI received extensive 

didactic and hand son training in behavioral principles and the STAR and Project 

ImPACT programs discussed above. Fidelity of implementation was reached for 

each intervention strategy as determined by using all components of the 

intervention correctly at least 80% of the time across two different children and 

monitored for maintenance. Programs were developed and supervised by master’s 

degree-level clinicians (i.e., in-home coordinators) experienced in autism, with 

oversight from two doctorate-level clinical psychologists with extensive 

experience in early behavioral intervention for this population. In addition, parent 

coaching was provided throughout the course of participation. 
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Treatment outcome measure 

 

The Adapted Student Learning Profile (aSLP) is a curriculum-based 

assessment for determining student learning goals and was adapted from the 

STAR curriculum to include additional goals from the Project ImPACT 

curriculum (see (Arick et al., 2015; Ingersoll & Dvortcsak, 2010)). The aSLP 

provides an extensive list of skills targeted in the STAR and Project ImPACT 

curricula and allows for the assessor to indicate the child’s performance level on 

each skill across six domains: receptive language, expressive language, 

spontaneous language, functional routines, pre-academic concepts, and play and 

social interaction concepts. Data were analyzed using total aSLP scores across all 

domains rather than separate domain aSLP scores. The aSLP is administered by 

presenting each item up to five times to the child and observing the child’s 

response. This is conducted in a structured format, and no teaching occurs during 

the assessment. The assessor then rates the child’s response, indicating if the child 

did not demonstrate the skill or showed a partial demonstration of the skill or 

mastery of the skill. The entire aSLP takes ~30–45 minutes to complete. Each 

child’s in-home coordinator completed an aSLP at intake and every 3 months 

thereafter to determine performance and progress. A child’s performance was 

estimated by the subject-specific slope estimated in a linear mixed-effect model 

for modeling on the longitudinal aSLP scores (see section on “Developmental 

trajectory analyses”). 

 

Pre-treatment clinical behavioral measures 

 

Pre-treatment clinical behavioral measures were collected to characterize 

the sample and utilized for analyzing how predictive such pre-treatment clinical 

measures (measured at treatment start) were of subsequent treatment slopes. The 

clinical measures analyzed were the Mullen Scales of Early Learning (MSEL), the 
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Vineland Adaptive Behavior Scales (2nd edition; VABS), and the ADOS. The 

MSEL assesses the developmental functioning of children between birth and 68 

months (Mullen E. M. & American Guidance Service, 1995). An examiner 

measures child functioning level through a series of play-like tasks over five 

domains: gross motor, fine motor, receptive language, expressive language, and 

visual reception skills. For each scale, the assessment derives a T-score with a 

mean of 50 and standard deviation of 10, a percentile score, and an age equivalent 

score indicating at what developmental age the child is performing. An early 

learning composite (ELC) score is calculated from the total of scores on all scales 

(with the exception of the gross motor scale) with a mean of 100 and standard 

deviation of 15. The VABS provides a measure of adaptive skills used to cope 

with challenges of daily living (Sparrow, Sara S. et al., 2005). A caregiver 

completes a questionnaire regarding the individual’s current level of functioning 

across five domains: communication, daily living skills, socialization, motor 

skills, and maladaptive behavior. All scales use standard scores with a mean of 

100 and a standard deviation of 15, a percentile score, and an age equivalent score 

indicating at what developmental age the individual is performing. Scores on all 

scales are combined to obtain an overall adaptive behavior composite (ABC) with 

a mean of 100 and a standard deviation of 15. 

 

Developmental trajectory analyses 

 

To estimate aSLP trajectories for each toddler, we used a linear 

mixedeffect model to estimate longitudinal subject-specific intercepts and slopes 

as random effects. The subject-specific slopes (from here on called “treatment 

slopes”) estimated from this model were extracted and used as the primary 

treatment outcome measure to be predicted by pre-treatment gene expression or 

clinical measures. These analyses were computed using the lme function from the 

nlme library in R. To better understand the effects of age at treatment start, we 
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used 24 months as the cutoff point for distinguishing very early versus later 

treatment start. This very early (<24 months) versus later distinction at 24 months 

(≥24 months) was made given that it is considered that the first 24 months of life 

are the critical early window for when early intervention could have the most 

impact (T. Smith et al., 2015a; Webb et al., 2014). Early (<24 months) versus 

later (≥24 months) start groups were not different with regard to treatment 

intensity (i.e., average number of hours per week in treatment; F(1,39) = 0.004, p 

=0.94; <24 months mean =8.91, SD= 1.65; ≥24 months mean= 9.14, SD = 1.43) 

or with regard to general pretreatment developmental ability (i.e., pretreatment 

Mullen Early Learning Composite; Welch’s t (36.21)= −1.19, p= 0.23; <24 

months mean= 76.50, SD = 14.29; ≥24 months mean= 70.74, SD= 16.25). Linear 

mixed-effect models were used to examine differences in the aSLP as a function 

of very early (<24 months) versus later (≥24 months) start group. The linear 

mixed effect model included treatment start group (Early, <24 months of age at 

the start of treatment; Later, ≥24 months of age at the start of treatment), age, the 

interaction between age and treatment start group, number of days in treatment, 

treatment intensity (average number of hours per week), and pre-treatment Mullen 

Early Learning Composite as fixed effects and subject-specific age slopes and 

intercepts as random effects. We also investigated how variability in treatment 

slopes may differ between very early versus later start groups by computing the 

standard deviation of treatment slopes within each group and then quantifying the 

difference in standard deviation, computed as the difference score between later 

versus very early start groups. To test the standard deviation difference between 

groups against the null hypothesis of no difference in standard deviation 

difference score, we computed standard deviation difference scores over 10,000 

random permutations of the very early or later start group labels, to derive a null 

distribution of standard deviation difference scores. A p value was then computed 

as the percentage of times under the null distribution that a standard deviation 

difference score was greater than or equal to the actual standard deviation 

difference score. 
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Blood sample collection, RNA extraction, quality control, and sample 

preparation 

 

Four to six milliliters of blood were collected into EDTA-coated tubes 

from toddlers on visits when they had no fever, cold, flu, infections or other 

illnesses, or use of medications for illnesses 72 hours prior to blood draw. 

Temperature was also taken at the time of blood draw. Blood samples were 

passed over a LeukoLOCK filter (Ambion, Austin, TX, USA) to capture and 

stabilize leukocytes and immediately placed in a −20 °C freezer. Total RNA was 

extracted following standard procedures and manufacturer’s instructions 

(Ambion, Austin, TX, USA). LeukoLOCK disks (Ambion, Cat #1933) were freed 

from RNA-later and Tri-reagent (Ambion, Cat #9738) was used to flush out the 

captured lymphocyte and lyse the cells. RNA was subsequently precipitated with 

ethanol and purified through washing and cartridge-based steps. The quality of 

messenger RNA samples was quantified by the RNA integrity number (RIN), 

with values of 7.0 or greater considered acceptable (Schroeder et al., 2006), and 

all processed RNA samples passed RIN quality control. Quantification of RNA 

was performed using Nanodrop (Thermo Scientific, Wilmington, DE, USA). 

Samples were prepped in 96-well plates at the concentration of 25 ng/μl. 

 

Gene expression and data processing  

 

RNA was assayed at Scripps Genomic Medicine (La Jolla, CA, USA) for 

labeling, hybridization, and scanning using the Illumina BeadChips pipeline 

(Illumina, San Diego, CA, USA) per the manufacturer’s instruction. All arrays 

were scanned with the Illumina BeadArray Reader and read into Illumina 

GenomeStudio software (version 1.1.1). Raw data were exported from Illumina 

GenomeStudio, and data preprocessing was performed using the lumi package 
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(Du et al., 2008) for R (http://www.R-project.org) and Bioconductor 

(https://www.bioconductor.org) (Gentleman et al., 2004). Raw and normalized 

data are part of larger sets deposited in the Gene Expression Omnibus database 

(GSE42133; GSE111175). 
 

Patient gene expression dataset 

 

A larger primary dataset of blood leukocyte gene expression was available 

from 383 samples from 314 toddlers within the UC San Diego cohort, with the 

age range of 1–4 years old. The samples were assayed using the Illumina 

microarray platform in three batches. The datasets were combined by matching 

the Illumina Probe ID and probe nucleotide sequences. The final set included a 

total of 20,194 gene probes. Quality control analysis was performed to identify 

and remove 23 outlier samples from the dataset. Samples were marked as outliers 

if they showed low signal intensity (average signal two standard deviations lower 

than the overall mean), deviant pairwise correlations, deviant cumulative 

distributions, deviant multidimensional scaling plots, or poor hierarchical 

clustering, as described elsewhere (Pramparo, Lombardo, et al., 2015). This 

resulted in a final high-quality dataset that included 360 samples from 299 

toddlers. High reproducibility was observed across technical replicates (mean 

Spearman’s correlation of 0.97 and median of 0.98). Thus, we randomly removed 

one of each of the two technical replicates from the primary dataset. From the 

subjects in the larger primary dataset, a total of n = 41 also had treatment data; n = 

36 from the Illumina HT12 platform along with n = 5 from the Illumina WG6 

platform were used in this study. The 20,194 probes were quantile normalized and 

then variance filtered to leave the top 50% of highly varying probes (i.e., 10,097 

probes). Treatment slopes were slightly different as a function of batch (F (2,34) 

=3.44, p = 0.047), but were not associated with age at blood sampling (F (1,34) = 

0.0009, p = 0.97), sex (F(1,34) = 2.03, p = 0.16), RIN (F (1,34) =0.22, p = 0.64), 

or treatment intensity (average number of hours per week in treatment) (F(1,34) = 
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0.005, p = 0.93). Removal of variance associated with batch, sex, and RIN was 

achieved by using a linear model to estimate these effects in the training set of 

each cross-validation (CV) fold. This model computed on the training set was 

then applied to the test set for removing variance in such covariates. 

 

Predictive modeling of treatment slopes 

 

To predict individual differences in treatment slopes, we used a LASSO 

regression model (Tibshirani, 1996), which was used as predictors of either 

multivariate pre-treatment gene expression or clinical measures. LASSO uses L1 

regularization (controlled by the lambda (λ) parameter) to shrink beta coefficients 

of uninformative features and thus reduce or effectively remove the influence of 

such features on the model. This feature is important for our purposes as we seek 

to compute a model that predicts treatment slopes but also informs us as to which 

features (e.g., genes or clinical measures) are most important for the model. For 

all LASSO modeling to assess the model’s predictive utility, we used leave-one-

out CV to partition the data into training and test sets. Within the training set, a 

10-fold CV loop is used to estimate the optimal lambda parameter for the model. 

Cross-validated mean-squared error (MSE) and R2 were computed to evaluate the 

predictive value of the model. We also used permutation tests (1000 

permutations) to randomly shuffle treatment slopes and construct a null 

distribution of MSE values under the null hypothesis. This null MSE distribution 

was used to compute a p value, defined as the proportion of times under the null 

distribution where an MSE value was as low or lower than the observed MSE 

value with unpermuted treatment slopes. 
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Protein–protein interaction analysis 

 

The resulting gene list from the LASSO model predicting treatment slopes 

was then tested for evidence of protein–protein interactions (PPI). This analysis 

was achieved using the STRING database (https://string-db.org), with all 

parameters set to the STRING defaults (using all interaction sources and 

confidence interaction scores of 0.4 or higher). STRING also outputs enrichment 

results for Gene Ontology, Reactome, KEGG, and UniProt databases. 

 

Autism-associated gene set enrichment analyses 

 
To better link the set of treatment-relevant genes prioritized by the LASSO 

model, we tested this gene set for enrichment with other lists of genes known 

from the literature to be associated with autism. For autism associated genetic 

mutations, we used genes from SFARI Gene (https://gene.sfari.org) (Abrahams et 

al., 2013) in categories S, 1, 2, and 3 (October 2020 release). For genes with 

evidence of dysregulated expression in postmortem cortical tissue, we used 

differentially expressed gene lists from Gandal et al. (2018). At the epigenetic 

level, we also analyzed genes with evidence for differential histone acetylation in 

autism in postmortem prefrontal and temporal cortex tissue (Sun et al., 2016). 

 

Spatial gene expression analyses 

 

To get a better idea of the brain regions that are likely to be maximally 

affected by treatment-relevant genes prioritized by the LASSO model, we 

examined how these genes were spatially expressed across the brain using the 

Allen Institute Human Brain Atlas (Hawrylycz et al., 2012). Whole-brain gene 

expression maps for treatment-relevant genes were downloaded in the Montreal 

Neurological Institute space from https://neurosynth.org/genes/. These gene maps 

were then input into a whole-brain one-sample t test computed in SPM12 

https://string-db.org/
https://gene.sfari.org/
https://neurosynth.org/genes/
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(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Thresholding for multiple 

comparisons was achieved with voxel-wise false discovery rate (FDR) correction 

set to q < 0.05. 

 

2.3 RESULTS 

Differences between early versus late treatment start groups 

 

A total of n = 41 toddlers were considered in all further analyses given that 

they had both gene expression and treatment data. In a first analysis, we examined 

whether individuals with a very early start to treatment (i.e., <24 months) would 

result in better outcomes than those who started treatment later (i.e., ≥24 months). 

As noted above, this early versus late distinction at 24 months was made given 

that it is considered that the first 24 months of life are the critical early window 

for when early intervention could have the most impact (T. Smith et al., 2015b; 

Webb et al., 2014). For this analysis, we used a linear mixed-effect model that 

modeled treatment start group (Early, <24 months of age at the start of treatment; 

Later, ≥24 months of age at the start of treatment), age, the interaction between 

age and treatment start group, number of days in treatment, treatment intensity 

(average number of hours per week), and pre-treatment Mullen Early Learning 

Composite as fixed effects and subject-specific age slopes and intercepts as 

random effects. Main effects were observed for age (F = 134.09, p = 2.22e − 16) 

and treatment start group (F = 20.92, p = 5.47e − 5), but there was no interaction 

between age and treatment start group (F = 1.14, p = 0.28). As shown in Figure 

1A, the treatment start group effect is driven by the early group (<24 months) 

showing larger total treatment gains than those who start treatment relatively later 

(≥24 months) and that these effects cannot be explained by factors such as the 

duration of time in treatment, treatment intensity, or general pre-treatment 

developmental ability. However, the lack of an age-by-group interaction in 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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predicting treatment slopes indicates that there are no differences in the steepness 

of the trajectories between early versus late start groups. While the steepness of 

treatment slopes does not heavily differ on average between early versus late start 

groups, it is noteworthy that where the two groups do differ is on the variability in 

treatment slopes. Figure 1B, C shows a clear distinction between the late start 

group showing markedly more variable treatment slopes than the early start 

group. A permutation test further verified that the actual difference in standard 

deviations between late versus early start groups is highly significant relative to 

what this standard deviation difference would be under random group labeling (p 

= 0.004) (Figure 1D). This result indicates that while treatment slopes remain 

relatively consistent in their variability before 24 months, after 24 months the 

treatment slopes become much more variable. 

 

Prediction of treatment slopes with pre-treatment clinical measures  

 
We next examined if pre-treatment clinical behavioral measures could be 

predictive of treatment slopes. A LASSO model that included all pre-treatment 

ADOS, Mullen, and VABS subscales was able to significantly predict treatment 

slopes (mean MSE = 19.87, p = 9.99e − 4, R2 = 0.21) (Figure 2A). Describing the 

correlations between treatment slopes and individual pre-treatment clinical 

measures, we find that all Vineland and Mullen subscales are significantly 

positively correlated, whereas total ADOS score and ADOS RRB were negatively 

correlated with treatment slopes (Figure 2B). These results are largely consistent 

with the idea from past work that pre-treatment clinical measures can be 

predictive of later treatment outcomes (Contaldo et al., 2020; Kasari et al., 2012; 

Landa, 2018; Rogers et al., 2012; T. Smith et al., 2015a; Vivanti et al., 2013; D. 

Zachor & Ben-Itzchak, 2017). However, as a new perspective on this effect, with 

longitudinal trajectories measured over more than just two time-points (e.g., pre-

treatment and post-treatment), we find that pre-treatment clinical measures can 
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predict how steep an individual’s treatment slope trajectory will be over the 

course of the treatment. 

 

Figure 1. Treatment slopes and relationship with age at treatment start. Panels A and B 
show trajectories of skill acquisition on the Adapted Student Learning Profile (aSLP) 
treatment outcome measure. Panel A shows these trajectories for treatment start groups 
defined by age at treatment start as either very early (<24 months, pink) or relatively 
later (≥24 months, turquoise). Panel B shows the trajectories but with each individual’s 
data now colored by treatment slopes (colored from blue to red) estimated from a linear 
mixed effect model. Higher slopes indicate steeper trajectories and thus faster rate of 
skill growth over time whereas relatively lower slopes indicate less steep trajectories that 
can be interpreted as relatively slower rates of skill growth over time. Panel C shows 
treatment slopes for each individual as a function of age at treatment start (color 
indicates treatment slopes, as shown in panel B). Variability in treatment slopes becomes 
markedly larger when age of treatment start occurs after 24 months of age. Panel D 
shows a null distribution of difference in standard deviations over 10,000 permutations of 
random labelings of later (≥24 months) vs very early (<24 months) groups. The actual 
difference in standard deviation between later vs very early start groups is shown by the 
vertical red line.  
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Figure 2. Predicting treatment slopes with pre-treatment clinical measures. Panel A 
shows actual treatment slopes (y-axis) versus predicted treatment slopes from a LASSO 
model (x-axis) when using pre-treatment clinical measures as features. Color from blue 
to red indicates actual treatment slope values. Panel B shows the correlation (Pearson’s 
r) between treatment slopes and each of the pre-treatment clinical measures. The 
coloring of the bars indicate the -log10(p-value) and bars that pass the vertical dotted 
line are measures that pass FDR q<0.05. Abbreviations: ADOS, Autism Diagnostic 
Observation Schedule; SC, social-communication; RRB, restricted repetitive behaviors; 
MSEL, Mullen Scales of Early Learning; VR, visual reception; FM, fine motor; RL, 
receptive language; EL, expressive language; VABS, Vineland Adaptive Behavior Scales; 
Comm, communication; DL, daily living skills; Soc, socialization; ABC, adaptive 
behavior composite. 

 

Prediction of treatment slopes with pre-treatment blood leukocyte gene 

expression data 

 

We next asked if pre-treatment biological characteristics such as 

multivariate pre-treatment gene expression in blood leukocytes could also predict 

treatment slopes. Using a similar LASSO regression approach, we find that pre-

treatment gene expression can also significantly predict treatment slopes (MSE = 

21.67, p = 0.001, R2 = 0.13) (Figure 3A), albeit to a lesser extent than pretreatment 

clinical behavioral variables (e.g., 13% variance predicted with gene expression 
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versus 21% variance predicted with clinical behavioral measures). Next, we 

investigated which genes were most important in helping the LASSO model make 

such treatment slope predictions. Because LASSO uses L1 regularization to shrink 

coefficients of features that are less informative to 0, this allowed us to identify the 

subset of key genes that contribute to the model’s predictive accuracy. Here we find 

that LASSO prioritizes 295 genes that help predict treatment slopes. Rather than 

being a random array of genes, these treatment-relevant genes show evidence of 

interactions at the protein level, as evinced with a PPI analysis (observed edges = 

353, expected edges 306, p = 0.004) (Figure 3C). Further annotation of this 

treatment-relevant gene set was done with gene set enrichment analysis. This 

analysis discovered enriched biological processes such as regulation of protein 

localization and vesicle-mediated transport. Cellular compartments such as cytosol, 

intracellular organelle lumen, and cytoplasm were also enriched. With UniProt, we 

also discovered acetylation as a keyword enrichment (Figure 3C) (Table 2). Thus, 

treatment-relevant genes discovered by LASSO likely interact at the protein level 

and may be involved in processes such as protein localization, vesicle-mediated 

transport, and acetylation. 

 

We next asked if this list of treatment-relevant genes might be associated 

with genetic mutations associated with autism or with genes that show 

dysregulated expression or histone acetylation in postmortem cortical tissue. 

Using gene lists from SFARI Gene (Abrahams et al., 2013) as well as a list of 

differentially expressed genes from Gandal et al. (2018), we find no evidence of 

enrichment in either of these lists. However, we did find the presence of four 

genes that are either high-confidence and/or syndromic autism genes in SFARI 

Gene— KMT2C, CORO1A, FBXO11, and PPP2R5D. KMT2C is noted as a rare 

de novo loss-of-function variant associated with autism (C Yuen et al., 2017; 

Iossifov et al., 2014; Krumm et al., 2015; O’Roak et al., 2012; Satterstrom et al., 

2020; The DDD Study et al., 2014). CORO1A is a rare de novo loss-of-function 

variant associated with autism (Satterstrom et al., 2020) and is located within the 
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well-known autism-associated CNV region of 16p11.2 (Weiss et al., 2008) 

FBXO11 is another rare de novo loss of-function and missense variant in autism 

(Iossifov et al., 2014; Krumm et al., 2015) and appears in the autism-associated 

CNV region of 2p16.3 (Pinto et al., 2010; The Autism Genome Project 

Consortium, 2007). PPP2R5D is a known syndromic cause of autism and rare de 

novo loss-of-function variant associated with autism (Satterstrom et al., 2020; 

Shang et al., 2016). Each of these genes is a member of the PPI network shown in 

Figure 3C. Related to the UniProt enrichment in acetylation, we also found 

significant enrichment with genes that are differentially acetylated in autism 

postmortem cortical tissue (Figure 3B and Table 3). Specifically, treatment-

relevant genes were enriched for upregulated histone acetylated genes in the 

prefrontal cortex tissue, but downregulated histone acetylated genes in the 

temporal cortex. This difference in spatial regions and directionality of the histone 

acetylation effect could suggest that these treatment-relevant genes may 

asymmetrically impact differing brain regions. Thus, while these treatment-

relevant genes map onto a few genes with known evidence for high-confidence 

mutations or dysregulated gene expression, they are more strongly linked to genes 

that show evidence of differential histone acetylation in autism cortical tissue. 

This potentially indicates that treatment-relevant biology may be linked to 

epigenetic changes such as histone acetylation in cortical tissue. Given that early 

intervention intends to change behavior through reshaping the underlying biology, 

these links to histone acetylation could potentially provide key novel evidence as 

to how treatment effects may be moderated by individual molecular 

characteristics intrinsic to each individual. 
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Figure 3. Predicting treatment slopes with pre-treatment blood leukocyte gene 
expression. Panel A shows actual treatment slopes (y-axis) versus predicted treatment 
slopes from a LASSO model (x-axis) using pre-treatment blood leukocyte gene expression 
as features. The color from blue to red indicates actual treatment slope values. Panel B 
shows the −log 10 p value for the enrichment test (enrichment odds ratio (OR) colored in 
red) between treatment-relevant genes and ASD-associated gene lists. SFARI ASD refers 
to genes listed on SFARI Gene (https://gene.sfari.org), where mutations are known to be 
associated with ASD. DE Upreg or Downreg lists are genes that are (DE in postmortem 
cortical tissue (Gandal et al., 2018). ASD DA lists are genes whose histone proteins are 
DA in postmortem cortical tissue (Pinto et al., 2010). Bars passing the dotted line 
indicate gene lists that pass FDR q < 0.05. Panel C shows a graph of the protein–protein 
interaction (PPI) network of treatment-relevant genes from the LASSO model. Red nodes 
are genes enriched in UniProt for “acetylation.” Green circles indicate genes whose 
histone proteins are DA in autism postmortem cortical tissue. Blue circles indicate genes 
that have high-confidence or syndromic ASD genes in SFARI Gene. DE differentially 
expressed, DA differentially acetylated, PFC prefrontal cortex, TC temporal cortex. 
 

Finally, we examined how treatment-relevant genes may be preferentially 

expressed in specific regions of the human brain. Leveraging spatial gene 

expression information from the Allen Institute Human Brain Gene Expression 

Atlas, we looked for which regions showed high levels of expression of these 

treatment relevant genes. To do this, we downloaded spatial gene expression maps 

for all 295 treatment-relevant genes from https://neurosynth.org/genes/ . With a 

https://neurosynth.org/genes/
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one-sample t test in SPM12, we ran a whole-brain analysis to identify brain areas 

where expression levels were significantly different from 0, correcting for 

multiple comparisons at voxel-wise FDR q < 0.05 (Figure 4). Here we find that 

subcortical areas are highly prominent particularly the thalamus, striatum, and 

claustrum. Amongst cortical areas, the most prominent regions are the anterior, 

middle, and posterior cingulate cortex (ACC, MCC, PC), dorsal and ventral 

medial prefrontal cortex (dMPFC, vMPFC), dorsolateral prefrontal cortex, ventral 

premotor cortex (vPMC), somatomotor cortex (SMC), temporoparietal junction 

(TPJ), planum temporale (PT), inferior parietal lobule (IPL), intraparietal sulcus 

(IPS), posterior superior temporal sulcus (pSTS), anterior temporal lobe (ATL), 

middle temporal gyrus (MTG), lateral occipital cortex, and insular cortex (Ins). 

 

 
Figure 4. Regional gene expression in the brain for treatment-relevant genes. This 
figure shows whole-brain analysis results (thresholded at q < 0.05 FDR correction for 
multiple comparisons) indicating which brain regions show high levels of expression for 
the treatment-relevant genes. Spatial gene expression was profiled here with the Allen 
Institute Human Brain Atlas. DLPFC dorsolateral prefrontal cortex, vMPFC 
ventromedial prefrontal cortex, dMPFC dorsomedial prefrontal cortex, ACC anterior 
cingulate cortex, MCC middle cingulate cortex, PCC posterior cingulate cortex, vPMC 
ventral premotor cortex, PT planum temporale, TPJ temporoparietal junction, SMC 
somatomotor cortex, IPL inferior parietal lobule, pSTS posterior superior temporal 
sulcus, ATL anterior temporal lobe, MTG middle temporal gyrus, LOC lateral occipital 
cortex. 
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2.4 DISCUSSION 

 
In this work, we examined whether pre-treatment clinical behavioral and 

blood leukocyte gene expression patterns could predict the rate of skill growth in 

response to early intervention in young toddlers with autism. Congruent with prior 

studies, pretreatment clinical behavioral characteristics such as language and 

communication and nonverbal cognitive ability are indeed helpful for predicting 

later treatment response (Contaldo et al., 2020; Kasari et al., 2012; Landa, 2018; 

Rogers et al., 2012; T. Smith et al., 2015a; Vivanti et al., 2013; D. Zachor & Ben-

Itzchak, 2017), predicting ~21% of the variance in treatment slopes. A novel 

finding from this work is that pre-treatment gene expression patterns from blood 

leukocytes are also informative for predicting treatment slopes, predicting ~13% 

of the variance in treatment slopes. The effect of behavioral variables predicting 

more variance may not be surprising since such variables are conceptually and 

theoretically closer to what is being measured as the treatment outcome (e.g., 

behavioral change on the aSLP). However, the effect that pretreatment blood 

leukocyte gene expression can predict treatment slopes at some level is a 

revelation, given that prior to this work it was unknown whether pre-treatment 

biological factors such as blood leukocyte gene expression could predict treatment 

slopes at all. Examining the gene expression signal that is predictive of treatment 

slopes more closely, our LASSO modeling approach prioritizes a subset of 295 

genes that highly interact at the protein level and which are enriched for biological 

processes such as acetylation. Expanding on the idea of acetylation as a treatment 

relevant biological process, we also discovered that these treatment-relevant genes 

are enriched for genes that are differentially histone acetylated in postmortem 

cortical tissue of autistic patients (Sun et al., 2016). Because our signature was 

revealed in blood and not in brain tissue and that the UniProt enrichment of 

acetylation is not necessarily brain-specific, the evidence that these genes also 

have a differential impact on histone acetylation in autism cortical tissue is an 
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important cross-tissue correspondence. Given that the central dogma behind the 

early intervention is to capitalize on an individual’s heightened propensity for 

neurobiological plasticity and change in early development, these findings suggest 

that one key to predicting an individual’s propensity for such change may be 

hidden within individualized and intrinsic biology related to histone acetylation. 

In other words, predicting early intervention treatment response may hinge 

critically on how susceptible an individual’s intrinsic biology is to experience- or 

context-dependent control over the regulation of gene expression. This idea bodes 

well with general ideas regarding histone acetylation as one of the primary 

molecular influences over activity-dependent gene expression, which would then 

subsequently alter experience-dependent learning and memory processes (Gräff & 

Tsai, 2013) that are critical ingredients of early intervention. Because our 

signature was revealed in blood and not in the brain, we additionally tested how 

these genes are expressed spatially throughout human brain cortical tissue. If the 

signature was brain-irrelevant, we would not see high levels of expression within 

specific brain regions. Contrary to this null hypothesis, we discovered that 

treatment-relevant genes highly express throughout a range of subcortical and 

cortical areas. Subcortical areas such as the thalamus, striatum, and claustrum all 

have extensive connections to the various cortical areas implicated (Behrens et al., 

2003; Choi et al., 2012; Cohen et al., 2009; Crick & Koch, 2005). The cortical 

areas fall within well-known large-scale circuits like the default mode, salience, 

and somatomotor network. The default mode network is noted for its overlap with 

regions considered integral for social brain circuitry (e.g., dMPFC, vMPFC, PCC, 

TPJ, ATL, pSTS) and social-communicative functions linked to the domains 

affected in autism (Buckner & DiNicola, 2019; Trakoshis et al., 2020). Other 

regions relevant to the mirror system are also apparent (e.g., vPMC, Ins, MCC, 

IPL, IPS, SMC) (Keysers et al., 2010; Keysers & Gazzola, 2007, 2009). 

Language-relevant regions are also notable, such as (e.g., PT, MTG, vPMC, ATL) 

(Friederici, 2012; Hickok & Poeppel, 2007). While speculative, this evidence 

could be suggestive of the possible impact of treatment-relevant genes on circuitry 
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that plays important roles in cognitive and behavioral domains targeted by early 

intervention and which are key domains of importance in the early development 

of autism. Overall, this result corresponds well with the earlier discussed brain-

relevant enrichment in differential histone acetylation in autism cortical tissue, for 

indicating that these genes, although identified in blood, have an important brain-

relevant impact. In addition, we also found that starting treatment before versus 

after 24 months is a meaningful distinction (T. Smith et al., 2015a; Webb et al., 

2014). Toddlers who started treatment before 24 months showed larger overall 

gains than those starting treatment after 24 months, even when controlling for the 

amount of time in treatment, treatment intensity, and general pre-treatment 

developmental ability. This result is compatible with the main ideas behind why 

early intervention is crucial before 24 months (Dawson, 2008; Pierce et al., 2021; 

Webb et al., 2014). Also compatible with the idea that treatment start before 

versus after 24 months is important, we also discovered that treatment slopes are 

much more variable once past 24 months of age. The enhanced variability of 

treatment slopes after 24 months is important, as it underscores how heterogeneity 

can be magnified with a later treatment start. One implication of this result is that 

prediction of treatment outcome is a much more difficult task when the child 

begins treatment after 24 months of age. This is another consideration for why 

early detection and intervention is key—treatment outcomes tend to be more 

consistent if treatment begins before 24 months. There are some caveats and 

limitations that are necessary to address to interpret the present findings. First, this 

study is correlational in nature and does not contain a contrast group to compare 

the STAR program to. As such, interpretation of the effects here as related 

specifically to treatment-related learning cannot be disentangled from possible 

maturational effects. The effects here should be interpreted as a prediction of 

developmental change in the context of an early intervention, but should not be 

interpreted as predicting change that is specifically driven by elements of the 

intervention itself per se. Second, the results reported here are associated with a 

specific evidence-based early intervention program that contains a mixture of 
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elements from various programs (e.g., applied behavioral analysis, pivotal 

response training) and administered by highly trained providers with systematic 

probes of fidelity of implementation. The use of the same standardized treatment 

approach for all participants is a strength of the current study. However, given the 

variety of different types of early intervention programs available today (e.g., 

Early Start Denver Model, parent-mediated communication-focused treatment), 

caution must be taken in generalizing these findings to other intervention 

programs. A question for future work would be to examine whether these findings 

extend to other widely used early intervention programs. Third, the aSLP was not 

administered by blind assessors. In addition, as is true for most curriculum-based 

assessments, the aSLP is not a standardized psychometric instrument. However, 

treatment slopes as indexed by the aSLP were highly correlated with other 

psychometrically well-validated instruments such as the Mullen and Vineland that 

were administered by blind assessors. This indicates that aSLP has some construct 

validity for measuring developmental abilities despite these limitations. Fourth, 

the outcome measure operationalized as the rate of improvement over time is not 

a commonly used metric to evaluate early intervention response. In most designs, 

there are time-locked pre- and post-testing measures to evaluate treatment 

response. However, the rate of response to treatment from multiple longitudinal 

measurements may be a more sensitive measure of treatment response than a 

change score sampled at just two points in time. Fifth, while the sample size of 

this study is moderate to above average for what is typical in most treatment and 

gene expression studies (Ansel et al., 2017; Fuller et al., 2020), future work 

replicating these findings with larger samples is needed. Notably, given 

recommendations such as the use of a higher alpha threshold for statistical 

significance (e.g., α = 0.005) (Benjamin et al., 2017) for the discovery of novel 

effects, all primary effects of interest reported here would still survive this more 

conservative alpha threshold. Another caveat here regarding sample size in gene 

expression studies is that studies of brain tissue are typically much smaller and 

deal with RNA quality that is much lower than what is typical in studies using 
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blood samples. In addition, brain tissue studies typically have much larger age 

ranges spanning toddlerhood to adulthood. Thus, there is much larger age-related 

heterogeneity that is apparent in brain tissue compared to blood. Combining these 

caveats regarding higher sample size, higher RNA quality, and less age-related 

heterogeneity suggests that the current study is typically ahead of the norms 

within the context of gene expression studies in autistic patients. Finally, future 

work could examine whether different approaches to merge multiple data 

modalities such as pre-treatment gene expression and clinical measures might 

help to better predict treatment slopes. In the current work, we did not investigate 

this possibility as it is beyond the scope of the current investigation and requires 

much more sophisticated approaches tailored specifically for multiple modality 

data fusion, especially in situations where different modalities are high 

dimensional and/or differ substantially in dimensionality (Sui et al., 2012; Wang 

et al., 2022). In conclusion, this work shows the importance of early treatment 

start ideally before 24 months and also shows for the first time that blood gene 

expression characteristics can predict how fast autistic toddlers respond to early 

treatment. While clinical behavioral variables outperformed gene expression 

measures, the signal within gene expression is important because it potentially 

indicates that a key biological ingredient for determining an individual’s treatment 

outcome is susceptibility to epigenetic change via mechanisms such as 

acetylation. Understanding how this treatment-relevant biology affects 

neuroplasticity and experience-dependent learning is a key next step towards how 

such molecular mechanisms are linked to heterogeneous outcomes in autism.  
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Chapter 3: The effects of individual child 

characteristics and treatment related factors on 

developmental trajectories in autism: An individual 

participant data meta-analysis 

 

This chapter is in preparation as: The effects of early intervention type and 

child individual factors on developmental trajectories in autism: An individual 

participant data meta-analysis. (in prep.) Michael V. Lombardo & Elena Maria 

Busuoli 

 

3.1 Introduction 

 

Autism is one of the most common neurodevelopmental conditions in 

society today and represents a broad population of individuals that are 

heterogeneous across multiple scales from biology to phenotype (Lombardo, Lai, 

et al., 2019), across development (Gentles et al., 2023) and important clinical 

outcomes (e.g., responses to treatment); (Godel et al., 2022; Lombardo, Busuoli, 

et al., 2021; Vivanti, Prior, et al., 2014). A top priority on the path towards 

precision medicine is the development of therapeutic/intervention approaches in 

early development that can facilitate positive outcomes aligned with multiple 

different stakeholder perspectives (Lombardo & Mandelli, 2022; Pellicano & Den 

Houting, 2022; Tager-Flusberg & Kasari, 2013). The push for earlier diagnosis 

and intervention is also paramount (Pierce et al., 2019; J. D. Smith et al., 2022) 

and predicated on the idea that there is higher probability of facilitating more 

positive outcomes with greater neural plasticity offered during the earliest periods 

of neurodevelopment (Dawson, 2008). The top priorities/questions for early 
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intervention research are quite clear. We seek to better understand what works, for 

whom, and for what (Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et 

al., 2020). Since heterogeneity in responses to treatment is a high priority topic, it 

is important to further unpack the ‘for whom’ question. We need to better 

understand how and why early intervention is facilitating differential 

individualized outcomes. For these important questions, we have to go beyond 

examination of on-average group-differences due to intervention and dissect what 

are the factors or characteristics present in children before treatment begins that 

would help us predict the subsequent developmental path during treatment 

(Lombardo, Busuoli, et al., 2021; Mandelli et al., 2023; Vivanti, Prior, et al., 

2014) and what is changing in terms of underlying neurobiology as a function of 

the differential experience and learning provided by early intervention (Dawson et 

al., 2012; Lombardo, Busuoli, et al., 2021). 

 
Prior reviews and meta-analyses of autism early intervention research 

provide an initial starting point on the ‘what works’ and ‘for what’ questions, 

since such work helps us get a better sense of how early intervention may or may 

not have effects at a group-level. The literature on early intervention is quite large, 

but also presents a mixed picture (Crank et al., 2021; Eldevik et al., 2010; Fuller 

et al., 2020; Howlin et al., 2009; McGlade et al., 2023; Rodgers et al., 2021; 

Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020; Sandbank, 

Bottema-Beutel, Crowley, Cassidy, Feldman, et al., 2020; Warren et al., 2011). 

Without filtering or controlling for study quality/bias, there is some evidence that 

various types of early intervention (e.g., developmental and naturalistic 

developmental behavioral interventions; NDBI) can be effective on-average in 

changing a variety of outcomes including language, intellectual and social 

communication abilities (Fuller et al., 2020; Sandbank, Bottema-Beutel, Crowley, 

Cassidy, Dunham, et al., 2020; Sandbank, Bottema-Beutel, Crowley, Cassidy, 

Feldman, et al., 2020). However, a very different picture emerges when 

evaluating a smaller handful of high-quality randomized control trials (RCT). 
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With this particular restriction, early behavioral intervention may be limited in 

effectiveness in changing language or core autism symptom domains (Crank et 

al., 2021; McGlade et al., 2023; Sandbank, Bottema-Beutel, Crowley, Cassidy, 

Dunham, et al., 2020). 

 

The mixed picture behind most recent meta-analytic evidence underscores 

the need for more high-quality RCT studies. However, there are also several 

limitations in sole reliance on meta-analytic inference. First, meta-analytic 

inferences are made to test whether replicable non-zero group-level effects exist 

in the literature. This goal is tailored to answer the ‘what works’ and ‘for what’ 

questions quite well. However, these goals are inherently different from the goals 

of decomposing heterogeneity in response to treatment (i.e. the ‘for whom’ 

question). If meta-analysis on a small number of high-quality RCTs suggests that 

on-average group-level effects are small or altogether absent (Crank et al., 2021; 

McGlade et al., 2023; Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et 

al., 2020), this does not preclude the fact that the intervention may still work 

considerably well for specific types of individuals. Thus, a different analytic 

approach is needed to better answer the ‘for whom’ question. In contrast to meta-

analysis, approaches such as individual participant data meta-analysis (IPD-MA) 

or ‘mega-analysis’ (Eisenhauer, 2021) may be more well-suited. Mega-analysis 

utilizes the raw data from individual participants across many studies and allows 

for testing not only group-level effects, but also factors that explain individual 

differences in treatment outcomes. To our knowledge, the only IPD-MA/mega-

analysis in the literature (Rodgers et al., 2021) compares early intensive ABA 

based interventions (such as NDBI and variants of EIBI) to treatment-as-usual 

(TAU) or eclectic interventions. The primary findings here suggest that early 

intensive ABA-based interventions have a small effect on intellectual and 

adaptive functioning. Other moderating individual difference factors such as sex, 

age, baseline cognitive or adaptive functioning level, were not associated with 

treatment outcomes. 
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A second limitation behind meta-analytic work is that statistical power to 

detect on-average group-level effects may be low when restrictions are placed on 

filtering for only a small subset of high-quality studies. These handful of studies 

themselves may also have relatively small sample sizes. In the case of small 

sample sizes, unadjusted descriptive statistics and standardized effects size 

computed from them will be inherently less precise and possibly more prone to 

effect size inflation (Lombardo, Lai, et al., 2019). Utilizing unadjusted statistics in 

meta-analysis is a necessary step to homogenize effect size computation across 

heterogeneous studies. However, this attribute does not allow for correction for 

covariates within-study that would typically be applied in each individual study. 

To tackle this issue to some extent, moderator analyses from meta-regression 

models can be implemented to test associations with study-specific factors and 

covariates (e.g., mean age at treatment start). These moderator analyses are 

limited though to study-specific summary factors (e.g., mean age) that themselves 

are descriptive statistics computed per study and are inherently not the same 

measuring and controlling for those covariates within individuals (e.g., age at 

treatment start per individual). Again, utilization of mega-analysis would get past 

this limitation by allowing for covariates to be applied within-study. 

 

A third limitation behind restricting meta-analytic inference to only a 

small handful of high-quality RCTs is that RCT can be quite restrictive in how 

they sample the autism population (Rogers et al., 2019) and may not present a full 

generalizable picture for how early intervention works when deployed in 

community settings. For instance, while restrictive sampling employed in most 

recent RCTs of Early Start Denver Model (ESDM) tend to show no significant 

difference in treatment outcomes compared to TAU (Rogers et al., 2019), a wider 

meta-analysis of ESDM studies shows that under a broader range of studies that 

may be less restrictive shows more promising evidence for ESDM effectiveness 

(Fuller et al., 2020). Thus, a potentially more generalizable picture regarding early 
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intervention might be observed by accumulating raw data in mega-analysis across 

a wider range of intervention studies, which compose both more restrictive RCTs 

and less constrained interventions in community settings. 

 

To overcome these limitations, we initiated the Autism Early Intervention 

Research (AEIR) consortium, to pool together many studies on early intervention 

in autism for the purpose of mega-analysis. AEIR has been able to pool together 

645 autistic individuals with age range between 13 to 60 months receiving two 

treatment types: Early Start Denver Model (ESDM) and other types of early 

interventions that can be found in community settings as the typical treatment-as-

usual (COM/TAU). Here we report results from a mega-analysis of AEIR 

consortium data to elucidate main effects and interactions between factors such as 

age, treatment type, treatment intensity, age at treatment start, and pre-treatment 

developmental level as possible factors that can predict significant variance in 

treatment responses. 

 

3.2 Materials and Methods 

 

All work with secondary data analysis reported here was approved by the 

Province of Trento Azienda Provinciale per i Servizi Sanitaria (APSS) ethical 

committee under protocol IIT EMN-755816-002-AUTISMS. 

 

Datasets 

 

Data utilized in this study come from 11 international datasets on early 

intervention in autistic toddlers as part of the Autism Early Intervention Research 

(AEIR) consortium. Many, though not all, of these datasets have already been 

previously published independently (Bacon et al., 2014; Colombi, 2017; Contaldo 
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et al., 2020; Godel et al., 2022; Muratori & Antonio Narzisi, 2014; Rogers et al., 

2019; Sinai-Gavrilov et al., 2020; Vivanti et al., 2019; Vivanti, Paynter, et al., 

2014). The final dataset comprises n=645 children with a diagnosis of autism 

(n=128 females, n=517 males), with ages at treatment start ranging from between 

13-60 months. All datasets have at least 2 timepoints within an individual but 

some datasets may possess more than 2 timepoints per individual. 

 

Early Intervention Programs 

 
Participants received between 3-27 months of early intervention with 

different types of approaches and variable levels of treatment intensity. Given the 

considerable number of participants that completed one type of early intervention 

(e.g., ESDM; n=304, 65 females, 239 males) we partitioned the data into two 

groups - ESDM or non-ESDM treatment as the comparison group. The non-

ESDM group is a group we refer to Community/Treatment-As-Usual 

(COMM/TAU; n=341, 63 females, 278 males) as it represents a combination of 

other types of early interventions commonly used in the literature and in 

community settings (e.g., speech therapy, occupational therapy, ABA/Discrete 

Trial Training (Lovaas, 1987b), Pivotal Response Training (Koegel, Robert L., 

1988), etc.). Early interventions varied in their format of administration and could 

be comprised of individual, group, and parent intervention components. 

 

Measures 

 
All datasets had commonalities with reference to measures utilized to 

examine cognitive ability, language, motor, adaptive functioning, and autism 

symptom severity. For cognitive ability, language and motor skills, most datasets 

in AEIR except those originating in Italy, utilized the Mullen Early Scales of 

Learning (MSEL) (Mullen E. M. & American Guidance Service, 1995). Scores on 

the MSEL that were utilized were subscales of expressive and receptive language 
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(EL, RL), visual reception skills (VR) and fine motor (FM). For these subscales, 

we utilized age-equivalent scores in our developmental trajectory analyses to 

examine how outcome measures change over age and scale with changes in age-

equivalent score growth. To examine pre-treatment developmental level on the 

MSEL, we used the Early Learning Composite score, which is a standardized 

score with a mean of 100 and standard deviation of 15. Since datasets from Italy 

did not utilize the MSEL (because of lack of translation into Italian), Italian 

datasets were excluded for all models where MSEL was the dependent variable. 

However, in the case where VABS or ADOS scores were utilized as the 

dependent variable, then Italian datasets were included. In this situation, pre-

treatment developmental level was needed, and here we utilized developmental 

quotient score on the Griffith Mental Development Scales (GMDS) (Griffiths, 

1970). Adaptive functioning was measured in all datasets with the Vineland 

Adaptive Behavior Scales (VABS) (Sparrow, Sara S. et al., 2005). For the VABS 

we utilized standardized scores on domains such as Communication, 

Socialization, Daily Living Skills, and Motor. Finally, with regard to autism 

symptom severity, here we utilized the Autism Diagnostic Observation Schedule 

(ADOS) Calibrated Severity Scores (CSS) (Lord et al., 2000). ADOS CSS scores 

measure severity as a total across social-communication and restricted repetitive 

behavior domains. ADOS CSS scores are advantageous because they are 

standardized relative to a child’s age and language ability and ensure 

comparability across ADOS administration modules. 

 

Pre-treatment characteristics 

 
Child’s characteristics at treatment start were collected and utilized for 

analyzing whether they are associated with treatment outcomes. With this aim 

were selected clinical measures, demographic and intervention specific factors, on 

the basis of the most relevant research findings described in previous literature 

(Eapen & Crncec, 2016; Sinai-Gavrilov et al., 2020; Vivanti et al., 2019; Vivanti, 
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Prior, et al., 2014; Warren et al., 2011; D. Zachor & Ben-Itzchak, 2017). We 

analyzed cognitive abilities at treatment start reported as developmental quotient 

scores (DQ), taken from MSEL early learning composite (ELC) scores or GMDS 

developmental quotient scores. Furthermore, age at treatment start and biological 

sex were selected and analyzed as demographic factors that might be associated 

with treatment outcomes. In this study, the number of females in the sample 

allowed us to test whether there is sex treatment related difference. Also, 

treatment-specific factors potentially able to predict treatment outcome measures 

were assessed, such as intensity and type of early intervention (ESDM or 

comparison group). Intensity index of intervention was computed for each child, 

following the formula: (weeks of intervention * hours per week * number of 

adults / number of children present) (Waizbard-Bartov et al., 2021). 

 

Statistical Analyses 

 

All analyses utilized throughout are linear mixed effect models to handle 

repeat measures, assess developmental trajectories, and handle nested within-

study factors. Three sets of models were analyzed here organized according to 

MSEL, VABS, and ADOS. For MSEL models, the dependent variable was 

always age-equivalent scores. We presented 4 MSEL models, one per each MSEL 

subscale. For VABS models, the dependent variable was always standardized 

domain scores, with one model per each VABS domain. One model was utilized 

for the ADOS and had total CSS scores as the dependent variable. In terms of the 

independent variables, we used the same independent variables for all models. 

Fixed effects in the models were always age, treatment type, treatment intensity, 

sex, age at treatment start, and pre-treatment developmental quotient. Interaction 

effects were also modeled as fixed effects, particularly, interactions between age, 

age at treatment start, and pre-treatment developmental quotient. Interactions with 

treatment type were also modeled, such as interactions with sex, age, age at 
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treatment start, and pre-treatment developmental quotient. Random effects were 

also utilized in the model to account for subject-specific age intercepts and slopes 

(i.e. age modeled within subject-ID). Dataset-ID was also utilized as a random 

effect with random intercept to capture the nested structure of specific datasets 

and the variance associated with each dataset. All linear mixed effect modeling 

was conducted in R using the lmer function within the lmerTest R library. To 

identify significant effects across multiple analyses, p-values were utilized to 

compute FDR values, and then FDR control for multiple comparisons was 

achieved with thresholding at q<0.05. To visualize differential rates of growth as 

a function of some other continuous variable (e.g. interactions between age and 

age at treatment start or pre-treatment developmental quotient), we split 

individuals into deciles based on pre-treatment scores and then plotted trajectories 

for each decile. 

 

3.3 Results 

 
In this mega-analysis, we report data compiled from the AEIR consortium 

across 11 datasets (Figure 5), and comprising n=645 autistic individuals split into 

two main types of early intervention treatments - ESDM (n=304, male = 79%, age 

range = 14-57 months) versus COM/TAU (n=341, male = 81%, age range = 13-

60 months). See Table 4 for a breakdown of descriptive statistics of baseline 

measures between these treatment types. Treatment types did not differ in 

proportion of males versus females (χ2 = 0.68, p = 0.40). Treatment intensity was 

not different between treatment types (F(1,631) = 0.04, p = 0.84). Age at 

treatment start was marginally different (F(1,631) = 3.81, p = 0.051), with ESDM 

showing slightly younger ages than COM/TAU. Pre-treatment developmental 

quotient was slightly different (F(1,561) = 4.78, p = 0.029) with ESDM showing 

slightly higher scores than COM/TAU. 
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Figure 5: AEIR consortium. Panel A shows sites around the world where data from the 
AEIR consortium originates from. On the left of panel B are sample sizes broken down by 
treatment type and sex. In the middle of panel B are density plots of age at treatment 
start. On the right of panel B are density plots of pre-treatment developmental quotient. 
 

 

Effects of treatment type and intensity 

 

In our first set of analyses we examined the ‘what works’ and ‘for what’ 

questions specifically with regards to the contrast of ESDM versus COM/TAU 

treatments. Within the context of how we modeled effects of treatment type, we 

specifically look for interactions between treatment type and age. ESDM does 

seem to have a differential effect on developmental trajectories compared to 

COM/TAU, particularly for receptive language (RL; F = 8.49, p = 3.89e-3) and 

marginally for non-verbal cognitive skills (MSEL VR; F = 5.33, p = 0.0212). 
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These differences are driven by a steeper rate of growth for individuals in ESDM 

compared to COM/TAU (Figure 6). No interactions between treatment type and 

age were observed for other MSEL scales (EL, FM) or for VABS domains or 

ADOS CSS (see Table 5 for statistics). Thus, the effects of treatment type are 

relatively subtle, but demonstrate some evidence that ESDM may facilitate 

development of language and non-verbal cognitive skills over and above other 

kinds of commonly used early interventions used in the community. In contrast to 

the promise of some subtle effects of treatment type, analyses robustly showed no 

evidence for an effect of treatment intensity on any of the dependent variables 

(see Table 5 for statistics). 

 

 

Figure 6: Comparisons of ESDM versus Community/Treatment-As-Usual (COM/TAU) 
interventions. This figure shows spaghetti plots of MSEL subscales for ESDM (blue) 
compared to COM/TAU (pink). The x-axis shows age in months, while the y-axis shows 
age-equivalent scores in months. Individual trajectories are shown with transparent 
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lines, while the group trajectory along with 95% confidence bands are shown overlaid on 
top. Subtle statistically significant differences exist for receptive language (RL) and 
visual reception (VR) subscales, while trends in the same direction are apparent 
particularly for expressive language (EL). 
 
Ubiquitous and strong effects of age at treatment start and pre-treatment 

developmental quotient 

 

Whereas effects of treatment type at a group-level are relatively subtle, 

there remains the fundamentally important question for precision medicine, which 

is ‘for whom and how’ does early intervention work best for individuals? To 

evaluate this question, we tested individual-level variables such as sex, age at 

treatment start, and pre-treatment developmental quotient. Whereas no effects 

appeared for sex for MSEL, VABS, or ADOS, there were remarkably strong 

effects for age at treatment start (Figure 7) and pre-treatment developmental 

quotient (Figure 8). These effects were ubiquitous, in both intervention types, 

across all MSEL, VABS, and ADOS dependent variables examined, with the 

exception of the VABS Motor domain, which showed no effect of age at 

treatment start (see Table 5). The nature of all of these strong individualized-

effects are described by better outcomes in those that start treatment earlier and 

for individuals who start treatment with higher developmental quotients. 
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Figure 7: Effect of age at treatment start on MSEL and VABS scores. This figure shows 
spaghetti plots of MSEL (A) and VABS (B) subscales, whereby color indicates deciles 
defined by age at treatment start (younger-to-older deciles follow blue-to-red color 
change). The x-axis shows age in months, while the y-axis shows age-equivalent scores in 
months. Individual trajectories are shown with transparent lines, while the decile group 
trajectories are shown overlaid with thicker lines. 
 

 
Figure 8: Effect of pre-treatment developmental quotient on MSEL and VABS scores. 
This figure shows spaghetti plots of MSEL (A) and VABS (B) subscales, whereby color 
indicates deciles defined by pre-treatment developmental quotients (low-to-high deciles 
follow blue-to-red color change). The x-axis shows age in months, while the y-axis shows 
age-equivalent scores in months. Individual trajectories are shown with transparent 
lines, while the decile group trajectories are shown overlaid with thicker lines. 
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Differential rates of growth for MSEL subscales as a function of pre-treatment 

developmental quotient 

 
Furthermore, MSEL age-equivalent scores showed an interaction between 

age and pre-treatment developmental quotient that can be described as a ‘fanning-

out’ effect of steeper developmental trajectories for individuals higher in pre-

treatment developmental quotient, but progressively less steep and much slower 

trajectories for individuals lower in pre-treatment developmental quotient (Figure 

8A). Thus, rate of growth for MSEL age-equivalent scores markedly changes 

depending on an individual’s starting developmental quotient before treatment 

begins. This ‘fanning-out’ effect stands in stark contrast to the lack of such an 

interaction effect between age and age at treatment start on MSEL subscales, 

whereby developmental trajectories are largely stable independent of when an 

individual started the intervention (Figure 7A).  

 
Differential rates of growth for VABS Communication as a function of age at 

treatment start 

 
Interactions between age and age at treatment start or pre-treatment 

developmental quotient were largely absent across VABS domains. An exception 

however, was the presence of a significant interaction between age and age at 

treatment start for the VABS Communication domain. Here we see that 

developmental trajectories are upwards slanting in slope in individuals who 

started treatment earlier, whereas these slopes progressively flatten as individuals 

start treatment later (Figure 7B). This effect potentially indicates that 

communication skills measured by the VABS may progressively get better over 

development in individuals that start treatment relatively earlier, whereas there is 

very little evidence for such improvement over time in communication skills in 

those that started treatment relatively later. 
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Differential rates of growth on ADOS CSS as a function of age at treatment 

start and pre-treatment developmental quotient 

 

When examining autism symptom severity with ADOS CSS scores, we 

identified interesting interactions with age and age at treatment start or pre-

treatment developmental quotient. The interaction between age and pre-treatment 

developmental quotient can be understood as a possible regression to the mean 

phenomenon, whereby individuals with the lowest pre-treatment developmental 

quotient start out with very high ADOS CSS scores, but which subsequently drop 

over development. In contrast, individuals with higher pre-treatment 

developmental quotients start out with lower ADOS CSS scores but then have 

slightly upwards trajectories that converge around the same severity levels as 

other individuals by 60 months of age (Figure 9A). 

 

A very different type of interaction between age and age at treatment start 

exists for ADOS CSS scores. Here the interaction can be described as declining 

(i.e. progressive improvement over time) trajectories of ADOS CSS scores in 

individuals that started treatment earliest. This can be contrasted to progressive 

flattening or stabilization of ADOS CSS trajectories in individuals that started 

treatment later (Figure 9B). 
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Figure 9: Effect of age at treatment start (A) and pre-treatment developmental quotient 
(B) on ADOS CSS scores. This figure shows spaghetti plots of ADOS CSS scores 
whereby color indicates deciles defined by age at treatment start (A) and pre-treatment 
developmental quotient (B). The x-axis shows age in months, while the y-axis shows age-
equivalent scores in months. Individual trajectories are shown with transparent lines, 
while the decile group trajectories are shown overlaid with thicker lines. 
 
 

3.4 Discussion 

 

In this work we present insights from a mega-analysis of a large 

international consortium of autism early intervention researchers. This mega-

analysis was positioned to facilitate answers to primary questions centered around 

autism early intervention - that is, what works, for whom, and for what (Sandbank, 

Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020). To target what works 

and for what questions, we focused on the contrast of one of the potentially more 

promising naturalistic developmental behavioral intervention (NDBI) in ESDM to 

other types of early interventions that are commonly used in community settings 

as the typical treatment-as-usual option. Congruent with some of the past works 

on ESDM (Dawson et al., 2010; Estes et al., 2015; Rogers et al., 2019; 

Waddington et al., 2016), we found there is some evidence that ESDM has 

beneficial effects on development of skills, particularly in receptive language and 

non-verbal (MSEL VR) cognitive skills. These effects manifest after controlling 
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for a variety of other factors in the model, such as variability inherent to different 

datasets, treatment intensity, sex, age at treatment start, pre-treatment 

developmental quotient. While the insights here are not couched within a large 

and well-controlled randomized double-blind study, they complement insights 

from meta-analysis (Fuller et al., 2020; Wang et al., 2022) that also suggests some 

small beneficial effects when compared to other types of community early 

interventions. A caveat to this result is that the positive effects of ESDM are 

relatively small and exclusive to some subscales of MSEL but were not apparent 

on VABS and ADOS. Furthermore, inspection of spaghetti plots reveals 

considerable heterogeneity in individual trajectories within ESDM. This 

underscores the fact that while ESDM may be on-average promoting some 

developmental skills better than COM/TAU, the bigger questions should be to 

decompose the for whom question and answer more precisely how ESDM may 

have bigger impact for some individuals (Godel et al., 2022; Lombardo, Busuoli, 

et al., 2021). 

 

One of the key insights enabled by mega-analysis rather than meta-

analysis or smaller scale individual studies is the ability to isolate individual 

factors and their key role in moderating developmental trajectories throughout the 

course of early intervention. Several factors tested here in this mega-analysis have 

been previously theorized as being potentially important individualized predictors 

of outcomes in the context of early intervention, particularly age at treatment start 

(Reichow, 2012; Vivanti et al., 2019; Warren et al., 2011), pre-treatment 

developmental quotient (Godel et al., 2022; Howlin et al., 2009; Rogers et al., 

2019), treatment intensity (Rodgers et al., 2020a; Rogers et al., 2012), and sex 

(Crank et al., 2021; McVey et al., 2017). Here we find ubiquitous and strong 

impact for variables such as age at treatment start and pre-treatment 

developmental quotient across all variables examined (MSEL, VABS, ADOS). 

These individual baseline characteristics moderate developmental change over the 

course of treatment across all outcomes in both intervention groups. In contrast, 
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sex and treatment intensity have little to no impact. These effects are not just main 

effects, but also interact with age, indicating that they have differential impact on 

rates of growth throughout the intervention. For example, individuals high in pre-

treatment developmental quotients show the highest rates of growth on MSEL 

subscales, while those that are relatively lower in pre-treatment developmental 

quotients show the most limited and slowest growth. This phenomenon is 

consistent with a ‘rich get richer’ effect and underscores that a potential important 

factor predicting response to treatment may be less based on type of treatment and 

more based on individualized characteristics of the child before treatment begins. 

What may underlie such effects at the level of mechanisms and biology is not well 

understood. However, initial studies have suggested that experience-dependent 

biology factors (e.g., epigenetic mechanisms such as histone acetylation) may be 

differentially impacted by those with variable rates of growth during an 

intervention (Lombardo, Busuoli, et al., 2021). 

 

Much discussion has also centered around the push for earlier diagnosis 

leading to earlier intervention (Pierce et al., 2011, 2021; Zwaigenbaum et al., 

2015). The theoretical idea behind this push is to capitalize on greater earlier 

neural plasticity to facilitate more positive outcomes for children (Dawson, 2008; 

Piven et al., 2017). Our findings illustrating the important impact age at treatment 

start has on treatment outcomes and trajectories is consistent with this theoretical 

idea. For example, ADOS CSS scores show declining rates of growth (e.g., 

lessening of symptom severity) in those that started treatment earlier, while those 

that started treatment relatively later show trajectories that level off and are 

relatively flat and stable. Similarly, VABS communication scores show slight 

positive slopes indicative of improving skills in those that started treatment 

relatively earlier, while those that started relatively later have trajectories that 

flatten out and stabilize. Overall, our results provide strong and definitive support 

for advocacy for earlier diagnosis and intervention, as age at treatment start is one 

of the most important moderating factors that could change individual 
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development during treatment. Unlike factors that are inherent to the child, which 

society has less control over, society does have some control over how it 

implements services for early diagnosis and treatment. Our results strengthen the 

backbone behind such advocacy and illustrate clearly the importance of starting 

treatment as early as possible to promote positive outcomes. 

 

There are several caveats and limitations to underscore. First, the current 

mega-analysis was not restrictive in its inclusion criteria and as such, many of the 

contributing datasets are not well-controlled randomized double-blind studies. 

While such studies are a gold standard for evaluating treatment efficacy, the 

broader inclusion of other studies allowed for much wider reach and potentially 

enhanced generalizability to what is the reality in most community settings. 

Second, our contrast tailored to assess the what works question was limited to an 

assessment of how ESDM compares to a range of other diverse types of 

interventions commonly used in the community. As such, not enough datasets 

exist for a full comparison of individual treatment types within the COM/TAU 

grouping we used for the current analysis. Thus, while the results suggest some 

potential for ESDM, they do not necessarily point to the ineffectiveness of other 

interventions lumped into the COM/TAU group. Third, although we have tested 

for effects like sex, due to the still limited number of actual females (e.g., around 

60 individuals per each treatment type), statistical power to robustly test for sex 

differences in this study may be limited. 

 

In summary, with mega-analysis we have highlighted the prominent 

impact of factors like age at treatment start and pre-treatment developmental 

quotient as key predictors of individual differences in outcomes related to early 

intervention. Contrasting treatment types, there are also small effects that indicate 

the potential of NDBI interventions like ESDM over and above COM/TAU 

interventions. Other variables such as sex and treatment intensity had little effect 

on treatment outcomes. However, the lack of association between the intensity 
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and treatment outcomes should be considered with caution, since the 

heterogeneity present in our sample in terms of study designs, duration, dosage 

and delivery of interventions may have limited our analysis. This work 

supplements and expands insights from individual smaller-scale studies as well as 

on-average inferences that can be gleaned from meta-analytic work. The work 

also strengthens the knowledge base behind important key factors that can explain 

heterogeneity of outcomes during intervention. This is a key frontier for the future 

as we move closer towards the path of precision medicine applied to early 

intervention in autism. 

  



 79 

Chapter 4: General discussion 

 

In this final chapter, we consider implications and perspectives about 

research findings described in the thesis. Since an extensive discussion of each 

specific project has been provided in the respective chapters, here we focus more 

on the conclusions and limitations of these two works, and we indicate possible 

ways to further our research. 
 

Chapter 2 describes our first work, where we seek to better understand 

how to predict differential outcomes, and which are the biological mechanisms 

underlying the individual differences in early intervention responses. With this 

aim, we used blood leukocyte gene expression patterns as possible biological 

predictors, and we investigated whether pre-treatment clinical behavioral and gene 

expression patterns could predict the developmental trajectories during early 

intervention. Findings confirmed that clinical behavioral characteristics at the 

baseline are overall predictive of outcomes, but we also found that pre-treatment 

blood leukocyte gene expression levels can predict treatment slopes. From this 

investigation there are two insights to point out: first, with longitudinal 

trajectories as outcome measures, we found that a simple snapshot of clinical 

measures at the baseline is predictive of how steep a child's slope trajectory will 

be during early intervention. Second, the new revelation is that also biological 

characteristics, such as pre-treatment blood leukocyte gene expression patterns, 

might be informative of individual treatment trajectories. Digging deeper into 

gene expression characteristics, we also found that the treatment relevant genes, 

prioritized by our LASSO model, are enriched for genes that are differentially 

histone acetylated in post-mortem cortical tissue of autistic patients. These 

findings may reveal that epigenetic mechanisms such as histone acetylation may 

be a key biological process which could explain why children's responses to early 

intervention widely differ. This idea, although it needs to be confirmed by future 
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works, fits well with general ideas regarding histone acetylation as one of the 

epigenetic processes regulating activity-dependent gene expression, which could 

influence the experience-dependent learning and memory processes. Thus, it 

might be that children who have differences in histone acetylation mechanisms 

are more or less susceptible to experience-dependent regulation of gene 

expression, and they may benefit differently from environmental changes such as 

early intervention. The last take-home message from this work is the importance 

of starting intervention early, ideally before 24 months. We found that toddlers 

who started treatment before 24 months showed greater gains on average, and 

reduced variability of treatment slopes, than those who started treatment after 24 

months. This result highlights why early intervention is essential for treatment 

gains and for the prediction of treatment trajectories, that is much more difficult 

when the child begins treatment later. 

 

Chapter 3 describes our second empirical work, where we addressed 

primary early intervention questions. We provided information on what works and 

for what questions, but most importantly, we decomposed the for whom question. 

For this purpose, we employed a mega-analysis approach combining raw data 

from multiple datasets into a larger, single sample. This allowed us to isolate 

individual factors and retain more detailed information than a meta-analysis of 

summary statistics. Thanks to the AEIR consortium, we were able to report results 

of a mega-analysis which pooled together 645 autistic children across two 

treatment types, Early Start Denver Model (ESDM) or other treatment as 

usual/community interventions (TAU/COM). Furthermore, unlike most recent 

large-scale studies of early intervention research (Fuller et al., 2020; Sandbank, 

Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020), here we used 

longitudinal data that enabled us to describe the individual variability over time of 

most common treatment outcomes, such as autism symptom severity, adaptive 

behavior and cognitive domains. Also, it should be noted that the same tool to 

measure each specific outcome domain was used across studies, increasing the 
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comparability among participants and the validity of our assumptions. This is an 

additional strength of our work, since different methodological and measurement 

choices represent a source of inconsistency present in previous meta-analytic 

works (Crank et al., 2021; Rodgers et al., 2021). To answer what works and for 

what questions we compared ESDM to COM/TAU, and we found some evidence 

that ESDM has beneficial effects on receptive language and non-verbal cognitive 

skills. Although the result reported here is not supported by RCT studies, it 

complements findings of a recent meta-analysis (Fuller et al., 2020) which also 

reported small positive effects of ESDM in language and cognitive areas. Given 

the heterogeneous and relatively subtle treatment type effects at the group level, 

we then focused on individual factors and their role in predicting outcomes 

throughout the course of early intervention. Our findings revealed robust evidence 

that age at treatment start and cognitive level at the baseline have a strong and 

ubiquitous impact, in both intervention types, on all variables examined. 

Additionally, these individual characteristics do not just have main effects, but 

also interact with age, revealing that they have differential impact on 

developmental trajectories during intervention. For example, cognitive level at 

intake predicted cognitive trajectories, consistently with a ‘rich get richer’ effect, 

where steeper developmental trajectories are observed for children who started 

higher in cognitive skills. Age at treatment start also predicted cognitive scores on 

average, but showed a stable effect on trajectories, meaning that in this case, age 

at intake did not predict how fast a child acquired cognitive skills. As suggested 

by previous authors (Chen et al., 2022), here we confirmed the importance of 

assessing individual developmental trajectories, since including the effect of age 

as a moderator may depict a different picture of predictors. Another important 

finding of our mega-analysis is the positive influence of starting intervention early 

on all outcomes, and also in the trajectories of autism symptom severity. We 

observed a lessening of symptom severity in children that started treatment 

earlier, while those that started treatment later showed flat or stable trajectories. 

Therefore, consistently with our first investigation, empirical findings of this 
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research strongly support the theoretical idea behind the value of earlier 

intervention. 

4.1 Limitations & Future Directions 

 

Specific limitations of each empirical work are discussed within each 

chapter. However, there are some general limitations that need to be addressed to 

interpret the results reported in this thesis. A primary observation to consider is 

about the novel finding from the work described in Chapter 1, in which blood 

leukocytes gene expression patterns were found to be informative for predicting 

developmental change. Although the sample size of this study is relatively 

moderate for what is typical in most gene expression and treatment studies, the 

result identified need to be confirmed in future works with larger samples, to meet 

basic criteria for validity and replicability. Our finding should be considered as a 

starting point for future trials that aim to provide evidence that different biological 

mechanisms do relate to differential outcomes related to treatment. 

 

A limitation, shared by the two works described, is that we did not adopt 

well-controlled randomized double-blind designs to support our inferences about 

treatment effects. The first study is correlational in nature and does not include a 

control group to compare the effect of the early intervention program examined. 

Therefore, the interpretation of treatment-related learning cannot be dissociated 

from possible maturational effects. In the second work, to provide a more 

representative picture of real-world application of early intervention, we included 

a large number of studies with a wide range of study designs, which comprised 

both RCTs and less constrained interventions in community settings. However, 

without filtering or controlling for study quality/bias, our evidence of positive 

effects of ESDM is limited. Given the current scarcity of meta- or mega-analyses 

of RCT studies on ESDM, it seems reasonable to suggest that more RCT studies 
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with large sample sizes are needed, to elucidate whether at the group level ESDM 

intervention is a more optimal choice compared to other interventions, (Crank et 

al., 2021; Sandbank, Bottema-Beutel, Crowley, Cassidy, Dunham, et al., 2020; 

Wang et al., 2022) and for which individuals ESDM works best. 

 

A caveat of our mega-analysis relates to the small exclusive effects of 

ESDM on receptive language and non-verbal cognitive skills, while no positive 

effects were evident on adaptive behavior and autism symptom severity outcomes. 

This may indicate that the ESDM intervention is less effective at targeting these 

domains. However, it should be noted that the duration of the intervention ranged 

from 3 to 27 months, and adaptive behavior outcomes, measured by VABS 

scores, are considered more related to long-term goals since they are strongly 

associated with later life outcomes (e.g., later independent living, educational 

attainment) (De Bildt et al., 2005; Farley et al., 2009). Thus, it is possible that 

adaptive skills learned in the intervention environment need a longer period of 

practice before they can be integrated as appropriate adaptive behaviors in the 

natural home environment (Ben-Itzchak et al., 2014). For this reason, it might be 

important to examine outcomes during long-term follow-up. Also, in the case of 

autism symptom severity outcome, the use of ADOS might lead to some 

measurement issues, since it was designed to capture relatively stable features of 

autism symptomology and was not created with the intention of measuring 

treatment-related changes (Fuller et al., 2020; Klintwall et al., 2015). Generally, 

all outcome measures present in the mega-analysis, are not considered sensitive or 

valid measures of short-term treatment-related changes, as they were originally 

intended to measure stable traits. Although these measures are the most 

commonly reported, and gains in these measures suggest solid changes in 

children's behaviors, they are not considered ideal for outcome research (Klintwall 

et al., 2015). Future treatment studies should employ measures designed to 

specifically assess treatment response, such as Brief Observation of Social 
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Communication Change (BOSCC), a more recent measure created for capturing 

treatment response for social communication behaviors (Grzadzinski et al., 2016). 

 

The general aim of this research was to get closer to precision medicine 

goals, going beyond on-average effects found in previous studies, and 

disentangling individual variability in treatment related outcomes. With this 

purpose, we found that individual baseline characteristics such as blood gene 

expression patterns, clinical characteristics and the child’s age are highly relevant 

for predicting outcomes and trajectories of treatment. Further directions of these 

works should focus on creating more specific intervention subgroups using 

participants characteristics. Given the relevance of the cognitive level at the 

baseline, we expect that, within a small age range, this factor could be used as 

stratifier to identify specific subgroups of autistic children who respond better to 

early interventions than others. This might give us a better understanding of why 

early interventions, such as ESDM, work better for some but not for all 

individuals. As done in previous studies (Ben-Itzchak et al., 2014), to subgroup 

autistic population into cognitive ability subgroups, we can use standard deviation 

cutoff scores based on developmental quotient at the baseline. Alternatively, 

unsupervised data-driven clustering approaches can be applied. In our lab was 

developed reval algorithm (Landi et al., 2021) and used to identify consistent 

subtypes in autism (Mandelli et al., 2023). This model could be used to stratify 

autism population into subgroups based on cognitive level at intake, and then 

apply it to split ESDM and community treatment participants into subtypes. 

Subtypes identified from this method can be then analyzed for differences in 

treatment response (ESDM vs Community). If subtypes can be identified with this 

unsupervised data-driven clustering approach, this model can be applied in the 

future to gain a better understanding of how individuals may respond to other 

early interventions. 
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To conclude, this research highlights the importance of assessing 

individual baseline characteristics to explain the heterogeneity of early 

intervention outcomes. Age of treatment start, initial cognitive level and early 

intervention program, such as ESDM, may work as protective factors to promote 

the development of autistic children. Among these factors, services for early 

diagnosis and treatment can be controlled and improved by society to some 

extent, while the set of cognitive abilities with which a child is born are out of 

control. However, experience-dependent learning processes are shaped by the 

environment (Gräff & Tsai, 2013). For this reason, effective interventions are not 

expected to “cure” autism, but to find a balance between accommodation of 

autistic features and the mitigation of harmful behaviors to focus on core 

developmental skills, which are relevant for later learning and reaching 

independence (Leadbitter et al., 2021; Rodgers et al., 2021).  

 

Hopefully, this work will be useful in further advancing research on 

autism early intervention, providing insights to address questions that remain 

unanswered.  
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Tables 

Table 1. Pre-treatment clinical characteristics. Abbreviations: ADOS, autism 

diagnostic interview schedule; MSEL, Mullen Scales of Early Learning; VABS, 

Vineland Adaptive Behavior Scales; SC, social-communication; RRB, restrictive 

repetitive behaviors; EL, expressive language; RL, receptive language; VR, visual 

reception; FM, fine motor; ELC, early learning composite; SD, standard 

deviation 

 Male Female 

Sex 33 8 

 Mean SD 

Age at Treatment Intake 22.78 4.03 

ADOS Total 14.27 6.02 

ADOS SC 12.17 5.41 

ADOS RRB 6.17 2.11 

MSEL EL 31.39 10.62 

MSEL RL 29.10 11.22 

MSEL VR 41.29 9.65 

MSEL FM 41.63 11.38 

MSEL ELC 73.83 15.31 

VABS Communication 77.12 14.38 

VABS Socialization 85.51 12.52 

VABS Daily Living Skills 89.05 11.99 

VABS Motor 94.83 11.98 
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VABS Adaptive Behavior Composite 84.27 12.34 
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Table 2: Gene Enrichment Analysis. This table shows results of gene set 

enrichment analysis for treatment-relevant genes. Abbreviations: GO, gene 

ontology. 

 
  

Biological Process (GO) 
  
  

GO-term description count in network false discovery rate 
GO:0032880 regulation of protein localization 29 of 901 0.0379 
GO:0016192 vesicle-mediated transport 48 of 1699 0.0043 

    
  

Cellular Component (GO) 
  
  

GO-term description count in network false discovery rate 
GO:0005829 cytosol 101 of 4958 0.0019 
GO:0070013 intracellular organelle lumen 98 of 5162 0.0190 
GO:0005737 cytoplasm 186 of 11238 0.0037 

    
  

UniProt Keywords 
  
  

keyword description count in network false discovery rate 
KW-0007 Acetylation 74 of 3335 0.0024 

 

 

Table 3: Enrichments with autism-relevant gene lists. This table shows results of 

enrichment analysis for treatment-relevant genes and autism-relevant gene lists. 

Abbreviations: DE, differentially expressed; DA, differentially histone acetylated; 

OR, enrichment odds ratio; FDR, false discovery rate. 

 

Gene List Odds Ratio (OR) p-value false discovery rate (FDR) 
SFARI ASD 0.73 0.85 0.86 

ASD DE Downregulated 0.68 0.86 0.86 
ASD DE Upregulated 1.46 0.13 0.23 
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ASD DA Prefrontal Cortex Upregulated 1.64 0.007 0.04 
ASD DA Prefrontal Cortex Downregulated 1.34 0.09 0.21 

ASD DA Temporal Cortex Upregulated 1.24 0.16 0.23 
ASD DA Temporal Cortex Downregulated 1.51 0.01 0.04 
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Table 4: Descriptive statistics of baseline characteristics between treatment 

types. Abbreviations: ESDM, Early Start Denver Model; COM/TAU, 

Community/Treatment-As-Usual; Pre-treatment DQ, Pre-treatment 

Developmental Quotient; M, Mean; SD, Standard Deviation. 

 
 

  ESDM COM/TAU 

Sample size 304 341 

Male 239 278 

Female 65 63 

Age at intake: M 
(SD) 30.46 (8.69) 33.61 (10.21) 

Pre-treatment DQ: 
M (SD) 62.25 (16.94) 61.92 (19.15) 

Intensity: M (SD) 15.60 (12.02) 10.21 (11.13) 
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Table 5: Longitudinal analysis for ADOS, VABS and MSEL scores. Linear 

Mixed Effect models were utilized for each subscale of MSEL, for each domain of 

VABS and one model for ADOS. ADOS calibrated severity scores (CSS) (A), 

MSEL age-equivalent scores (B, C, D, E) and VABS standardized scores (F, G, 

H, I) were the dependent variables. Fixed effects for all models were age, 

treatment type, treatment intensity, sex, age at treatment start, and pre-treatment 

developmental quotient. Interaction effects between these variables were also 

modeled as fixed effects. Random effects were utilized to account for subject-

specific age intercepts and slopes and to capture the nested within-study factors. 

 

A 

ADOS CSS F p-value fdr 

Age 29.16 1.22 e-07 7.35 e-07 

Treatment type 0.68 4.10 e-01 5.67 e-01 

Sex 0.72 3.96 e-01 5.68 e-01 

Age at start 12.87 3.58 e-04 1.43 e-03 

Pre-treatment DQ 113.76 4.16 e-24 4.99 e-23 

Intensity 0.08 7.80 e-01 7.96 e-01 

Treatment * age 0.39 5.32 e-01 6.39 e-01 

Treatment * sex 0.635 4.26 e-01 5.68 e-01 

Age at start * age 8.05 5.04 e-03 1.01 e-02 

Pre-treatment DQ * age 10.25 1.55 e-03 4.63 e-03 
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Table 5 

B 

 

 
 

  

MSEL F p-value fdr 

Expressive 
Language 

Age 1503.35 3.18 e-161 3.82 e-160 

Treatment type 1.63 2.03 e-01 2.70 e-01 

Sex 0.72 3.96 e-01 4.18 e-01 

Age at start 54.74 1.86 e-12 5. 61 e-12 

Pre-treatment DQ 516.22 5.22 e-70 3.14 e-69 

Intensity 2.90 1.03 e-01 1.76 e-01 

Treatment * age 2.44 1.18 e-01 1.77 e-01 

Treatment * sex 0.65 4.18 e-01 4.18 e-01 

Age at start * age 3.06 8.08 e-02 1.62 e-01 

Pre-treatment DQ * age 105.85 1.79 e-22 7.17 e-22 

MSEL F p-value fdr 

Receptive 
Language 

Age 1564.33 3.21 e-167 3.85 e-166 

Treatment type 6.60 2.22 e-02 4.45 e-02 

Sex 2.53 1.12 e-01 1.68 e-01 

Age at start 80.83 6.24 e-11 1.87 e-10 

Pre-treatment DQ 507.77 2.64 e-68 1.58 e-67 

Intensity 0.49 5.77 e-01 6.88 e-01 

Treatment * age 8.49 3.69 e-03 8.87 e-03 

Treatment * sex 0.16 6.88 e-01 6.88 e-01 

Age at start * age 1.05 3.06 e-01 4.08 e-01 

Pre-treatment DQ * age 72.21 2.99 e-16 1.19 e-15 

C  
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D 

 

E  

MSEL F p-value fdr 

Visual Reception 

Age 1.39 e+03 1.13 e-158 1.36 e-157 

Treatment type 3.08 e-01 5.79 e-01 6.96 e-01 

Sex 1.26 2.62 e-01 3.93 e-01 

Age at start 4.60 e+01 5.57 e-11 1.67 e-10 

Pre-treatment DQ 4.46 e+02 4.13 e-63 2.48 e-62 

Intensity 5.48 2.84 e-02 5.68 e-02 

Treatment * age 5.33 2.12 e-02 5.09 e-02 

Treatment * sex 2.84 e-05 9.95 e-01 9.957464e-01 

Age at start * age 2.16 e-02 8.83 e-01 9.63 e-01 

Pre-treatment DQ * age 6.69 e+01 2.76 e-15 1.11 e-14 

MSEL F p-value fdr 

Fine Motor 

Age 1.38 e+03 6.86 e-151 8.23 e-150 

Treatment type 2.56 e-01 6.13 e-01 7.36 e-01 

Sex 1.60 e-01 6.89 e-01 7.52 e-01 

Age at start 1.89 e+01 1.94 e-05 5.83 e-05 

Pre-treatment DQ 3.22 e+02 7.66 e-51 4.59 e-50 

Intensity 2.95 e-01 5.95 e-01 7.36 e-01 

Treatment * age 4.28 3.90 e-02 7.82 e-02 

Treatment * sex 1.17 e-03 9.73 e-01 9.73 e-01 

Age at start * age 2.19 1.38 e-01 2.38 e-01 

Pre-treatment DQ * age 7.70 e+01 4.96 e-17 1.98 e-16 
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VABS F p-value fdr 

Socialization 

Age 6.03 1.44 e-02 5.79 e-02 

Treatment type 0.04  8.35 e-01 9.74 e-01 

Sex 0.02 8.79 e-01 9.74 e-01 

Age at start 16.98 4.37 e-05 2.62 e-04 

Pre-treatment DQ 148.24 1.61 e-29 1.94 e-28 

Intensity 0.88 3.53 e-01 7.06 e-01 

Treatment * age 1.83 1.76 e-01 4.23 e-01 

Treatment * sex 0.01 9.04 e-01 9.74 e-01 

Age at start * age 2.50 1.147 e-01 3.44 e-01 

Pre-treatment DQ * age 0.27 6.05 e-01 9.07 e-01 

F  

 
VABS F p-value fdr 

Daily Living 

Age 1.42 2.33 e-01 4.66 e-01 

Treatment type 1.46 2.29 e-01 4.66 e-01 

Sex 4.77 e-01 4.90 e-01 6.62 e-01 

Age at start 5.55 1.89 e-02 7.58 e-02 

Pre-treatment DQ 2.00 e+02 1.09 e-37 1.31 e-36 

Intensity 4.37 e-03 9.48 e-01 9.48 e-01 

Treatment * age 1.83 1.76 e-01 4.23 e-01 

Treatment * sex 1.11 2.93 e-01 5.01 e-01 

Age at start * age 4.62 e-01 4.97 e-01 6.63 e-01 

Pre-treatment DQ * age 8.04 e-03 9.29 e-01 9.48 e-01 

G  
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H  

VABS F p-value fdr 

Communication 

Age 1.25 e+02 3.02 e-26 1.81 e-25 

Treatment type 1.25 2.65 e-01 3.97 e-01 

Sex 1.05 3.05 e-01 4.07 e-01 

Age at start 5.18 e+01 1.85 e-12 7.41 e-12 

Pre-treatment DQ 3.25 e+02 8.91 e-55 1.07 e-53 

Intensity 3.36 6.96 e-02 1.67 e-01 

Treatment * age 7.82 e-03 9.29 e-01 9.29 e-01 

Treatment * sex 7.29 e-02 7.87 e-01 8.58 e-01 

Age at start * age 6.27 1.28 e-02 3.86 e-02 

Pre-treatment DQ * age 1.83 e-01 6.69 e-01 8.03 e-01 

I  

VABS F p-value fdr 

Motor 

Age 1.09 e+01 1.01 e-03 6.07 e-03 

Treatment type 5.96 e-02 8.08 e-01 8.81 e-01 

Sex 3.56 5.99 e-02 1.44 e-01 

Age at start 1.36 2.44 e-01 3.66 e-01 

Pre-treatment DQ 8.10 e+01 8.27 e-18 9.92 e-17 

Intensity 3.53 8.14 e-02 1.63 e-01 

Treatment * age 2.13 e-01 6.44 e-01 7.73 e-01 

Treatment * sex 1.95 1.63 e-01 2.79 e-01 

Age at start * age 4.00 4.65 e-02 1.39 e-01 

Pre-treatment DQ * age 7.21 7.79 e-03 3.12 e-02 
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