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Abstract 
 
Since the advent of successful cancer immunotherapy, biomarkers for predicting their efficacy 
before starting the treatment have been unmet medical need. Intestinal dysbiosis is a satellite 
syndrome of oncogenesis and stool metagenomics represents a non-invasive and increasingly cost-
effective approach with the potential to early diagnosis of cancer in different cancer types. The 
prognostic impact of antibiotic uptake and gut microbiota composition urged investigators to 
develop tools for the detection of gut dysbiosis for patient stratification and microbiota-centered 
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clinical interventions. This review will outline that cancer patients share several Gut 
OncoMicrobiome Signatures (GOMS) with individuals suffering from seemingly unrelated chronic 
inflammatory disorders across various histotypes that instead tend to be different from the 
microbiome profiles of healthy individuals.  This review presents the largest integrative meta-
analysis of GOMS patterns associated with clinical benefit or resistance to immune checkpoint 
inhibitors (ICI) across 808 patients with cancer. We will discuss metabolic and immunological 
surrogate markers of gut dysbiosis and practical guidelines to incorporate GOMS in decision making 
for prospective clinical trials in immuno-oncology. 
 
 
 
Key points 

● Intestinal dysbiosis is a satellite manifestation of oncogenesis 
● Cancer patients share gut microbiome signatures with individuals suffering from seemingly 

unrelated diseases 
● Gut OncoMicrobiome signatures (GOMS) share profile commonalities across cancer 

histotypes 
● GOMS represent a non-invasive cost-effective promising approach to early diagnosis of 

cancer in different cancer types 
● Links between gut dysbiosis and microbial tissue colonization or infection offer new 

prospects of etiology, prevention and therapeutic intervention in distinct cancers such as 
PDAC or urothelial cancers 

● GOMS are candidate predictors of resistance to immune checkpoint inhibitors 
 
 
 
Introduction  
 
 
Adulthood carcinogenesis is a complex cell-autonomous disease caused by (epi-)genetically unstable 

cells that have the potential to acquire (at least) fourteen phenotypic capacities corrupting local tissue 

barriers and culminating in a chronic inflammatory process1. A more “ecological” view of malignant 

disease encompasses its malicious modulation of distant systems including the autophagic machinery2, 

senescence3, metabolism, immunity, clonal hematopoiesis, endocrine and neurological networks and 

the local and intestinal microbiota community1,4,5. In fact, many pathophysiological disorders 

associated with cancer, so called “comorbidities” (GLOSSARY), namely, systemic inflammation6–8, 

obesity, lung and liver dysfunctions, aging-related abnormalities9,10, cachexia11,12, heart or circulatory 

failures, as well as specific antitumor therapies and their comedications (GLOSSARY), can directly or 

indirectly converge towards altering the gut barrier integrity and the taxonomic composition of the 

local microbial ecosystem with a feed-forward loop13 (Table 1). It is well established that cancer 

incidence increases with aging. Studies focusing on microbiome characteristics of aging unveiled that 

the lifetime-induced gut microbiota drift may influence survival span10,14. Hence, unhealthy aging is 
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characterized by high relative abundance of certain taxa such as those from the Bacteroides genus, 

low gut microbiome uniqueness and the presence of gut xenobiotic metabolites such as those with 

toxic phenylalanine/tyrosine microbial fermentation products (p-cresol sulfate, 

phenylacetylglutamine, p-cresol glucuronide)9,10. In contrast, healthy aging exhibits a series of gut 

microbial features including increased presence of indoles (3-indoxyl sulfate, 6-hydroxyindole sulfate, 

indoleacetate and indolepropionate), which are gut bacterial degradation products of tryptophan 

mediating immune homeostasis through binding to aryl hydrocarbon and IL-10 receptors15–17. A 

sizeable subset of advanced cancer patients present frailty, sarcopenia, and fat loss corollary of gut 

permeability and systemic inflammation18. Enterobacteriaceae family members including typically 

proinflammatory Gammaproteobacteria and Veillonella typically become more abundant among 

cachectic cancer patients. Fecal levels of short-chain fatty acids (SCFA), more specifically acetate, are 

associated with health-related regulatory pathways, but tend to be reduced in cancer patients 

presenting with cachexia12. Specific secondary bile acids (including isoallo-lithocholic acid) resulting 

from the prevalence of distinct gut species (including Alistipes putredinis and Odoribacter 

splanchnicus) are preferentially found in centenarians and reportedly contribute to intestinal 

homeostasis19. An unhealthy gut microbiome signature reflects both the diseased state and the 

associated medication. Strong effects on the taxonomic composition of the intestinal microbial 

ecosystem were observed for comedications often prescribed in cancer patients, such as proton pump 

inhibitors (PPI), antibiotics (ATB), anti-inflammatory agents, osmotic laxatives and biguanide 

antidiabetics20. For instance, both PPI and ATB significantly induced lower microbial diversities, 

overrepresentation of supraglottic commensals (such as Streptococcaceae family members for PPI21) 

and increased relative abundances of “immunosuppressive” gut commensals (such as the Hungatella 

and Enterocloster genera for ATB22,23). Lastly, polychemotherapy and hormonotherapy (such as 

androgen deprivation) can modulate the alpha and beta-diversities of the microbiota, influencing 

treatment side effects24,25 or drug metabolism and efficacy26,27. Altogether, this pathological or 

iatrogenic conjecture converges to deviate the healthy repertoire of the intestinal ecosystem, referred 

to as “gut dysbiosis” henceforth (GLOSSARY), observed in patients diagnosed with localized or 

advanced intestinal and extra-intestinal malignancies.  

Likewise, carcinogenesis can drive compositional shifts of the microbiome to its own benefit (Figure 

1). Indeed, as shown in the early 1960s, certain malignancies can cause jejunal and ileal mucosa 

atrophy22,28,29. Mouse models of transplantable tumors highlighted that this ileal mucosa atrophy 

(monitored by the villous/crypt height ratio) was characterized by crypt apoptosis, defects in 

proliferation, in ER stress response and autophagy induction by villus enterocytes11,22.  Transplantable 



4 
“Gut OncoMicrobiome Signatures as next generation biomarkers for cancer immunotherapy” by Thomas, Fidelle, Routy et 
al. invited by NATURE REV CLIN ONCOL (NRCO-22-063V1) 
 
01/20/23 
 
tumorigenesis also disturbed the secretory components of ileal crypts, inducing Paneth cell 

degranulation, release of the antimicrobial peptide (AMP) REG3γ by ileal cells, and an ectopic 

accumulation of enteroendocrine cells expressing the tyrosine hydroxylase (TH+EEC) (leading to L-dopa 

synthesis and catecholamine end products). This ileal atrophy correlated with villous microvascular 

constriction and reduced accumulation of CD8+ T lymphocytes, eosinophils and granulocytes in the 

lamina propria (LP). Moreover, neurological imbalances between catecholamine and cholinergic 

signaling were observed in the ileal mucosa of tumor bearers22 (Figure 1). Choline acetyltransferase 

(ChAT) expression was decreased in the ileal stroma shortly after tumor inoculation in preclinical 

models. Nerve fibers extending into each villus of the lamina propria and expressing vesicular 

acetylcholine transporter (VAChT) were clearly reduced by tumor injection. Incubation of mouse and 

human 3D-crypt stem cell derived-ileal enteroids with physiological concentrations of biogenic amines 

(epinephrine and to some extent norepinephrine) blunted enterocyte proliferation and increased 

REG3γ secretion, suggesting a potential link between TH+enteroendocrine cells and antimicrobial 

peptide release. This ileal atrophy led to a transient intestinal permeability paving the way to an overt 

and protracted dysbiosis. A prototypic “dysbiosis” accompanied tumor growth, that was dominated by 

Gram-positive Clostridium species (belonging to the Enterocloster genus such as E. bolteae, E. 

clostridioformis, E. asparagiformis, E. citroniae…), Flavonifractor plautii and the relative 

underrepresentation of Eubacterium and Lactobacilli spp.22. A cause-effect relationship between this 

stress ileopathy and carcinogenesis was unveiled in cohousing experiments. Pharmacological blockade 

of β-adrenergic receptors or Adrb2 gene deficiency, vancomycin or co-housing of tumor bearers with 

tumor free littermates all prevented cancer-induced ileopathy, eventually slowing tumor growth 

kinetics. Cancer patients also exhibit hallmarks of this stress ileopathy. A correlation between crypt 

apoptosis and ectopic enteroendocrine cells was observed in patients diagnosed with gastrointestinal 

(including colon adenocarcinoma and neuroendocrine intestinal tumors) or genitourinary 

malignancies22. In addition, the fecal composition of cancer patients significantly differed from that of 

healthy controls with a relative overrepresentation of the Enterocloster genus and loss of 

Lachnospiraceae or Oscillospiraceae family members (including Eubacterium, Dorea, Faecalibacterium 

spp.). Hence, stress ileopathy is a corollary disease of extra-intestinal malignancies culminating in a 

protracted gut dysbiosis. Of note, this stress ileopathy is not cancer-specific. Thus, Stanley et al. 

showed that ischemic brain injuries caused gut barrier dysfunction with increased permeability 

allowing the translocation of ileal bacteria to peripheral organs30. The authors unveiled a biologically 

significant imbalance between adrenergic and cholinergic signaling within the submucosal plexus in 

the ileum post-stroke. Indeed, reduction in cholinergic signaling stimulated the pro-inflammatory 
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immune response, while its activation prevented the brain injury-induced increase in both intestinal 

and cerebral vascular permeability31. 

 Therefore, cancer patients have many reasons to present an intestinal dysbiosis that may be 

harnessed to stratify patient cohorts, given its clinical relevance as discussed henceforth.  

 
 
Gut OncoMicrobiome Signatures (GOMS) and prognostic impact  
 
 
The intestinal microbiota is modulated during the course of many different diseases, most specifically 

inflammatory bowel diseases, metabolic syndrome, autoimmune disorders and cancer13,32. However, 

universal healthy or unhealthy gut microbiome signatures are difficult to be identified, because of 

intrinsic variability and subject specificity of the microbiome, technical issues, geographical variance 

and many confounding factors such as genetics, exposome, lifestyle and diet. The Dutch Microbiome 

Project (DMP) within Lifelines, a three-generational population cohort comprising >8,000 individuals 

with >25,000 fecal samples from the northern Netherlands analyzed associations between the stool 

taxonomic composition and function and well-defined phenotypes20. The DMP identified nine core 

species (Subdoligranulum sp., Alistipes onderdonkii, Alistipes putredinis, Alistipes shahii, Bacteroides 

uniformis, Bacteroides vulgatus, Eubacterium rectale, Faecalibacterium prausnitzii and Oscillibacter 

spp.) that form central nodes in microbial co-abundance networks in more than 95% of individuals20. 

The DMP gut microbiome signature of health replicated most of the signals identified in the other 

broad study, the Gut Microbiome Health Index (GMHI)33, at genus or species levels. In addition, the 

DMP identified other health-related microbiome patterns comprising Butyrivibrio, Akkermansia and 

Prevotella genera. Surprisingly, seemingly unrelated diseases (such as cancer, cardiovascular diseases, 

metabolic disorders, gastrointestinal syndromes, and mental disorders) share a common gut 

microbiome signature that is independent of comorbidities. The shared gut microbiome signature is 

detailed in Table S1, and in brief, mainly consisted of relative increases in Enterocloster, Flavonifractor 

Eggerthella, Streptococcus, Hungatella and Veillonella genera and relative decreases of members of 

several families (Prevotellaceae, Lachnospiraceae, Oscillospiraceae) and immunogenic representatives 

of the Bacteroidales order (Barnesiella intestinihominis, Alistipes shahii, A. senegalensis). Gut 

microbiome-associated functional pathways shared across unrelated diseases consisted mainly of 

increases in biosynthesis of l-ornithine, ubiquinol and menaquinol, enterobacterial common antigen, 

Kdo-2-lipid-A and molybdenum cofactor, as well as decreases in biosynthesis of amino acids, 

deoxyribonucleosides and nucleotides, anaerobic energy metabolism and fermentation to SCFA 
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(mainly butanoate)20. These findings are in line with another independent study showing that gut 

dysbiosis is a corollary syndrome of cancer22. Indeed, the pan-cancer metagenome from a prospective 

cohort of 1,426 patients diagnosed with 8 different malignancies (including colon, kidney, breast, lung, 

ovarian, prostate cancers, melanoma and chronic leukemia) at various stages were admixed with 705 

colon cancers from publicly available databases and compared with >5,570 healthy metagenomes. 

Confirming other studies20,33, significant differences separated the normal from the cancerous 

taxonomic profile. Selected bacteria taxa (Prevotellaceae and Lachnospiraceae family members, 

Bifidobacterium spp.) were overrepresented in healthy individuals while Gram-positive Enterocloster 

and Clostridium spp., Eisenbergiella spp. and gamma/ delta-proteobacteria were relatively dominant 

across 6 of 8 cancer types22 (Table S1). 

 
To refine the definition of the pan-cancer-associated gut dysbiosis (“GOMS”) discussed above, we 

propose herein the following meta-analysis (GLOSSARY). We performed microbiome taxonomic 

profiling with MetaPhlAn 434 on stool samples collected from adult individuals from a first collection 

of 1,879 patients spanning 8 different cancers comprising 30 cohorts from 23 published studies22–26,35–

52 and 5,341 control individuals comprising 17 cohorts of healthy adult subjects from 14 published 

studies across diverse geographic locations45,53–65 (Table S2, refer to supplemental materials for 

meta-analysis methodology). With the exception of colorectal cancer, the cancer datasets typically 

contained only cancer patients as they are focused on studying response to treatment and matched 

controls individuals are difficult to be collected in oncological settings. This integrative analysis was 

conducted by considering all pairs of cohorts composed by a cohort of cancer patients and a cohort of 

controls and applying a random-effect meta-analysis on all the detected species-level genome bins 

(SGBs). By computing the ranking of the significant associations of each SGB with the cancer or control 

conditions, we highlighted several species consistently associated with cancer individuals across 

distinct cohorts for the same cancer and across different cancers (Figure 2, Table S1, Table S2). 

Specifically, cancer stools across the 8 cancer types harbor a consistent relative increase in 

Enterocloster genus, Hungatella and Clostridium spp., Pseudoflavonifractor, and species from the 

genus Eisenbergiella and a relative decrease of members of several families including Lachnospiraceae, 

and Oscillospiraceae (including Faecalibacterium spp.) (Table S1, Figure 2, Table S3). Notably, many 

such biomarkers belong to yet-to-be-characterized species represented by SGBs solely defined based 

on metagenome-assembled genomes, lacking any cultivated representative, and assignable only at 

high taxonomic levels (e.g., families), highlighting once again the need for further microbiological 

cultivation-based studies. 
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Histotype specificities for GOMS and impact on prognosis (Table S4)  
 
While pan-cancer GOMS may indirectly reflect the systemic chronic inflammatory process, certain 

deviations of the gut microbiota repertoire may be more specifically attributable to distinct tumor 

types. We will only focus on large cohorts that unveiled important and robust specific features as 

described henceforth and discuss their potential clinical relevance. 

Breast cancer (BC) 

A French study analyzed the fecal compositional differences between BC and healthy volunteers 

(HV)24. The BC GOMS comprised families from the Bacteroidales order, Tannerellaceae, Rikenellaceae, 

Prevotellaceae,  Odoribacteraceae families as well as viruses (C2 like virus unclass., Lactococcus phage 

936, Enterobacteria phage JL1, E. coli phage phAPEC8, Sodalis phage SO1)24 (Table S4).  Here again, 

the Enterocloster genus reported to be associated with pathophysiological disorders20,22 was also 

overrepresented in BC GOMS. Importantly, there was a prognostic significance of the BC GOMS, in 

thus far that microbes of this list tended to be associated with stage II/III BC at diagnosis while women 

with a stage I rather harbored a normal-like stool MG profiling (Table S1). Reinforcing this notion, 

microbes within the BC GOMS were also associated with resistance to neoadjuvant chemotherapy24. 

Hence, Bacteroides uniformis, Parabacteroides merdae, Enterocloster spp. were overrepresented in 

stools from women presenting with stage II/III at baseline while B. thetaiotaomicron, E. bolteae, E. 

clostridioformis were associated with resistance to cytotoxic agents. In fact, chemotherapy 

significantly affected the alpha and beta-diversity of the stool composition of BC females towards an 

anti-inflammatory pattern24, entailing the relative underrepresentation of distinct species commonly 

found across several pathological disorders (V. parvula, V. atypica, E. lenta, E. asparagiformis)20. 

Finally, many BC GOMS spp. (B. uniformis, B. thetaiotaomicron, and many members of the 

Enterocloster genus) were also culprits associated with BC adjuvant therapy-induced neurotoxicity24. 

Interestingly, many of these BC GOMS culprits (V. parvula, B. uniformis, E. clostridioformis …) were also 

identified in the BC microbiome comprising >9,000 species after filtering for artefactual 

contaminants66. Future work is awaited to identify links between gut and tumor microbiome patterns, 

their relevance with BC oncogene or tumor suppressor gene profiles (HER2, p53, PI3K/PTEN 

signaling…), and the resistance to endocrine therapies. 
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Pancreatic ductal carcinoma (PDAC) 
 
Here again, across various studies taking into account all possible cofounding factors relevant in this 

devastating disease, the fecal microbiome composition of PDAC differed from that of controls42,51. 

Shotgun metagenomics profiling of three PDAC cohorts across Asia and Europe identified a shared 

PDAC GOMS consisting in significant enrichments of the pro-inflammatory Streptococcus and 

Veillonella spp.67 and 58 of their bacteriophages as well as the depletion of SCFA producers (e.g., 

Faecalibacterium prausnitzii, E. rectale, and R. bicirculans)42(Table S4). These PDAC GOMS match gut 

microbiome signatures observed with PPI uptake. Given the epidemiological association between PPI 

use and risk of PDAC68, it is tempting to hypothesize that PPIs might accelerate the development or 

progression of PDAC. Prospective follow-up revealed correlations between GOMS and PDAC-related 

mortality. The gut relative abundances of SCFA producers (such as F. prausnitzii and Clostridiales spp.) 

over that of R. torques, H. parainfluenzae and Neisseria bacilliformis were associated with prolonged 

overall survival (OS). Functional analysis of GOMS in these three PDAC cohorts across Asia and Europe 

revealed the significant enrichments of biosynthesis of C5 isoprenoid from the mevalonate pathway, 

and ADP-L-glycero-D-manno-heptose in PDAC42. The former generates isoprenoids mandatory for the 

activity of GTPases, putatively the mutated Ras gene product involved in the initiation and 

maintenance of PDAC. The latter pathway leads to a precursor of the proinflammatory 

lipopolysaccharide (LPS), culminating in procarcinogenic NF-kB activation. 

Two Spanish and German case-control studies reported a microbiota-based classification 

model with an accuracy of up to 0.84 area under the receiver operating characteristic curve based on 

a set of 27 microbial species confined to PDAC-GOMS. It was highly disease-specific when validated 

against 25 publicly available metagenomes from various health conditions (encompassing >5,000 

individuals)51. Albeit similar to the previous report, this study unveiled complementary observations. 

First, unexpected taxa, such as Romboutsia timonensis or the Methanobrevibacter smithii archaea 

stood out in the PDAC specific-GOMS classifier. Secondly, molecular traits of specific gut microbes 

(belonging to Akkermansia spp., Lactobacillus spp., Bifidobacterium spp., Veillonella spp., Bacteroides 

spp. and Streptococcus spp.) were detectable in pancreatic tissues using 16S rRNA sequencing and/or 

FISH assays with genus-specific primers. Third, distinct strains of fecal PDAC-associated microbes could 

be sourced from the oral cavity. 

Altogether, these studies demonstrated the feasibility of constructing a global, specific, and 

reproducible predictive model based on non-invasive gut microbiome profiling to screen for early 

PDAC. 
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Colorectal cancer (CRC) 
 
The gut microbiome has been extensively studied in the context of colorectal cancer and is arguably 

the main showcase of the gut microbiome's role in cancer. Initial studies elucidated the gut 

microbiomes' potential as a diagnostic tool to detect CRC in single cohorts43,49,69, and has been 

validated in multiple geographically distinct cohorts, identifying reproducible gut microbiome 

signatures46,47,70. This signature, identified through both supervised machine learning and meta-

analysis (GLOSSARY), included bacterial species Solobacterium moorei, Fusobacterium nucleatum, 

Parvimonas micra, Peptostreptococcus stomatis, Peptostreptococcus anaerobius and Gemella 

morbillorum (Table S4). Members of this signature, such as F. nucleatum and P. anaerobius have been 

shown to promote colorectal carcinogenesis and modulate tumor immunity71,72 and, along with P. 

stomatis and P. micra, are commonly found in the oral cavity. The enrichment of bacterial species from 

the oral cavity is characteristic of CRC GOMS47,73–76, along with an enrichment of invasive polymicrobial 

bacterial biofilms in right-sided tumors73,77,78. Most studies thus far have focused on studying CRC 

GOMS in patients who were diagnosed at a later age (median 68 and 72 years in men and women), 

however, incidence rates of CRC in patients <50 years old, termed early-onset (EO), are on the rise 79. 

EO-CRC patients usually present a more advanced disease, different pathological features and 

differences in CRC GOMS80,81, marked by an enrichment of Flavonifractor plautii and increased 

tryptophan, bile acid and choline metabolism, when compared to their older counterparts. 

Advancements in the field of microbiome research coupled with the availability of large publicly 

available cohorts have enabled the discovery of additional biomarkers from oftentimes overshadowed, 

but equally important, nonbacterial members of gut microbial communities82. This includes the 

discovery of specific virome76 and mycobiome83,84 signatures for CRC GOMS, with in vitro and in vivo 

experiments showing that the fungi Aspergillus rambellii can promote CRC cell growth83.  

 
 
GOMS are predictors of clinical outcome to ICI (Table S5-7, Figure 3 and Figure 4) 
 
Immune checkpoint inhibitors (ICI), mostly consisting in monoclonal antibodies (Abs) directed against 

lymphocyte inhibitory receptors (PD-1, CTLA-4) or their ligands (PD-L1, PD-L2) (GLOSSARY), have 

revolutionized cancer therapy enabling novel therapeutic indications, as standalone or combined 

strategies across multiple tumor types85,86. However, only a minority of patients exhibits prolonged 

clinical benefit to ICI. In addition, due to their unique mode of action blocking the inhibitory receptor 

pathways, ICI generate immune-related adverse events (irAEs) that can be life threatening, limiting 
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their broad use at early stages in the absence of robust biomarkers (GLOSSARY). Validation of such 

biomarkers has become a priority to ameliorate the therapeutic index and facilitate clinical 

management of patients, specifically in the ICI adjuvant or neoadjuvant settings. Currently, only three 

biomarkers (programmed death-ligand 1 (PD-L1), markers related to the tumor microenvironment 

(TME) and microsatellite instability) have the US Food and Drug Administration (FDA)-approbation 

with some limitations (Table 2). Over the last decade, since the epidemiological demonstration of the 

negative impact of antibiotics on the efficacy of ICI13,39,87, specific microbial taxa have been associated 

with response or resistance to ICI across distinct cancer types23,35–37,39,88–97. However, despite some 

unifying bacterial taxa within a specific cancer histotype, the overlap between beneficial or harmful 

bacteria across studies was modest and could not be simply explained by technical 

considerations36,37,94. Beyond confounding factors that can impact the robustness of the ICI-GOMS for 

each histotype, the clinical RECIST1.1 criterium used to evaluate each stool MG-based study varied, 

whether considering objective response rates (ORR) or best outcome or 12 month-survival or overall 

survival (OS). We will first summarize findings mostly obtained in sizeable cohorts of non-small lung 

cancer (NSCLC) and melanoma, describing robust GOMS associated with clinical outcome to ICI. 

Secondly, we will provide the first meta-analysis across all cancer patients treated with anti-PD-1/anti-

PD-L1 + anti-CTLA-4 Abs and geographical sites, unveiling common GOMS associated with response or 

resistance to ICI, considering only ORR (CR+PR vs SD+PD) (GLOSSARY). 

Non-small cell lung cancer (NSCLC) 
 
Akkermansia muciniphila is a Gram-negative homeostatic commensal, that acts on host metabolism 

to maintain glucose tolerance and intestinal barrier function. This mucin -producing and -degrading 

commensal was shown to mitigate gut dysbiosis, preventing gut permeability and liver inflammation98–

100. In homeostatic or immunostimulatory conditions, A. muciniphila activates immune responses, local 

TFH cells101 or systemic TH1 cells in an IL-12-dependent manner respectively39. In a cohort of 493 NSCLC 

patients subjected to prospective stool shotgun metagenomic sequencing before PD-1/PD-L1 

blockade, the prevalence of A. muciniphila (the main species-level genome bin SGB9226 among all 

Akkermansia spp.) was associated with an inflamed tumor microenvironment (TME) and a favorable 

clinical outcome (considering RECIST1.1 objective response rates and overall survival), specifically 

when the relative abundance did not exceed the 77th percentile (<4.8% of the whole metagenome 

(which was found in 30% of advanced NSCLC patients))38. Within this range, Akkermansia spp. was a 

surrogate marker of a healthy microbiome characterized by the dominance of Lachnospiraceae and 

Oscillospiraceae family members38. However, a relative overabundance of SGB9226 (or prevalence of 
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SGB9228, another species of Akkermansia) beyond this threshold, observed in about 9% of advanced 

NSCLC patients, and coinciding with the relative dominance of the immunosuppressive Enterocloster 

genus and Clostridium species20,22 predicted resistance to PD-1 blockade38. Hence, this trichotomic 

distribution of Akkermansia spp. (absence, <4.8%, >4.8%) allows to accurately predict the clinical 

benefit of advanced NSCLC treated in 1st or 2nd line with anti-PD-1/PD-L1 antibodies independently of 

all the other clinical prognostic factors38,39. This bacterium also predicted long term survival of patients 

in 2nd line renal cell carcinoma patients (RCC) treated with nivolumab23. The clinical significance of 

intestinal Akkermansia spp. was extended to neoadjuvant settings of ICI in NSCLC patients90, validating 

findings obtained in preclinical avatar models using patient stools orally transferred to 

hepatocarcinoma100 , sarcoma, kidney, lung and prostate cancer bearing mice25,38. 

 

Melanoma 
 
Mouse studies have provided compelling evidence that gut microbiome modifications improve ICI 

response rates via fecal microbiota transplant (FMT)35,39,88, however, they have also highlighted that 

factors such as mouse strain or provider, sex and individual experiments can affect the magnitude of 

anti-tumor responses102. Differences have also been observed in the human setting, with single studies 

investigating the gut microbiome as a potential biomarker of response as well as a therapeutic target 

in melanoma, identifying species such as Faecalibacterium prausnitzii, Bifidobacterium longum and 

Bacteroides caccae to be associated with responders35,41,88, but with limited concordance on which 

microbiome characteristics are associated with treatment responses across studies94. To overcome 

this, recent studies have used multiple cohorts and meta-analytical approaches36,37,103,104, identifying a 

panel of species, including Bifidobacterium pseudocatenulatum, Roseburia spp. and A. muciniphila, 

associated with responders (R), while Veillonella parvula, Bacteroides spp., Clostridium spp., 

Parasutterella excrementihominis, Scardovia wiggsiae, Oribacterium sinus, and Megasphaera 

micronuciformis were associated with non-responders (NR). However, no single species was 

reproducibly shown as a fully consistent biomarker of response across studies. To solve this problem, 

McCulloch et al. incremented a new cohort into four published datasets37. The authors confirmed that 

baseline microbiota composition was associated with 1 year-progression- free survival. Meta-analysis 

of the combined data confirmed that bacteria associated with favorable response belonged to 

Lachnospiraceae/Bifidobacteriaceae families (including many Ruminococcus/Mediterraneibacter spp., 

and Blautia spp.) and proposed two opposite gut microbiome signatures enriched for Lachnospiraceae 

spp. and Streptococcaceae spp. (for favorable and unfavorable prognosis respectively) to best predict 
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outcome during immunotherapy37. In addition, they identified associations between Gram-negative 

bacteria, an inflammatory host intestinal gene signature, a rise in the blood neutrophil-to-lymphocyte 

ratio, and unfavorable outcome. Despite between-cohort heterogeneity, optimized all-minus-one 

supervised learning algorithms trained on batch-corrected microbiome data consistently predicted 

outcomes to PD-1 blockade in all melanoma cohorts37.  

Cohort effects, which can encompass many factors, including methodological choices in sample 

processing and analysis, could potentially reconcile differences in the “responder (R)” versus “non 

responder (NR)” GOMS found across cohorts. Geographical differences can play a major role in human 

gut microbiota variation105 and have been shown to have an effect also in melanoma R/NR GOMS37,106. 

Indeed, cross-validation identified unfavorable bacteria of the Bacteroidetes phylum as predictive for 

most cohorts, while favorable bacteria of the Clostridium phylum were predictive only for subsets of 

cohorts37. Dietary driven gut microbiome variation is another driver of cohort effects, as higher dietary 

fiber has been linked with response to ICIs in melanoma patients50 and gut microbiome assembly 

patterns106. 

 
Pan-cancer R versus NR GOMS 
 
To decipher whether R and NR GOMS were significantly different across cohorts and geographical sites 

in a meta-and mega-analysis (GLOSSARY), we performed fecal taxonomic profiling with MetaPhlAn 434 

on 808 patients classified as responders (R, n=263) and non-responders (NR, n=545), based on 

RECIST1.1, criteria for objective response rates (R and NR assembled PR + CR, and SD +PD respectively) 

comprising 12 cohorts from 8 published studies23,35–41 (Table S5). Using the mega-analysis approach at 

the single SGB level (refer to supplemental material for detailed methodology and Figure 3), NR-

GOMS comprised microbes already described as immunosuppressive, such as the Enterocloster and 

the Anaerotruncus genera, Eisenbergiella tayi, Hungatella hathewayi or C. symbiosum, or pro-

inflammatory Veillonellaceae, Eggerthellaceae Enterobacteriaceae, Erysipelotrichaceae family 

members and oral genera (Streptococcus and Actinomyces) shared across various pathological 

disorders9,20,38,94 (Figure 3). In fact, many taxa from the NR-GOMS were already within those 

contrasting cancer bearers versus healthy individuals22 (Figure 2, Table S1). In contrast, R-GOMS 

encompasses genera belonging to the healthy status and SCFA (GLOSSARY) producers such as 

Lachnospiraceae (Roseburia, Coprococcus, Blautia, Eubacterium, Dorea spp.), Ruminococcaceae family 

members and the propionate producing A. muciniphila (SGB9226). Hence, a number of organisms 

involved in the fermentation of dietary fibers, and representing a major fraction of the butyrate 

production (including Faecalibacterium prausnitzii, Eubacterium rectale, Roseburia spp., 
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Fusicatenibacter saccharivorans and Anaerobutyricum hallii) are within this fingerprint (Figure 3, Table 

S6). The meta-analysis approach (refer to supplemental material for detailed methodology, Table S1, 

Figure 4 and Table S7) unveiled additional taxa associated with ORR, including immunogenic 

commensals such as Alistipes shahii107, Bifidobacterium bifidum and B. adolescentis, and Prevotella 

copri SGB1626 (also part of the health-related blueprint)20,37. Distinct species from the R-GOMS were 

already in the list of those taxa associated with the healthy status22 (Figure 2) i.e. Faecalibacterium 

SGB15346, Clostridia bacterium SGB15383, and Roseburia hominis SGB4936.  

A Random Forest model applied in a leave-one-dataset-out (LODO) setting on a total of 761 cancer 

patients amenable to ICI (for whom gender and age were available) built to differentiate patients with 

objective responses (CR+PR) from NR (SD+PD) had a moderate and rather inconsistent predictive 

power across left-out datasets and a still modest predictive power when merging all dataset for a single 

cross-validation evaluation (AUC = 0.71, Table S5). These results are consistent with individual reports 

showing that these groups were compositionally distinguishable but with limited overlap of 

biomarkers across studies. Of note, NSCLC and RCC displayed better AUC predictive values compared 

with melanoma cohorts. 

Hence, GOMS could become valuable predictors of response to ICI as patients incrementality increase, 

with some degree of overlap between healthy individuals with ICI responders, and any pathological 

failure with ICI non responders. Overall, increasing the sample size of single cohorts, standardization 

of protocols across cohorts, and more systematic integrative analysis together with data sharing, are 

particularly needed for finding biomarkers of response to immunotherapy. 

 

Monitoring GOMS functions  
 

Immunogenicity of GOMS 
 

T cell responses against commensals are commonly found in healthy individuals, suggesting that they 

participate in intestinal homeostasis by producing barrier protective cytokines and a large pool of 

pathobiont-reactive T cells108. In a large survey of HV, enteric bacteria-reactive CD4+ T cells were 

present at precursor frequencies of 40-500 cells per 106 circulating CD4+ T cells for almost all enteric 

bacteria analyzed108. Bacteria-reactive T cells were 3- to 8-fold more frequent in gut tissue as compared 

with those in circulation. Microbiota-reactive T cells produced IL-2 and TNFα, and co-expressed CCR7, 

CCR4, CD161, and CCR6 in various combinations, some of which also expressed integrin β7 and CCR9. 

When comparing gut microbiota (E. coli, B. animalis, F. prausnitzii, R. hominis, R. obeum, …) -reactive 
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CD4+ T cells with those reactive to non-enteric organisms (including S. aureus, M. tuberculosis, and C. 

albicans), enteric bacteria-reactive T cells were partially enriched only in CCR4 expression. Gut-

resident bacteria-reactive T cells produced high amounts of IFNγ, IL-17A and IL-2, while production of 

IL-22, GM-CSF, and IL-4 was low108. Interestingly, lamina propria T cells showed increased IL-17A 

expression and reduced IFNγ production relative to cells with similar specificity in blood. Microbiota-

reactive memory T cells harbored frequent co-expression of IL17A, IL-22, and IFNγ. However, a subset 

of CD4+ T cells reactive to F. prausnitzii, L. acidophilus, or B. animalis produced the immunoregulatory 

cytokine IL-10 in addition to IFNγ and IL-17A. This cytokine release may have biological significance, as 

suggested by the inhibitory effects of triple blockade of IFNγ, IL17A, and TNFα on the capacity of the 

bacteria-reactive T cells to activate non hematopoietic intestinal stromal and epithelial cells in vitro. In 

pathological circumstances of mucosal barrier dysfunction such as the one observed in patients 

suffering from inflammatory bowel diseases (IBD), circulating and gut-resident microbiota-reactive 

CD4+ T cells expressed increased frequencies of IL-17A108. IBD results in excessive translocation of 

luminal antigens, eliciting both mucosal and systemic immune responses. The humoral immune 

response against gut microbiota has clinical significance in IBD as it may exacerbate intestinal 

inflammation109,110. The repertoire of IgA- and IgG -tagged commensals has been widely studied in IBD 

and compared to healthy subjects. A variety of humoral immune responses are directed against the 

majority of the main fecal genera in HV and IBD patients, with a great overlap between both groups. 

Anti-IgG-based flow cytometry of fecal samples revealed that between 13-77% (mean: 38%) of bacteria 

showed IgG-coating after incubation with autologous serum110. In particular, serum IgG were directed 

against representatives of the small intestinal microbiota (such as Streptococcus, Coprococcus, Dorea, 

Ruminococcus gnavus-like bacteria, Lactobacillus, Dialister, Veillonella, and Turicibacter) as opposed 

to colonic anaerobic bacterial genera (such as Faecalibacterium, Roseburia, and Blautia). IgG-coated 

bacterial genera are consistently among those reported to be increased in abundance in stools from 

patients with IBD. The observed enrichment after IgG-coating of several types of Lachnospiraceae and 

species from the Enterocloster genus (e.g., Enterocloster bolteae and Enterocloster clostridioformis) or 

Ruminococcus gnavus could be explained by bacterial flagella or flagellins, reported to be highly 

immunogenic proteins and dominant antigens in the context of IBD111,112. The highly immunogenic 

properties of flagellin may be related to the seminal function of bacterial flagella which enhance 

contact with a disrupted epithelial barrier and facilitate bacterial transport across the epithelial mucus 

layer.  

A few lines of evidence indicate the potential clinical relevance of IgG responses against microbial 

antigens in cancer patients (Table 2). As outlined above, a compromised ileal mucosa is eventually 
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characterizing some malignancies leading to increased serum levels of sCD14, and ST2, both proxies of 

intestinal barrier leakage22. As demonstrated in mouse models of colon cancers, immune responses 

directed against gut microbiota participate in cancer immunosurveillance113. B cell proliferative 

responses to several commensals were increased in colorectal cancer patients (compared with HV), 

mostly directed towards B. ovatus, Hafnia spp., Veillonella atypica and the fungi Candida albicans114. 

Recently, Meylan et al. unveiled a new pilar of renal cell cancer (RCC) immunosurveillance115. RCC 

favoring the formation of tertiary lymphoid structures (TLS) and in situ B cell maturation promoted IgG 

secreting plasma cell differentiation culminating in tumor cell labeling with IgG and RCC apoptosis. 

Patients with IgG-labeled RCC cells had high response rate to ICI and prolonged PFS115. Intriguingly, 

Goubet et al. brought up evidence that intra-tumoral bacteria infecting the uroepithelial layer of 

bladder cancers may represent a prominent target for follicular T helper cells (TFH) and B cells within 

TLS, linking innate and cognate CD8+ T cell memory responses116. Indeed, memory bladder TFH 

responses against uropathogenic E.coli (UPEC) had clinical significance in locally advanced and 

metastatic muscle invasive bladder cancer (MIBC) patients treated with anti-PD-1 Abs116. Circulating 

central memory TFH accumulated in tumors, where they differentiated into CXCL13-producing effector 

memory TFH. CXCL13 plasma levels increased in pembrolizumab-treated R but not NR. Memory 

CXCL13-producing TFH recognized urinary E. coli residing in tumor and myeloid cells of the TME. 

Baseline memory E. coli-restricted CXCL13+ TFH immune responses were mostly detectable in MIBC 

patients prone to respond to neoadjuvant pembrolizumab116 (Table 2). Importantly, serum IgG 

directed against urothelium invasive Escherichia coli (but not the other urinary commensals) were 

associated with favorable clinical responses in three independent cohorts of stage III or IV MIBC 

treated with ICI116.  Finally, the MHC class II-dependent reactivation of bacteria-reactive TFH and 

antibody secreting cells within MIBC exposed to E. coli led to the release of CCL19 and CCL21, two 

prototypic chemokines involved in TLS formation116. Given that urinary commensals and pathobionts 

could originate from bowels117,118, the diagnosis of gut dysbiosis might have important consequences 

at remote sites including the TME. Further validation of the clinical relevance of UPEC in MIBC patients 

treated with ICI in prospective studies is warranted and may be generalized to any neoplasia 

developing at portals of entry, where local or intestinal microbiota may be harnessed for ICI optimal 

efficacy. 

Beyond the immunogenicity of intra-tumoral bacteria that will be processed and presented by tumor 

exposed-MHC molecules, other molecular cues involving molecular mimicry between commensals and 

cancer antigens or the intrinsic adjuvanticity of intestinal microbes could account for T cell reactivation 

in the TME. Bacteria-reactive T cells might play the role of by -stander T helper cells or T cells endowed 
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with cross-reactive T cell receptors, recognizing epitopes shared between the intestinal ecosystem and 

cancer antigens119,120. Several independent studies in cancer patients reported that cellular immune 

responses against selected intestinal commensals are associated with clinical outcome to cancer 

therapies across various countries and continents39,121–124. Hence, TH1 immune responses directed 

against B. fragilis and A. muciniphila were selectively associated with responses to ipilimumab (anti-

CTLA-4 Ab)  in melanoma patients121 and to anti-PD-1 Abs in RCC and NSCLC cancers respectively39 

(Table 2). Enterococcus hirae-specific memory TH1 cells correlated with clinical benefit to 

chemotherapy in advanced lung cancer122 and favorable prognosis in hepatitis C virus-induced 

hepatocarcinoma in China123 (Table 2). The presence of an antigenic enterophage which lysogenized 

E. hirae and belonged to the Siphoviridae family within stools of RCC and NSCLC patients at baseline 

was associated with prolonged overall survival120. Finally, IgG responses directed against the allogeneic 

microflora post -fecal microbial transplantation correlated with efficient colonization of the exogenous 

ecosystem and clinical benefit to the re-introduction of therapy after primary resistance to ICI124. 

 

Approaching GOMS-related functions  

 
Monitoring of gut microbiota functions has been assessed using several methodologies. Using the 

metagenomic data, organism-specific gene hits are annotated according to the Kyoto Encyclopedia of 

Genes and Genomes Orthology (Table 2). Based on these annotations, reads from each sample were 

reconstructed into metabolic pathways using the MetaCyc hierarchy of pathway classifications. Using 

the Linear discriminant analysis Effect Size (LEfSe) (GLOSSARY), contrasting hits separating R from NR 

patients have been reported in many studies, leading to different results35,37,95,125. Serial metabolomics 

of fecal material and/or plasma have been performed in distinct cohorts that will be summarized 

below. Noninvasive transcriptomics of the exfoliome, the shed intestinal luminal cells contained within 

fecal samples, allows to identify inflammatory paths expressed by dendritic cells, monocytes, 

macrophages and neutrophils as well as enterocytes and goblet cells126. 

 
 
SCFA 

Short-chain fatty acids are major end product metabolites produced by the gut microbiota that act at 

various levels of host physiology127. SCFAs such as acetate, propionate, and butyrate are water-soluble 

and diffusible gut-microbiota-derived metabolites, reaching their peak concentrations in the caecum 

and decreasing from the proximal to the distal colon128. SCFA exhibit context-dependent functions. 
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They were shown to promote the expansion of Tregs, but they also could improve effector T cell 

functions129–132. Butyrate was associated with protection from acute inflammatory processes such as 

autoimmune diseases and graft-versus-host disease133,134. Moreover, butyrate also promotes the 

memory potential and antiviral cytotoxic effector functions of CD8+ T cells135,136. Similarly, the SCFA 

pentanoate (called “valerate”) is also a bacterial metabolite generated by low-abundant commensals 

such as Megasphaera massiliensis137,138. A recent report showed that ex vivo culture of cytotoxic T 

lymphocytes (CTLs), either derived from the endogenous repertoire or through genetic engineering 

with a T cell receptor (TCR) or chimeric antigen receptor (CAR), with pentanoate or butyrate could 

bolster their TH1 cytokine release through mTOR-mediated HDAC inhibition as well as their anti-tumor 

reactivity139.  

Very few translational research studies analyzed the predictive role of SCFA during immune checkpoint 

blockade in cancer patients (Table 2). A Japanese study reported in 52 cancer patients amenable to 

PD-1 blockade that stool SCFA are associated with favorable clinical outcomes in patients with solid 

cancers treated with PD-1 inhibitors. High concentrations of fecal acetate, propionate, butyrate, and 

valerate as well as plasma isovalerate were associated with prolonged progression-free survival 

(PFS)140. In contrast, Coutsac et al. reported that high blood levels of butyrate and propionate were 

associated with resistance to CTLA-4 blockade and higher proportion of Treg cells in melanoma 

patients141. Given that preclinical tumor models also unveiled negative effects of SCFA in the efficacy 

of CTLA-4 blockade or radiotherapy141,142, further studies need to validate the predictive impact of SCFA 

in larger cohorts at different geographical sites before leveraging each or all of them, in blood or feces, 

to the status of biomarkers of immunotherapy (IO) efficacy. 

 

Kynurenine (Kyn)/ Tryptophan (Try) ratio 

Indoleamine 2,3-dioxygenase (IDO) is a key enzyme catalyzing the first and rate-limiting step along the 

kynurenine (Kyn) pathway of tryptophan (Try) metabolism outside the liver, which converts the 

essential amino acid L-tryptophan to the main metabolite kynurenine143. IDO is viewed as an immune 

checkpoint involved in peripheral immune tolerance since, in the absence of Try, T cell proliferation is 

inhibited and apoptosis of T cells paves the way to immunosuppression144. In NSCLC, Try catabolism is 

rising, resulting in higher Kyn serum concentration, which has been associated with advanced staging 

at diagnosis, poorer prognosis and higher resistance to chemotherapy144,145. Recently, preclinical 

evidence suggests that IDO activity can be involved in resistance to immune checkpoint blockade146. 

Two ancillary studies investigated the clinical significance of the Try/Kyn ratio during therapy with ICI 

in advanced cancer patients (Table 2). First, Botticelli et al. assessed baseline serum levels of Try and 
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Kyn in twenty-six stage IV NSCLC patients treated with second- line nivolumab, enrolled according to 

the eligibility criteria from registration clinical trials of nivolumab in pretreated NSCLC (CheckMate 017 

and CheckMate 057). Analyzing R (7 SD (27%), 5 PR (19%)) and NR (14 PD (54%)) according to RECIST1.1 

criteria, they found that patients showing an early progression (within 3 months) to anti-PD-1 Abs 

harbored significantly higher Kyn/Try ratios than R in univariate and multivariate analysis147. Secondly, 

Li H et al. profiled >100 metabolites in pre- and multiple on-treatment patient serum samples from 

three independent immunotherapy trials (namely in two Phase I trials (CA209-038, NCT01621490; 

CA209-009, NCT01358721) using liquid chromatography-mass spectrometry, which included 78 

patients with advanced melanoma and 91 patients with metastatic RCC treated with nivolumab. They 

also extended their results to a large randomized Phase III trial (CheckMate 025, NCT01668784) with 

743 RCC patients, among which 394 received nivolumab and 349 received everolimus148. They 

identified increased Try to Kyn conversion in response to PD-1 blockade in a subset of melanoma and 

RCC patients. Kyn/Try temporal raise (by >50%) robustly correlated with reduced overall survival of 

patients receiving nivolumab. Given the relevance of metabolic adaptations in cancer immunotherapy 

but the lack of efficacy of the combination of with PD-1 and selective IDO1 co-inhibition among 

unselected patient populations in the phase 3 ECHO-301/KEYNOTE-252 trial149, these findings question 

not only the need for patient stratification based on monitoring serum Kyn/Try evolution in future 

trials but also the analysis of the dynamic modulation of the gut microbiota during ICI therapy. Indeed, 

beyond Try catabolism by tumor and myeloid cells, distinct taxa from the gut microbiota deviate Try 

catabolism into indole and indole derivatives, including indole acetic acid and indole propionic acid 

capable of engaging AhR150. In distinct circumstances such as obesity and/or high fat diet, the increase 

of IDO activity can shift Try metabolism from the generation of indole derivatives towards Kyn 

production151. These findings are reminiscent of the clinical relevance of the Try/anthranilate pathway 

in cancer patients during COVID19, an infectious disease exacerbating lymphopenia and reducing 

patient survival during the first phase of the pandemic152,153. 

 

L-arginine  
 
Not only Try but also intracellular L-arginine concentrations directly impact both the metabolic fitness 

and survival of T cells and hence their capacity to mediate effective anti-tumor immune responses in 

mouse models154. Elevating L-arginine (Arg) levels induced global metabolic changes including a shift 

from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of 

central memory-like cells155. The correlation between Arg levels and clinical ICI activity was recently 
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reported by Peyraud et al. assessing plasma Arg concentrations before ICI onset in two independent 

cohorts of patients with advanced cancer (NCT02534649, n = 77; NCT03984318, n = 296) and in a phase 

1 first-in-human study of budigalimab (NCT03000257)154 (Table 2). In both discovery and validation 

cohorts, low Arg <42 μM was significantly and independently associated with a reduced clinical benefit 

rate, progression-free survival, and overall survival. In addition, low Arg levels were associated with 

increased PD-L1 expression by myeloid cells. Hence, plasma Arg monitoring could represent a suitable 

biomarker to follow ICI efficacy. In addition, synthetic biological approaches with the use of engineered 

microbial therapies to deliver high local concentrations of L-Arg represent a unique means of local 

metabolic modulation of the TME. While dietary L-arginine supplements must be administered daily 

in high doses, L-Arg bacteria colonize and persist in tumours, continuously releasing L-arginine. The 

synergy between L-Arg bacterial therapy and PD-L1 blockade leading to potent T cell dependent, long-

term anti-tumour immunity was reported156. 
 

 
Exfoliome  

Investigating advanced melanoma patients treated with PD-1 blockade as a standalone therapy or 

combined with type I IFN, Mc Culloch et al. identified host genes differentially expressed between 

progressors and responders. Genes encoding pro-inflammatory cytokines (IL-1β and CXCL8), 

transcription factors (NFKBIZ, NFKBIA, TNFAIP3) and superoxide dismutase were increased in 

progressors, coinciding with the overrepresentation of Gram negative bacteria in feces, suggesting 

that LPS could be a major contributor of a pro-inflammatory gene signature in these patients37 (Table 

2). These findings were reminiscent of the first clinical trial assessing fecal transplantation to revert 

primary resistance to ICI in melanoma, unveiling that plasma CXCL8 stood out as a marker of inefficacy 

of PD-1 blockade despite microbiota compositional changes124. 

 

Circulating and intratumoral bacteria 
The cancer microbiome has been recently characterized in many different cancer histotypes using a 

5R multiplexed bacterial 16S rDNA PCR sequencing technique, FISH and culturomics to gain species-

level resolution66. This allowed to appreciate the relevant bacterial functional traits for each kind of 

TME and bacteria intracellular localization in both cancer and immune cells. Whether the tumor 

microbiome plays a causal role in tumorigenesis or in the metastatic program or whether intratumor 

bacteria reflect local immunosuppression and superinfections of established neoplasia remain an open 

conundrum. To determine the clinical relevance of intratumor microbial signatures during ICI-based 
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therapy, this study examined the bacterial atlas in 29 responders (R) and 48 non responders (NR) in a 

cohort of metastatic melanoma patients66. While the bacterial load was similar in R and NR, multiple 

bacterial taxa were significantly different between the two groups, notably Veillonellaceae and 

gamma-proteobacteria associated with resistance, as already identified in GOMS.  

Moreover, another study investigating biomarkers of response to neoadjuvant pembrolizumab (anti-

PD-1 Abs) concluded on the immunological and clinical relevance of uropathogenic Escherichia coli in 

locally advanced urothelial cancers116.  Pre-existing blood humoral and cellular TFH-based memory 

CD4+ T cells directed against E. coli predicted long term responses to PD-1 blockade that were 

associated with the presence of tertiary lymphoid structures (TLS) in cystectomy samples116.  

Finally, the cancer mycobiome157 as well as circulating microbial DNA158, playing a role in prognosis or 

early diagnosis of cancer respectively, could also influence the response to ICI and will be another area 

of prospective research.  
 

Other metabolic pathways handled by the gut microbiota and involved in seminal biological functions 

relevant in cancer biology or immunosurveillance (such as biliary salts in lipid metabolism and Treg 

homeostasis124,159, vitamins160,161, polyamines162,163, inosine164, urolithins159 , hypoxanthine and 

histidine165 or iron bioavailability37 may turn out to be of potential relevance for therapeutic responses 

to immunotherapy but prospective studies are awaited to validate these hypotheses. 

 

Altogether, it is likely that the predictive power of GOMS will be improved by other markers (such as 

PD-L1, DNA mismatch repair, TMB, IL-8, metabolites…) that independently modulates ICI efficacy. 

Multivariate analyses incorporating these predictors will be performed in meta-cohorts and 

prospective studies.  

 

GOMS to optimize clinical management  

Based on the impact of the gut taxonomic composition on the clinical outcome, at least in response to 

ICI and potentially CAR-T cell therapy125, there is a need to prospectively validate the robustness of 

GOMS patterns in various cancer histological types, cancer staging and lines of therapy and to evaluate 

GOMS independence from classical and FDA/EMA approved -biomarkers in careful multivariate 

analyses. Recent findings point out that GOMS may predict efficacy of PD-1 blockade in advanced lung 

cancers even in PD-L1 negative malignancies38. Confounding factors (such as age, gender, comorbidity, 

comedications, ECOG performance status) should be carefully taken into consideration. It is of 
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biological relevance to further validate that cancer patients prone to respond to immunotherapy 

harbor a gut microbiota sharing features of the prototypic health-associated GMS. The next step 

consists in computing a score encompassing the necessary and sufficient taxa discriminating 

responders from progressors and in designing user-friendly and actionable tools to monitor their 

prevalence and/or relative abundance in PCR. Efforts should also be devoted to developing surrogate 

markers of a healthy or disturbed microbiome, such as metabolic or microbiota-specific humoral and 

cellular immune response classifiers. These diagnostic tools should allow to prospectively stratify 

patients exhibiting resistance to ICI, and to follow the dynamics of the fecal taxonomic composition 

upon cancer treatments and comedications (Figure 5-6, Table S8). Such a strategy may identify 

patients requiring microbiota-centered interventions (MCI) to improve cancer immunosurveillance 

and hence guide future clinical trials combining ICI and MCI.   

 
Tables 
 
Table 1. Cancer-associated confounding factors (aging, co-morbidities and co-medications) 
associated with or causatively link to gut dysbiosis.  
October 2022 dating PubMed -related search of stool shotgun metagenomics-defined taxonomic 
composition in various confounding factors of cancer, listed above. Red boxes: increased relative 
abundance of the MGS; Blue boxes: decreased relative abundance of the MGS; Purple boxes: increased 
or decreased relative abundance of the MGS. 
The influence of ICI on the intestinal taxonomic composition is currently underway and therefore 
unavailable for Table 1 and Table S1 completion166,167. 
 
 
Table 2. Tumor and host -associated biomarkers of clinical potential to predict ICI efficacy. 
 
Table S1. Gut OncoMicrobiome Signatures (GOMS) pan-disease or pan-cancer versus healthy 
metagenomes and alignment with the proposed meta-analysis. 
This table aims at aligning bacteria composing the core gut microbiome (according to Dutch 
Microbiome Project; Gacesa et al.)20, the health-related microbiome (according to Gacesa et al., 
Yonekura et al.)20,22 and fecal bacterial taxa with relative overrepresentation across various diseases 
or in cancer patients regardless of histotypes (according to Gacesa et al., Yonekura et al.)20,22. The right 
columns aligned bacteria significantly retained in the meta-analysis comparing healthy volunteers 
versus cancer patients presented in Figure 2. 
 
  
Table S2 Cohort description for the meta-analysis comparing GOMS in cancer versus healthy 
individuals.  
Refer to Figure 2.  
 
Table S3. Detailed results of Pan-cancer GOMS presented in Figure 2. 
We implemented a Bayesian multinomial logistic-normal linear regression model called Pibble from 
the R package fido, linking covariates that included cancer status, age and gender to compositional 
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overdispersed count data. We transformed taxonomic relative abundances into count values for Pibble 
via logistic-normal distribution modeling168. Log-ratios with 95% credible intervals were calculated for 
each SGB (GLOSSARY) and each pairwise cancer/control comparison and were supplied to a random 
effects model via the rem_mv function in the MetaVolcanoR R package (v.1.4.0) using the restricted 
maximum-likelihood estimator model. We considered only SGBs with 95% credible intervals greater 
than or less than zero in > 50% of pairwise comparisons and with a rank in at least 6/8 cancers 
(Supplementary material). 
 
 
Table S4. Gut OncoMicrobiome signatures (GOMS) profile across various cancer histotypes. 
For three distinct cancer types for which data are available and reported so far, the bacteria orders, 
families and genus/species segregating cancer patients from healthy volunteers are detailed. Only 
bacterial taxa relatively overrepresented (but not underrepresented) in cancer patient fecal samples 
(compared with health volunteers) are annotated. Cancer histotype-specific bacteria are not in bold. 
 
Table S5. Cohort description and machine learning analysis for R versus NR cancer patients treated 
with immune checkpoint inhibitors. 
We applied a Leave-one-dataset-out (LODO) approach to SGB relative abundances; data from one 
cohort was set aside as an external validation set, whereas data from the remaining cohorts were 
pooled together as a single training set, iterating along all the cohorts. Cohorts with more than 20 
samples were used in the LODO approach and model performance was assessed using the area under 
the receiver operator (AUC-ROC) values. RF global CV: random forest global cross validation 
(Supplementary material). A Random Forest model applied in a leave-one-dataset-out (LODO) setting 
on a total of 761 cancer patients amenable to ICI (for whom gender and age were available) built to 
differentiate patients with objective responses (CR+PR) from NR (SD+PD) had a moderate and rather 
inconsistent predictive power across left-out datasets and a still modest predictive power when 
merging all dataset for a single cross-validation evaluation (AUC = 0.71). These results are consistent 
with individual reports showing that these groups were compositionally distinguishable but with 
limited overlap of biomarkers across studies. Of note, NSCLC and RCC displayed better AUC predictive 
values compared with melanoma cohorts. 
 
 
Table S6. Baseline GOMS associated with response rates in the mega-analysis presented in Figure 3.  
This table reports results from the mega-analysis using Pibble models on clr transformed SGB-level 
relative abundances presented in Figure 3 (Supplementary material). LogRatio, 95% credible interval 
and taxonomy by family, genus, species and taxon are detailed. This table includes a summary of the 
results presented in Figure 3 by family, genus and species levels. 
 
Table S7. Baseline GOMS associated with response rates in the meta-analysis presented in Figure 4. 
This tables reports results from the meta-analysis using different differential abundance methods 
adjusting for age and gender to identify SGBs associated with ORR, presented in Figure 4 
(Supplementary material). This table includes a summary of the results presented in Figure 4 by family, 
genus and species levels. 
 
Table S8. Relationships between cancer-associated bacteria relevant for clinical outcome and 
confounding factors. 
The bacteria retained as significant in the meta-and mega-analysis presented in Table S2-3, S6-7 and 
Figure 2-3-4 were highlighted according to their reported association with confounding factors in 
cancer. October 2022 dating PubMed -related search of stool shotgun metagenomics-defined 
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taxonomic composition in various confounding factors of cancer, listed above. Red boxes: increased 
relative abundance of the MGS; Blue boxes: decreased relative abundance of the MGS; Purple boxes: 
increased or decreased relative abundance of the MGS. 
 
Figure Legends 
 
Figure 1. Microscopic and cellular description of the cancer-induced stress ileopathy. 
A-G. Proposed scenario of stress ileopathy induced during a tumorigenic process. Experimental 
demonstration in cancer bearing mice that tumor inoculation may trigger crypt apoptosis, activation 
of secretory cells, ectopic proliferation of tyrosine hydroxylase positive and enteroendocrine cells (TH+ 
EEC) resulting in a disbalance between cholinergic and adrenergic signaling promoting a transient ileal 
mucosa atrophy but a protracted gut dysbiosis dominated by vancomycin-sensitive species belonging 
to the Enterocloster genus. Micrograph pictures of HE stained ileal tissues showing patchy abrasion of 
ileal villosities 7-10 days after tumor implantation in C57BL/6 mice. Bar scale: 100 μm. CM, circular 
muscle; ChAT, Choline acetyltransferase; EEC, Enteroendocrine cell; ER, Endoplasmic reticulum; ir-
nerves, Immunoreactive nerves; LM, longitudinal muscle; MP, myenteric plexus; REG3γ, Regenerating 
islet-derived protein 3 gamma; sCD14, Soluble CD14; SMP, submucosal plexus; ST2, Suppression of 
Tumorigenicity 2 protein; TA, transit amplifying cells; TH, Tyrosine hydroxylase; VAChT, Vesicular 
acetylcholine transporter. 
 
Figure 2. Pan-cancer GOMS compared with healthy metagenomics profiles. 
Top 30 ranked SGBs in cancer or control cohorts. Ranks were determined by ordering p-values 
calculated using a random effects meta-analysis of all possible cancer and control cohort pairs. Only 
SGBs with 95% credible intervals greater than or less than zero in > 50% of pairwise comparisons were 
considered for the ranking.  
 
Figure 3. GOMS-related to R versus NR status before ICI (mega-analysis, ORR).  
Results of a mega-analysis using Pibble models on clr transformed SGB-level relative abundances. 
Pibble models also included age, gender and cohort as covariates. SGBs whose 95% credible interval is 
greater than or smaller than 0.2 are reported in the figure. Also refer to Table S6 for SGBs with a 
prevalence higher than 5% and their corresponding 95% credible intervals. 
 
Figure 4. GOMS-related to R versus NR status before ICI (meta-analysis, ORR).  
SGBs associated with ORR identified by a meta-analysis using different differential abundance methods 
adjusting for age and gender. SGBs shown have random-effects model p-values < 0.05 in at least three 
methods. Values inside the cells refer to unadjusted p-values < 0.05 obtained by two-tailed Wilcoxon 
tests on differences in the relative abundance of responders and non-responders. The color of the cell 
was determined by comparing the mean relative abundance in responders to non-responders; if the 
mean was higher in responders, then the cells were colored red; if it was higher in non-responders, 
then it was colored blue. Also refer to Table S7. 
 
Figure 5. Challenges of microbiota-related biomarkers in oncology. 
Shotgun metagenomics –based sequencing is currently the state-of the art method to analyze the 
taxonomic composition of the stools or ileal content and to perform machine learning in cohorts of 
cancer patients. The challenges of this field are to increment many more patients to stabilize the Gut 
OncoMicrobiome fingerprint, to design a friendly user diagnosis tool that should be validated 
prospectively across cancer types, cancer staging, geography, life style, treatments and co-morbidities. 
This tool will be instrumental to stratify patients according to their gut dysbiosis, for future microbiota 
centered-intervention or interceptive measures. 
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Figure 6. Practical prospects toward defining GOMS-related clinical guidelines. 
A.  Summary of the proposed clinical management of cancer patients amenable to an FDA or EMA-
approval of ICI, taking into account gut microbiota composition. Patients with a history of antibiotics 
(any kind except vancomycin) taken between 60 days prior to, up to 42 after the first administration 
of anti-PD-1 Abs (alone or combined with anti-CTLA-4 Abs) or comedications known to alter microbiota 
composition (Proton Pomp Inhibitors (PPI) or laxatives) should be investigated by performing shotgun 
MG sequencing of stools or targeted PCR at diagnosis to monitor taxonomic composition. B. Depending 
on the relative abundances of Akkermansia spp. as well as other family members or genera or species 
(listed as harmful or beneficial in GOMS) (refer to Figure 3-4), different putative scenarios are 
described with their respective clinical management as for a potential microbiota-centered 
intervention to compensate gut dysbiosis. The over-abundance of Akkermansia spp. (SGB9226 
(A.muciniphila) or 9228 or others) is defined by a relative abundance above 4.8% of all species using 
MetaphLAN or MetaO -MineR algorithms (A.muchigh). C. The pharmacodynamics and kinetics of the 
MCI should be assessed to monitor their effects on the body metabolic, immunologic or hematologic 
functions or inflammatory tonus and the gut microbiota composition or deviation from baseline. Ab, 
antibody; ATB, antibiotics; Akk, Akkermansia muciniphila; BMI, Body mass index; ECOG PS, Eastern 
Cooperative Oncology Group performance status; FMT, Fecal microbiota transplant; PPI, Proton pump 
inhibitor; TILs, Tumor infiltrating lymphocytes; IHC, Immunohistochemistry; sCD14, Soluble CD14; ST2, 
Suppression of Tumorigenicity 2 protein. 
 
 
GLOSSARY 
 
16S ribosomal RNA sequencing (16S rRNA seq): This is a targeted, high-throughput method that 
consists of amplifying and sequencing the small-subunit ribosomal 16S RNA (rRNA) gene present in 
a sample (i.e a microbial community). Sequences are generally the result of a targeted amplification of 
one or more variable regions within the 16S rRNA gene, and can be used to profile the taxonomic 
composition of archaeal and eubacterial members of the microbial community. This method provides 
lower taxonomic resolution but is generally less computationally intensive, however, there are a 
variety of processing steps that can introduce bias and limit the ability to combine data from different 
studies.  
 
Biomarker: A defined characteristic that is measured as an indicator of normal or pathogenic processes 
or responses to an exposure or therapeutic intervention.  
 
Co-medications: Other treatments received by patients alongside anticancer drugs to treat 
comorbidities. 
 
Co-morbidities: Presence of other concomitant diseases along with cancer. 
 
Dysbiosis: Characterization of a microbiota imbalance with changes in composition and functions. 
 
Enterocloster genus: This genus of the bacteria taxonomy has previously been placed in the genus of 
Clostridium group XIV.  
 
Exposome: The exposome corresponds to a large number of individual expositions from various 
origins, such as chemical, physical, biological or psychological stimuli. The exposome also takes into 
account the time dimension of the exposition (short or long, early or late, punctual or repeated 
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exposition). The exposome has an impact on individual biological functions and to a larger extent, 
overall health. 
 
ICI: Immune checkpoint inhibitors joined the effective cancer immunotherapies approved by FDA or 
EMA in 2011 and 2014 and consist of monoclonal antibodies that prevent immune checkpoint receptor 
binding to their ligands and their intracellular signaling.  
 
LEfSe: Linear discriminant analysis Effect Size determines the features (organisms, clades, operational 
taxonomic units, genes, or functions) most likely to explain differences between classes by coupling 
standard tests for statistical significance with additional tests encoding biological consistency and 
effect relevance. 
 
Meta-analysis: The analysis encompasses various statistical methods to synthesize empirical research. 
 
Mega-analysis: The analysis gathers raw data across multiple studies. 
 
ORR (CR+PR vs SD+PD): complete and partial responses (objective responses) according to RECIST 1.1 
criteria as opposed to non-objective responses which are stable diseases or progression. 
 
SCFA: Short-chain fatty acids are metabolic by-products derived from the fermentation of 
carbohydrate by anaerobic bacteria in the gut. 
 
SGB: Large-scale metagenomics has uncovered a myriad of bacteria never before described. The 
species-level genome bins (SGBs) nomenclature helps annotate sequenced bacteria to the species 
level. 

Shotgun metagenomic sequencing (MGS): This is a non-targeted, high-throughput method that 
consists of sequencing all DNA present in a sample (i.e a microbial community). These DNA sequences 
are computationally analyzed and can be used to profile the taxonomic composition of members of 
the microbial community, including bacteria, fungi and viruses. 

Stress ileopathy: Ileal mucosa atrophy associated with dominance of sympathetic over cholinergic 
signaling provoked by intra and extraintestinal malignancies. 
 
 
Abbreviations: 
16S rRNA, 16S ribosomal RNA; Abs, Antibodies; Adrb2, Adrenoceptor Beta 2; AMP, Antimicrobial 
peptide; Arg, Arginine; ATB, Antibiotics; AUC, Area under the ROC Curve; BC, Breast cancer; CAR, 
Chimeric antigen receptor; ChAT, Choline acetyltransferase; CRC, Colorectal cancer; CTLs, Cytotoxic T 
lymphocytes; DMP, Dutch Microbiome Project; ECOG PS, Eastern Cooperative Oncology Group 
performance status; EEC, Enteroendocrine cell; EMA, European Medicines Agency; EO, Early-onset; 
FDA, US Food and Drug Administration ; FISH , Fluorescent in situ hybridization; FMT, Fecal microbiota 
transplant; GM-CSF, Granulocyte-monocyte colony-stimulating factor; GMHI, Gut Microbiome Health 
Index; GMS, Gut Microbiome Signature; GOMS, Gut OncoMicrobiome Signature; HDAC, Histone 
deacetylase; HV, Healthy volunteer; IBD, Inflammatory bowel diseases; ICI, Immune checkpoint 
inhibitors; IDO, Indoleamine 2,3-dioxygenase; IFNγ, Interferon gamma; Ig, Immunoglobulin; IL, 
Interleukin; IO, Immunotherapy; irAEs, Immune-related adverse events; ir-nerves, Immunoreactive 
nerves; Kyn, Kynurenine; LEfSe, Linear discriminant analysis Effect Size; LODO, Leave-one-dataset-out; 
LP, Lamina propria; LPS, Lipopolysaccharide; MCI, Microbiota-centered interventions; MHC, Major 
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histocompatibility complex; MIBC, Muscle invasive bladder cancer; mTOR, Mechanistic Target Of 
Rapamycin Kinase; NR, Non-responder; NSCLC, Non-small lung cancer; ORR, Objective response rate; 
OS, Overall survival; PCR, Polymerase chain reaction; PDAC, Pancreatic ductal carcinoma; PFS, 
Progression-free survival; PPI, Proton pump inhibitor; R, Responder; RCC, Renal cell carcinoma; RECIST 
1.1, Response Evaluation Criteria In Solid Tumors v1.1 (revised); REG3γ, Regenerating islet-derived 
protein 3 gamma; ROC curve, Receiver operating characteristic curve; sCD14, Soluble CD14; SGB, 
Species-level genome bin; sp, Specie; spp, Several species; ST2, Suppression of Tumorigenicity 2 
protein; TCR, T cell receptor; TFH, T follicular helper; TH, Tyrosine hydroxylase; TILs, Tumor infiltrating 
lymphocytes; TLS, Tertiary lymphoid structures; TME, Tumor microenvironment; TNFα, Tumor necrosis 
factor alpha; Tregs, T regulatory cells; Try, Tryptophan; UPEC, Uropathogenic Escherichia coli; VAChT, 
Vesicular acetylcholine transporter 
 
Supplementary Methods (separate online file) 
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Table 1. Cancer-associated confounding factors (aging, co-morbidities and co-medi
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Alistipes senegalensis 0
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Table 2. Biomarkers of clinical relevance during cancer therapy with immune checkpoint inhibitors. 
 

Classical biomarkers  

 Biomarker Detection Correlation with clinical outcome Role in routine clinical oncology 
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PD-L1 IHC Expression of PD-L1 on tumor cells (TPS) 
positively correlates with ICI efficacy in 
several tumors. Linear correlation with ICI 
efficacy in NSCLC.1 

Validated in Phase III randomized 
trials. TPS governs management of 
NSCLC patients for ICI therapies.  

DNA 
mismatch 
repair 
(MMR) 

Sequencing Positive in MMR deficiencies 
Associated with TMB and CD8 TILs 

Used to access ICI (including neo-
adjuvant for certain tumors) in colon, 
anal cancers and any MMR deficient 
advanced tumors2 

TMB Sequencing Positive correlation with log (TMB) in 
various cancers, different cut-off values in 
different cancers3,4 

Available in various tumors, for 
example with FoundationOne5 

Neo-antigen Sequencing Presence of neo-antigens binding to MHC 
molecules promotes strong T cell immune 
response6 

Challenge with computational 
prediction of neoantigens and 
standardization of the pipeline 

Gene 
pathways 

Sequencing (IFN)-γ pathway genes7, B2M mutation 
JAK2 negative8, STK119, β-catenin 
pathway associated with resistance 

Not routinely used, currently being 
evaluated in clinical trials  

Driver 
mutation 

Sequencing Presence of EGFR mutations, ALK 
rearrangements,... associated with poor 
outcome, targeted therapy preferred10 

Routinely performed in patients with 
advanced NSCLC 
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PD-L1 IHC CPS combines tumor and immune cells 
(lymphocytes and macrophages). PD-L1 
expression11 and patients with high CPS 
respond better 

CPS was validated in Phase III trials 
and used to determine ICI indication in 
various tumors 

Immune 
infiltration 

TILs Tumors enriched with TILs CD8, high 
immunoscore, TLS correlate with better 
prognostic and response to ICI in various 
tumours12 

Not routinely performed (except for the 
immunoscore in colon) in absence of 
standardization and cut-off 

Inflamed vs 
not inflamed 
tumors  

IHC, 
Sequencing 

Absence of intratumor CD8 or CD4 
correspond to immune-excluded (vascular 
or extracellular matrix) tumors or immune-
deserts13 refractory to ICI 

Not performed in the absence of 
standardization cut-off value. 
Alternative treatment available 
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Neutrophil 
to 
lymphocyte 
ratio (NLR) 

Peripheral 
blood 

NLR<3 prior ICI associated with positive 
outcomes14 

Can be routinely measured. However, 
does not change clinical management 

Lung 
Immune 
Prognostic 
Score (LIPI) 

Peripheral 
blood 

Measurement of the association between 
NLR and the LDH. Initially stratified 
NSCLC patients but used in other cancers 
(melanoma, head and neck)15 

Prognostic value similar to NLR 

LDH Peripheral 
blood 

High LDH was associated with a lower 
objective response rate in melanoma16 

Included in baseline blood test pre-ICI 
in melanoma patients 

CRP, SAA Peripheral 
blood 

Elevated CRP 17 and high serum amyloid 
A18 correlated with shorter survival 

Not routinely measured 

IL-8 Peripheral 
blood  

Elevated CXCL8 serum levels>23pg/ml 
correlated with shorter survival in 
melanoma, kidney and squamous or non 
squamous NSCLC19,20. 

Not routinely measured  
  



Eosinophils Peripheral 
blood 

Low eosinophil count associated with 
response in melanoma21 

Included in baseline blood tests pre-ICI 
in melanoma patients 

Microbiota-related biomarkers  

 Biomarker Detection Correlation with clinical outcome Potential application in routine 
clinical oncology 
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Microbial 
composition 

Feces 
 

Some bacterial taxa are associated with 
beneficial (Akkermansiaceae , 
Lachnospiraceae, Oscillospiraceae, 
Ruminococcaceae, Prevotellaceae) or poor 
(Eggerthellaceae, Enterocloster genus, 
Streptococcaceae, Veillonellaceae)22–33 
clinical outcome post- ICI. 

Gut microbiota composition assessed 
by 16S rRNA, shotgun metagenomics 
sequencing or targeted-PCR on specific 
taxa (refer to Figures 5-6) 

Taxonomic 
diversities  

Feces 
 

Low alpha diversity or richness is 
associated with poor clinical outcome29,34. 

Microbiota-derived compounds  
Short-chain 
fatty acids 
(SCFA) 

Blood and 
feces 

High levels of specific SCFA may be 
associated with better outcomes in patients 
treated with ICI35. 

Plasma and fecal SFCA levels may 
support recommendation in favor of 
high fiber intake to increase response to 
ICI36. 

Kynurenine 
(Kyn)/ 
Tryptophan 
(Try) ratio 

Blood In NSCLC, RCC and melanoma, higher 
plasmatic Kyn/Trp ratio is associated with 
early progression and reduced overall 
survival to ICI37,38. Gut microbiota can 
convert Tryptophan into indole derivatives 
instead of Kynurenine39. 

Plasmatic levels of Kynurenine and 
Tryptophan can be measured by liquid 
chromatography-mass spectrometry. 
The conversion of Try to Kyn can be 
blocked by IDO inhibitors or by MCI 
to boost ICI efficacy. 

Inosine Blood Commensals such as B. pseudolongum and 
L. johnsonii can produce inosine which bind 
to the T cell adenosine A2A receptor. In 
proinflammatory conditions, inosine 
stimulates antitumor immunity and response 
to ICI40 in mouse models. 

Awaits validation in prospective 
human studies. Of note, in the absence 
of inflammation, inosine suppresses T 
cell immune response. 

L-arginine Blood Low ARG levels at baseline (<42 μM) were 
significantly and independently associated 
with a worse clinical benefit rate, 
progression-free survival, and overall 
survival in 2 cohorts of patients treated with 
ICI 43,44. 
 

Plasma L-arginine is a potential 
surrogate marker of T cell immune 
tonus and polyamine-producing 
microbiota. To be validated in 
prospective cohorts to determine a cut-
off value, but test readily available. 

Commensal-specific memory T and B cell responses  
T cells PBMC Memory bacteria-reactive T cells can be 

found in the intestine but also in circulation. 
Those cells can be characterized by gut 
mucosal markers (integrin α4β7, CCR9, 
CCR6 and CD161), IL-2 and TNF-α 
secretion41. 
 

Circulating memory T cell immune 
responses directed against specific 
commensals, such as A. muciniphila, 
could be used to predict response to ICI 
and follow MCI24. 

B cells (IgA 
and IgG 
titers) 

Blood and 
feces 

Quantification of IgA and IgG bound to 
bacteria by flow 

cytometry monitor memory humoral 
immune 

response against commensals42,43. 
 

Flow cytometric determination of Ig 
response in the plasma to assess 
prevalence of bacteria and 
immunogenicity of specific taxa. 
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Intestinal barrier integrity 
sCD14, ST2 
and LBP 

Blood 
 

Serum levels of sCD14 and ST2 are 
surrogate markers of leaky gut syndrome 
and could be associated to gut microbiota 
dysbiosis which dampened response to 
ICI24,26,44. 

Assessing biomarkers associated with 
leaky gut syndrome in the plasma 
could document the intestinal barrier 
integrity and guide MCI. 

Exfoliome 
(mamalian 
DNA, IL-1β, 
CXCL8) 

Blood and 
feces 

Genes encoding pro-inflammatory 
cytokines (IL-1β and CXCL8) are increased 
in ICI or FMT non-responder patients and 
linked to LPS-producing Gram-negative 
bacteria27. Mammalian DNA contamination 
of stool microbes could be a surrogate 
marker of epithelial or immune apoptosis. 

Plasmatic CXCL8, IL-1β levels and 
noninvasive exfoliated transcriptome 
assessed on fecal samples during ICI 
could document alteration of the 
intestinal barrier associated with 
resistance.  

Intestinal immune system and response to ICI 
Peptidoglyca
ns, 
phospholipid
s and 
muropeptide
s 
 

Feces In mice, Enterococcus spp. produce the 
enzyme SagA which contributes to 
peptidoglycan and NOD2 engagement, 
improving ICI efficacy and adaptive 
immune response45,46. B. bifidum produce 
peptidoglycans which stimulate cancer 
immune responses through TLR247,48. 
Immunogenicity of diacyl 
phosphatidylethanolamine in Akkermansia (via 
TLR1-2 heterodimer)49 

Assessing distinct patterns of 
peptidoglycans, phospholipids, lectins, 
in feces after probiotic uptake (refer to 
Figure 6) by metabolomics. 
 

Apolipoprot
eins and 
mucins 

Plasma 
 

The presence of apolipoproteins and 
transmembrane mucins are associated with 
healthy intestinal mucosa and positive 
response to ICI50. 

Plasmatic levels of apolipoproteins 
could be used as biomarkers for ICI 
response. 
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TLS and 
TFH 

Tumor 
biopsy and 
blood 
 

Intratumoral formation and maturation of 
TLS, maturation of B cells, IgG secretion 
and CXCL13-producing effector memory 
TFH have been associated with response to 
ICI and prolonged PFS51,52. 

Geolocalization of TLS, B cells, TFH 
and IgG-labeled cells in tumors can be 
assessed by IHC or with high spatial 
resolution imaging technologies. TFH 
response can be assessed by CXCL13 
and IL-21 plasmatic dosage53. 

Antigen 
mimicry 

Tumor 
biopsy 

Intratumoral or phage-associated bacteria 
can express HLA class I and II-restricted 
epitopes. Molecular mimicry with 
oncogenes and cross-reactivities of T cells 
lead to tumor regression54,55. 

This finding could help developing 
bacteria-derived peptide vaccines to 
favor long lasting memory antitumor 
response56–59. Clinical trials are 
ongoing (NCT04116658, 
NCT04187404). 

Tumor or T 
cell cytokine 
modulation 

Tumor 
biopsy 
 
 

Commensals such as A. muciniphila, 
Bifidobacterium spp. , L-arginine60 
producing commensals, and L. 
rhamnosus61–63. promote antitumoral 
immune responses by triggering type 1 IFN 
secreting myeloid cells61–63, 
TNFα producing T cells and decreasing T 
cell exhaustion60. 

The analysis relies on transcript 
assessment (PCR or RNA sequencing) 
in the TME. FMT-based MCI 
modulated Type I IFN production and 
responses to ICI61,64. 

Intratumoral 
metabolites 

Tumor 
biopsy 

Taurine conjugated bile acids were 
accumulating in the tumor and serum of 
mice following oral supplementation with 
castalagin prebiotic while decreasing in 
feces65. 

Need to be validated in patients with 
cancer. Challenges for pre-analytical 
phase and need for standardization. 
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Figure 1. Microscopic and cellular description of the cancer-induced stress ileopathy. 

A-G. Proposed scenario of stress ileopathy induced during a tumorigenic process. Experimental demonstration in cancer 

bearing mice that tumor inoculation may trigger crypt apoptosis, activation of secretory cells, ectopic proliferation of 

tyrosine hydroxylase positive and enteroendocrine cells (TH+ EEC) resulting in a disbalance between cholinergic and 

adrenergic signaling promoting a transient ileal mucosa atrophy but a protracted gut dysbiosis dominated by 

vancomycin-sensitive species belonging to the Enterocloster genus. Micrograph pictures of HE stained ileal tissues 

showing patchy abrasion of ileal villosities 7-10 days after tumor implantation in C57BL/6 mice. Bar scale: 100 μm. CM, 

circular muscle; ChAT, Choline acetyltransferase; EEC, Enteroendocrine cell; ER, Endoplasmic reticulum; ir-nerves, 

Immunoreactive nerves; LM, longitudinal muscle; MP, myenteric plexus; REG3γ, Regenerating islet-derived protein 3 

gamma; sCD14, Soluble CD14; SMP, submucosal plexus; ST2, Suppression of Tumorigenicity 2 protein; TA, transit 

amplifying cells; TH, Tyrosine hydroxylase; VAChT, Vesicular acetylcholine transporter. 

 



 
Figure 2. Pan-cancer GOMS compared with healthy metagenomics profiles. Top 30 ranked 

SGBs in cancer or control cohorts. Ranks were determined by ordering p-values calculated 

using a random effects meta-analysis of all possible cancer and control cohort pairs. Only SGBs 

with 95% credible intervals greater than or less than zero in > 50% of pairwise comparisons 

were considered for the ranking.  

 



 

 
Figure 3. GOMS-related to R versus NR status before ICI (mega-analysis, ORR). 

Results of a mega-analysis using Pibble models on clr transformed SGB-level relative abundances. Pibble 

models also included age, gender and cohort as covariates. SGBs whose 95% credible interval is greater 

than or smaller than 0.2 are reported in the figure. Also refer to Table S6 for SGBs with a prevalence 

higher than 5% and their corresponding 95% credible intervals. 

 



 
Figure 4. GOMS-related to R versus NR status before ICI (meta-analysis, ORR). SGBs 

associated with ORR identified by a meta-analysis using different differential abundance 

methods adjusting for age and gender. SGBs shown have random-effects model p-values < 

0.05 in at least three methods. Values inside the cells refer to unadjusted p-values < 0.05 

obtained by two-tailed Wilcoxon tests on differences in the relative abundance of responders 

and non-responders. The color of the cell was determined by comparing the mean relative 

abundance in responders to non-responders; if the mean was higher in responders, then the 

cells were colored red; if it was higher in non-responders, then it was colored blue. Also refer 

to Table S7. 

 



 

 

Figure 5. Challenges of microbiota-related biomarkers in oncology. 

Shotgun metagenomics –based sequencing is currently the state-of the art method to analyze the taxonomic 

composition of the stools or ileal content and to perform machine learning in cohorts of cancer patients. The challenges 

of this field are to increment many more patients to stabilize the Gut OncoMicrobiome fingerprint, to design a friendly 

user diagnosis tool that should be validated prospectively across cancer types, cancer staging, geography, life style, 

treatments and co-morbidities. This tool will be instrumental to stratify patients according to their gut dysbiosis, for 

future microbiota centered-intervention or interceptive measures. 

 



 

 

 

Figure 6. Practical prospects toward defining GOMS-related clinical guidelines. 

A.  Summary of the proposed clinical management of cancer patients amenable to an FDA or EMA-approval of ICI, taking 

into account gut microbiota composition. Patients with a history of antibiotics (any kind except vancomycin) taken 

between 60 days prior to, up to 42 after the first administration of anti-PD-1 Abs (alone or combined with anti-CTLA-4 

Abs) or comedications known to alter microbiota composition (Proton Pomp Inhibitors (PPI) or laxatives) should be 

investigated by performing shotgun MG sequencing of stools or targeted PCR at diagnosis to monitor taxonomic 

composition. B. Depending on the relative abundances of Akkermansia spp. as well as other family members or genera 

or species (listed as harmful or beneficial in GOMS) (refer to Figure 3-4), different putative scenarios are described with 

their respective clinical management as for a potential microbiota-centered intervention to compensate gut dysbiosis. 

The over-abundance of Akkermansia spp. (SGB9226 (A.muciniphila) or 9228 or others) is defined by a relative 

abundance above 4.8% of all species using MetaphLAN or MetaO -MineR algorithms (A.muchigh). C. The 

pharmacodynamics and kinetics of the MCI should be assessed to monitor their effects on the body metabolic, 

immunologic or hematologic functions or inflammatory tonus and the gut microbiota composition or deviation from 

baseline. Ab, antibody; ATB, antibiotics; Akk, Akkermansia muciniphila; BMI, Body mass index; ECOG PS, Eastern 

Cooperative Oncology Group performance status; FMT, Fecal microbiota transplant; PPI, Proton pump inhibitor; TILs, 

Tumor infiltrating lymphocytes; IHC, Immunohistochemistry; sCD14, Soluble CD14; ST2, Suppression of Tumorigenicity 2 

protein. 

 



Order Family

Acidaminococcales Acidaminococcaceae
Bifidobacteriales Bifidobacteriaceae
Bacteroidales Rikenellaceae
Bacteroidales Rikenellaceae
Eubacteriales Lachnospiraceae
Eubacteriales Lachnospiraceae
Eubacteriales Oscillospiraceae
Bacteroidales Bacteroidaceae
Bacteroidales Bacteroidaceae
Bacteroidales Barnesiellaceae
Bifidobacteriales Bifidobacteriaceae
Bifidobacteriales Bifidobacteriaceae
Desulfovibrionales Desulfovibrionaceae
Eubacteriales Clostridiaceae
Bacteroidales Odoribacteraceae
Eubacteriales Lachnospiraceae
Campylobacterales Campylobacteraceae
Clostridiales Clostridia
Clostridiales Clostridia
Eubacteriales Clostridiaceae
Eubacteriales Clostridiaceae
Eubacteriales Oscillospiraceae
Coriobacteriales Coriobacteriaceae
Eubacteriales Lachnospiraceae
Eubacteriales Lachnospiraceae
Desulfovibrionales Desulfovibrionaceae
Veillonellales Veillonellaceae
Eubacteriales Lachnospiraceae
Eubacteriales Oscillospiraceae
Eggerthellales Eggerthellaceae
Eubacteriales Lachnospiraceae
Eubacteriales Lachnospiraceae
Lactobacillales Enterococcaceae
Erysipelotrichales Erysipelotrichaceae
Eubacteriales Eubacteriaceae
Eubacteriales Oscillospiraceae
Tissierellales Peptoniphilaceae
Eubacteriales Oscillospiraceae
Eubacteriales Lachnospiraceae
Enterobacterales Hafniaceae

Table S1. Gut OncoMicrobiome Signatures (GO



Eubacteriales Oscillospiraceae
Erysipelotrichales Erysipelotrichaceae
Eubacteriales Clostridiaceae
Eubacteriales Oscillospiraceae
Eubacteriales Eubacteriales
Eubacteriales Lachnospiraceae
Eubacteriales Lachnospiraceae
Eubacteriales Lachnospiraceae
Eubacteriales Lachnospiraceae
Lactobacillales Lactobacillaceae
Eubacteriales Oscillospiraceae
Lactobacillales Lactobacillaceae
Eubacteriales Lachnospiraceae
Eubacteriales Lachnospiraceae
Eubacteriales Oscillospiraceae
Bacteroidales Prevotellaceae
Bacteroidales Prevotellaceae
Eubacteriales Oscillospiraceae
Eubacteriales Lachnospiraceae
Eubacteriales Lachnospiraceae
Eubacteriales Oscillospiraceae
Lactobacillales Streptococcaceae
Eubacteriales Oscillospiraceae
Erysipelotrichales Turicibacteraceae
Oscillospiraceae Faecalibacterium
Eubacteriales Lachnospiraceae
Eubacteriales Oscillospiraceae
Eubacteriales Oscillospiraceae
Eubacteriales Peptococcaceae
Veillonellales Veillonellaceae



Genus (Species)

Acidaminococcus (A. fermentans)
Aeriscardovia (A. aeriphila)
Alistipes (A. onderdonkii, A. putredinis, A. shahii)
Alistipes (A. senegalensis, A. shahii, A. communis (Bacteroidales bacterium ph8))
Anaerobutyricum (A. hallii )
Anaerostipes (A. hadrus)
Anaerotruncus (A. colihominis, A. sp.)
Bacteroides (B. galacturonicus)
Bacteroides (B. uniformis, B. vulgatus)
Barnesiella (B. intestinihominis)
Bifidobacterium (B. adolescentis, B. pseudocatenulatum)
Bifidobacterium (B. dentium)
Bilophila (B. wadsworthia)
Butyricicoccus (B. sp. AM29-23AC)
Butyricimonas (B. synergistica, B. virosa)
Butyrivibrio (B. crossotus)
Campylobacter (C. gracilis)
Candidatus Pararuminococcus (CP. gallinarum)
Candidatus Schneewindia (CS. gallinarum)
Clostridium (C. bolteae CAG:59, C. sp. CAG:58, sp. CAG:242)
Clostridium (C. sp. AF34-13, C. sp. AF34-10BH)
Clostridium leptum
Collinsella (C. aerofaciens)
Coprococcus (C. comes)
Coprococcus (C. eutactus)
Desulfovibrio (D. piger)
Dialister (D. sp. CAG:357)
Dorea (D. longicatena)
Dysosmobacter (D. welbionis)
Eggerthella (E. lenta, E. sp.)
Eisenbergiella (E. massiliensis, E. tayi)
Enterocloster (E. asparagiformis, E. bolteae, E. citroniae, E. clostridioformis, E. lavalensis)
Enterococcus (E. faecalis)
Erysipelatoclostridium (Clostridium innocuum)
Eubacterium (E. ventriosum, E. sp. CAG:274)
Faecalibacterium (F. prausnitzii)
Finegoldia (F. magna)
Flavonifractor (F. plautii)
Fusicatenibacter (F. saccharivorans)
Hafnia (H. alvei)

OMS) pan-diseases or pan-cancers versus healthy metagenomes and alignment with proposed meta



Harryflintia (H. acetispora)
Holdemania (H. filiformis)
Hungatella (H. hathewayi)
Hydrogeniiclostridium (H. mannosilyticum)
Intestinimonas (I. butyriciproducens)
Lachnoclostridium (Clostridium scindens, L. sp. An138)
Lachnoclostridium (Clostridium symbiosum)
Lachnospira (L. eligens, L. pectinoschiza, L. sp. NSJ-43)
Lachnospiraceae (Eubacterium rectale)
Lactobacillus (L. rogosae)
Lawsonibacter (L. asaccharolyticus)
Ligilactobacillus (L. ruminis)
Mediterraneibacter (Ruminococcus gnavus, R. torques)
Merdimonas (Merdimonas faecis)
Oscillibacter (Oscillibacter sp.)
Paraprevotella (P. clara,  P. sp.)
Prevotella (P. copri, P. stercorea, P. sp. CAG:520)
Pseudoflavonifractor (P. capillosus, P. sp.)
Roseburia (R. faecis, R. sp. CAG:471)
Roseburia (R. hominis)
Ruthenibacterium (R. lactatiformans)
Streptococcus (S. parasanguinis, S. salivarius)
Subdoligranulum sp.
Turicibacter (T. sanguinis)
unclassified Faecalibacterium (Faecalibacterium sp.)
unclassified Lachnospira (Lachnospiraceae bacterium)
unclassified Oscillospiraceae (Oscillospiraceae bacterium)
unclassified Oscillospiraceae (Ruminococcaceae bacterium D16)
unclassified Peptococcaceae (Peptococcaceae bacterium)
Veillonella (V. parvula)



Core gut microbiome ref Health ref

x Yonekura, S. et al.
x Gacesa, R. et al. 

x Gacesa, R. et al. 
x Yonekura, S. et al.
x Yonekura, S. et al.

x Yonekura, S. et al.
x Gacesa, R. et al. 

x Gacesa, R. et al. 
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x Gacesa, R. et al. 

x Yonekura, S. et al.
x Yonekura, S. et al.

x Gacesa, R. et al. 
x Yonekura, S. et al.
x Gacesa, R. et al., Yonekura, S. et al.

x Yonekura, S. et al.
x Gacesa, R. et al. x Gacesa, R. et al. 

x Yonekura, S. et al.

x Yonekura, S. et al.
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x Yonekura, S. et al.



Pan-disease ref Pan-Cancer ref
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(Meta-

analysis)
ref

x Yonekura, S. et al.

x Gacesa, R. et al. x Yonekura, S. et al.
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x Figure 2
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x Yonekura, S. et al.

x Yonekura, S. et al.
x Figure 2
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x Figure 2
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Pan-Cancer 
(Meta-analysis) ref

x Figure 2

x Figure 2

x Figure 2
x Figure 2

x Figure 2

x Figure 2
x Figure 2
x Figure 2
x Figure 2



x Figure 2
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x Figure 2
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x Figure 2
x Figure 2
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Study Name Cancer
Terrisse et al., JITC., 2022 Prostate Cancer

Pernigoni et al., Science., 2021 Prostate Cancer
Terrisse et al., Cell Death & Diff., 2021 Breast Cancer

Derosa et al., Nature Med., 2022 Lung Cancer
Routy et al., Science., 2018 Lung Cancer

Yonekura et al., Cancer Discovery., 2022 Ovarian Cancer
Derosa et al., European Urology., 2020 Kidney Cancer

Kartal et al., Gut., 2022 Pancreatic Cancer
Nagata et al., Gastroenterology., 2022 Pancreatic Cancer

Spencer et al., Science.,  2021 Melanoma
Lee et al., Nature Med., 2022 Melanoma

McCulloch et al., Nature Med., 2022 Melanoma
Gopalakrishnan et al., Science., 2018 Melanoma

Wind et al., Melanoma Research., 2020 Melanoma
Frankel et al., Neoplasia., 2017 Melanoma

Peters et al., Genome Med., 2019 Melanoma
Thomas et al., Nat Med., 2019 Colorectal Cancer
Wirbel et al., Nat Med., 2019 Colorectal Cancer

Yu et al., Gut., 2017 Colorectal Cancer
Feng et al., Nat Commun., 2015 Colorectal Cancer

Vogtmann et al., PloS One., 2016 Colorectal Cancer
Zeller et al., Mol Syst Biol., 2014 Colorectal Cancer
Yachida et al., Nat Med., 2019 Colorectal Cancer

Total
Xie et al., Cell Syst., 2016 Healthy Controls

Asnicar et al., Nat Med., 2021 Healthy Controls
Zhernakova et al., Science., 2016 Healthy Controls

Schirmer et al., Cell., 2016 Healthy Controls
HMP Consortium., Nature., 2012 Healthy Controls

Qin et al., Nature., 2014 Healthy Controls
Qin et al., Nature., 2012 Healthy Controls

Vieira-Silva et al., Nature., 2020 Healthy Controls
De Filippis et al., Cell Host Microbe., 2019 Healthy Controls

Keohane et al., Nat Med., 2020 Healthy Controls
Dhakan et al., Gigascience., 2019 Healthy Controls

Yachida et al., Nat Med., 2019 Healthy Controls
Nielsen et al., Nat Biotechnol., 2014 Healthy Controls

Zeevi et al., Cell., 2015 Healthy Controls
Total

Table S2. Cohort description for the meta-analysis comparing GOMS in ca

cMD: curatedMetagenomicData



Number of patients Cohort name
33 Oncobiotics
74
35 CANTO

338 Lung Oncobiotics
65
29
69

111
43

112
163 PRIMM
94
24
20
37
27
61
60
75
46
52
53

258
1879
250 Twins UK

1098 PREDICT 1
1129 LifeLines Deep
465 Human Functional Genomics Project
94 HMP 1 

114
174
322 MetaCARDIS
97

117
110
246
247 MetaHIT
878

5341

ancer versus healthy individuals.



Country PubMedID in cMD
France 35296557 no

Switzerland/UK 34618582 no
France 33963313 no
France 35115705 no
France 29097494 no
France 34930787 no
France 32376136 no

Spain/Germany 35260444 no
Japan 35788347 no
USA 34941392 no

UK/Netherlands/Spain 35228751 yes
USA 35228752 no
USA 29097493 yes

Netherlands 31990790 yes
USA 28923537 yes
USA 31597568 yes
Italy 30936548 yes

Germany 30936547 yes
China 26408641 yes

Austria 25758642 yes
USA 27171425 yes

France 25432777 yes
Japan 31171880 yes

UK 27818083 yes
UK/USA 33432175 yes

Netherlands 27126040 yes
Netherlands 27814509 yes

USA 22699609 yes
China 25079328 yes
China 23023125 yes

Germany/France 32433607 yes
Italy 30799264 yes

Ireland 32632193 yes
India 30698687 yes
Japan 31171880 yes

Denmark/Spain 24997787 yes
Israel 26590418 yes



Sheet name Content
Legend Color legend and detailed parameters

Summary PanCancer meta-analysis (Healthy vs Cancer individuals) summary
breast Breast cancer GOMS compared with healthy metagenomics profiles

melanoma Melanoma GOMS compared with healthy metagenomics profiles
ovary Ovarian cancer GOMS compared with healthy metagenomics profiles

pancreatic Pancreatic cancer GOMS compared with healthy metagenomics profiles
prostate Prostate cancer GOMS compared with healthy metagenomics profiles

crc Colorectal cancer (CRC )GOMS compared with healthy metagenomics profiles
kidney Kidney cancer GOMS compared with healthy metagenomics profiles
lung Lung cancer GOMS compared with healthy metagenomics profiles

Table S3. Detailed results of Pan-cancer GOMS presented in Figure 2.





Order Family Genus (Species)
Acidaminococcales Acidaminococcaceae Acidaminococcus (A. fermentans)
Actinomycetales Actinomycetaceae Actinomyces (A. graevenitzii, A. sp. ICM39)

Bacteroidales Rikenellaceae
Alistipes (A. indistinctus, A. putredinis, A. shahii, A. sp. 
CAG:831, A. communis (Bacteroidales bacterium ph8))

Bifidobacteriales Bifidobacteriaceae Alloscardovia (A. omnicolens)
Tissierellales Peptoniphilaceae Anaerococcus (A. obesiensis, A. vaginalis)
Eubacteriales Oscillospiraceae Anaerotruncus (A. colihominis)

Bacteroidales Bacteroidaceae
Bacteroides (B. finegoldii, B. fragilis, B. nordii, B. ovatus, B. 
sp. 43_108, B. sp. CAG:633, B. sp. CAG:661, B. 
thetaiotaomicron, B.uniformis))

Bacteroidales Bacteroidaceae Bacteroides (B. fragilis )
Bacteroidales Barnesiellaceae Barnesiella (B. intestinihominis)
Bifidobacteriales Bifidobacteriaceae Bifidobacterium (B. dentium)
Desulfovibrionales Desulfovibrionaceae Bilophila (B. wadsworthia)
Bacteroidales Odoribacteraceae Butyricimonas (B. synergistica, B. virosa)
Eubacteriales Lachnospiraceae Butyrivibrio (B. crossotus)
Campylobacterales Campylobacteraceae Campylobacter (C. gracilis)
Eggerthellales Eggerthellaceae Eggerthella (E. lenta)
Eubacteriales Lachnospiraceae Eisenbergiella (E. massiliensis, E. tayi)

Eubacteriales Lachnospiraceae
Enterocloster (E. aldenensis , E. asparagiformis , E. bolteae, 
E. citroniae, E. clostridioformis, E. lavalensis)

Lactobacillales Enterococcaceae Enterococcus (E. faecalis, E. durans)
Enterobacterales Enterobacteriaceae Escherichia (E. coli)
Eubacteriales Eubacteriaceae Eubacterium (E. sp. CAG:180)
Eubacteriales Oscillospiraceae Faecalibacterium (F. prausnitzii)
Eubacteriales Oscillospiraceae Flavonifractor (F. plautii, F. sp. An100)

Fusobacteriales Fusobacteriaceae
Fusobacterium (F. nucleatum subsp. animalis, nucleatum, 
vincentii, F. sp. oral taxon 370 )

Bacillales Bacillales Family XI. Gemella (G. morbillorum )
Enterobacterales Hafniaceae Hafnia (H. alvei, H. paralvei)
Eubacteriales Oscillospiraceae Harryflintia (H. acetispora)
Eubacteriales Clostridiaceae Hungatella (H. hathewayi)
Eubacteriales Eubacteriaceae Intestinimonas (I. butyriciproducens)
Enterobacterales Enterobacteriaceae Klebsiella (K. pneumoniae)
Eubacteriales Lachnospiraceae Lachnoclostridium (Clostridium symbiosum)
Eubacteriales Lachnospiraceae Lachnospira (L. eligens)
Eubacteriales Oscillospiraceae Lawsonibacter (L. asaccharolyticus)
Eubacteriales Lachnospiraceae Mediterraneibacter (Ruminococcus torques )

Methanobacteriales Methanobacteriaceae Methanobrevibacter (M. smithii)

Enterobacterales Morganellaceae Morganella (M. morganii)
Bacteroidales Odoribacteraceae Odoribacter (O. splanchnicus)
Coriobacteriales Atopobiaceae Olsenella (O. uli)

Table S4. Gut OncoMicrobiome signatures (GOMS)  profile across various cancer histotypes. Only bacterial taxa
histotypes



Eubacteriales Oscillospiraceae Oscillospiraceae incertae sedis (Clostridium leptum)
Bacteroidales Tannerellaceae Parabacteroides (P. distasonis, P. merdae)
Tissierellales Peptoniphilaceae Parvimonas (P. micra , P. sp.)
Eubacteriales Peptostreptococcaceae Peptostreptococcus (P. anaerobius, P. stomatis)
Acidaminococcales Acidaminococcaceae Phascolarctobacterium (P. sp. CAG:266)
Bacteroidales Bacteroidaceae Phocaeicola (P. barnesiae)

Bacteroidales Porphyromonadaceae Porphyromonas (P. asaccharolytica, P. somerae, P. uenonis)

Bacteroidales Prevotellaceae
Prevotella (P. copri, P. intermedia, P. nigrescens, P. sp. 
CAG:617, P. sp.)

Enterobacterales Morganellaceae Proteus (P. mirabilis)
Eubacteriales Lachnospiraceae Roseburia (R. intestinalis)
Eubacteriales Oscillospiraceae Ruthenibacterium (R. lactatiformans)
Bacteroidales Porphyromonadaceae Sanguibacteroides (S. justesenii)
Erysipelotrichales Erysipelotrichaceae Solobacterium (S. moorei )
Lactobacillales Streptococcaceae Streptococcus (S. anginosus, S. oralis, S. vestibularis)
Lactobacillales Streptococcaceae Streptococcus (S. parasanguinis)
Eubacteriales Oscillospiraceae Subdoligranulum (S. sp. 4_3_54A2FAA )
Burkholderiales Sutterellaceae Sutterella (S. wadsworthensis)
Desulfovibrionales Desulfovibrionaceae unclassified Desulfovibrionaceae (D. bacterium)

Eubacteriales Lachnospiraceae unclassified Lachnospiraceae (L. bacterium 3_1_57FAA_CT1 )

Eubacteriales Oscillospiraceae
unclassified Oscillospiraceae (Ruminococcaceae bacterium 
D16, D5)

Veillonellales Veillonellaceae Veillonella (V. atypica, V. dispar, V. parvula)



Breast cancer ref Pancreatic ductal carcinoma
x Yonekura, S. et al.

x

x Terrisse, S. et al., Yonekura, S. et al.

x

x Yonekura, S. et al.

x Terrisse, S. et al., Yonekura, S. et al. x

x Terrisse, S. et al.
x Terrisse, S. et al.
x Yonekura, S. et al.
x Terrisse, S. et al., Yonekura, S. et al.
x Yonekura, S. et al.

x
x Yonekura, S. et al.
x Yonekura, S. et al.
x Yonekura, S. et al.

x Terrisse, S. et al., Yonekura, S. et al. x

x Yonekura, S. et al.
x Yonekura, S. et al.
x Yonekura, S. et al.
x Terrisse, S. et al.
x Yonekura, S. et al.

x Yonekura, S. et al.
x Yonekura, S. et al.
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RF LASSO
LODO AUC LODO AUC

FrankelAE_2017 Melanoma CTLA-4 + PD-1 20 17 37 0.66 0.55
GopalakrishnanaV_2018 Melanoma PD-1 13 10 23 0.58 0.62
Manchester_LeeK_2022 Melanoma CTLA-4 + PD-1 15 10 25 0.73 0.52

McCullochJA_2022 Melanoma PD-1 35 59 94 0.53 0.52
PRIMM-NL_LeeK_2022 Melanoma CTLA-4 + PD-1 33 22 55 0.62 0.57
PRIMM-UK_LeeK_2022 Melanoma CTLA-4 + PD-1 32 23 55 0.49 0.42

DerosaL_2022 NSCLC PD-1 263 75 338 0.70 0.55
RoutyB_2018_Lung NSCLC PD-1 53 12 65 0.78 0.70

DerosaL_2020 RCC PD-1 49 20 69 0.65 0.66
513 248 761

761

cMD: curatedMetagenomicData

NR: Non-responder (SD+PD)
R: Responder (CR+PR)
RF: Random Forrest
LASSO: Least Absolute Shrinkage and Selection Operator
AUC: area under the curve

Total RF Global CV AUC
Total for Global AUC 0.71

ICI: Immune checkpoint inhibitors

Table S5. Cohort description and machine learning analysis for R versus NR cancer patients treated with

Cohort Cancer ICI NR R Total



Frankel et al., Neoplasia., 2017 USA 28923537 yes
Gopalakrishnan et al., Science., 2018 USA 29097493 yes
Lee et al., Nature Med., 2022 UK 35228751 yes
McCulloch et al., Nature Med., 2022 USA 35228752 no
Lee et al., Nature Med., 2022 Netherlands 35228751 yes
Lee et al., Nature Med., 2022 UK 35228751 yes
Derosa et al., Nature Med., 2022 France 35115705 no
Routy et al., Science., 2018 France 29097494 no
Derosa et al., European Urology., 2020 France 32376136 no

 immune checkpoint inhibitors.

Reference Country PubMedID in cMD



Sheet name Content
Legend Color legend and detailed parameters

Summary GOMS-related to R versus NR status before ICI (mega-analysis, ORR) summary.
Table S6 GOMS-related to R versus NR status before ICI (mega-analysis, ORR) results.

Table S6. Baseline GOMS associated with response rates in the mega-analysis presented in Fig



gure 3.



Sheet name
Legend
Summary
limma_voom_TMM_zinbwave
limma_voom_TMM
DESeq2_poscounts
DESeq2_poscounts_zinbwave
DESeq2_TMM
ANCOMBC
maaslin2
SMD
Pibble

Table S7. Baseline GOMS associ



Content
Color legend and detailed parameters

GOMS-related to R versus NR status before ICI (meta-analysis, ORR) summary

Bayesian multinomial logistic-normal linear regression model 

ated with response rates in the meta-analysis presented in Figure 4. 

Differential abundance methods and normalizations (8 in total) were used to estimate 
fold changes (or log ratios) with their respective confidence intervals between 

responders and non-responders (Supplementary material).



Table S8. Relationships between cancer-associated bacteria relevant for clinical 

Cat. Bacteria issued from the Meta and Mega-Analysis

Cancer
He

Anaerotruncus colihominis + +
Bacteroides clarus 0
Bacteroides fragilis 0 +
Bifidobacterium dentium + +
Bilophila wadsworthia +
Clostridium innocuum 0
Clostridium scindens 0
Clostridium symbiosum +
Dialister invisus 0
Eggerthella lenta + 2
Eisenbergiella massiliensis +
Eisenbergiella tayi +
Enterocloster aldenensis +
Enterocloster bolteae +
Enterocloster citroniae +
Enterocloster clostridioformis +
Enterocloster lavalensis +
Erysipelatoclostridium ramosum 0
Escherichia coli +
Faecalicatena fissicatena 0
Faecalitalea cylindroides 0
Hungatella hathewayi +
Intestinimonas butyriciproducens +
Lancefieldella parvula 0
Ruminococcaceae bacterium D5 + +
Ruminococcus torques -
Ruthenibacterium lactatiformans +
Scardovia wiggsiae 0
Streptococcus cristatus 0
Streptococcus mutans 0 +
Streptococcus sanguinis 0
Veillonella parvula 0
Akkermansia muciniphila 0 +
Alistipes shahii 0 +
Anaerobutyricum hallii - -
Anaerostipes hadrus - -

Ca
nc

er
 a

nd
 N

R



Bacteroides caccae 0
Bacteroides nordii 0
Bifidobacterium adolescentis -
Bifidobacterium bifidum 0
Blautia wexlerae 0 -
Coprococcus catus 0
Coprococcus eutactus 0
Dorea formicigenerans 0
Eubacterium rectale - -
Eubacterium ventriosum - -
Faecalibacterium prausnitzii 0 -
Fusicatenibacter saccharivorans -
Intestinibacter bartlettii 0
Lachnospira eligens 0 -
Lachnospira pectinoschiza -
Limosilactobacillus vaginalis 0
Phascolarctobacterium succinatutens 0
Phocaeicola coprophilus 0
Prevotella copri - -
Roseburia faecis -
Roseburia hominis 0
Roseburia intestinalis 0
Roseburia inulinivorans 0
Ruminococcus bicirculans 0
Ruminococcus torques -
Sutterella wadsworthensis 0

[1-3] [4-7]

Gacesa 
et al., 
2022; 
Park et 
al.,  2022

Li et al., 
2022; 
Rampelli 
et al., 
2020; 
Wang et 
al., 
2022; 
Sato et 
al., 2021

+ Increased in relative abundance
- Decreased in relative abundance
2 Increased or decreased in relative abundance

Co
nt

ro
l a

nd
 R

Ref.



outcome and confounding factors.

Healthy aging

Unhealthy aging

Comorbiditie
s

Obesity
Cachexia & fra

ilty

Diabetes

Lung dysfu
nctions

Liver dysfu
nctions

Heart &
 circulatory failures

Comedications

Antibiotics

Gastro
intest

An
0 + 0 0 + 0 0 0 0 0 0 0
0 + 0 0 0 0 0 + 0 0 0 0
- + + 0 0 0 0 + - - - 0
0 2 0 - + + 0 0 + 0 + 0
- - 0 0 0 0 - 0 - - 0 -
0 + 0 0 0 + 0 0 + + + +
0 0 0 0 0 0 0 0 + + 0 0
+ 0 0 0 0 0 0 0 0 0 0 0
0 + 0 0 0 0 0 0 - 0 - 0
+ + 0 0 0 + 0 0 0 + + +
0 0 0 0 0 0 0 0 + 0 + 0
0 0 0 0 0 0 0 0 0 0 0 0
0
+ + 0 0 + + + + 0 + + 0
+ 2 - 0 + 0 0 0 0 0 0 0
0 + 0 0 + 0 0 + 2 + + 0
0
0 2 - 0 0 + + 0 + + 0 0
0 + 0 0 + 0 0 + 0 - + 0
0 2 - 0 0 0 0 + 0 0 0 0
0 + 0 0 0 + 0 0 0 0 0 0
+ + 0 0 + 0 + 0 + + 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 + + 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
+ 2 + 0 + 0 0 + 0 - + -
0 0 0 0 0 0 0 0 0 0 0 0
0 + 0 0 0 + 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 + 0 + 0
0 0 0 0 0 0 0 0 + 0 + 0
0 - 0 - 0 0 0 0 + 0 + 0
0 + 0 0 0 + 0 0 0 + + 0
- 2 - + 0 + 0 0 0 - + 0
- - - 0 - 0 0 - 0 - + 0
0 2 + 0 0 0 - 0 0 0 0 0
0 2 + 0 0 0 - + - - - 0



0 2 - - 0 0 0 + 0 0 0 0
0 2 0 - 0 0 0 + 0 0 0 0
0 - - 0 - - 0 0 0 - - 0
0 2 + - 0 + 0 0 0 - + 0
0 + + 0 0 0 0 0 0 - - +
0 2 0 0 0 + 0 + - - - -
0 2 0 0 0 - 0 + - - 0 0
0 2 + 0 0 0 0 + - - - -
- - 0 0 - 0 - 0 - - - 0
0 2 0 0 0 0 0 + - - - 0
0 - - 0 - - - - - - - 0
0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 - + - 0 - 0 0 0
0 - - 0 0 - - - 0 - + 0
0 + 0 0 0 0 0 + 0 0 0 0
0 0 0 0 0 0 0 0 + 0 + 0
0 + + 0 0 0 0 0 - 0 - -
0 + 0 0 0 0 0 + 0 0 0 0
0 2 0 - 0 + 0 - - 0 - 0
0 + + 0 0 0 0 0 0 0 0 0
- - 0 0 0 0 - - 0 0 0 0
0 2 0 0 0 + - 0 - 0 - 0
0 - 0 0 0 0 0 0 - - - -
0 + 0 0 0 0 0 + - - 0 0
+ 2 + 0 + 0 0 + 0 - + -
0 - 0 0 0 - 0 - 0 0 0 0

[8-10]

Luan et al., 
2020; 
Ghosh et 
al., 2020; 
Zhang et 
al., 2021

Qin et al., 2014; 
Liu et al., 2017; 

Wang et al., 2018; 
Cui et al., 2018; 

Crovesy et al., 2020; 
Bowerman et al., 2020; 

Calderón-Pérez et al., 2020; 
Ni et al., 2021; 

Jiao et al., 2021; 
Behary et al., 2021; 

Aasmets et al., 2022
Clooney et al., 2016
Derosa et al., 2020
Imhann et al., 2016

Lin et al., 2021
Nagata et al., 2022
Nagata et al., 2022
Palleja et al. 2018
Parker et al., 2017
Singh et al., 2022

[2,11-23] [23-32]



stin
al tra

ct

Anti-in
flammatory agents

Antidiabetics

Anti-c
ancer th

erapies

Chemotherapy

Hormonotherapy

Protein kinase inhibitors

0 - - 0 0
0 0 0 0 0
0 0 0 0 0
+ 0 0 0 0
0 + 0 0 +
0 0 0 0 0
0 0 0 0 0
0 + 0 0 +
0 0 0 0 0
- - - 0 0
0 0 0 0 0
0 - - 0 0

0 0 0 0
- + 0 0 +
0 + 0 0 +
2 0 0 0 0

0 0 0 0
0 0 0 0 0
+ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 + 0 0 +
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
- + + 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
- - - 0 0
0 + 0 0 +
0 + 0 + +
0 - 0 0 -
- 0 0 0 0



0 0 0 0 0
0 0 0 0 0
+ - 0 0 -
+ 0 0 0 0
- 0 0 0 0
0 - 0 0 -
0 0 0 0 0
0 + + 0 0
- - 0 0 -
- 0 0 0 0
- + 0 0 +
0 0 0 0 0
- 0 0 0 0
- + 0 + +
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 - 0 0 -
0 0 0 0 0
0 0 0 0 0
- - - 0 0
- 0 0 0 0
- 0 0 0 0
- + + 0 0
0 0 0 0 0

Derosa et al., 2020
Li et al., 2021

Nagata et al., 2022
Terrisse et al., 2021

[25,28,33-34]


	Article File
	Article File
	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Article File
	Article File
	Article File
	Article File
	Article File
	Article File
	Article File
	Article File

