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Abstract

LISA Pathfinder (LPF) has been a space mission led by ESA with
NASA contributions, operating between March 2016 and July 2017.
LPF demonstrated the feasibility of setting bodies in space along freely-
falling geodetic trajectories, complying with the residual acceleration
requirements of the future gravitational-wave observatory LISA.
LISA Pathfinder represented an important milestone in testing the
technological readiness of many instruments which will fly onboard
LISA. In particular, it tracked with sub-pm interferometric precision
the distance between two test masses, measuring the stray relative
acceleration between them. Having low stray acceleration noise at
low frequencies (less than 20 fN Hz−1/2 at 0.1 mHz) is paramount for
LISA, as it directly impacts gravitational wave detection and observa-
tion. After operations, the LPF Collaboration pointed out that two
phenomena, affecting the sub-mHz performance, were not completely
understood and needed deeper analyses. This, despite performing bet-
ter than requirements. Such phenomena are, namely, the low-frequency
acceleration noise, and the sub-pN transient acceleration glitches. This
thesis work focuses entirely on analyzing these observations, in view
of the future mission LISA.

Regarding the low-frequency sub-mHz noise, first, we make a prelimi-
nary analysis. We investigate its evolution in time, its properties, its
stability, and its nature. Informed by results from previous analyses,
we define useful figures of merit to analyze the noise stability over
the LPF mission. We find that the low-frequency noise has had a
remarkably stable behavior for nearly two years, but noise fluctuations
are not compatible with an overall unique noise.
We develop decorrelation tools to understand the measured noise’s
physical origin. In particular, LPF measured several environmental
quantities, – magnetic fields, temperature, thermal gradients, etc. –
synchronously to the test mass acceleration. We aim at finding, if any,
correlations between those time series and the main acceleration mea-
surements. Then we give an overview of other known and quantifiable
effects, summarizing their impact on acceleration.
We expand previous analyses about the LPF outgassing environment.
Pressure, on LPF, is indirectly measured as stochastic acceleration
noise generated by random Brownian collisions between the residual
gas and the test masses. The measurement is so precise that the
measured white-noise level is effectively a good proxy for pressure. We
analyze pressure evolution, fitting data to models. We also analyze the
long-term quasi-static acceleration drift observed on LPF, proposing a
physical model.
A large part of this thesis is dedicated to statistical work on the
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properties of stochastic processes, and applications to the LPF case.
We develop results on multivariate spectral estimation. Implementing
results from complex-variable statistics, we show that cross-power spec-
tral density matrices follow complex-Wishart probability distributions,
and develop a Bayesian tool for the posterior inference of spectral
parameters.
We extensively analyze the second phenomenon impacting low-frequency
performances, the acceleration transient glitches. First, we characterize
their physical properties. We show that LPF glitches spanned a wide
range of amplitudes, transferring impulses between a few fN s, to some
nN s, and showing durations ranging from a few seconds to hours.
We show that LPF glitches fall into two rather distinct categories:
fast transients in the interferometric motion readout and long-lasting
sub-pN true force transient events, acting on the test masses. We
present an analysis of the physical and statistical properties of both,
including a cross-investigation with other time series such as magnetic
fields, temperature, differential torque, and other dynamical variables,
and examine the possible sources of the force glitches, identifying the
most likely ones.
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* Preface

This thesis work is meant to give an in-depth analysis of the acceleration performance
of the LISA Pathfinder (LPF) mission. LPF, led by the European Space Agency with
NASA contributions, operated between 2015 and 2017, succeeding in its objectives
and proving that the relative acceleration between free-falling bodies can be kept low
enough to meet the requirements for the observation of gravitational waves.
The LPF mission was intended as a precursor of the LISA mission, the Laser Interfer-
ometer Space Antenna, ESA’s gravitational waves observatory, which will fly in the
mid-2030s. Its main purpose was to set two test masses into free fall, to within a few
fm s−2 Hz−1/2 spurious acceleration at mHz frequencies.

The first paper about the noise performance [1] was published in 2016, already showing
that LPF met not only its requirements, but also the more stringent requirements for
LISA. Analyses in that paper referred to the noise run Apr16A of Table A.1, which
will be explained later in the thesis but, as can be noticed, was one of the first runs
performed in the mission.
Many runs, experiments, and analyses were performed ever since, resulting in another
publication about noise performance [2], which was published after the mission ending,
and already contained details about all the noise runs. That reference focuses on the
“best” noise run Feb17B, which is usually taken as a reference run for LPF, for reasons
that will also be clearer in this work. In that publication, it was already noted that
the LPF low-frequency performance was affected by two issues, possibly different in
nature: a low-frequency noise spectrum showing an excess above predictions, and the
occurrence of transients, carrying impulses from fm/s to nm/s, showing up with a
rate 1/day during ordinary runs.

Work and analyses about the LPF noise performance went on. In her PhD work,
Eleonora Castelli [3] carried out analyses on a more complete set of LPF runs,
summarizing the post-processing performed to produce data, and providing analyses
of the results.

The work here presented is built on the three cited works, extending the analyses in [3]
with in-depth statistical investigations. Starting from the post-processed experimental
runs, we analyze the detected acceleration, its time-domain and frequency-domain
features, and develop statistical tools meant to better explore the physical origin of
the observed noise.
Within this work, we published the paper in reference [4], regarding LPF transients.
Moreover, another work regarding low-frequency noise, its properties, its stability, its
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evolution, and its physical origin, is currently in preparation [5].

In Chapter 1 we give a qualitative description of the LISA mission, the gravitational-
wave detection principle, and the onboard instrumentation. This introduction
is meant to set the context in which LISA Pathfinder was developed, to better
understand the scientific objectives of LPF.

In Chapter 2 we give more details about the LPF instrument and operations. In the
first section, we give a broad description of the mission, the onboard instrumen-
tation, and the main issues concerning acceleration noise performance. In the
second section, we describe the on-ground data processing, the building process
of the dynamical variables, and the subdivision of the LPF runs.

Chapter 3 is a bit off-track from LPF analyses. In that chapter we present the spectral
estimation tools that we used, starting from the basics. All the work presented
there is essential for the following chapters. In addition to the commonly-used tools,
we present multivariate time series spectral analysis with a statistical approach,
emphasizing the probability distributions of spectral quantities. We describe novel
Bayesian methods for time series decorrelation, which we will employ in later
chapters and in the analyses in [5].

In Chapter 4 we start by focusing on the sub-mHz noise branch, distinguishing the
low-frequency branch from the white-noise plateau, which we analyze separately.
Analyzing a selected set of noise-only runs, we focus on the low-frequency branch,
analyzing the noise stability, its stationarity, its evolution in time, and its nature.
Work in this chapter is used for analyses in [5].

In Chapter 5 we instead focus on the white-noise plateau, showing that it is dominated
by Brownian noise. Then, we analyze its evolution, inferring parameters of the
outgassing environment of LPF’s vacuum chambers. Work in this chapter will be
published in [5].

In Chapter 6 we go on with the analysis of the low-frequency noise, cross-correlating
it with many LPF telemetries, to understand its physical nature. We employ the
algorithms developed in Chapter 3 to decorrelate time series, and finally give a
breakdown projection of all the known contributions to force noise. Work in this
chapter will be published in [5].

Chapter 7 is fully dedicated to the LPF transient events, known as glitches, which
occurred all over the LPF mission. Closely following the work we published in
2022 [4], we first present the classification of glitches, the observed parameters,
and the observed glitch nature. Then, after cross-correlating with other dynamical
variables and environmental variables, we present deeper analyses on their nature.

In Chapter 8 we give a final examination of the results found so far, with discussions
on the possible physical origin of the detected excess noise and transient glitches.
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1 The LISA Mission
The search for Gravitational Waves from space

LISA, the Laser Interferometer Space Antenna, will be the first space-based observatory
to detect gravitational waves (GW). In 2017, ESA selected LISA as one of the
three large-class missions (L3) within the Cosmic Vision program, planning it for
launch in the mid-2030s [6, 7]. LISA will enable the observation of low-frequency
GWs, expanding the observational window of ground-based detectors toward lower
frequencies. Currently, the ground-based detectors from the LVK Collaboration
(LIGO-Virgo-KAGRA) allow the measurement of gravitational waves in the frequency
band 10 Hz–10 kHz. LISA will have a different spectrum, providing a goal observational
band1 20 µHz–1 Hz, with a sweet spot at 10 mHz.

Figure 1.1: Concept representation of the orbits of the LISA constellation. The three
spacecraft will follow an Earth-trailing orbit, following the Earth around the Sun at about
20◦ distance. Adapted from [8].

From the astrophysical point of view, having access to a lower frequency band has
a significant impact. Not only does it allow to improve observation capabilities, but it
opens to a completely different astrophysical scenario. LISA will observe GWs from
many different astrophysical bodies, from merging massive black holes, to inspiralling
celestial bodies, both within the Milky Way and outside of it.
Low-frequency GW observation will also change the concept of GW observation itself.
Because of GW emission laws, the lower the orbital frequency is, the longer the source
emits GWs at that frequency. For this reason, the typical LISA source produces a
peaked spectral line, increasing its frequency slowly during the inspiral. Some sources

1There is a substantial difference between requirements and goals. Driven by science objectives and
technical feasibility, requirements represent the experimental needs, necessary to achieve the objectives.
Goals, more relaxed than requirements, are instead technically more difficult to achieve, and not
strictly needed to be met. However, science would greatly benefit if requirements were overcome,
possibly reaching goals. For LISA, the frequency band requirement is 100 µHz–1 Hz, whereas the goal
band is wider, and it is currently set at 20 µHz–1 Hz.
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Chapter 1. The LISA Mission Section 1.1

could even inspiral emitting in the LISA band for months or years. LISA will therefore
observe many emitting sources at the same time, superimposing and overlapping,
without even the possibility of measuring the instrument noise alone.
This short chapter is dedicated to a broad introduction to the objectives of LISA,
the mission concept, and the key instruments. This introduction is not meant to
be complete about the LISA mission; the purpose is to set the context of the LISA
Pathfinder mission, its experimental relevance, and its meaning, as that is the main
focus of this work. Many of the common concepts between LISA and LISA Pathfinder
are just introduced here, and better explained in the next chapter, which is dedicated
to LISA Pathfinder.

1.1 The mission concept

The LISA mission will be a constellation of three identical spacecraft. These spacecraft
will orbit the Sun at 1 astronomical unit distance, trailing the Earth along its orbit,
about 20◦ behind it. The nominal inter-spacecraft distance will be 2.5 million km,
enabling the long-arm measurements for GW detection. As shown in Fig. 1.1 on the
previous page, the spacecraft will maintain a nominal equilateral triangle configuration,
whose orientation in space will change over time. This variation is at the basis of
the mission principle, at least for two reasons. First, orbital mechanics requires no
active thrust to maintain the triangular-shaped configuration: this allows to effectively
have reliable geodetic references, as better explained later. Secondly, changing the
orientation also changes the antenna sensitivity pattern, allowing to precisely pinpoint
the location of GW sources during their observation, and to improve the sensitivity to
different GW polarizations.

Figure 1.2: LISA constellation concept. The test masses are schematically represented within
each spacecraft, virtually connected by laser beams for interferometry. Adapted from [8].

The key elements, within each spacecraft, will be the geodesic reference Au-Pt test
masses (TM), as represented in Fig. 1.2. Each spacecraft will be equipped with two of
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1.2. The detection principle Chapter 1

these masses, which will act as free-falling references. Each TM will face an opposite
spacecraft, ideally behaving as the end mirror of a very-long-arm interferometer.
Spacecraft dynamics is a complex subject, as its task is to ensure that the TMs
are moving along geodesics along the inter-spacecraft axes. Along the sensitive
interferometric axes, the TMs will be free to move in space, and the spacecraft will
follow their motion with a drag free configuration: micro-thrusts will be applied to
the spacecraft themselves, to adjust their trajectories and maintain their nominal
positions with respect to the TMs. Along the non-sensitive degrees of freedom, it
will be the TMs to follow the spacecraft, thanks to the application of electrostatic
actuation forces.
The TMs will however have no mechanical contact with the surrounding electrodes
and structure: the GW signals to be detected are so faint that the noise generated by
a mechanical contact would hinder the detection.

1.2 The detection principle

The detection principle relies on the laws of general relativity. As reported in every
standard introductory textbook about general relativity, e.g. [9], gravitational waves,
after being emitted for instance by astrophysical events, propagate in spacetime at
the speed of light.

1.2.1 Gravitational-wave physics

The observable effect of passing gravitational waves is a very weak deformation of
spacetime itself, which ultimately is an alteration of the proper space-time distance
between free-falling observers. In this sense, the test masses act in the LISA case
as the free-falling references, following geodetic trajectories, ideally undisturbed in
absence of GWs.
The spacetime deformation is known under the name of gravitational strain, h(t),
which acts with two polarizations. The strain acts as a dilation coefficient, inducing a
variation of the proper distance L between two observers by an amount ∆L, which is
proportional to L itself. In the case of optimal incidence direction and polarization,
h ∼ ∆L/L. To give a scale of the phenomenon, the (adimensional) strain from
distant astrophysical events is of the order of 10−20. Such a small relative length
variation requires on the one hand long-arm measurements, as long as possible; on
the other hand, it requires high-precision end-to-end measurements, which nowadays
are only achievable with interferometers. In the 3-4 km interferometers of the LVK
Collaboration, a partial improvement of the overall sensitivity is achieved with high-
power lasers, reflecting in Fabry-Pérot optical cavities [10].
Interferometry on LISA will be inherently different from the ground-based one: first
of all, because of the long inter-spacecraft distance; second, because spacecraft move
with high relative velocity. Later, we will give more details about how interferometry
will be performed.
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Chapter 1. The LISA Mission Section 1.2

1.2.2 The need for a space mission

In describing the LISA mission, we still have not touched the most important point,
that is, why a space mission is needed and why the same results can not be achieved
with on-ground detectors. To discuss this, we first have to tell a bit more about how
GW interferometric detection works, with a simple model of a LISA laser link.

The key point is that during the propagation of the laser beam from the emitting
spacecraft to the receiving one, any passing GWs act all over time, imprinting their
waveforms as phase shifts of the laser beam. When received by the distant spacecraft,
the beam phase is compared to a local laser beam and measured. In the case of
optimal incidence and polarization, the phase shift reads

∆ϕ(trec) = 2π

λLaser

c

2

∫ trec

tem
h(t) dt (1.1)

If the propagation time L/c is smaller than the characteristic time of the GW strain,
then the expression for the phase reduces to

∆ϕ(trec) ∼ 2π

λLaser

L

2 h(trec) (1.2)

This view of the effects of GW on laser light is not the only one possible. Equivalently,
one could indeed change their point of view, and see the effect of GWs on the propa-
gation of laser beams as a variation of frequency, ∆ν(t) ∝ ḣ(t). From this perspective,
the effect of GWs is equivalent to a Doppler shift. It is then indistinguishable from a
real Doppler shift, caused for example by a spurious acceleration of the interferometer
end-points.
In this sense, real forces disturbing the interferometer end-points are in direct compe-
tition with GWs, since they generate the same observable effect. Force noise affecting
the end mirrors is listed as a primary noise source.

In ground-based interferometers, the motion of the end mirrors is inherently affected
by the seismic and Newtonian noise [10]. Respectively, seismic and Newtonian noises
are caused by Earth’s micro-seismic activity, and local fluctuations of the gravitational
field. These noises are the origin of a steep feature in the spectral sensitivity of such
detectors, which prevents measurements below ∼ 10 Hz frequencies. The Earth’s
environment prevents GW detection at low frequencies, requiring to move to space.

1.2.3 The need for a technology-readiness test – LPF

In space, the situation is much better because of the absence of seismic and Newtonian
noise. Nevertheless, other issues arise. For example, other acceleration sources become
limiting. In modeling LISA at first, these sources were in principle possibly unknown
and unmodeled, and for the same on-ground limitations as before could not be fully
measured and tested on Earth.
One major noisy force in space is known to be the radiation pressure from the Sun,
which fluctuates at low frequencies, especially those of interest for GW observation.
Other external sources include interaction with the interplanetary magnetic fields,
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1.3. LISA instrument overview and requirements Chapter 1

and interaction with cosmic rays. Nevertheless, most of the force sources could also
come from the spacecraft itself.

Mainly for these reasons, ESA decided to launch another mission, LISA Pathfinder
(LPF) to test the technology readiness for LISA. Instead of having the end-point test
masses in two different spacecraft, LPF was a single spacecraft with two test masses,
whose distance was tracked by a sub-pm interferometer. The 2.5 million km arm
length was shrunk to 38 cm, preventing any measurement of GWs, but allowing the
measurement of stray acceleration noise.

LPF succeeded in its objectives, proving that stray acceleration noises can be kept
low enough to allow the observation of GWs, complying with the requirements for
LISA [1–3]. Acceleration noise during the best-performance run is shown in Fig. 2.17
on page 35, in the lower panel, along with the LISA requirements. LPF also succeeded
in testing many technologies for LISA. More details and references will be given in
the next chapter, but, making a non-exhaustive list, LPF:

• Tested the first sub-pm interferometer ever operated in space, and the operability
in space of its optical bench.

• Tested the contact-free UV-light Charge Management System, which will also
operate on LISA with some adaptations.

• Provided a full test of the LISA Gravitational Reference System, the actuation
controls, and the sub-femto-g drag-free control loops.

• Provided a test for the force-noise induced by electrostatic actuation and sensing.

• Tested the in-flight TM caging, release, and grabbing mechanisms, providing
launch-lock mechanisms and geodesic-insertion once on orbit.

• Tested the magnetic, thermal, and pressure environment, and analyzed their
impact on acceleration noise performance.

1.3 LISA instrument overview and requirements

Broadly speaking, LISA will provide high-precision interferometry between three pairs
of test masses, floating freely within different spacecraft. Each pair of masses will
constitute a two-way laser link, which ultimately provides the key measurements of
the mission, as the information on the gravitational strain will be embedded in the
laser phase shift.
Single-link measurement will not be performed with a single laser beam, but the
measurement will in practice be split into three parts: a local TM-to-SC measure-
ment, a long-arm high-power SC-to-SC measurement, and another local SC-to-TM
measurement, as in Fig. 1.3. Backlink fibers will allow laser beams to be shared by
different laser links, necessary to perform interferometry along different arms.

7



Chapter 1. The LISA Mission Section 1.3

Figure 1.3: Partition of the interferometric LISA measurement, simplified scheme. The
total TM-to-TM measurement is virtually split into two local TM-to-SC measurements and a
long-arm SC-to-SC measurement. Adapted from [11].

The spacecraft will follow a quasi-equilateral triangular configuration following
Earth’s orbit, keeping a constant distance from the Earth and the Sun. The orbits will
not need active thrust to be maintained, keeping the quasi-equilateral configuration
as a result of orbital dynamics. Nevertheless, the angle between the spacecraft, which
is nominal 60◦, is not perfectly static. Rather, it fluctuates with a month time scale,
within ±1.5◦. Across 2.5 million km, this means that the laser could be pointing off
about 50000 km, which would not allow any measurement. Hence, an active pointing
of laser beams is required. This task will be handled by the MOSAs, the Moving
Optical Sub-Assemblies, which will provide high-precision pointing of the laser beams
toward the distant spacecraft, moving LISA’s 30 cm telescopes accordingly. Telescope
movement should be as steady as possible, not to induce additional noise and spoil GW
measurement, meeting the requirement of 10 nrad Hz−1/2. The relative tilt between
the local laser and the incoming one from the distant spacecraft will be measured
exploiting once again the laser link, comparing the relative orientation of the incoming
beam wavefront and the local reference laser. As shown in Fig. 1.4, particularly in the
central panel, the telescopes will be rigidly bound to the optical benches, on which
the interferometric measurements will be performed.

Figure 1.4: View of the LISA scientific payload, as in one of the first designs. In all three
images, the telescopes can be seen, as well as the MOSAs, pointing the telescopes to the
distant spacecraft. In the central and right pictures, also the GRSs and the optical benches
can be seen. Adapted from [6].
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Interferometry on LISA (Figs. 1.5, 1.6) will be inherently different from the
usual on-ground one. Though the setup might resemble a set of three Michelson
interferometers, the reality is substantially different. The emitted laser, a 1064 nm
infrared beam with a power of the order of 2 W, reaches the distant spacecraft with
no greater power than a few 100 pW, because of aperture loss during its long-arm
path. This makes it unfeasible to reflect it for interferometry. Rather, a phase-lock
system operates as a transponder, sending back a beam at the full 2 W power, with
the same phase as the incoming one. The incoming beam also interferes on the local
optical bench with the local laser beam to obtain a phase signal, which ultimately is
the measurement carrying GW information. The phasemeter readouts will be then
telemetered to Earth, with no further onboard processing.
On ground, phase measurements will be used to synthesize virtual interferometric arms,
yielding the measurement of the gravitational strain. The post-processing technique
that will be implemented to synthesize the virtual arms is known as Time Delay
Interferometry (TDI); the objective of the TDI is to construct virtual interferometric
arms with the smallest length difference achievable, which is essential for the mitigation
of the impact of laser frequency noise on GW detection.

Figure 1.5: Scheme of the interferometric measurements performed within a MOSA, repre-
senting the local TM-to-SC measurement and the distant SC-to-SC measurement. Adapted
from [8].

From the instrumental point of view, long-arm interferometry must also face
another issue. The spacecraft, during the orbital motion, naturally maintain the
equilateral triangle configuration only to a certain extent. The nominal 2.5 million km
inter-spacecraft distance will be maintained within ± 35 000 km, varying on a yearly
basis with peak velocities of the order of 10 m/s. This velocity translates to a Doppler
shift of the laser beam: given its frequency of the order of 300 THz, 10 m/s corresponds
roughly to a 10 MHz frequency shift.
This issue is overcome by accurately changing the frequency of the outcoming beam,
to compensate for the Doppler shift it will experience. Based on a pre-computed
frequency plan, the interferometric beatnotes will always be kept between 6 and
25 MHz, allowing for heterodyne interferometry [8].
Lastly, the main focus of this work, the gravitational free-fall reference.
The test masses in LISA will play a central role, being the ultimate geodetic references,
complying with the acceleration requirements for GW observation. Along the sensitive
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Figure 1.6: Side-view of a MOSA, showing a schematic representation of the GRS, the optical
bench, and the telescope. Adapted from [8].

interferometric axes – i.e., the TM-to-TM axes –, TMs will be able to free-float, not
constrained by any on-purpose applied force; it will be the spacecraft to follow them
in their motion, using in-loop local interferometry. Along the other degrees of freedom,
electrostatic forces will be applied, in closed loops with displacement sensing, to ensure
stability.
The core system designed to provide reliable geodetic references is known as the GRS,
the Gravitational Reference System. That system is designed to control and sense
the positions of the TMs, and to provide a stable low-noise environment around the
TMs. It is also meant to cage firmly the TMs during launch, to provide a suitable
vacuum environment before and after launch, to grab the TMs during commissioning
and whenever needed, to provide UV-light discharge, and in general to perform core
operations on the TMs, to ensure that they are reliable free-falling references. The
GRS is well visible in Fig. 1.4, depicted in orange. The GRS for LISA will extensively
inherit technologies from LPF, hence we postpone a more thorough description to
Sec. 2.1.1. In general, the GRS is responsible for the acceleration noise performances
of the mission, whose assessment and analysis are the main focus of this work.

The current top-level requirements [12] set the following expression as, respec-
tively, the single-TM maximum acceleration noise and the single TM-to-TM laser-link
accuracy, in the frequency band 100 µHz–1 Hz:

Sg(f) <
[
2.4 fm s−2 Hz−1/2

]2
×
[
1 +

(0.4 mHz
f

)2
] [

1 +
(

f

8 mHz

)4]
(1.3)

S
1/2
x,TM-TM(f) < 10 pm Hz−1/2, (1.4)

We do not go further deeper into the details of the LISA mission, as it is not
needed for the purposes of the present work. In the following, we discuss the LPF
mission. We will see that the acceleration performance requirement of LPF (Eq. (2.1))
was looser than that of LISA, as it was intended as a technology-test mission. We will
describe the main systems onboard LPF, their properties, the actuation schemes, and
the data production pipelines.
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2 LISA Pathfinder

Designed to assess the technological feasibility of the LISA mission, LPF was launched
on December 3rd, 2015, from ESA’s spaceport in Kourou, French Guiana to the
Sun-Earth Lagrange point L1. The mission was not designed to detect gravitational
waves, but rather to demonstrate from the technical perspective that rigid bodies
can be set in space in nearly-geodesic motion, complying with the requirements for
gravitational wave observation. Secondarily in its scope, but not less importantly, LPF
served as a reference for high-precision metrology, marking important landmarks for
future missions. It represented a milestone in the design of low-noise measurements in
space, being a unicum under many scientific and engineering aspects.

Figure 2.1: Rendering of the LPF spacecraft,
representing the main instruments, also de-
scribed in text. [Credits: ESA/Medialab]

The main objective of LPF was to prove
that masses can be set in space freely falling,
following geodetic trajectories as closely
as required to detect gravitational waves.
Since the scope of LISA is the detection of
∼ mHz and sub-mHz GWs, LPF was de-
signed to work in the frequency band from
1 mHz to 30 mHz, and to achieve a maxi-
mum stray acceleration noise of

S
1/2
∆g (f) ≤ 30

√
1 +

(
f

3 mHz

)4
fm s−2 Hz−1/2

(2.1)
The main scientific measurement, appearing
in Eq. (2.1), was indeed a differential ac-
celeration, between two gold-platinum test
masses, which were floating inside the space-
craft without any mechanical contact with
its surfaces. In the mission concept, one of
the test masses (TM1) served as a free-fall
reference, along the TM-to-TM axis. The
spacecraft itself was part of the scientific
payload of the mission, since it was equipped
with actuators, essential for the scientific
result itself. The actuators were needed to apply µN forces to the spacecraft, keeping
it in the nominal position with respect to TM1, hence counteracting the external
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forces with a drag-free scheme. A second test mass, TM2, was needed to perform a
differential measurement, with respect to the freely-falling reference represented by
TM1. This scheme, known as drag-free control, allowed for a crucial noise reduction,
effectively shielding the test masses from external influences.

Figure 2.2 depicts a very schematic representation of the LPF system, with some
acronyms and details that will be described later.

The most sensitive measurements were performed with an interferometric system,
also visible in figures in the following pages, which allowed to reach the sub-pm-level
measurements. LPF hosted the first sub-pm interferometer ever flown in space [13],
which performed much better than its requirements. Motion along the remaining
degrees of freedom, both linear and angular, was controlled by electrostatic forces,
provided by electrodes in close proximities to the test masses. Such electrodes also
provided independent capacitive positioning sensing.

Figure 2.2: Schematic representation of the main LPF concept, the main systems, and loops.
The gold squares represent the test masses, caged in their electrode housings, part of the GRS
subsystems. The interferometric measurements x1,OMS and x12,OMS, operated on the optical
bench, provide the input signals for the control loops and constitute the basis for the scientific
measurements. The green arrows indicate that TM2 is actuated along the TM-to-TM axis.
Only test masses and electrodes are represented with real proportions.

This chapter provides an overview of the main instruments flown and operated
onboard LPF, with a general description of the most important features, and a focus
on the quantities and parameters that will be useful for the analyses proposed in this
work.
In the first section of this chapter, 2.1, we describe the LPF experiment, its scientific
payload, the main measurement systems; we describe LPF operations, experimental
runs, and conditions. In the second section of the chapter, 2.2, we describe the data
analysis and post-processing of the telemetered data, the results that were achieved,
and give useful data series definitions.

2.1 LISA Pathfinder: mission and experiment

Many systems flew onboard the LPF spacecraft, crucial to the success of the exper-
iments. As already said, LPF was, as LISA will be, a unicum from some points of
view: the spacecraft themselves do not only host the payloads, but rather have an
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active role in the scientific measurements, following the test masses to reduce the
influence on their motion. LPF hosted two different spacecraft thruster mechanisms,
constituting two payloads: the LISA Technology Package (LTP) and the Disturbance
Reduction System (DRS). The LTP thrust mechanism, which was used for most of
the time and which will be employed on LISA, used cold nitrogen, released by nozzles,
to transfer momentum. The second one, the DRS, was provided by NASA, and was
used in the so-called ST-7 runs. It used colloidal materials, propelled at high velocity,
to transfer momentum with high mass efficiency.

The two drag-free designs implemented different control schemes, but shared
the same metrology and reference system provided by the LTP, namely, the Optical
Metrology System (OMS), and the Gravitational Reference Sensor (GRS) and providing
the inertial test mass references.

2.1.1 GRS: gravitational reference sensor

The LTP hosted two gravitational reference sensors (GRSs). The scope of each GRS
was ultimately to control actively and to sense the positions of the test masses, located
at their centers with no contact. As shown in Fig. 2.3, each GRS contained a TM,
and the two were interconnected by the interferometric positioning sensing.

Figure 2.3: Rendering of the LISA Technology Pack-
age. The rendering shows the two test masses hosted
inside their respective electrode housings (some of
the electrodes are not represented), and the vacuum
chambers enclosing both test masses and electrode
housings. The picture also shows the high-stability
optical bench hosting all interferometric readouts,
and many other features of the instrument, launch
lock, UV-light-based test-mass neutralizer, etc. that
are not relevant here.
[Copyright: ESA/ATG medialab]

The GRS took care of the inertial
free-falling references, i.e., the test
masses. First, the systems provided
a controlled vacuum environment, be-
ing equipped with two separated vac-
uum chambers, evacuated and sealed
on ground before launch, and vented
to space once in orbit. It provided
the caging, grabbing, and releasing
mechanisms (CVM and GPRM), es-
sential for the correct smooth free-
fall initiation. Each test mass was
also surrounded by an electrode hous-
ing (EH), which provided active con-
trol of the TM motion along all
the non-drag-free degrees of freedom.
We usually refer to control forces as
to actuation. The GRS also provided
a static gravitational balance of the
spacecraft field, to relieve the actua-
tion from applying strong forces.
The electronics also provided capac-
itive sensing, relevant wherever opti-
cal interferometric sensing was not available.
Lastly, the GRS hosted the TM UV-light system, essential for TM discharging.
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The test masses

At the core of the LPF experiments, there were the test masses (TM), two gold-
platinum cubes acting as free-fall geodesic references, identical to the ones that
will be used on LISA. The TMs were nominally located 37.6 cm apart, weighted
(1.928 ± 0.001) kg, and were (46.000 ± 0.005) mm wide.

Figure 2.4: Rendering of a gold-
platinum test mass flown on LPF, in-
side its electrode housing. The caging
indents can be seen at the TM corners,
as well as the central grabbing recess.
Courtesy OHB Italia.

The choice of the Au-Pt alloy, 73%Au/27%Pt,
was crucial for some reasons. First, it allowed the
test masses to have a high density, and a consid-
erable mass despite their small size. Such an alloy
also allowed for high electrical conducibility, es-
sential for electrostatic sensing and actuation, and
a high thermal conducibility. The surfaces were
gold-coated, as they were needed to act as the
end mirrors of the interferometric system. The
alloy composition also allowed to tune the mag-
netic properties of the final product: combining
gold and platinum, respectively diamagnetic and
paramagnetic metals, allowed to achieve a final
material with χ ∼ −2.5×10−5, a very low suscepti-
bility, with slightly negative diamagnetic behavior
[14]. The magnetic moment of the TMs was also
measured before flight [15], resulting to be zero
within the instrument error, |µ| < 5 nA m2. In-
deed, if not taken care of, the TMs motion would
be spoilt by interaction with the environmental
interplanetary magnetic field, which could poten-

tially be a relevant force source.
On the z faces, the TMs were machined to have small 2 mm-sized spherical indents

at the corners, needed for launch caging. These indents were the only non-coated part
of the TM, needed to prevent cold welding to the fingers of the CVM mechanism.
Additionally, the TMs had quite large ∼ 1 cm central recesses on the z faces, to allow
mechanical re-grab with the GPRM plungers, which was needed for example during
station-keeping maneuvers, or in emergency cases.

The electrode housings

The TMs were surrounded by electrodes, positioned as shown in Fig. 2.5. They were
essential for the nominal science-mode functioning of the LPF experiments, providing
active control and sensing of the TM motion along all degrees of freedom [16]. The
electrodes were enclosed in electrode housings, gold-coated molybdenum structures
which hosted both the injection and sensing/actuation electrodes, as shown in the
figure. The electrodes as well were made of molybdenum, gold coated on the TM-facing
side, and attached to the housings via sapphire insulators.
From the capacitive-sensing point of view, it would be recommended to have small

14



2.1. LISA Pathfinder: mission and experiment Chapter 2

gaps between the electrodes and the sensed object, as narrow as possible to increase
sensitivity [17–19]. Nevertheless, gaps for LPF were chosen to be dx = 4.0 mm,
dy = 2.9 mm, and dz = 3.5 mm. Such large gaps require high sensing bias voltages
[16], to compensate for the drop in sensitivity due to large gaps. The compensation
is however only partial, and one ends ultimately with a worsened sensing resolution
(which on LPF was at the aF Hz−1/2 level, over a pF nominal static level). This
corresponded to a positioning nm Hz−1/2 noise, much higher than the 32 fm Hz−1/2

reached by the interferometric system. The reason for this choice is force noise
reduction. It has indeed been shown [20–22] that a number of effects contribute
stronger to the force noise level when the gap is narrow. Such effects include stray
patch potentials, and increased Brownian force noise. The chosen gap sizes were
eventually selected as a trade-off.

Figure 2.5: LPF electrode configuration. Actuation/sensing electrodes are depicted in green,
while the injection ones are shown in red. Electrodes on the x face are used to control the
x and ϕ degrees of freedom; electrodes on the y face, to control y and η; electrodes on the
z face, to control z and θ.

The electrodes served a number of different purposes:

1. Inject a 100 kHz AC voltage, through electrodes depicted in red in Fig. 2.5,
meant to polarize the test masses for positioning sensing.

2. Sense the TM position and orientation along all degrees of freedom, through elec-
trodes depicted in green in Fig. 2.5. Differential measurements between selected
electrode pairs were done via capacitive-inductive bridges [16], demodulating
the 100 kHz detected signal.

3. Apply audio-frequency actuation signals, meant to apply forces and torques to
the TMs, as required by the actuation settings and calculated by the control
systems.

4. Apply DC voltages to the electrodes, meant to counteract DC stray potentials
appearing because of potential patches on the TM surfaces. The configuration
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of this DC compensation was changed sometimes during the mission, as detailed
in App. A.

Electrostatic actuation and sensing

As said, electrostatic TM control provided both a capacitive positioning readout
and actuation systems [16, 23]. We recall that the TMs did not touch the EHs
and thus had no grounding wires, since such mechanical parts would generate a
thermal force noise much higher than the LPF requirements. Hence, both sensing
and actuation were purely electrostatic, and use the same set of 18 electrodes. Two
different frequency bands were used for sensing and actuation, to avoid cross-talks as
much as possible. However, in Chapter 6 we describe a low-frequency cross-talk that
we detected, between actuation and sensing.

Sensing. As described in [16, 21], sensing operated at 100 kHz frequency: 6 of the 18
electrodes, located centrally on the y and z faces, were used to inject a 0.6 V zero-mean
signal. The remaining 12 electrodes, 2 per TM face, were instead used for homodyne
sensing of the capacitance between electrodes and the TM, with capacitive-inductive
bridges. Ultimately, the device sensed the translational and rotational positions,
inferred from the measured capacitances. Electrodes showed a constant sensing
precision across all the LPF mission, with best performances between 0.7 aF Hz−1/2

and 1.8 aF Hz−1/2 at high frequencies (above 1 mHz, where readout noise dominates).
Such sensitivities correspond to 2.4 nm Hz−1/2 and 170 nrad Hz−1/2, respectively for
translational and rotational measurements.

Figure 2.6 shows a block diagram of the capacitive sensing and actuation system,
for a pair of electrodes.

Figure 2.6: Block diagram representing the capacitive sensing and actuation scheme, for a
pair of opposing electrodes (A, in the figure), sensing along the x-ϕ directions. Specifically,
readouts from the A and B bridges in the figure were averaged and subtracted for (respectively)
x and ϕ measurements. Figure adapted from [16] and [23].

Actuation and authority. Differently from sensing, actuation operated in the
audio-frequency band, through the application of amplitude-modulated sinusoidal
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voltages in the 60-270 Hz band. The choice of high-frequency actuation was driven
by sensitivity needs, not to convert the low-frequency voltage noise into a large force.
Moreover, different carrier frequencies were used to control different degrees of freedom.
Amplitudes were commanded based on the force required by the DFACS (the control
system, as described later), to apply the necessary forces and torques. Since the force
F applied by a pair of electrodes is proportional to the squared voltage difference
∆V 2, the application of sinusoidal voltages results in the application of forces at
twice the carrier frequency and at the carrier amplitude-modulation frequency. Hence,
actuation resulted in an effective force following the carrier modulation, with amplitude
proportional to the square carrier amplitude1, F ∝ V 2

c .
Forces and torques on the TMs were obtained with combinations of voltage

waveforms, applied to the corresponding electrodes. As represented in Fig. 2.6,
waveforms were computed, digitally synthesized, converted, and then applied to
electrodes.

The actuation scheme was designed to apply a controlled and steady force gradient
on the TMs2. Indeed, it is inevitable that the application of force-inducing voltages
is also associated with the generation of a force gradient, in the surroundings of the
TMs, translating into forces as the TMs move. Force gradients, as will be better
explained in the data processing section, 2.2, on page 31, are listed as noise sources
on LPF. Gradients create elastic-like couplings between the test mass position and its
acceleration. Although inevitable, it is undesirable that the gradient stiffness depends
on the instantaneous commanded force, introducing time-varying force gradients. If
it were the case, the data post-processing would require disentangling the effects,
computing at any moment the local gradient. To avoid this dependence, LPF exploited
an algorithm to apply forces with a constant stiffness [23, 24]: the force gradient did
not depend on the applied forces, but rather on the maximum exertable force.

The maximum exertable forces (and torques) are known as authorities. During
each LPF experimental run, authority was a fixed parameter. Fixing the authority
also fixed the impact of actuation on the low-frequency noise, fixing the actuation
force noise. Hence, authority was chosen as low as possible on the basis of the highest
required force, to minimize the impact of actuation on the force noise itself. We
point to App. A, where we list all the actuation configurations used on LPF. The
configuration acronyms are also used in Table A.1, listing all the LPF runs used in
this work and the employed settings.

DC voltage compensation. Electrodes were also used to apply static DC voltages
to the TMs, to counteract spurious voltages. Before launch, it was indeed noted [25,
26] that the LPF setup could be subject to stray voltages, arising from the presence of
spatially varying DC surface potentials, known as patch fields, potentially generating
force on the TMs. In a simplified model, the potential is uniform over each electrode,
which can therefore be assigned a single value. The way those stray voltages would
generate in-band forces is the following:
Suppose that the four TM-facing electrodes on the x faces (follow the electrode

1The mean squared carrier amplitude, averaged over a carrier period.
2Force and torques. For clarity, we just refer to forces.
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numbering in Fig. 2.5) are affected by stray DC potentials δVi, then a force is induced
on the TM,

Fx = − q

CT

∑
i

δVi
∂Cx

∂x
, (2.2)

where q is the total charge on the TM, CT the total capacitance of the TM to all the
surrounding surfaces, and ∂Cx/∂x the partial derivative of the TM capacitance to an
x electrode, with respect to motion along x. This equation can be further simplified
by defining the effective potential ∆x,j = (δVx1,j + δVx2,j − δVx3,j − δVx4,j), where j

represents GRS 1 and 2. The quantity ∆x,j can be seen as an effective single-electrode
potential that would yield an equivalent force along x. Analogously, one can define
∆ϕ,j = (δVx1,j − δVx2,j − δVx3,j + δVx4,j), which is the analogous quantity for torque
along ϕ. Overall, the expressions for static forces and torques read:

Fx(q) = − q

CT

∣∣∣∣∂Cx

∂x

∣∣∣∣∆x, Nϕ(q) = − q

CT

∣∣∣∣∂Cx

∂ϕ

∣∣∣∣∆ϕ, (2.3)

here, ∂Cx/∂x and ∂Cx/∂ϕ are the partial derivatives of single electrode capacitances
with respect to motion along x or ϕ. Any fluctuation in q, hence, induces stray
noisy forces on the TMs. A strategy to reduce this source of noise was devised as
counteracting the stray potentials ∆x and ∆ϕ, obtained by measuring their value and
applying counteracting voltages to the electrodes, in a combination that generated
both the required ∆x and ∆ϕ. Such DC voltages were of the order of ∼ 10 mV. The
final DC voltages, after compensation, were estimated as < 5 mV [2]. In Table A.5,
we list all the used voltage configurations.
We will also note later that imperfect digitization of the AC actuation waveforms led
to fluctuating quasi-DC voltages, representing a force source, analogous to Eq. (2.3).

GRS: gravitational compensation and stiffnesses

Figure 2.7: Rendering of an Internal Bal-
ance Mass (IBM) in GRS1, to scale. Details
of the LPF structure, mechanisms, and com-
ponents have been omitted. Courtesy OHB
Italia.

We have described the LPF system as aimed
at following and measuring the motion of
the two test masses in their free fall along
geodesics, following TM1 and actuating TM2.
Nevertheless, the presence of the spacecraft
itself changes the geodesic lines themselves,
attracting the TMs and generating a net
force on them. The gravitational attraction
between the spacecraft and the TMs mani-
fests as steady DC forces and torques, that
require force compensation to maintain the
TM nominal position. Because of the drag-
free design (see Sec. 2.1.3), actuators on the
spacecraft maintain TM1 in its nominal po-
sition within it. Thus, any gravitational im-
balance would require DC suspension forces
to be applied electrostatically to TM2. As
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said, the necessity of strong DC forces would
require high actuation forces and high authorities, hence leading to increased noise in
the science measurements. It was shown [27] that if the difference in gravitational
force per unit mass exceeded 2.5 nm s−2, actuation noise would already reach the
mission requirements. Hence, strategies were applied to reduce as much as possible
the gravitational imbalance, in order to require just a tiny amount of electrostatic
forces to compensate for the residual imbalance.
Incidentally, we note that the gravitational forces also cause a force gradient at the TM
locations, causing on each TM a force per unit mass that can be effectively modeled as

ggrad,i = ω2
i xi,

where xi represents the off-nominal displacement of TMi, and ω2
i is an equivalent

stiffness, given by the gravitational gradient at the TM location.
To reduce the influence of the spacecraft on the differential test mass motion, the

gravitational field was compensated, with high-density masses positioned in strategic
locations [27]. Balance masses were placed on the spacecraft itself, and on the
external walls of the vacuum chambers. The more critical item for gravitational
balance compensation was however the Internal Balance Mass (IBM), placed inside
the vacuum chamber of each GRS, as shown in Fig. 2.7. The IBMs must be located in
very close proximity to the TMs, to provide the required compensation of gravitational
forces and torques. Based on calculations of the overall gravitational field, the IBM was
designed and finely machined to compensate an imbalance of about 50 nm s−2, down
to a 10 pm s−2 accuracy, and to keep the gravitational gradients within requirements.

The IBMs were two ∼ 2 kg uncoated pieces of a sintered tungsten-copper alloy
(W/Cu 90/10 for IBM2 and W/Ni-Cu 95/5 for IBM1). The IBMs were designed
to “wrap” the TMs from the external side of the line joining the two TMs, a few
centimeters away from each TM.

GRS: vacuum handling and venting

Vacuum handling was a sensitive issue to the success of the mission. Indeed, the
residual gas surrounding the TMs is itself a source of force noise, and it is well visible in
the LPF data series. Pressure evolution is also a central topic of this work; its impact
on the mission results, its evolution, and its possible sources are discussed in Chapter 5.
As described in [22, 28], the viscous damping caused by the gas surrounding the masses
poses limitations to the noise performance, appearing as a frequency-independent
white force noise. This result is a direct consequence of the fluctuation-dissipation
theorem [29], which states that the presence of a force-dissipation mechanism in a
system is always associated with a force noise. In this case of Brownian motion, the
noise is frequency-independent, and its amplitude depends on temperature, pressure,
the mass of the emitted gas species, and the geometry of the system.

At cryogenic temperatures, this noise source could be negligible. But LPF did
not work at low temperatures. In ordinary runs, LPF operated in a temperature
range between 284 K and 295 K, hence the noise induced by Brownian motion played
a relevant role. The same references cited before [22, 28] show that the white noise
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level is proportional both to absolute temperature and to pressure. With the same
geometry as LPF’s (and LISA’s) TM and EH configuration, it was measured that the
conversion coefficient between pressure and single-TM acceleration, assuming that
the emitted gas is water, is Sg/PH2O = (1.3 fm s−2 Hz−1/2)2/µPa. A pressure greater
than 230 µPa would have on LPF’s performance an impact as high as its requirement;
LPF’s pre-flight goal was 10 µPa, and 1 µPa was reached at the end of the mission.

Figure 2.8: Section on the x-z plane of the
GRS. The test mass is visible at the center,
with the grabbing recesses. y-face electrodes
are visible; no electrodes on the x face are visi-
ble. On the right side, the IBM. In the lower
part, the venting valve, and, at the bottom-
right, the venting duct aperture. Non-essential
components are blurred. [Courtesy OHB Italia]

The corresponding threshold for LISA
would be 3.4 µPa; an envisioned goal for
LISA is 1 µPa [12].

The simple relation between acceler-
ation PSD and pressure also serves as an
indirect measurement of the static pres-
sure level. Indeed LPF was not equipped,
and LISA will not be equipped, with pres-
sure gauges in the surroundings of the
TMs, because of their impact on both
volume and noise performance.

LPF profited from the space environ-
ment, using venting-to-space ducts as vac-
uum pumps. As shown in Fig. 2.8, each
GRS was enclosed in a Ti alloy vacuum
chamber, called Vacuum Enclosure (VE),
containing all the mechanisms and parts
that needed to be in close contact to the
TM, but being isolated from the outer
outgassing environment. Lasers for in-
terferometry could pass through optical
windows. The venting ducts, combined
with the GRS geometry, allowed an ef-
fective EH air(water) pumping of about
16(19) L/s (OHB Italia estimates).

To reach the desired pressure goal in
the short time of the LPF mission, how-
ever, venting to space was not enough.
Thus, the VE was pre-evacuated and pre-
baked on ground. Approximately one
year before launch, the VE flight mod-
els were baked for about 24 hours, at
about 115 ◦C, after which the inner pres-
sure reached a few post-cooldown µPa.
The VEs were subsequently sealed with
a valve with Viton gaskets, and opened
only once in orbit. Incidentally, we note
that the bakeout could not last longer or
be performed at a higher temperature,
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because of constraints posed by the emitting surfaces of the charge management
system.

The venting mechanism was part of the Caging and Venting Mechanism (CVM),
which provided both the vacuum sealing/opening of the inner GRS, and the TM
launch-lock mechanisms. Before launch, it guaranteed both the sealing of the VE,
and the TM launch-lock, caging it with eight fingers and applying a total of 1200 N,
preventing any damage from launch vibrations. Once on orbit, on DAL 62.4, the
CVMs unlocked the TMs and vented the VE to space (see Fig. 2.15 on page 29).
When opened on orbit, inner pressure was crudely estimated to be of the order of
1 mbar. At the beginning of the LPF science operations, about 40 days after venting,
pressure had decreased to about 10 µPa, corresponding to a (water) outgassing of
about 200 µPa L/s – at the end of the mission, it reached about 20 µPa L/s.

GRS: TM charging and management

As described by Eq. (2.3), electrostatics induce forces on the TMs, deviating them from
their geodesics. Two disturbances of electrical origin have been identified as causing
force noise on the TMs: fluctuations in the test mass voltage, and fluctuations in the
electrode voltages, following from Eq. (2.3). The first one is inevitably connected to
test mass charging in time, caused by the space environment. In both LPF and LISA,
the test masses accumulate charge in time: the interaction with cosmic rays, both
through direct interactions with the TMs and through secondary emission within the
EHs, leads to a net test mass charging [30–32]. Indeed, the TMs are not grounded,
and any charge deposited on the TMs will not leave it on its own. The work function
of gold surfaces is about 5 eV, which is much higher than thermal fluctuations at LPF
temperatures. The charging rate was measured [26], as a net positive rate of 22.9 e s−1

on TM1 and 24.5 e s−1 on TM2, with variations of the order of ±2 e s−1. Assuming
a run lasting 15 days, the total accumulated charge would be of the order of pC,
corresponding to a ∼ 150 mV TM voltage.

The net TM charge induces force noise, enhancing the random fluctuations of the
electrode voltages. However, TM charging contributes through another mechanism
to the force noise, which is equivalent to shot noise: TM charge is contributed by
different species of charged particles, with either positive or negative charges. Those
charges cancel out as regards the net charging rate. Nevertheless, hitting the TMs,
they generate charging shot noise, which is proportional to the square total charge of
each charging event, independently of its sign. This effect contributes through the
effective charging rate, rather than the net charging rate. On LPF, it was measured
λeff,1 = (1060 ± 90) e s−1 and λeff,2 = (1360 ± 130) e s−1 [26].

As already discussed, a first strategy for reducing the contribution from charge
fluctuations is to compensate the stray DC voltages as much as possible. Another
strategy implemented to reduce TM continuous charging is direct TM discharge.
TM charge was controlled using UV lamps, which shone light on both the TMs
and the surrounding EHs: light acts extracting electrons from the gold surfaces via
photoelectric effect, provided that the photon energy is higher than the extraction
work function. A rendering of the UV photoemission device is visible in Fig. 2.3.
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Before each science run, the Charge Management System (CMS) was enabled, to
adjust TM charge and prevent it to increase too much. If possible, looking forward to
the end of each run, TM charge was set negative before the run start, to keep it as
close to zero as possible during the run itself.

The estimates of noise from these sources are given in Chapter 6.

2.1.2 Interferometry, Optical Metrology System

The position of the TMs along the sensitive degrees of freedom was interferometrically
sensed, as schematically shown in Fig. 2.10. The interferometric system [13, 33, 34],
part of the Optical Metrology System (OMS), consisted of four interferometers IFO,
residing on an Optical Bench (OB). The interferometers were used to sense:

• x1,OMS, the displacement between TM1 and the OB. Given that the OB can be
effectively considered as rigidly bound to the spacecraft, x1,OMS is a measurement
of the TM-to-SC distance. The readout of this interferometer was the driving
signal of the drag-free control loop, driving the µN forces to be applied to the
spacecraft along x.

• ∆x12,OMS, the distance between TM1 and the TM2. The readout of this
interferometer was the driver of the suspension loop, driving the fN electrostatic
forces to be applied to TM2 along x.

• η1,OMS, ϕ1,OMS, the angular orientation about the y and z axes of TM1, with
respect to the optical bench. The use of quadrant photodiodes (QPD) allowed
angular measurements via differential wavefront sensing technique [33].

• η12,OMS, ϕ12,OMS, the angular orientation about the y and z axes of TM2, with
respect to TM1. This measurement allowed to reconstruct η2,OMS, ϕ2,OMS.

• The remaining six degrees of freedom were not interferometrically sensed. Rather,
only the capacitive sensing provided by the GRS was available for those degrees
of freedom.

Figure 2.9: Rendering of the LPF
optical bench. Image from [13], see
Fig. 2.10 for details.

The IFO system consisted of four heterodyne in-
terferometers, operating simultaneously with a
shared laser source, following different optical
paths as shown in Fig. 2.10. The laser source was
an Nd:YAG source providing nominally 35 mW
of light at a wavelength of 1064 nm. Nominally,
2.4 mW impinged on TM1 and 1.2 mW impinged
on TM2. The laser source was split into two
beams, namely a measurement beam and a refer-
ence beam; the reference one, depicted in blue in
Fig. 2.10, completely resided on the OB. Hence,
its pathlength was artificially increased by about
38 cm, that is the inter-TM distance, to equalize
the two pathlengths. The operating principle of the interferometers, operating in
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heterodyne mode, required frequency shifts, different in each beam. Acousto-optic
modulators (AOM) allowed to shift the beam frequencies by about f1 ∼ f2 ∼ 80 MHz,
with a frequency difference of f1 −f2 = 1 kHz, whose measurement allowed heterodyne
interferometry.

Figure 2.10: Scheme of the OMS system flown onboard LPF, representing a) the OB, with
all its optical components, mirrors, beam-splitter and photodiodes, b) the two laser beams
and their optical paths, c) the test masses, acting as end mirrors of the measurement beam.
Adapted from [33].

We refer to the four interferometers as:

• x1, measuring x1,OMS, η1,OMS, and ϕ1,OMS, as previously defined.

• x12, measuring ∆x12,OMS, η12,OMS, and ϕ12,OMS, as previously defined.

• F, with an optical path residing entirely on the OB, used to sense laser frequency
fluctuations and to drive a digital control loop aimed at stabilizing it [34].

• R, with an optical path residing entirely on the OB, sensing common-mode
noise shared by all the IFOs. The R readout was digitally subtracted from the
readout of all the other interferometers. We note that this subtraction was
performed at a rate of 100 Hz, whereas telemetries were downlinked at 10 Hz
after subsampling.

The power measured at the photodiodes was also used to drive a power-stabilization
loop, aimed at reducing power fluctuation. As we will see later, it is essential to reduce
power fluctuation, as the laser radiation pressure on the TMs induces a net differential
force on them.
To ensure optimal pathlength stability, the OB was a (20.0 × 21.2 × 4.5) cm3 baseplate
entirely made of ZerodurTM. The optical components, namely mirrors, beam-splitters,
were made of the same material, hydroxide-catalysis bonded [13, 35] to avoid mechanical
stresses. This composition allowed high thermal stability and a low thermal coefficient,
of order 5 × 10−8 K−1.
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The interferometer system worked much better than expected [1, 2, 13, 33],
reaching a much lower noise than requirements. Before flight, requirements for the
x1 and x12 were set at linear 9 pm Hz−1/2 and angular 20 nrad Hz−1/2, at frequencies
above ∼ 10 mHz. The measured in-flight performances3 show that the interferometers
performed at a level as low as 32.0+2.4

−1.7 fm Hz−1/2 for linear motion, and 100 prad Hz−1/2

for angular motion. This result is shown in Fig. 2.11, adapted from [13].

Figure 2.11: In-flight noise performance of the X12 interferometer, compared to pre-flight
requirements, and broken down to its main components. Above 10 mHz, the IFO readout
noise dominates, at the remarkably low level of 32.0+2.4

−1.7 fm Hz−1/2. Adapted from [13].

Alignment. The test masses, as end mirrors of the interferometric measurement,
were aligned three times during the mission, to ensure optimal laser reflection. More-
over, TM misalignment may generate spurious leakage of jitter along other degrees
of freedom into the sensitive measurement. Angular jitter around an off-centered
axis, as well as lateral jitter if the TMs are tilted, translates into an effective laser
“tilt-to-length” pathlength variation. Mechanisms leading to such coupling are subject
to thorough analyses, in view of the LISA mission [36–39]. Regarding LPF, cross-talks
were more efficiently removed in post-processing (Sec. 2.2.2), rather than with TM
alignments. However, attempts were done during operations to reduce the real cross-
talk, aligning the TMs according to the measured coupling coefficients. Table A.4
summarizes the alignment settings.

2.1.3 DFACS: drag-free scheme and attitude control

The DFACS (Drag-Free and Attitude Control System) was the system dedicated to
controlling the system dynamics, namely the dynamics of the spacecraft, TM1, and
TM2 [40]. It operated to a) maintain the spacecraft attitude, b) drive the spacecraft
to follow TM1 along the TM-to-TM axis, enabling drag-free control, c) control TM1
and TM2 with electrostatic forces and torques along the y, z, and angular degrees of

3Performance refers to the x12 IFO, as x1 is the in-loop measurement driving the drag-free
control, hence picking up the intrinsic spacecraft movement noise. However, the on-ground pre-flight
measurements were comparable to the x12 performance [33].
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freedom, d) control TM2 with electrostatic forces along the x axis, to the reach the
differential motion target.

In detail, the DFACS operated to:

1. Control the spacecraft attitude, to keep the solar panels oriented towards the Sun.
The loop was controlled by a set of star trackers, driving the spacecraft’s attitude
with respect to the sky position of a set of stars, and controlling its rotation.
However, even at low frequencies below 1 mHz, electronic star tracker noise was
the main source of attitude noise, causing an undesired ∼ 10 µrad Hz−1/2 jitter.
Later, we will see that this jitter makes the LPF reference frame non-inertial,
coupling to the TM differential motion through a spurious tangential “Euler”
force.
Incidentally, we note that this effect will not be present in LISA. The spacecraft’s
attitude will not be driven by star trackers but by differential wavefront sensing,
comparing the orientation of the local laser beam and the incoming distant
one. This will enable a much more sensitive angular control, of the order of
10 nrad Hz−1/2 [12].

2. Control the spacecraft along the x direction, based on the x-axis position of
TM1 with respect to the spacecraft, i.e. based on the readout of the x1,OMS
interferometer. This loop, known as the drag-free loop, allowed for an efficient
disentanglement of the differential TM motion from that of the spacecraft. The
rejection ratio of the spacecraft motion from the differential signal was [24]
|δ−1

ifo,1| = (4.5 ± 0.4) × 104. This allowed not only to reject the spacecraft motion
stationary noise (solar radiation pressure, microthruster noise), but also to
isolate the differential TM motion from transient events, such as micrometeoroid
impacts [41].

3. Control TM1 and TM2 along the y and z translational directions, applying
electrostatic forces to the TMs. The common-mode TM motion is however
controlled in drag-free mode, commanding forces to the microthrusters to follow
the spacecraft along the common-mode translational and angular TM positions.

4. Control TM1, and TM2 along the angular η and ϕ directions, to keep alignment
with respect to the electrodes, applying electrostatic torques. These degrees of
freedom are tracked with the differential wavefront sensing of the x1 and x12
interferometers.

5. Control TM1, and TM2 along the angular θ direction, to keep alignment with
respect to the electrodes, applying electrostatic torques. This degree of freedom
is tracked by the GRS capacitive sensors.

6. Control TM2 along the x direction, based on the x12 interferometric measure-
ment. The control loop controlling this degree of freedom is known as the
suspension loop. Given the system geometry, it is not possible to follow both
TM1 and TM2 in drag-free mode. Hence, TM1 is chosen as free-falling reference,
with the spacecraft controlled to follow it. TM2 is instead actuated in the x

direction, keeping its low-frequency position constant with respect to TM1, and,
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consequently, to the spacecraft. In Fig. 2.16 on page 34, we show the scheme of
the suspension loop, when describing the system dynamics.

2.1.4 S/C control and cold gas thrust

During science operations, the DFACS controlled the drag-free motion of TM1 along
the sensitive axis, calculating the necessary acceleration to follow it in its motion, and
commanding the force to be applied to the spacecraft itself. During LTP operations,
on which we focus in this work, this task was achieved by propelling the spacecraft
via two sets of six cold gas thrusters, fed with cold (room temperature ∼ 295 K)
nitrogen [42]. These thrusters were also used during station-keeping operations, for
orbit adjustments. The two sets, with six thrusters each, provided redundancy and
were used one at a time.

Thrusters, located on the outer part of the satellite, applied the required forces
and torques, providing a thrust of order µN. Such thrust accelerated the ∼ 500 kg
spacecraft, at the required ∼ nm s−2 Hz−1/2 level, guaranteeing the drag-free motion
and high rejection of the spacecraft motion from the differential motion. It also
guaranteed effective shielding from external events, such as micrometeoroid impacts
[41].

Thrusters accelerated the spacecraft in the X+, X-, Y+, Y-, Z+ directions. No
additional acceleration was required opposite to the sun-pointing direction, since the
solar radiation pressure to the solar panels already provided a 25 µN thrust. With an
estimated noise level of 0.4 µN Hz−1/2 at 1 mHz, thruster noise represented however the
dominant source of disturbance noise on the spacecraft, about one order of magnitude
above the solar radiation pressure.

About 10 kg of cold nitrogen were kept in four 8.3 L tanks, located as shown in
Fig. 2.12 on the right panel, which stored it at a 292 bar pressure. Tanks 3 and 4 were
short-circuited, and were effectively assumable as a single tank, which we refer to as
tank 3. Only one tank was used at a time, feeding only one of the two thruster sets
(A and B). Tank/thruster configurations in the noise-only runs are summarized in
App. A.
On the left panel of Fig. 2.12, we show a schematized view of the gas-feeding system:
high-pressure nitrogen flowed through pressure regulators, meant to reduce its pressure
from about its storage 292 bar to 1 bar, collecting it in a plenum before delivering to
the end thrusters. Then, it flowed through valves to the A or B thruster sides, as
needed. Pressure in the high-pressure tanks was telemetered, but its readout noise
was pretty high to allow precise measurements.

Gas emission from thrusters was controlled with mass flowmeter sensors and in-loop
piezo valves, as shown in Fig. 2.13.

Based on the measured x1,OMS, and on the forces/torques commanded by the
DFACS, the thrusters’ electronics (MPE in Fig. 2.13) computed the required thrust
to be provided by each thruster. Then, it commanded a certain mass flow to each
valve, based on the conversion factor between the mass flow and applied thrust.

In the following analysis chapters, we will be interested in the fuel mass depletion
from the fuel tanks. Here we note that for the thrust loop to work properly it is not
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Figure 2.12: (left) Cold nitrogen feed-line, from the high-pressure tank to the feedbranch
actuator valve. Tanks were used to feed two redundant, independent thruster sets, named A
and B. (right) Position of the three fuel tanks within the spacecraft. Figures from [42].

needed a precise estimate of the calibration factor mass-flow-to-thrust, nor of the
valve voltage-to-thrust calibration factor. Hence, the estimate of the tank depletion
time series can also be affected by calibration uncertainty, in addition to the intrinsic
flowmeter noise. As noted in [42], thrusters were calibrated during station-keeping
maneuvers, and were estimated to be precise to better than 10%.

Figure 2.13: Gas propulsion loop. MPE stands for
micro-propulsion electronics, controlling the voltage
of the thruster valve based on the required thrust.
Figure from [42].

The reason we will be interested
in fuel depletion for noise perfor-
mance, is that the mass loss from
fuel tanks can be well identified in
the differential acceleration time se-
ries. Indeed, as fuel is lost from the
tanks, the unequal gravitational at-
traction between the tanks and the
test masses causes the onset of a grav-
itational force, drifting in time with
a constant slope. When in use during
LTP operations, thrusters provided a
quite constant thrust DC level, using
about 10 g of mass per day, which
correspond to a force drift ∼ 10 am s−3. As shown in Fig. 2.14, the calculated drift,
accumulating over time, was responsible for a maximum ∼ 40 pm s−2 static drift,
which was well visible in the ∆g time series. The drift sign depends on the used tank:
usage of tanks 1 and 2 mimicks TM attraction (positive ∆g, as defined later), due to
the loss of gravitational pull between tanks and TMs, while usage of tank 3 mimicks
TM repulsion (negative ∆g).

Actuation could accommodate for forces of such a small amplitude; however, the
tank-usage configuration was changed from time to time, to keep the total differential
force as low as possible.

27



Chapter 2. LISA Pathfinder Section 2.1

Figure 2.14: Static ∆g drift during the LPF mission, caused by the mass depletion from fuel
tanks, amounting to ∼ 10 g/d. Positive and negative slopes correspond to the tank in use:
usage of tanks 1 and 2 causes TM attraction (positive ∆g), while usage of tank 3 causes TM
repulsion (negative ∆g). Feed branch usage in noise runs is summarized in Table A.2.

2.1.5 LPF orbits

Because of the stringent mission requirement in Eq. (2.1), and envisioning the even
more stringent requirement for LISA (Eq. (1.3)), LPF could not operate in a low
Earth orbit (LEO), but it needed to reach the Lagrange point L1, at 1.5×106 km from
Earth, towards the Sun. Indeed, on an LEO, the gravitational gradient (∼ µN/m)
would prevent the mission to comply with the low-noise requirements4. This point
did not represent a limitation for other missions with low-acceleration requirements,
such as MICROSCOPE, GOCE, GRACE, GRACE-Fo, but the requirements for LPF
were unprecedentedly low5. The choice of L1, instead of other Lagrange points, was
motivated by operability and communication reasons. Orbiting around L1, which is
not a gravitationally stable equilibrium point, only required a few station-keeping
maneuvers, during which science measurements were interrupted. Moreover, this orbit
allowed the spacecraft to be constantly exposed to sunlight, thermally stable, and
able to communicate with Earth.

2.1.6 LPF mission operations

LPF flew between December 3rd, 2015, 04:04:00 UTC, and July 18th, 2017, 19:57:00
UTC, nearly 600 days after launch. In Figure 2.15, we provide a scheme of LPF
operations, with details concerning the analyses proposed in this work.

Commissioning started during the journey to L1, with the enabling of the systems,
4As noted in the previous section, a high DC force requires a high actuation authority, leading to

increased actuation noise. In addition to this, the gravitational gradient in low-Earth orbits is not
constant. Because of variations in the mass and density below, the local gradient varies over time as
the spacecraft orbits the Earth.

5Incidentally, some of the missions here cited, namely, GOCE, GRACE, and GRACE-Fo, were
made exactly for geodesy measurements, hence requiring to fly on LEOs. However, other missions’
acceleration requirements were not as strict as LPF’s and LISA’s. The lowest differential accel-
erations in MICROSCOPE, GOCE, and GRACE were respectively of order 10−12 m s−2 Hz−1/2,
10−11 m s−2 Hz−1/2, 10−9 m s−2 Hz−1/2, to be compared to 10−15 m s−2 Hz−1/2 achieved on LPF [43].
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Figure 2.15: Scheme of the LPF runs analyzed in this work, also listed in App. A with
more details. Yellow timespans show LTP runs, performed at 22 ◦C nominal temperature.
Green timespans show LTP runs, performed at 11 ◦C nominal temperature during the mission
extension phase. Blue timespans show LTP runs, performed at less than 2 ◦C. Red timespans
show DRS runs, performed at 22 ◦C nominal temperature. The bi-color span represents a
DRS run performed at nominal 11 ◦C. On top of the scheme, grey bars indicate timespans
where DRS valves were open (used during DRS runs, stand-by during LTP runs). Red markers
at the bottom indicate noise-only long-lasting runs used for spectral analyses. Labels mark
relevant LPF operations.

preliminary adjustments, and alignments. On DAL 62.4, the two vacuum enclosures
containing the GRSs activated the CVMs, venting to space and unlocking the TMs.
The area outside the CVM valve already had an open path to space, but the inner area
was sealed. On the one side, venting allowed the system to start pumping the residual
gas and lowering the pressure. Additionally, it unlocked the TMs, which were caged for
launch. The GPRM allowed keeping them mechanically centered in the EH, providing
∼ N forces to the TM central recesses. On DAL 73, the GPRM unlocked, releasing
the TMs. The GPRM was designed to release the TMs with small residual impulses,
of the order of µm s−1, which could be captured by the electrostatic actuation system.
After an initial stabilization of the TMs inside their EHs, the drag-free mode was
enabled. On March 1st, 2016, on DAL 88, science operations started.

Operations included many kinds of experiments. Science measurements consisted
of pure noise-only runs, lasting between some days and a couple of weeks. During
science runs, the purpose was the measurement and control of differential acceleration,
by applying the force commanded by control loops without additional spurious stimuli,
with stable experimental conditions. Other experiments and operations included
system identification and calibration runs, station-keeping maneuvers, interferometer
alignments, TM discharge, charge measurements, etc. In Figure 2.15, colored timespans
represent the runs used in this work, as described in the following paragraphs. Runs
are also listed in App. A, in which we give more details on the experimental conditions.

Control schemes. Various control schemes were applied during the LPF
mission. During the first part of the mission, from March 2016 to June 2016, LTP
ordinary operations took place, using the LTP drag-free control scheme, and cold
gas thrusters. In June 2016, control was handed to NASA’s ST-7 operations, which
used the DRS control scheme, operated with the colloidal spacecraft thrusters, with
the DURLA actuation scheme. In the figure, we have marked in red those runs which
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operated in DRS conditions, and that we have used in this work. However, colloidal
thrusters have been in a stand-by state for a longer time, even during some LTP runs.
The state of the DRS valves is shown in the upper part of the figure.
In June 2016, the mission extension began, alternating LTP and DRS operations.
DRS operations in 2017 (run Apr17A), however, required some cold gas thrusters to
be activated, because of a problem with a colloidal thruster cluster.
On April 2017, LPF was de-orbited from L1. Operations went on till July 2017, when
communications were definitively interrupted.

Actuation settings. Within the LTP operations, various actuation authority
schemes were implemented, aiming at lowering the actuation noise. Some special
“free-fall” experiments were also performed, during which actuation on TM2 was
performed with impulses instead of continuous forces: however, we do not deal with
those experiments in this work. Details about the authority schemes are given in
Table A.3.
At the beginning of the operations, nominal (NOM) actuation was implemented, allowing
for a maximum thrust on TM2 of 2.2 nN. However, gravitational compensation was
so effective that such a large maximum force was not necessary. Therefore, actuation
authority was progressively reduced to RED (600 pN TM2 authority), RLA (200 pN
TM2 authority), URLA (50 pN TM2 authority), and , UURLA (50 pN TM2 authority,
and reduced angular authority). The UURLA settings were applied from April 2016.

Thermal settings. LPF operated nominally at room temperature, nominally
22-24 ◦C at TM locations, for the majority of the mission (see App. A for the average
temperature during runs). However, some variations were applied during the mission
extension. Such variations led to important experimental results, from the point of
view of low-frequency noise and transient events.
In January 2017, temperature at TM location was lowered to 11 ◦C, aiming at lowering
the white noise plateau due to Brownian molecular motion. This led to one of the
quietest long-lasting runs of the LPF mission, run Feb17B, which was used for analyses
in [2], and which we often use as a reference.
After the de-orbiting maneuver, temperature was further lowered in April 2017,
switching off all the heaters, aiming at the lowest temperature possible, ∼ 0 ◦C. Four
runs were performed at this temperature. At the end of May 2017, heaters were
switched on again, rising temperature to 11 ◦C as first step, and 22 ◦C in June 2017.

Analyzed runs. In the following analyses, we use the set of runs listed in
Table A.1. We have two main analysis directions: the spectral analysis of low-frequency
force noise, and the time-domain analysis of spurious transients. Different subsets of
runs are used for two purposes:

1. For the analysis of transient “glitches”, we use the entire set in Table A.1. Some
of the runs were performed with non-optimal actuation authorities, resulting in
an increased noise level: however, the sensitivity was sufficient for the detection
of transients. In that context, we will refer to ordinary runs (OR) as the ones
performed at 22 ◦C or 11 ◦C, and to cold runs (CR) as the ones performed
in May 2017, at about 0 ◦C. All of these are noise-only runs, except for a
couple them, during which a fN sinusoidal stimulus was applied to TMs, without
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interfering with our purposes of glitch identification.

2. For the analysis of low-frequency noise, we use a subset of 13 of those runs,
and an additional DRS run, as marked in orange in Table A.1. Conditions
of the LTP runs are detailed in Table A.2. In our analyses, run Nov16B is
split into two segments, because of a micrometeoroid event occurring about two
days before the end of the run. These (LTP) runs were performed with the
URLA/UURLA actuation settings, and no particular external stimuli were applied
during measurements. Runs in this subset last from 2.75 d (Jul16C) to 18.5 d
(Dec16B). Long durations allowed to analyze frequencies down to 18 µHz, with
13 periodograms to be averaged also at the lowest frequency in the longest run6.

Cold runs. Cold runs require some more details and explanations, as their role
in the following analyses is relevant. Cooldown began on April 29th, 2017, bringing
temperature down from 11 ◦C to the lowest possible, switching off all the heaters. The
reason for a cooldown was simple: Brownian noise is proportional to temperature,
and a first cooldown had already succeeded in improving the noise performance.
Such a low temperature was however out of the mission design and specifications:
thermometers on the EH saturated when reaching about 8 ◦C, hence being unusable
below that temperature. Thermometers on the outer LTP bay worked well, measuring
temperatures down to −1 ◦C in May 2017. In [44], it is estimated that temperatures
at TMs locations went down to ∼ 2 ◦C. Four runs were performed at this temperature
(May17A to May17D), amounting to a total of 12.4 d.
During cold runs, differential acceleration measurements showed the occurrence of an
increased number of transient “glitches”, as described in Chapter 7. The high number
of glitches, contributing both to the low-frequency noise and to the white level, spoiled
noise measurements, resulting in a highly non-stationary behavior. Moreover, between
run May17B and run May17C, a more serious event occurred, requiring the spacecraft
to re-grab the TMs in safe mode. That event is presumably of mechanical origin
[45]. After re-heating, the structure went on showing some non-thermal mechanical
relaxation. More details later on, see Sec. 4.3.3 on page 88.

2.2 LISA Pathfinder: data processing, data series

Let’s now proceed with the description of the main science measurements and the
time series definitions. We give more details about the system dynamics, especially
concerning the science differential measurements, and describe the post-processing
pipelines used for data series production.

Raw data from instruments have been onboard low-passed, subsampled, and
telemetered with a sampling frequency fs = 10 Hz, hence allowing measurements up
to the Nyquist frequency of 5 Hz. All the raw time series have been manipulated with
LTPDA (LTP Data Analysis toolbox), the MATLAB toolbox developed for LPF data

6The choice of 18 µHz allows to have 100 µHz as fourth frequency, which is the lower bound of
the LISA frequency band. Measurements at that frequency are taken with periodograms lasting
222222.2 s, following the scheme in Sec. 3.5.
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analysis [46]. The first elaboration allows to re-cast all data interpolating them to the
same time grid, allowing for further calculations and analyses.

In this section, we make use of spectral analysis tools. For now, we do not
need sophisticated instruments, as here we only use Power and Amplitude Spectral
Densities, PSDs, and ASDs. More details on the computing algorithms, definitions,
and properties are given in Chapter 3. Whenever a PSD is represented as points
with error bars, it has been computed at minimally-correlated frequencies with the
estimation tools provided in that chapter; if it is a continuous line, it is instead
computed with the standard Welch method.

2.2.1 Science measurements and system dynamics

The main LPF science measurement is the out-of-loop differential acceleration ∆g(t),
i.e. the differential acceleration that the masses would show if no actuation loop were
involved. The presence of the actuation forces must be taken into account in building
∆g, as the loops play a relevant role in the dynamics of the spacecraft, TM1, and
TM2, especially at sub mHz frequencies.
To understand the working principle, we go over the Newton equation behind it,
restricting it along the x coordinate.

Assume that ξ1(t), ξ2(t), and ξSC(t) represent the coordinates with respect to
an inertial reference frame of, respectively, TM1, TM2, and the spacecraft. These
coordinates are related to the measured x1(t) and ∆x12(t), through x1(t) = ξ1(t) −
ξSC(t), and x12(t) = ξ2(t) − ξ1(t). The Newton equation along x, dropping the explicit
dependence on time, reads:

mξ̈1 + mω2
1 (ξ1 − ξSC) = mge,1 + mgc,1

mξ̈2 + mω2
2 (ξ2 − ξSC) = mge,2 + mgc,2

mSCξ̈SC − mω2
1 (ξ1 − ξSC) − mω2

2 (ξ2 − ξSC) =
= mSCge,SC + mSCgc,SC − mgc,1 − mgc,2

(2.4)

Here, m and mSC are the TM mass and the spacecraft mass, assuming TM1 and TM2
have equal masses. The coefficients ω2

i represent the gradient forces, expressed as
stiffness terms. The first and the second equation link the left-hand side, representing
the TM motion, with the right-hand side, containing the real external forces per unit
mass (ge), and the applied electrostatic control forces per unit mass (gc). The third
equation rules the spacecraft motion, dominated on the right-hand side by the external
forces mSCge,SC, and the control thrusts mSCgc,SC. These equations do not explicitly
contain the control transfer functions, as those are implicitly included in the applied
control forces.
Expanding the third equation with respect to the interferometer measurement x1, one
gets the spacecraft equation of motion, ruling the spacecraft motion with respect to
the x1 measurement, which is not our focus now.
Instead, from the first and second equations, one gets the equation ruling the differential
displacement:

m (ẍ2 − ẍ1) + mω2
2x2 − mω2

1x1 = mge + mgc (2.5)
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where ge and gc simply condense the differential forces, ge = ge,2 − ge,1 and gc =
gc,2 − gc,1. Re-introducing the explicit dependence on time, this equation can be
re-arranged, and represents the main LPF output,

∆g(t) = ∆ẍ12(t) − gc(t) + ∆ω2
12x1(t) + ω2

2x12(t) (2.6)

Summarizing, in Eq. (2.6):

• gc(t) represents the applied differential actuation force per unit mass along x,
i.e. gc = gc,2 − gc,1. Following the control scheme described in Sec. 2.1.3, the
drag-free mode should apply no force along the sensitive axis to TM1. Thus, gc,1
is nominally 0. Nevertheless, the application of digitized actuation waveforms
was affected by a rounding error which was not corrected in flight [47]. Hence,
the real applied forces were computed in post-processing, also resulting in a small,
though negligible, force per unit mass gc,1. System identification experiments
also identified amplitude calibration factors and delays in force applications
(λ1,2, C1,2, as described in [24], which we here include in gc for simplicity).

• Gradient forces, resulting from both gravitational field gradients and electrostatic
actuation gradients, are modeled as elastic-like forces with negative stiffnesses.
Such modelization and linearization are possible, as the system is held in an
equilibrium state with the feedback force loops. Each TMi, within its EH,
is subject to a force per unit mass −ω2

i xi(t), where xi(t) is the displacement
from the nominal position. Each stiffness ω2

i is contributed by a constant
term, mainly gravitational, common to all runs, and an electrostatic term,
proportional to the actuation force and torque authorities. Stiffnesses have been
measured in system identification experiments [24]. With the UURLA settings,
ω2

1 = (−4.41 ± 0.07) × 10−7 s−2 and ω2
2 = (−4.62 ± 0.04) × 10−7 s−2; these

stiffnesses are contributed ∼ 10% by electrostatic terms. Since the measurement
is differential and based on x1 and ∆x12, these stiffnesses combine as in Eq. (2.6),
where ∆ω2

12 = ω2
2 − ω2

1. Contribution from the ∆ω2
12 term is negligible with

respect to the ω2
2 one, and, in UURLA runs, the latter is negligible with respect

to the measured noise, as noticeable in Fig. 2.17.

• ∆x12(t) is the time series of the x12 interferometer output (also indicated as
∆x12,OMS(t)), translated from laser phase to differential TM motion. It is an
in-loop quantity, which is used by the suspension loop as an error signal to the
reference set point. Therefore, it is heavily influenced by the suspension loop
transfer function, which acts mostly at low (sub-mHz) frequencies. At those
frequencies, the PSD of ∆x12(t) goes quickly to zero.

• Common-mode between the x1 and x12 was effectively rejected by the drag-free
scheme, hence δifo,1ẍ1(t) represents a negligible correction.

Figure 2.16 provides schematics of the suspension loop along x, with stiffness
terms, as depicted in Eq. (2.6). The figure also shows the role of the GRS readout,
which will be clarified later, and the role of the interferometer noise. Not shown in the
picture is the role of the actuation noise, which is treated separately, among the other
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noise sources. In Figure 2.17, we show as an example the PSD of the various terms

Figure 2.16: Schematics of the suspension loop along x, actuating forces on TM2 with respect
to its relative position to TM1. ∆gE , the external forces acting on the TMs, translate into
TM motion through the transfer function 1/(s2 + ω2

2), where s is the Laplace frequency. The
interferometric readout ∆xOMS is fed back to the DFACS, which applies control forces per
unit mass gc, with a transfer function −Hfb(s). The GRS plays no role in the loop, hence
providing a useful external independent readout of the TM position.

appearing in ∆g(t). Some of them have already been defined. Others are described
in the following paragraphs. We note that LPF time series have been affected by
transient events “glitches”, treated in detail in Chapter 7. In the figure, we have
deglitched the time series, i.e. we have fitted and removed the spurious transients that
occurred during measurements, for clarity [3].

2.2.2 Correction of interferometer cross-talk

Data show a well-visible “bump” between 10 mHz and 0.1 Hz, evident in Fig. 2.17.
That bump is not ascribable to the readout error of the interferometric measurement,
nor to real forces acting on the TMs along the x axis. As explained in Sec. 2.1.2, that
feature is due to pickup of acceleration along other degrees of freedom, namely ϕ̈(t),
η̈(t), ÿ(t), z̈(t), coupling to the sensitive axis because of misalignment. Post-processing
decorrelation has proved effective in reducing that spurious coupling [24, 48], as
noticeable in Fig. 2.17, in the lower panel. More recently, steps forward are underway
in modelization [49].

2.2.3 Correction of inertial effects

Time series resulting from Eq. (2.6) also show a “bump” below 0.5 mHz, which
suggested correlation to some sort of low-frequency signal. It has been shown [1–3]
that such a feature was caused by the spacecraft platform being non-inertial, hence
coupling TM acceleration to the spacecraft angular jitter.

The ultimate reason has to be found in the attitude control system. The DFACS
controlled the spacecraft attitude with autonomous star trackers, maintaining a low
drift to ensure correct antenna pointing. Nevertheless, the star tracker readout was
noisy at low frequencies, causing the spacecraft to jitter, generating a jittering angular
velocity and a jittering angular acceleration. As previously done in LPF analyses, we
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Figure 2.17: LPF on-ground data processing, example with run Feb17B, one of the quietest
run performed. The upper panel shows the first step of data production, resulting from the
interferometric measurement, feedback forces, and force gradients. The red line represents
the ASD of ∆gL0∗(t), namely ∆g(t) as computed as in Eq. (2.6), and deglitched. The yellow,
purple, and grey curves represent the contributions from force gradients and the pickup from
the x1 interferometer.
In the lower panel, we show the ASD of ∆gL0∗(t), and ∆g(t) after the subtraction of inertial
effects and spacecraft movement pickup. We also show the single contributions from centrifugal
and tangential forces, and the LISA/LPF requirements.
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subtract such effects from ∆g. Neglecting this source in the LPF residual noise results
is an appropriate operation, since this noise is not expected in LISA data: angular
control will be based on the differential waveform sensing between the local and the
distant lasers, making angular control much more stable [12].

Inertial forces contribute in a twofold manner:

1. A noisy centrifugal force, proportional to the jittering angular velocity Ω(t).
Such a force is purely differential, pushing both the TMs outwards. It can be
expressed as

∆gΩ = (Ω(t) × Ω(t) × r12)x = −(Ω2
ϕ(t) + Ω2

η(t)) r12, (2.7)

where Ω(t) is the spacecraft angular velocity, and r12 = (r12, 0, 0) the vector
joining the two TM centers, nominally 0.376 m along the x direction. Spacecraft
angular velocity is deduced from the star tracker in-loop measurement and the
applied torques. More precisely, the angular velocity Ω(t) is made of a quasi-DC
component ΩDC(t), measured by the star trackers, and an in-band component
ΩB(t), which we compute integrating in time the applied common-mode torques,
along ϕ and η. The result is quadratic, as in Eq. (2.7). Hence, the quasi-
DC component directly enters into the measurement frequency band. Overall,
Eq. (2.7) can effectively be approximated as:

∆gΩ ∼ −2Ωϕ,DC(t)Ωϕ,B(t) r12 − 2Ωη,DC(t)Ωη,B(t)) r12 (2.8)

This effect is calculated and subtracted, as shown in Fig. 2.17.

2. A noisy tangential “Euler” force, proportional to the jittering angular acceleration
Ω̇(t), expressed as

∆gΩ̇ = (Ω̇(t) × r12)x = −Ω̇ϕ(t)δy + Ω̇η(t)δz (2.9)

This effect is not quadratic, hence the quasi-DC angular velocity does not have
any influence on it. If the TMs centers were perfectly aligned, such a term would
not contribute, as δy = δz = 0, but it is not the real case. Euler tangential
acceleration was subtracted with a frequency-domain fit to the model in Eq. (2.9),
extracting the angular misalignments δϕ = δy/r12, and δη = δz/r12 [3, 24]. A
global fit model was used, dividing the LPF mission into epochs, depending on
the TM alignment configurations. Angular mismatches were found to be of the
order of 10-100 µrad, depending on the TM alignment epoch. After estimation
of the misalignment angles, this effect was computed and subtracted, as shown
in Fig. 2.17, lower panel. Inertial forces contributed to more than 90% of the
total measured noise at 0.1 mHz.

2.2.4 Deglitching

Transient acceleration events will be a matter of discussion in Chapter 7. It is however
necessary to introduce them here, as deglitching is an important operation that
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also affects spectral analysis. After subtracting all the effects listed above, transient
acceleration glitches were identified in experimental runs. Such glitches could be
effectively modeled, fitted, and subtracted from data [2, 3]. All the time series
presented in Fig. 2.17 have been deglitched.

2.2.5 Angular differential acceleration time series

Analogously to the linear out-of-loop differential acceleration ∆g, we have built the
angular out-of-loop differential acceleration time series along the η and ϕ directions,
∆γη(t) and ∆γϕ(t). Angular displacement was subject to a different control scheme
than the linear one [40], using suspension loops on both TMs and actuating torques
based on interferometric readouts. Pitch and yaw TM motion (η and ϕ) were both
controlled interferometrically, hence the out-of-loop angular acceleration can be built
in first approximation by combining the interferometric measurements and the known
applied torques. Potentially, high-precision measurements would be available for both
test masses, independently. However, angular motion is dominated by the spacecraft’s
angular jitter, which shows up as a high-intensity common-mode acceleration. There-
fore, it is quite impractical to retrieve the angular acceleration of each TM. We analyze
the differential angular acceleration, much quieter than the single ones.

To get pure differential motion, we also decorrelate the residual common-mode
motion [3]. Finally, the angular acceleration time series (torque per unit moment of
inertia) are defined as:

∆γϕ = ϕ̈2 − ϕ̈1 − (Nϕ2 − Nϕ1)/Izz − (ω2
ϕ1ϕ1 − ω2

ϕ2ϕ2) − αγϕ
γϕ, (2.10)

where Nϕi
is the torque applied by the x-ϕ electrodes to TMi, Izz is the moment of

inertia about the z axis, ω2
ϕi

the angular stiffnesses (whose terms play a negligible
role). Similar equations hold for η.

Figure 2.18: Example of the power spectra of the differential angular accelerations ∆γϕ and
∆γη, during the noise run Feb17B. For comparison, we also show the common-mode γϕ, along
ϕ, which has also been decorrelated from the ∆γϕ time series.
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Figure 2.18 shows examples of the power spectra of the differential angular accel-
erations ∆γϕ and ∆γη, during the Feb17B run. It also shows the power spectrum of
the common-mode acceleration γϕ, whose power is ∼ 104 times higher.

We will note in Chapter 7 that some glitches showed a small torque. For those
events, we perform the deglitching operation also for the ∆γ time series.

2.2.6 GRS displacement timeseries

The position of TM1 is driven by the interferometer x1, which holds it centered with
respect to the optical bench position. The same holds for TM2, whose position is
centered with respect to TM1, in the x, η, and ϕ coordinates. Therefore, the position
of the TMs is not constrained with respect to their EH, and a movement of the EH
itself would not induce a feedback force on the TM. As schematized in Fig. 2.19,
a deformation in the structure holding the two GRS would not be detected by the
interferometer loop. Assume that EH1 and EH2 move from the nominal position with
respect to the OB, respectively by the amounts x1,GRS and x2,GRS; the interferometric
measurements, x1,OMS and ∆x12,OMS, would not sense the displacement.

Figure 2.19: Definition of ∆xGRS, as in Eq. (2.11). The relative positions TM1-to-S/C
and TM2-to-TM1 are controlled by the interferometers, rigidly bound to the OB. The loop
keeps the TMs in their nominal position with respect to the OB. Hence, the GRS provides
capacitive sensing of the displacement of the GRS structure with respect to the TMs, which is
not available with interferometric measurements. TM size is not to scale, and EH motion is
exaggerated, for visualization purposes.

As noted in Fig. 2.16, the GRS capacitive sensors are not involved in the suspension
loops along these degrees of freedom, and are intrinsically rigidly moving with the
EHs. Therefore, those can be used as measurements of the instrument distortion. We
build the time series ∆xGRS, defined by

∆xGRS = x2,GRS − x1,GRS, (2.11)

where x1,GRS and x2,GRS are, respectively, the positions of TM1 and TM2 within
their EHs. The intrinsic noise level of this time series is generally higher than that
affecting ∆x12,OMS, simply because the capacitive sensing is much noisier than the
interferometric one. At low frequencies, where the TM motion dominates, the PSD of
the two sensing methods is comparable.

Distortion stiffness. We note that the mechanical distortion pattern along the
x axis would however leak into the differential motion. The mechanism is similar
to the one coupling the x1 and x12 readouts to ∆g, caused by force gradients. The
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GRS, indeed, generates gravitational and electrostatic force gradients on the TMs,
generating elastic-like forces as the EHs move. We model the distortion-induced
acceleration ∆gdist as

∆gdist = −ω2
d(∆xGRS − ∆xOMS), (2.12)

where ω2
d is a stiffness coefficient. From ∆xGRS, we have removed ∆xOMS to remove

true TM motion. However, ω2
d is different from ω2

1 and ω2
2: the two cases are not

equivalent, mainly because in the latter the OB does not move with respect to the
TMs.

We evaluate the stiffness following what done in [24], using the coefficients computed
in [50]. Let’s assume that Xi and xj are respectively the off-nominal position of GRSi

and TMj with respect to the spacecraft. ω2
i,j is the stiffness caused by GRSj on TMi,

and ω2
SC,j the stiffness caused by the rest of the spacecraft on TMi. We notice that

the stiffnesses ω2
i in Eq. (2.6) are given by ω2

i = ω2
i,1 + ω2

i,2 + ω2
SC,i. The gradient forces

are given by

∆ggrad = − ω2
2,2 (x2 − X2) − ω2

SC,2x2 − ω2
2,1 (x2 − X1) + (2.13)

+ ω2
1,1 (x1 − X1) + ω2

SC,1x1 + ω2
1,2 (x1 − X2) =

= − (ω2
2x2 − ω2

1x1) + (ω2
2,2 − ω2

1,2)X2 − (ω2
1,1 − ω2

2,1)X1

The last two terms are the contribution of the EH displacement, ∆gdist. We have
already taken into account the first term, which is the contribution of TM displacement.
Assuming that (ω2

2,2 −ω2
1,2) ∼ (ω2

1,1 −ω2
2,1), we conclude that ω2

d ∼ (ω2
2,2 −ω2

1,2). Taking
into account both gravitational and electrostatic terms, we estimate the effective
stiffness ω2

d = (−3.32 ± 0.05) × 10−7 s−2.

2.2.7 Considerations on measurements

It is well noticeable in Figure 2.17 that noise is mainly made of three branches: a
rightmost part, scaling with frequency as S∆g(f) ∝ f4, a leftmost part, scaling as
S∆g(f) ∝ f−2, and a central part, frequency-independent.

1. The right branch, scaling as S∆g(f) ∝ f4, is confidently ascribed to interferometer
position readout noise [13, 33], and it is not of interest to our purposes.

2. The central branch, frequency-independent between ∼ 1 mHz and ∼ 10 mHz,
is confidently ascribed to Brownian noise and outgassing. We describe it in
Chapter 5.

3. The left branch, known to be scaling as S∆g(f) ∝ f−2 [2, 3], is instead affected
by a number of sources and mechanisms. In Chapters 4, 6, and in the discussion
8, we provide analyses of acceleration noise in the sub-mHz band, investigating
the nature of the observed noise.
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The next Chapter 3, instead, runs on a different track. It deals with spectral
estimation methods, cross-correlation analysis, and frequency-domain decorrelation
tools, which we use extensively in the following analyses.
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3
Spectral estimation
and decorrelation
Multivariate spectral estimation,
time series coherence and signal decorrelation

This chapter runs on a different track from the previous one and the following ones.
We break the discussion on the LPF noise, to describe the methods we used – and
developed – for the spectral analysis of time series.
Note: this chapter contains many equations; for clarity, we mark with an orange box
the most relevant ones.

There are multiple reasons behind the necessity of developing statistical tools
for the estimation of spectral quantities. First of all, the necessity of analyzing
very low frequencies, and subsequently dealing with just a few periodograms for
spectral analyses. The inability to average over a large number of periodograms
makes the spectral quantities very far from being Gaussian-distributed, requiring
more precision when giving uncertainties. Second, the necessity of analyzing the
uncertainties of spectral quantities, both commonly used and non-standard, in looking
for the fine details of coherences among time series. Detailed knowledge of power
spectra statistics is also required for analyzing the stationarity and the long-term
instrument stability. We also propose some practical applications of the studied
statistics, and a decorrelation method to identify the contribution of supplementary
time series to a main measurement. These tools are explicitly developed for LPF
analyses, but can be easily generalized.

This chapter follows and expands the analysis methods presented in [2, 3, 51],
extending the spectral analyses to multi-channel measurements. The methods here
presented have been implemented in the analyses that will be presented in [5], also
discussed in Chapter 6.

In Sec. 3.1 we introduce the basic definitions of spectral analysis, to establish the
grounds for the following elements. In Sec. 3.2 we present the complex Wishart distri-
bution and describe the statistics of (cross-)power spectra, coherences, and multiple
coherence. In Sec. 3.4 we present our Bayesian single-frequency decorrelation method,
along with the model definition, and the posterior parameter distributions. Finally, in
Sec. 3.6, we extend the single-frequency method to a larger set of frequencies, and pro-
vide numerical tests validating the presented methods. The choice of quasi-independent
frequencies is described and justified in Sec. 3.5. Additionally, in Appendix B we
illustrate an algorithm for the generation of random complex-Wishart-distributed
(cross-)power spectral matrices, and provide some more details.
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3.1 Spectral analysis and basic definitions

Let’s assume that the measurement consists in p real-valued time series, which have
been simultaneously and synchronously measured with a fixed sampling time T . These
time series, which we call xi(t), represent measurements of different experimental
quantities. As in the LPF case, let’s additionally assume that the sampling frequency
fs = 1/T is sufficiently high to neglect any aliasing of higher-frequency components into
the low-frequency band. Generally, we assume that such p time series are real-valued
stochastic processes, just because this is the case for experimental data. However,
data could as well be complex-valued without major modifications to the following
analysis.

If the measured time series are stochastic processes, stationary within the mea-
surement time and Gaussian, then they can be characterized by a single quantity
defining the spectral properties, known as the Cross Power Spectral Density (CPSD)
matrix, Σ(f). The CPSD matrix is commonly defined as the Fourier transform of the
autocorrelation matrix, as described in [52]. At a given frequency f , the CPSD matrix
is built such that each diagonal element Sii(f) is the Power Spectral Density (PSD)
of the i-th stochastic process, and the off-diagonal elements Sij(f) are the cross-PSDs
among the i-th and j-th processes.

The theoretical CPSD matrix is characterized by some simple properties,

1. The CPSD matrix is Hermitian, by definition. Therefore, its diagonal elements,
the PSDs, are real-valued. Moreover, by definition, those elements are not
negative.

2. The CPSD matrix is positive definite. Indeed, it exists a coordinate change that
reduces the cross-correlations to zero, diagonalizing the matrix. The diagonal
elements of a such-defined matrix would be PSDs on their turn, and hence real-
and positive-valued.

3. The diagonal elements of the standardized CPSD matrix are known as the
cross-coherences between the p time series, defined as

ρij(f) = Sij(f)√
Sii(f) Sjj(f)

(3.1)

The square modulus of this quantity, |ρij |2, is often indicated as Magnitude
Square Coherence (MSC).

4. The multiple coherence R2 associated with the CPSD matrix Σ, with respect to
the first time series, is defined as

R2 = 1 − (Σ11Ψ11)−1 , (3.2)

where Ψ = Σ−1. We will prove that the multiple coherence coincides with the
total contribution fraction to noise of the first time series by the other ones.
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3.1.1 Discrete time series and CPSD estimators

Given the discrete-time nature of the time series, we write xi[n] = x(nT ), meaning
that xi[n] is the n-th sample of the i-th time series1, measured at time t = nT .

The building block at the basis of the whole spectral theory is the Discrete Fourier
Transform (DFT). For our purposes of spectral estimation, we weight data with a
spectral tapering window w[n], such that ∑n(w[n])2 = 1. As will be clarified later,
the ultimate purpose of windowing is to prevent spectral leakage among adjacent
frequency samples, preventing the onset of numerical artifacts that would otherwise
be generated. The modified DFT, performed on an N -samples long data stretch, is
defined as

Xi[k](N) ≡

√
T

N

N−1∑
n=0

xi[n]w[n]e−2πink/N . (3.3)

Here k is the spectral index, spanning between 0 and N . The spectral index is related
to frequency, via f = k/NT . If data are real-valued, Xi[k] = Xi[N − k]∗, hence only
N/2 samples are really independent. The maximum measurable frequency is known
as the Nyquist frequency, and it is ultimately set by the sampling time, fNyq = 1/2T .

3.1.2 (cross-)periodograms and power spectral density estimation

Another quantity that is strictly related to the modified DFT of the experimental
data is the one-sided experimental cross-periodogram between the i-th and the j-th
series, defined as

Ŝ
(N)
ij [k] ≡ 2Xi[k] X∗

j [k] (3.4)

The Wiener-Khinchin theorem relates this quantity to the CPSDs and PSDs. It is
indeed a well-known result in spectral theory that the cross-periodogram as in Eq. (3.4)
is an unbiased estimator of the one-sided CPSD Sij , provided that the spectral window
is appropriately chosen and that the spectrum does not contain strong lines in the
neighborhood of the frequency f = k/NT (more details in Sec. 3.1.3). This is the case
for the time series that we are considering at very-low frequencies, hence it is safe to
use Eq. (3.4) as a basis for building a spectral estimator, as it is done in the Welch
method.

3.1.3 The Welch PSD estimation method

The standard tool used for spectral estimation is the Welch method [53], which provides
a way to reduce the variance of the previously-defined CPSD estimator, by averaging
over many periodograms. It implicitly assumes that the stochastic process is stationary
and its spectrum does not change during the whole measurement. The Welch method
takes advantage from splitting a long time series into shorter stretches, defined so
they overlap. Our algorithm, presented later, slightly modifies the concept of PSD
evaluation at different frequencies, but preserves the estimation methods of the Welch
algorithm. As standard choice in spectral analysis, we use 50%-overlapping stretches,
which does not introduce a significant correlation between adjacent periodograms but

1We use square brackets to highlight the discreteness of the time series.
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allows to increase the number of available periodograms, reducing the variance of the
(C)PSD estimation. All in all, if M periodograms are available, the (C)PSD estimator
at frequency f = k/NT is

Ŝij(f = k/NT ) = 2
M

M∑
m

Xi,(m)[k] X∗
j,(m)[k] (3.5)

It is clear that the spacing between adjacent frequencies – i.e. the frequency resolution
and the lowest achieved frequency – is set by 1/NT , since the stretch length is fixed to
N samples. Hence, the lowest frequency is set by the total stretch duration NT = ∆T .
A severe limitation of the Welch method is that it is heavily dependent on the choice
of the stretch length: on the one hand, increasing N allows to go down in the lowest
achieved frequency and improve resolution; on the other hand, increasing N worsens
the precision of the CPSD estimator, increasing its variance. A tradeoff is then
required in the choice of N , as lowering the lowest frequency increases the error on
the higher frequencies. Additionally, as noted in [51], adjacent frequencies show a
certain level of correlation, because of the finite length of the data stretches. The
lowest frequency that must be taken depends on the choice of the spectral window,
varying between the second and the fifth one, for the common window choices. This
allows to avoid spurious leakage of the DC (f = 0) term into the CPSD estimation.

We propose an alternative approach, proposing to shorten the stretch length for
higher frequency analysis, to overcome the limitations imposed by the fixed choice of
the stretch length in the Welch method.

Tapering windows, spectral leakage

As previously stated, the implementation of spectral tapering windows is essential
to avoid leakage between adjacent frequency bins. Without windowing with an
appropriately chosen function, the resulting periodograms would be affected by their
finite length and abrupt truncation, having the same effect as a signal going abruptly
to zero, which is not the reality.
It can be proved that, in case there is no aliasing from high frequencies (i.e., the
sampling time is high enough that the cross-spectrum above the Nyquist frequency is
negligible), the expectation value of the (C)PSD estimator Ŝ

(N)
ij would converge to

〈
Ŝij

〉(N)
(f = k/NT ) =

∫ +∞

−∞
Sij(f)

∣∣W (k/NT − f)
∣∣2 df, (3.6)

that is the convolution between the theoretical one-sided (C)PSD Sij and the Fourier
transform of the spectral window W (f). Hence the latter must be chosen so that it is
as close as possible to a Dirac-δ distribution, to make the estimator converge to Sij .

We do not go deeper into the discussion on the tapering windows, as it would be
much wider, and already well-known. We implement the 4-term Blackman-Harris
window [54], which allows for high side-lobe suppression (−92 dB with respect to the
main lobe) and minimal overlap correlation (3.8% for 50% overlapping segments). In
Sec. 3.5, we also analyze the degree of correlation between nearby frequencies.
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3.2 Periodogram statistics and probability distributions

Let’s now discuss, at a single frequency f and hence at a single spectral index k = fNT ,
the properties of the probability distribution ruling the statistics of the experimental
CPSD matrix, and the related quantities. In this Section, for clarity, we drop the
explicit index k. Here we introduce the complex Wishart distribution, which is the
key distribution in our spectral analysis.

3.2.1 The Complex Wishart distribution

Let’s consider that the array X, built with the modified DFTs according to Eq. (3.3),
is a sample from a complex p-variate Gaussian random variable. This holds because the
considered time series are Gaussian stochastic processes. A complex p-variate Gaussian
random variable is simply a p-tuple complex variable, whose real and imaginary parts
constitute a 2p-variate Gaussian distribution. If the complex covariance is given by Σ,
then the probability distribution of X is given by

p(X|Σ) = 1
πp|Σ|

exp
(
−XHΣ−1X

)
, (3.7)

where (·)H represents the conjugate transpose. The conditional dependence is explicitly
written for clarity. It is clear that a set of M DFTs (over M independent stretches)
would follow a joint probability given by the product of distributions like Eq. (3.7).
From this, it is possible to derive a distribution for the CPSD matrix, as the one that
we are about to describe.

Let’s define another matrix, W , as the sum of the CPSD matrices computed on
M independent data stretches. In terms of X, its elements would be defined by

Wij =
M∑

m=1
Xi,(m)X

∗
j,(m) (3.8)

Goodman [55] showed that it is possible to derive the joint probability distribution
of the elements of the matrix W , that is known as the Complex Wishart distribution,
as it extends the definition of the real Wishart distribution. The complex Wishart dis-
tribution rules the distribution of the matrix W , built averaging over M periodograms
of p time series.

p(W |Σ, M) = |W |M−p

Γ̃p(M)|Σ|M
etr
[
−Σ−1W

]
, M ≥ p, (3.9)

where | · | represents the determinant, etr the exponential trace etr(·) = exp(tr(·)),
and Γ̃p(M) is the multivariate complex Gamma function, defined by

Γ̃p(M) = π
1
2 p(p−1)

p∏
i=1

Γ (M − i + 1) .

We indicate that W follows the complex Wishart distribution as W ∼ CW(Σ, M). In
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the following, we elaborate on the complex Wishart distribution, which is at the basis
of the PSD and MSC estimates, as well as the decorrelation method. In Appendix B.1,
we also provide an algorithm to draw random samples of complex-Wishart-distributed
matrices, which can be applied in noise simulations.

Note on applicability and degeneracy

The complex Wishart distribution, Eq. (3.9), is defined on the domain of the positive-
definite matrices W , with full rank p. This means that it is valid only if the number
of averaged periodograms is greater than or equal to the number of time series, M ≥ p.
Otherwise, the rank of the matrix W would be M , and the condition of positive
definiteness would decay, making |W | = 0. Indeed, W would be positive semidefinite,
with p − M null eigenvalues. In the degenerate case, the complex Wishart distribution
would reduce to the singular complex Wishart distribution [56], in the following
equation.

p(W |Σ, M) = πM(M−p)|Λ|M−p

Γ̃p(M)|Σ|M
etr
[
−Σ−1W

]
, M < p, (3.10)

which is valid on the domain of the p × p positive semidefinite Hermitian matrices of
rank M . Here, Λ is the matrix of the non-zero eigenvalues of W . We will employ this
distribution in a particular case later on, for time series decorrelation.

3.2.2 Sample PSD distribution

It is straightforward to note that, in the one-dimensional case, the CPSD matrix
reduces to the PSD of the considered time series. Then, the Wishart distribution
can then be used to derive the PSD distribution of a single time series. We note
that, generally speaking, the diagonal elements of the W matrix should individually
follow the same statistics as the one-dimensional PSD. This is justified by the obvious
observation that measurements can not affect each other, and the measurement of
the entire set of p time series can not affect the single i-th time series. The statistics
governing the PSD is already known in literature, as for example it has already been
described in [51]: if the theoretical PSD is S, and Π the sample2 PSD averaged over
the M periodograms, then Eq. (3.9) reduces to the classical well-known result

p
(
Π
∣∣S) = MM ΠM−1

Γ(M)SM
e−MΠ/S ∼ Γ(M, M/S), (3.11)

where Γ(·, ·) is the Gamma distribution, and its entries are the shape and scale
parameters. This result can also be restated using the chi-square distribution: the
random variable y = 2MΠ/S is indeed distributed as a chi-square with 2M degrees
of freedom. The distribution in Eq. (3.11) is not biased, i.e. its mean value is the
theoretical PSD S, and its variance obviously reduces by increasing the number of
averaged periodograms, being proportional to 1/M . In Fig. 3.1(left), we show some

2We refer to the sample or experimental PSD, to make a clear distinction to the theoretical PSD,
that will be analyzed later.
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sample PSD distributions, with the same theoretical PSD S = 1, but a varying
number of periodograms. In Fig. 3.1(right), we represent the sample PSD distribution
with M = 10, compared to samples generated from a random Wishart distribution,
generated as described in Appendix B.1. We note that the distributions agree,
according to a Kolmogorov-Smirnov test.

Figure 3.1: (left) Samples of the sample (experimental) PSD distributions, with theoretical
PSD S = 1, with varying number of periodograms. We highlight that the distribution
converges to the normal distribution for high numbers of averaging periodograms. (right)
Sample PSD distribution with M = 10, compared to samples generated from a random Wishart
distribution, generated as described in Appendix B.1. The distributions agree, according to a
Kolmogorov-Smirnov test.

3.2.3 Sample cross-coherence distribution

Similar reasoning applies to the distribution of the sample MSCs, |ρ̂ij |2. It can be
proved that the probability distribution of this quantity has an analytical expression
[55], which depends on the theoretical MSC |ρ|2 and the number of averaged cross-
periodograms, but does not depend on the PSDs. As reported in [57], the sample
multiple coherence and the sample conditional coherence coincide in the bi-dimensional
case, and even coincide with the magnitude-squared sample cross-coherence, |ρ̂|2. The
probability distribution reads

p(|ρ̂|2
∣∣|ρ|2) = (M − 1)(1 − |ρ̂|2)M−2(1 − |ρ|2)M × 2F1(M, M, 1, |ρ̂|2 |ρ|2) (3.12)

where 2F1 represents the Gauss’ hypergeometric function. As per the PSD case, in
Fig. 3.2 we show the sample MSC distribution, and a comparison to samples generated
from a random Wishart distribution, generated as described in Appendix B.1, with
theoretical MSC |ρ|2 = 0.8, and number of cross-periodograms M = 10.

3.2.4 Multiple coherence distribution

The case of the multiple coherence is similar to that of the MSC. It can be proved
[55] that the sample multiple coherence R̂2, defined as in Eq. (3.2), is described by
an analytical distribution depending only on the theoretical R2 and the number of
averaged periodograms. If W is distributed as CW(Σ, M), then the distribution of
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Figure 3.2: (left) Samples of the sample (experimental) MSC distributions, with theoretical
MSC ρ2 = 0.8, and varying number of periodograms. (right) Sample MSC distribution with
M = 10, compared to samples generated from a random Wishart distribution, generated as
described in Appendix B.1.

the sample multiple coherence R̂2 is

p(R̂2∣∣R2) = Γ(M)
Γ(p − 1)Γ(M − p + 1) (R̂2)p−2(1 − R̂2)M−p×

× (1 − R2)M
2F1(M, M, p − 1, R̂2 R2)

(3.13)

Where R2 is the theoretical multiple coherence, computed applying Eq. (3.2) to
the matrix Σ. We note that, in the 2-D case, the multiple coherence and the MSC
coincide.

3.2.5 Schur complement and time series decorrelation

An interesting result comes from the block decomposition of the sample CPSD matrix.
Let’s assume that W is distributed as CW(Σ, M), and let’s decompose it into four
blocks as follows:

W =
(

A B

BH C

)
(3.14)

where A is a q × q matrix, C is r × r and B is q × r. A known definition is the Schur
complement of the block C in W , and it is denoted as

W /C = A − BC−1BH (3.15)

The interesting point is that, in case A is the PSD of a single time series – in the LPF
case, the differential acceleration –, then the Schur complement of C in W coincides
with the PSD of the residual noise after the decorrelation of the r time series in C.
This is the starting point of the single-frequency decorrelation method, which we
discuss in more detail in Sec. 3.4.

If W is distributed as CW(Σ, M), it can be proved that the Schur complement
W /C is also complex-Wishart distributed, as CW(Σ/E, M − r), where E is the
lower-right r × r block in Σ, analogous to C. References [58, 59] provide proof of
this in the real case, i.e. when W is real-Wishart distributed. However, we checked
numerically that the same result holds in the complex case too. We checked this with
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various values for M and r.
We highlight that, in case A is one-dimensional, then its complex Wishart distribution
reduces to a 1-D Gamma distribution. Additionally, in that case, the Schur complement
Σ/E corresponds to 1/(Σ−1)11. Finally,

CW (Σ/S, M − r)1-D = Γ
(
M − r, M (Σ−1)11

)
(3.16)

We note that this decorrelation holds only in case M > r, because of the definition of
Gamma distribution.

3.3 Bayesian inference of spectral parameters

In the previous section, we discussed the distributions ruling the experimental outcome
of Gaussian stochastic processes. Given a random noisy process governed by a PSD
S, or more generically by a CPSD matrix Σ, those distributions allow estimating the
probability of certain experimental outcomes. In the real experimental case, though,
one is usually interested in the inverse process, that is, understanding the underlying
theoretical parameters on the basis of the observed experimental outcome. Hence,
what one would really be interested in looking for is the probability distribution of the
theoretical parameters, given a set of experimental values. The inversion of point of
view requires changing the approach, and shifting to a Bayesian analysis. This change
of perspective allows us to define distributions of the theoretical spectral parameters,
based on observations, and finally to infer their uncertainties.

In the Bayesian language, this means that our purpose is to estimate the theoretical
parameters θ, conditional to the measured experimental samples x. It follows from
Bayes’ theorem that

p(θ|x) = p(x|θ) p(θ)
p(x) , (3.17)

here, p(θ|x) is known as the posterior probability for θ, and p(x|θ) is the distribution
of the experimental measurements, conditional to the underlying unknown parameters
θ. The term p(x) is just a normalization factor.

What requires a deeper analysis is the term p(θ), which is the so-called prior
distribution, any a priori assumptions on the unknown parameters p(θ), that we deal
with in the following paragraphs.

3.3.1 Choice of Bayesian prior

The choice of the prior is a delicate and well-known issue in Bayesian analysis. It
needs to be carefully addressed, as it can heavily affect the result of the posterior
probability distribution.

Some prior choices are rather obvious:

1. In case the parameters θ are subject to some constraints for physical reasons,
which are not taken into account by the experimental observation p(x|θ). In-
cluding such constraints is essential to ensure a realistic result.
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2. In case there is some additional experimental evidence on the probability distri-
bution of the parameters. The unknown parameters could indeed be physical
properties of the experimental system, and as such they could have been analyzed
by different experiments. This is roughly the case in the LPF analysis: some
parameters, as for example the stiffnesses correlating the TM positioning to their
acceleration, do have prior knowledge from system identification experiments.
In that case, the prior distribution would be so narrow that it would behave as
a constraint for the parameters θ.

3. The most probable case is that in which one does not have any prior assumption
on the unknown parameters, and they want to be as agnostic as possible. This is
the case in which one needs the class of the non-informative priors. It has been
thoroughly addressed and it’s currently an active field of research. One could
naively assume that choosing a flat prior (i.e., neglecting p(θ) in Eq. (3.17))
could be a good non-informative choice. It indeed is, in a large family of cases,
but it’s not always the best choice, since a simple reparametrization of the
system would lead to a completely different prior assumption. Jeffrey addressed
this issue by proposing the well-known Jeffrey’s non-informative prior [60], which
is invariant under a change of coordinates.
In case a parameter θ is a scale parameter – which is indeed the case of the
PSD distribution –, Jeffrey’s non-informative prior is 1/θ, which corresponds to
choosing a flat prior on log θ.

Matrix formulation: posterior distribution

A possible straightforward approach would be to find directly a posterior for the
whole Σ matrix, which would obviously depend only on the measured W , as p(Σ|W ).
This approach would yield some advantages: it would allow to have the whole joint
posterior distribution of all the matrix elements; this would consequently allow to
deduce the marginal posterior distribution for all the spectral quantities of interest,
either analytically or numerically.

However, the calculation of such a posterior would require the choice of a suitable
prior, which would be a prior on the whole matrix Σ. This makes the computation a
little more complicated, and the results have some limitations that we now analyze:

1. Defining the inverse-matrix Q = Σ−1, it can be noted that it is on its turn
distributed as a complex Wishart random variable, with M +p degrees of freedom:
Q ∼ CW(W −1, M + p). In case of a flat prior on the inverse CPSD matrix Q,
that is p(Σ) ∝ 1, the distribution p(W |Σ) would then be a complete posterior
for Σ, that is p(Σ|W ) = p(W |Σ). Therefore, samples of the inverse-posterior
matrix Q could be drawn using the same random generator as described in
Appendix B.1, and samples of Σ could be found by just inverting the matrix.
We note, following [61], that this case would yield no bias on the posterior for
Σ, as the expected value would be ⟨Σ⟩ = W .

2. As discussed, a sounder approach would be that of Jeffrey’s non-informative
prior. In our case, Jeffrey’s prior for Q can be computed and is proportional to
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|Q|−p [62]. Implementing this choice, the probability distribution of Q would
result Q ∼ CW(W −1, M). Even though this approach is better for being
non-informative, the posterior of Σ is not unbiased: ⟨Σ⟩ = M

M−pW .

It is clear that this represents a limitation of this prior choice: the resulting
marginal posteriors of the PSDs show a dependence on the dimension p of the
CPSD matrix. This can be seen as a dependence of the individual PSDs on
the number of measurements performed, which is unphysical. We have checked
this behavior numerically, checking the distributions of the diagonal elements of
randomly-extracted Σ matrices.

We note, though, that the discrepancy is significant only if the number of
periodograms is very low.

In the following, we propose posteriors for the theoretical PSDs and MSCs, which
are only based on the experimental value of the corresponding variable.

3.3.2 PSD posterior inference

A relevant case is undoubtedly the one-dimensional one. This case corresponds to the
measurement of a single time series. The CPSD matrix Σ reduces to S, the theoretical
PSD of the time series. Let’s assume that M independent periodograms have been
measured, and that an experimental PSD Π has been found.

We apply Bayes’ theorem, to find the conditional probability of the theoretical S,
based on the measurement Π. We choose Jeffrey’s prior. As already said, as S is a
scale parameter, this means a uniform prior in log S, i.e., p(S) ∝ 1/S.

Given these facts, finally, the posterior distribution of S follows an inverse-gamma
distribution with M degrees of freedom:

p
(
S
∣∣Π) ∼ invΓ (M, MΠ) (3.18)

We note that the mean value of the invΓ (M, MΠ) distribution has a slight bias
relative to the observed value: ⟨S⟩ = Π M

M−1 , which vanishes when using a large number
of averaging windows. It is interesting to note that this distribution is well-defined
also if M = 1, thanks to Jeffrey’s prior: however, in that case it is not possible to
define the mean value.

Based on this posterior distribution, we compute the equally-tailed pv-credible
interval from the (1 ± pv)/2 quantiles of the distribution. Finally, we can give an
estimate of the errors on S, at a given confidence level pv:

S± = MΠ
Γ−1

u (M, (1 ± pv)/2)
(3.19)

here, Γ−1
u is the inverse upper incomplete Gamma function. Usually, pv corresponds to

68.3%, 95.5%, 99.7%, respectively corresponding to the 1σ, 2σ, 3σ confidence intervals
of the normal distribution. In Fig. 3.3, we provide an example of posterior PSD
distribution, with the associated mean value and confidence intervals.
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Figure 3.3: Example of posterior PSD distributions of the theoretical PSD S, given an
experimental PSD Π = 1, and a number of periodograms M = 10. We highlight the 1σ, 2σ,
3σ confidence intervals, and show that the distribution is slightly biased, as described in text.

3.3.3 Cross-coherence and multiple coherence, posterior inference

Along the same line, we use Eq. (3.12) to derive a posterior distribution for the theo-
retical MSC |ρij |2, and the multiple coherence R2. We employ flat prior distributions,
not to add any additional constraints. For the theoretical MSC, Eq. (3.12) yields:

p(|ρ|2
∣∣|ρ̂|2) = (M + 1)(1 − |ρ|2)M

× 2F1(M, M, 1, |ρ̂|2 |ρ|2)
2F1(M, M, 2 + M, |ρ̂|2) (3.20)

Similarly, for R2, Eq. (3.13) yields:

p(R2∣∣R̂2) = (M + 1) 2F1(M, M, p − 1, R̂2R2)

×(1 − R2)M/
pFq

(
(1, M, M)

(M + 2, p − 1); R̂2
)

(3.21)

where pFq is the generalized hypergeometric function.
In Table 3.1, we provide a summary of the probability distribution analyzed in this

section: the sample (experimental) PSD and MSC, conditional to the theoretical values;
the theoretical PSD, MSC, and multiple coherence, conditional to the experimental
measurement.

52



3.4. Time series decorrelation: modelization and single-frequency case Chapter 3

Table 3.1: Summary of the probability distributions of the sample PSD and MSC, and
theoretical PSD, MSC and multiple coherence. For the sake of clarity, the latter are not
normalized.

Sample PSD, Eq. (3.11) p
(
Π
∣∣S) ∼ Γ (α = M, β = M/S)

Sample MSC, Eq. (3.12) p(|ρ̂|2
∣∣|ρ|2) ∝ (1 − |ρ̂|2)M−2

2F1(M, M, 1, |ρ̂|2 |ρ|2)

Th. PSD, Eq. (3.18) p
(
S
∣∣Π) ∼ invΓ (α = M, β = MΠ)

Th. MSC, Eq. (3.20) p(|ρ|2
∣∣|ρ̂|2) ∝ (1 − |ρ|2)M

2F1(M, M, 1, |ρ̂|2 |ρ|2)

Th. Mult. coherence, Eq. (3.21) p(R2∣∣R̂2) ∝ (1 − R2)M
2F1(M, M, p − 1, R̂2R2)

3.4 Time series decorrelation: modelization and single-
frequency case

The findings of Sec. 3.3 are also at the basis of our decorrelation procedure, whose
ultimate purpose is to analyze and subtract the contribution of a time series to the
noise of another one. In the LPF case, this tool is extremely useful for the estimation
of the contribution to the acceleration noise (Chapter 6). The procedure needs all
the time series (the main one and the ones to be subtracted) to be simultaneously
measured, and to be synchronously sampled. We employ the following scheme:

1. We first analyze the single-frequency case, at a given window length, and a fixed
number of independent periodograms. We find that this case is strictly related
to the quantities analyzed in Sec. 3.3, and that it is possible to give the results
in analytical form.

2. We analyze the correlation between adjacent frequencies, and employ a scheme
that allows us to minimize it.

3. After finding quasi-independent frequencies, we extend the method to the multi-
frequency case, allowing signal decorrelation in chosen frequency bands. We
employ numerical methods to analyze the modeled probability distribution.

4. In Chapter 6, we describe how we applied this procedure for LPF analyses [5].
This procedure has also been implemented for the analyses of the LPF actuation
noise [23].

This procedure extends the findings of [51], relying on the same modelization.

3.4.1 Model definition

Let’s use the LPF nomenclature, though this method is fully general. Let’s assume
that the main measurement ∆g(t) is contributed by a number of time series zi(t),
i = 1, . . . , r, and by an independent term ∆g0(t), which we call the residual noise. The
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contributing signals zi(t) couple linearly to ∆g(t) through the coupling coefficients
αi. We refer to these coefficients as the susceptibilities, and assume that they are
real-valued and time-independent. In the general case, the signals zi(t) could also be
cross-correlating with one another, could be phase-shifted, and could be affected by
some additional independent readout noise.

All in all, the model reads:∆g(t) = ∆g0(t) +∑r
i=1 αizi(t)

yi(t) = zi(t) + ni(t)
(3.22)

where we have introduced ni(t), the readout noise affecting the i-th signal time series
yi(t), and zi(t), the “true” signal. The coupling coefficients αi are generally considered
time-independent, at least on a single LPF noise run. Experimentally, only ∆g and
yi are measured. The purpose of the decorrelation procedure is to analyze to which
extent the yi contribute to ∆g, and to infer the (complex) susceptibilities αi.
The model in Eq. (3.22) is easily readable, however not complete. In the general case,
the susceptibilities αi could depend on time, including a delay between the time series
zi(t) and its effect on ∆g(t), behaving as a linear filter. A clear example is that of
thermal effects, which are characterized by a slow time scale: as temperature varies,
the effect of its variation is detected a lot of time later, delayed with respect to the
variation itself. The general model reads∆g(t) = ∆g0(t) +∑r

i=1
∫+∞

−∞ αi(t − t′)zi(t) dt′

yi(t) = zi(t) + ni(t)
(3.23)

As we will perform analyses in the frequency domain, we will generally deal with
the (complex) Fourier transform of the αs. Thanks to the properties of the Fourier
transform, the convolution in the first line in Eq. (3.23) can be rewritten as a simple
product in the frequency domain. One can see that, treating ∆g(t) and ni(t), zi(t) as
stationary-noise time series, the PSDs of terms in Eq. (3.23) readS∆g∆g(ω) = S∆g0(ω) +∑

i,j αi(ω)Szizj (ω)α∗
j (ω)

Syiyi(ω) = Snini(ω) + Szizi(ω)
(3.24)

Calculations leading to the results in Eq. (3.24) are postponed to App. B.2.1. In case
α is time-independent, the dependence of αi on the frequency ω drops in Eq. (3.22),
so that the model readsS∆g∆g(ω) = S∆g0(ω) +∑

i,j αiSzizj (ω)αj

Syiyi(ω) = Snini(ω) + Szizi(ω)
(3.25)

However, this result can be more easily manipulated in matrix form, casting ∆g and yi

as a CPSD matrix, which we will manipulate with the results of the previous sections.
Let’s take the frequency f as reference, and assume that M overlapping peri-

odograms are available. We consider as array of measurements {∆g, y}. The sample
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CPSD, Π, is therefore the (r + 1) × (r + 1) matrix following the complex Wishart
distribution W = MΠ ∼ CW(Σ, M). For clarity, we decompose Σ and Π into blocks,
as in Eq. (3.26). We denote with P, Π the sample values, and with S, Σ the theoretical
values.

(3.26)

Observation on readout noise. Before proceeding, we make an observation about
the inclusion of readout noise ni in the model in Eq. (3.25). We note that including
the readout noise would lead to an overparametrization of the model.
Let’s focus on the matrix form as in Eq. (3.26), in the simple case with only one signal
y. the free parameters in the model are: S∆g0(f), Sz(f), Sn(f), α. Summing up,
assuming a total number of frequencies Nf , the total number of parameters is 1 + 3Nf .
At the same time, the number of free elements (data) in the Hermitian matrix is 3Nf .
This means that the model is overparameterized, as the number of parameters exceeds
the available data. In case the matrix dimension is higher, the issue is not overcome.

Therefore, we proceed as follows:

1. First, we analyze the case in which the readout noise is negligible in the analyzed
frequency band. In that case, we assume that the susceptibilities are not known,
and have to be recovered with the decorrelation method.

2. Later, we analyze which is the effect of non-negligible readout noise on con-
tribution estimation. In other words, we analyze to what extent the resulting
distributions are biased by the presence of unmodeled noise affecting the signals
zi(t), and how that problem can be addressed.

3.4.2 Single frequency time series decorrelation

We proceed considering that the readout noise is negligible: yi(t) ∼ zi(t). Given the
model in Eq. (3.22), (3.23) and the results thereafter, we also show the connection
between the spectral quantities defined in Sec. 3.2 and quantities of interest for signal
decorrelation. Mathematical details and derivations of the following results are in
App. B.2.2.

1. The upper-right line vector, representing the cross-correlations between ∆g and
the signals y, can be expressed as

S∆gy = α · Syy, (3.27)

where α is the vector of the complex susceptibilities. Their magnitudes are the
magnitudes of the real susceptibilities in Eq. (3.22).

2. In case time series are correlated with a time delay τi, such information is
gathered by the phase-shift of the susceptibilities, ϕi, through ϕi = 2πfτi.
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Assume that the effect on ∆g(t) of the time series y(t) is delayed by a time τ ,
i.e., ∆g(t) = α y(t − τ), with α a real number. According to the CPSD definition
and estimation in Eq. (3.5), and the definition of DFT transform in Eq. 3.3, it
is clear that the CPSD between ∆g(t) and y(t) is

S∆g y(f) = αe2iπfτ Syy, (3.28)

meaning that the complex susceptibility carries a phase shift ϕ = 2πfτ , related
to the time delay.

3. The susceptibilities can easily be linked to the inverse matrix Q = Σ−1. It can
indeed be proved (see App. B.2.2) that

αj = −Q1,j+1
Q11

(3.29)

4. The total contribution to noise by the yi, and the residual noise, can also be
expanded:

Scontr = α · Syy · αH = S∆gy · S−1
yy · SH

∆gy (3.30)

Sres = S∆g∆g − Scontr = 1
Q11

(3.31)

5. The residual noise coincides with the Schur complement of the matrix Syy in Σ.

6. The power contribution fraction of the signals yi to ∆g, Scontr/S∆g∆g, coincides
with the multiple coherence R2.

3.4.3 Estimation of the residual noise: single-frequency case

It is now clear how the CPSD matrix formulation can be used for signal decorrelation,
as the sample residual noise coincides with the Schur complement of the sample signal
matrix Pyy in the overall CPSD matrix Π,

Pres = Π/Pyy = P∆g∆g − P∆gy · P −1
yy · P H

∆gy (3.32)

In Sec. 3.2.5, we also noted that the sample residual noise is distributed as a complex
Wishart distribution. Indeed, since MΠ is complex Wishart distributed, and MPyy

is a r × r matrix, then the sample residual noise is distributed as a complex Wishart,
with M − r degrees of freedom:

Pres ∼ CW (Σ/Syy, M − r) , (3.33)

where Σ/Syy is the Schur complement of Syy in Σ, i.e., the underlying theoretical
residual noise.

We note that this result reduces, in one dimension (Eq. (3.11)), to the Gamma
distribution Pres ∼ Γ

(
M − r, (Σ/MSyy)−1).
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The corresponding posterior distribution of the theoretical residual noise, under
the assumption of a noninformative prior 1/Sres, is therefore

Sres ∼ invΓ (M − r, M Π/Pyy) (3.34)

We note that the noise decorrelation can be performed only in case the number of
periodograms is greater than the total number of decorrelated signals, i.e., M > r.

We do not find an explicit analytical expression for the probability distribution
of the real/imaginary parts of the susceptibility. However, we refer the reader to
Sec. 3.6.3 for numerical tests: the single-frequency case can be tested numerically with
the tools proposed for the multi-frequency case. In Fig. 3.6 on page 69, we show a
comparison along this line, between the single-frequency analytical model in Eq. (3.34)
and the multi-frequency numerical model with one frequency only.

3.5 Choice of spectral frequencies

It is widely known that the commonly used Welch method for the estimation of
(cross-)PSDs has limitations in its application. What is usually noted is that the
choice of the periodogram length is arbitrary and non-optimized: estimates at high
frequencies are computed with fewer periodograms than available, leading to non-
optimized variance [51, 63]. Moreover, the same references note that spectra are usually
analyzed in a logarithmically-spaced fashion, whilst the Welch method provides linearly-
spaced points. Increasing the number of averaged periodograms at high frequencies
is paramount to reducing the variance in the estimates, as it is indeed done in [51,
63].Here, we face another issue: in the next section, we face the need to combine
single-frequency probability distributions, in order to obtain multi-frequency joint
distributions. Hence, we need them to be as independent as possible. We follow
the frequency choice also used in [2, 3]: the scheme allows to find quasi-independent
frequencies, logarithmically spaced. The spacing between the frequencies is such that
fi+1/fi is roughly 5/3, from the second bin onwards, choosing for each periodogram
the 9th spectral index.

Table 3.2: List of frequencies used for LPF spectral estimation, in the band 18 µHz–1 Hz. The
lowest frequency is chosen so that the 4th frequency is exactly 0.1 mHz, the lower boundary of
the LISA band.
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Figure 3.4: Overlap of spectral windows (4-term Blackman-Harris −92 dB, scaled to the same
height) evaluated at logarithmically-spaced frequencies, following the optimized scheme in
text. We note that the first frequency bin (18 µHz in the LPF case) is wider than the following
ones, ad thus contains a larger pickup from lower frequencies.

With this choice, the correlation among adjacent (C)PSDs is below 5%. The first
frequency bin is chosen differently, using the same periodogram set as for the second
bin, picking the 5th spectral index instead of the 9th. This tradeoff allows to analyze
frequencies down to 18 µHz, while keeping the correlation to the DC term at about
3%. In Fig. 3.4, we show the overlap among the frequency windows used for LPF
analysis, up to 5 mHz. As discussed, we note that the first bin is wider because of its
definition.

In Table 3.2, we list the frequency employed for the LPF analyses, in the band
18 µHz–1 Hz. The lowest frequency is chosen so that one of the frequencies is exactly
0.1 mHz. Referring to the noise run Feb17B, the number of periodograms used in
calculations spans from 9 at 18 µHz to 287903 at 0.985 Hz.

3.6 Multi-frequency time series decorrelation

In the LPF case, the susceptibilities in the model Eq. (3.22) are constant, fixed in
time. Hence, their Fourier transforms do not depend on frequency. The modelization
proposed in Sec. 3.4 can then be extended to a set of frequencies, developing a model
which is valid on a wide frequency band.

Here we propose a multi-frequency method, that allows to decorrelate a set of
signals from a main time series, on a selected set of frequencies. As in the single-
frequency case, we assume that the readout noise ni(t) is negligible on the frequency
band under analysis, and hence yi(t) ∼ zi(t).

Let’s start with the distribution of the CPSD matrices at each frequency. If
frequencies are chosen to ensure minimal correlation, as described in Sec. 3.5, it is
straightforward to see that the joint distribution of the (sample) CPSD set is simply
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given by multiplication of the individual complex Wishart distributions3,

p({W }|{Σ}) =
∏
f

(
|Wf |Mf −p

Γ̃p(Mf )|Σf |Mf
etr
[
−Σ−1

f Wf

])
. (3.35)

Here, the subscript f explicates the dependence on frequency. Moreover, we note that
one can re-write Σ as

(3.36)

With this modelization, one may proceed applying Bayes’ theorem to find the pos-
terior distribution of the theoretical parameters. However, the application is not as
straightforward as it is in the single-frequency case, and more discussion is needed.

Tentative direct – inaccurate – approach

One could be tempted to approach this problem naively, expressing Σ with the
unknown parameters and, later, employing numerical methods to find the marginal
posteriors. For instance, one could re-write Σ as in Eq. (3.36), and look for a Bayesian
posterior as

p(α, Syy(f), S∆g0(f) | W ) = p(W | Σ)
p(W ) p(α, Syy(f), S∆g0(f)) (3.37)

We identify a major issue in this approach that prevents its use as is, requiring further
analysis.

The issue that we identify regards the properties of the Σ matrix itself. As stated
in Sec. 3.2, the theoretical CPSD matrix Σ is positive-definite. However, as it is
defined in Eq. (3.36), this property is not mathematically ensured. Approaching the
problem with numerical methods, the theoretical parameters α, Syy(f), S∆g0(f) could
assume values that make Σ not positive definite, yielding a negative determinant, and
making the computation crash.

One could include this constraint as a hard cut in the prior distribution. However,
the probability of randomly generating a positive-definite matrix decreases as the
matrix dimension increases, making it even harder and harder for random samples
to be in the correct domain. Sampling high-dimensional matrices would then require
a lot of computational time, most of which wasted in looking for positive-definite
samples.

Changing coordinates to ensure that Σ is positive-definite would be even harder,
requiring non-linear changes of variables, hard to handle.

3Provided that Mf ≥ p for all frequencies f , otherwise some of the terms would be degenerate.
We will address this issue later.
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3.6.1 Estimate of susceptibilities and residuals

In order to overcome the identified issue, we elaborate on the properties of the CPSD
matrices, and the complex Wishart distributions. We work on the single-frequency
distribution, aiming at expanding to the multi-frequency case. First, let’s assume
that the number of available periodograms M at frequency f is greater than or equal
to the number of time series p, so that the CPSD matrix follows the (non-singular)
complex Wishart matrix.
We re-write the complex Wishart distribution, for simplicity:

p(W |Σ, M) = |W |M−p

Γ̃p(M)|Σ|M
etr
[
−Σ−1W

]
In addition to this, we assume the modelization of the Σ matrix in Eq. (3.36). We
follow some steps that lead us to a manipulation of the probability distribution
function, so that it is more easily used.

1. First, we define the matrix U and the vector η, as follows:

U =
(

1 α

0 I

)
η = (−1, α) (3.38)

Where I is the (p − 1) × (p − 1) identity matrix.
The matrix U represents a linear transformation ∆g0 → ∆g, yi → yy. We note
that the inverse U−1 is very similar to U itself, with α → −α. The definition of
U leads to a first simplification: as ∆g0(t) is independent of y(t), the processes
after the linear transformation can be represented with a block matrix,

Σ′ =
(

S∆g0

Syy

)
, Σ = UΣ′UH (3.39)

Notice that U is real, so it makes no sense to write (·)H instead of (·)T . However,
we still use (·)H since some other quantities are complex.

2. We aim at replacing Σ with Σ′ in the probability distribution. Hence, we first
note that the determinant of U is 1, and that the determinant of Σ can be
simply re-written as

|Σ′| = |U | |Σ|′ |UH | = |Σ|′ = S∆g0 |Syy| (3.40)

3. The exponent can be rewritten as well: let’s note that

etr
[
−Σ−1W

]
= etr

[
−U−HΣ′−1U−1W

]
=

= etr
[
−Σ′−1U−1W U−H

]
= etr

[
−Σ′−1W ′

]
,

(3.41)
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where W ′ = U−1W U−H , which can be further elaborated,

W ′ = U−1W U−H =
(

W ′
11 W ′

1y

W ′H
1y W ′

yy

)
=

=
(

W11 − W1yαH − αW H
1y + αWyyαH W1y − αWyy

W H
1y − WyyαH Wyy

)
=

=
(

ηW ηH . . .

. . . Wyy

) (3.42)

The dots indicate something we are not interested in. In the last step, we note
that W ′

11 can be easily rewritten in terms of η and W , and W ′
yy is just Wyy.

One can also easily calculate the inverse of Σ′, which turns out to be useful as
it multiplies W ′ in the likelihood function.

Σ′−1 =
(

1/S∆g0

S−1
yy

)
(3.43)

4. All in all, the conclusion on the probability density function (still single-frequency)
is

p(W |α, S∆g0 , Σyy) ∝ 1
|Σ′|M

etr
[
−Σ′−1

W ′
]

∝

∝ 1
SM

∆g0

exp
[
−ηW ηH

S∆g0

]
1

|Syy|M
etr
[
−S−1

yy Wyy

] (3.44)

This expression can be easily exported to the multi-frequency case but, before
doing that, we notice an additional point. The matrix Syy is the posterior matrix
of the signals y(t), for which one may impose assumptions. One reasonable
hypothesis is that Syy can be decomposed as a block-diagonal matrix, grouping
subsets of processes that cross-correlate. For instance, assuming that it can be
decomposed into k blocks,

Syy =


Syy,1

. . .
Syy,k

 (3.45)

This allows us to rewrite the exponential term, yielding a final expression that
separates the independent blocks.

1
|Syy|M

etr
[
−S−1

yy Wyy

]
=
∏
k

1
|Syy,k|M

etr
[
−S−1

yy,kWyy,k

]
(3.46)
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We complete the transposition to the multi-frequency case, multiplying the prob-
abilities at frequency f , still under the assumption that the susceptibilities do not
depend on frequency.

p({W }|α, {S∆g0}, {Σyy}) ∝

∝
∏
f

1
S

Mf

∆g0,f

exp
[
−ηWf ηH

S∆g0,f

] ∏
k

1
|Syy,k,f |Mf

etr
[
−S−1

yy,k,f Wyy,k,f

] (3.47)

This expression, finally, can be employed for the application of Bayes’ theorem, to
infer the posterior for the α, {S∆g0}, and {Σyy}:

p(α, {S∆g0}, {Σyy}|{W }) ∝

∝
∏
f

1
S

Mf

∆g0,f

exp
[
−ηWf ηH

S∆g0,f

] ∏
k

1
|Syy,k,f |Mf

etr
[
−S−1

yy,k,f Wyy,k,f

]
×

× prior
(
α, {S∆g0}, {Σyy}

)
(3.48)

Some considerations are necessary to understand the meaning of this expression
better.

1. The posterior can be fully separated into two parts, which are multiplied. The
first one is a full posterior for the residuals {S∆g0} and the susceptibilities α:

p(α,{S∆g0}|{W }) ∝

∝
∏
f

1
S

Mf

∆g0,f

exp
[
−η · Wf · ηH

S∆g0,f

]
× prior

(
α, {S∆g0}

)
(3.49)

This is the likelihood that we directly implement in our posterior estimation
algorithm. As discussed, we employ Jeffrey’s prior on S∆g0 , which is p(S∆g0) ∝
1/S∆g0 . We implement no prior on α, to be completely uninformative and
unbiased. As the distribution is not simple to manipulate analytically, we revert
to numerical sampling methods, as discussed later.
We note that, if only one frequency is analyzed, with a flat prior choice, this
distribution peaks at

S∆g0 → 1/P∆g0 , α → P∆gy · P −1
yy . (3.50)

These results are compatible with what was noted in Eqs. 3.30 and 3.34.

2. The second part in Eq. (3.48) is just the product of independent complex
Wishart distributions, and it can be easily rewritten. In particular, frequencies
f and blocks k completely separate into independent distributions. Employing
Jeffrey’s prior on each matrix, see Sec. 3.3, we end up stating that the posterior
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distributions of the inverse Σyy matrices are complex-Wishart:

Σ−1
yy,k,f ∼ CW

(
W −1

yy,k,f , Mf

)
(3.51)

As such, elements of the matrices can be drawn with the complex Wishart
generator described in Appendix B.1.

3. The first observation allows us to extract samples of the posterior of the residual
noise S∆g0 and the susceptibilities α, as we said, with numerical methods. Using
the second observation, we can also extract samples of the signal CPSD matrices,
with a sample generator. Putting together these two, we are able to extract
samples of the distribution of the single contribution to noise of the considered
time series. Given the possible cross-correlations, separation is only possible for
those time series that are in different blocks in Eq. (3.45).
Assuming to extract N samples of α with numerical methods, we also extract N

samples of the sub-block Σyy,k,f , and we calculate the contribution to noise as

S∆g,contr,k,f = αk · Σyy,k,f · αH
k , (3.52)

where αk is the sub-block of α corresponding to the time series included in the
k-th block.

4. Equation (3.49) is also insightful for the single-frequency case. Marginalizing
the likelihood with respect to α in case of only one frequency, we recover
the distribution of S∆g0 . With Jeffrey’s prior, we prove that S∆g0 follows the
inverse-Gamma distribution

S∆g0 ∼ invΓ (M − r/2, M ReΠ/RePyy) , (3.53)

where Re indicates the real part, and ReΠ/RePyy is the usual Schur complement.
The proof is postponed to App. B.2.3.
This result differs from that in Eq. (3.34), and we notice that the difference
comes from the assumption that the susceptibilities α are real. We check this
expression numerically at the end of this chapter, in the test section.

5. A last observation is necessary about the applicability of these conclusions in
the degenerate case, with M < p, i.e. with a number of periodograms which is
smaller than the number of decorrelated time series. At the beginning of this
section, we noted that this holds true only if Mf ≥ p for all f , but what happens
if Mf < p for some f?
At the beginning of this chapter, we noted that the complex Wishart distribution
can be extended to the singular complex Wishart distribution in the degenerate
case M < p, Eq. (3.10). Such probability density differs shows the same
dependence on Σ as the complex Wishart, so that the derivation remains correct
also for those frequencies for which M < p. Still, it is necessary that at least
one among the CPSD matrices has M ≥ p: indeed, the exponential term needs

63



Chapter 3. Spectral estimation and decorrelation Section 3.6

not to be degenerate. If at least one of the terms is not degenerate, i.e. it has
full rank, then the condition is satisfied4.
There is still one caveat: the Syy block in Eq. (3.44) can easily be degenerate,
hence its inverse would not be complex Wishart and Eq. 3.51 could not be
applied for in case the number of time series in the k-th block, rk, satisfies
Mf > rk. If that is not the case, samples of the contribution of the k-th subset
to S∆g can not be drawn. Still, in that case, the residuals and the susceptibilities
can be estimated.

Numerical MCMC sampling

The probability distribution in Eq. (3.49) can not be easily marginalized, i.e. individual
distributions of the parameters α and Sres,f can not be found analytically. Hence, we
revert to numerical methods to generate a set of samples, distributed according to the
posterior distribution. We draw samples from the marginal posteriors from this set.

The tool that we employ belongs to the family of the Markov Chain Monte
Carlo (MCMC) methods, which are one of the most popular methods for distribution
integration and sampling. Precisely, we implement the parallel tempering MCMC
method, PT-MCMC [64]. PT-MCMC is a multi-layer and multi-core version of the
standard Metropolis-Hastings algorithm, with variance adaptation, based on Python
with MPI adaptation. It performs separate Metropolis-Hastings sampling on different
layers, handled by different parallel cores. Each layer is endowed with variance
adaptation for optimized sampling. Each layer samples from a different distribution,
in such a way that only one layer samples from the actual target distribution, and
the other one serve as support, sampling from slightly broadened versions of it. The
support layers have therefore much freedom in sampling the distribution far from the
high-probability peaks. From time to time, layers exchange samples among themselves,
so that layers closer to the main one can access samples from the broadened ones.

This tool is widely used in GW parameter estimations, for example by the LVK
and PTA collaborations, since it allows for high-dimensional sampling even with short
burn-in time, and allows for efficient sampling even in multi-modal distribution cases.

We use PT-MCMC with single-component variance adaptation, using 14 parallel
layers working on 14 cores, 1 × 105 burn-in samples, and 1 × 106 production samples;
we subsample the production samples to reduce correlation. We note that, in the
worst case, we use 26 parameters5. We note that we always find smooth distributions,
with no bi-modalities and no relevant cross-correlations among parameters. We run
the algorithm on the following set of parameters, in the following conditions:

• The residuals S∆g0,f . To enforce Jeffrey’s prior, we run the MCMC algorithm

4The reason is that W matrices sum within the exponential term are summed, as η ·
(∑

f
Wf

)
·ηH .

This quadratic form is not degenerate if
∑

f
Wf has full rank. It can be proved that, since the Wf

are positive semidefinite, then the rank of
∑

f
Wf is greater than maxf (rank(Wf )). Proof can be

found, for instance, at this link. Hence, the conclusion is that if at least one of the Wf has full rank,
the condition is satisfied.

5The worst case corresponds to 1 Brownian level, 8 frequencies, and 17 susceptibilities, that we
assume to be real.
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on log S∆g0,f , which indeed corresponds to multiplying Eq. (3.49) by the prior
1/S∆g0,f .

• The real susceptibilities αi, independently.

3.6.2 Susceptibility estimation in case of noisy signals

In Eq. (3.50), we noted that the distributions of the susceptibilities and the residuals
peak at the expected theoretical value P∆gy · P −1

yy , and it is unbiased. However, a
question naturally arises in the experimental case: what happens if the signals yi are
affected by a non-negligible readout noise? What happens if we employ this model
but it does not fully apply because signals are corrupted? We address this problem in
the single-frequency case, analytically, proceeding by steps. Later, in Sec. 3.6.3, we
validate it numerically.

We start from the expression of the CPSD matrix Σ, in Eq. (3.26). We check
what happens to the estimates of the susceptibilities α(∗) and the residual PSD S

(∗)
res ,

when the measurement is affected by a non-negligible noise. Superscripts (∗) refer to
the posterior estimates. We do not look at the estimate errors, but rather at the best
estimate values, for simplicity.
We assume that the theoretical CPSD can be expressed as

(3.54)

Employing the no-noise model as in the previous sections, one would estimate the
posterior values as in Eq. (3.50). Here, the presence of Snn induces a bias into the
estimates. Following the mathematical details presented in App. B.2.2, in particular
in Eqs. B.9 and B.10, the posterior estimates of residual PSD and susceptibilities are
the following6:

S(∗)
res = (A − BD−1C) = Sres + αSzzαH − αSzz(Szz + Snn)−1SzzαH

= Sres + α
(
I − (I + S−1

zz Snn)−1
)

SzzαH
(3.55)

α(∗) = BD−1 = α Szz (Szz + Snn)−1 =
= α (I + S−1

zz Snn)−1 (3.56)

where I is the p × p identity matrix.

Residual PSD. The presence of noise in the signal time series affects the effec-
tiveness of decorrelation, as in Eq. (3.55), with the following limits:

if |Snn| → 0 ⇒ S(∗)
res → Sres (3.57)

if |Snn| → +∞ ⇒ S(∗)
res → Sres + αSzzαH = Stot (3.58)

6Letters A, B, C, D refer to the notation in App. B.2.2.
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In the no-noise case, the residual PSD is fully recovered. Otherwise, the estimated
residual increases, reaching the total noise Stot when the noise is dominant. The
latter case is equivalent to no subtraction being performed. What is remarkable is
that decorrelation can not lead to oversubtraction in any case, meaning that the
application of the no-noise model to noisy signals can not lead to overestimation of
the contribution of signal time series to measurements. The estimated residual will be
in any case higher than that in case of negligible noise.

If |Snn| ≪ |Szz|, an additional series expansion can be performed on Eq. (3.55),
resulting in

S(∗)
res ∼ Sres + αS−1

zz SnnSzzαH , (3.59)

which gives a better grasp of the effect of noise on the estimated residuals.

In the 1D case, with only one signal y, the deviation from the correct estimate
can be calculated. Let’s assume that |ρn|2 is the noise power fraction within the
measured signal, |ρn|2 = Snn/(Szz + Snn), and that R2 = Scontr/S∆g = α2Szz/S∆g is
the true contribution of y to ∆g. Then, the deviation of the estimate S

(∗)
res from the

true residual Sres reads

S
(∗)
res − Sres

Sres
= |ρn|2

(
S∆g

Sres
− 1

)
= |ρn|2 R2

1 − R2 . (3.60)

This means that the fractional deviation from the true value depends on both the
noise fraction |ρn|2, and the true contribution R2. This result is depicted in Fig. 3.5,
right panel; results in the left panel are explained later.
In case z and ∆g are non-correlated, i.e. Sres = P∆g, then S

(∗)
res → Sres independently

of the noise level |ρn|2 = 1. If the contribution is nearly negligible, then the estimate
of the residual does not depend on the presence of additional noise.

Figure 3.5: (left) Ratio between the estimated susceptibilities, depending on noise fraction
|ρn|2, the noise power fraction within the measured signal y, 1D case. The quantity α(∗)

represents the posterior estimate of the susceptibility α, in case noise affects the signal time
series.
(right) Ratio between the estimated residuals and the true residuals, depending on noise
fraction |ρn|2 and the true contribution of y to ∆g, R2; color-code on the right.
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Susceptibilities. According to Eq. (3.56), the estimate of susceptibilities is also
affected by the presence of additional noise. We note the following:

1. 1D case. In the 1D case, Eq. (3.56) is easily approachable, as

α(∗) = α(1 + Snn/Szz)−1 = α
Szz

Szz + Snn
, (3.61)

meaning that the estimate with noise appears as shifted, by a relative bias that
reads:

α − α(∗)

α
= Snn

Szz + Snn
= |ρn|2, (3.62)

where |ρn|2 is the noise power fraction within the measured signal. Hence, the
susceptibility estimate α deviates from the no-noise value αT , with a linear
dependence on the noise power fraction, as shown in Fig. 3.5 on the left panel. If
the signal is contributed by a fraction of noise (let’s say 20% of the total power),
then it is fair to expect the susceptibility posterior to be biased, shifted from
the nominal value by 20%.
We highlight the following limits:

if Snn → 0 ⇒ α(∗) → α

if Snn → +∞ ⇒ α(∗) → 0
(3.63)

2. No correlation case. If the signals do not have any correlation among them,
i.e., if the off-diagonal elements of the matrix Szz are zero, elements in Eq. (3.56)
turn out to be independent:

α
(∗)
i = αi (1 + Snini/Szizi)−1, (3.64)

hence the problem reduces to the previous one, in the 1D case.

3. 2D case with correlation. In the most general case, signals z might cross-
correlate one to another, being affected by additional readout noises, which do
not correlate. For simplicity, let’s suppose that Szz is a 2D matrix, built with
the signals v and w, showing a cross-correlation ρ, with additional noises:

Szz =
(

Sv ρ
√

SvSw

ρ∗√
SvSw Sw

)
Snn =

(
Nv 0
0 Nw

)
(3.65)

In this case, the estimate of susceptibilities, as in Eq. (3.56), is a bit harder to
read; we provide the expression for α

(∗)
v , which is

α(∗)
v = αvSv(Nw + Sw(1 − |ρ|2) + αwNvρ∗√

SvSw

(Nv + Sv)(Nw + Sw) − SvSw|ρ|2
(3.66)

An analogous expression holds for α
(∗)
w . We note a few cases:

3.1. Nv → 0.
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If the signal v is not affected by any readout noise, then the estimate of its
susceptibility is unbiased,

α(∗)
v → αv (3.67)

3.2. Nw → 0.
If the signal w is not affected by any readout noise, then its PSD affects
the estimate of the susceptibility of the signal v, as

α(∗)
v → αv

1
1 + Nv

Sv(1−|ρ|2)
+ αw

Nvρ∗√
SvSw

Sw(Nv + Sv(1 − |ρ|2)) (3.68)

3.3. |ρ| → 0.
If the correlation ρ is zero, we find case #2.
However, in this case one can expand in series Eq. (3.66) with respect to
ρ, looking at the case of low-correlation among signals. This yields the
correction given by the correlation, which is:

α(∗)
v → αv

Sv

Sv + Sn
+ αw

Nv

√
SvSw

(Nv + Sv)(Nw + Sw)ρ∗ + O[|ρ|2] (3.69)

3.4. Nw → 0, |ρ| → 1.
In case no noise is present on Nw, but the correlation between v and w

is the highest possible, |ρ| → 1, then the susceptibility on v can be fully
recovered, even if readout noise is affecting the signal v. In formulas,

α(∗)
v → αw

√
Sv/Sw (3.70)

Note that in this case, α
(∗)
w → αw as Nw → 0, hence knowing Sw is enough

to recover both the susceptibilities. However, one would need to know in
advance that |ρ| = 1, as this information is otherwise hidden by noise Nv.

3.6.3 Numerical tests

In order to consolidate the methods presented in this chapter, and in particular the
multi-frequency decorrelation, we perform some numerical tests. The purpose of the
tests is

1. to check the compatibility between the multi-frequency decorrelation method
and the single-frequency one, in case only one frequency is taken into account;

2. to check that, in a controlled environment with synthetic time series and no
additional readout noise, the residual noise and the susceptibilities are accurately
recovered;

3. to check that, with synthetic time series, adding a low percentage of synthetic
readout noise does not prevent using the decorrelation method; this test is also
used to understand how large the signal readout noise should be to spoil the
parameter estimation.
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Test #1: single-frequency case. First, we test the compatibility of the single-
frequency and multi-frequency methods in the case of only one frequency being
analyzed. We simulate two cross-correlating time series, and decorrelate one with
respect to the other. In Fig 3.6, we show the histogram of the residual noise evaluated
with the MCMC model in Eq. (3.49), and its compatibility with the expected analytical
distribution. We check two cases:

• A first case, in which α is complex, and we hypothesize that the posterior
distribution of the residual follows Eq. (3.34). That case is represented on the
left in Fig. 3.6.

• A second case, in which α is real, and we hypothesize that the posterior distri-
bution of the residual follows Eq. (3.53). That case is represented on the right
in Fig. 3.6.

Figure 3.6: Comparison between the MCMC numerical multi-frequency model and the
analytical single-frequency model, with synthetic simulated time series (9 periodograms in
this simulation). The red line is the residual noise, normalized to the nominal value, of the
residual after decorrelation in the single-frequency case, with Jeffrey’s prior. The left and
right panel refer, respectively, to the complex and the real case.

Test #2: multi-frequency case with no readout noise. To test the multi-
frequency method, we simulate synthetic time series, lasting as long as run Feb17B,
with the tools provided by LTPDA [65]. We build the time series as described in
App. B.3. We simulate a main measurement, shaped as the LPF noise, and two signals,
respectively following power-law shapes 1/f and 1/f2. The signals cross-correlate with
one another, and contribute additively to the main series through two susceptibilities.
We simulate two cases:

1. A high-corruption case, meaning that the signals yi contribute up to 75% of
the total measured main signal power. In this case, we aim at recovering the
residual, hidden under the corruption of the two signals. The used signals are
represented in Fig. 3.8, on the left.

2. A low-corruption case, with signals contributing at most to the 5-10% of the
total main signal power. This is the most LPF-resembling case, in which we aim
at recovering the susceptibilities α, even if the signal is low-power.
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We find good results in both cases. In Fig. 3.7, we provide the results of the MCMC
analysis in the first case. We use the posterior in Eq. (3.49), with Jeffrey’s prior on
the residuals. Resembling the LPF case, we only use real susceptibilities, including 9
frequencies from 18 µHz to 1.3 mHz.

Figure 3.7: Numerical test of the decorrelation method, as described in the text. The original
signal is corrupted with additional noises a and b, coupling with susceptibilities α.
(left) The original signal (orange) is corrupted (green) with a and b, as in Fig. 3.8 on the left.
The red points represent the recovered signal after decorrelation.
(right) Recovered susceptibilities α1 and α2. The green lines represent the ‘true’ value. We
note that the distribution peaks at α = Pgy · P −1

yy , as expected.

Figure 3.8: (left) Contributions from the single terms a and b to the total noise S∆g.
(right) Reconstruction of the noise contribution from a and b: original (grey) and estimated
(red). As noted in the text, we underline that this is not a true posterior, but rather a rough
estimate used to distinguish the individual contributions.

Test #3: multi-frequency case with readout noise. In addition to test #2,
we add spurious readout noise to the signals yi, and apply the multi-frequency
decorrelation method. We repeat the tests with increasing levels of noise, built as
described in App. B.3. We note that the model does not include the presence of any
readout noise, hence we do not expect it to be precise with high levels of noise. The
reason for such tests is that in the LPF case, even though we expect the signals to
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be affected by negligible noise at sub-mHz frequencies, we can not exclude a (small)
percentage of noise.

We find that, in case the readout noise of the signals contributes up to 15% of the
total signal power, the residual noise S∆g0 is well-recovered.
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4
Low-frequency band:
performance and noise nature
PSD analysis, time evolution and stability, noise nature

In this chapter, we present a preliminary analysis of the LPF acceleration performances.
We consider a set of 14 long runs, lasting longer than 2.75 days, and analyze the ∆g(t)
time series. We present observations about measurements, noise performance, and the
noise PSD stability during the LPF mission.

From previous examinations, it is known that the sub-mHz ∆g noise may be
effectively split into branches: the high-frequency noise, above mHz frequencies, is
confidently ascribed to interferometer noise. The sub-mHz band may also be divided
into two branches, i.e., a high-frequency white-noise plateau, and a low-frequency
branch scaling as f−2.0±0.2 [2, 3]. First, we separate these two branches. Then, we
provide analyses of the nature of the detected noise, and its properties, such as its
stability, its evolution in time, and its Gaussianity.

The analyses presented here are largely based on what is presented in [2, 3],
providing extended and refined analyses. The results of these analyses will be presented
in [5].

4.1 PSD analysis: Brownian noise and excess

4.1.1 Run selection

We start the analysis by computing the PSDs. We choose a set of 14 noise-only
runs, marked in orange in Table A.1, distributed all over the LPF mission. The first
considered run, Mar16E, is the only one performed with URLA actuation settings, and
it is performed about 40 days after venting to space. Run Apr17A is the only one
performed with DRS DURLA settings, and it is used for comparison between DRS
and LTP runs. The remaining runs were performed with LTP UURLA settings in
stationary experimental conditions, with no applied external stimuli. These 14 runs
last at least 2.75 d (Jul16C), allowing to analyze frequencies down to 18 µHz with
at least 1 periodogram at the lowest frequency. Among the analyzed runs, we often
represent run Feb17B as a reference, as in [2, 3]. Indeed, run Feb17B is one of the
most representative, as it is one of the best performances achieved during the mission1.

1As we will comment later, Feb17B is one of the best performances achieved, under the point of
view of low-frequency noise level, stability, and Brownian noise level.
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For each run, we compute PSDs and ASDs of the ∆g time series, defined in
Eq. (2.6), and corrected for inertial effects, cross-talks, and deglitched. In Figure 4.1,
blue points represent the measured ASD in run Feb17B. PSDs of other runs in the
considered set are shown in Figs. 4.2, 4.3, and 4.4, focusing on the frequency band
[18 µHz–10 mHz].

4.1.2 Brownian plateau identification

In each of these noise runs, it is evident that S∆g is generally characterized by three
branches:

• A high-frequency branch, not interesting to our purposes, showing up above
10 mHz, dominated by the interferometer readout noise [2, 13, 33]. Especially
at the beginning of the mission, this feature is not visible in the figures in this
chapter, as the white-noise plateau is often hiding it.

• A low-frequency (< 0.1 mHz) branch, characterized by a frequency dependence
∝ f−2 as shown in [3].

• A central white-noise plateau, dominating noise at frequencies ∼ mHz, with a
magnitude that decreases in time.

First, we separate the white-noise plateau, confidently ascribed to Brownian noise
(analyzed later, Chapter 5), from the low-frequency excess. Precise statistical inference
is necessary not to estimate the Brownian magnitude, which is rather clear and robust,
but rather the excess noise, which is difficult to identify in presence of the strong
white noise. We estimate the excess over white noise up to f = 2.1 mHz.The estimates
at higher frequencies are unreliable, especially in case of high white noise, and not
needed. We model the system assuming that:

1. At each frequency bin, the PSD S∆g(f) is contributed by the frequency-independent
white noise SB, and the frequency-dependent excess Se(f).

2. The frequency bin with minimum PSD, between 18 µHz and 10 mHz, is only
contributed by the white, Brownian noise SB.

3. The measured noise at each frequency, S∆g(f), follows the complex-Wishart
distribution2, as described in Chapter 3, with a theoretical PSD SB + Se(f).

4. We use Bayesian statistics to estimate SB and Se(f). We assume a flat prior
on the logarithms of the inferred parameters SB and Se(f), following Jeffrey’s
non-informative prior.

In formulas, the model reads

p
(
SB, {Se}|{S∆g}

)
=

∏
i∈[1,10]
i ̸=imin

[
p
(
SB + Se(fi)|S∆g(fi)

)
× pr(Se(fi))

]
×

× p
(
SB|S∆g(fimin)

)
× pr(SB)

(4.1)

2As the one-dimension PSD is real, it can either be modeled as complex or real Wishart distributions.
Both lead to the same Gamma distribution, as in Eq. (3.11).
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4.1. PSD analysis: Brownian noise and excess Chapter 4

Figure 4.1: Identification of the f−2 and white-noise branches in S
1/2
∆g , run Feb17B. Blue

points represent the measured native ASD. The green line and the orange points represent
respectively the estimate of the white-noise plateau noise and the excess noise above it.

where p on the right-hand side is p(S|Π) ∼ invΓ(M − 1, MΠ), M the number of
periodograms, and the prior pr(S) ∝ 1/S.

We use the probability density in Eq. (4.1) to infer the parameters SB and Se(f),
for each frequency. As usual, we employ an MCMC method with a parallel-tempering
algorithm (PT-MCMC). Results for run Feb17B, as an example, are shown in Fig. 4.1:
the green line is the 1σ estimate (16%–84% quantiles) of the Brownian level, and the
orange points are the estimates of the excess above it.

At very low frequencies, it is obvious that the difference between native and excess
is minimal; however, it is significant at ∼ mHz frequencies. We note that, given the
model in Eq. (4.1), and given that the number of averaged periodograms at mHz
frequencies is some hundreds, the estimate of Brownian is basically given by the second
line in Eq. (4.1), regardless of Se(f). Therefore, this MCMC method is not essential
to estimate SB, but it is to estimate Se(f), the excess noise over Brownian.

In Figs. 4.2, 4.3, and 4.4, we provide the results of Brownian and excess estimation
for the entire set of the 14 runs considered.
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4.2. Properties of the excess noise Chapter 4

4.2 Properties of the excess noise

We divide the analyses about the excess noise Se and the white-noise level, starting
with the former. The evolution of the white-noise level will be discussed thoroughly
in Chapter 5.

Looking at the PSDs of the excess noise in Figs. 4.2 to 4.4, two more questions
come up to mind about the nature of the measured noise. The first is if there is
any chance that the detected excess is common among all runs, and the detected
fluctuations are just caused by the intrinsic Wishart statistics. The second question is
a consequence of the first one: if noise is not common to all runs, what is its stability
over the mission duration?

4.2.1 Fit to a common excess noise

To answer the first question, we first need to fit observation to a common-noise model.
We adapt the single-run model in Eq. (4.1), multiplying single-run probabilities to
build a collective posterior. Brownian noise SB,k depends on the run index k, and
the excess Se(f) only depends on frequency, being common to all runs. The model
becomes

p
(
{SB}, {Se}|{S∆g}

)
=

∏
k∈runs

∏
i∈[1,10]
i ̸=imin

[
p
(
SB,k + Se(fi)|S∆g,k(fi)

)
× pr(Se(fi))×

× p
(
SB,k|S∆g,k(fimin)

)
× pr(SB,k)

]
(4.2)

We choose non-informative priors on the PSD parameters, and run the MCMC on
the subset of 13 runs in Table A.2. We do not include run Apr16A (DRS) in this
analysis, since it was performed in too different experimental conditions. The results
are provided in Fig. 4.5, black points. In the same plot, we show the single-run excess
PSDs, as cumulative quantiles of the single-run estimates evaluated in the previous
section.

As usual in Bayesian analysis, the likelihood maximization done for fitting is
not informative about the suitability of the model, it is useful just to find the best
parameter set. To assess if the model is predictive, we perform a posterior predictive
check [66]. The check allows to test how likely it is to find the observed experimental
data, given the best-fit parameters.

First, we find the set of parameter values {SB,best}, {Se,best}, from the MCMC
chain, maximizing a likelihood function. The log-likelihood Λ is a measure of the
discrepancy between observations and the model. We compute the log-likelihood of
the observed data as

Λ =
∑

k∈runs
f∈freqs

log p
(
S∆g,k(f)|{SB,best}, {Se,best}

)
(4.3)

where p(Π|S) is the one-dimensional Wishart distribution, defining the distribution
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Figure 4.5: Common excess noise over Brownian, in ordinary runs in Table A.2. The common
noise (black points), is evaluated with the model in Eq. (4.2). Blue points represent the
single-run excess PSDs, evaluated as cumulative quantiles of the single-run estimates evaluated
with the model in Eq. (4.1). For comparison, we also show the LPF and LISA requirements,
and the Brownian noise level in run Feb17B.

of experimental data (see Eq. (3.11)). We discard the first frequency from the
frequency set, for reasons underlined in Sec. 3.5. Then, we create a set of simulated
periodograms: for a set of parameters in the posterior MCMC chains, we generate
simulated periodograms from the appropriate Wishart distribution, using the same
number of averaging periodograms as in single runs. We repeat the procedure for a
number of parameter sets and, for each of them, we then calculate the log-likelihood
Λ. The probability that Λ is less than the value calculated with real data, within this
set of simulated data, is a measure of the predictiveness of the model.

We find a few results:

1. The model is not predictive of the entire run set, with p < 0.1%. A common
noise model of all the LPF runs does not describe measurements.

2. The model is more predictive (p > 5%) if subsets of runs are chosen, instead of
the entire set of 13 runs. On the one hand, this fact is compatible with noise
being stable over short time-scales; on the other hand, it might just be a hint
that the posterior check is not as powerful when small sets of runs are considered.
In any case, we find that the test is predictive if runs are minimally sub-divided
as [Mar16E, Apr16A, May16C, Jun16B], [Jul16B, Jul16C, Sep16E, Nov16B],
[Dec16B, Feb17B], [May17E, Jun17A, Jun17B].

3. The common-excess model is applicable also if the excess is not strictly stable in
time, but its amplitude fluctuates. In case of random instabilities of the excess
noise, fluctuations as Se → Se(1 + x), observations would fit a quasi-common
excess if x is normally distributed with σx = 25%.

4. However, the test is not conclusive regarding the existence of either epochs or
fluctuations, or both of them.
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4.2.2 Stability of the excess noise

The results from the common-noise tests hint that some fluctuations might be present
in the “true value” of the low-frequency PSDs. We proceed in analyzing the magnitude
of such fluctuations. To do it, we first define a figure of merit, summarizing the
overall behavior of the excess noise, and capturing the most important properties. We
take advantage of the fact that the excess noise scales as f−2 (see [2, 3]), and fit the
measured PSD in each run to the model

S∆g(f) = S̃∆g

(1 mHz
f

)2
+ SB, (4.4)

where SB represents the Brownian level, and S̃∆g is the newly-defined figure of merit.
We will focus on S̃

1/2
∆g , which represents the effective ASD of a f−1 fit to observations,

evaluated at 1 mHz.
The fit is performed as usual, with Bayesian estimation of S̃∆g and SB, based on

the Wishart statistics governing the PSD distributions. For each segment, we run an
MCMC algorithm to infer the distribution p(S̃∆g, SB|S∆g) as follows

p(S̃∆g, SB|S∆g) =
∏

f∈freqs

[
p(S∗|S∆g)

]
× pr(S̃∆g) × pr(SB)

S∗ = S̃∆g (1 mHz/f)2 + SB

(4.5)

As usual, we choose an non-informative Jeffrey’s prior on S̃∆g. The prior on SB,
instead, is the posterior which we found in the single-run Brownian evaluation (see
Sec. 4.1). In the right-hand side of the first equation, p is the posterior 1-D Wishart
distribution p(S|Π) ∼ invΓ(M − 1, MΠ).
We perform this fit on the set of 14 long-lasting runs, which we show in Fig. 4.6.

Figure 4.6: Slope of the f−2 sub-mHz branch, S̃
1/2
∆g as described in text, during the set of 14

long-lasting noise-only runs, marked in orange in Table A.1. The width of the points, also
highlighted with grey spans, marks the run duration. The blue spans, the red line, and the
green line, highlight respectively lower nominal temperature, the venting-to-space time, and
the spacecraft deorbiting.
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However, we notice that the duration of runs is very different and this averaged
quantity might be hiding some internal fluctuations within the single runs. For
this reason, we choose a more consistent approach, partitioning all runs into non-
overlapping segments, lasting 2.75 d, which is the duration of the shortest run in
our set3. The result of the fitting procedure performed on the segments is shown in
Fig. 4.7.

Figure 4.7: Slope of the f−2 sub-mHz branch, S̃
1/2
∆g as described in text, during the set of 14

long-lasting noise-only runs, marked in orange in Table A.1. Each run has been partitioned
into 2.75 d non-overlapping segments, lasting as long as the shortest ordinary runs Jul16C. The
blue spans, the red line, and the green line, highlight respectively lower nominal temperature,
the venting-to-space time, and the spacecraft deorbiting.

Among the analyzed 28 segments, fluctuations are well visible. In particular,
data show deviations as large as ∼ 25%; such a deviation is not compatible with
random fluctuations due to Wishart statistics, confirming our hypothesis that the
noise level was not stationary across the entire mission. Instead, we conclude that it
was stationary within a remarkable 25%.

The sub-division into shorter segments gives some more details, which we underline:

1. The fluctuation amplitude observed during the entire mission is also observed
during a single run, Dec16B, which incidentally is the longest run. Within that
run, the excess noise level varies between the lowest observed and the second-
highest observed. This shows that the low noises measured in runs Jul16B and
Jul16C might just be fluctuations, rather than periods with low noise.

2. Run Feb17B, often taken as a reference run for its noise level, for its stability,
and for its PSD smoothness, is the one with the smallest scatter among segments.
Compatible, however, with some segments of the previous run Dec16B.

3. After cold runs, a higher noise level might be noticed, though still compatible
with some points of run Dec16B. The question arises whether the noise level
significantly increased, or if the variation could just be a random fluctuation.
We perform a classical permutation test: given two sets of data, we evaluate the

3The shortest run in the subset is Jul16C, lasting about 2.75 d. However, we include run Apr16A
as an exception. Even though it lasts less than 2.75 d, it is meaningful to include it in analyses, to
estimate the low-frequency excess in DRS runs.
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difference between the mean values of the two sets; the difference between Feb17B
and May17-Jun17 is 0.45 fm s−2 Hz−1/2. We repeat the same operation on other
data groups: we make random permutations of all 27 partitions (excluding the
DRS run), and for each subset of 10 adjacent values we evaluate the difference
between the mean value of a first subset of 4 data (as in Feb17B) and the mean
value of a second subset of 6 data (as in May17-Jun17), and pick the maximum
observed step. Then, we assess the probability of finding a difference higher than
the observed one. We find that, though the set of Feb17B values is significantly
lower than the ones in May17-Jun17, the observed step is still compatible with
random fluctuations, as the probability of finding a maximum step greater than
the observed one is 9%. We conclude that the low noise found in Feb17B could
just be the outcome of a fortunate coincidence.

4.2.3 Low-frequency data Gaussianity

To conclude the analysis of noise stability, we analyze data Gaussianity. A simple
explanation of the observation of a noise level fluctuating more than foreseen by the
Wishart statistics could simply be that noise is not Gaussian, hence not following
exactly the Wishart statistics. We run a simple test to assess low-frequency data
Gaussianity.

First, we choose to test frequencies up to the 9th, 2.1 mHz, and the 13 long-lasting
ordinary runs. For each run, and each frequency, we evaluate the 50%-overlapping
periodograms. We normalize the real and imaginary parts of the periodograms to
their mean and standard deviations within each sample. It is known that, if data
are Gaussian, the real and imaginary parts of the periodogram should follow the
same zero-mean Gaussian distribution, with the same standard deviation. Building
standardized periodograms as we do, we expect them to follow a normal distribution
with unit variance.

Figure 4.8: Histogram of the 12696 samples used for the Gaussianity test, as described in
text, including 13 ordinary LTP runs and 9 frequencies for each of them, 18 µHz to 2.1 mHz.
The black line is a normal zero-mean, unit-variance distribution, to be used as reference.

Putting together all samples from different runs and frequencies, we build a set of
12696 samples. Such a set is shown in Fig. 4.8; for comparison, we show the zero-mean
unit-variance normal distribution, which shows good agreement with data. No outliers
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above 5σ are detected.
We also perform an Anderson-Darling test for Gaussianity, which claims compatibility
between our observations and the normal distribution, with p > 10%. We run this
test on the subset of the first four frequencies, up to 0.1 mHz, in which 788 samples
are available. For the sake of completeness, we run the Anderson-Darling test to
all the possible frequency subsets: it succeeds every time, with p > 5%; in only one
outlier case, the result is p ∼ 1%, but still not significant to exclude Gaussianity. The
overall response is positive, allowing us to conclude that excess noise is compatible
with Gaussian data.

4.3 Nature of the excess noise

Before moving to the analysis of white-noise evolution, some more questions arise:
what is the nature of the detected excess? May it be interferometer readout noise or
is it generated by real forces acting on the TMs? If it is caused by forces, does it have
a torque counterpart? We try to give an answer to these questions, with two analyses.
Finally, we make an observation about instrument distortion.

4.3.1 Interferometer low-frequency readout noise

First, we investigate if the excess noise might be originating from noise in the in-
terferometric readout, or if it is due to real forces. According to the definition of
∆g, Eq. (2.6), any noise in the interferometer readout, nOMS(t) would enter the
measurement, inducing a noise

∆gn(t) = n̈OMS(t) + ω2
2nOMS(t) (4.6)

Here we compare measurements of S∆g with estimates of the interferometer readout
noise, to assess its impact.

We identify two methods to assess the contribution of OMS readout noise; the
lead to the same conclusion, i.e., that the detected noise is caused by real forces.

1. In April 2017, a 2.4 d run was performed with both TMs grabbed by blocking
mechanisms, and no electrostatic actuation. During these runs, TM position was
not controlled by the interferometer output. Hence, the interferometric measure-
ment ∆x12,OMS can be used for estimation of the open-loop interferometer noise
concurring to ∆g. Assuming that the interferometer noise is S∆gn(f), according
to Eq. (2.6), during these runs it is given by

S∆gn(f) = S∆x12,OMS(f)
(
4π2f2 + |ω2

2|
)2

(4.7)

This measurement is however an upper limit of the interferometer noise, for two
reasons noted in [33]:

• It includes mechanical movements due to the rigid contact with the GRS
mechanisms, likely related to thermal fluctuations.
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Figure 4.9: Measured noise (blue) and excess over Brownian (orange) during run Feb17B,
compared to the estimates of S∆gn

(red, with grabbed TMs, and blue, with capacitive
measurements). S∆gn

, defined in Eq. (4.7), represents an upper limit to the interferometer
readout noise.

• It was performed in low-contrast conditions, hence with a large interferom-
eter noise, because of non-optimal surface alignment.

Figure 4.9 shows the measured noise and excess during run Feb17B, along with
the estimate of S∆gn in April 2017.

2. The second measurement is completely independent. We evaluate the out-of-loop
∆g(t) independently, with the OMS and GRS measurements. The equation
governing the system is∆gOMS(t) = ∆ẍOMS(t) − gext(t)

∆gGRS(t) = ∆ẍGRS(t) − gext(t)
(4.8)

where gext(t) are the external forces, comprehending both actuation forces,
and other truly external forces, which are common to the interferometric and
capacitive readouts. It results that the difference only contains the readout
noises, representing an upper limit to the OMS noise.

∆gGRS(t) − ∆gOMS(t) = n̈OMS(t) + n̈GRS(t) > n̈OMS(t) (4.9)

Hence, the PSD of the timeseries (∆ẍ12,OMS − ∆ẍGRS) is an upper limit to
S∆ẍ12,OMS . The upper limit of the contribution to S∆gn can then be evaluated
as in Eq. (4.7). The result is shown in Fig. 4.9.

The information conveyed by the two methods is concordant, but measurements
with grabbed TMs are much more significant and constraining.

We conclude that the low-frequency excess above Brownian is confidently ascribed
to real forces, acting on the TMs, not associated with interferometer readout noise.
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Between 40 µHz and 5 mHz, interferometer readout noise contributes at most to 1%
of the total excess power.

4.3.2 Lever arm of excess noise

To have a better understanding of the nature of the low-frequency excess noise, we
perform a cross-analysis with the angular acceleration time series, ∆γϕ and ∆γη. The
main reason why we perform this analysis is that electrostatic forces are applied with
electrodes, off-centered with respect to the TMs. In particular, voltage noise on a
single electrode would show up both as force and torque: a single electrode producing
the entire noise would have an effective lever arm |ry| = 11 mm, and |rz| = 0 mm,
generating torque along ϕ.
The idea is that the total measured force fx(t) could be caused by a distribution of
forces with a distribution of application points, or possibly a single force with a single
application point. In the general case, a distribution of forces would cause a total
force and a total torque, defining an effective lever arm. In the single-force case, such
a torque N would be associated with a lever arm r: Nϕ and Nη would be associated
to Nϕ = rxfy − ryfx

Nη = rzfx − rxfz

(4.10)

meaning that the torque time series Nϕ(t) and Nη(t) would be correlated to the force
time series fx(t), through the effective lever arms (−ry, rz).

In Sec. 2.2.5, we noted that we have no access to the single-TM torque time series,
but rather to the differential acceleration time series, which we defined in Eq. (2.10).
Hence, we look for correlations among the measured ∆g and ∆γϕ, ∆γη. We model
the system as:

∆γ(t) = ∆γ0(t) + r∆g̃(t)

⇒ Σ =
(

S∆γ0(f) + r2S∆g̃(f) r S∆g̃(f)
r S∆g̃(f) S∆g̃(f)

)
(4.11)

In this equation, we defined for simplicity ∆g̃ = ∆g M/I. The quantity ∆γ0 represents
the angular acceleration not correlating to ∆g. The equation holds for both ∆γϕ

and ∆γη, with the proper definitions of r. In the second equation, we just give the
frequency-domain CPSD matrix corresponding to the time-domain equation on the
left. With this model, we can easily apply the results presented in Chapter 3 to
infer r, which can be seen as the susceptibility of ∆g̃ with respect to ∆γ. We infer r

employing the likelihood in Eq. (3.49), with the following assumptions:

1. We run the analysis on frequencies 36 µHz–462 µHz, using the first 7 frequencies,
assuming that the lever arm r is frequency-independent.

2. We run the MCMC algorithm to infer the posterior distributions of S∆g̃(f) and
r, assuming that r is real.

3. We assume that, at each frequency, the measured power spectrum Π(f) is
complex-Wishart distributed, with theoretical CPSD Σ(f).
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4. We perform this analysis on the set of 13 LTP noise-only runs.

Figure 4.10 shows the lever arms that we find with this analysis, rz and ry.
The grey spans correspond to the average lever arms, weighted on the number of
periodograms used for estimation. Respectively, the average effective lever arms are
ry = (1.13 ± 0.15) mm and rz = (0.5 ± 0.8) mm. The precision on ry is much better,
since noise in ∆γϕ is much lower than in ∆γη. However, we note that ry is far from
the “electrical figure” 11 mm. From this, we can confidently state that the excess noise
is not caused by single-electrode noise.

Figure 4.10: Effective lever arm ry and rz of the measured excess, inferred from the cross-
correlations with the angular acceleration time series ∆γϕ, ∆γη. The grey spans, ry =
(1.13 ± 0.15) mm and rz = (0.5 ± 0.8) mm, represent the average lever arms, weighted with
the number of periodograms used for estimation.
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4.3.3 Mechanical stress

We conclude this chapter with a slightly off-track observation. As we mentioned in
the introduction, any mass on the spacecraft is gravitationally coupled to the TMs:
thus, any time-varying displacement of structural components is capable of inducing
time-varying forces to the TMs. From this perspective, the effect would induce a
force at the same frequency as the time-varying displacement. However, we noticed a
quasi-DC variation of the instrument distortion, which we find important to report.

As said in the introduction, the quantity ∆x = (∆x12,GRS−∆x12,OMS) is a measure
of the GRS distortion. From the beginning of operations till the cold runs, i.e. before
April 2017, quasi-static deformations in experimental runs were always detected. For
example, in run Feb17B the distance between the two EHs expanded by 0.1 µm over
13.3 days. This is indeed an expected behavior, ultimately caused by the thermal
expansion of the struts holding the GRSs. Indeed, the time series ∆x shows a very
high correlation with the average temperature. For example in Fig. 4.11, left panel,
we show ∆x and temperature during run Feb17B.

Figure 4.11: Quasi-static variation of the GRS distortion, measured as ∆x = (∆x12,GRS −
∆x12,OMS), and temperature, comparison between runs Feb17B and Jun17A. Scales are chosen
to be the same, just offset, so that the comparison is immediate. Indeed, run Jun17A showed
a strong, non-thermal, ∆x drift.

After the cold runs, something different happened. Run May17E shows a 2.3 µm
GRS expansion in 4.3 d, much faster than in February. Moreover, that expansion is
not thermal, i.e. it is not correlated with temperature. In the following run Jun17A,
the phenomenon is still evident (see Fig. 4.11, right panel), but, within Jun17B, it
sets back to the nominal thermo-mechanical expansion.

It is likely that such a non-thermal expansion has been caused by the mechanical
stress that involved the cold runs. Possibly, it could even be related to the mechanical
event that triggered the LPF safe mode after run May17C. Indeed, in run May17D,
the GRSs shrunk by 4.5 µm in just 2.8 d. However, in those runs it is not possible to
estimate the correlation with temperature, as the EH thermometers were not available.
Another similar non-thermal relaxation has been observed in run Sep16E.
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4.3. Nature of the excess noise Chapter 4

Figure 4.12: Mean quasi-static variation of the GRS distortion, measured as ∆x = (∆x12,GRS−
∆x12,OMS), in the 14 long-lasting runs. Points represent the mean variation, and spans show
the minimum and maximum values reached during runs.

In Fig 4.12, we show the variation of the EH positions within runs. In Chapter 6,
we will include the instrument distortion ∆x(t) in the analysis of in-band correlation
among time series. We anticipate that the induced gravitational force is not a dominant
effect on the overall measured acceleration noise. We also anticipate that we do not
detect any relation between the in-band contribution to noise and the quasi-DC drift
described here.
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5
Brownian noise and
outgassing environment
Brownian noise plateau, quasi-static acceleration drift,
and pressure-related phenomena

Studying the evolution of the Brownian force noise is paramount in order to understand
the evolution of pressure within the vacuum chambers. LPF did not have pressure
gauges inside the VEs, because of their size and their impact on science measurements
themselves. For the same reasons LISA will not carry pressure gauges, as they would
not be essential to perform the science measurements but, rather, could influence the
performance itself.

Nevertheless, LPF provided indirectly a measurement of pressure, via the differen-
tial acceleration measurements. Especially in the lowest-noise runs, the acceleration
PSD shows a quite clear white-noise plateau at ∼ mHz frequencies, independent of
frequency. The amplitude of such a PSD plateau evolves in time during the mission,
decreasing in time. The reason why the plateau is so interesting is that its amplitude is
strictly related to the pressure in the vacuum chambers [22]. The white-noise plateau,
hence, effectively represents a proxy of pressure.

It has already been shown [2, 3] that the amplitude of such a plateau evolved in
time during the LPF mission, in agreement with the expectation of pressure evolution.
As we show in this chapter, we can confidently state that the measured white noise is
largely contributed by the Brownian noise. Hence, we often refer to the white-noise
plateau as the Brownian plateau. At ∼ mHz frequencies, we notice that the Brownian
plateau is the limiting source of noise.

In this chapter, we analyze the evolution of the Brownian PSD level, providing
an estimate of the pressure within the vacuum chambers, and a projection for LISA.
We analyze the pressure evolution, analyzing and determining its dependence on
time and temperature. The evolution of pressure yields details about the outgassing
environment within the vacuum chambers, and allows to better understand which
sources contribute the most to the overall pressure. We also analyze to which extent
the noise plateau is ascribable to Brownian noise, especially during low-temperature
runs and DRS runs. We also analyze the relations with the long-term ∆g drift.
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5.1 Brownian motion and pressure

Brownian noise is the manifestation of the random forces given to the TMs by the
random impacts with the gas molecules within the experimental apparatus. It is
intrinsically an inevitable effect, ultimately due to the exchange of momentum between
the residual gas molecules and the test masses. Such noise affects all the degrees of
freedom: the translational x, y, z, and the angular ϕ, η, θ. The effect is quite faint
in absolute terms, so that, even in the high-sensitivity LPF case, it is visible only in
interferometric measurements. In our case, as will be clearer later, it is well-detectable
only in the sensitive-axis x direction. Along the other interferometric coordinates, ϕ

and η, it is quite indiscernible.
In [22, 28], it is shown that Brownian motion appears as white, frequency-

independent noise, both in the force and torque PSD. In particular, [22] shows
that, for a single LISA TM, the force (torque) PSD plateau is given by

SF = 4kBTβtr SN = 4kBTβrot, (5.1)

where βtr and βrot are respectively the translational and rotational damping coefficients,
mainly depending on the system geometry, the gas species, and pressure. These
coefficients, in the same references, have been calculated and experimentally measured.

Some points might be relevant for further discussions:

1. The damping coefficients can be calculated, under the assumption that the TMs
are perfect cubes surrounded by an infinite volume of gas. Even though this
approximation is not valid in the LISA/LPF configuration, these calculations
show that both coefficients are a) proportional to pressure P , b) proportional
to inverse square root of temperature T −1/2, c) proportional to the square root
molecule mass m1/2.

2. In [22], the damping coefficients have been experimentally measured, with
torsion pendulums at the University of Trento, using LISA-like geometries
closely resembling the flight models. The same reference also validated the
results with simulations. The rotational coefficient has been measured using a
torsion pendulum with 1 TM; analogously, a combination of the translational and
rotational coefficients has been measured with a cross-shaped 4-TM pendulum.
Measurements have been performed at various pressure values, to isolate the
coefficients from their dependence on pressure. Nevertheless, measurements
have been performed at a stable temperature (293.0 ± 0.1) K, with no variations.
Given the LPF temperature variation and the assumed theoretical dependence
on temperature, the coefficients are accurate to within 5% precision. However,
the coefficients are much more sensitive to the gas species’ molar mass: being
proportional to m1/2, at the same pressure and temperature, the damping
coefficient for air is 25% higher than that of water gas, and that for hydrogen is
75% lower.

3. We separate the contribution of the linear and angular damping coefficients
in measurements in [22], to estimate their value in the LPF flight conditions.
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Following the measurements in Table I in [22], we write the following equations
β′

IV = (r2β′
tr + β′

rot) + 3(r2β′∞
tr + β′∞

rot) − 4(r2β′∞
tr + β′∞

rot)
β′∞

III = 4(r2β′∞
tr + β′∞

rot)
β′∞

I = β′∞
rot

β′
I = β′

rot

(5.2)

where the subscripts I, II, III, IV, refer to the columns in Table I in [22]. The
superscript ∞ refers to the theoretical value, with the TM not surrounded by
the close-by GRS. Values with no superscript indicate the case with the TM
enclosed in the GRS. The superscript ′ indicates the partial derivative with
respect to pressure, for clarity. In the first equation, we have also considered
that in the 4TM torsion pendulum only one TM is surrounded by the GRS.

These equations lead to the following values:

∂βtr/∂P = 5.32 × 10−4 m s ∂βrot/∂P = 4.8 × 10−8 m3 s (5.3)

We recall that these values hold at a temperature 293 K, with the LPF EH
geometry, assuming that the outgassing species is water gas. In the following,
we only focus on the translational damping coefficient, which is of interest for
the LPF noise performance.

4. The damping coefficients translate into force and torque noises. In the LPF
configuration, noises on the two TMs are completely independent, as the TMs
outgassing environments are isolated. We focus on the contribution to force. In
the differential measurements, the two TMs contribute equally to the total PSD,
following

SF = 1
2M2S∆g, (5.4)

where M is the TM mass. With the computed βtr, the two-TM differen-
tial PSD would be (2.1 × 10−15 m s−2 Hz−1/2)2/µPa. This value, as noted in
the reference, is compatible with the value obtained from simulations, (1.8 ×
10−15 m s−2 Hz−1/2)2/µPa.

5. Following [22], we use the value obtained from simulations, for the conversion
factor between the Brownian acceleration PSD and pressure. Ultimately, this is
the value that we use:

∂S∆g/∂PH2O =
(
1.8 × 10−15 m s−2 Hz−1/2

)2
/µPa (5.5)

with PH2O, we explicitly indicate that the coefficient assumes that the emitted
gas is water.
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5.2 LPF linear Brownian noise

The white plateau PSD, as measured in LPF’s long ordinary runs (orange in Table A.2),
is shown in Fig. 5.1, as purple points. Attached to every point, a label indicates
the mean temperature of the run. Values and errors have been calculated with the
MCMC algorithm described in Sec. 4.1. With that calculation method, we recall
that the Brownian posterior is essentially that of the lowest measured PSD, with an
associated error that is basically driven by the number of averaging windows used
for its computation1. We also recall that the Brownian estimate does not depend
substantially on the method used for its evaluation, meaning that the values in the
figure are pretty robust2. The reason is that, at ∼ mHz frequencies, the number of
averaging windows for PSD computation is high, of the order of 103, making the
estimation solid.

In what follows, we fit the evolution of the Brownian plateau with expected models.
Before doing that, we note a few relevant points:

1. The Brownian level (purple points) decreases in time across the whole LPF
mission, apparently linearly in a log-log plot, at least in the runs at nominal
22 ◦C temperature. No apparent apparent saturation values are evident. The
Brownian level, however, does show some fluctuations, in particular it is higher
in runs with a higher mean temperature (in July 2016, the mean temperature
was 24 ◦C).

2. Lowering temperature to 11 ◦C reduced the Brownian level, as expected since it
reduces the outgassing rate.

3. Lowering temperature to 0 ◦C also reduced the white-noise plateau, down to
SB = (1.7 ± 0.1) fm2 s−4 Hz−1, which is the lowest white-noise plateau measured
on LPF. This value has been obtained using glitch-free stretches during the
longest cold run May17B [3]. However, as we will notice later, this value is not as
low as it would be expected if it were entirely due to Brownian noise. The lowest
Brownian plateau measured on LPF, which is ascribable to Brownian noise, has
been measured in run May17E, SB = (2.54 ± 0.15) fm2 s−4 Hz−1. According
to the conversion factor in Eq. (5.5), it corresponds to a (water) pressure of
PH2O = (0.78 ± 0.05) µPa.

4. The Brownian measured during the DRS run Apr17A, about 4 fm2 s−4 Hz−1,
is higher than the previous run Feb17B, despite being measured two months
later. This shows that some other mechanisms influenced the white level in run
Apr17A.

1The number of periodograms available at mHz frequency is of the order of 103, making the
inverse-gamma PSD distribution (Eq. (3.18)) basically Gaussian, with mean Π and variance Π/M .

2Brownian levels in this Section, as shown in Fig 5.1, slightly differ from the ones in [5]. Con-
sequently, parameters Θ and γ are slightly different, but still compatible within 1σ. The reason is
that in [5] we use spectral windows a few samples shorter, leading to slightly different PSD values.
Conclusions and physical interpretations are, however, unchanged.
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Figure 5.1: Brownian plateau evolution during the LPF mission, versus the days after venting
(62.4 DAL). On the left axis, the white noise PSD plateau; on the right axis, the corresponding
pressure value assuming water outgassing, according to Eq. (5.5). The purple points represent
Brownian during the long ordinary runs of Table A.2, and the labels indicate the mean
temperature of the runs. The light blue region indicates runs performed at temperatures lower
than nominal, including runs Feb17B and May17E at 11 ◦C. The darker blue region, and
the blue point within it, represent the measured Brownian plateau during run May17B, at
nominal 0 ◦C. The red, orange, and green points represent the Brownian values rescaled to
293 K, respectively of ordinary runs, the DRS run Apr17A and the cold LTP run May17B.
Rescaling is performed as described in text, and corresponds to an activation temperature
Θ = (6.9 ± 0.2) kK. The dashed line is a fit, based on the outgassing model described in text.
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5.2.1 Outgassing rate and Brownian rescaling to 293 K

As computed in [28], and as validated with experiments and simulations, the damping
coefficient is proportional to pressure. Hence, the Brownian PSD is proportional to
pressure. If the outgassing element is water, then the coefficient has been estimated in
Eq. (5.5); in any case, the proportionality between Brownian level and pressure holds.
Here, we use the Brownian level as a proxy for pressure.

Let’s now work out some well known results of vacuum systems. The commonly
used vacuum pumping equation [67–69] states that, in a small-volume vacuum system
pumped at fixed temperature T , the following simple equation is satisfied:

P (t) = Q(t)
S

, (5.6)

where P (t) is the system pressure; S is the pumping speed, depending on the used
conductances and vacuum pumps; Q(t) is the outgassing rate. The outgassing rate is
not a specific property of materials, even though materials can usually be associated
to an order-of-magnitude estimate of their outgassing rate, based generally on their
capability of adsorbing particular gas species. Thermal treatments and coatings, as
well as the surface history, may strongly affect the outgassing rate.

As said in Chapter 2, the characteristic GRS’s pumping speed from the inner EHs
to the outer space was, for water gas, about 19 L/s. Equation (5.6), however, needs
some adaptation to the GRS case. The GRS is not a small-volume system, hence the
equation would generally change into the following convolution:

P (t) = (Q ∗ Pδ)(t)
S

= 1
S

∫ t

0
Q(τ)Pδ(t − τ) dτ, (5.7)

where Pδ(t) is the system response function to an outgassing impulse, whose shape
depends on the system geometry. Nevertheless, the GRS volume order of magnitude
is 10 L: this, with the pumping speed above, yields a typical time scale of about
τd ∼ V/S ∼ 0.3 s, which is the time scale of Pδ(t). This time scale is much shorter
than the variation of Brownian over the mission time scale (tens of days). Therefore,
the latter equation can effectively be approximated with the previous Eq. (5.6),
from which we deduce that pressure is proportional to the outgassing rate. Hence,
the dependence on Brownian on time and temperature has to be searched in the
dependence of the outgassing rate on time and temperature.

We add another well-known property of vacuum systems: the desorption of gaseous
elements from walls commonly follows an Arrhenius equation, associated with an
activation temperature Θ [67, 68, 70]. Therefore, a higher temperature enhances
the process, yielding higher outgassing. The activation temperature is an intrinsic
property of both the wall material and the outgassing species, and in our case it will
be used to understand which element is being emitted.

The dependence of outgassing on temperature and time can not be separated, in
principle. It is indeed straightforward to think that an aggressive baking process with
high temperature would extract gas from the outer wall surface, leaving fewer adsorbed
particles than before the process. After restoring the previous temperature, the system
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would not behave as if temperature never changed. In our case though, during the
LPF mission, the GRS was not subject to great temperature changes. Hence, we
assume that changing and restoring temperature brings the system back to its original
outgassing evolution function. Mathematically, this means that temperature and time
are separable variables:

Q(T, t) = e−Θ/T Q(t) = e−Ea/RT Q(t) (5.8)

In this equation, Θ is the activation temperature, Ea the activation energy, and R

the gas constant R ∼ 8.31 J mol−1 K−1. The two expressions are equivalent, as the
activation energy is Ea = RT ; the activation energy is usually expressed in MJ/kmol.

Applying Eq. (5.8) to the LPF Brownian evolution, we rescale the measured
Brownian levels to the same temperature, which we choose 293 K. This process allows
us to separate the dependence of Brownian on temperature and time, and to proceed
as if the system was always kept at constant temperature. We rescale Brownian as:

SB,293 K(t) = e( Θ
T

− Θ
293 K )SB(t) (5.9)

The activation temperature Θ is not known a priori. We will infer it in the next
paragraph after modelizing the time evolution SB(t). However, we anticipate that we
find an activation temperature of 6.9 kK. Using this value in Eq. (5.9), and applying
it to the measured Brownian levels in ordinary runs, we find the red points in Fig. 5.1.
Applying it to the measured Brownian levels in the DRS run Apr17A and the cold
run May17B, we find the values represented in orange and green in Fig. 5.1.

5.2.2 Outgassing rate evolution

After finding a model of the temperature dependence of the outgassing rate, we need
to find a model for its time evolution function. A commonly-used model, very often
measured experimentally, is that of the power-law dependence of the outgassing rate
on the pumping time. Let’s denote with tv the starting time of the pump-down,
which in our case is the time of venting to outer space. The model assumes that the
outgassing rate depends on time t, as (t − tv)−γ . The exponent γ is a property of the
emitting material and gas species: generally, it may vary between 0.5 and 1, but also
higher exponents, 3-4, might be possible [68, 69], see later discussion.

Therefore, we model the Brownian evolution as

SB(T, t) = A e( Θ
T

− Θ
293 K )

(
tv

t − tv

)γ

(5.10)

Here, tv = 62.4 d is a fixed value, chosen as the venting to space of the two GRSs. The
exponent γ, the activation temperature Θ, and A, are fitting parameters. The varying
quantities, t and T , are chosen as the mean time and temperature of the runs taken
into account. We notice the presence of an overparametrization in the numerator,
A tγ

v : it is done so that A and SB have the same units, and it does not change the
result, as A has no particular physical meaning. The relevant parameters, in this
model, are Θ and γ, which might hint at the outgassing mechanisms occurring.
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We perform the fit with a least-squares method, implementing it with an MCMC
algorithm to find possible correlations between parameters, and to be sure that the
system does not present any bimodalities. For reasons that will be clear later, we just
perform the fit over the ordinary runs, that is, for the red points in Fig. 5.1. The
best-fit result is depicted in the same figure as a dashed line. Parameter histograms
and correlations are shown in Fig. 5.2.

In particular, we find the activation temperature Θ = (6.9 ± 0.2) kK, and the decay
power-law exponent γ = (0.78 ± 0.02). The activation temperature corresponds to
an activation energy (57 ± 2) MJ/kmol. Parameters A and γ show a slight positive
correlation, which, as noticed before, can be ascribed to the overparametrization of
the numerator.

Figure 5.2: Parameters from the fit of the measured Brownian levels in ordinary runs (purple
points in Fig. 5.1, except for the DRS run), with the model in Eq. (5.10). A line with the best
fit is represented as a dashed line in Fig. 5.1, represented as a fit to the temperature-scaled
Brownian data. In the histograms, a slight positive correlation between A and γ might be
noticed, which is ascribable to the model definition and has no physical importance or meaning.

Fit results

We note a few points about the fit results:
Re-scaling. The measured Brownian data, during ordinary runs, are well fitted

to the model in Eq. (5.10), as can be seen in Fig. 5.1. Such ordinary runs include
remarkably two runs performed at 284 K, Feb17B and May17E, whose Brownian levels
follow the model, despite being performed at a temperature 11 K lower than nominal.
The same fact can be noticed in some runs performed at 296 K, 2 K above nominal, for
which the temperature re-scaling effectively brings the Brownian levels to the best-fit
power-law line.
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DRS run. Run Apr17A, performed at 285 K as run Feb17B, but performed with
DRS thrusters, shows a Brownian level higher than the previous run, despite being
performed two months later. If re-scaled to 293 K, the Brownian level is about twice
the expected value (orange point). This means that another mechanism, possibly
related to the DRS thrusting mechanism, is inducing a non-Brownian white noise. If
we estimate the Brownian-related white noise following the best-fit line, the excess
white noise over Brownian can be estimated at 2.6 fm2 s−4 Hz−1.

Cold run. The same occurs for the cold run performed at nominal 273 K. On the
one hand, it shows a lower Brownian level with respect to ordinary runs performed
at a higher temperature (dark blue point in Fig. 5.1), showing that Brownian during
ordinary runs did not saturate. On the other hand, performing the temperature
re-scale shows that the measured value is however higher than expected. The excess
white noise can be estimated at 0.7 fm2 s−4 Hz−1.
The origin of this excess white noise is not certain. Still, it is likely that, despite
glitch-free stretches being chosen for Brownian evaluation [3], some fast low-impulse
events are still included in the stretches, increasing the white-noise level.

Excess white noise. Ordinary runs performed at 284 K, especially run Feb17B
which has a high precision due to a long measurement time, can be used to estimate
the presence of an additional non-Brownian noise level, given that their Brownian
is particularly low. We note that, after temperature re-scaling, Brownian in run
Feb17B is on the best-fit line. If additional white noise was present (not scaling with
temperature), common to all runs, it could be at maximum 0.5 fm2 s−4 Hz−1, not
to shift the observed values further than 3σ from the best-fit line. Therefore, the
observed excess in runs Apr17A and May17E are not ascribable to an excess common
to all runs.

Venting time. We chose the venting time tv as a fixed parameter in the fit to
the model. However, it could not be the case. It is true that the vacuum chamber
valves were opened 62.4 DAL, but, if the outgassing sources were located between the
valves and the venting ducts, then the venting time should be chosen as the launch
time 0 DAL. We performed an additional fit, leaving tv as a free parameter. The fit
is compatible with data, and the result is that tv = (63 ± 8) DAL, compatible with
the venting time 62.4 DAL. Parameters Θ and γ are compatible with the previous
ones. This confirms that the major source of outgassing is located inside the vacuum
chambers.
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5.3 Long-term drift and pressure unbalance

A short digression is necessary to better characterize the outgassing environment and
gas pressure on LPF’s TMs. We show that the long-term drift detected in ∆g(t) is
possibly related to a small pressure unbalance between pressure on the two TM sides.
The mechanism that relates the two quantities is rather articulated, and requires a
little introduction.

It is known [1–3] that, in addition to the measured quasi-stationary noise, LPF
∆g time series were affected by a long-term drift. This drift showed up as a steady
variation of the differential force ∆g, with a magnitude of the order of ∂∆gDC/∂t ∼
1 pm s−2 d−1 ∼ 10 am s−3. This drift, being quasi-DC, did not influence the PSD
described in the previous sections. A first reason is that it only affects frequencies
lower than the analyzed ones; moreover, our PSD estimation method allows to reduce
the influence of the DC-frequency bin on PSD estimates.

Contributions to long-term drift

Some mechanisms are known to contribute directly to long-term drift. First, we list
them, and subtract the known ones from the ∆g(t) time series, so that only the
residual drift is left.

1. Propellant gravitational field. The major source of DC drift is the variation
of the gravitational attraction by propellant tanks, due to the depletion of
cold nitrogen. As described in Sec. 2.1.4, the contribution from this source is
known with sufficient precision, as the gas mass is known from the flowmeter
measurements and the tank gravitational field is calculable. However, we note
that, despite the relatively high precision, measurements could be affected
by systematic errors due to calibration uncertainty, as thrusters are used in-
loop with TM position measurements. We assume that the fuel contribution
∆gF,DC = κt κb ∆gF,DC,t,b, depending on two calibration factors, κt and κb,
respectively representing calibration corrections for the used tanks and fuel
branch. We find the calibration correction a posteriori, as explained later, with
the fit provided later in Fig. 5.6. We find that κt is: [κ1 = 1.00, κ2 = 1.05,
κ3 = 0.95]; we find that κb is [κA = 1.00, κB = 0.92]. These values agree with
expectations: calibration during station-keeping maneuvers was estimated to be
precise with 10% uncertainty.

2. Thermal effects. Thermal effects contribute directly to acceleration PSD. As
shown in later chapters, temperature and ∆g are highly correlated at low fre-
quencies, where temperature fluctuates the most. At such frequencies, electronic
noise in temperature readouts is negligible. Moreover, we note that including
temperature in our fit for DC drift also allows to infer the thermal “susceptibility”
coefficient.

3. GRS distortion. Instrument distortion, as described in Sec. 2.2.6, contributes
to ∆g, coupling it to the time series (∆xGRS −∆xOMS) through a known stiffness
ω2

d. The major mechanism causing instrument distortion is thermal, hence it
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is highly coupled to the temperature time series. However, the time series
−ω2

d(∆xGRS − ∆xOMS) is precisely known, and can be subtracted first. We note
that the contribution is, however, rather small.

4. TM charging. Test mass charging in time, linearly varying because of the
interaction with cosmic rays, causes a steady drift in the resulting force. The
induced differential acceleration drift reads

∆ġDC = ∂q2/∂t

M CT

∣∣∣∣∂Cx

∂x

∣∣∣∣∆x,2 − ∂q1/∂t

M CT

∣∣∣∣∂Cx

∂x

∣∣∣∣∆x,1. (5.11)

Only the second term is relevant since, as shown in Table A.5, ∆x,2 has always
been compatible with 0 during the mission. On the contrary, ∆x,1 required
active compensation. It was not compensated at the beginning of the mission,
amounting to ∆x,1 ∼ −24 mV. Estimating Eq. (5.11) at the beginning of the
mission, we find ∆ġDC,ch = 0.4 am s−3, which is negligible with respect to the
residual DC ∆g drift.

In Fig. 5.3, we show as example the contribution from propellant gravitational
attraction, thermal effects, and GRS distortion to the DC drift in run Sep16E, lasting
2.8 days. Propellant gravitational attraction contribute to 78% of the total DC ∆g

drift.

Figure 5.3: Long-term evolution of ∆g during run Sep16E, lowpassed, and shifted so that all
time series start at the axes origin. Drift due to fuel depletion accounts from 78% of the total
drift slope.

We fit data as follows. First, for each run, we subtract from the ∆g time series the
known time series, i.e. the contribution from fuel depletion ∆gF and the contribution
from GRS distortion ∆gdist. We define ∆gc(t) = ∆g(t)−κtκb∆gF (t)−ω2

d∆gdist. Then,
for each run, we lowpass data with a 100-s Blackman-Harris sliding window, to remove
the high-frequency noise; then we partition data into 1-day long, non-overlapping
segments. Finally, we fit data from each stretch to the following model, which allows
to find the temperature susceptibility αT and the average DC differential drift ∆ġDC.
The last term, c0, is a constant that has no influence on our analysis.

∆gc(t) = αT T (t) + ∆ġDC t + c0 (5.12)
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We perform the fit with a least-squares method, from which we extract the best-fit
parameters. For each run, we average parameters and compute their variances, the
latter computed as the standard deviation of the best-fit parameters among the 1-day
segments. As some runs contain a low number of averaging segments, we level out
the variances, so that the variance of parameters in the k-th run, computed with Mk

segments, is

σ2
αT ,k =

∑13
k=1(Nk − 1)σ2

0,αT ,k∑13
k=1(Nk − 1)

1
Nk

(5.13)

where σ2
0,αT ,k is the variance evaluated previously. The evaluation of σ2

∆ġDC,k follows
the same scheme.

Residual long-term drift evolution

In Figure 5.4, we show the results of the fit described in the previous paragraph. In
the left panel, we show the evolution during ordinary runs of the acceleration drift.
On the right panel, we show the evolution of the thermal coefficient αt. Regarding
the latter, we underline that it is consistent with the values found in [71], and with
the values from time series decorrelation, inferred in Chapter 6.

Figure 5.4: Residual differential DC drift slope (left panel), and temperature susceptibility
coefficient (right panel), as resulting from the fit to data, according to the model in Eq. (5.12).
Red points in the left panel represent data with fuel mass loss calibration corrections κt, κb.
Dark yellow points represent non-corrected data κt = κb = 1.

We note that both ∆ġDC and αT decay to zero in their evolution. This behavior
is expected for αT , since thermal effects decay with pressure, which decays in time.
However, in principle, it could be unexpected for ∆ġDC. This hints that the two
parameters might have some sort of relation, between them and with pressure.

We find, indeed, a rather good correlation between αT and SB, but we do not find
a significant correlation between ∆ġDC and SB. Nevertheless, we find two additional
correlations, which might hint at a pressure-related mechanism, as described in the
following paragraph.
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Correlations and pressure unbalance

First, we find a significant linear relation between αT and the derivative ∂SB/∂T . Fol-
lowing from Eq. (5.8) and the proportionality between Brownian level and outgassing,
∂SB/∂T = (Θ/T 2)SB. In Figure 5.5, we plot the two quantities and show the linear
fit. The linear fit slope is ξT = (1.48 ± 0.07) × 1018 s m−1, with p-value ∼ 0.6.

Figure 5.5: Plot showing a linear relation between αT = ∂∆g/∂T and the derivative ∂SB/∂T .
The linear fit slope is ξT = (1.48 ± 0.07) × 1018 s m−1.

The second correlation that we find is between ∆ġ and the time derivative ∂SB/∂t.
Following from Eq. (5.10), ∂SB/∂t = −(γ/(t − tv))SB. In Figure 5.5, we plot the two
quantities and show the linear fit. The linear fit slope is ξt = (1.67±0.04)×1018 s m−1.
The p-value, however, is not optimal. We find it realistic and very likely that the
quality of the fit is not excellent because of calibration errors of the flowmeters. As
noted before, drift due to fuel depletion is dominant in the ∆g time series, therefore
even a small calibration error in fuel mass loss can lead to large variations in the
residual drift. We choose to use the fit in Fig. 5.6 to find, a posteriori, optimal
values for κt and κb, optimizing the fit goodness. The resulting κs are compatible
with 1 within 10%, consistently with calibration results. Therefore, we find this
procedure adequate. Even if the κs were slightly different, conclusions and physical
interpretations would still remain unchanged.

For completeness, Fig. 5.4 on the left panel, and 5.6, also show (light points) the
results with κt = κb = 1. The fit slope in Fig. 5.6 would be (1.70 ± 0.04) × 1018 s m−1,
and the difference with the line in Fig. 5.6 would not be visible by eye.

We highlight that, within uncertainties, ξT = ξt, which we call ξ. We point
out that ξT and ξt have been found independently. This observation supports a
proportionality between the DC value ∆gDC and the Brownian which, ultimately,
hints at proportionality between ∆gDC and pressure. Recalling the proportionality
between Brownian and (water) pressure in Eq. (5.5),

∆gDC = ξ SB + ∆g0,k = ξ
∂SB,∆g

∂PH2O
PH2O + ∆g0,k, (5.14)
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Figure 5.6: Plot showing a linear relation between ∆ġ = ∂∆g/∂t and the derivative ∂SB/∂t.
The linear fit slope is ξt = (1.67 ± 0.04) × 1018 s m−1. Purple points represent data with fuel
mass loss calibration corrections κt, κb. Dark yellow points represent non-corrected data
κt = κb = 1.

where ∆g0,k is an integration constant, which might be different in different runs, and
does not affect our analysis.

A static acceleration ∆gDC , proportional to pressure PH2O, can easily be interpreted
as a static pressure unbalance, i.e. a constant ratio between pressure on the positive
TM faces and the negative TM faces. This mechanism would give a reason why the
static acceleration decreases along with pressure. In formulas,

∆PH2O
PH2O

= ξM

L2
∂SB,∆g

∂PH2O
= (4.6 ± 0.3) × 10−3 (5.15)

where M and L2 are the TM’s weight and face area. We note that, as LPF provided
differential measurements, ∆PH2O/PH2O is to be intended as an average between
the two GRS. Since the GRSs were geometrically nominally identical, however, it is
straightforward to think that the difference could be small. We also notice that this
ratio assumes that the outgassing element is water; if that is not the case, it would be
slightly different.
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5.4 Conclusions on the GRS outgassing environment

Summarizing the analyses presented in this chapter, we found a number of mechanisms
relating residual gas pressure around the TMs to other measurable dynamical quantities.
These mechanisms allow to analyze pressure evolution and the outgassing environment
inside LPF’s vacuum chambers, which would otherwise not be accessible, because of
the absence of traditional pressure gauges.

Through the analysis of the Brownian white-noise plateau, we find it to be an
excellent proxy of gas pressure and outgassing rate, for all ordinary runs. Small devia-
tions from a power-law behavior before Feb17 are confidently ascribed to temperature
variations; such behavior is confirmed also during the cooldown to 11 ◦C, and is not
influenced by the cooldown to 0 ◦C. Cold runs and DRS runs, however, show an excess
white noise, not ascribable to pressure effects. Rather, we find it likely that a) white
noise in cold runs could be affected by the presence of unsubtracted glitches, and that
b) white noise in DRS runs could be spoilt by the activation of the DRS thrusters.
By fitting the measured evolution of Brownian noise, we find some properties related
to the outgassing environment.

1. We find that pressure follows the model

P (T, t) = Ae−Θ/T
(

tv

t − tv

)γ

, (5.16)

with an activation temperature Θ and an exponent γ. Such a time dependence
is often observed in vacuum systems, and could be modeled as desorption from
a reversibly adsorbed surface monolayer.

2. The activation temperature Θ = (6.9 ± 0.2) kK, corresponding to an activation
energy (57 ± 2) MJ/kmol, is generally compatible with the desorption of water
from metal.

3. The decay exponent γ = (0.78 ± 0.02) is also compatible with emission of water
from metal. Usually, experiments yield γ values ranging from 0.7 to 2.0 [69],
strongly depending on the emission mechanism. A single monolayer could be
modeled to follow a power law ∝ 1/t; however, a different exponent could be due
to more complex desorption [68, 69], and it is not rare. If outgassing was due to
diffusion from bulk, rather than a surface adsorbed layer, pressure would follow
the law ∝ 1/t0.5. Therefore, an exponent of the order of 0.8 is understandable.

4. We find that the venting time, occurring on 62.4 DAL, is compatible with the
starting time of the decaying power law. This hints that the major outgassing
sources were located within the vacuum enclosures. Another option would be
that sources were located outside the VE valve, but such sources would show a
decay starting time occurring on DAL 0.
A possible location for the outgassing sources could be the cables located
inside each VE, which expose a large area in front of the x TM faces. Even
though, in most cases, outgassing from polymers follow more complex evolution
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functions, also showing power-law exponents higher than 2, measurements are
still compatible with our hypothesis. Indeed, measurements on the LPF flight-
model cables, performed at CERN, showed that an emission following a ∝ 1/t

behavior is possible. Other options include the W IBM, the Mo EH, or a
combination of them.

5. Finally, we find a correlation between the observed Brownian evolution and the
observed long-term ∆g drift, and provide a possible mechanism at the basis of
such correlation. Indeed, the presence of a static pressure unbalance between
the two x sides of the TMs would generate a static force decaying along with
Brownian noise, as Brownian is proportional to pressure.
To support this hypothesis, we find two relations showing direct proportionality:
∂∆gDC/∂t ∝ ∂SB/∂t and ∂∆gDC/∂T ∝ ∂SB/∂T , which point at ∆gDC ∝ ∂SB.
We estimate a pressure unbalance ∆PH2O/PH2O = (4.6 ± 0.3) × 10−3.
A discussion on the findings of this chapter is postponed to Sec. 8.2.
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6
Force noise decorrelation and
performance projection
Identification of contributing effects, time series decorrelation,
subtraction, and noise projection for LISA

In the previous chapter, we ascribed the white-noise plateau, and its evolution in
time, to the Brownian noise due to the collision of residual gas particles with the TMs.
Noise at higher frequencies is already confidently ascribed to interferometer position
noise. In this chapter, we focus instead on the sub-mHz frequency band. We have
shown in Sec. 4.3 that the detected sub-mHz noise is caused by real forces acting on
the TMs, hence it is related to some physical quantities causing such forces.

Our purpose, here, is to understand which sources and mechanisms contributed
the most to the measured acceleration noise, and to rule out sources that do not play
a relevant role in it.

First, we make a list of some mechanisms which may potentially generate forces on
the TMs, and estimate their potential impact on LPF’s science measurements. Some
of these effects are related to physical quantities monitored onboard LPF. Data series
of these quantities are available as telemetries, measured simultaneously to ∆g. Some
other mechanisms, though, are not associated with any measured time series, and
their impact must be estimated differently.

We treat the two cases separately. Wherever time series measurements are avail-
able, we apply the decorrelation algorithms described in Chapter 3. This allows us,
on the one hand, to estimate correlations and to estimate the impact of the related
effects to ∆g. On the other hand, it also allows us to estimate the coefficients, “sus-
ceptibilities”, coupling the time series and acceleration. Such coefficients are often
important physical parameters. We analyze a subset of very-long runs, distributed all
over the entire mission.
The approach to mechanisms not associated with measured telemetries is completely
different. Informed by observations in dedicated experiments, or based on experiments
performed on-ground before or after flight, we estimate the contribution to the accel-
eration noise. Wherever possible, we give the best-estimate values of the contribution.
Otherwise, we estimate them in the worst-case scenario.

Finally, we give a final overview summarizing sources contributing to LPF low-
frequency noise, and estimate the excess. Results from this chapter will also be
presented in [5].
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6.1 Physical modelization, assumptions, and methods

The modelization is analogous to what is presented in Chapter 3, and follows closely
the nomenclature presented there. First, we note that all the effects that we consider
can be effectively linearized, and modeled, as follows.

Let’s assume that a time series yi(t), measured simultaneously1 to ∆g(t), is related
to an effect generating force on TM(s). The time series yi(t) are a priori affected
by noise, likely readout noise, so that they are composed of true signals zi(t) and
noise-only components ni(t). The differential acceleration, on the other hand, is
composed of ∆g0(t), unrelated to the considered sources, and the contribution from
each source. Each source contributes to TM acceleration through a coupling coefficient,
αi, constant in time and real-valued. In formulas, the model reads∆g(t) = ∆g0(t) +∑

i αizi(t)
yi(t) = zi(t) + ni(t)

(6.1)

In the first equation, we state that ∆g(t) is contributed by all the i signals, in particular
by their true-signal components zi(t). Each signal couples to acceleration through
the susceptibility αi, which is assumed to be constant in time. In addition to the
true signals, ∆g(t) is also contributed by a residual ∆g0(t), not related to any of the
signals zi. The meaning of the second equation is that the measured signals yi(t) are
contributed by both the real zi(t) and the readout noises ni(t). The model implicitly
allows the signals zi(t) to be cross-correlated. Readout noises, on the contrary, are
assumed to be independent, and, obviously, not to contribute to force noise.
The susceptibilities α are real-valued and time-independent numbers, so that their
Fourier transform α(f) is real-valued. This has a lot of useful consequences, as
analyzed in Chapter 3.

6.1.1 Model identification

The model in Eq. (6.1) is well-representative of all the effects that we take into
account. However (see Sec. 3.4), it can not be applied as is. The reason is that this
full model, including as unknown variables both the susceptibilities and the readout
noises, can not be implemented when decorrelating more than two time series, because
of mathematical issues. Some additional simplifications are instead required.
The assumption that we make is that the readout noise affecting the signals is negligible,
i.e., that yi(t) ∼ zi(t).
The model reduces to

∆g(t) = ∆g0(t) +
∑

i

αiyi(t) (6.2)

1Our method requires that the time series yi(t) and ∆g(t) are measured simultaneously, at the
same time stamps. However, if it is not the case, time series can be interpolated at the time stamps of
the more frequent series. For example, temperature T was measured with a frequency fs = 1/4.8 Hz,
whereas acceleration was sampled at 10 Hz, hence we interpolated T at 10 Hz. At the sub-mHz
frequencies of interest, the PSD of the interpolated and the non-interpolated time series do not show
relevant differences.
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The assumption of no noise will be justified in the following. For now, we note that
this model is suitable for all the considered effects: thermal gradients, magnetic fields,
and imperfect actuation digitization. To some extent, also to fuel depletion, mean
temperature, and instrument distortion. In such cases, particularly in the first two,
the absence of strong readout noise is observed in measurements: the system included
multiple independent sensors showing a correlation high enough to conclude that
readout noise is negligible. The case of imperfect digitization is even better, as the
corresponding time series are deterministic and have no intrinsic readout error.

In the majority of these cases, the susceptibility αi is not known, as there is no
confident estimate of it. With our analysis, we estimate the residual after decorrelation
and the susceptibility.
After applying the model, we analyze to what extent the presence of readout noise
might have affected the time series, and the subsequent result.

We analyze separately the first frequency bin, 18 µHz, studying the impact of
thermal effects on it. As we note later, temperature effects are the major noise sources
affecting very-low frequencies, with a considerable impact. For that analysis, we apply
the single-frequency method decorrelating temperature, to better estimate its impact.

6.2 Physical sources, coupling mechanisms

First, we list the available time series known to be coupling with TM acceleration. For
each time series, we also describe the coupling mechanism, and, possibly, the expected
susceptibility.

Magnetic fields. The interaction with the magnetic fields is another effect to be
taken into account. LPF’s test masses, because of a residual diamagnetic behavior,
interact with the surrounding magnetic fields [72–74]. Without going into the details,
different strategies were implemented to reduce this effect as much as possible, such
as reducing the TM magnetic susceptibility and the magnetic moment, and reducing
the onboard-generated magnetic fields and gradients. TMs generally interact with
magnetic fields through the Lorentz force formula

F =
∫

V
(M · ∇B + J × B) dV. (6.3)

The first term contains magnetization terms, whereas the second term describes the
effect of currents within the TM bodies. The magnetic susceptibility of the TMs has
been measured χ ∼ −2.5 × 10−5, and the magnetic moment is zero within instrument
error 4 nA m2 [15]. A few considerations lead us to a usable expression of the magnetic
force:

1. Accounting for all the potential magnetic interaction mechanisms, and estimating
their magnitude [72], it is possible to conclude that the most relevant contribution
comes from the induced magnetization. Force on a single test mass, along x,
reads

Fx =
∫

V
M · ∂xB dV = χ

µ0

∫
V

B(t) · ∂xB(t) dV, (6.4)
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where µ0 is the vacuum magnetic permeability, and ∂xB the magnetic gradient
along the x direction. In the last step, we have fully introduced the time
dependence.

2. Magnetic field and its gradient along x have been measured onboard, with
four tri-axial magnetometers located in the spacecraft, on the xy plane, about
15-20 cm from the TMs. The four magnetometers show consistent results, highly
correlated below ∼ mHz frequencies. Moreover, the measured magnetic fields are
compatible with measurements of other missions located in L1, such as NASA’s
DSCOVR. This shows that B(t) is confidently dominated by the interplanetary
magnetic field. The magnetic gradient, on the contrary, is dominated by local
sources, as the large-scale interplanetary magnetic gradient is negligible.

3. Linearizing the previous force expression to the first order, and expressing it as
differential acceleration, it reads

∆g(t) = χL3

Mµ0
(∂xBDC,2 − ∂xBDC,1) · B(t). (6.5)

L and M are the TM side length and mass, B(t) is the average measured
magnetic field, ∂xBDC,i is the average static magnetic gradient at the location
of TMi, averaged over the TM x-surfaces.

Equation (6.5) describes the linearized interaction of the (3-D) magnetic field with
∆g, and defines the corresponding susceptibilities αBx , αBy , αBz :

αBζ
= χL3

Mµ0
(∂xBζ,DC,2 − ∂xBζ,DC,1), ζ = {x, y, z} (6.6)

Nevertheless, there is no reliable measurement of the susceptibilities, as there is no
precise measurement of the magnetic gradient at the TM locations. Despite magnetic
gradients of the order of 600 nT m−1 have been measured at the magnetometers’
location, gradients at the TM location might be different because of the presence of
magnetic thermistors on the EHs. Magnetometers were located too far away from
the TMs to properly measure the local magnetic gradients. Reference [72], however,
estimates that magnetic gradients at TM location of the order of 10 µT m−1 could be
plausible.

The time series Bx(t), By(t), and Bz(t) are built averaging the measurements
of the four magnetometers. Regarding the impact of readout noise on the average
magnetic field, the single-measurement time series show a high correlation below mHz
frequencies, suggesting that the readout noise is negligible.

Mean temperature and thermal gradients. Temperature is known to be related
to a number of effects inducing stray forces on the TMs. Both the average temperature
and its spatial gradient [44, 71] are indeed related to force-inducing effects.
Thermal effects are primarily associated with the outgassing from the internal surface
of the VEs. As widely described in the previous chapter, outgassing decreased over
the course of the mission, hence the incidence of thermal-induced forces is expected to
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decrease in time. Indeed, we will note that it was at its maximum during the first
months of the mission, and decreased thereafter.

Within each GRS, eight thermistors were located on the outer EH faces, four on
the x− faces, and four on x+, with a sensitivity of about 10 mK Hz−1/2 at 20 µHz.
Also, differential measurements were available, performed with Wheatstone bridges
among sensors on opposite faces. The differential channels allowed for improved
sensitivity to temperature gradients, down to 0.1 mK Hz−1/2 at 20 µHz. We also find
that the differential measurements are sufficiently sensitive across the entire sub-mHz
band. Single thermometers, on the other hand, lose coherence above 30 µHz, where the
electronic noise becomes limiting. However, its PSD is so steep (∝ f−7.2 [44], which
also includes the PSD of the readout noise, much steeper than the f−2 low-frequency
branch of ∆g) that its impact on frequencies > 36 µHz is generally negligible. It
follows that, if on the one hand, it is true that noise at 18 µHz is explainable with
thermal effects, it becomes quickly negligible at higher frequencies.

Averaging measurements from the sensors, we build the mean temperature time
series T (t), and the two time series of the differential measurements, ∆T1(t) and
∆T2(t), respectively referring to GRS1 and GRS2. The contribution of temperature
to ∆g eventually reads∆gT mean(t) = αT T (t)

∆gT grad(t) = α∆T1 ∆T1(t) + α∆T2 ∆T2(t)
(6.7)

The susceptibilities are not precisely known, only estimations are available. After
decorrelating, we will however compare the resulting αT with the one from the linear
fit in Chapter 5. Given the nature of the time series and the impact of readout noise
on T (t), we include thermal effects as follows:

• We consider thermal gradients among all the other time series in the multi-
frequency setup, as their noise is negligible in the analyzed frequency band. We
expect to find susceptibilities of the order of 10 pm s−2 Hz−1/2. We implicitly
assume that the time delay between thermal gradients and the induced forces is
negligible: indeed we find that the role of thermal gradients is negligible, hence
a phase-shift would not make a relevant difference.

• We also include the mean temperature in the multi-frequency analysis. Even
though it is affected by readout noise, we already analyzed that the application
of the no-noise model to cases with readout noise can not lead to overestimation
of the contribution or the susceptibilities (Sec. 3.6.2): if the contribution itself is
negligible, the presence of noise will also lead to a negligible estimate. The impact
of the mean temperature is expected to be dominant at the first frequency.

• We analyze separately the first frequency, 18 µHz, studying the impact of thermal
effects on it. Indeed, thermal effects are dominant at lower frequencies, making
it meaningful to treat them separately. We compare susceptibilities with the
ones we find in the DC analysis.
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Imperfect digitization of actuation waveforms. This effect is a direct conse-
quence of LPF’s imperfect actuation digitization [47]. LPF’s actuation digitization
scheme was affected by a slight round-off error, affecting all the 24 GRS electrodes,
and altering the quasi-sinusoidal actuation waves. This resulted in the application
of unwanted low-frequency voltages δVi(t) on the electrodes, of the order of ∼ µV.
The effect has been identified and characterized, and the time series δVi(t) have been
produced with reverse-engineering methods. Since δVi(t) is deterministic, there is no
associated error.

Quasi-static voltages generate force, coupling to the TM voltage and hence to the
TM charge, which is linearly varying in time. The TM charge follows q(t) = q0 + q̇t.
A possible model, including both constant and linear terms, would read

∆g(t) =
∑

i∈[1,24]
ai δVi(t) +

∑
i∈[1,24]

bi t δVi(t) (6.8)

To reduce the number of free parameters, we introduce a few simplifications. First, we
only consider x electrodes, neglecting the y and z ones2. Second, in the time-varying
part, we only consider its contribution through the effective potentials δ∆x,j(t). These
are defined, as usual, by combinations of the voltages on the four x electrodes on the
x faces: δ∆x,j = (δVx1,j + δVx2,j − δVx3,j − δVx4,j), where j is an index indicating the
corresponding GRS. The model reads

∆g(t) =
∑

i∈[1,8]
αi δVx,i(t) +

∑
j∈1,2

βj t δ∆x,j(t) (6.9)

The susceptibilities αi are not known. The susceptibilities βj can however be forecast,
since they are related to the charging rate by

βj = (−)j+1 q̇j

CT

∣∣∣∣∂Cx

∂x

∣∣∣∣ (6.10)

We will make a comparison in the end between q̇j from our fit and from measurements.
As the posteriors for q̇1 and q̇2 are expected to be similar, as measured in charge
experiments [26] and discussed in Sec. 6.3, we make a further simplification of the
model, unifying q̇1 and q̇2 as

∆g(t) =
∑

i∈[1,8]
αi δVx,i(t) + β t (δ∆x,2(t) − δ∆x,1(t)) (6.11)

However, we separately check that the posteriors of q̇1 and q̇2 are really compatible.
With these simplifications, imperfect digitization is modeled with 9 time series.

Instrument distortion. This is the well-known mechanism already described in
Sec. 2.2.6, which induces gravitational force because of the µm deformation of the

2However, we also estimated the contributions of the y and z in a previous version of this analysis,
finding that it is not relevant. Rather, including them would require a high number of parameters,
which is not desirable.
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GRS structure. We recall that the deformation induces ∆g noise through

∆g = −ω2
d(∆xGRS − ∆xOMS). (6.12)

The stiffness, ω2
d, is known to be −3.32 × 10−7 s−2 with 1.5% accuracy, hence it

is practically known exactly. Additional readout noise is, on the other hand, not
completely known.

The readout noise of this time series is dominated by the electronic noise in ∆xGRS,
needing more attention. When we first applied the estimation method with the time
series (∆xGRS − ∆xOMS) ∼ ∆xGRS, we got a result showing a high level of correlation
between ∆xGRS and ∆g, peaking at about 0.1-0.3 mHz. Such a correlation might
hint at a high impact of instrument distortion on TM acceleration. We note that,
fortunately, that is not the case: a correction, which we describe here, leads to different
results. In Fig. 6.1, we show the ASD of ∆xGRS, before and after that correction.

Figure 6.1: Estimated PSD of instrument distortion ∆xGRS, run Feb17B. This estimate is
valid only at very low frequencies, as it is presumably affected by electronic readout noise in
the LISA Band. We observe how the correction presented in the text is effective in correcting
the spurious noise correlation to ∆g.

The time series ∆xGRS has been obtained as a linear combination of four measure-
ments from four electrode pairs, two for each TM, x1i and x2i. For the i-th GRS,
the position xi is obtained as xi = (x1i + x2i)/2. The same capacitive bridges are
used to measure rotations, as ϕi = (x1i − x2i)/(2r0), where r0 is an effective arm of
11.15 mm. Measurements from xj1 and xj2 were handled by different boards. We note
that ∆xGRS could be measured, equivalently, by

∆xGRS ∼ (x21 + x22)
2 − (x11 + x12)

2 ∼ (x21 − x11) ∼ (x22 − x12). (6.13)

The last two combinations provide two ways to evaluate ∆xGRS which do not use
all four bridge measurements. In principle, the three combinations should provide
equivalent measurements, with the advantage of the first one to reject angular motion.
Nevertheless, we note that the third combination is affected by a strong spurious
cross-noise with ∆g, which is likely cross-talk between sensing and actuation, hence
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not representing any GRS displacement. Therefore, we use a two-bridge corrected
combination for ∆xGRS:

∆xGRS ∼ ∆xGRS + r0∆ϕGRS ∼ (x21 − x11). (6.14)

For coherence, we also subtract (∆xOMS + r0∆ϕOMS), even though it does not make
any relevant difference.
We include this time series in the analysis, but we analyze its readout noise later, see
point 4 on page 118.

Fuel depletion. Gravitational force from fuel depletion might induce in-band noise,
if the mass loss spectrum has some components in the science frequency band. This is
the same mechanism described in Sec. 2.1.4. In Sec. 5.3 we showed that it contributes
the most at zero-frequency, as a quasi-static DC drift. The induced acceleration
∆gF (t) has already been computed from the fuel mass loss time series, hence the
expected susceptibility is known to be κtκb ∼ 1 within 10%. Here, the κs are the
calibration coefficients described in the previous chapter. The time series ∆gF (t) is
well known, but its additional noise, related to the flowmeter noise, is unknown at
LISA-band frequencies. We include this time series in the analysis, but we analyze its
readout noise later, see point 4 on page 118.

6.3 Multi-frequency decorrelation

Among the time series that we include in the multi-frequency decorrelation set, we list:
the average magnetic field vector (3 time series), thermal gradients (2 time series),
mean temperature (1 time series) imperfect digitization time series (9 time series),
fuel mass depletion (1 time series), instrument distortion (1 time series). We apply
the multi-frequency decorrelation method described in Sec. 3.6, decorrelating these 17
time series in the frequency band [18 µHz–0.77 mHz].
Before proceeding, we need to highlight a few points:

1. It is essential that the number of available periodograms exceeds the number
of decorrelated signals, to make the result significant. Moreover, if one wants
the Wishart distribution to be satisfied at single frequencies, it is necessary that
the number of periodograms available at each frequency exceeds the number
of decorrelated time series. Moreover, including frequencies above mHz is not
necessary, as they are dominated by Brownian noise.

Given these observations, we restrict the application of the decorrelation to the
longest runs, > 8.6 d – Apr16A, Nov16B, Dec16B, Feb17B, Jun17. We identify
as Jun17 the union of Jun17A and Jun17B, which is possible as the two runs
were performed in similar experimental conditions, and showed a similar noise.
In run Feb17B, the frequency band [18 µHz–0.1 mHz] contains 61 periodograms,
and the entire [18 µHz–0.77 mHz] contains 538. The shortest run of this set,
Nov16B, contains 38 periodograms below 0.1 mHz.
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2. We apply the decorrelation algorithm, with an MCMC method estimating the
posteriors for the residual noise and real-valued susceptibilities. We use a slightly
modified version of the likelihood in Eq. (3.49): we parametrize the residuals,
S∆g0,f

, as being composed of a frequency-independent Brownian noise SB and a
frequency-dependent excess SE,f , so that

S∆g0,f
= SB + SE,f (6.15)

This parametrization allows us to properly estimate the residuals, intended as
residuals after decorrelation of the selected time series and the Brownian noise.
As a prior for the Brownian SB, we employ the posterior that we found in
the Brownian evaluation analysis, Sec. 4.1. We employ a log-flat prior for the
residual PSDs and the Brownian PSDs, and flat priors for the αs.
Overall, the model reads (see Eq. (3.49)):

p(α,SB, {SE}) ∝

∝
∏
f

1
S

Mf

∆g0,f

exp
[
−η · Wf · ηT

S∆g0,f

]
× pr(SB) × 1

SB

1
SE,f

,
(6.16)

where S∆g0,f
= SB + SE,f and η = (−1, α).

3. Decorrelating, we find an estimate of the residuals and the susceptibilities. In
addition to these, we estimate the contribution of each block of sources as
described in Eqs. (3.51) and (3.52). Namely, blocks are: the 3 time series of the
magnetic fields; the mean temperature; the 2 time series of thermal gradients;
the instrument distortion; the fuel depletion; the 9 time series of imperfect
digitization.

We proceed as follows:

1. First, we apply the decorrelation algorithm to eight frequencies, in the band
[18 µHz – 0.77 mHz], decorrelating all 17 time series previously described. We
employ the presented procedure, even including those frequencies whose number
of periodograms is lower than the number of decorrelated time series.

2. We apply the decorrelation algorithm to all runs, decorrelating all 17 time series,
including only those frequencies with a number of periodograms higher than
the number of decorrelated time series, hence satisfying the Wishart condition
Mf ≥ p. This means that we perform the analysis starting from 100 µHz, except
for Dec16B, which is longer and allows us to start from 60 µHz. This is intended
as a test of the validity of the previous analysis; we find compatible results.

3. We apply the decorrelation algorithm to the longer runs, Dec16B, Feb17B, Jun17,
decorrelating only the disturbance time series (8 time series). These runs have
at least 9 periodograms at the lowest frequency, hence always satisfying the
Wishart condition on the entire frequency band.
Again, this is intended as a test of the validity of the first analysis, and we find
compatible results.
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4. At last, we apply the decorrelation algorithm to run Dec16B, decorrelating only
the imperfect digitization time series. This is the only run for which it is possible
to have Mf ≥ p over the entire frequency band, hence we can use this run to
check the validity of the decorrelation of imperfect digitization in the first case.
Again, we find compatibility.

6.3.1 Multi-frequency decorrelation below 1 mHz

As always, we take as a representative example run Feb17B, which we show in Fig. 6.2.
We show the result of the multi-frequency decorrelation, the measured S∆g excess over
Brownian. Moreover, we estimate the contribution of the individual blocks of time
series, wherever possible (Eq. (3.52)), and the total contribution from the considered
sources, wherever all individual contributions can be calculated. We note that the
residuals after decorrelation (red points) almost completely overlap with the original
signal, confirming that these sources have a negligible contribution to S∆g, in this run.
The highest contribution fraction is found at 18 µHz, and, as we noted previously, is
related to a (relatively) high correlation with the mean temperature. We postpone
this discussion to Sec. 6.4, where the first frequency bin is discussed in more detail.

Figure 6.2: Results of multi-frequency time series decorrelation of the reference run Feb17B,
in the frequency band [18 µHz–0.77 mHz]. Grey points represent native data, and red points
represent the residual after decorrelation. Light points represent the individual contribution of
each source, shown wherever possible to calculate. Dark blue points represent the estimates of
the total contribution from the considered sources, shown wherever all individual contributions
were available. We note that, in run Feb17B, the major contribution is found at 18 µHz, and
is related to the correlation to mean temperature.
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In Fig. 6.3, we provide the posterior susceptibilities, as histograms of the posterior
samples from the MCMC chains. The top left panel shows the magnetic susceptibilities
αBζ

, also expressed as average magnetic gradients through ∂xBζ/αBζ
= (Mµ0)/(χL3).

The top central panel shows the susceptibility αT , and the top right panel shows
the thermal gradients susceptibilities α∆Ti

. In the bottom panel, we show the mean
charging rate q̇, computed from β as in Eq. (6.10).

Figure 6.3: Posterior susceptibilities from the MCMC chains of the time series decorrelation,
run Feb17B, probability distributions [a.u.]. The top left panel shows susceptibilities of the
magnetic fields, proportional to the average magnetic field gradients. The top central and the
right panel show, respectively, the susceptibilities of the average temperature and the thermal
gradients. The bottom panel shows the mean charging rate q̇, calculated following Eq. (6.10).

We make a few observations:

1. Susceptibilities αBx and αBz are compatible with zero, within 2σ ∼ 4 fm s−2 µT−1.
On the contrary, αBy is not: its estimate is αBy = (−7.9 ± 2.4) fm s−2 µT−1,
which is significantly different from zero at more than 3σ. This susceptibility
corresponds to an average magnetic field gradient ∂xBy = (−7.9 ± 2.4) µT m−1,
which is reasonably compatible with the expected gradient generated by the
thermistors on the EH (of the order of 10 µT m−1 [72]).

2. The susceptibility αT is compatible with zero, but it is also compatible with the
value measured from the quasi-DC evaluations, within 1σ (see Fig. 5.4).
The susceptibility of thermal gradients is compatible with the expected order-of-
magnitude estimate.

3. The average charging rate is compatible with expectations. In addition to
the presented estimations, we also estimated the single TM charging rates,
without averaging δ∆x in Eq. (6.11). The estimated rates, q̇1 = (19 ± 14) e s−1

and q̇1 = (24 ± 14) e s−1, are consistent with the measurements from charging
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experiments, respectively (22.9 ± 2) and (24.5 ± 2) e s−1, though with a larger
error bar.

4. Readout noises: fuel and distortion. Noisy time series, i.e. fuel depletion,
instrument distortion, and temperature, need further explanation. In Sec. 3.6.2,
we studied the effect of the presence of readout noise on the decorrelation
efficiency and parameter estimation. The main result was that, if a time series
is affected by readout noise, the estimated susceptibility and the estimated
contribution drop proportionally to the noise fraction. Indeed, this is exactly
what we find for fuel depletion and instrument distortion. For instance, in the
case of fuel depletion we find αF peaking at about 0.5, instead of the expected
0.92. This would mean that a fraction ∼ 40% of the measured PSD is due
to readout noise. The same is true for instrument distortion, which yields an
estimated ω2

d, which is less than 1/3 of the known one.
Following this observation, we find that the estimation of the contribution of
fuel depletion and instrument distortion in Fig. 6.2 is biased, giving results
systematically lower than the real ones.
A more realistic estimation of the contribution of these two sources with noisy
readouts can be carried out with some tools developed in Sec. 3.6.2. In particular,
let’s focus on the single-frequency case, and let’s suppose that we need to
decorrelate a signal Szz. The problem of estimating the contribution is that a)
we do not have access to the true signal Szz, but rather to its noise-corrupted
version, Syy = (Szz +Snn), and b) we do not have access to the true susceptibility
α, but rather to its corrupted version α(∗). We proved that the estimation of α

in case of noise leads to the noise-corrupted version

α(∗) = α
Szz

Szz + Snn
(6.17)

We use the last result to our advantage. Indeed, for these two cases we do have
access to the true susceptibilities, which we know from calculations.
We can rewrite the true contribution as follows:

Scontr = α2 Szz = α αSzz = α α(∗) Szz + Snn

Szz
Szz = α α(∗) Syy (6.18)

According to this equation, the errors in the estimation of α and Syy compensate,
so that in the end Scontr is a good estimate of the noise contribution. This means
that a valid estimate of the true contribution to noise can be obtained using the
noisy-corrupted estimations α(∗), and Syy, provided that the true susceptibility
α is reasonably known a priori. In our case, it is exactly what happens for the
instrument distortion and fuel depletion time series. However, this only applies
in the single-frequency case.
In Fig. 6.4, we make a comparison, for the single-frequency case in run Feb17B,
comparing the straightforward calculation, careless of the presence of readout
noise, and the result in Eq. (6.18). We estimate α(∗) and Syy with numerical
tools, using the usual likelihood in Eq. (3.49). The light points represent the
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ideal-case calculation, careless of the presence of readout noise, and the darker
ones represent our better estimate.

Figure 6.4: Estimated contribution from noisy time series ∆xGRS and ∆gF (left panel and
right panel, respectively), run Feb17B. The light points represent the calculation careless of
the presence of readout noise, while the darker ones represent our better estimate, following
Eq. (6.18). Red and grey points have the same meaning as in Fig. 6.2.

First, looking at the contribution of fuel depletion, we note that the better
estimate is indeed higher than the previous one, as expected. The resulting
estimate of the noise contribution is lower than the observed excess, and the
conclusion is the same as with the previous analysis.
Instrument distortion is a bit different. Except for a feature at 0.1 mHz, the
overall contribution is lower than 10% power at all frequencies ≥ 36 µHz, and
can not explain the 1/f dependence of S

1/2
∆g (f). We observe that the feature at

0.1 mHz is due to a negative susceptibility at that particular frequency, causing
incompatibility with our noise model. We think that that feature might have
the same spurious cross-talk origin observed in the other ∆x capacitive channel:
in that case, the latter model (dark orange) would apply for the estimation. If
this were not the case, and that was effectively a force disturbance, then the
ideal-case model (light orange) would apply: in that case, this contribution
would however account for no more than 25% power, localized at 0.1 mHz.
In the following, analyzing other LPF runs, we include ∆xGRS and ∆gF as we
did previously in Fig. 6.4.

5. Readout noises: temperature. Temperature falls into this category too, for
frequencies higher than 36 µHz. The main difference with the previous two cases
is, however, that noise is irrelevant at 18 µHz, which effectively constrains the
susceptibility. This means that the estimated contribution at higher frequencies
can be intended as an upper limit, mainly contributed by noise. Since its effect is
already negligible, we conclude that temperature is negligible, even considering
the presence of readout noise.
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Other long runs – decorrelation and susceptibilities

In the next few pages, we show the results of the time series decorrelation of the long
runs Apr16A, Nov16B, Dec16B, and Jun17. The conclusions are globally unchanged:

1. The magnetic susceptibility αBx is always compatible with zero. As in run
Feb17B, αBy is globally not compatible with zero, and a slight deviation from
zero of αBz is also noted in run Nov16B. The measured values are consistent with
the scenario that thermistors are the major contributors to DC magnetic field
gradient at TM locations, with magnetic gradients of the order of 10 µT m−1.

2. The thermal susceptibility αT is compatible with the quasi-DC linear fit, as in
Fig. 5.4. However, uncertainties are always larger than those from the linear fit.

3. The average charging rate, calculated from the susceptibility of the imperfect-
digitization time series, is compatible with results from charging experiments.

4. Temperature always has a large contribution to the measured PSD in the first
frequency bin. This is discussed further in the next section.
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Figure 6.5: Results of multi-frequency time series decorrelation of runs Apr16A and Nov16B,
in the frequency band [18 µHz–0.77 mHz]. Grey points represent native data, and red points
represent the residual after decorrelation. Light points represent the individual contribution of
each source, shown wherever possible to calculate. Dark blue points represent the estimates of
the total contribution from the considered sources, shown wherever all individual contributions
were available.
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Figure 6.6: Results of multi-frequency time series decorrelation of runs Dec16B and Jun17,
in the frequency band [18 µHz–0.77 mHz]. Grey points represent native data, and red points
represent the residual after decorrelation. Light points represent the individual contribution of
each source, shown wherever possible to calculate. Dark blue points represent the estimates of
the total contribution from the considered sources, shown wherever all individual contributions
were available.
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Figure 6.7: Posterior susceptibilities from the MCMC chains of the time series decorrelation,
runs Apr16A, Nov16B, Dec16B, Jun17. Probability distributions [a.u.]: magnetic fields,
average temperature, and thermal gradients.
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6.3.2 Decorrelation – Wishart distribution check

We provide, for comparison, the results of the decorrelation of the full set of 17 time
series, only in the cases for which Mf ≥ p for all frequencies f . We provide results
for run Dec16B, starting from 60 µHz, and Feb17B, starting from 100 µHz. We also
analyzed runs Apr16A, Nov16B, and Jun17, always finding full compatibility with
results in the complete case.

Figure 6.8: Check of the validity of the full-band result, runs Dec16B and Feb17B. We
decorrelate the entire set of 17 time series, only on frequencies for which the number of
periodograms is greater than 17. We find full compatibility with results in the complete case.
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6.3.3 Decorrelation of non-electric disturbances

We provide, for comparison, the results of the decorrelation of the set of 8 time
series, only including non-electric disturbances (magnetic fields, temperature, thermal
gradients, fuel depletion, and instrument distortion), excluding imperfect digitization
time series. This way, the condition Mf ≥ p applies for all frequencies f , in runs
Dec16B, Feb17B, Jun17. We provide results for run Dec16B and Feb17B. We find full
compatibility with results in the complete case.

Figure 6.9: Check of the validity of the full-band result, runs Dec16B and Feb17B. We
decorrelate the subset of 8 time series, only including non-electric disturbances, excluding
imperfect digitization time series. We find full compatibility with results in the complete case.
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6.3.4 Contribution of imperfect digitization

As a last check, we estimate the contribution of the imperfect digitization on run
Dec16B. This is the longest run, and the only one that allows us to decorrelate 9
time series at the first frequency, still satisfying the condition Mf ≥ p. We find full
compatibility with the previous results.

Figure 6.10: Check of the validity of the full-band result, run Dec16B. We decorrelate the
subset of 9 time series of imperfect digitization. We find full compatibility with results in the
complete case.

6.4 First bin decorrelation, thermal effects

We now analyze the first frequency bin, 18 µHz, separately. We noted that it is
interesting for the influence of the temperature time series, hence we only focus on
the decorrelation of temperature from it. There are a few reasons why it is better to
deal with this bin separately. The main reason is that, as we noted, time series other
than temperature have a negligible influence on ∆g, especially at the lowest frequency,
so we do not need to include them in the analyses. This is a key point, since for the
single-frequency analysis it is necessary that the number of available periodograms
exceeds the number of decorrelated time series, and the number of periodograms
available at the first frequency is just a few units.
Additionally, decorrelation of a single-frequency bin can be done analytically, without
needing to resort to MCMC numerical methods. Assuming a real-valued susceptibility,
we use the result in Eq. (3.53).

Before decorrelating the mean temperature, we subtract the time series −ω2
d∆xGRS

and κtκb∆gF , which have deterministic effects on low-frequency values. However, a
posteriori, we note that their influence is not as relevant as temperature. As a last
note, we point out that there is no need to explicitly subtract Brownian noise, since it
is negligible at this frequency.
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Figure 6.11: First frequency bin (18 µHz), measured native PSD, and PSD after decorrelation
of the mean temperature. Only time series with more than 1 periodogram are shown (hence,
longer than 3.85 d), because of numerical reasons. In runs Jul16C and May17E, the residual
posterior is wider than the native S∆g, because just M ≤ 4 periodograms are available. After
decorrelation, residuals are broadly compatible with a unique excess, S

1/2
∆g,decorr(18 µHz) =

80+60
−20 fm s−2 Hz−1/2. Blue spans refer to colder runs.

In Fig. 6.11, we show the ASD S
1/2
∆g (18 µHz), before and after temperature decor-

relation, over the course of the LPF mission. We find that the decorrelation is more
effective at the beginning of the mission, a few months after venting, when pressure
was the highest. After decorrelation, residuals are compatible with a unique excess,
S

1/2
∆g,decorr(18 µHz) = 80+60

−20 fm s−2 Hz−1/2.
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6.5 Non-synchronous time series – noise projection

The last step in the analysis of the sources contributing to ∆g noise is the estimation
of the noise generated by quantities that are not related to synchronously measured
time series. We give estimates of the contributions from these sources, either based
on other LPF experiments, or on on-ground estimates. Depending on the case, we
give estimates, or worst-case estimates. Eventually, we compare the estimates with
the excess noise found by the decorrelations in the previous section, and estimate the
total explained noise power fraction.

First, we give a list of the effects that we consider here. In Figure 6.12, we provide
our best estimate for the reference run Feb17B.

Actuation gain fluctuation noise. Among all the effects taken into account, the
major source of noise in the LISA frequency band is gain fluctuation in the x-face
electrode voltages. The estimate, widely discussed in [23], is represented with blue
points. The estimation comes from an MCMC analysis performed on four 3-day runs
in May 2016, specifically runs May16C-D-E-F, performed with different actuation
configurations to isolate single-electrode contributions. Hence, the represented points
are an estimate of the actuation noise level in May 2016 with UURLA authority
settings; this is however well-applicable to the entire mission, as it is the best estimate
available, and the actuation authority is the same in runs that we consider.
In terms of the quantity S̃

1/2
∆g , defined in Eq. (4.4), actuation contributes with S̃

1/2
act =

(0.50 ± 0.03) fm s−2 Hz−1/2 in the frequency band [0.1 mHz, 1 mHz], accounting for
(30 ± 4)% of the measured excess noise.

Random charging noise. Random TM charging from cosmic rays is listed among
the noise sources, contributing as [26]

S∆g(f) =
( ∆x

MCT

∂Cx

∂x

)2
Sq(f), (6.19)

where Sq(f) = (2e2λeff)/(4π2f2) is the shot noise due to the Poissonian charging
process, presumably quite stable over the mission. What varies in time is the effective
DC potential ∆x, which depends on the compensation level in each run. In Feb17B,
the compensation vas maximal, therefore the contribution of random charging (yellow
line) was minimal. Even in the worse non-compensated cases, the estimated PSD of
random charging is negligible with respect to the measured S∆g.

Voltage fluctuation noise. Analogously to the case of random charging noise,
electrode voltage fluctuations couple to the TM rms charge, as

S∆g(f) =
(

qeff
MCT

∂Cx

∂x

)2
S∆x(f), (6.20)

where q2
eff = q2

rms,1 + q2
rms,2. The UV light charging system allowed to keep TM charge

as low as possible, making the contribution from this effect negligible. The noise
S∆x(f) is estimated in [23], and the corresponding ∆g noise is represented with orange
points in Fig. 6.12.
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Laser radiation pressure noise. The last effect that we take into account is
the radiation pressure generated by the interferometric measurement itself. The
measurement beam reflects off TM1 and TM2, with nominal power (respectively)
P1 = 2.4 mW and P2 = 1.2 mW, inducing outward forces on the test masses. Such
forces translate into a negative differential acceleration:

∆g(t) = − 2
Mc

(P1(t) + P2(t)) (6.21)

Any fluctuations in the laser beam power would then convert into acceleration noise,
with an expected coupling coefficient ∼ 3 pm s−2 mW−1. If the power hitting the TMs
fluctuated as 0.3 µW Hz−1/2(1 mHz/f), it would account for the entire observed excess
noise. However, LPF lacked a direct measurement of the optical power reflected off
the test masses, which is the power of the measurement beam. Instead, as noted in
reference [75], measurements combining the reference and measurement beams are
the only available time series. An additional difficulty arises from the discrimination
of the contribution of the two different light polarizations: in particular, the test
masses are hit by a substantial fraction of parallel-polarized light, which fluctuates in
power at low frequencies, and is not controlled as much in the power control loops.
In [75], a worst-case estimate of the acceleration noise in run Feb17B is provided.
As a dashed pink line in Fig. 6.12, we represent the worst-case contribution of laser
radiation pressure, as the 95% quantile of the estimated PSD.

Figure 6.12: Best estimate of the contribution to differential acceleration from non-decorrelable
effects. Grey points represent the measured ∆g; red points are the estimate of the excess, after
subtraction of the Brownian noise and the time series decorrelation in the previous section.
Blue points represent the estimated contribution of actuation, as in run May16C. The orange
points and the yellow line are the estimates of electric noises, respectively from TM charge
variation and electrode voltage fluctuation. The pink, dashed line, is the worst-case estimate
of the laser radiation pressure, adapted from [75].
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6.6 Considerations on the in-band noise projection

In addition to run Feb17B, we also show the noise projection in LPF’s long runs
Apr16A, Nov16B, Dec16B, and Jun17 (Jun17A+Jun17B), for which we evaluated
the excess noise after time series decorrelation. Projections are shown in Fig. 6.13.
Orange points and yellow lines represent the estimates of the contribution from ∆x

fluctuations and random charging, based respectively on the rms TM charge and the
TM DC voltages in the respective runs. Nevertheless, the estimation of the actuation
gain noise (blue points) and of laser radiation pressure (dashed pink line) refer to run
Feb17B.

As for run Feb17B, we note that the major known contributor to sub-mHz forces
is the actuation gain noise, contributing up to 40% power at about 0.3 mHz, and
less than that at the other frequencies. Temperature affected just the first bin, but
did not have any influence on the following ones. Electrical effects (∆x fluctuations
and random charging), have negligible impacts thanks to the employed compensation
strategies, which ensured low contributions from these effects. The contribution of
laser pressure might in principle be relevant, but worst-case estimates, at least in the
reference run Feb17B, show that a contribution higher than 10% power is implausible.
Nevertheless, none of the sources taken into account can clearly explain the detected
PSD below 0.1 mHz, nor its f−2 dependence.

Additional discussions on possible sources, in a certain sense more qualitative, are
provided in the discussion Chapter 8.
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7 LPF glitches
Phenomenology, properties and source hypotheses

This chapter is dedicated to the spurious transient events detected during the LPF
operations, during noise-only science runs. These events, commonly known as glitches,
spoilt the measurements of the quasistationary noise, resulting in an effective overesti-
mation of the PSD if not subtracted. These glitches1 were detected in all of the steps
of the post-processing chain presented in Sec. 2.2, from raw interferometer data to the
out-of-loop differential acceleration ∆g(t), even after cleansing from inertial forces.
An example of glitches detected during the Dec16B noise run is depicted in Fig. 7.1.
Some more examples are given later.

Figure 7.1: Example of glitches during the Dec16B noise-only run. During about 18 days, 11
glitches were detected. All of these glitches belong to the impulse-carrying family, as described
later in text. Data have been low-pass filtered with a 100 s Blackman-Harris windowing
function. We notice that the glitch occurring at DAL 401 is the most powerful glitch detected,
peaking at (8.78 ± 0.01) pN force.

In this chapter, we first show that glitches can effectively be divided into two
different categories (Sec. 7.1), with different properties and different natures, and
give a physical explanation for one of the two categories. We thoroughly analyze the
detected properties and parameters (Sec. 7.2), the time-of-arrival statistics, and the
measured durations and amplitudes. We attempt to understand the real nature of
such events and the source causing them: first, we cross-check dynamical variables
(Sec. 7.3), stating the different nature of the two families. Then, in Sec. 7.4, we look
for coincident events in environmental parameters (temperature, magnetic fields, etc.).
We rule out many possible explanations, and discuss the implications of our analysis
toward the understanding of the physical origin of glitches (Sec. 8.3).

Regarding the perspectives for LISA and further analyses, we investigate the
1In particular, the most powerful ones.
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possibility of detecting such glitches in ground-based experiments, especially at the
torsion pendulum facilities located at the University of Trento (Sec. 7.5).

The results presented in this chapter, and in the glitch section of the next one,
Sec. 8.3, have been published in [4]. In that work, we completed and extended the
results presented in [1–3]. Most of the figures in this chapter and the next are adapted
from there, and some passages may be similar or verbatim.

7.1 LPF glitch classification

Before going into the details of the glitch analysis, some remarks are needed about
the data runs that we have used for this analysis.

1. We have used all data runs listed in Table A.1, comprising both the noise-only
ones and some other runs during which the satellite was in steady control
conditions. We comprise a run with a low-amplitude injected sinusoidal signal
(100 fN), which does not affect our analyses.

2. We also included some short-lasting runs, in addition to the more significant
week-long ones, for statistical purposes.

3. We note that we included both nominal-temperature, low-temperature, and
cold-temperature runs. As specified in Sec. 2.1.6, we recall that we refer to
ordinary runs (OR) as the ones performed at 22 ◦C or 11 ◦C. We refer to cold
runs (CR) as the ones performed in May 2017, at about 0 ◦C. This distinction is
crucial in these analyses, since the unstable state detected in CR led the glitch
rate to a high increase. The majority of glitches have been detected in CR.

4. We also include a run with grabbed TM, to gain insight into the nature of
glitches.

Let’s thus begin with the description of the glitch templates and the glitch sub-
division into two separate families. We analyze glitches as measured in the ∆g(t)
time series. We lowpass the data for the analysis. For filtering, we use a 100-s
Blackman-Harris window, convoluting it over the data series. The window length is
chosen as required by different cases, since it directly affects the roll-off frequency
of the filter. This provides us with a reliable tool for assessing the sign properties
of glitches: this kind of filter is indeed sign-preserving, and does not introduce any
alterations of the signal sign, nor oscillations; moreover, it preserves the total integral.

We recall that ∆g(t) is the differential out-of-loop acceleration between the test
masses. Given the system dynamics, assuming that glitches are caused by forces, there
is no way of discriminating which of the two masses is acted on. The only property
that can be deduced is if it acted inwards (∆g > 0) or outwards (∆g < 0).

In Figure 7.2, we show two examples from two different glitch families, with
completely different time profiles and durations, which we call impulse-carrying
glitches (ICG) and fast, low-impulse glitches (FLG). In the following, we make a
complete distinction between the two cases. We identify a few exceptions that do not
fit into these categories, that we treat separately.
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Figure 7.2: (left) Example of an impulse-carrying glitch. The picture shows: (green) the
native data after low-pass filtering and background subtraction; (orange) the fitting template;
(gray) the residual after subtraction of the template. The represented event corresponds to an
impulse per unit mass ∆v = (21 ± 2) pm s−1, and a duration ∆ = (7500 ± 200) s, as indicated
by the black arrow and defined later in text.
(right) Example of a fast, low-impulse glitch. The figure shows data after the 0.5 Hz low-pass
filtering. This event could be seen even without filtering data, as a series of 2-5 oscillating
experimental points (see text).

7.1.1 Impulse-carrying glitches

We detected 432 events belonging to the ICG category (98 in ordinary runs, and 334
in cold runs). The analysis was made manually, following what was already done in
[3]. Extending what was found in [3], we find that glitches within this category are
shaped as in the following two templates:

h1(t) = ∆v

τ2 t′ e−t′/τ Θ(t′), t′ = t − t0 (7.1)

h2(t) = ∆v

τ1 − τ2

(
e−t′/τ1 − e−t′/τ2

)
Θ(t′), t′ = t − t0 (7.2)

Where t0 is the occurrence time, Θ(t) is the Heaviside step function, ∆v is the total
transferred impulse per unit mass, and the τ parameters rule the duration of the
events. Precisely, Eq. (7.2) had already been used in [2, 3]: the larger between τ1 and
τ2 sets the decay time, while the shorter sets the rise time; Eq. (7.1) is the limit of
Eq. (7.2) in case τ2 → τ1 = τ , and effectively removes the need of the delta function
∆v δ(t′) as in [3], with the advantage of having a time structure2, and fitting data
effectively. Moreover, [3] noted a high anti-correlation in many cases between τ1 and
τ2, resulting from the fit procedure. It hints indeed a certain degree of overfitting,
and also suggests that modeling the system with two different τs does not add any
information to a single-tau model.

The main property of these templates is that the acceleration profile is either posi-
tive or negative, and leaves no residual acceleration after its occurrence. The template

2Additionally, note that this template corresponds to the first-order shapelet considered in [76]
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integral, ∆v, represents the total transferred impulse per unit mass3,
∫∞

0 ∆g(t)dt = ∆v.
From a frequency-domain perspective, ∆v is also the zero-frequency limit of the Fourier
transform of the h1(t) and h2(t) templates. Noticing this is relevant, since it implies
that ICGs have a strong low-frequency component; the Fourier transforms of the
templates are indeed

h1(ω) = ∆ve−iωt0

(1 + iωτ)2 h2(ω) = ∆ve−iωt0

(1 + iωτ1)(1 + iωτ2) (7.3)

Where ω = 2πf . We notice that, in the h1 case, |h1(ω)| ∝ ω−2 at frequencies ω ≳ 1/τ .
Glitches of this family could be fitted well with the template above, as represented

in Fig. 7.2 on the left, leaving a residual that is by-eye comparable to the absence of the
glitch. To quantify this statement we compare, in Fig. 7.3, the ASD of the glitch-free
stretches (green) to the ASD of the entire Feb17B run after glitch removal. We first
note that the glitch subtraction leaves no residual in the stretch PSD; moreover, we
note that it allows to analyze lower frequencies, whose analysis is otherwise prevented
by the shortness of the stretches.

Figure 7.3: Amplitude spectral density (ASD) S
1/2
∆g (f) of quasistationary noise, vs the

frequency f , of the Feb17B noise run. Green data points: ASD of glitch-free stretches only.
Orange data points: ASD of residuals after glitch removal. Note that frequencies are slightly
shifted, because of the frequency choice algorithm.

The subtraction workflow is the following:

1. We filter data convoluting with a 100 s-long Blackman-Harris window, which has
an effective roll-off frequency at 10 mHz. The filter suppresses the intense high-
frequency noise coming from the double time derivative of the interferometer
readout noise, and allows to effectively identify by eye the presence of glitches.

2. Subsequently, for each glitch, we fit a polynomial to the data in two 1000 s-
long stretches, one immediately preceding the glitch stretch, and the other

3This definition assumes that the glitch is a real force on the TM(s), implicitly ruling out the case
that the glitch is an interferometer readout error. We will prove (Sec. 7.3.1) that this is indeed the
case.
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immediately following it. We choose a first-order polynomial for glitch stretches
shorter than 1000 s (see later for the definition of duration), and second-order
for longer ones. We then subtract the best-fit polynomial from data. The result
of this procedure, for one of the longest glitches, is shown in Fig. 7.2, left panel.
Such background subtraction was necessary to get rid of the long-term drift
that affected all data, mostly due to the gravitational signal from propellant
tank depletion and long-term temperature variations. The use of a second-order
polynomial for the longest glitches was able to accommodate some drift rate
variation over many hours duration.

3. We low-pass the templates in Eqs. 7.1 and 7.2 with the same filter we used for
data, and attempt fitting with the two templates. Among the two fits, we choose
the one which leaves less residual power.

With this approach, we find that, of the 432 analyzed events, 48 can be fitted with the
two-tau model (Eq. (7.2)), and 384 with the single-tau one (Eq. (7.1)). The statistics
concerning these parameters are analyzed later.

To properly define a duration parameter, agnostic of the fitting template, we
calculate the effective duration ∆, defined as the time span, from the beginning of the
glitch, comprising 99% of the total signal energy,

∆ :
∫∆

0 h2(t)dt∫∞
0 h2(t)dt

= 99%. (7.4)

The duration ∆ is also reported in the example in Fig. 7.2. In the simple single-tau
case, Eq. (7.1), it corresponds to ∆ ∼ 4.20τ . Errors on ∆ are found as explained in
Appendix C.

No glitches of this kind have been found during the run with grabbed TM; however,
it was too short to draw any conclusions.

7.1.2 Fast, low-impulse glitches

The second population of glitches is characterized by short duration and minimal total
impulse. Very few examples of these events are found in ordinary runs: only 4 during
the analyzed ∼ 138 days. Glitches of this kind occurred numerously during the cold
runs, amounting to 152 events4. In Fig. 7.4, we provide as an example the data from
the first cold run, May17A.

There are many relevant differences with glitches belonging to the first family:

1. They carry no significant impulse (per unit mass) ∆vglitch =
∫∞

0 ∆g(t)dt, hence
they have no detectable counterpart in the feedback force time series gc(t). The
frequency spectrum of these events has a strong high-frequency content, so no
lowpass filter is usually required to detect them. Furthermore, the decorrelation
of inertial forces induces a high-frequency noise, so FLGs are even better visible
before that correction.

4Detection was basically made manually, with the help of a few computational tools. It is not to
exclude that the true number might be slightly different from 152, but this does not make a relevant
difference in our discussion.
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Figure 7.4: Example of glitches during the May17A noise-only cold run, unfiltered. Only
FLGs are visible by eye, a filter and a scale reduction would be necessary to identify the ICGs.

2. The overall duration of the glitch is compatible, within errors, with that of the
convolution of the impulse response of the filter used to estimate the second
time derivative, with that of the low-pass filter. Without applying any filters,
FLGs show the characteristic 5-point shape of the numerical derivative.

3. Despite what was noted in the first point, we apply a low-pass filter with a
roll-off frequency of ≃ 0.5 Hz (Blackman-Harris, 2 s long), which is needed to
detect some events in run May17B.

4. Some glitches of this kind have also been detected during the run with grabbed
TMs.

In a first search for glitches, 2 of this kind were found in ordinary runs and
subtracted from data by fitting to the second derivative of a step function, properly
filtered. However this procedure had no visible effect on the PSD estimation, as this
glitch category only impacts high frequencies. Therefore, the two additional glitches of
this kind that we found in a second search, were not subtracted. We did not subtract
this kind of glitches in cold runs, as the fitting turned out to be unfeasible in most
of the cases. Thus, in the following analyses, we will consider just two parameters
defining FLG glitches: the impulse ∆vglitch, and the time of occurrence defined as the
time when ∆g(t) reaches the maximum absolute value.

7.1.3 Exceptions

We found 5 events, belonging to the ICG family, which did not resemble the templates
in Eq. (7.1) and (7.2). Two of these glitches, the longest ones and both in ordinary
runs, required a third exponential function to account for some fine structure of the
glitch onset, and to allow for good-quality glitch subtraction. The fit could however
be performed with the template in Eq. (7.2), but adding a third exponential function
allowed a better resemblance to the model:

h3(t) = ∆v

(
τ1 e−t′/τ1

(τ1 − τ2)(τ1 − τ3) + τ2 e−t′/τ2

(τ2 − τ3)(τ2 − τ1) + τ3 e−t′/τ3

(τ3 − τ1)(τ3 − τ2)

)
Θ(t′)

(7.5)
We also found 3 glitches that still carry a significant impulse, but, contrary to

the others, do cross h(t) = 0 during their evolution, even though only once. These
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glitches are fitted to
hc(t) = h2(t) + τdḣ2(t), (7.6)

with τd is a constant that can have any sign. An example of these events is shown in
Fig. 7.5.

Figure 7.5: Lowpassed (50 s Blackman-Harris windowing) anomalous glitch occurring in the
Jun17B run, responding to the zero-crossing template in Eq. (7.6), On the left scale, ∆gL1 is
∆g before the correction of the tangential Euler force. We also show the second time derivative
of the raw readout x1,OMS, which will be used later in the discussion (orange, right scale).

7.1.4 Other spurious signals in the data

We also found a few events in ∆g(t) caused by the impact of the spacecraft with
micrometeoroids, which is already a well-known phenomenon for LPF [41]. Even
though ∆g(t) has been corrected for the acceleration of the spacecraft, some very
energetic events might leave a residual signal in the data, likely because of unperfect
calibration. Glitches of this kind are however well understood.

We also found some spurious events, spikes, or noisier data stretches, observed
when operating particular devices, that could be suppressed by turning their source
off. We do not discuss any further events of this kind.

7.2 Glitch parameter statistics

We now proceed with the analysis of the glitch parameter observed statistics, their
time of arrival, amplitude, and duration. This section mainly focuses on the ICGs,
due to their prominent impact on mission performance, the possibility to fit them,
and their higher number of parameters. At the end of this section, we also treat the
FLGs and the few exceptions with the template in Eq. (7.6).

7.2.1 Occurrence rate, impulse-carrying glitches

Let’s start with the occurrence glitch rate, starting with ICGs. We define the waiting
time ∆T as either the time between two subsequent glitches, or the time between the
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starting moment of the run and the first glitch, relevant for very short runs with few
glitches. We show the waiting time histograms, distinguishing ordinary runs and cold
runs, in Fig. 7.6.

Figure 7.6: Histogram of the waiting time ∆T for ordinary runs (orange) and cold runs (blue).
Straight lines, and associated shadowed areas, represent, respectively, the Bayesian fit to an
exponential distribution, and the corresponding 1σ confidence interval. For the cold runs, the
fit is limited to data with ∆T ≤ 0.2 d. The rates from the Bayesian estimation for ordinary
runs, and cold runs with ∆T ≤ 0.2 d, are, respectively, λ = 0.96+0.11

−0.09 d−1 and λ = 32+2
−2 d−1.

We test the hypothesis that the occurrence times follow a Poisson distribution,
testing that the waiting times follow an exponential distribution,

p(∆T |λ) = λe−λ∆T (7.7)

We employ the Lilliefors test [77], which tests data against the null hypothesis of
data being exponentially distributed. For both ordinary and cold runs, the result
is compatible with ∆T being exponentially distributed. This indicates that the
occurrence distribution is Poissonian, and hence the events happen independently.
Data for ordinary runs are well fitted to an exponential distribution with an average
rate λ = 0.96+0.11

−0.09 d−1 (5).
Data for the cold runs, and for ∆T ≤ 0.2 d, are also compatible with an exponential

distribution with a much higher rate λ = 32+2
−2 d−1. The distribution shows some

excess counts at longer times, see Fig. 7.6, which originate from temperature variations
at the end of the cold runs (see below).

Bayesian waiting time estimation

In Fig. 7.6, we presented a joint analysis of the glitch arrival times, implicitly assuming
that glitches occurred at a constant rate during the entire mission. This is a hard
statement, which needs further testing, and stability analysis of the glitch rate. To
address it, we first split the time series into 12 groups, grouping runs whose starting

5This rate of λ = 0.96+0.11
−0.09 d−1 is apparently slightly higher than that reported in our preliminary

search [2] of λ = (0.78 ± 0.02) d−1. We have traced back this apparent discrepancy to the smaller
subset of runs used in [2], and to a mistake in reporting the error. The event rate estimated with the
current Bayesian analysis, at 1σ confidence level on the same subset of runs, gives λ = 0.75+0.13

−0.09 d−1,
which is compatible with the current estimation at 1σ confidence level.
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times differ by less than a month (see Fig. 7.7), making subsets of arrival times. Each
subset contains about 10 events.

Within each subset, we run a Lilliefors test to make sure that data are compatible
with an exponential distribution, and infer a distribution of the theoretical event
rate λ. The test is always successful, though we note that the number of events in
each subset is really low. Under the assumption that each event is an independent
extraction from an exponential distribution with rate λ, we apply Bayes’ theorem to
the joint probability of n events to get its posterior distribution, with a uniform prior
on λ:

L(λ) = Sn+1

Γ(n + 1)λne−Sλ, S =
∑

i

∆Ti (7.8)

We estimate λ as the probability-maximizing value, and also provide the asymmetric
error bounds at 1σ confidence level. The result, shown in Fig. 7.7, is compatible with
the fit of the waiting time distributions in Fig. 7.6.

Figure 7.7: Glitch occurrence rate λ, during ordinary runs, vs time t from launch, over the
LPF mission. Points are calculated by grouping glitches observed during runs with starting
times differing by less than a month. Vertical and horizontal error bars are, respectively, our
Bayesian estimates at 1σ confidence level, and the time span of the considered epoch. The
dashed line and the gray shaded area represent the mean rate and its error from the Bayesian
estimate. The blue shaded area indicates the epoch of cold runs, which we analyzed separately.

Cold runs performed in May 2017 showed a completely different situation, with a
reversible increase in the ICG glitch rate. The temperature cooldown, from 11 ◦C to the
target 0 ◦C. began on April 29th and was completed on May 2nd. Unfortunately, the
target temperature was below the lower measurement threshold of the EH thermistors,
thus we need to use instead the thermistors located on the LPT bay.

On May 2nd, two days after the beginning of the cooldown, the noise-only run
May17A started; temperature was however still slightly decreasing, as can be seen in
Fig. 7.8, red points and right scale. Temperature was kept constant for about 10 days,
and, during run May17D, it was increased back, targeting 11 ◦C. As can be seen in
the figure, temperature had risen by about 5 ◦C, when the measurement stopped.

As for the ordinary runs, we split the cold runs into subsets, ∼ 23 h-long, and
analyze the rate evolution in such subsets. The results are shown in Fig. 7.8, blue
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points and left scale. Note that the rate variations at the end of run May17D fully
explain the few excess counts at longer waiting times in the cold runs histogram of
Fig. 7.6.

Figure 7.8: Glitch occurrence rate λ (left scale, blue), and LTP bay temperature (right
scale, red), during cold runs, as a function of time since the beginning of cooldown. Small
temperature changes before day 12 were due to adjustments to the heaters’ settings. Reheating
to ordinary conditions started on day 12. We also recall that run May17B was abruptly
interrupted, because of a sudden uncontrollable acceleration, likely of mechanical origin [45].

7.2.2 Occurrence rate, fast low-impulse glitches

Glitches in this category were too rare in ordinary runs to analyze their statistics,
so we just analyze occurrences in cold runs. Figure 7.9 shows the histogram of the
waiting time ∆T .

Figure 7.9: Histogram of the waiting time ∆T for fast, low impulse glitches in cold runs. The
Lilliefors test proves that data do not follow an exponential distribution, hence indicating that
the underlying distribution is not Poissonian, and the events are not independent.

We run a Lilliefors test to test if the arrival times followed an exponential distribu-
tion, but it failed indicating some departure from Poisson statistics. Some subsets of
the glitches are indeed clustered, especially when heaters were turned on again during
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May17D, as shown in Fig. 7.10. On DAL 528 during run May17D, at 11:50:00 UTC,
heaters were turned on. After that, some FLG events occurred at an increased rate.

However, tests run on subsets of the data show that some subsets could still be
compatible with an exponential distribution.

Figure 7.10: Example of glitches during the May17D noise-only cold run, unfiltered. The
red line marks the exact time of reheating start, at 11:50:00 UTC on DAL 528. After that
moment, it is possible to see that FLGs occurred with an enhanced non-Poissonian rate.

7.2.3 Impulse and duration, impulse-carrying

Regarding the ICGs, which were fitted to the templates in Eqs. (7.1, 7.2, 7.5),
we also analyze the distributions of the glitch parameters, namely, the impulse
per unit mass ∆v, and the duration ∆, which condenses the information given
by τ1, τ2, τ3. In Figure 7.11, we represent the distributions of such parameters,
distinguishing positive/negative events, and ordinary/cold runs. It is remarkable
that the distributions of positive and negative events in ordinary and cold runs are
quite different. We will discuss it in Sec. 8.3.

Error bars represented in the picture are not the ones that were determined via
the fit, since the least-squares method does not lead to accurate estimates in presence
of high, non-white noise. Rather, we estimate the errors using a frequency-domain
method, in which we directly employ the measured PSD in glitch-free stretches. We
prefer to explain it in detail in the Appendix, App. C. That method also allows to
calculate the signal-to-noise ratio (SNR) of each glitch, with respect to the noise PSD
within its run. Especially at high ∆ in ordinary runs, it can be noticed a gap between
the SNR = 3 curve and the detected glitches. We note that the line is calculated using
the noise PSD of the Feb17B noise run, which is slightly different from the noise PSD
in other runs. A better grasp of the SNR of glitches with different duration can be
got looking at the right panel of Fig. 7.12, where we show SNR(t).

To better show the SNRs, in Fig. 7.12 on the left panel we show the distribution
of the SNRs, in either ordinary or cold runs. The lowest detected SNR is ∼ 3, whilst
the highest is close to 103, associated with high-impulse short-lasting events.

We also analyze the evolution of the ∆ and ∆v parameters over the LPF mission.
In Fig. 7.14 we represent, on the right panel, the absolute impulse per unit mass |∆v|
(top), and the duration ∆ (bottom) of ICGs, as a function of time from launch. We
note no apparent dependence of parameters on the time from launch. The apparent
clustering is simply due to the different measurement runs. On the left panel, we
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Figure 7.11: Absolute impulse per unit mass |∆v|, and duration ∆, of impulse carrying
glitches fitted to templates in Eqs. (7.1, 7.2, 7.5).
Upper left panel: the 81 positive impulse glitches observed during ordinary runs.
Upper right panel: the 17 negative impulse glitches observed during ordinary runs.
Lower left panel: the 306 positive impulse glitches observed during cold runs.
Lower right panel: the 28 negative impulse glitches observed during cold runs.
The gray dashed line represents the amplitude of a glitch of the kind in Eq. (7.1) that would
have SNR = 3. In the two upper panels, SNR is calculated for the lowest noise ordinary run
of February 2017. In the lower panels, the line is calculated for the sensitivity of the cold runs.
For a detailed analysis of the glitch SNR, see Fig. 7.12. Errors are estimated as described in
App. C.

Figure 7.12: (left panel) Histogram of the SNR for all glitches of Fig. 7.11. The lowest
observed value is SNR ∼ 3. The probability density refers to the logarithm of SNR.
(right panel) SNR of all glitches of Fig. 7.11, as a function of their duration ∆.
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represent the distribution of the measured peak |∆gmax|, calculated with the templates
in Eqs. (7.1, 7.2, 7.5). The very same data, divided per run and sign, are represented
in Fig. 7.14.

Figure 7.13: (left) Distribution of the maximum acceleration |∆gmax|, associated to ICG
glitches, ordinary runs and cold runs.
(right) Absolute impulse per unit mass |∆v| (top), and duration ∆ (bottom) as a function of
time from launch for the ICG glitches of Fig. 7.11.

Figure 7.14: Absolute peak acceleration |∆gmax|, vs duration ∆, of impulse-carrying glitches
fitted to templates in Eqs. (7.1, 7.2, 7.5).

7.2.4 Impulse, fast low-impulse glitches

In Figure 7.15, we show a histogram of the impulse ∆vglitch of FLGs, estimated by
numerically integrating the data stretches containing the glitch, and normalized to
the estimated error ∆vrms. The latter, namely the error on the impulse estimation,
is estimated, by performing the same numerical integration procedure on random
segments, glitch-free, of the same length of the glitch stretch, and within the same
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run. If ∆vglitch was normally distributed with zero mean and standard deviation
equal to ∆vrms, then ∆v2

glitch/∆v2
rms would follow a chi-square distribution with one

degree of freedom. This is the result that we find, indeed the histogram is compatible
(p = 0.23) with the expected distribution, proving that FLGs have no discernible
impulse ∆vglitch.

Figure 7.15: Histogram of
(
∆v2

glitch/∆v2
rms
)

for low impulse glitches. The orange line is the
normalized chi-squared distribution with one degree of freedom.

Exceptions, zero-crossing ICG glitches

The preceding figures do not include the 3 glitches that are fitted to the template in
Eq. (7.6). We summarize their properties in Table 7.1.

Table 7.1: Observed glitches corresponding to the template in Eq. (7.6). Values above the
horizontal line refer to ordinary runs. Values below that same line, to cold runs.

∆v [pm/s] ∆ [s] τd [s]

(0.10 ± 0.01) (35 ± 8) (−37 ± 9)
(0.81 ± 0.03)a (111 ± 3) (72 ± 4)

(0.42 ± 0.02) (143 ± 50) (−29 ± 22)
a Corresponds to an event in ẍ1,OMS(t), see Sec. 7.4

and Fig. 7.5 on page 139.
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7.3 ICG joint analysis with dynamical time series

We analyze the coincidence between ICGs and some LPF dynamical variables, to
better understand the glitch nature.

The first variable that we study is the differential TM displacement, as it is
measured by both the OMS sensing and the GRS capacitive sensors. Analyzing this
parameter allows to put constraints on the glitch nature, and understand if they are
to ascribe to true forces or could as well be interferometer transients.

7.3.1 Joint analysis with capacitive GRS ∆x

The motion of TMs along the x direction, and relative to the spacecraft, has been
measured not only by the interferometer system, but also by the capacitive sensor of
the GRS, as detailed in Sec. 2.2.6. We recall that, from the GRS coordinates x1,GRS(t)
and x2,GRS(t), we formed a measurement of their relative displacement, independent
of ∆x12,OMS(t):

∆x12,GRS(t) = x2,GRS(t) − x1,GRS(t) (7.9)

Assuming perfect calibration, the difference between the GRS and OMS measure-
ments only contains the difference between the noise terms:

∆x12,OMS(t) − ∆x12,GRS(t) = nOMS(t) − nGRS(t). (7.10)

Hence, this difference would immediately reveal a spurious signal within nOMS(t), if it
was large enough to be detected against the noisier GRS data. Indeed, the feedback
loop is driven by the OMS readout (see Fig. 2.16). If it was faulty and included
spurious transients, the control loop would try to counteract a non-existent force,
leading to a real TM2 displacement. Moreover, TM2 would be subject to additional
gradient forces.

In particular, to yield the detected shape in ∆g, an OMS glitch signal n̈OMS(t) +
ω2

2nOMS(t), should follow one of the templates in Eqs. (7.1, 7.2, 7.5). Defining h(s)
as the Laplace transform of the template in ∆g, then the Laplace transform of the
associated glitch in nOMS(t) would be given by h(s)/

(
s2 + ω2

2
)
.

As h(s) is a rational function of s, the term nOMS(t) would carry a diverging
term ∝ exp(+√

−ω2
2t) ≃ exp(+t/1.5 ks), which after a few thousand seconds would

dominate the data.
We depict this, for one of the glitches, in Fig. 7.16. The glitch is clearly visible

in both ∆x12,GRS(t) and ∆x12,OMS(t), while it is not in their difference. In the right
panel, we also show the inverse Laplace transform of h(s)/

(
s2 + ω2

2
)
, i.e. the signal

one would observe in ∆x12,OMS(t) − ∆x12,GRS(t), if the glitch were due to a spurious
signal in nOMS(t). The picture clearly shows that this source for this glitch is ruled
out.

We have calculated the hypothetical signal in nOMS(t), that would show up as the
detected events, both in the ordinary and cold runs. We have found that such signals
would have been clearly visible in the data if a sufficiently long observation time were
available after the glitch occurrence time (up to 104 s for the weakest glitches). We
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Figure 7.16: On the left panel, TM displacement ∆x(t), as measured by OMS (black), the GRS
(orange), and their difference (green), for the short-lasting strong glitch of Dec16B. Despite the
glitch lasting ∼ 8 s, the ∆x(t) profile is much longer, due to the characteristic < mHz frequencies
of the actuation control loop. On the right panel, the difference ∆x12,OMS(t) − ∆x12,GRS(t) is
compared to the signal (dashed line) one would observe if the glitch was a spurious signal in
nOMS(t). Glitch parameters: ∆v = (22.2 ± 0.01) pm/s, ∆ = (7.82 ± 0.01) s.

have found none in the actual data. Only for a few events (in cold runs) we could not
reach any conclusion due to lack of sufficient data after the glitch.

Concluding, impulse-carrying glitches are due to true forces acting on the test
masses, and are not artifacts due to motion readout.

Note on FLGs. Low-impulse glitches consist mostly of features in ∆x12,OMS.
Moreover, they are not visible within the feedback force time series because of their
spectral shape, having no power at low frequencies. However, they could still be either
true acceleration spikes, or features in the interferometer output.

As already mentioned, glitches of this kind consist of a step, or a few-points outlier
in ∆x12,OMS, or some variation of those. In the case they were just features in the
interferometer, nOMS(t) − nGRS(t) would contain similar features (neglecting ω2

2nOMS
for these fast signals). Unfortunately, the largest steps are a few tens pm high, while
the resolution on step detection in the ∆x12,OMS(t) − ∆x12,GRS(t) is not better than
∼ 1 nm. Thus, we were not able to discriminate FLGs, nor exceptions, between true
forces and interferometer readout errors. More details about the nature of FLGs will
be provided in Sec. 7.4.1.

7.3.2 Associated differential torque

After proving that LPF ICG glitches are forces acting on the TMs, we investigate the
presence of similar events in the angular acceleration time series.
If ICGs were well-localized forces, with a force vector not passing through the TM
center of mass, they would induce a net torque, which would be detected in the
out-of-loop angular acceleration time series.
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As schematized on the right, if the force was
directed in the x direction, with an applica-
tion point different from the laser spot, the
event would have a lever arm along the z or
y directions (inducing, respectively, a torque
about ϕ or η). The same would hold even in
case the force was not well-localized, but rather
distributed: a total force and torque could any-
way be identified. This would be the case of a
force originating from the actuation electrodes,
which would show up with a characteristic lever arm |rϕ| = 11 mm [78].

As defined in Sec. 2.2.5, in close analogy with what we did with ∆g(t), we measured
the differential out-of-the-loop torque per unit moment of inertia on the test masses,
both around the y (η) and around the z (ϕ) axes, resulting in the ∆γη(t) and ∆γϕ(t)
time series. As the rotational motion of the spacecraft is rather intense, it completely
dominates the common-mode angular acceleration of the TMs. In addition to just
analyzing the differential time series, we recalibrated torques and angular rotations to
maximize the rejection of such a large common mode disturbance.

In the hypothetic case of non-centered force, the transient showing up in the angular
acceleration time series would have the same time profile as in the linear acceleration.
For each of the ICGs within the ∆g(t) time series, we have fitted both the ∆γϕ(t) and
the ∆γη(t) time series to exactly the same template in Eqs. (7.1, 7.2, 7.5), with same
time of occurrence and same time parameters, leaving the amplitude ∆Ωϕ,(η), as its
sole fitting parameter. This parameter can be identified as an effective variation of
angular velocity.

Fitting technique. On a data stretch including an ICG glitch, we perform a least
squares fit with the glitch templates h1(t) or h2(t), with fixed τ1, τ2, but variable
amplitude. We perform a sliding fit, varying t0, aiming at identifying the glitch
occurrence with a clear amplitude (∆Ωϕ,(η)) peak. We modify the least square fit to
subtract a 2nd-order polynomial from the time series, to subtract the background
low-frequency noise. This is needed to remove as much as possible the red background
noise.

For the single-τ model (analogously for the two-τ case) we generate the templates
fj(t), as

f1(t) = t/τ2 e−(t−t0)/τ ; f2(t) = 1; f3(t) = (t − t0); f4(t) = (t − t0)2 (7.11)

The standard least square method allows to find the coefficients βj , such that data y(t)
are well approximated by ∑j βjfj(t). The well-known result is β = (F T F )−1F T Y ,
where the capitalized variables indicate the discrete-time representations of fj(t) and
y(t). We apply this method on consecutive windows at varying t0, performing the
convolution

β(δt) =
(
F T F

)−1 (
F T ∗ Y

)
(δt), (7.12)

where Y is a data stretch containing the glitch, which is longer than the template
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F to allow convolution. The first parameter β1, at zero delay δt = 0, represents the
estimate of the angular velocity variation ∆Ωϕ,(η), as shown in Fig. 7.17. In case of
correspondence, a marked peak at δt = 0 should be visible.

We estimate the uncertainty on ∆Ωϕ,(η) by repeating the above fitting/convolution
procedure, over the stretch ∆γϕ,(η)(t1 + δt, t2 + δt), with t1 and t2 the time bounds of
the actual stretch that contains the glitch. We thus generated a series ∆Ωϕ,(η)(δt),
with |δt| ≤ 20(t2 − t1), which shows, at δt = 0, a marked peak above the background
jitter, whenever the torque is significant (see Fig. 7.17).

As the ∆Ωϕ,(η)(δt) time series has an intrinsic autocorrelation over a scale δt ≃
t2 − t1, it contains in practice about 40 independent data points. Thus, for error
estimation, we use the peak absolute value δΩϕ,(η) of the series, calculated on the data
outside the central stretch |δt| ≤ t2 − t1. More specifically, if the central peak does
not exceed, in absolute value, δΩϕ,(η), we take |∆Ωϕ,(η)| ≤ δΩϕ,(η).

If, contrarily, the peak exceeds in absolute value δΩϕ,(η), we take this as the error.
It must be noted though that, for Gaussian statistics, the maximum absolute value
among 40 independent samples falls in the interval (2.4+0.5

−0.4)σ. Thus the confidence
interval associated with such an error is greater than 95%. The result of this estimation
can be seen in Fig. 7.18, though it requires some more parameters to be understood.

Figure 7.17: An example of the ∆Ωϕ(δt) series for one of the very few glitches with significant
associated torque. The value in δt = 0 is the result of the fit for native data. The arrows
indicate the interval excluded for error evaluation.

Fitting results. To understand better the properties of glitches in this analysis, we
introduce an effective lever arm defined as

rϕ,(η) =
Izz,(yy)

m

∆γϕ,(η)
∆g

=
Izz,(yy)

m

∆Ωϕ,(η)
∆v

(7.13)

For a single force, applied normally to an x-face of either test mass, rϕ would be the
distance between the force application point and the vertical symmetry axis of the
face. A similar interpretation holds for rη. For a point-like force, given the size and
shape of the TM, the maximum value for both the effective arms |rϕ| and |rη| would
be 23 mm, while there would be no upper limit in case of a distribution of forces.
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Figure 7.18: Absolute lever arm |rϕ|, as defined in Eq. (7.13), as a function of the absolute
impulse |∆v| (left) and duration ∆ (right) for impulse-carrying glitches. Upper panels refer to
ordinary runs; lower panels, to cold runs.
The black data points represent the glitches for which the lever arm has been found to be
significantly different from zero. The green horizontal segments represent the upper bound
for |rϕ|, in case the estimate of the transferred angular velocity is compatible with zero. For
9 of the 98 impulse-carrying glitches of the ordinary runs, we were not able to perform the
analysis on the ∆γϕ(t) data series. The orange horizontal line refers to the 11 mm “electrical”
reference, corresponding to the characteristic lever arm of electrical single-electrode forces.

The analysis results for rϕ in ordinary runs are shown in Fig. 7.18. We find a few
events with any of the lever arms significantly different from zero, which we provide
in Table 7.2.

We make some observations on the results in Figure 7.18:

1. As already expected from Eq. (7.13), the error on the effective arm rϕ decays as
|∆v|−1, decreasing below about 1 cm for |∆v| ≳ 2 pm/s. Increasing the glitch
impulse increases the precision of the lever arm estimate.

2. Only 3 of the 98 impulse-carrying glitches in ordinary runs show an effective
armlength that is significantly different from zero. In 62% of the cases, glitches
have an armlength compatible with zero, and at the same time there is sufficient
resolution to exclude the hypothesis of an electrode origin to the glitch. Specifi-
cally, we exclude the electrical-origin hypothesis if the “upper limit” uncertainty
is less than 7 mm (or 2/3 of the characteristic “electrode arm” of 11 mm). If any
of these relatively high SNR glitches had had an 11 mm effective armlength, they
would have been detected with peaks more than 50% above our background in
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Fig. 7.17. This fraction decreases to 50% for glitches with ∆ ≤ 1 min.

3. The time series ∆γη(t) is significantly noisier than ∆γϕ(t). This gives larger
errors on rη than on rϕ, and makes it less likely to find lever arms significantly
different from zero. Just for only about 32% of the glitches the error upper
bound is smaller than (2/3) 11 mm. However this figure has no physical meaning
for η, as the y-face electrodes have a different configuration.

4. The angular time series ∆γϕ,(η)(t) are complex to analyze, as they contain
multiple fast events and other non-stationary features. This makes the results
of our search procedure noisier, reducing, for instance, the fraction of glitches,
for which the upper error bound to rϕ is less than (2/3) 11 mm, to about 45%,
and to 39% if ∆ ≤ 1 min, as shown in Fig. 7.18, in the lower panels.

5. Moreover, we note that, of the 3 zero-crossing glitches transferring impulse in
Table 7.1, none of them is associated with a measurable torque, measured with
the same analysis as in this section. The error on rϕ associated with the stronger
ones (one in ordinary runs and one in cold runs), is lower than (2/3) 11 mm.
As a final note, in addition to the glitches listed in Table 7.2, our procedure also
finds 3 glitches in the cold runs for which the peak in ∆Ωϕ,(η)(t) is significantly
displaced from the true time of occurrence. We believe that these events are due
to the accidental coincidence between a force glitch and an unrelated feature in
the torque data.

Table 7.2: Glitches with any of the lever arms significantly different from zero. Figures above
the horizontal line refer to ordinary runs, figures below the same line to cold runs. Errors
correspond to confidence > 95% (see text).

∆v [pm/s] ∆ [s] rϕ [mm] rη [mm]
−8.23 ± 0.03 101.1 ± 0.4 −2.3 ± 0.2 . . .

1.6 ± 0.2 1560 ± 140 −9.5 ± 3.5 . . .
22.22 ± 0.01 7.82 ± 0.01 0.5 ± 0.2 −1.2 ± 0.4

(∗) 58.10 ± 0.05 773.1 ± 0.4 0.04 ± 0.03 0.12 ± 0.11
(∗) 15.85 ± 0.01 78.1 ± 0.2 0.08 ± 0.06 –
(∗) 0.17 ± 0.01 61 ± 7 −210 ± 130 −260 ± 170
−25.68 ± 0.02 2100 ± 5 −1.2 ± 0.7 . . .
* Likely to be accidental coincidences between unrelated events.

7.3.3 Joint GRS analysis along y and z axes

We inspected the time series of the forces on the test masses along directions orthogonal
to x, i.e., y and z, defined as ∆g in Eq. (2.6), but with GRS readouts. Nevertheless,
the differential force sensitivity along these axes is too low, with respect to that along
x, to give any significant information. First, motion along y and z is noisier than
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along x due to the lack of an interferometric readout. Second, actuation forces along
those degrees of freedom were applied to follow the spacecraft’s rotational motion.
Indeed, the spacecraft’s rotational motion was dominated by yaw and pitch jitters,
causing, respectively, differential forces on the TMs along y and z.

Even though it is in principle possible to subtract such inertial forces decorrelating
the common-mode applied torque along η and ϕ, it is practically very hard to completely
remove such a big effect. Figure 7.19 in the left panel shows the PSDs of ∆gx,GRS,
∆gy,GRS, ∆gz,GRS, as compared to the non-deglitched ∆gND and the deglitched ∆g,
in run Apr16A. In the right panel, we show that no features are visible in coincidence
with the loud long-lasting event.

Figure 7.19: (left) Comparison between the out-of-loop differential accelerations ∆gx,GRS,
∆gy,GRS, ∆gz,GRS, defined analogously to ∆g in Eq. (2.6), in run Apr16A. The label ND
indicates non-deglitched and deglitched data. Note that run Apr16A contains the loudest
hour-lasting glitch, whose impact is visible in the non-deglitched x data. OMS in the legend
indicates the standard ∆g.
(right) Lowpassed ∆gx,GRS and ∆gy,GRS data. The loud ICG event is well visible in the ∆gx,GRS
data, and an event with similar amplitude would be well visible in ∆gy,GRS. Nevertheless,
there is no trace of events.

We found indeed no evidence of coincidences between ICG events and transients in
y and/or z, nor evidence of non-coincident events, showing the typical ICG templates
in Eqs. (7.1, 7.2, 7.5). As said, this does not exclude the presence of ICG transients
along such axes, especially regarding long-lasting events, for which the detection
threshold was much higher.

7.4 Joint analysis with other time series

7.4.1 Interferometer channels: low-impulse glitches

Contrarily to ICGs, we find a significant number of coincidences between the FLG
glitches and fast transients in the interferometer channels, other than x12,OMS. We
find coincidences with events in the measurement channel x1,OMS, the reference, and
the frequency channels (R, F, see Sec. 2.1.2 for details). The total number of glitches
showing a coincidence in the interferometric channels is 81/152. Some of them also
show multiple coincidences. However, due to the complexity of the data of the cold
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Figure 7.20: Correspondence between events in the x12,OMS time series (upper panel) and
the R interferometer channel (lower panel), in the last part of run May17D, after re-heating.
Red lines mark FLGs. Figure 7.21 provides a close-up of two adjacent FLGs, showing the
time structure in the R channel.

time series, it is rather likely that some events and some coincidences have gone
undetected. This does not change our conclusions, nor alter our statistics.

Interferometer reference/frequency channels

Out of 152 low-impulse glitches detected in cold runs, 55 correspond to events in the
R channel, and 4 correspond to events in the F channel. In the latest part of the cold
runs, well visible in Fig. 7.10 on page 143, and again in Fig. 7.20, tens of glitches of
this kind appear with non-Poissonian arrival time after the heaters were turned on to
bring the temperature back to standard operating conditions. Those events showed a
rapid deviation in the reference channel, as big as some milliradians. In Fig. 7.20, we
show the coincidences between ∆g FLGs and events in the R interferometer, in the
latest part of run May17D. All these events showed in the R channel a characteristic
shape lasting some tens of seconds, due to the internal control loops of the optical
interferometer system [34]. It can be noticed in the close-up in Fig. 7.21. The shape
in either the reference or frequency channels is different from that of ∆g, which is
much faster.

We recall that the readout of the R channel is inherently subtracted from the
readouts of the other channels, including x12,OMS. The subtraction was performed
onboard at a 100 Hz rate, before downsampling and downlinking at the nominal
sampling frequency. We note that the transient detected in x12,OMS, as can be seen in
Fig. 7.21, could also be present in the original x12,OMS time series, and the features
that we detect could just be the result of a non-perfect data subtraction. Indeed,
a ∼ 5 mrad variation, as detected in R, would correspond to a spurious ∼ 0.5 nm
variation in x12,OMS, which is of the order of the detected transients.
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Figure 7.21: Close-up of two adjacent FLGs, showing a 400 s timespan from Fig. 7.20, in run
May17D.

Interferometer x1 channel

We find that some of the low impulse glitches belonging to cold runs coincide with
fast events in the x1,OMS interferometer, showing up as fast features in ẍ1,OMS(t).
Among the 152 two-sided glitches detected in cold runs, 28 showed counterparts
in ẍ1,OMS(t). Most of these events were found during the cold run May17B, with
most of the times a time profile closely resembling that in ẍ12,OMS(t), as can be seen
in Fig. 7.22. The time profile resembles that in ẍ12,OMS(t), apparently with a sign
inversion and a different amplitude. However, the amplitude ratio does not seem to
follow a predictable template, hence we do not analyze it further.

Figure 7.22: Unfiltered portion of the cold run May17B, showing FLG events in ẍ12,OMS(t),
along with corresponding events occurring in ẍ1,OMS(t).
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7.4.2 Interferometer channels: impulse-carrying glitches

No coincidences are found between interferometer channels and ICGs following tem-
plates in Eqs. (7.1, 7.2, 7.5). The only coincidence that we find between interferometer
channels and impulse-carrying glitches occurs between the zero-crossing glitch on the
second line of Table 7.1 and a spike in the ẍ1,OMS(t) time series, which is represented
in Fig. 7.5 on page 139. The spike had no detectable counterpart in the time series of
the force commanded onto the spacecraft by the drag-free control loop, as expected
for such a fast feature.

In analogy with the case of the differential measurement, a spike like this might
be either due to a spike in g1 − G, with g1 the force per unit mass on TM1 along x,
and G that on the spacecraft, or to a feature in the x1,OMS interferometer readout.
When interpreted as a force, its total impulse, ∆v ≃ 0.8 nm/s, is much larger than
the corresponding impulse, ∆g (∆v ∼ 0.8 pm/s, in Table 7.1). This rules out that
the spike is in g1, and leaves only the options that it might have been due to a force
impulse on the spacecraft, or to a feature in the x1,OMS interferometer readout.

7.4.3 Other time series

We analyzed the time series of magnetometers and of the various thermometers of
the LTP, without finding any coincidences. In the discussion, Sec. 8.3, we analyze
the magnetic and thermal effects that could potentially induce force on the TM. We
combine sensor sensitivity and observations, to evaluate the likelihood of glitches being
of magnetic/thermal origin.

We also inspected the time series of the inertial forces, calculated as explained in
[2], and found no coincidence. Note that these series have been subtracted from the
observed acceleration to form ∆g, in the post-processing pipeline. Thus, a true force
glitch in the inertial forces should have emerged from the original acceleration series
and should have disappeared after subtraction. Our check was meant to exclude the
presence of non-force data artifacts in the inertial force series that may have been
transferred to ∆g because of miscalibration in the subtraction, which would have left
a residual glitch in ∆g.
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7.5 Search of LPF-like ICG glitches in torsion pendulum
data

There is no ultimate proof regarding the physical origin of LPF-like ICG glitches.
However, the one certainty is that ICGs are caused by real forces, acting likely on
one TM at a time. One could indeed wonder if those events could be detected on
ground, analyzing data of already existent experiments, or designing new ones for
that purpose. For instance, one of our initial questions was if LPF glitches could be
detected in torsion pendulum facilities at the University of Trento. In this section,
slightly off-track, we analyze the detectability.

The University of Trento hosts two Torsion pendulum (TP) facilities, designed to
perform on-ground testings on GRS engineering and qualification models, allowing
for on-ground preparation and analysis of the LPF and LISA subsystems. The TPs
employ, at the moment of writing, EH GRS models closely resembling the one flown
on LPF; in the near future, they will host LISA-like GRS models. The sensitivity to
acceleration of such systems is not as high as the LPF one, especially at low frequencies.
Nevertheless, the high fidelity and representativeness of the flight instruments makes
it interesting to investigate on the presence of LPF-like glitch transients in those data.

Figure 7.23: Scheme of the
1TM torsion pendulum at
the University of Trento, in
its latest configuration. Fig-
ure from [79].

1TM pendulum. Two systems have been in use. The
one-test-mass (1TM) torsion pendulum [80] was the first one
to be built. It has been operational in the first phase until
2015, and it is now being recovered. In its latest configura-
tion [79], the experimental setup used a representative LPF-
like electrode housing prototype, using flight-model gaps
to the inner TM. The EH surrounded a hollow Au-coated
(46 mm)3 TM, weighing 100 g, suspended via a 40 µm fused
silica fiber, with high-quality factor Q = (7.4 ± 0.7) × 105,
and very low torque noise. The name of the apparatus is
easily understandable, since it only included a single TM.

Given the system configuration, it reached maximum
sensitivity about the torsional degree of freedom about the
vertical axis, indicated as ϕ in the picture on the right.
Motion about ϕ was measured independently by two sys-
tems: the GRS itself via its capacitive sensors, and an
autocollimator, much more sensitive, which used the mirror
depicted in the figure on the right. An illustrative PSD is
shown in Fig. 7.25. For our purposes, it is important to
note that the 1TMTP could not be that sensitive along
any other degree of freedom, thus excluding the direct measurement of translational
forces.

Inspection of torsional data of the 1TMTP, upon conversion to torque time series
as explained later, revealed a quite stationary behavior, showing no relevant transients,
even upon filtering.
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4TM pendulum. Another testing apparatus has been built at the University of
Trento [81, 82], employing four LPF-resembling hollow test masses, mounted at the
four ends of a 20 cm cross-shaped structure. Two opposite test masses are included
in a LPF GRS prototype, closely resembling the flight model. It is clear that such
a pendulum is, as well as the 1TM, only sensitive to torques about the vertical axis.
However, in this configuration, the torsional motion also includes translational forces
on the TMs, hence providing a measurement of linear forces.

Figure 7.24: Schematic of the 4TM
torsion pendulum. Figure from [81].

The used configuration, however, reduces sen-
sitivity: to hold the 460 g suspended element, a
50 µm tungsten fiber has been used, at the expense
of increased thermal noise and a lowered sensitiv-
ity. As well as the 1TM model, the 4TM pendu-
lum employs two independent measurements of
the pendulum angle, namely an autocollimator
and the capacitive GRS itself.

We note, for our purposes, that the 4TM pen-
dulum is, contrarily to the 1TM model, sensitive
to linear forces, and thus possibly sensitive to
LPF-like ICG transients. However, we also notice
that the 4TM pendulum is much more subject to

many kinds of transients, often showing spikes and spurious events.
Here we describe the method that we used to analyze the torsion pendulum time

series, looking for LPF-like ICG events. The two measurement sensors (autocollimator
and GRS) are used in coincidence to give an estimate of a joint SNR, that takes
into account auto- and cross-noise correlations. In this way, spurious readout noises
happening on only one of the two sensors are efficiently discarded. Here we anticipate
that, in the 7 noise runs analyzed, no SNR exceeding 4σ is found, with no clues of
LPF-like glitches.

7.5.1 Torque noise PSD evaluation

First of all, torque time series have to be computed from the angle time series. For
consistency, we convert torque into the equivalent LPF differential acceleration.
The torsion angle ϕ is associated with the z-axis torque Nϕ through the differential
equation

Nϕ(t) = I0

[
ϕ̈(t) + ω0

Q
ϕ̇(t) + ω2

0ϕ(t)
]

⇒ Nϕ(ω) = I0

(
−ω2 + iωω0

Q
+ ω2

0

)
ϕ(ω)
(7.14)

where I0 is the moment of inertia, ω0 = 2π/T0 the proper angular frequency, associated
with the period T0, and Q the quality factor. Torque is then converted to the
equivalent single-mass LPF acceleration, via the lever arm r, using g = 2N/(rM),
where M = 1.928 kg. In the case of the 4TM pendulum, r is known; conversely, in the
1TM case, we could just assume it.

In Fig. 7.25, we show the PSDs of the equivalent LPF acceleration in both the
1TM and 4TM runs, with autocollimator and capacitive measurements. For the 1TM
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Figure 7.25: PSDs of the equivalent single-mass LPF acceleration noise, for the 1TM pendulum
(left panel, courtesy William J. Weber), and the 4TM one (right panel, courtesy Davide Dal
Bosco), autocollimator and capacitive data. Frequencies in the 4TM case are lower because
the analyzed data stretch was longer. For the 1TM case, we assume a lever arm of 1 cm when
converting to equivalent LPF acceleration.

case, we assume a lever arm of 1 cm.

7.5.2 Matched-filter application to torsion pendulum data

The standard matched-filtering technique, also known as the Wiener filter, allows to
define an optimal filter for template detection, based on the background noise PSD
of the measurement instrument. Based on the transient signal template, the filter
allows to extract the amplitude of the signal. In the basic case, a single detector is
used, and the template is searched in its time series. In a more advanced scenario,
such as the LIGO one, two completely different detectors are used to detect the same
GW transient, slightly time-shifted); in that case, each of the detectors has its own
background PSD noise [83].

The torsion pendulum case is different. Two detectors are in use (autocollimator
and capacitive sensor), which are measuring the same quantity, hence in the presence
of partially correlated noises. Readout noises differ between the two systems, but real
force noise should in principle be the same. A well-defined signal-to-noise ratio post-
processing should discard events happening in just one of the two sensors, and should
peak in presence of joint template-matching events. For the sake of generalization, we
look at the problem from a generic point of view.

We define such a matched-filter in App. C.2, and apply it to pendulum data. We
find the frequency-domain version of the filter template, matching the single-τ glitch
shape, Eq. (7.1), with some typical values of τ . A systematic search would include an
exploration of the τ parameter space, and an analysis of the multi-τ case, which we
do not perform for detectability reasons, which will be clearer later. Rather, we just
analyze some values of τ .

First, in Fig. 7.26, we show the two-detector detectability thresholds for the 1TM
and the 4TM pendulums, compared to the detected LPF ICG glitches. We show
thresholds at SNR = 5, since it would be inappropriate to claim detection at lower

159



Chapter 7. LPF glitches Section 7.5

Figure 7.26: Detectability threshold of ICG glitches matching the template in Eq. (7.1), in
the case of coincident two-detector search in torsion pendulum data. The grey lines represent
SNR = 5 lower thresholds, for (solid) the 4TM pendulum and (dashed) the 1TM one. Grey
lines represent the equivalent LPF linear acceleration, corresponding to the measured TP
torque. In the 1TM case, the lever arm is assumed to be 1 cm; if it was 1 mm, the two
pendulums would basically have the same resolution.

values, given the presence of other species of glitches in TP data.
We draw some conclusions on the detection of LPF-like events in torsion pendulum

data.

1. It is highly unlikely to find LPF-like ICG glitches with the 4TM pendulum
apparatus, without implementing mechanisms to enhance the glitch impulses.
Long-lasting glitches (hours) could not be detected at a reasonable SNR level,
and even the short-lasting ones would be difficult to identify. However, if the
glitch impulse could be enhanced by a factor ∼ 10, glitches detected during cold
runs, lasting more than 100 s, could be well identified.

2. Regarding the 1TM pendulum, it could hardly detect long-lasting glitches
detected during the LPF ordinary runs. It could however detect short-lasting
events, especially those found during the cold runs. It is however important to
remark that the 1TM system, as is, does not provide a measurement of linear
forces, and thus measures a different quantity. LPF ICG events showed basically
no torque, and the small torque shown by some of them could not be identified
with the 1TM apparatus. The threshold provided in Fig. 7.26 highly relies on
the chosen fictitious lever arm, 1 cm. If it was 10 times smaller, the threshold
would be 10 times higher, thus preventing the measurement of any LPF-like
glitch.

3. For such reasons, we find it not necessary to run a systematic search on the
entire parameter space. Rather, we proceed as follows:

(a) We inspect the time series by eye, applying a 1000 s Blackman-Harris filter
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Figure 7.27: Illustrative run, 1TM data filtered with matched-filter, as defined in text. The
filter matches the template in Eq. (7.1), with τ = 50 s. On the right, a histogram of filtered
data is shown. No matches at high SNR are found.

to detect features, to about 10 pendulum runs. We find no relevant events
resembling the LPF ones, neither in the 1TM, nor in the 4TM data.

(b) We run our two-dimensional matched-filter to 1TM torsion pendulum data,
looking for events with |SNR| ≳ 5. We look for events matching the
template in Eq. (7.1), varying τ . Figure 7.27 shows the SNR results with
τ = 50 s in an illustrative run of the TM1 pendulum.

To conclude, we find no events matching the LPF template within the time series of
the 1TM torsion pendulum, nor in the 4TM one. However, even if correspondence was
found, it would hardly be conclusive: at present, suppressing the high-frequency noise
in torsion pendulum data requires strong low-pass filters to detect LPF-like glitches.
Even if an event was detected, it would be hard to guess its shape, as it would closely
resemble the shape of the employed filter.

We find that stronger conclusions could be drawn if glitches of the long-lasting
kind were detected (see Fig. 7.26), but we already showed that those could hardly be
detected at the moment. For future reference, aiming at detecting LPF-like events, a
strategy to increase the total transferred impulse would be advisable and necessary.
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8 Discussion and conclusions

This last chapter is dedicated to a discussion, and some possible explanations, about
the results found in the presented analyses. The necessity of a discussion section arises
from the fact that not all the observed features of LPF noise have been completely
explained. The discussion is to some extent more qualitative than the previous analyses,
as it is meant to propose possible mechanisms producing the observed features, which
are not always precisely modelable. We analyze a series of mechanisms, one by one,
and illustrate why such mechanisms may or may not fit observation. Finally, we give
a last summary and conclusions.

As usual, we split the examination of the observed features into three parts,

1. In Sec. 8.1, we discuss the possible origin of the observed excess noise at low
frequencies. We retrospectively look at the post-processing steps, especially
those containing correction terms, and consider some additional unmodeled
force-inducing effects. This includes a cross-over analysis with glitches, in which
we look at the possibility that the excess noise results from undetected glitches.

2. In Sec. 8.2, we discuss the observations about pressure evolution in the VEs,
and the LPF outgassing environment.

3. In Sec. 8.3, we thoroughly discuss the possible physical origin of the detected
glitches, mostly dealing with the impulse-carrying ones, as they may majorly
affect LISA’s GW detection. In this perspective, we estimate the fraction of LPF
glitches that would be detected by LISA, according to the current instrument
requirements.

8.1 Discussion on the physical origin of the low-frequency
excess

In Chapters 4 and 6, we presented a number of analyses about the sub-mHz noise
branch, ultimately showing that there is a clear excess noise that does not have a
clear source. We however found certainty about the nature of this observed noise. In
Sec. 4.3, we indeed showed that the observed excess is caused by true forces disturbing
the TMs free-fall motion. Chapter 6 was entirely dedicated to understanding the
contribution of effects related to other LPF telemetries. We showed that, even though
there is no smoking gun for processes generating such noise, there is a number of
processes marginally contributing to it. For each of these processes, we estimated
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the upper limits of their contributions. We showed that the dominant contribution
at the first frequency is understood, while at higher frequencies (36 µHz–1 mHz) the
contribution from the considered effects is no more than some percent.
Ultimately, as reported in Sec. 6.5, to our knowledge the strongest contribution comes
from the actuation gain fluctuations. Such contribution, though, accounts only for
∼ 30% above 0.1 mHz, and ∼ 10% below it. This means that there is an unaccounted
noise source, which is dominating the sub-mHz acceleration noise, that we still have
not considered. We look at some more possibilities.
Another option, which clearly must be considered, is that some of the corrections
applied in the post-processing to estimate ∆g contained imperfections leading to a
higher residual, i.e. either correcting less than necessary or even over-correcting.
We analyze these possibilities, one by one, starting by looking at the post-processing
pipelines.

8.1.1 Post-processing imperfections

Looking back at Fig. 2.17, in the postprocessing pipeline the sub-mHz spectrum
is dominated by commanded forces and non-inertial corrections. Gradient forces
are orders of magnitude lower than the out-of-loop acceleration, as well as the in-
loop acceleration, which is suppressed thanks to the actuation control. Hence, a
hypothetical imperfection or inaccuracy in the estimates of the inertial forces might
lead to an inexact result.

Centrifugal force estimation. The first correction step in the postprocessing
pipeline is the subtraction of the centrifugal forces. As described in [1, 3], the
contribution from such effect is calculated using a combination of the quasi-DC
angular velocity from star-tracker telemetries, and the in-band applied torques. There
are no free fit parameters, so in the end, the time series is exactly known. It is
calculated as in Eq. (2.7). The magnitude of the correction is shown in Fig. 8.1.
The black points represent the common excess noise, as computed in Fig. 4.5, which
is representative of the excess to be explained. The brown curve is the centrifugal
acceleration in run Feb17B, and the brown area represents the variability during the
13 selected UURLA runs, at 1σ.

Even though during some runs the spacecraft jitter was really intense, with
centrifugal acceleration exceeding the common excess noise, it was not always the
case. In Feb17B, for example, the correction only exceeds the excess in two/three
points. Moreover, the spectral shape of the centrifugal correction does not resemble a
f−2-shaped PSD. Hence, an inaccuracy in the estimate of the centrifugal correction
could not lead to an excess as the measured one. Moreover, it is very unlikely that
this time series is affected by relevant inaccuracies, higher than a few %; as said, there
were no free parameters in the computation.

Tangential force estimation. The second considered inertial force is the tan-
gential Euler force. As shown in Eq. (2.9), its calculation is based substantially on
the applied common-mode torque time series, whose error is negligible. However, the
calculation also includes a dependence on two free parameters representing angular
misalignments, which might be affected by uncertainty. The estimation of the contri-
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Figure 8.1: Comparison between the common excess noise (black points), the centrifugal
acceleration in run Feb17B (brown solid line), and the variability during the 13 selected UURLA
runs, as 1σ quantiles (brown area).

bution is shown in Fig. 8.2. Colors and lines have the same meaning as in the previous
figure.

Figure 8.2: Comparison between the common excess noise (black points), the tangential Euler
acceleration in run Feb17B (green solid line), and the variability during the 13 selected UURLA
runs, as 1σ quantiles (green area).

Estimation of the two angular parameters was performed by splitting the mission
into three epochs, corresponding to the three TM alignment conditions in Table A.2.
Re-doing the fit in single runs, slight variations of these parameters can be noticed,
of the order of a few %. Changing parameters may lead to slightly lower excess
noises. Nevertheless, as noticeable in Fig. 8.2, Euler force only affects a few frequencies
around 0.1 mHz, making it impossible to explain the observed noise below 0.1 mHz.
Imperfections in the fits for the angular misalignments can not lead to significant
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variations in that figure.

8.1.2 Gravitational noise

Possibly, force noise could originate from unmodeled sources of gravitational forces,
induced by modifications of the gravitational field at the test mass locations. The
modelization of such a phenomenon is however really complex, as many sources could
be contributing to it, increasing the number of parameters to take into account. We
can however make some observations, aiming at understanding which are the key
points in force generation, and understanding to which extent we can rule out these
mechanisms.
As it is computationally easier, we refer to G(x) as the gravitational field generated
by the TM, of mass M . We assume that m is the mass of a point-like object, which
moves by a small distance δx about its location x. By moving, the point-like object
generates an acceleration variation which can be expressed as

ax = − m

M
Gx ⇒ δax = − m

M
δx · ∇Gx ∼ ω2 δx (8.1)

The last expression is analogous if the object is a rigid body, with a finite volume, it
only requires to integrate over the volume. If the displacement δx fluctuates, then ax

fluctuates. The reason why δx fluctuates, how it fluctuates, and what properties the
fluctuation should have to produce the observed noise, are the points on which we
work.

1. First, we observe: the further the source is from the TMs, the lesser its gravi-
tational gradient, so it should move with a higher amplitude to account for a
stronger effect. The outer parts of the spacecraft might not be impactful from
this point of view.

2. The moving mass m, possibly intended as a rigid body moving altogether, can
however be relatively heavy, leading to a higher force.

3. The mass m can be a rigid body moving, but the same effect can be achieved
with a set of a few moving masses, or even a high number of infinitesimal moving
masses. We analyze these possibilities separately.

Rigid motion. The first case is that of a rigid body moving. Let’s suppose that
such a body is the IBM, which is the one with the strongest gravitational stiffness |ω2| ∼
5 × 10−7 s−2. To yield the measured excess noise S

1/2
∆g (f) ∼ 1 fm s−2 Hz−1/2(1 mHz/f),

the IBM motion should fluctuate as S
1/2
δx (f) ∼ 2 nm Hz−1/2(1 mHz/f). Thus, the

question translates into understanding if such a fluctuation is reasonable. For example,
the most common driving mechanism of mechanical displacement is thermal expansion.
Assuming a reasonable thermal expansion of the order of 10 µm K−1, the computed
jitter would require thermal fluctuations of the order of mK Hz−1/2(1 mHz/f). This
is more than one order of magnitude higher than measurements [44], hence unlikely.
This does not mean that non-thermal fluctuations might be present, but it is not
straightforward to think of a mechanism generating the right spectral shape.
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Other parts, located further than the IBMs, should move with even higher amplitude,
even less likely. The gravitational gradient scales as the inverse cube of the distance,
decaying by about two orders of magnitude across the spacecraft’s length.

Thermo-elastic distortion. Another possible source of gravitational noise is
that induced by thermo-elastic distortion of the spacecraft structure and equipment.
In that case, the distortion would affect the entire spacecraft, possibly causing a
variation of the gravitational field, larger than that of a single object moving. However,
such a distortion is not straightforward to model: the shape of the deformation, the
structural properties, and the profile of thermal fluctuations are not easy to model.
We find that the only possible approach to this requires a realistic finite-element
analysis with a realistic model of the spacecraft and thermal fluctuations. Such an
analysis has been done for LPF [84], though only above 1 mHz, i.e. in the frequency
band of LPF requirements. The analysis concluded that the acceleration noise induced
by this effect is about one order of magnitude below the measured excess; however, no
conclusions could be drawn below 1 mHz. We find that performing an analysis of this
kind for LISA, extending it to lower frequencies, would be important to understand
the impact on noise performances.

Step-wise motion. Since explaining a rigid motion with the right spectral shape
is quite hard, a simple option could be that the movement is composed of small steps
dx, singularly undetectable, occurring with a Poissonian rate λ. Before discussing
the mechanical details, such a mechanism would have the advantage that its spectral
shape would intrinsically be f−2: as a series of Poissonian spikes generate white noise,
a series of steps generate a red noise, with ASD S

1/2
δx (f) ∼ dx

√
2λ/2πf , generating an

acceleration noise S
1/2
δg (f) = |ω2|S1/2

δx (f). Even supposing a low rate λ = 100 d−1, the
steps would be required to have an amplitude of 0.3 nm. If so, the IBM could even
move by several µm per year, getting displaced by several nm, which is unlikely, given
the structural properties.

Step-wise mass loss. Another mechanism possibly leading to gravitational forces
is the evaporation of particles from the spacecraft structure. This phenomenon has
already been considered and acknowledged [2, 3], as it can not be entirely ruled out:
for example, mass loss from structural components has already been observed in space
missions; the Rosetta mission [85] estimated a loss of about 0.1 kg/yr, going on for
years after launch.
This mechanism would intrinsically have the right spectral shape. Let’s assume that
mass is lost with small δm steps with a Poissonian rate λ, and that each mass generated
a gravitational field Gx,i at the TM location. The generated noise would be

S∆g =
∑

i

2G2
x,iδm2λ

M2(2πf)2 ∼ 2δm2λ

M2(2πf)2
V

dV

∫
G2

x dV

V
(8.2)

Where
∫

G2
xdV/V is the average square gravitational field G2

x. Noticing that at V/dV

is the number of emitting sites N , and that δmλN = ṁ is the mass emission rate, the
expression reduces to

S∆g = 2δm ṁ

M2(2πf)2 G2
x (8.3)

167



Chapter 8. Discussion and conclusions Section 8.1

From this point, the situation can be arbitrarily complicated. We simplify it, to get an
order-of-magnitude estimate. Let’s assume that only one TM is present, in the center
of a thin spherical shell. This is not unrealistic, as a possible emission source could be
the spacecraft’s outer cylinder, made of carbon-fiber-reinforced plastic. The average
square TM gravitational field on a spherical shell of radius r is easily calculable, as
G2 = G2M2/3r4, with G the gravitational constant. Thus,

S∆g ∼ 2δm ṁ

M2(2πf)2
G2M2

3r4 (8.4)

This figure leads to the following conclusion: to account for the overall measured
excess S∆g, the emission properties should satisfy

δm ṁ

r4 ∼ 10−14 kg2 s−1 m−4 (8.5)

This yields some conclusions:

1. If the emitting surface is close, i.e. the EH located at r ∼ 3 cm, then δm ṁ ∼
10−20 kg2 s−1. This is unlikely: if particles were emitted with ng shots, a rate of
0.1 kg/yr would be necessary, which is completely unreasonable.

2. On the other hand, outer regions could emit, for instance the spacecraft’s inner
cylinder, made of carbon-fiber-reinforced plastic, located at about r = 30 cm. In
that case, δm ṁ ∼ 10−16 kg2 s−1. Assuming a high mass loss rate as in Rosetta,
to explain LPF’s noise this would require shots of δm ∼ 10 µg, with λ ∼ 0.1 s−1.

We find that the last scenario is rather speculative, but it there is no reason to rule it
out.

8.1.3 Magnetic noise down-conversion

Magnetic lines at high frequencies may also induce in-band force. The presence of this
effect has already been raised in the past [2], but it has been investigated recently [86].
The driving reason for our interest is that magnetic effects are quadratic: specifically,
a high-frequency magnetic field would induce high-frequency eddy currents within
the TMs, and then exert forces on them. The effect would notably convert into
force at twice the line frequency, and force at near-DC frequency, shifting amplitude
fluctuations down to the sub-mHz band.
Recent calculations [86] have shown that audio-frequency lines are the ones that
may possibly impact the most on the induced forces, peaking at ∼ 100 Hz: at lower
frequencies, the induction effect would be too weak, and at higher frequencies, the EHs
would screen out the magnetic fluctuations. To give a scale, finite-element calculations
show that a magnetic dipole of 1 mA m2, located 20 cm from the TMs and oscillating
at 100 Hz, would yield a force per unit mass ∆g ∼ 4 fm s−2.
No high-frequency magnetometers were present onboard LPF, but tests were performed
on ground before launch, showing lines with less than nT amplitudes, which could not
account for the observed acceleration noise. Despite this, operating conditions might
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have been different from the pre-launch ones, therefore we can not rule out this effect.
Studies on magnetic effect modelization, and mitigation, are still underway within the
LISA Consortium.

8.1.4 Excess noise as under-threshold glitches

In the previous chapters, we discussed the unmodeled low-frequency noise and the
transient glitches (especially ICGs), concluding that both originate from true forces
acting on the TMs. It is then obvious to wonder if the low-frequency noise might
originate from a distribution of many glitches, under the detection threshold and
not identifiable as single events. This is not a simple question in principle, as its
implication would be that the noise PSD itself (hence the detection threshold) is
driven by the glitch distribution properties. Our purpose here is to understand if it is
reasonable that such a glitch distribution might exist, and what properties it should
have to fit with both the observation of noise and glitches.

Spectral properties. First, the distribution should clearly produce a ∝ f−2

noise, down at least to 36 µHz, as the one that we observed. We only discuss glitches
with the single-exponential profile, as in Eq. (7.1), as those are the most numerous,
representative, and simpler to handle.
The first thing that we observe is that the detected over-threshold ICGs occurred
with a Poissonian rate, implying that also the under-threshold ones could. It is known
that a flow of identical spike events, occurring with Possonian rate λ and amplitude
v0, would yield a PSD S∆g = 2λv2

0. Moreover, if those events were not simple spikes,
but rather events with the ICG time profile whose Fourier transform modulus is
|h(f, τ)|, then the PSD would read S∆g = 2λv2

0|h(f, τ)|2. Given that the glitch Fourier
transform modulus is |h(f, τ)| = (1 + (2πτf)2)−1 (see Eq. (7.3)), this would be the
driver of the spectral shape.
From this, one may immediately draw a first, important, conclusion: only long-lasting
glitches might generate a low-frequency noise. One could also conclude that a flow
of identical glitches would produce a PSD scaling as f−4, hence not compatible
with observations. Nevertheless, that is not the LPF case, which showed instead a
distribution of durations τ and amplitudes ∆v.
We make two assumptions, based on LPF’s observations:

• We assume that the distribution of durations was uniform in log τ , which is a
fairly reasonable assumption (see Fig. 7.11), between two durations τ1 and τ2,
hence following a distribution p(τ) = (1/τ)/ log(τ2/τ1). Reasonable values for
the durations will be discussed later.

• We also assume that the mean square impulse v2
0 scales as τ2, i.e.,

〈
v2

0|τ
〉

= g2
0τ2.

With these assumptions, we calculate

S∆g(f) = 2λ

∫ τ2

τ1

〈
v2

0|τ
〉

p(τ)
(1 + (2πτf)2)2 dτ ≃ λg2

0
4π2 log(τ2/τ1)

1
f2 , if τ2 ≫ 1/f ≫ τ1 (8.6)

which has the observed spectral shape. Our assumptions are not the only ones
possible, but are reasonable and rather simple. To account for all the measured noise
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S∆g(f) ∼ 1 fm2 s−4 Hz−1 × (1 mHz/f)2, it would be required that the quantity (λg2
0)

was of the order of 10−4 fm2 s−4 Hz.

Parameter distributions. The last step in Eq. (8.6) assumes implicitly that
1/τ2 ≪ f ≪ 1/τ1, hence requiring that glitches are long-lasting. The condition on τ1
is easily met, as we detected glitches down to 1 s duration. Instead, the condition on
τ2, the right boundary of the logarithmic distribution, is more delicate. Indeed, to
satisfy this condition down to 36 µHz, τ2 must be at least 104.5 s. No τs greater than
103.9 s were detected; however, the distribution is still compatible with durations up
to 104.5 s, according to a simple Kolmogorov-Smirnov test.
Once the requirements on durations are satisfied, the question is what is the distribution
of the glitch impulse p(v0|τ) such that:

1. Its mean square value satisfies
〈
v2

0|τ
〉

= g2
0τ2, satisfying the condition for the

production of the low-frequency noise, as the detected one.

2. It produces unresolvable, under-threshold, ICG glitches, presumably with a quite
high rate so that they generate a confusion noise, quite steady in time.

3. It also produces, from time to time, identifiable and over-threshold glitches, such
as the ones that have been identified on LPF, with a rate ∼ 1/d.

4. The over-threshold glitch distribution should not have any discontinuities in its
domain, and it should be as smooth as possible.

Detectability threshold. We find that the key figure to address this problem
is Fig. 7.12, representing, for each glitch, the SNR it had within its run. There, we
noticed that the detected SNRs spanned from ∼ 3 to ∼ 2 × 103, with high-SNR
events gathering especially in the short-duration region ∆ ≲ 103 s. As we said, those
glitches are not important to our purposes, as they yield no low-frequency noise scaling
as LPF’s excess. What matters to us, is glitches with long durations. As already
discussed, long-lasting glitches only occurred during the ordinary runs; in the same
figure, nevertheless, we notice that there is an SNR gap at durations ∆ ≳ 5 × 103 s,
with basically no detections1 with SNR ≲ 10. It is rather unlikely that no events were
measured within that SNR range just by chance.
Hence, we find that the distribution p(v0|τ) would need to be rather discontinuous,
showing events with SNR greater than 10, but at the same time showing no events
with SNR within 3-10, and a rather inexplicable high rate of events below the threshold
SNR = 3. Moreover, we notice again that no events lasting longer than τ ∼ 8 × 103 s
were detected, and those would be essential to reproduce the noise.
The distribution of the detected glitches would then be significantly separated from
that of the under-threshold ones; this does not mean that the hypothesis is discarded,
but it leads us to think that it is rather speculative.

1Only one glitch was detected with ∆ ∼ 104 and SNR ∼ 3, but that glitch was detected in run
Mar16A, performed with NOM actuation settings, and very high noise conditions, which make the
uncertainty of that SNR really high.
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8.2 Discussion on vacuum environment

The LPF outgassing environment is quite well modeled, as we analyzed in Chapter 5.
We noted that, in the long-lasting ordinary runs, the white-noise plateau level decreased
as expected from pressure in a pumped system, showing that the plateau itself is
indeed a good proxy for Brownian noise. Moreover, given the conversion coefficients
measured on-ground, measurements allow us to indirectly measure pressure within
the EH. This is very much promising for LISA, as the target pressure ∼ 1 µPa could
already be met right after about one year cruising to orbit, if the system behaved as
it did on LPF.
We also showed that, unfortunately, angular measurements can not be used for
pressure analyses, as the low-frequency and high-frequencies noise branches prevented
the detection of the Brownian angular plateau, especially in the second half of the
mission.

8.2.1 Vacuum environment and Brownian noise

In Sec. 5.2, we presented the results of the Brownian noise evolution, showing that
it is compatible with an activation temperature of the order of 7 kK, and a time
dependence t−0.78.
First, the activation energy. As said, the value we found is not inconsistent with the
emission of water from metals [68, 69], which is indeed the sounder explanation, as
the GRSs has been exposed to atmosphere during manufacturing and assembling, and
the bakeout was very mild with respect to the usual vacuum systems. The GRSs were
indeed heated up to a relatively low temperature of 115 ◦C for a relatively low time of
24 h (also see Sec. 8.3.4), because of an incompatibility with surface photoemission and
TM charge management. Usually, temperatures of 300 ◦C or even more are bakeout
standards of ultra-high vacuum systems. It is very likely that the bakeout did not
achieve a complete water extraction from the inner walls, and possibly the residual
water gas within the GRS could also have been re-absorbed by the walls. Nevertheless,
the activation energy value alone is not conclusive about the nature of the emission
properties, more details and correspondence would be needed.

The second available parameter is the time evolution exponent. Once again, that
is not conclusive about the emitting surfaces and emitted species, but it rules out
many possibilities. It is also remarkable that such an exponent has been maintained
for nearly two years, meaning that its source was not depleted. It is indeed common
to observe different pressure decay branches with different exponents, due to different
sources depleting in time.
However, we noted the detected γ = 0.78 is broadly compatible both with the emission
of water from metals, and the emission of water from some LPF cables.

When describing the dependence of our outgassing model on temperature and
time, we mentioned that the intrinsic dependence of temperature on time should
not be neglected, in principle. We already noticed that our simplified model is
effectively compatible with observations, but we also try to fit observations with a
model accounting for temperature evolution.
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We follow [67]. The model assumes that the adsorbing surfaces can be approximated
as a mono-layer set of sites, which can both adsorb and release gas. The function
θ(P, T ) is the coverage, namely the fraction of occupied adsorption sites, depending
in principle on pressure and temperature. When the system is pumped down with
a characteristic pumping time τ , pressure is expected to respond to the following
differential equation:

1
P

dP

dt
= −

1
τ + Ps

P
∂θ
∂T

dT
dt

1 + Ps
∂θ
∂P

(8.7)

The term Ps is simply a parameter, related to the total number of occupied sites Ns and
the chamber volume V , as Ps = NskBT/V . We note that the equation also includes
temperature variation, as variation speed dT/dt. It is easy to see that everything
depends on the surface coverage θ(P, T ), which is a subtle matter of discussion.
Assumptions reported in literature [68] usually employ the so-called isotherms, stating
a dependence of the absorption temperature on coverage. Three choices are usually
employed the most: the Langmuir isotherm, simply assuming that the absorption
temperature is constant, and the rates of absorption/desorption are respectively
proportional to the number of empty/filled sites; the Freundlich isotherm, assuming
that the absorption temperature varies logarithmically with coverage; and the Temkin
isotherm, assuming that the absorption temperature depends linearly on coverage,
varying between two values T1 and T2. The latter is usually better representative,
hence we employ that one, which leads to

θ(P, T ) = T

T2 − T1
log

(1 + P/P0 exp(−T2/T )
1 + P/P0 exp(−T1/T )

)
(8.8)

This equation, together with Eq. (8.7), closes the system, leaving out as unknown
parameters Ps, P0, T1, and T2. Reference [68] proposes, as reasonable values for
water, T1 = 5.3 kK and T2 = 11 kK. We integrate the differential equations, varying
qualitatively the unknown parameters, to find the best-fit solution (see Fig. 8.3). We
find that:

• The goodness-of-fit to long-lasting ordinary runs is not bad, though non-optimal,
as the likelihood is still below 5%. It is still compatible with our previous
conclusion that the white-noise plateau in cold runs was dominated by another
source, not of Brownian origin.

• Parameters are quite off from expectations. Even though activation temperatures
T1 and T2 can be chosen as consistent with expectations (respectively, 4.5 kK and
11.6 kK), our best estimate for P0 is 2.5 × 104 Pa, which is orders of magnitude
lower than the expected 8 × 1010 Pa (see ref. [68]). Such a low value would
only be consistent with a really low and unrealistic site density, or a low and
unrealistic molecular arrival time to the surface.
The last parameter, Ps, is also not compatible with expectations: the best
estimate, 6.0 kPa, with a reasonable assumption on the site density 3×1015 cm−2,
would lead to an inner surface area of the vacuum chamber of 180 m2, which is
quite unlikely, as it a couple of orders of magnitude higher than reality.
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Figure 8.3: Time evolution of pressure (as in Fig. 5.1), according to Eq. (8.7), with the
Temkin isotherm in Eq. (8.8), and parameters described in text.

These findings suggest that mono-layer modelization with Temkin isotherm assumption
might not be the best option, but different details and assumptions might be relevant.
Likely, also diffusion from the inner bulk walls can play a role, as it would intervene
with a t−0.5 time dependence; a combination of bulk diffusion and surface desorption
would then occur, but that is much harder to model.

8.2.2 Long-term drift and pressure unbalance

Regarding the outgassing environment, we also found that the long-term drift detected
on LPF, given its slope evolution in time, may be attributed to a consequence of
outgassing. We showed that it can be simply explained as a consequence of a pressure
unbalance, ∆PH2O/PH2O = (4.6 ± 0.3) × 10−3.
Aiming at identifying a source location providing such a pressure unbalance, we
performed molecular simulations with Molflow+ [87, 88], with a full VE geometry,
rather precise in close proximity to the TM, and simplified wherever not relevant.
Details about our simulations are in App. D. We observe that such a low unbalance
is very hard to get if a single source in close proximity to the TM dominates the
outgassing environment. For example, outgassing from IBM alone generates an
unbalance higher than 10%, as the pressure on the IBM-side face would be much
higher than the opposite one. This is simply justified by the fact that the impedance
between the IBM side and the opposite TM face is high, because of the lack of paths
joining the two regions. It is much more likely that more sources concurred jointly to
the overall outgassing. Possibly, a single species dominated, as we did not observe
any branching in Brownian evolution: for example, water from metal, water from
polymers.
We could not perform any simulation clearly showing the observed pressure unbalance:
as it is so low, such a simulation would require a very long computational time, and
could also need more detail in regions that we simplified. It would also hardly be
conclusive, as the parameter space of possible sources producing the unbalance is too
large.
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8.3 Discussion on the physical origin of LPF glitches

In Chapter 7, we discussed the properties of the transient events detected on LPF,
dealing with detections, observations, and measured parameters. We have shown that
LPF glitches might be divided into two well-distinct categories, and that they follow
two different behaviors, during ordinary and cold runs.

We have shown that one of the two categories, named “fast, low-impulse”, included
rapid events, and that many of such events occurred in coincidence with differently-
shaped transients in other interferometer channels. In addition to this, we also
showed that these glitches occurred mainly during the cold runs, showing globally
non-Poissonian occurrence statistics, and bunching up in the first stages right after
re-heating. It is clear that the cold runs, performed at nominal 0 ◦C, showed a
much-worsened behavior with respect to the ordinary ones. The effects shown there,
nominally the occurrence of FLGs and the increased rate of ICGs, just add on the
general behavior observed in cold runs, which were affected by increased noise in the
interferometric channels, and a possibly non-thermal mechanical GRS distortion. This
distortion also led to a test mass re-grab, between runs May17B and May17C. The
distortion must have put under stress the interface between the GRS (basically made
of metal, with a non-negligible thermal distortion coefficient) and the ZerodurTM OMS
Optical Bench, virtually undistorted because of the very low temperature coefficient.

We focused a lot on the “impulse-carrying” glitches, much more present throughout
the entire mission, and showing well-defined templates, which would be much more
impactful on the low-frequency performances in LISA. We described the templates,
showed the parameter distributions, and proved that the events follow a Poissonian
occurrence statistics, being hence independent of one another. Moreover, we used the
LPF capacitive sensor provided by the GRS subsystem to prove that these events are
real forces acting on the test masses, or, more likely on one test mass at a time. A
few events had a non-zero lever arm, showing transients in the angular acceleration
time series. Nevertheless, nothing relevant was found along the y and z linear degrees
of freedom. No coincidences with any other LPF time series were found.

In this discussion chapter, we investigate the possible physical mechanisms that
could originate the detected glitches, especially the ones related to the impulse-carrying
phenomena.

8.3.1 Nature of the fast, low-impulse glitches

The nature of FLG events is much better understood than that of ICGs. Even though
we were not able to firmly assess if they are true forces acting on the test masses
(see Sec. 7.3.1, where we prove that ICG events are indeed true forces, but we were
not able to draw conclusions about the FLGs due to strong high-frequency noise
in the capacitive GRS sensor), we detected many properties that point in the same
direction. We showed that FLGs did not leave any net impulse to the test masses, were
high-frequency signals, and were short-lasting, hence requiring no counteraction in the
feedback actuation loop. The most important feature, discussed in Sec. 7.4.1, is that
the majority of such events showed coincidence with transients in other interferometer
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channels.
It is highly likely that FLG events were due to anomalies in the interferometric

readout, with no force applied to the test masses. We do not have particular hints
about the underlying generating mechanism, but we note that those events were
mainly detected during the cold runs, which notably showed an increased level of
mechanical stress. Similar events (i.e., short-lasting, and transferring no impulse) also
showed up in a similar interferometer flown on the GRACE Follow-on mission [89].
The interferometer readout exhibited phase jumps, that would translate for us into
steps in ∆x12,OMS. Such jumps were well analyzed during runs with an enhanced
sampling rate, increased from 10 Hz to 10 kHz, and were traced back to mechanical
disturbances generated by thrusters activation. Thus mechanical stress may be the
root cause of these interferometer anomalies on LPF.

8.3.2 Nature of the impulse-carrying glitches

Contrarily to fast low-impulse glitches, we were able to demonstrate that a large
fraction of the impulse-carrying ones consists of true force events acting on one (or
both) test masses. Though we could not extend the demonstration to the smallest
ones, the shape similarity with the larger ones, and the continuity of the parameter
distribution, make it very likely that all glitches of this kind, or at least the vast
majority of them, consist of true force events.

In the following, we deal with the possible sources causing this kind of events:
first, we discuss their main statistical features, then we identify some possible sources,
aiming at ruling out the unlikely ones, and identifying the most likely ones.

Impulse-carrying glitch clustering and taxonomy

We propose some considerations about the ICG observed properties, which might
help in understanding the physical causes. We point out that these analyses might
be found slightly more unprecise than the statistical ones presented before. Though
maybe inexact, these observations are nevertheless rather objective, highlighting some
points that might be relevant for a deeper understanding.

First, we have already noticed that the glitch occurrence statistics followed the
Poisson statistics, during both the ordinary and the cold runs (Fig. 7.6). We observed
different occurrence rates at different times in the mission, but we observed neither
any significant clustering nor any repeated pattern. We have also seen glitches pile up
[3] (during cold runs, when the rate was higher), and the pile-up rate is compatible
with random coincidences. Thus, these glitches appear to be due to independent
sources and occur at random times.

We refer again to Figure 7.7, where we observed that during ordinary runs in stable
conditions, and within the specified operating conditions, we observed a constant mean
occurrence rate throughout the ≃ 1.2 yr of the mission science operations. During this
period of time, the operational settings of LPF changed many times, and pressure
around the test mass decreased by almost an order of magnitude (Chapter 5, ref. [2,
5]). Apparently, the only changing element was temperature, which was lowered down
to near 0 ◦C. We will discuss later that it was not temperature to contribute directly
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to the glitch rate, but rather another mechanism, likely thermally induced. Anyway,
the glitch rate increased visibly, about 30 times.

Before dealing with the cross-check with additional telemetries, we look again at
the ICG glitch parameter distributions, i.e. (∆v, ∆).

More specifically, Fig. 7.11 on page 144 shows that glitches might be clustering in
two roughly-different populations:

• A population with ∆ ≳ 1.6 ks, which accounts for: 37% of all positive glitches
in ordinary runs; just 0.7% in cold runs; no negative glitches. Indeed, no long-
lasting negative glitches were detected. The threshold 1.6 ks may be intended as
subjective, we just use it as a reference for discussion, with no physical meaning.

• In both ordinary and cold runs, positive-impulse glitches constitute the vast
majority of all glitches.

The number of glitches detected in the three categories is different, as shown in
Table 8.1. We list the number of glitches in these three categories: positive-short,
positive-long, and negative, for both ordinary and cold runs. Knowing how long cold
runs and ordinary runs lasted, we make a projection of how many glitches would
have been detected if cold runs followed the same statistics as ordinary. The driving
question is the following: the occurrence rate of positive and short-lasting events surely
increased, since the event count went from 51 to 304; however, counts of positive and
long-lasting events went from 50 to 2. Is it possible that the latter distribution is still
compatible with the ordinary run distribution?
We attempt a prediction: knowing that cold runs lasted 12.4 days, which is 8.99%
of the duration of the ordinary runs (138 days), then we expect rates to be about
8.99% if the distribution is the same. Counts C would then be predicted according to
a Poissonian distribution, as

p(CCR|COR) = p(CCR|λCR = λOR) p(λOR|COR) (8.9)

Hence we make a Bayesian projection of the number of glitches that one would
have observed if cold runs followed the same statistics as the ordinary runs, and we
provide values at 90% confidence level.

Table 8.1: Observed and expected number of glitches, listed by duration and impulse sign.
We recall that no long-lasting negative glitches were detected. It can be noticed that the
observations for long-lasting positive glitches corresponded to projections.

∆v > 0
∆ < 1.6 ks

∆v > 0
∆ > 1.6 ks ∆v < 0

Ordinary runs 51 30 17
Projected cold runs a 1-13 0-9 0-6
Observed cold runs 304 2 28
a Counts for cold runs, projected from the observed counts and rate

in ordinary runs. Intervals correspond to 90% confidence.
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The result of this projection shows that:

• Counts for positive glitches of duration less than 1.6 ks are more than twenty
times larger than the largest projected value. Thus, cooldown has strongly
increased the rate of these glitches.

• Counts for positive glitches of duration larger than 1.6 ks are compatible with
the projected values, and thus the rate of these glitches has not increased upon
cooldown.

• Counts for negative glitches, all of which are short, are more than four times
larger than the value expected from the ordinary runs statistics. Thus cooldown
has affected the rate of these glitches too, though to a lesser extent than that of
positive shorter glitches.

We have shown that the increase in glitch rate during the cooldown affected
basically two glitch populations, namely positive and negative short-lasting events.
Another question that could arise is if the parameter distributions are still compatible,
despite the rise in the occurrence rate. These considerations make no definitive proof,
but they are suggestive that, in ordinary runs, ICG glitches belong to three different
families:

1. Positive-impulse glitches, with ∆ ≥ 1.6 ks.
For this family ∆v increases rapidly with ∆. For reference, we calculate that
the line ∆v [pm/s] = ∆2/ (0.65 ks)2 is the lowest power-law upper bound to all
glitches in this family. The lower bound is not precisely set, because of the pres-
ence of the LPF-noise lower detectability threshold (see Fig. 7.11). The upper
bound does not appear to be due to any obvious selection effect as detection of
glitches above it was not prevented for instrumental reasons.
Remarkably, the rate of these glitches has not been affected by the thermome-
chanical stress conditions of the cooldown.

2. Positive-impulse glitches, with ∆ < 1.6 ks. This coincides basically with the
glitch population of this kind during the cold runs.
Indeed, given that the rate of the glitches of the long positive impulse family
was unaffected by cooldown, even if that family extended to shorter durations,
very few samples would contaminate the cold runs distribution with ∆ < 1.6 ks.
About 70% of the glitches within this family last less than one minute.
The rate of these glitches has been greatly affected by the thermomechanical
conditions of cooldown. Actually, as in cold runs negative impulse glitches are
only about 8% of the total, the time/temperature evolution of the rate in Fig. 7.8
refers basically to the glitches in this family.

3. Negative-impulse glitches, solely with ∆ ≤ 1.6 ks. About 53% of these events
last less than a minute.
The rate of this family has also been affected by cooldown, though to a lesser
extent. There are not enough samples to assess if the rate has been affected by
temperature.
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8.3.3 Possible physical sources of force glitches

We now investigate on many possible generating effects, describing the possible
sources causing glitch-like events. We discuss the confidence that we have about the
phenomena, based on observation and cross-telemetry checks.

Platform acceleration and inertial forces

An obvious cause of transient events, in space-borne differential accelerometers, might
be a sudden acceleration of the spacecraft, which would be picked up by the differential
motion because of the unperfect common mode rejection of the instrument. An obvious
example of this is the case of a micrometeoroid hit.

In our case, we can rule out this source, as we corrected the data for the coupling
to spacecraft motion. In addition, we have inspected the x1,OMS(t) data series, to
check for any residual coincidence, possibly due to some residual inaccuracy in the
data correction, finding none. Similar data correction and inspection also rule out, as
sources of glitches, inertial forces due to spacecraft rotation.

Thermal effects

We observe no coincidences between glitch occurrences and thermometer readings.
The correlation of temperature and temperature gradient variations with LPF’s

∆g has been investigated by a series of dedicated experiments [44, 71], aimed at
measuring the dependence of ∆g on the average temperature T of all thermometers
on each electrode housing. Acceleration was found to follow a complex behavior, with
a relatively prompt response and coefficient ∂∆g/∂T |p, and an additional delayed
response with a different coefficient ∂∆g/∂T |d, likely due to the delayed heating of
distant sources. The former was found to be pretty constant over time, at about
0.5 pm s−2 K−1. The coefficient ∂∆g/∂T |d was instead found to decrease by about a
factor 5 over the course of the mission and to level off at ≃ 0.5 pm s−2 K−1, paralleling
the decrease in pressure.

A similar pressure-dependent behavior was also found for ∂∆g/∂∆TEHi , where
∆TEHi is the difference of temperature across the ith electrode housing. For both
electrode housings, these coefficients leveled off at ≃ 10 pm s−2 K−1.

With such sensitivities, to explain the smallest of the observed ∆g glitches with a
glitch in T , one would need amplitudes of order mK at the beginning of the mission
and of many tens of them at the end. We would have detected such glitches, as our
resolution is of the order of tens µK in T for a 100 s glitch following the template in
Eq. (7.1).

The same applies to a glitch in the differential temperature ∆TEH, for which glitch
amplitudes would need again to be of order of mK, and where our sensitivity is in the
µK range thanks to a dedicated low noise temperature differential readout [44].

Therefore these hypothetical temperature glitches would have been detected within
the temperature time series. We believe that this rules out the hypothesis that glitches
may be due to thermal transients.
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Gravitational signals

The possibility that glitches originated from some amount of mass permanently
changing position or leaving the system is easily ruled out, as they leave no residual
acceleration after their occurrences. Hence, we have to seek for a different origin.

Figure 8.4: Schematic representation of the GRS, 3D visualization (left) and horizontal
section (right). The golden cube is the Au-Pt test mass. The orange/brown hollow structure
represents the electrode housing, whose mid-section carries four symmetric holes, one of which
is the input port for the laser beam (red). The 3D view also represents electrodes. The grey
element is the specially shaped tungsten gravitational balance mass.

Another possible cause for a gravitational signal would be a body moving around
its equilibrium position, moving exactly with the time profile of Eqs. (7.1, 7.2, 7.5),
settling back to the initial position after its transient motion. An example could be
the 2 kg tungsten balance mass located within each GRS, at a few centimeters from
the test mass center (see Fig. 8.4).

The gravitational force gradient per unit mass acting on the test mass due to the
balance mass is −ω2

1,2 ≃ 5 × 10−7 s−2. Thus, to produce our smallest glitches with a
peak amplitude about fm s−2, one would need a displacement of the balance mass out
of its equilibrium position peaking at ∼ 2 nm and then getting back to rest.

The balance mass is indeed the largest source of gravitational gradient. The
gradient from other sources is significantly smaller, as the gradient from the rest of the
GRS drops to about 4 × 10−7 s−2, due to compensation [50], and as the contribution of
farther apart components decays as the cube of the distance. For instance, the optical
bench contributes a gradient of about 6 × 10−8 s−2, the other GRS 3 × 10−8 s−2, and
the rest of the spacecraft 1 × 10−8 s−2 [90]. Those parts would be required a larger
displacement, to yield the same gravitational effect.

The question, then, is what could cause such motion of mechanical part, and
how it could explain the long-lasting profile. Indeed, the characteristic frequencies
of the mechanical parts surrounding the test mass are in the kHz range: even the
overdamped mechanical motion of those parts takes place on timescales much shorter
than that of the vast majority of the observed glitches. In order to produce a glitch
by way of this physical mechanism, one would need parts to actively move because of
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some transient distortion, and not by some mechanically excited free motion.
We foresee two major patterns for such a thermomechanical distortion. The first

is an expansion or contraction of the GRS around the test mass due to a temperature
fluctuation. The major effect of such distortion would be to move the balance mass
relative to the test mass. Given the construction details, this effect adds a term of
order ≃ 0.3 pm s−2 K−1 to the temperature coefficient ∂∆g/∂T |p discussed above. The
possibility of glitches originating this way has been already ruled out.

The second distortion pattern that may give origin to a force transient, is a rigid
displacement along x of either of the two GRS relative to its own test mass. This is the
case, for instance, if the struts that attach the GRS to the LTP bay thermally expand
or contract, moving both GRS in opposite directions, and changing their distance by
some amount δl.

By moving the main sources of gradient, such a distortion would cause both a signal
∆g = −ω2

2,GRS δl, with −ω2
2,GRS ∼ −ω2

2 ∼ 4×10−7 s−2, and a signal xOMS −xGRS = δl.
As already mentioned, we have observed both such signals upon the large distortion
caused by the cooldown.

Thus, a glitch originating from such a distortion pattern, or from any pattern
that would move any of the GRS relative to its test mass, should also show up in the
xOMS − xGRS series, peaking at ∆gmax/(−ω2

2,GRS), a number that ranges from a few
nanometers to micrometers. We have inspected the series xOMS − xGRS and found no
corresponding glitch.

A distortion pattern moving the spacecraft, or one of its large components, relative
to the entire LTP and nondetectable in xOMS − xGRS would require much larger
amplitudes. The difference of gradient on the two test masses due to the entire
spacecraft, which is the quantity that would matter in this case, is of order 10−9 s−2.
Thus, to produce the observed glitches, the spacecraft would have to have moved
along x by an amount ranging from micrometers to millimeters, requiring temperature
changes ranging from a fraction of a K to hundreds of K, without causing any detectable
distortion within the LTP. We consider such a scenario to be quite unlikely.

In conclusion, we believe that a gravitational origin is an unlikely explanation for
the vast majority of the observed glitches.

Magnetic force

It also appears unlikely that these force glitches are explained by some slow transient
in the magnetic field. With slow here we mean that we are not considering eddy
current effects, which we will discuss later.

The magnetic susceptibility of the test masses has been measured to be χ ∼
−2.5 × 10−5 and its permanent magnetic moment |µ| < 5 nAm2 [15], though this
is just an upper limit. The static magnetic field on board LPF was found to be
|B| ∼ 1 µT [72], and, finally, from the lack of correlation between the magnetic field
and force noise [5], we estimate the magnetic gradient to be less than 10 µT/m.

The force peak amplitudes of all observed glitches have ∆gmax ≥ 10−15 m s−2 (see
Fig. 7.14). To reach such a force level, a glitch in the magnetic field gradient, on
either of the test masses, considering only the coupling to the test mass induced
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moment, should peak at about 1 µT/m. Unless we take into account an unrealistically
close source, a gradient like this would have produced a detectable signal on some
of the magnetometers, at least for glitch duration larger than about 10 s. As glitch
amplitudes were even 1000 times larger than this minimal one, many of the glitches
would have produced large magnetometer signals.

Similar conclusions are obtained assuming that the glitch is in the magnetic field.
To produce our force glitch with a glitch in the magnetic field, one would require a
peak at least 0.1 µT, well above the detection threshold. Thus the lack of observed
magnetic glitches rules out this explanation.

A further mechanism for force transient of magnetic origin, is that of currents
induced via Seebeck effect by thermal gradients inside the test mass. The test mass
material has a finite amount of Au and Pt precipitate that may create effective thermo-
couples at grain boundaries. The effect was noticed during magnetic characterization
of the test masses on ground, during which temperature differences of order of a few
K across the test mass, due to manipulation by human hands, induced a magnetic
moment peaking at some µA m2. With the value for the static gradient quoted
above, this effect would just give a correction of ≃ 0.1 pm s−2 K−1 to the coefficient
∂∆g/∂∆TEHi mentioned in the previous section, and its role in producing glitches is
ruled out together with the rest of the thermal effects.

In addition to these low frequency effects, magnetic fields at high frequency may
induce eddy currents within the test masses and then exert Lorentz forces on them [14].
The effect is thus quadratic and would convert the low frequency amplitude fluctuations
of a high frequency magnetic spectral line into a corresponding low frequency force.

To give a scale of the effect, a recent finite-element electromagnetic calculation
[86], has shown that the effect of a dipole of 1 mA m2 located at a distance d = 20 cm
from the test mass and oscillating at the frequency of 100 Hz, would cause a force of
∆g ≃ 4 fm/s2. The effect reaches its peak at 100 Hz, while at lower frequencies the
induced current decreases and above that the screening effect of the metallic electrode
housing attenuates the oscillating field.

The effect of a dipole source decreases with d−7, so that at the closest distances of
about 0.4 m between the test mass and any active device on the LPF spacecraft the
effect might be ∼ 100 times smaller.

However, the shape and timescale of the glitches are not easily reconciled with such
a magnetic origin. Electromagnetic emission from electronics is usually modulated by
noise, by switching among different operational settings, and by thermal variations,
and we do not see how these may easily follow the reversible exponential behavior
lasting minutes to hours that would be required to generate the observed glitches.

One way though of producing a smooth time evolution is that of two lines of
constant amplitude, the frequencies of which would slowly drift over time. If during
some time interval these lines had a substantial overlap in the frequency domain, they
would indeed generate a force on the test mass.

Lines observed during testing where stable in frequency, but, again, we cannot
exclude that other lines were present in flight. It seems, however, highly unrealistic
that on orbit enough lines have been generated, with different enough drift rates and
shapes, to explain the hundreds of glitches of Fig. 7.11, with parameter values that
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span a few orders of magnitudes.
While the possibility that some of the observed glitches are due to eddy currents

cannot be discarded, it is highly unlikely that this source may explain the majority of
the observed glitches.

Electrostatic forces from GRS electronics

Another option is obviously related to electronics, and electrical forces in general.
The simplest explanation would be for example a cosmic ray event depositing a high
charge on the isolated TMs. Though, it is quite easy to exclude such an occurrence, as
a deposited charge would leave a permanent acceleration step in ∆g, quite incompatible
with the observed finite-impulse glitches. Moreover, the rate would not change with
temperature, but rather change with solar wind intensity, which is not the case. In
addition, all surfaces facing the test masses are conducting and grounded, and would
not accumulate free charge.

Still, glitches may be produced by spurious voltage transients in the electronics
used to control the test masses. More specifically, the mentioned electrodes facing the
x-faces of the test masses, are all driven by separate amplifiers. A voltage glitch in
one of these amplifiers would certainly produce a force on the test mass.

However, a single-electrode event like this would also generate a torque around z,
with a lever arm |rϕ| = 11 mm, which is the main reason why we have searched for a
torque component to the detected force glitches as explained in Sec. 7.3.2.

To span the observed range of glitch peak amplitudes, from 1 fm/s2 to 1 pm/s2, with
the electrode geometry, there would need to be a transient change in the mean square
voltage at the actuation amplifier output between roughly 10 mV2 and 10 000 mV2.
This could occur in different forms:

• A transient “quasi-DC” voltage in the 100 µV to 100 mV range, mixing with
stray DC potential differences of order 100 mV, due to test mass charge and/or
stray “patch” voltages.

• A transient change in the roughly 1 V actuation audio-frequency carriers [1] by
roughly 10 µV to 10 mV.

• A transient electrode oscillation coherent with the 100 kHz sensing “injection”
frequency [16] and mixing with the 0.6 V amplitude test mass bias, in roughly
this same amplitude range.

• A spontaneous AC oscillation, at some random frequency not associated with
the actuation or injection, with amplitude in the 5 mV to 200 mV range.

While we cannot directly exclude any of these – though the 100 kHz excitation would
have likely given some capacitive sensing error – they were not detected in dedicated
preflight tests, albeit relatively short (less than day per electrode), which could have
detected such anomalies.

A strong indicator that the glitches do not originate in the actuation electronics
comes from the analysis of the possible torque component to the observed glitches.
The findings in Sec. 7.3.2 show that:
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• There are in total 56 glitches within ordinary runs, spread over the entire
parameter space, for which we would have been able to detect a lever arm of
11 mm (see Fig. 7.18). Only one of these is both incompatible with rϕ = 0 and
compatible with rϕ = 11 mm (see Table 7.2). Though there is no proof that this
glitch is indeed of electrical origin, one might nevertheless take 1/56 as a rough
bound to the fraction of glitches that may be due to this source.

• For the cold runs glitch data, none of the 147 glitches for which there is sufficient
resolution to resolve rϕ = 11 mm have such an effective arm. The probability of
such an event, using binomial statistics, and assuming the distribution is the
same as during ordinary runs, is p = 0.08, a figure that does not allow us to
reject the equal distribution hypothesis. Using both observations, ordinary and
cold runs, the probability of such an occurrence becomes p ≤ 0.023 with 95%
confidence.

• For the kind of standard, audio-frequency electronics we are discussing here,
minute to hour-long transients which are not induced by some corresponding
thermal transients, are quite unexpected. Of the 121 glitches with ∆ ≤ 1 min
and detectable 11 mm lever arm, none is found to have such a lever arm, which
gives p ≤ 0.024 with 95% confidence.

While this effective arm test is inconclusive for the smallest and fastest glitches, for
which our sensitivity to a lever arm is reduced, most of our glitches are incompatible
with a single-electrode electrical origin.

In addition to this, even for the smaller, faster glitches, the observed increase in
rate upon cooling the spacecraft is not easily reconciled with an electrical origin.

More complex voltage events, simultaneously affecting more than one electrode –
such as two adjacent electrodes which combine to give force without torque – are even
less likely given the design of the electronics [47].

8.3.4 Outgassing environment, glitches as gas bursts

One candidate source of force is the exchange of momentum between the test mass
and the gas molecules surrounding it, the same possibility that we also analyzed from
the point of view of low-frequency noise. We analyzed carefully this option, which
right now is the only candidate not excluded yet.

The driving observation is that the vacuum environment surrounding the test mass
is rather unusual, as the vacuum chamber is densely packed with components: test
mass, electrode housing, test mass launch-lock mechanism, various cable bundles, etc.,
as can be noticed in the left panel of Fig. 8.4. Thus, the outgassing surface-to-volume
ratio is unusually high for a vacuum system, and the distribution of outgassing surfaces
is rather non-symmetric around the test mass.

In such an environment, one possible source of glitches may be an event of release
of some metastably trapped gas from pores. Similar events are often observed in
vacuum systems, due to so-called virtual leaks – cavities with a high impedance
connection to the outside – that may trap gas and release it in bursts [91]. The
phenomenon is also known to be triggered by mechanical stress and friction. Pressure
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events, roughly similar in shape to LPF’s and lasting between tens and hundreds of
seconds have already been detected in vacuum systems, as can be seen in reference
[92], though in different experimental conditions, and with higher amplitudes than
LPF’s. Nevertheless, in that reference, glitch events were discarded and not further
examined.

Transients during bakeout. We re-analyzed the pressure gauge time series
during vacuum preparation of the GRS on the ground (see Fig. 8.5), which indeed
showed transient long-lasting events. For that test, the GRS had been inserted in a
wider vacuum chamber with its venting valve open. The chamber was pumped down
and its temperature was kept at ≃ 115 ◦C for about 24 h. This is a standard procedure
known as bakeout, meant to get rid of most of the adsorbed water.
The time stretch containing the glitches in Fig. 8.5 was observed during the final
cooldown, during which the system was subject to a significant amount of thermome-
chanical stress due to the relatively rapid contraction. Similar behavior with many
spikes was also observed during the preparation of the other GRS, while no spikes
were detected during a test with the empty chamber. However, we have no way of
assigning with certainty the source of these gas emission spikes to the GRS interior,
and we only show them here as an example of the phenomenon in vacuum systems.

Figure 8.5: Blue line and left scale: pressure in one of the two GRS during cooldown, after
about 24 h pumping at about 115 ◦C for vacuum preparation (bakeout) on ground. Red line
and right scale: temperature in the test facility. Vacuum preparations were performed by
inserting the GRS inside a wider vacuum chamber with its venting valve open. The pressure
and temperature shown in the figure are those of this wider chamber. The time origin is set at
the end of the bakeout phase. The inset zooms on a region with low-amplitude events. (Data
courtesy OHB Italia)

Molecular simulations for ICG events. We have performed molecular dynam-
ics simulations, with the tools provided by Molflow+, on a more realistic model of the
GRS – See App. D for a description of the software.
Molecular simulations on simplified geometries had already been performed in the
past [3, 22, 93], showing that a molecule released from a surface nearby the test mass
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can transfer a net momentum to it before leaving the system via the venting duct. For
instance, a water molecule with a Maxwell-distributed momentum, entering the laser
port in the center of the x-face of the electrode housing (see Fig. 8.4) and hitting the
test mass, would exchange with the test mass an average momentum per unit mass
along x of ∆v ≃ −2.4×10−22 m/s, before leaving the electrode housing through any of
its holes. This is about a factor 40 larger than the mean momentum of the distribution
⟨∆v⟩ ≃ 5.7 × 10−24 m/s, an enhancement due to multiple collisions between molecule
and test mass, caused by the constrained geometry [22], and the re-thermalization at
each hit.

Figure 8.6: Horizontal section of the
GRS, simplified, showing a possible path
of molecules emitted by the IBM, hitting
prevalently the x+ face.

Using the figure above for the impulse per
molecule: the glitch with the largest test mass
impulse ∆v ≃ 1 nm/s would correspond to
roughly 4×1012 water molecules (0.13 ng) hit-
ting the test mass; the sum of all glitches in
ordinary runs and during the entire mission,
assuming the observed constant rate, would
amount to about 1.5 ng; those observed dur-
ing cold runs would amount to about 0.15 ng.
These figures constitute a comparatively small
amount of molecules, when compared with
the total outgassing rate from each GRS, of
the order of 100 µg/d at the beginning of the
mission and 10 µg/d at the end.

We have simulated with the full GRS
geometry, an instantaneous emission of
molecules from a point on the side of the
tungsten mass that faces the aperture in the center of the x-face of the electrode
housing, identical and opposite to the mentioned laser port (see Figs. 8.4, 8.6). This
emission indeed creates a glitch in the differential pressure with a shape similar to the
observed ones. In particular, the profile never crosses the line ∆g = 0, meaning that
the TM side facing the emission region is preferentially hit.

The timescale and the profile shape are not straightforward to guess, as they
heavily depend on the system geometry and response. In particular, the characteristic
permanence time of molecules in such an ultra-high-vacuum system is less than 0.1 s.
Hence, any long-lasting pattern should be given by either a) a long-lasting emission
pattern, or b) a long mean sojourn time of the molecules on the various surfaces.

In any case, the total transferred momentum ∆v is independent of the event
timescale. With mm the total mass of the emitted molecules, we find ∆v/mm ∼
0.5 nm s−1 ng−1. Note that the simulation shows that only 20% of the molecules
emitted from the balance mass indeed enters the electrode housing, while the others
follow different paths.

In Fig. 8.7 we provide the results of a molecular emission from the front face of
the IBM, showing the different pressure profile arising on the x+ and the x- TM
sides. The simulation is run with a sojourn time τ = 1 s, which is necessary to obtain
a long-lasting glitch. Otherwise, with no sojourn time, the glitch would last only a
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Figure 8.7: Molecular emission from the front face of the IBM, pressure profiles on the x+
and x- TM sides (blue, red), difference (green) and pressure at venting duct (grey). Curves
are re-scaled so that the total transferred impulse is 1 nm/s. The simulation is run with a
sojourn time τ = 1 s, which is one of the two conditions to obtain a long-lasting glitch. The
other possibility, which we find sounder, is that the emission timescale is the driver of the
glitch timescale.

few tenths of a second. In the plot, curves are re-scaled so that the total transferred
impulse is 1 nm/s. The grey line represents the pressure increase at the venting duct
entrance, which in this case would be of the order of a few nPa.

Molecular simulations for anomalous events. What we were not able to
reproduce with simulations are the few detected oscillating glitches, such as the one in
Fig. 7.5. Such an event could be reproduced in the following way: the gas source emits
an outgassing flow Q̇(t) shaped as h(t) in Eq. (7.1); the impulse response function for
that location is, for geometrical reasons, a linear combination of δ(t) and δ′(t), so that
the observed pressure is

p(t) ∝ h(t) ∗
[
δ(t) + βδ′(t)

]
∼ h(t) − βḣ(t) (8.10)

Such a linear combination could arise, for example, from the existence paths leading
to the opposite TM side before the front-facing one. The previous expression, indeed,
would coincide with observations Eq. (7.6). Unfortunately, that is not the case for
LPF. Probably because of the presence of the mechanical structure, yellow in Fig. 8.4
on the left, and the absence of gaps within it and the VE, with simulations we find
no locations producing “opposite patterns”: if the source is located on the x+ (or -)
TM side, it produces an effective pressure on the + (or -, respectively) side. If the
source is located on the y or z sides, the glitch is prevalently produced in the y and z

directions, and would likely be detected with capacitive measurements.

Lever arm of gas outflow. Note also that simulations show that the lever arm
of a gas inflow from the main inlets to the electrode housing, like that coming from
the balance mass, is negligible. Thus, for the few observed glitches with nonzero lever
arm, one should assume that the gas has been emitted by some source localized inside
the electrode housing.

However, no other source creates the same sort of cavity around one of the electrode
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housing apertures as that created by the special shape of the tungsten balance mass.
This is reflected in the fact that, for all other sources, the ratio between the number
of molecules hitting the test mass and that of those following different paths is always
significantly smaller than that for the tungsten balance mass.

Outgassing candidates. The tungsten balance masses are a natural candidate
for such gas-burst events. First, a microscope analysis has shown that its sintered
material is porous, with micrometer size pores [3]. Second, the sign of the transferred
impulse for this source would be positive, as for the great majority of the observed
glitches.
Many other components may also trap gas, beginning with the various bundles of
cables that connect the electrodes, and the various motors of the launch lock, to their
respective electronics. Some of these sources have the proper position to create also
negative-impulse glitches that indeed we are able to reproduce with Molflow.

One more argument that may support the gas-release interpretation of glitches is
the sensitivity of gas emission to thermomechanical stress, as is well illustrated by
Fig. 8.5. As said, thermomechanical stress accompanied the cold runs and their highly
increased glitch rate. In particular, Fig. 7.8 shows that the occurrence rate switched
almost reversibly, from the λ ∼ 1 d−1 of ordinary runs, to the many tens per day of the
cold runs, when crossing a comparatively narrow temperature range of a few degrees.
In addition the data are also suggestive of some slow transient relaxation at the
lowest temperatures. This may indicate that the rate may be following some complex,
non-linear stress pattern due to the significant differential thermal contraction of the
high numbers of equally complex contact interfaces within the GRS.

Glitch duration in case of gas bursts. Though the likelihood of this source
looks the highest among those discussed so far, a few aspects remain to be clarified. An
important one is the time profile of the glitches and the associated wide distribution
of ∆. Most of the spikes in the data of Fig. 8.5 have an almost instantaneous onset,
followed by the decay pattern one would expect in a standard vacuum system: large
gas releases saturate the adsorption speed of the chamber solid surfaces and are
quickly pumped down, while smaller ones follow a slower decay in quasi-equilibrium
with surface adsorption. This is the response one would expect for a fast, virtually
instantaneous, release of gas from some pocket.

In the case of an instantaneous emission of a group of molecules from a specific
source, TM acceleration would also consist of a rise followed by a decay. The rise time
would be due to the distribution of diffusion times from the source to the electrode
housing inlet, and the decay time to the diffusion of molecules. The time constant
of such decay would nevertheless be fixed, depending on the mean sojourn time of
particles on walls and on the number of wall hits. Sojourn times of molecules on
metal surfaces depend exponentially on their binding energy (see App. D). Thus they
may vary by orders of magnitude, from 10−12 s to more than seconds, depending
on the nature and state of the surface, the nature and amount of adsorbed species
etc. However, once the sojourn time for the electrode housing is fixed, the resulting
duration for such a particular match is fixed. Indeed, the duration of the decay branch
depends only on that choice, and for ∼ 90% of the observed glitches the template
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is that in Eq. (7.1), which only contains one time constant, so that the duration of
the decay branch fixes the overall duration. The model of an instantaneous release of
gas from one source would then not reproduce the observed large variability of glitch
duration.
As a consequence, if glitches are due to gas release, for a large fraction of them their
time profile must be dictated by the intrinsic time evolution of the gas release, while
it can be limited by diffusion across the GRS only for some of the shortest ones.

We note that standard diffusion in simple geometries, like from the bottom of a
very narrow pit or from the center of a spherical piece of material, does produce a
time evolution of the gas outflow very close to that of our observed glitches, and that
the timescale for diffusion may indeed be very long, depending on the gas species and
the material.
However, we were not able to find in the literature any reference to events of slow gas
release from pores or other imperfections. The only hint we have of the possibility of
some non-instantaneous gas evolution is in very few of the peaks in Fig. 8.5, showing
indeed some minute-long rise times.

Glitch amplitude in case of gas bursts. Moreover, the scale of the events in
Fig. 8.5 is orders of magnitude different in amplitude from the kind of release that
would explain our glitches. For instance, the above-mentioned Molflow simulation
shows that the 2 ng of total water molecules emitted from the balance mass, needed
to generate the glitch with the largest ∆v, would generate a peak pressure of a few
nPa at the venting valve, well below the measurement resolution of the figure.

Lastly, we find no sound explanation for the near-quadratic dependence of the
impulse on the duration of the event. From the perspective of gas-bursts, the impulse
would be related to the total number of molecules hitting the test mass.

8.3.5 Impact of LPF glitches on LISA

Assessing the impact of LPF-like glitches on LISA science is not straightforward, and
it is a task that is currently being carried out within the LISA consortium [76, 94].
That analysis is not our purpose here, though we have a look at the main points.
As we said, the major impact on science would be made by ICG-like glitches rather
than FLG-like, as the former would affect the low-frequency branch. Fast glitches, like
FLG which carried no impulse, would be quite easily identified and distinguished from
the GW waveforms of inspiralling astrophysical sources. On the other hand, ICG-like
glitches could affect the science ∼ mHz frequencies, potentially spoiling observations.
Analyses are being carried out within the context of LISA simulations and the LISA
data challenge, injecting LPF-like glitches in simulated data and looking at how their
presence modifies GW parameters. The longer the proper duration of the glitch, the
higher spectral power it would have at low frequencies. As one could guess, the key
point is not necessarily the duration of the glitch, but rather when the glitch occurs
during the evolution of a binary system. As the LISA sources evolve slowly in the
low-frequency band, staying even for weeks or months in it, the glitch could happen
in a relatively quiet moment of the evolution, as well as it could happen in the worst
moment, which is the merger.
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Figure 8.8: Collective plot of all LPF’s ICG glitches, points, and LPF’s at SNR = 3 threshold
line during the best-noise runs. The red line is a rough estimate of the two-links LISA detection
threshold, based on the requirements in Eqs. (1.3) and (1.4). The difference at low durations,
below ∆ ∼ 103 s, is driven by the higher interferometer noise, increasing from LPF’s short
arm 32 fm s−2 Hz−1/2 to LISA’s long arm 10 pm s−2 Hz−1/2. We recall that this estimate does
not take into account many variables (TDI, LISA dynamics, etc.), that should be considered
in a precise analysis.

We highlight a few points about the glitch mitigation task:

1. LISA data analysis is completely different from LVK’s. Glitches in on-ground
interferometers occur frequently, superimposing to the background noise. This
allows to better characterize them, especially when they have a high SNR. Most
of the time, measurements are simply (stationary) noise, with no GW sources.
Hence, the probability of having glitches superimposing to GW waveform is
really an unlucky case. Though it happened for one of the most important
observations, GW170817 [95], during which one of LIGO’s detectors was affected
by a large glitch. In that case, though, another independent detector was online,
allowing a precise estimate of GW parameters. LISA will not have multiple
independent detectors.

2. LISA will not detect glitches in the same way as LPF did. Analogously to
LVK’s observation, LPF’s was a pure measurement of the out-of-loop differential
acceleration between the TMs. LPF detected glitches showing up over its
stationary noise, allowing us to precisely characterize them. LISA will perform
interferometric-precision measurements only between distant TMs, affected by
long-arm issues. Single, one-arm measurements do not allow any significant
measurements, as they are heavily affected by laser frequency noise, requiring a
further post-processing step known as Time Delay Interferometry (TDI). We
do not go into the details here, but the relevant point is that this procedure
requires the combination of many-link measurements. The post-processing, then,
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might even hinder the information about the TM that produced the glitch, and
will also change dramatically the glitch shape.

3. This does not mean that single-spacecraft measurements are not feasible, but
rather that they are not feasible at a high-precision interferometric level. In-
deed, single-spacecraft acceleration could only be detected with GRS capacitive
readings [96], much noisier than the interferometric ones, hence only useful for
high-SNR events.

4. Arguably, glitches occurring close to the merger of two astrophysical objects
would majorly impact the GW parameter estimation. On the opposite side,
glitches superimposing to, for instance, the long single-frequency inspiral of a
galactic binary, would not affect greatly the measurement. Analyses are still
underway in that sense [76, 94].

Even though, as said, precise analyses are much more complicated than this, we
can make a very rough estimate, approximating the SNR that LPF-like ICG glitches
would have in the LISA case. The need for TDI means that at least four laser links
are necessary, hence meaning using four TMs. Figure 8.8 shows a collective plot of
all LPF’s ICG glitches, with a forecast based on the LISA requirements Eqs. (1.3)
and (1.4). Note that this is just a rough estimate as, in the real case, making TDI
combinations would require at least four links, hence at least double the noise.
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8.4 Conclusions

Within this thesis work, we encompassed a number of aspects of the LISA Pathfinder
mission, trying to extract all the information and science from data. What matters
the most is that LPF succeeded in showing a residual acceleration better than the
requirements for gravitational wave observation, clearing the way to adoption.
Still, most of the science that was enabled by LPF is not attainable on-ground, and
as such will not be accessible before LISA will get operational. Hence, the need to
carefully analyze data from LPF, and to get as much as possible from LPF, as a large
part of the LISA instrumentation will directly inherit from LPF.
In-depth analyses of LPF measurements allowed us to extract some more details about
its behavior, and its performance. Due to its high sensitivity, LPF uncovered some
aspects that still remain not fully explained, which will also guide future on-ground
analyses before LISA’s launch.

As all over the place in this work, we also divide into three parts this concluding
section.

1. LPF showed a low-frequency sub-mHz acceleration noise, below GW requirements
but exceeding modeled predictions.
First, we analyzed it to understand its nature, unconcerned about its physical
source. We found that noise has been a) stable to within 25% fluctuations
all over the mission, without showing any evident noise epochs across more
than one year b) Gaussian, over the considered frequency set, c) caused by
real forces acting on the TMs, not by an error in the interferometric readout.
We also studied the angular acceleration time series, showing that the lever
arm of the residual acceleration is not compatible with what would result from
single-electrode disturbances.
We analyzed the correlation between the detected excess with a number of
diagnostic telemetries and dynamical quantities, known to exert spurious forces
on the TMs, namely temperatures, thermal gradients, magnetic fields, actuation
digitization residuals, fuel mass loss, instrument distortion. We found that, in the
band [36 µHz–1 mHz], none of these sources dominates observations, accounting
overall for less than 10%. On the other hand, the frequency 18 µHz is dominated
by thermal fluctuations, especially at the beginning of the mission.
We gave a projection of the unaccounted effects contributing to LPF noise. At the
present understanding, the major known contribution is given by actuation gain
noise, contributing on average to about 25% power in the band [60 µHz–1 mHz].

1b. For the analyses at the previous points, we developed tools in the context of
multivariate statistical analysis of power spectra, which are completely general-
ized and not exclusive for LPF analyses. We gave the expression of the generic
probability distribution of CPSD matrix, and from that we built a Bayesian
analysis for the posterior of derived quantities. Based on that, we developed
a decorrelation tool, useful to disentangle coupled sources and analyze their
spectra separately.
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2. We analyzed LPF’s Brownian noise. It is known that the [1 mHz–10 mHz] LPF
band was affected by Brownian noise – indeed a proxy for pressure. We showed
that the Brownian level in linear acceleration is indeed a good proxy for pressure,
and as such can be exploited to analyze pressure evolution and the vacuum
environment. This is what we did, finding that the outgassing environment was
dominated by a source scaling as t(−0.78±0.02), and an activation temperature of
(6900±200) K. Moreover, we analyzed LPF’s long-term drift from the perspective
of vacuum environment, finding that its presence is compatible with a stable
pressure unbalance on TM faces.

3. We dedicated plenty of space to the acceleration transients, “glitches” detected
on LPF. First, we analyzed the glitch properties and identified two different
categories, impacting in different ways LPF’s data and potentially impacting in
different ways LISA’s science. Supported by coincidences with other interfero-
metric channels, we found it highly likely that events in one of the two categories
are due to glitches in the interferometric readout.
We thoroughly analyzed events of the main family, showing up with a rate of
1/day in ordinary runs, increasing during cold runs. We analyzed their amplitude,
their impulse, their duration. We finely analyzed the dependence of the glitch
rate on temperature, to understand the degree of dependence during the cold
runs, and analyzed their correlation to torque time series. In the final chapter,
we presented a long discussion about the findings, presenting cross-analyses
with other time series, looking for correlations and finding none. As of now,
a possibility remains that glitches were caused by gas bursts, though further
analyses might be required.

Finally, we presented a long discussion about all the identified low-frequency accelera-
tion features, i.e. the stationary noise, the long-term drift, and the transient glitches,
investigating the physical mechanisms ultimately causing them, and highlighting some
points to be further analyzed.

Lastly we note that, despite overcoming its requirements, LPF left behind some open
questions, and opened some new, unpredicted ones. In particular, questions regarding
the physical origin of the measured low-frequency acceleration, which is still largely
unmodeled. The results of the presented analyses are not always conclusive, but quite
often they tend to exclude possibilities, based on observations.

We are hopeful that some results may be the driver of further studies, to be
performed on-ground in view of LISA, to better understand the LPF performance,
and, ultimately, to make predictions for LISA.
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A List of LPF runs

Table A.1: List of all used LPF runs, label used within this work, legacy LPF index, start and end times, duration,
mean electrode housing temperature, actuation authority scheme as in Table A.3. Runs highlighted in blue are cold
runs. Runs highlighted in orange refer to long runs used in low-frequency analyses. For those runs, M is the number of
periodograms available at 18 µHz.
In the text, we refer to the blue runs in this table as cold runs, and to the other ones as ordinary runs. The orange
ones are referred to as long-lasting ordinary runs, or simply ordinary runs when unmistakable.
(∗) Temperature in cold runs is measured with LTP bay (LCA) sensors, because of the limited working range of EH
sensors.

Label idx Start time End time Days (M) Temperature [K] Act.

Mar16A 01 2016-03-01 08:05:00 2016-03-02 23:59:59 1.7 (295.49 ± 0.01) NOM

Mar16B 02 2016-03-03 15:00:00 2016-03-04 20:59:59 1.2 (295.46 ± 0.01) RED

Mar16C 03 2016-03-06 18:15:01 2016-03-08 07:59:59 1.6 (295.51 ± 0.03) RED

Mar16D 04 2016-03-13 16:30:00 2016-03-15 06:59:59 1.6 (295.50 ± 0.03) RLA

Mar16E 06 2016-03-21 01:59:10 2016-03-26 07:59:44 5.3 (3) (295.37 ± 0.04) URLA

Mar16F 08 2016-03-31 08:00:00 2016-04-02 01:59:59 1.7 (295.31 ± 0.01) RED

Apr16A 09 2016-04-04 00:00:00 2016-04-13 07:59:44 9.3 (6) (295.30 ± 0.03) UURLA

Apr16B 12 2016-04-26 08:04:00 2016-04-28 07:59:59 2.0 (295.18 ± 0.01) UURLA

May16A 13 2016-05-01 08:05:00 2016-05-02 23:54:59 1.7 (295.21 ± 0.04) UURLA

May16B 14 2016-05-03 08:00:00 2016-05-05 15:29:59 2.3 (295.14 ± 0.02) UURLA

May16C 17 2016-05-16 00:00:00 2016-05-19 04:59:59 3.2 (1) (294.97 ± 0.06) UURLA

May16D 18 2016-05-19 11:30:00 2016-05-21 10:59:59 2.0 (294.92 ± 0.01) NOM

Jun16A 37 2016-06-15 13:35:00 2016-06-18 07:58:59 2.8 (294.92 ± 0.02) UURLA

Jun16B 39 2016-06-19 13:00:00 2016-06-24 07:59:59 4.8 (2) (294.93 ± 0.01) UURLA

Jul16A 41 2016-07-11 11:40:00 2016-07-12 09:54:59 0.9 (294.00 ± 0.04) UURLA
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Jul16B 42 2016-07-17 12:00:00 2016-07-20 05:59:59 2.7 (1) (296.62 ± 0.05) UURLA

Jul16C 43 2016-07-24 17:00:00 2016-07-29 23:59:59 5.3 (3) (296.50 ± 0.02) UURLA

Jul16D 44 2016-07-31 11:40:00 2016-08-02 05:59:59 1.8 (296.59 ± 0.03) UURLA

Aug16A 46 2016-08-12 11:30:00 2016-08-13 07:59:59 0.9 (296.45 ± 0.01) DURLA

Aug16B 48 2016-08-23 14:00:00 2016-08-27 19:59:59 4.2 (296.45 ± 0.01) DURLA

Sep16A 49 2016-09-05 11:35:00 2016-09-06 05:04:59 0.7 (296.63 ± 0.03) DURLA

Sep16B 51 2016-09-11 21:15:00 2016-09-16 05:14:59 4.3 (296.52 ± 0.02) DURLA

Sep16C 52 2016-09-16 18:36:54 2016-09-17 08:00:39 0.6 (296.56 ± 0.01) DURLA

Sep16D 53 2016-09-19 02:32:00 2016-09-22 05:55:58 3.1 (296.69 ± 0.05) UURLA

Sep16E 54 2016-09-28 13:35:00 2016-10-01 07:55:58 2.8 (1) (296.67 ± 0.01) UURLA

Oct16A 55 2016-10-04 00:00:00 2016-10-05 07:10:51 1.3 (296.64 ± 0.02) DURLA

Oct16B 56 2016-10-05 17:30:00 2016-10-08 07:49:59 2.6 (296.3 ± 0.1) UURLA

Nov16A 58 2016-11-07 21:30:00 2016-11-12 07:59:59 4.4 (296.81 ± 0.03) UURLA

Nov16B 59 2016-11-16 11:05:00 2016-11-26 07:59:59 9.9 (5) (296.86 ± 0.04) UURLA

Dec16A 60 2016-12-02 23:35:00 2016-12-04 16:34:59 1.7 (296.67 ± 0.01) DURLA

Dec16B 61 2016-12-26 08:01:30 2017-01-13 19:57:59 18.5 (13) (295.38 ± 0.04) UURLA

Feb17A 64 2017-02-02 07:00:00 2017-02-02 20:15:58 0.6 (284.66 ± 0.05) UURLA

Feb17B 66 2017-02-14 01:59:50 2017-02-27 09:53:29 13.3 (9) (284.72 ± 0.03) UURLA

Apr17A 69 2017-04-21 14:15:00 2017-04-24 07:44:59 2.7 (1) (285.88 ± 0.01) DURLA

May17A 70 2017-05-02 08:00:00 2017-05-03 18:26:59 1.4 (274.9 ± 0.6)∗ UURLA

May17B 71 2017-05-03 23:30:00 2017-05-09 13:59:59 5.6 (274.05 ± 0.05)∗ UURLA

May17C 72 2017-05-10 11:15:17 2017-05-12 12:02:06 2.0 (273.55 ± 0.17)∗ UURLA

May17D 73 2017-05-12 12:02:07 2017-05-15 08:00:58 2.8 (276.5 ± 1.4)∗ UURLA

May17E 74 2017-05-18 18:24:46 2017-05-23 01:59:59 4.3 (2) (284.19 ± 0.13) UURLA

Jun17A 75 2017-05-29 13:55:10 2017-06-05 07:59:59 6.8 (4) (295.78 ± 0.01) UURLA

Jun17B 76 2017-06-08 12:00:45 2017-06-17 01:42:30 8.6 (5) (295.91 ± 0.02) UURLA
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Table A.2: Experimental configuration of the 13 noise-only runs used for low-frequency noise estimation. Runs
correspond to the ones marked in orange in Table A.1, except for run Apr17A which is a DRS run. The meaning of the
numeric labels is explained in the text.

Run Propellant
tank

Thruster
branch

Actuation
authority

TM
alignment

Voltage
compensation

Heaters
configuration

DRS
state

Mar16E 2 A URLA 1 1 1 OFF

Apr16A 2 A UURLA 1 1 1 OFF

May16C 2 A UURLA 1 2 1 OFF

Jun16B 3 A UURLA 2 3 1 OFF

Jul16B 3 A UURLA 3 3 2 DIAG

Jul16C 1 A UURLA 3 3 2 DIAG

Sep16E 3 B UURLA 3 3 2 DIAG

Nov16B 1 B UURLA 3 3 3 DIAG

Dec16B 1 B UURLA 3 4 4 OFF

Feb17B 1 B UURLA 3 4 5 OFF

May17E 3 A UURLA 3 4 6 OFF

Jun17A 3 A UURLA 3 4 1 OFF

Jun17B 3 A UURLA 3 4 1 OFF

Table A.3: Actuation authority settings

Fx,1
pN

Fx,2
pN

Fy,1
pN

Fy,2
pN

Fz,1
pN

Fz,2
pN

Nθ,1
pNm

Nθ,2
pNm

Nη,1
pNm

Nη,2
pNm

Nϕ,1
pNm

Nϕ,2
pNm

NOM 0 2200 3670 3670 5820 5820 16.37 16.37 13.32 13.32 10 11

RED 0 600 3670 3670 5820 5820 16.37 16.37 13.32 13.32 3 3

RLA 0 200 3670 3670 5820 5820 16.37 16.37 13.32 13.32 3 3

URLA 0 50 3670 3670 5820 5820 16.37 16.37 13.32 13.32 1.5 1

UURLA 0 50 1000 1000 500 500 4.00 4.00 4.00 4.00 1.5 1

DURLA 0 2200 3670 3670 5820 5820 16.37 16.37 13.32 13.32 10 11
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Table A.4: Test mass alignment settings. Setpoint indexes are used in Table A.2.

Angle Setpoint 1
(Mar16–Jun16)

Setpoint 2
(Jun16)

Setpoint 3
(Jun16–Jun17)

ϕ1 [µrad] −59.25 −56.32 −61.2

ϕ2 [µrad] −21.35 −33.01 −9.7

η1 [µrad] −3.5 −2.14 −4.9

η2 [µrad] 3.5 10.3 −3.3

Table A.5: DC voltages settings. Configuration indexes are used in Table A.2.

DC Voltage Config. 1
(Mar16–May16)

Config. 2
(May16)

Config. 3
(May16–Nov16)

Config. 4
(Dec16–Jun17)

∆x,1 [mV] 0 +48 +24 +24

∆x,2 [mV] 0 0 0 0

∆ϕ,1 [mV] 0 0 0 +32

∆ϕ,2 [mV] 0 0 0 −116
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B Appendix on spectral estimation

B.1 Generation of random Wishart-distributed samples

Some properties of the complex Wishart distribution [61, 97] can be exploited to
define a random sample generator. Let’s assume that the matrix W is distributed
as a complex Wishart CW (Σ, K). The algorithm we report here allows to re-write
the matrix in a form in which all the entries are independently distributed, and
then reassemble it to get random samples of the matrix W . The key points are the
following:

1. The matrix Σ is Hermitian and positive-definite. Therefore it can be factorized as
Σ = DHD, where D is an upper triangular matrix, with the diagonal elements
being real and positive. The process is known as Cholesky decomposition.

2. If we Cholesky-decompose Σ = DHD, then the matrix V such that W =
DHV D follows a complex Wishart distribution CW (I, K) [97].

3. Now consider the Cholesky factors T of the matrix V , such that V = T HT . It
can be demonstrated [55, 97] that the entries of this matrix are independent and
follow the following distributions:

(a) The upper-triangular off-diagonal elements are complex Gaussian variables,
i.e., their real and imaginary parts can be independently drawn from
zero-mean Gaussian with variance 1/2,

Ti<j ∼ N (0, 1/2) + iN (0, 1/2)

(b) The square of the i-th diagonal element is a sample drawn from a Gamma
distribution with shape parameter K − i + 1, i.e.

T 2
ii ∼ Γ(K − i + 1)

4. Finally, the complex Wishart distributed matrix W can be recovered, as

W = DHT HT D (B.1)

Posterior CW generator, Jeffrey’s prior. The same random generator can
be employed to generate samples from the posterior distribution of the theoretical
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CPSD matrices. As noted in Sec. 3.3.1 on page 49, if a prior can be defined on the
entire theoretical CPSD matrix Σ, the inverse-CPSD Q = Σ−1 follows in its turn
a complex-Wishart distribution. The number of degrees of freedom associated with
such distribution depends on the prior choice. Therefore, samples from the posterior
distribution can be easily generated using the sampling algorithm to draw samples
for Q ∼ CW(W −1, K) (assuming Jeffrey’s prior), and then compute Σ = Q−1 on the
samples.

B.2 Calculations for time series decorrelation

B.2.1 Derivation of spectral quantities for time series decorrelation

We modeled noise with the equations in Eq. (3.23). Here we deduce the result in
Eq. (3.24) and another useful result, in case only one time series z(t) is contributing:x(t) = x0(t) +

∫ +∞

−∞
α(t − t′)z(t) dt′

y(t) = z(t) + n(t)
(B.2)

We write x(t) instead of ∆g, for readability.

• First, let’s evaluate the spectral cross-correlation between x and y(t), which would
appear as the upper-right element of the CPSD matrix, with the nomenclature of
Sec. 3.4. To do it, we first have to evaluate the time cross-correlation, classically
defined as Rxy(τ) = ⟨x(t + τ) y(t)⟩. It is known that the cross-correlation Sxy(ω)
is the Fourier transform of the time cross-correlation function. Developing from
this definition,

Rxy(τ) = ⟨x(t + τ) y(t)⟩ =

= ����Rx0z(τ) +����Rx0n(τ) +
〈∫ +∞

−∞
α(t′) z(t + τ − t′) z(t) dt′

〉
+

+
〈∫ +∞

−∞
α(t′) z(t + τ − t′) z(t) dt′

〉
=

=
∫ +∞

−∞
α(t′)

〈
z(t + τ − t′) z(t)

〉
dt′ +

∫ +∞

−∞
α(t′)

〈
z(t + τ − t′) n(t)

〉
dt′ =

=
∫ +∞

−∞
α(t′) Rzz(τ − t′) dt′ +

�������������∫ +∞

−∞
α(t′) Rzn(τ − t′) dt′,

(B.3)
where some terms cancel out, because of mutual independence between such
time series. Calculating the Fourier transform of the result leads to

Sxy(ω) = α(ω)Szz(ω) (B.4)

• Analogous reasoning can be applied to the auto-correlation Rxx(τ), leading to

Sxx(ω) = Sx0x0(ω) + |α|2(ω)Szz(ω) (B.5)
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B.2.2 Derivation of spectral quantities for time series decorrelation

In Sec. 3.4.2, we state that spectral quantities (specifically, the susceptibilities and the
residual PSD) can be more easily expressed as elements of the inverse-CPSD matrix
Q. In particular, we assume that the theoretical PSD matrix Σ can be written as

(B.6)

where α are the complex susceptibilities, Syy is the CPSD matrix of the signals yi,
and S∆g0 is the PSD of the so-called residual, i.e. the component of S∆g which does
not correlate with the signals yi.
The following equation is a well-known result of block matrix inversion. In particular,
if the matrix Σ can be partitioned into four blocks as

Σ =

A B

C D

 , (B.7)

where A and D are square blocks, it follows that the inverse Q = Σ−1 reads

Q =

 (A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

 (B.8)

From this equation, and from the previous Eq. (B.6), some results follow directly:

1. The complex susceptibility vector, α, can be written explicitly from terms of
the inverse CPSD Q, as

Q1,j+1
Q11

= −(A − BD−1C)−1BD−1

(A − BD−1C)−1 = −BD−1 = α SyyS−1
yy = α (B.9)

2. The residual noise can be written as

S∆g0 = S∆g − α · Syy · αH = S∆g − S∆gy · S−1
yy · SH

∆gy =
= (A − BD−1C) = 1/Q11

(B.10)

3. The residual noise coincides with the Schur complement of the matrix Syy in Σ.

B.2.3 Marginalization of residual PSD posterior

We prove the result in Eq. (3.53), where we state that, under the assumption that
susceptibilities are real-valued, and Jeffrey’s prior is assumed on the residual PSD
S∆g0 , the single-frequency residual follows an inverse-gamma distribution

S∆g0 ∼ invΓ (M − r/2, M ReΠ/RePyy) . (B.11)
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First of all, let’s integrate the likelihood function Eq. (3.49) with respect to α:

p({S∆g0}|{W }) ∝ 1
SM

∆g0

∫
α

exp
[
−η · W · ηH

S∆g0

]
dα × prior

(
S∆g0

)
(B.12)

Let’s elaborate on the exponential term. First, as η in real, η · W · ηH = η · V · ηT ,
where V is the real part V = ReW .
The exponent can be rewritten:

η · V · ηT = (−1, α) · V · (−1, α)T = V11 − V1y · αT − α · V T
1y + α · Vyy · αT =

= V11 − V1yV −1
yy V T

1y + V1yV −1
yy V T

1y − V1y · αT − α · V T
1y + α · Vyy · αT =

=
(
V11 − V1yV −1

yy V T
1y

)
+
(
V1yV −1

yy − α
)

· Vyy ·
(
V1yV −1

yy − α
)T

=

= (V /Vyy) +
(
V1yV −1

yy − α
)

· Vyy ·
(
V1yV −1

yy − α
)T

,

(B.13)
where the first term is the Schur complement. Hence we can rewrite the integral as∫

α
exp

[
−η · W · ηH

S∆g0

]
dα =

exp
[
−V /Vyy

S∆g0

] ∫
α

exp

−

(
V1yV −1

yy − α
)

· Vyy ·
(
V1yV −1

yy − α
)T

S∆g0

 dα ∝

∝ S
r/2
∆g0

exp
[
−V /Vyy

S∆g0

]
(B.14)

where we have used the Gaussian integral. Hence the posterior likelihood is

p({S∆g0}|{W }) ∝ 1
S

M−r/2
∆g0

exp
[
−V /Vyy

S∆g0

]
× prior

(
S∆g0

)
, (B.15)

which, with Jeffrey’s prior, is the result we wanted to prove.
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B.3 Generation of time series with given noise

For algorithm testing purposes (Sec. 3.6.3), we have been in need of creating synthetic
time series, lasting as long as the Feb17B run, to run the tests in a controlled
environment. These are the requirements:

1. The main measurement ∆g(t) should be corrupted with two time series A(t)
and B(t), via two coupling susceptibilities αa and αb.

2. The two signals A and B should have a certain degree of correlation with one
another.

3. The two signals A and B should be affected by additional independent readout
noises, nA(t) and nB(t).

4. For better resembling the LPF case, ∆g0 should have a ∼ 1/f2 + const. power
spectrum; a(t) and b(t) should have a ∼ 1/f and ∼ 1/f2 power spectrum. We
simulate nA(t) and nB(t) with the same spectra as a(t) and b(t).

To satisfy these requirements, we independently generate {∆g0, a, b, nA, nB} with the
given power spectra, and mix them as follows:


∆g

A

B

 =


1 αa αb 0 0

0 1 µ η 0

0 ν 1 0 η





∆g0

a

b

nA

nB


(B.16)

Here, we arbitrarily choose µ = 0.4 and ν = 0.3. We choose {αa, αb} = 2.5, 4.0 in test
#2.1 and {αa, αb} = 0.2, 0.5 in test #2.2. The spectra α2

aSa and αbSb are depicted
in text in Fig. 3.8 on page 70. η varies from 0 upwards, to change the impact of the
readout noise on A and B.

We note that, from this definition, the expected susceptibilities of A and B differ
from αa and αb: (

αA αB

)
=
(

αa − ναb

1 − µν

αb − µαa

1 − µν

)
(B.17)
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C Appendix on LPF glitches

C.1 Estimation of impulse-carrying glitch
parameter errors

We have already noted, in Sec. 7.2.3 on page 143, that the fitting procedure of ICG
glitches to the templates in Eqs. (7.1, 7.2, 7.5) is non-optimal and non-linear, because
of the presence of red noise at low frequencies. In particular, the red noise is present
at the characteristic frequencies of the events themselves, ∼ 1/τ . It can be proved
that the least squares fit coincides with the Wiener optimal filter only in the case
of frequency-independent white noise. Hence, we estimated the fitting parameter
covariance from the Cramér-Rao bound [98], assuming the noise is Gaussian, and using
the measured PSD of the residuals. For glitches in ordinary runs, we have checked
that parameters returned by an optimal filter procedure agree, within the estimated
uncertainty, with those found with our non-optimal least squares method.

To this aim, once a glitch had been identified and fitted, we have: expanded the
fitting function around the best-fit parameter values, up to linear terms in the fitting
parameters; applied the optimal linear filter method for multi-component signals [99];
calculated the fitting amplitudes; propagated these results back to that of the original
fitting parameters. Both procedures’ results agree with the uncertainty estimated
from the Cramér-Rao bound, except for a few outliers.

The optimal linear filter procedure works as follows (regarding single-τ glitches,
but it can be extended to multi-τ):

1. We focus on the glitch Fourier template, h1(ω) in Eq. (7.3), which depends on
∆v, t0, and τ . We re-define the definition with respect to the variables q = ∆v t0,
r = ∆v τ .

2. We linearly expand the Fourier template about the fit parameters, defining the
gradient

ξ(ω) = ∇(∆v,∆vt0,∆vτ)h1(ω) =
(

e−iωt0

(1 + iωτ)2 , − iω e−iωt0

(1 + iωτ)2 , − 2iω e−iωt0

(1 + iωτ)3

)

3. The gradient defines the signal matrix Ξ(ω), whose elements are defined by
Ξij(ω) = ξi(ω)ξ∗

j (ω). Similarly to the standard 1-dimensional Wiener theory,

203



Appendix C

the inverse optimal variance matrix is given by

V −1 =
∫ +∞

−∞

Ξ(ω)
Sone-sided(ω) dω = 4

∫ +∞

0

Re [Ξ(f)]
S(f) df

4. If J is the Jacobian of the transformation (∆v, t0, τ) → (∆v, q, r), then the
matrix C = J−1V J−T is the optimal covariance matrix, with respect to the
parameters (∆v, t0, τ), which we use for error estimation.

5. From C, it is straightforward to see that its first and last diagonal elements are
the estimated variances of ∆v and τ .
The variance of the duration ∆ can be found easily in case the glitch follows
the template h1(t). In the h2(t) case, the variance is found by standard error
propagation, following the definition ∆ = ∆(τ1, τ2).
The variance σ2

∆v of the amplitude ∆v also defines the signal-to-noise ratio,
SNR, of the glitch. If an event’s amplitude is ∆v, then its SNR is defined as
SNR = |∆v|/σ∆v.

6. Within the same theory and the linear approximation, also the parameter values
can be recovered, evaluating their deviation from the fit values

δ(∆v, ∆v t0, ∆v τ) = 4
∫ +∞

0

V · ∇h1(f) x(f)
S(f) df,

where x(f) is the Fourier transform of the data stretch. Nevertheless, we were
not able to apply the optimal procedure to the cold runs data because of their
above-mentioned complexity, due to overlap of events. Thus, for consistency, we
used for both ordinary and cold runs the parameter values resulting from the
non-optimal least squares procedure.

Our error estimates represent a lower bound. In particular, given the length of the
low pass filter we use for glitch identification, the uncertainty on ∆ for the shortest
glitches, ∆ ≲ 30 s, may be significantly underestimated. However, we stress that none
of the results depends critically on the accuracy of such an uncertainty estimate, as
parameter fluctuations within the glitch population are significantly larger than their
uncertainties.

Standard, one-dimensional case. We note some differences with the standard
one-dimensional case of Wiener filters, which is usually used in template searches.
The difference is that, in our case, the shape parameters τ1 and τ2 are not known. If
they were, the vector ξ(ω) would just reduce to its first component ξ1(ω), and the
optimal standard deviation would converge to the classically known

σ∆v =
[
4
∫ +∞

0

|ξ1(f)|2
S(f) df

]−1/2

,

which is the commonly used form. The SNR would thus be defined slightly differently,
resulting generally in a higher value. This is understandable, since an initial better
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knowledge of the template one is looking for should lower the detection threshold.

C.2 Multi-dimensional matched-filtering for noise-correl-
ated detectors

We consider a generic array of detectors, indexed by i. Each of these detectors is
characterized by a known background noise PSD, due both to the common noise and
to the different readout noises. The presence of a common noise induces a non-zero
cross-spectral density between the noise-only time series, so it is convenient to define
a cross-spectral matrix Σ(ω) (see Chapter 3).

Let’s assume that the i-th detector measures the xi(t) time series. Let’s also
assume that the transient signal occurs at time t0, matching a known template hi(t)
with an amplitude Ai. This signal adds to the detectors’ noises ni(t), so that

xi(t) = Aihi(t) + ni(t) (C.1)

In our case, the signals hi have the same shape h and amplitude A in both detectors.
As said, the detector noises ni(t) might cross-correlate.

Extending the usual Wiener filter calculations, we prove that the optimal multi-
detector filter, in the frequency domain, reads:

H(f) = h(f) · Σ−1(f)
σ2

A

, σ2
Â

=
(

4
∫ +∞

0
h(f) · Σ−1(f) · hH(f)df

)−1
(C.2)

here, σ2
Â

is the variance associated with the filter, corresponding to the optimal
variance of the Cramér-Rao bound. When applied to data x(f), the filter yields the
estimate of the amplitude Â. The signal-to-noise ratio follows then the usual definition,
SNR = Â/σ2

Â
.

The filter defined in Eq. (C.2) is greater as the intrinsic noise of a detector is lower,
hence privileging those detectors with low noise. We note that, in case one of the
detector is much noisier than the others, it has virtually no influence in Eq. (C.2),
practically resulting excluded from the analyses.
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D Molecular simulations of LPF
vacuum environment

To perform simulations of LPF’s outgassing environment and pressure properties, we
employed Molflow+, a stand-alone software developed at CERN [87, 88]. On Molflow’s
website, it is possible to find extensive documentation about the algorithm behind it;
however, we summarize the main details, important to our purposes.

Molflow is a Monte Carlo simulator, intended to calculate pressure profiles and
conductances in ultra-high vacuum environments, given arbitrary custom geometries.
The assumption of ultra-high vacuum is key, because interactions need to be modeled
with the molecular free flow regime. If the pressure is relatively high (usually, a
reference threshold of 10−3 mbar is set), interactions between molecules are relevant.
So relevant, that inter-molecular forces might become dominant; in that case, the
problem of pressure evolution would enter the field of fluid dynamics and the viscous
regime, with all its known difficulties, and non-linear differential equations. In our case,
pressure is low, of the order of 10−7–10−8 mbar, and molecules move freely without
interacting with each other. The molecular free path, indeed, is > km. This is an
enormous advantage from the computational point of view, as it allows to simulate
and track molecules one by one in parallel, without caring about inter-molecular forces
and interactions, but rather caring only about the interactions with the surfaces.

In the past, simulations of LPF’s vacuum environment were performed [3, 22],
often with simplified geometries with a few surfaces representing just the inner EH
walls, electrodes, laser holes. Molflow offers a more advanced setup, allowing to import
custom CAD geometries. The software is well optimized, so that it can simulate
systems of a few ∼ 105 faces, within reasonable computational time.
In Fig. D.1, we show a snapshot of a simulation.

D.1 Algorithm layout

The idea behind Molflow is the following: a single core works on a single particle,
from its emission, until it is pumped out of the system. The aforementioned particle,
in its journey toward the pumping ducts, or toward any sticking element, hits the
surrounding surfaces, transferring momentum and, hence, giving pressure. Many
particles can be simulated, even parallelizing more processes in a multi-core system.
The reason for this is always the molecular regime: pressure (simulated), generated by
a number of simulated (virtual) particles is proportional to real pressure, generated
by a flow of real particles. Simulating a higher number of particles, of course, allows
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Figure D.1: Snapshot of a simulation of a particle emitted in the GRS, by the IBM, with
our simplified version of the IS geometry. The IBM is visible on the right. In the center, the
TM and its EH, with many cables and harnesses, and their connectors. Only a few hundred
hits are shown. The particle is finally absorbed by the venting duct, not visible. [Geometry
courtesy, OHB Italia]
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to improve the precision of the estimate.
The simulation proceeds with the following outline:

• Emission. Given the settings chosen by the user, a starting location is chosen,
according to the local outgassing flux. The particle direction is randomly
chosen, accordingly to the standardly implemented Knudsen’s rule, or cosine-law
rule, which states that the probability of being emitted in any direction is
independent of the azimuth angle ϕ, but it only depends on the polar angle
θ. The maximum probability, hence, is to be emitted perpendicularly to the
surface. Also, the particle speed is chosen accordingly to the proper Maxwell
distribution1, depending on the molecule mass and the surface temperature. For
example, the typical velocity of a water molecule emitted by a surface at 293 K,
is 520 m/s.

• Traveling. Molflow does not use a time-evolution algorithm. Rather, it im-
plements a ray-tracing method to find the next collision with another facet,
exploiting the fact that molecules do not interact with each other. The time
the ray-tracing method takes, does not depend on the time it takes the particle
in its journey. In our case, this saves computational time. Once a surface is
reached, the particle could be pumped away, or rebound.

– Each facet is provided with a sticking factor, which is the probability that
the surface has to remove the particle from the system. Obviously, pumps
are treated as 100% sticking surfaces. When a surface is hit, a random
number is extracted to choose if it is absorbing the particles or not. If the
particle is absorbed, then it is simply removed from the system, and the
core proceeds with another particle.

– If the particle is rebound, a new speed and direction are chosen. The
key assumption is that particles thermalize to surfaces during collisions.
Collisions last usually a negligible time with respect to the molecule travel
times (see later, sojourn time), but those times are enough for the particle
to be re-emitted according to the cosine law and Maxwell’s law, with the
temperature of the hit surface.

• Absorption. The particle journey ends with an absorption, by a sticking surface
or pump.

• Physical quantities. Physical quantities are calculated and recorded every
time a particle hits a surface. In the standard case, Molflow is intended to be
used to estimate pressure in a particular location, which is evaluated starting by
the momentum transfer in the direction perpendicular to the surface. In LPF’s
case, we use a slightly upgraded version of the Molflow software. The relevant
quantity is indeed the force on the TM along the x axis, hence we need to account
for all momentum transfers along the x direction, careless of the orientation of
the surface. Therefore, for each virtual particle, we record the x component of

1To be precise, the software also applies a correction accounting for the fact that faster particles
get to distant surfaces in shorter times than the others.
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the molecule impulse variation during the collision, ∆Ix = Ixout − Ixin . From
this, force reads:

Fx =
∑

dIx,real
dt

= ∑∆Ix,virtual
dNreal/dt

Nvirtual
(D.1)

Another similar-fashioned quantity, available from the latest software versions
and unimplemented in the presented analyses, is the torque on the TM.

• Time-dependent simulations. Simulations might either be steady-state,
or time-dependent. In a steady-state simulation, a constant molecular flow
is simulated, representing a constant outgassing rate Q̇. A constant flow of
molecules dN/dt yields a constant pressure, or force, on the region of interest.
Otherwise, it is possible to simulate a time-dependent molecular flow, yielding
time-dependent physical quantities. In this case, we argue that the best time-
saving option is to simulate the response to a delta-like outgassing impulse
δ(t), which from the numerical point of view can just be approximated as a
simple step. Afterward, once having the impulse response Fδ(t), representing
the time evolution of TM force due to the outgassing pulse, it is straightforward
to convolve it with the desired outgassing profile Q̇(t), to get the time profile of
the force F (t).

F (t) = (Q̇ ∗ Fδ)(t) (D.2)

Molflow also offers the possibility to look at the evolution of the output quantities
during simulations, to be used as convergence checks. Usually, a few 100 × 103

simulated virtual particles (corresponding to some 100 × 106 total hits) are
enough to draw conclusions, but it really depends on the needed precision and
how weak is the investigated phenomenon.

• Sojourn time. In describing the molecule traveling, we made a strong assump-
tion, saying that the molecule residence time on the surface is negligible with
respect to the travel time. This, in general, is not true. As documented in [100],
molecules interact with surface walls, and get adsorbed with binding energies
which depend on both the traveling molecule, the absorbing surface elements,
and the bonding type. The higher the binding energy, the lower the molecule
escape probability will be, hence the higher the residence time on the wall will
be. The residence time is usually known as the sojourn time. The mean sojourn
time can be as low as 10−12 s, which holds for instance for helium on metals, to
102 s, for chemisorbed molecular hydrogen. It is hard to say what is the expected
sojourn time in the LPF case, but it can hardly be greater than a few seconds,
given that the most probable outgassing gas is water, from metals (Mo, Ti, W).
Once absorbed with mean sojourn time τ , a molecule will escape at a time t,
governed by an exponential probability ∝ exp(−t/τ).
Molflow allows for simple simulations of the sojourn time: once absorbed, the
time of re-emission is randomly chosen from the proper exponential distribution.
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D.2 Usage in the LPF case

In the LPF case, we use Molflow in both constant-flow and time-dependent modes.
A snapshot of a simulation is shown in Fig. D.1. The geometry is representative
of the real flight-model IS (courtesy OHB Italia S.p.A), with “radially increasing”
simplification: the TM, as well as the inner EH, is not simplified. The outer EH faces
are slightly simplified: screws, bolts, nuts are removed, fibers are removed, and their
holes are filled. The structure is more simplified, chamfers are removed and rectified.
Outer components, such as mechanical parts, motors, etc. are removed. The vent
valve/duct is simply represented as a sticking surface. The model is meant to be
representative of the inner TM region, not of the venting parts. Hence, surfaces are
re-meshed, so that the number of facets is reduced to a few hundred thousand.
In Fig. D.2, we show a histogram of the permanence time within the IS of a water
molecule which has been emitted from the inner EH, assuming no sojourn time on the
walls, and assuming that only the vent duct is absorbing.

Figure D.2: Histogram of the permanence time of water molecules emitted by the inner EH,
before absorption by the venting duct, assuming no sojourn time on the walls. The decay time
of the exponential pattern, represented as a red solid line, is τ = 0.03 s.
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