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Abstract

In this Thesis we study two types of mechanical nonholonomic systems, namely systems
with linear constraints and lagrangian with a linear term in the velocities, and non-
holonomic systems with affine constraints and lagrangian without a linear term in the
velocities. For the former type of systems we construct an almost-Poisson bracket using
elements related to a riemannian metric induced by the kinetic energy, and we show that
under certain conditions gauge momenta exist. For the latter type of systems, we focus
on the ones possessing a Noether symmetry. To everyone of these systems we associate
an equivalent system of the former type, and we exhibit the procedure to relate them
and their gauge momentum. As a test case for the theory, we analyze the system of
a heavy ball rolling without slipping on a rotating surface of revolution: we elucidate
that also in this framework the so-called Routh integrals are related to symmetries, we
give conditions for boundedness of the motions. In the particular case the surface of
revolution is an inverted cone we characterize the qualitative behavior of the motions.
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Notations and Assumptions

Along the Thesis we assume that all manifolds and maps are smooth, except when
differently stated. Summation over repeated indices or Einstein summation convention
is used.

We also use the following notation extensively. We introduce it to make a clearer
presentation.

C∞(Q) – the set of smooth real valued functions defined on the manifold Q.

X(Q) – the set of smooth vector field on the manifold Q.

Γ(D) – the set of smooth sections of a vector bundle D, where D is the total space.

Ωk(Q) – the set of smooth k-forms on the manifold Q.

X` : D∗ −→ R – the fiberwise linear function associated to X ∈ Γ(D).

〈·, ·〉 – the pairing between a vector bundle and its dual bundle.

〈·, ·〉g – the pairing induced by a riemannian metric g on a manifold.
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The scientist does not study nature because it is useful to do so.
He studies it because he takes pleasure in it, and he takes
pleasure in it because it is beautiful.

Henri Poincaré

Donde dejo mi sombrero, ah́ı está mi casa.

Proverb
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Introduction

The purpose of this Thesis is to study certain classes of nonholonomic mechanical systems
from a geometric and dynamical point of view. A good understanding in the subjects of
ordinary differential equations, differential geometry and Lie groups is preferred, as well
a good knowledge in analytical mechanics is rather useful to comprehend the structure
of the dynamics of the considered mechanical systems.

In the subsequent paragraphs we present a brief historical passage trying to elucidate
the importance of mechanics in mathematics, and vice versa, since both areas of study
have been nurturing symbiotically along their existence. Nowadays Geometric Mechan-
ics is a branch of Mechanics and Mathematics in which a vast range of theories and
applications live together. Even though this Thesis is about nonholonomic mechanics,
the machinery developed on the classical, or more precisely unconstrained, setting im-
pacts directly on the techniques and approaches used to analyze nonholonomic systems.
The reader can consult for example [1, 4, 3, 84, 95] for more historical and theoretical
information about classical mechanics.

Mechanical systems have accompanied humanity since the beginnings of civilization
with the inclined ramp, lever and pulley as ones of their most simple and characteristic
examples. On the nonholonomic side the wheel is arguably the first man-made example
of such kind, since in a rough terrain situation it does not slips. The systematic study
of mechanics as a branch of physics may have begun with the ancient Greeks, being
Aristotle and Archimedes the main representatives.

Later in time, between the 16th and 17th century, a major breakthrough came with
Galileo Galilei1 and Johannes Kepler. In this period the study of celestial mechanics was
vastly developed and the research approach was, in a sense, from a qualitative perspective.
For example Galilean relativity is the precursor of inertial reference frames and as we
can see in Kepler’s laws of planetary motion, global information of central body systems
is obtained.

The analytical study of mechanics from 17th to 19th century arrived with Isaac New-
ton, Leonhard Euler, Giuseppe Luigi Lagrange, Jean Le Rond d’Alembert, Adrien-Marie
Legendre, Pierre-Simon Laplace and William Rowan Hamilton, among many others.
Newton’s second Law famously stated as

F = ma,

is the cornerstone of mechanics, where all mechanical theories converge as starting point.
Our approach to study nonholonomic systems is based on Euler-Lagrange equations and
d’Alembert principle. We first present both concepts and then precise the meaning of
nonholonomic constraints and their equations of motion. It is well known that Euler-
Lagrange equations are equivalent to Hamilton’s principle [1, 4]. Let q : [t0, t1] ⊂ R →
Q be a (at least) twice differentiable curve in a n-dimensional smooth manifold Q, a
variation of the curve q(t) is a family of curves q(t, ε), parametrized by ε ∈ (−ε0, ε0),

1In [4] the author uses modern language to expose Galileo’s ideas on relativity of reference frames.

vii
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ε0 > 0, such that q(0) = q(0, ε), q(0) = q(0, ε), q(t) = q(t, 0). The derivative

δq(t) := dq(t, ε)
dε

∣∣∣∣
ε=0

(1)

is called an infinitesimal displacement of the variation of the path q(t). Hamilton’s
principle states that the trajectories of the system are precisely the extrema of the action
integral

d

dε

∣∣∣∣
ε=0

∫ t1

t0

L(q, q̇)dt = 0,

for any smooth variation of q(t). This principle is proven to be equivalent to Euler-
Lagrange equations

d

dt

Å
∂L

∂q̇i

ã
− ∂L

∂qi
= 0, i = 1, ..., n. (2)

In mechanics the smooth function L : TQ→ R is called the lagrangian, often encountered
in the literature as L = T −V ◦ τQ, where T and V are the kinetic and potential energies
of the system respectively. In more general cases a gyroscopic or magnetic term γ` is
considered: L = T + γ`− V ◦ τQ. In lifted local coordinates2 (q, q̇) the lagrangian reads3

L(q, q̇) = 1
2gij(q)q̇

iq̇j + γi(q)q̇i − V (q), (3)

where g = gijdq
i ⊗ dqj is a riemannian metric and γ = γidq

i is a 1-form on Q. Before
continuing we clarify the terminology and notation we use throughout the thesis: we
denote by L0 = T −V ◦ τQ a lagrangian composed by kinetic minus potential energy and
say it is a natural lagrangian or of natural type. On the other hand if a lagrangian also
contains a gyroscopic or magnetic term we denote it by L = T +γ`−V ◦τQ and say it is a
gyroscopic or mechanical lagrangian or of gyroscopic type. Newton and Euler-Lagrange
formulations opened the doors to study mechanical systems in not only a case by case
fashion, but also to develop general results and techniques that gives previsions that
can be tested by experiments. Contemporaneously the translation of the principle of
virtual work from statics into dynamics, carried by d’Alembert, was also developed (our
approach essentially relies in both Euler-Lagrange equations and d’Alembert principle).
This principle states that in a constrained mechanical system the infinitesimal variations
δq of the curve q must satisfy the constraints. Roughly speaking nonholonomic systems
are mechanical systems with constraints in the velocities which are not derived from
position restraints. On the other hand constraints just depending on the position are
called holonomic. Suppose that a mechanical system with lagrangian L as in (3) has
n− r nonholonomic linear constraints that we locally write as

Sαj(q)q̇j = 0, α = 1, ..., n− r. (4)

At the same time constraints (4) define n− r 1-forms on Q

Sαj(q)dqj , α = 1, ..., n− r,

whose point-wise kernel defines a constant rank distribution D on Q called constraint
distribution. As a note, constraints (4) are holonomic if and only if there exist n − r
smooth functions Fα on Q such that

Sαj = ∂Fα
∂qj

, α = 1, ..., n− r,

2Lifted coordinates are in general local coordinates in TQ induced by a local coordinate chart of the
manifold Q.

3We use the convention of summation over repeated indices.
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and then (4) can be reformulated by integration as
Fα(q) = 0, α = 1, ..., n− r.

Now a curve t 7→ q(t) on Q is a solution of a nonholonomic problem if and only if
satisfies Lagrange-d’Alembert equations

d

dt

Å
∂L

∂q̇i

ã
− ∂L

∂qi
= λαSαi(q), i = 1, ..., n, (5)

where the multipliers λα are determined by derivation of the constraint equations (4).
The synthetic expression of equations of motion (5) was worked out by Otto Hölder,

but through history its validity has been a theme of confusion and discussion, see e.g.
[87, 12, 36]. It is to be remarked that the work of Sergey A. Chaplygin [31] settled down
the misunderstandings on the correct form for the nonholonomic equations of motion.

Many of the examples in nonholonomic mechanics are related to rigid bodies, for an
ample variety of examples see [93, 92, 87, 91, 40, 12]. Euler describe the motion of a rigid
body with just its angular velocity Ω in body representation by his marvelous equation

IΩ̇ = IΩ× Ω.
Euler also studied rolling bodies without sliding ([50] is perhaps the first scientific study
of a nonholonomic system) and spinning rigid bodies (tops, which are the precursors of
the gyroscope), these two subjects are in essence the cornerstone of this Thesis.

Rolling bodies without slipping were studied extensively by Edward J. Routh [93]
and S. A. Chaplygin [30]. See [87, 19, 95, 12, 64, 63, 41] for some recent references. The
rolling with out sliding constraint for rigid bodies require that the contact point between
the rigid body and the surface has zero velocity, this condition is geometrically stated as

vm + (vc × ω) = 0,
where vm and vc are the velocities of the rigid body’s center of mass and the contact
point respectively and ω is the spatial angular velocity of the body. In Chapter 5 we
analyze the particular case of an homogeneous ball rolling without slipping in a rotating
surface of revolution.

The gyroscope was invented by Leon Foucault as an alternative4 way to demonstrate
Earth’s rotation [60]. This mechanism proved to have several applications in navigation
and engineering, to the point that some smartphones have an electronic realization of it.
Spinning rigid bodies or spinning tops and the gyroscopic forces arising were studied for
instance by Felix Klein [73] and Harold Crabtree [37].

It is known [3, 84, 86] that in unconstrained mechanical systems with cyclic variables
the routhian has the form of (3), in rigid body dynamics cyclic variables can be realized
by attaching rotors to the system. Rotors, hence a lagrangian with linear terms in
the velocities, have proven to be very useful in stabilization and guidance techniques in
Control Theory [13, 100, 72]. Inspired by this we present the local ideas of nonholonomic
Routh reduction in the next section5.

Nonholonomic Routh reduction
We present a nonholonomic version of Routh reduction, this serves as a motivation
and a generator of physical examples where the lagrangian can have a linear term in
the velocities. Consider a nonholonomic system with linear constraints and natural
lagrangian on a configuration manifoldM = Q×K, where Q is a n-dimensional manifold
and K an abelian Lie group6. Let (qj , θJ) ∈ Q×K be coordinates on M and a natural

4The first was Foucault’s pendulum.
5For an in depth historical exposition of nonholonomic systems we refer the reader to [42, 23].
6Recall that finite dimensional abelian Lie groups are isomorphic to a product of the form Rk× (S1)r.
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lagrangian L : TM → R such that θJ are cyclic variables, that is

L(q, q̇, θ̇) = 1
2Gij(q)q̇

iq̇j + GiJ(q)q̇iθ̇J + 1
2GIJ(q)θ̇I θ̇J − Ṽ (q).

Additionally suppose that the constraints are independent of θ and θ̇ and are given in
terms of q and q̇ by (4). That is if the constraints are written as

Sαj(q, θ)q̇j + Sα(n+J)(q, θ)θ̇J ,

then Sα(n+J)(q, θ) = 0 and ∂Sαj
∂θJ

= 0, for all j = 1, . . . , n, J = 1, . . . , l and α = 1, . . . , n−r.
This scenario is realized in a system of rigid bodies, with l fixed rotors, in which the

nonholonomic constraints just affect the rigid bodies, for examples see [22, 20].
Then the Lagrange-d’Alembert equations of the system are

d

dt

Å
∂L
∂q̇j

ã
− ∂L
∂qj

= λαSαj(q), j = 1, . . . , n,

d

dt

Å
∂L
∂θ̇J

ã
= 0, J = 1, . . . , l,

(6)

where the multipliers λα are uniquely determined by the constraints (4). Then the
momenta associated to the cyclic variables

pJ = ∂L
∂θ̇J

= GiJ(q)q̇i + GIJ(q)θ̇I , J = 1, . . . , l,

are clearly first integrals. Let us consider the restriction of the system (6) to a level set
of these integrals by setting pJ = µJ for some fixed µ = (µ1, . . . , µl) ∈ Rl. Along such
level set we may express7

θ̇J = GIJ(q)(µI − GiI(q)q̇i), J = 1, . . . , l, (7)

and we may therefore eliminate θ̇ from the first set of equations in (6) to obtain a
reduced system involving q and q̇ only. As is well known (see e.g. [83]), such elimination
is conveniently done in terms of the classical Routhian function Rµ = Rµ(q, q̇) defined
by

Rµ(q, q̇) :=
[
L(q, q̇, θ̇)− µJ θ̇J

]
pJ=µJ

,

with the convention that in the right hand side θ̇ is written in terms of (q, q̇) as in (7).
One remarkable property of the Routhian is

d

dt

Å
∂Rµ

∂q̇j

ã
− ∂Rµ

∂qj
=
ï
d

dt

Å
∂L
∂q̇j

ã
− ∂L
∂qj

ò
pJ=µJ

, j = 1, . . . , l,

where we again think of θ̇ = θ̇(q, q̇) in the right hand side, so the dynamics are determined
by the routhian and l parameters. Therefore, if we write L(q, q̇) := Rµ(q, q̇), the reduced
system can be written as

d

dt

Å
∂L

∂q̇j

ã
− ∂L

∂qj
= λαSαj(q), j = 1, . . . , n, (8)

together with the nonholonomic constraints (4).
Now note that (8) can be interpreted as the equations of motion of a nonholonomic

system on the configuration manifoldQ, with constraints given by (4) and with lagrangian
7As usual, we denote by GIJ the entries of the inverse matrix of the block GIJ .
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L = Rµ : TQ→ R. As in the unconstrained case the function L has a linear term in the
velocities. Indeed (see e.g. [84]), L = Rµ is given by (3) with

gij = Gij − GIiGIJGJj , γj = GIjGIJµJ , V = Ṽ + 1
2G

IJµIµJ . (9)

In Appendix A we present an intrinsic construction of the nonholonomic Routh reduction
to show that it is a global procedure, where we give a geometric explanation of equalities
(9) and an interpretation of the condition that the gyroscopic 1-form γ = GIjGIJµJ dqj
is not necessarily closed.

Main Contributions
Almost-Poisson formulation

Dirac structures have proved to be the general framework for constrained mechanical sys-
tems [97, 71, 67]. Using such formalism in principle we can construct an almost-Poisson
structure on nonholonomic systems regardless of the kind of constraints and the type of
lagrangian function. The almost-Poisson structure for nonholonomic systems with linear
constraints and natural lagrangian (kinetic minus potential energy) is well documented
[96, 28, 44, 12]. In this Thesis we focus on the case of a linear constrained nonholonomic
system with a gyroscopic lagrangian. This type of systems have not attracted very much
attention and the literature is not abundant. In [76, 74] some examples with gyroscope
or rotors are considered, and in [20] the authors give an almost-Poisson structure for
some classical examples with a gyroscope (in this research direction se also [48]).

In Chapter 3 we present an intrinsic construction of an almost-Poisson bracket for
nonholonomic systems on a configuration manifold Q with linear constraints and gy-
roscopic lagrangian. This Chapter is based on a project in collaboration with J. C.
Marrero, D. Mart́ın de Diego and L. Garćıa-Naranjo. The main contribution we add to
the existing results in the field is the construction of an almost-Poisson bracket for non-
holonomic systems with linear constraints and mechanical lagrangian, for the formulation
we use elements given by the kinetic energy metric instead of more sophisticated elements
coming from symplectic or Dirac geometry. This material is developed in Section 3.3.
The construction of an almost-Poisson bracket can also be important for hamiltonization
[65, 16, 6, 5, 64] of this type of nonholonomic systems. As noted before the appearance
of such almost-Poisson brackets in the literature exists just for certain examples but to
our knowledge not in a general setting. Our construction is made in the dual bundle
D∗ instead of the image of D (recall D is the constraint distribution) under the legendre
transform of the lagrangian L. This choice is made because the former bundle is a vector
bundle and the latter is an affine subbundle of T ∗Q, in this way D∗ serves as the phase
space for the almost hamiltonian description of the equations of motion, nevertheless the
affine nature translates into the almost-Poisson bracket. We prove that the bracket is
linear if and only if the 1-form γ (related to the gyroscopic term of the lagrangian) is
closed, i.e. dγ = 0. We also prove that Jacobi identity is satisfied if and only if the
constraints are holonomic, or equivalently if the distribution D is integrable.

We also consider the scenario where symmetries are present. We perform reduction of
the bracket to the quotient space D∗/G via standard construction [78, 84, 38], the reduced
bracket turns out to be again of affine nature and linear if and only if dγ(X,Y ) = 0, for
all equivariant vector fields X,Y on Q.

Role of symmetry in nonholonomic systems

In unconstrained mechanical systems as wel as in nonholonomic mechanics symmetries
have proven to be fundamental to decrease the degrees of freedom of the system: influ-
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ential works on this direction are [77, 14, 15]. A general reduction process by means of
symmetries is treated in [11, 81, 27, 29], when the systems have a Poisson structure [78],
and in the special case the configuration space is a Lie group [66]. In holonomic systems
the existence of a symmetry guarantees the presence of first integrals (Noether’s Theo-
rem), however in nonholonomic systems this is not directly the case: if the symmetry
are related with the constraints then a nonholonomic Noether Theorem can be stated
[94, 82, 54]. A possible generalization is given by gauge-symmetries which may generate
conserved quantities [10, 53, 58, 7, 64, 9, 8] (see in particular [8] for a recent detailed
study of this aspect). In the particular case of nonholonomic systems with affine con-
straints the energy is in general no longer conserved, but in case has a Noether symmetry
is present then the so-called Moving energy is a first integral of the system [56, 57].

In Chapter 3 we also present a way to construct a system with gyroscopic lagrangian
from a natural lagrangian, this construction is somehow artificial but in some cases is
physically meaningful [57]. The formulation goes as follows: suppose we are given a
nonholonomic system with linear constraints as in (4) and natural8 lagrangian L0, a
vector field N on Q and a real parameter ν ∈ R. We define a mechanical9 lagrangian Lν ,
defined as Lν(vq) = L0(vq + Nq), vq ∈ TqQ. Our contributions are presented in Section
3.5 and are the following: assume that the momentum p0

Z generated by a vector field Z
on Q is a first integral for the system with lagrangian L0, then under certain conditions
we extend Z to a vector field Zν on Q such that its associated momentum 10 pνZν is a
first integral for the system with lagrangian Lν and p0

Zν
= p0

Z .

Dynamical behavior of a ball rolling without slipping in a rotating surface of
revolution

The nonholonomic system of a homogeneous ball rolling without slipping on a rotating
surface of revolution is well known and has been studied by several authors [93, 30, 19,
57, 41]. The case in which the surface is a plane [31, 17] is by far the most studied, other
particular cases such as the cylinder [56], cone [21] and paraboloid [20, 41] are studied as
well. This family of nonholonomic systems are known to have a SO(3)×SO(2) symmetry
group which can be used to perform reduction. Additionally these systems posses three
functionally independent first integrals, the Routh integrals [41] and the moving energy
[57]. The authors in [41] study the qualitative dynamics for a generic superquadratic
surface’s profile f (a function f : R→ R is said to be superquadratic if satisfies the limit
limr→∞

f(r)
r2 = ∞). In [57] using Routh integrals and the so-called moving energy the

authors prove that all motions are bounded independently of the surface rotation.
By means of the theory developed in Chapters 3 and 4 we prove that these type of

systems admit two gauge momenta affine in the velocitites which are SO(3) × SO(2)-
invariant first integrals functionally dependent with Routh integrals, the nature of Routh
integrals was missing in the literature. Furthermore we analyze the nature of gauge
sections generating such first integrals and we see that in general they (its tangent lift)
are not symmetries of the lagrangian.

In Section 5.6 we focus on the particular case where the surface of revolution is an
inverted cone. We analyze the reduced dynamics and we see that the rotation of the
surface has a stabilizing effect, in the sense that if the surface is rotating then all motions
are bounded. We furthermore analyze the reduced system restricted to the level sets
of the Routh integrals, which is proven to be a lagrangian system of dimension 2 [41]
with the moving energy restricted to the level sets as the energy of the system. We

8Kinetic minus potential energy.
9Kinetic minus potential energy plus a gyroscopic term.

10A vector field Z generates the momentum pνZ := 〈 ∂Lν
∂q̇

, Z〉, for the nonholonomic system with
lagrangian Lν .
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qualitatively characterize the reduced equilibrium and in particular we prove that there
exist asymptotic and quasiperiodic motions in both when the surface is still and rotating.

Structure of the Thesis
The Thesis is divided into three parts, two theoretical and one dynamical. The first part
is composed by Chapters 1 and 2, in which the background material is introduced. In
Chapter 1 we expose the general theory of nonholonomic systems with symmetries, with
constraints affine in the velocities and gyroscopic lagrangians. We derive the equations of
motion in both lifted bundle coordinates and quasivelocities. Chapter 2 compresses the
theory for linear constrained with natural lagrangian systems and serves as a test case.
Particular descriptions of what is done in Chapter 1 are given, the construction of an
almost-Poisson structure, and the pertinent reduction process in the case of symmetries
are presented.

The second part is composed by Chapters 3 and 4. Chapter 3 starts with the general-
ization of the almost-Poisson structure presented in Chapter 2 to nonholonomic systems
with gyroscopic lagrangians, and it ends with the characterization and existence condi-
tions of first integrals affine in the velocities which are gauge momentum, Propositions
3.11, 3.12 and 3.13 and Theorem 3.14. Chapter 4 is devoted to the relations between
affine constrained systems with natural lagrangian possessing a Noether symmetry and
linear constrained systems with gyroscopic lagrangian. These relations are constructed
in terms of the equations of motion and on the gauge momentum perspective, the main
result is Theorem 4.4.

The third part is Chapter 5, where a systematic dynamical analysis of the system
formed by a heavy homogeneous ball rolling without slipping in a rotating surface of
revolution is given, existence and nature of three functionally independent first integrals
is derived, Theorem 5.4. In the particular case in which the surface is an inverted cone,
analysis and classification of the relative equilibria and reduced motions are also carried
out, Propositions 5.8 and 5.10.

There are two Appendices A and B. In Appendix A we present an intrinsic construc-
tion of the (abelian) nonholonomic Routh reduction, we opted to include this material
since it is a procedure which in principle yields several possible examples of the kind
treated in Chapter 3. In Appendix B we include a brief introduction of Poisson mani-
fold, emphasizing the properties of the canonical Poisson bracket on the cotangent bundle
of a smooth manifold.
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Chapter 1

Background of nonholonomic
systems

This Chapter is intended to present an introduction to the study of nonholonomic sys-
tems. In this work a nonholonomic system is determined by three objects: the configura-
tion space, the lagrangian and the constraints. Along this chapter we consider the most
general scenario that is a lagrangian of gyroscopic type, namely given by kinetic minus
potential energy plus a generalized gyroscopic term, and the constraints are affine, that
is linear non-homogeneous, in the velocities.

To compute the equations of motion of a nonholonomic system we use Lagrange-
d’Alembert approach (with reaction forces), and its derivation is done locally. We follow
the exposition of [87, 15, 51]

1.1 Geometry of nonholonomic systems
A nonholonomic system is determined by a triple (Q,L,M), where Q is a n-dimensional
smooth manifold called configuration space, L is the lagrangian, which is a smooth func-
tion L : TQ → R on the state space played by the tangent bundle of the configuration
space. We consider L to be of a gyroscopic lagrangian, meaning that

L = T + γ` − V ◦ τQ (1.1)

where T : TQ → R is the fiberwise quadratic form associated to a riemannian metric g
on Q, g is called the kinetic energy metric, γ` : TQ→ R a smooth function linear in the
velocities, associated to a differential 1-form γ on Q, by the relation γ`(vq) = 〈γ(q), vq〉
for all vq ∈ TqQ and q ∈ Q and V : Q → R a smooth function. From a physical
perspective, T corresponds to the kinetic energy, γ` to a generalized gyroscopic energy
and V to the potential energy of the system. Finally, M is the constraint manifold: an
affine subbundle of the tangent bundle TQ modeled over a vector subbundle D, with the
property that D is not the tangent bundle of any submanifold of Q, that is D is not an
integrable distribution. In other words, every fiber Mq of M is an affine subspace of
TqQ and Dq is the vector subspace of TqQ that models Mq. This means that locally,
there exists a vector field Y ∈ X(Q) on Q such that

Mq = {vq ∈ TqQ : vq = Yq + wq, wq ∈ Dq} (1.2)

for all q ∈ Q. The affine distributionM has rank r at q ∈ Q if D has rank r at q ∈ Q. We
often writeM = Y +D orMq = Yq+Dq, to formally highlight the affine structure ofM.
The subbundlesM and D are at the same time submanifolds of the tangent bundle TQ,

1
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in the rest of the work we make no distinction in notation between both representations.
As a submanifold M is described by n − r functionally independent and affine in the
velocities smooth functions f1, ..., fn−r on TQ, called the constraint functions, such that

M =
n−r⋂
α=1

f−1
α (0).

Let (q, q̇) be lifted bundle coordinates in TQ, since the functions f1, ..., fn−r are affine
in the velocities we can construct the 1-forms

χα = ∂fα
∂q̇i

dqi, α = 1, ..., n− r,

and therefore we have relations fα(q, q̇) = (χα)`(q, q̇) + fα(q, 0), α = 1, ..., n− r. Equiv-
alently, the subbundleM can be thought as a regular affine distribution modeled over a
regular non-integrable distribution1 D where

Dq =
n−r⋂
α=1

kerχαq .

One of the thesis’ objectives is to give a hamiltonian-like description of a nonholonomic
system (Q,L,M), to this end we need to introduce objects to relate the tangent and
cotangent bundles of Q and as well for the vector bundle D and its dual D∗. This theory
is mainly used in Chapters 2 and 3, but it helps to remark certain properties of (Q,L,M).

Consider the orthogonal decomposition

TQ = D ⊕D⊥, (1.3)

induced by the kinetic energy metric g, where D⊥ ⊂ TQ is the subbundle whose fibers
are the orthogonal complement of Dq in TqQ. In symbols

D⊥q = {vq ∈ TqQ : 〈vq, wq〉g = 0, ∀wq ∈ Dq} .

For a nice expression in coordinates, let {Xi}ni=1 be an adapted local frame of X(Q)
associated to the decomposition (1.3), with Xa ∈ Γ(D) and Xα ∈ Γ(D⊥), a = 1, ..., r,
α = r + 1, ..., n. For all vq ∈ TqQ we have vq = viXi(q), such frame induces local
coordinates (q, v) on TQ, note that (qi, va) and (qi, vα) are local coordinates for the vector
bundles D and D⊥ respectively, we use this coordinates in the following. Associated to
the submanifolds D and D⊥ of TQ we have the inclusions

iD : D ↪→ TQ, iD⊥ : D⊥ ↪→ TQ. (1.4)

In local coordinates (qi, va) and (qi, vα), of D and D⊥ respectively, the inclusions (1.4)
read

iD(q, va) = (q, va, 0), iD⊥(q, vα) = (q, 0, vα).
The decomposition (1.3) of TQ also induces the projectors of TQ onto D and D⊥

PD : TQ→ D, PD⊥ : TQ→ D⊥, (1.5)

related to the inclusions (1.4) by PD ◦ iD = IdD and PD⊥ ◦ iD⊥ = IdD⊥ . In (qi, va) and
(qi, vα) coordinates

PD(q, va, vα) = (q, va), PD⊥(q, va, vα) = (q, vα).
1The language of distributions helps in the case the distribution D is not regular, see for example

[35].
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Since the inclusions (1.4) and projectors (1.5) are bundle morphisms we can consider
their dual, see [80]

i∗D : T ∗Q→ D∗, i∗D⊥ : T ∗Q→ (D⊥)∗,
P ∗D : D∗ ↪→ T ∗Q, P ∗D⊥ : (D⊥)∗ ↪→ T ∗Q,

(1.6)

where D∗ and
(
D⊥
)∗ are the dual vector bundles to D and D⊥ respectively.

Observation 1.1.1. The mentioned inclusions are monomorphisms and the projectors are
epimorphisms so their dual are epimorphisms and monomorphisms respectively. As a
consequence D∗ is not only an abstract vector bundle on Q, but it is a subbundle of
T ∗Q.

A direct implication of the tangent bundle splitting (1.3) is the following presentation
of an affine subbundle of TQ.

Proposition 1.1. Let (Q, g) be a riemmanian manifold and M an affine subbundle of
TQ then, locally, there exists a unique ξ ∈ Γ(D⊥) such that M = ξ + D. Moreover
the vector field ξ is the orthogonal projection of any Y ∈ Γ(M) onto D⊥, i.e. ξ =
iD⊥ (PD⊥(Y )).

Proof. We know that locally an affine bundle M can be written as M = Y + D and a
point vq ∈ TqQ is in Mq iff Yq − vq ∈ Dq.

Using equations (1.4) and (1.5) we can write Y = iD⊥ (PD⊥(Y )) + iD (PD(Y )), then
define ξ = iD⊥ (PD⊥(Y )), by construction Yq−ξq ∈ Dq thereforeMq = Yq+Dq = ξq+Dq
for all points q in Q.

We consider three ways to relate the tangent and cotangent bundle of Q, one is
given by the riemannian metric g, other by the Legendre transformation induced by the
lagrangian L and the third is given by a choice of a local frame of X(Q) and considering
its dual frame on Ω1(Q). First, the kinetic energy metric induces the bundle isomorphism

[g : TQ→ T ∗Q,

defined by 〈[g(vq), wq〉 := 〈vq, wq〉g for all vq, wq ∈ TqQ and q ∈ Q. Using the isomor-
phism [g the lagrangian L can be rewritten as L = T+[g(N)`−V , where N is the unique
vector field on Q such that γ = [g(N). Moreover, consider the2 annihilator subbundles
D◦ and (D⊥)◦ of the cotangent bundle T ∗Q, whose fibers are

D◦q =
{
βq ∈ T ∗qQ : 〈βq, vq〉 = 0, ∀vq ∈ Dq

}
,

(D⊥)◦q =
{
βq ∈ T ∗qQ : 〈βq, vq〉 = 0, ∀vq ∈ D⊥q

}
,

(1.7)

we then get D∗q ∼= (D⊥)◦q and D◦q ∼= (D⊥)∗q . Then we have the following vector bundle
isomorphisms

D∗ ∼= (D⊥)◦, (D⊥)∗ ∼= D◦. (1.8)
The second way of relating the tangent and cotangent bundle of Q is by using the fiber
derivative of L, see [46, 84],

Definition 1.1. The fiber derivative of L ∈ C∞(TQ) is the bundle transformation, over
the identity in Q, FL : TQ→ T ∗Q defined by

〈FL(vq), wq〉 = d

dt

∣∣∣∣
t=0

L(vq + twq), vq, wq ∈ TqQ.

2This representation of the 1-form α is useful in some context such as in Proposition 1.10 or in Section
4.2.
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In local bundle coordinates (q, q̇)

〈FL(q, v), w〉 = 〈∂L
∂q̇

(q, v), w〉, v, w ∈ TqQ.

In mechanics literature [1, 4, 84, 95] ∂L
∂q̇i is commonly referred as the ith-generalized

momenta and is denoted as pi, i = 1, .., n.
Observation 1.1.2. FL is a bundle isomorphism if and only if Hess(L|TqQ) is non sin-
gular for all q ∈ Q. If the lagrangian is of mechanical type, natural or gyroscopic, this
hypothesis is always satisfied.

In our case, that is when L is a gyroscopic lagrangian, we have a more explicit
expression for FL

FL(vq) = [g(vq) + γq, ∀vq ∈ TqQ. (1.9)

Clearly FL is an affine bundle transformation if and only if the 1-form γ is non zero.
The third option is of local nature, let {Xi}ni=1 be a local frame of Q then we can

consider its dual frame [80]
{
χi
}n
i=1 defined as3

〈χi(q), Xj(q)〉 = δij , i, j = 1, ..., n.

This assignation induces a local bundle diffeomorphism between TQ and T ∗Q, it is given
fiberwise by viXi(q) 7→ piχ

i(q), where pi = vi, and we can obtain a coordinate description
of (1.6):

iD∗(q, pa, pα) = (q, pa), i(D⊥)∗(q, pa, pα) = (q, pα).
PD∗(q, pa) = (q, pa, 0), P(D⊥)∗(q, pα) = (q, 0, pα).

1.2 Local form of the equations of motion
To compute the equations of motion of a nonholonomic system (Q,L,M) we follow the
treatment of [51]. We assume the validity of d’Alembert principle of ideal constraints: the
reaction forces that the constraints can exert annihilate the virtual displacements, that
are infinitesimal variations of curves satisfying the constraints. Consider a smooth curve
q : I → Q, where I ⊂ R is an open interval, take q0 ∈ Q and s0 ∈ I, such that q(s0) = q0
and q̇(s) ∈Mγ(s), then Lagrange-d’Alembert principle ensures that δq(s) ∈ Dq(s), where
δq is a smooth infinitesimal displacement of the variation of the curve q (see (1)), and
the reaction force is then a function R : TQ→ D◦, trivially 〈R, δq〉 = 0 [84, 36].

We perform the calculation of the equations of motion of the nonholonomic system
(Q,L,M) in lifted bundle coordinates (q, q̇), where q = (q1, ..., qn) and q̇ = (q̇1, ..., q̇n).
The equations of motion have the familiar expression of Lagrange-d’Alembert equations
[2] Å

d

dt

∂L

∂q̇
− ∂L

∂q

ã ∣∣∣∣
M

= R|M, (1.10)

where the reaction force R : TQ→ D◦ is a smooth function on the state space. Roughly
speaking the reaction force arises from the constraints and d’Alembert principle and is
not an external force to the system. Our approach to obtain the nonholonomic equations
of motion is local, so we need to give coordinate expressions for the lagrangian and
constraints. The lagrangian L writes as

L(q, q̇) = 1
2 q̇ ·A(q)q̇ + γ(q) · q̇ − V (q), (1.11)

3Where δij = 0 iff i 6= j and δij = 1 iff i = j.
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where A(q) is a non singular, symmetric and positive definite matrix that represents the
riemannian metric g, i.e. Aij = 〈 ∂∂qi ,

∂
∂qj 〉g. γ(q) ∈ Rn is the coordinate representation

of the 1-form γ ∈ Ω1(Q) and · represents the classic dot product in Rn. The constraint
manifold M = Y + D is a rank r affine subbundle of TQ each fiber Mq can be defined
as the kernel of an affine, linear non-homogeneous, system of equations that we write as

S(q)q̇ + s(q) = 0, (1.12)

with S(q) a full rank (n − r) × n matrix and s(q) ∈ Rn−r. Since Yq ∈ Mq we get
s(q) = −S(q)Yq, and

Dq = {q̇ ∈ TqQ |S(q)q̇ = 0} ,
Mq = {q̇ ∈ TqQ |S(q)(q̇ − Yq) = 0} .

By d’Alembert principle the reaction force R is a linear combination of the rows of S,
then there exist n−r functions λ = (λ1, ..., λn−r) of (q, q̇) called the Lagrange multipliers,
such that R = STλ. All the ingredients are set, we just need to determine λ, rewrite
(1.10) using (1.11) to obtain a coordinate expression

A(q)q̈ + η(q, q̇) = STλ (1.13)

where ηi(q, q̇) = ∂2L
∂qj∂q̇i q̇

j − ∂L
∂qi , i = 1, ..., n.

Observation 1.2.1. Consider the vector function η = (η1, ..., ηn), using the local form of
L (1.11), the contribution of the 1-form γ on the equations of motion is the function
((Dγ)T −Dγ)q̇ which is precisely the coordinate expression for iq̇dγ, where the matrix
(Dγ)ij = ∂γi

∂qj . So if dγ = 0 then the gyroscopic term does not play a role in the motions
of the system.

Now we derive the constraint equation (1.12) along a curve and get

S(q)q̈ + σ(q, q̇) = 0, (1.14)

with σl(q, q̇) = ∂Slj
∂qk

q̇j q̇k + ∂sl
∂qk

q̇k, l = 1, ..., n− r. Using relations (1.13) and (1.14) we get

SA−1STλ− SA−1η = −σ.

Now the matrix SA−1ST is invertible since S has rank n− r then

λ = (SA−1ST )−1(SA−1η − σ), (1.15)

and the reaction force in coordinates is therefore given by

R = ST (SA−1ST )−1(SA−1η − σ). (1.16)

Observation 1.2.2. From equation (1.16) note that the reaction force R restricted toMq

is not in general a linear function in the velocities.
Then the Lagrange-d’Alembert equations writeÅ

d

dt

∂L

∂q̇
− ∂L

∂q

ã ∣∣∣∣
M

= ST (SA−1ST )−1(SA−1η − σ)|M. (1.17)

This system of equations define a vector field Xnh ∈ X(M) on M which determine the
dynamics of the nonholonomic system (Q,L,M), see [2] for the linear and [56] for the
affine constrained cases.
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Observation 1.2.3. The function λ depends on the choice of S, but this choice ensures
that each of the constraints equations (1.12) is a first integral of the system. This implies
that the equations of motion are well defined on its level sets, which their intersection is
the submanifold M.

Another important topic in mechanical systems is energy conservation, in Proposition
1.3 we give conditions on when the energy is conserved, we use the fiber derivative FL
to define the lagrangian energy

Definition 1.2. Consider a lagrangian L on a manifold Q. The lagrangian energy
EL : TQ→ R is the smooth function defined by

EL(vq) = 〈FL(vq), vq〉 − L(vq), ∀vq ∈ TqQ.

In bundle coordinates (q, q̇) of TQ the lagrangian energy is represented as

EL(q, q̇) = ∂L

∂q̇
· q̇ − L(q, q̇)

= 1
2 q̇ ·A(q)q̇ + V (q),

(1.18)

note that the gyroscopic part does not play any role in the lagrangian energy.
We derived the nonholonomic equations of motion locally,we now prove that this is

a globally defined vector field on M. We do it in coordinates, nevertheless the non-
holonomic vector field has intrinsic nature, some references for this construction are
[46, 43, 36].

Proposition 1.2. The form of equations of motion (1.17) is invariant under change of
coordinates. Equivalently, let (U, q) and (Ũ , q̃) be two coordinate charts in Q such that
U = φ(Ũ) and q = φ(q̃), then q(t) = φ(q̃(t)) is an integral curve if and only if q̃(t) is.

Proof. First note that if q = φ(q̃) then q̇ = Tφ ˙̃q, where Tφ, in vector notation, is the
jacobian matrix of φ, additionally we denote φ(q̃) = (φ1(q̃), ..., φn(q̃)). We define the
lagrangian and constraints in coordinates q̃ = (q̃1, ..., q̃n) as

L̃(q̃, ˙̃q) = L(φ(q̃), Tφ ˙̃q),
S̃(q̃) ˙̃q + s̃(q̃) = S(φ(q̃))Tφ( ˙̃q) + s(φ(q̃)),

then in vector notation

L̃(q̃, ˙̃q) = 1
2

˙̃q · Ã(q̃) ˙̃q + γ̃(q̃) · ˙̃q − Ṽ (q̃),

where the following relations hold

Ã = TφT (A ◦ φ)Tφ, γ̃ = TφT (γ ◦ φ), Ṽ = V ◦ φ.
S̃ = (S ◦ φ)Tφ, s̃ = s ◦ φ.

Now we relate the functions η̃ and σ̃ with η and σ respectively. Recall from lagrangian
mechanics the following relation on change of coordinates of Euler-Lagrange equations

d

dt

∂L̃

∂ ˙̃q
− ∂L̃

∂q̃
= TφT

Å
d

dt

∂L

∂q̇
− ∂L

∂q

ã
◦ φ

A straightforward but cumbersome computation using the chain rule shows

σ̃l(q̃, ˙̃q) = ∂S̃lj
∂q̃k

˙̃qj ˙̃qk + ∂s̃l
∂q̃k

˙̃qk

= σ(φ(q̃), Tφ ˙̃q) + Sli(φ(q̃)) ∂2φi
∂q̃j∂q̃k

˙̃qj ˙̃qk,
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where l = 1, ..., n− r. And

η̃i(q̃, ˙̃q) = ∂2L̃

∂q̃j∂ ˙̃qi
˙̃qj − ∂L̃

∂q̃i

= (TφT )ijηj(φ(q̃), Tφ ˙̃q) + (TφT )ijA(φ(q̃))jk
∂2φk

∂q̃m∂q̃n
˙̃qm ˙̃qn,

where the index i = 1, ..., n. Therefore we derive the equality S̃Ã−1η̃ − σ̃ = SA−1η − σ̃,
and the reaction forces in both coordinate systems are related by

R̃ = S̃T
[
(S̃Ã−1S̃T )−1(S̃Ã−1η̃ − σ̃)

]
= TφTST (SA−1ST )−1(SA−1η − σ) ◦ φ
= TφT (R ◦ φ)

Remark 1.2.1. A consequence of the above proposition is that if we have two nonholo-
nomic systems (Q,L,M) and (Q̃, L̃,M̃) and a diffeomorphism φ : Q̃ → Q such that
(Tφ)∗(L) = L̃ and Tφ(M̃) =M◦ φ, then the nonholonomic vector fields XQ

nh and XQ̃
nh

are Tφ|M̃-related.

1.3 Reaction annihilator distribution
We now introduce the so called reaction annihilator distribution R◦, first introduced in
[54]. The importance of R◦ arises from two main situations: on one hand the energy is
not generally conserved in nonholonomic systems with affine constraints, and R◦ plays
a crucial role in this fact as made explicitly in Proposition 1.3, on the other hand on the
conservation of momentum (see Section 1.6).

To construct the reaction annihilator distribution R◦ we first consider the fibered
subset R ⊂ T ∗Q defined as follows: let R(q,Mq) ⊆ D◦q be defined as

R(q,Mq) = {R(q, v) : v ∈Mq} .

Then R is the disjoint union over q ∈ Q of the sets R(q,Mq)

R =
⊔
q∈Q

R(q,Mq) ⊆ T ∗Q.

Finally, the reaction-annihilator distribution is conformed fiberwise by the annihilator of
the fibers of the reaction distribution R

R◦ =
⊔
q∈Q

R(q,Mq)◦,

where R(q,Mq)◦ is the annihilator of the set R(q,Mq). R(q,Mq)◦ is a linear subspace of
TqQ, and so R◦ is a distribution on Q, but not necessarily of constant rank nor smooth.
However by construction we have the inclusion D ⊆ R◦.
Observation 1.3.1. We anticipate here that we encounter three behaviors for R◦ in Chap-
ter 5 when we study the system of a ball rolling without slipping in a surface of revolution.

• R◦ = D; this happens when the surface is a cone.

• D ( R◦; this happens when the surface is a vertical cylinder.
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• R◦ = TQ; this is the case of the plane.

Even more, in the case of the cylinder M ⊆ R◦, this aspect is relevant in the following
Proposition 1.3.

The reaction annihilator distribution helps to place an obstruction for energy conser-
vation, we now present conditions on when the lagrangian energy, of an affine nonholo-
nomic system, is a first integral.

Proposition 1.3. [51] Consider a nonholonomic system (Q,L,M) with affine con-
straints M = Y + D. The lagrangian energy EL,M = EL|M : M → R is a first
integral of the nonholonomic system (Q,L,M) if and only if Y ∈ Γ(R◦).

Proof. Using the invariance on the structure of Lagrange-d’Alembert equations we prove
this result in coordinates. Let (q(t), q̇(t)) be a solution curve in M = ξ + D. Then the
local expression of equations of motion (1.17) and lagrangian energy (1.18) imply

d

dt
EL,M = d

dt

∂L

∂q̇
q̇ + ∂L

∂q̇
q̈ − ∂L

∂q
q̇ − ∂L

∂q̇
q̈

=
Å
d

dt

∂L

∂q̇
− ∂L

∂q

ã
q̇

= R(q, q̇) · q̇,

since q̇ ∈ Mq then we can write q̇ = ξq + wq, with wq ∈ Dq therefore d
dtEL,M = 0 iff

R(q, q̇) · ξq = 0, i.e. ξ ∈ Γ(R◦).

1.4 Quasi-velocities and Hamel-d’Alembert equations
It is well known that in lagrangian mechanics tangent lifts of diffeomorphisms of the
configuration space preserve the structure of Lagrange equations, see [92, 91, 4]. However
from a mathematical perspective, we are dealing with the vector bundle TQ, so tangent
lifts of diffeomorphisms are not the only ones which preserve the bundle structure of TQ.
From a physics viewpoint, the velocities induced by the coordinates might not be well
suited to analyze a given system, for example in rigid body dynamics it is useful to use
the angular velocity to write the equations of motion instead of lifted bundle coordinates
[4, 84]. The other kind of diffeomorphisms that we consider and preserve the vector
bundle structure of TQ are the bundle automorphism of TQ over the identity of Q. In
natural bundle coordinates (q, q̇) correspond to transformations (q, q̇) 7→ (q,Φ(q)q̇), with
Φ : Q → GL(Rn). Such bundle transformations correspond, on each fiber, to a basis
change transformation, so if X1, ..., Xn is a local frame of X(Q), then there exist smooth
functions Bij : Q→ R, i, j = 1, ..., n such that

Xi = Bij
∂

∂qj
, i = 1, ..., n. (1.19)

We denote by B = (Bij) the matrix associated to the frame change. Let v = (v1, ..., vn)
be the local fiber coordinates induced by the frame {Xi}ni=1, then

q̇i = Bjiv
j , i = 1, ..., n, (1.20)

or in matrix notation q̇ = BT v. If the local frame {Xi}ni=1 is not a coordinate frame4,
that is if [Xi, Xj ] 6= 0 for some i, j, then the fiber coordinates vi are the so-called quasi-
velocities [87, 77, 15, 39]. We pay attention to the (local) structure functions Cmij : Q→

4Non coordinate frames are also called nonholonomic frames.
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R associated to a nonholonomic frame, because they are useful in the computation of
directional derivatives in terms of the local frame {Xi}ni=1 [80]. The structure functions
Cmij are defined by relations

[Xi, Xj ] = CmijXm,

We can give explicit expressions for Cmij in terms of B, its inverse and derivatives. From
(1.19) and the Jacobi-Lie bracket in coordinates we then have

[Xi, Xj ] =
ï
Bik

∂

∂qk
, Bjl

∂

∂ql

ò
=
Å
Bik

∂Bjl
∂qk

−Bjk
∂Bil
∂qk

ã
∂

∂ql

=
Å
Bik

∂Bjl
∂qk

−Bjk
∂Bil
∂qk

ã
BlmXm, i, j, k, l,m = 1, ..., n,

here Blm denotes the lm−entry of the inverse B−1 of B. So

Cmij =
Å
Bik

∂Bjl
∂qk

−Bjk
∂Bil
∂qk

ã
Blm. (1.21)

This functions are crucial in the determination of Hamel-d’Alembert equations, done in
Subsection 1.4.2. More precisely they are related to the so-called transpositional symbols
in Hamel equations (see for example [87, 77, 15]), that is the equations of motion (1.13)
in terms of quasi-velocities.

1.4.1 Constraints
In various examples the nonholonomic constraints are obtained in terms of quasi-velocities
or physically adapted coordinates [87, 12], and we follow this approach in Subsection
5.1.4. The constraints (5.6) are easily written in quasi-velocities using (1.20), by which
we can write Sq̇ = SBT v. Therefore by definition the matrix S̃ = SBT , the constraints
in quasi-velocities write as

S̃αiv
i + sα, α = 1, ..., n− r.

A powerful application of quasi-velocities realizes when one chooses X1, ..., Xr as a local
frame of Γ(D) and Xr+1, ..., Xn as a local frame of Γ(D⊥). If Y ∈ Γ(D⊥) is such that
M = Y +D, then the constraint equations in quasi-velocities can be written as vα = Y α,
α = n − r, ..., n, where Y i are the components of the vector field Y ∈ Γ(D⊥) written in
terms of the local frame Xi, i = 1, ..., n.

1.4.2 Hamel-d’Alembert equations
Hamel equations are Lagrange-d’Alembert equations of motion (1.17) expressed in quasi-
velocities or, equivalently, in terms of moving frames, for a more in depth exposition see
[87, 39, 77, 56]. Its coordinate derivation is done by applying of the chain rule. Let
L̃(q, v) = L(q, q̇(q, v)) be the lagrangian written in quasi-velocities then

L̃(q, v) = v · Ã(q)v + γ̃(q) · v − V (q),

where Ã(q) and γ̃(q) are the kinetic energy metric and the gyroscopic 1-form, respectively,
in v coordinates and they are related to A(q) and γ(q) by

Ã = BABt, γ̃ = γBt. (1.22)
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Proposition 1.4. Consider the nonholonomic system (Q,L,M). The Hamel-d’Alembert
equations in quasivelocities (q, v) are

d

dt

∂L̃

∂vi
= Bik

∂L̃

∂qk
− Cmil

∂L̃

∂vm
vl +BikR̃k. (1.23)

Proof. We first notice

∂L̃

∂vi
= Bij

∂L

∂q̇j
and ∂L̃

∂qi
= ∂L

∂qi
+ ∂L

∂q̇j
∂Bkj
∂qi

vk, (1.24)

where again we think q̇ as a function of q and v. Finally to express the reaction force
R in terms of quasi-velocities, set σ̃(q, v) = σ(q, q̇(q, v)) and η̃(q, v) = η(q, q̇(q, v)) then
their expressions in such fiber coordinates are

σ̃a = q̇k
∂

∂qk
(
Saj q̇

j + sa
)

= Bikv
i

Ç
∂S̃am
∂qk

vm + ∂sa
∂qk

å
a = 1, ..., n− r.

And

η̃i = Bik
Ç

∂2L̃

∂vs∂vk
∂Brs

∂qj
q̇j q̇r + ∂2L̃

∂qj∂vk
q̇j
å

+
Ç
∂Bik

∂qj
− ∂Bkj

∂qi

å
∂L̃

∂vk
q̇j , i = 1, ..., n.

Then R̃(q, v) = R(q, q̇(q, v)) is defined by

R̃ = B−1S̃t
(
S̃Ã−1S̃t

)−1 (
S̃Ã−1Bη̃ − σ̃

)
.

Before computing Hamel-d’Alembert equations use (1.13) to get

d

dt

∂L̃

∂vi
= Bik

d

dt

∂L

∂q̇k
+ ∂L

∂q̇k
∂Bik
∂qj

q̇j

= Bik

Å
∂L

∂qk
+Rk

ã
+ ∂L

∂q̇k
∂Bik
∂qj

q̇j .

Now using relations (1.24) and the structure coefficients expression (1.21) we substitute
to get the Hamel-d’Alembert equations

d

dt

∂L̃

∂vi
= Bik

∂L̃

∂qk
− Cmil

∂L̃

∂vm
vl +BikR̃k.

1.5 Symmetries of nonholonomic systems
In unconstrained mechanical systems, the presence of symmetries plays a crucial role in
finding first integrals, Noether’s Theorem, see for example [92, 84, 4], being the corner-
stone that relates symmetries with conserved quantities. With the arise of geometric
mechanics different types of reduction, such as symplectic or Poisson [85, 101, 83], and
ways to find constants of motion were developed. However the case of nonholonomic
systems is not so simple and completely understood, nevertheless for some particular
nonholonomic systems analogous ideas to those of unconstrained mechanics serve as an
inspiration (we treat such cases in Chapter 2 additionally see [81, 94, 53, 44, 59], the lin-
ear case has been better understood bt [8]). However for general nonholonomics systems,
e.g. with affine constraints, the question if first integrals arise from symmetries remain
unsolved.
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The main objective of this Section is to introduce group actions and reduction in
nonholonomic systems. Later, on Sections 1.6, 2.5 and 3.5 we use symmetries to construct
functions which are candidates to be first integrals.

Consider the nonholonomic system (Q,L,M), and let G be a Lie group that acts on
Q by a free and proper action, denote such action by Ψ : G×Q→ Q, and TΨ : G×TQ→
TQ be the associated lifted action. And denote by Ψh : Q → Q and TΨh : TQ → TQ
the corresponding diffeomorphisms related to the group element h ∈ G.

Definition 1.3. Consider a Lie group G acting on a smooth manifold Q. The orbit of
an element q in Q, denoted by OrbG, is

OrbG(q) = {p ∈ Q : ∃h ∈ G s.t. p = Ψ(h, q)} .

The orbit of a point q ∈ Q, OrbG(q), is a closed submanifold of Q. Denote by TqOrbG
the tangent space of OrbG(q) at q. The distribution TOrbG is on each point spanned by
the infinitesimal vector fields at q.

Let ρ : Q→ Q := Q/G be the quotient map associated to the group action, it defines
a principal bundle [62]. Similarly, we denote by ρTQ : TQ→ TQ := TQ/G the quotient
map associated to the lifted action of G on TQ. And by properties of quotient maps we
have the bundle isomorphism T (Q/G) ∼= TQ/G, as a consequence TqQ ∼= (TQ/G)q as
vector spaces. To give a coordinate description we choose adapted coordinates (xd, yu)
to the principal bundle ρ : Q → Q such that ρ(xd, yu) = (xd). For the tangent case
additionally to the adapted coordinates we consider an equivariant frame {Xi}ni=1 of
X(Q) then TQ has coordinates (xd, yu, vi) and ρTQ(xd, yu, vi) = (xd, vi).

Let g be the Lie algebra of the Lie group G. To each vector ξ ∈ g, we associate the
infinitesimal generator ξQ ∈ X(Q) defined by

ξQ(q) = d

ds

∣∣∣∣
s=0

Ψexp(sξ)(q),

where exp : g→ G is the Lie group exponenial map.

Proposition 1.5. The map g → X(Q), sending an element of the Lie algebra g to its
infinitesimal generator, ξ 7→ ξQ, is a Lie algebra anti-homomorphism,[

ξQ, ζQ
]

= − [ξ, ζ]Q .

Consider a given nonholonomic system (Q,L,M) and a Lie group acting on the con-
figuration manifold Q, we care about when certain objects and functions being invariant
under the group action.

Definition 1.4. • Let f : Q → R be a smooth function on Q, we say that f is
G-invariant if Ψ∗h ◦ f = f for all h ∈ G.

• Let F : TQ→ R be a smooth function, we say that F is G-invariant if TΨ∗h◦F = F
for all h ∈ G.

• Let P be a distribution on Q, we say P is G-invariant if TqΨh(Pq) = PΨh(q), for all
h ∈ G and q ∈ Q.

• Let Z ∈ X(Q) be a vector field on Q, Z is called G-equivariant if Ψ∗hZ = Z, for all
h ∈ G.

Observe that if the constraint submanifold M is given by constraint functions Fl :
TQ → R, l = 1, ..., n − r, then M is G−invariant if and only if the functions Fl,
l = 1, ..., n− r, are G-invariant.



12 CHAPTER 1. BACKGROUND OF NONHOLONOMIC SYSTEMS

Definition 1.5. We say that a nonholonomic system (Q,L,M) is invariant with respect
to a Lie group G action if and only if the lagrangian L and the constraint manifoldM are
G-invariant. In this case we also say the system (Q,L,M) is G-invariant or G-symmetric.

As we see in the next Proposition, the G-invariance of a nonholonomic system as in
Definition 1.5 implies several consequences in the geometry of the system.

Proposition 1.6. Let (Q,L,M) be a G-symmetric nonholonomic system, with L =
T + γ` − V τQ a gyrsocopic lagrangian, let g be the kinetic energy meric induced by L,
and M = ξ +D with ξ ∈ Γ(D⊥) then

1. Ψh is an isometry of (Q, g), for all h ∈ G.

2. The 1-form γ ∈ Ω1(Q) and the potential energy function V ∈ C∞(Q) are G-
invariant, hence the lagrangian energy EL is also G-invariant.

3. The vector field ξ ∈ Γ(D⊥) is G-equivariant.

4. The distribution D⊥ is G-invariant.

Proof. The proof of 1. and 2. are rely on comparing the homogeneity degrees, on the
velocities, of L and L ◦ TΨ. That is, let vq ∈ TqQ and h ∈ G, then

L(TΨh(vq)) = 〈TΨh(vq), TΨh(vq)〉g + 〈γ(Ψh(q), TΨh(vq)〉 − V (Ψh(q))
= 〈vq, vq〉g + 〈γ, vq〉 − V (q)
= L(vq),

this implies the following relations 〈TΨh(vq), TΨh(vq)〉g = 〈vq, vq〉g,
〈γ(Ψh(q), TΨh(vq)〉 = 〈γ, vq〉 and V (Ψh(q)) = V (q), for all q ∈ Q and vq ∈ TqQ. There-
fore

TΨ∗hT = T, Ψ∗hγ = γ and Ψ∗hV = V,

the riemannian metric g is G-invariant since the quadratic form, T , associated to it is.
And the lagrangian energy EL is clearly G-invariant since T and V are.

3. and 4. follow from the following assertion, the distribution D is G-invariant, i.e.
TΨh(D) = D ◦ Ψh. To prove it note that TΨh is a linear bundle isomorphism, then
TΨh(Dq) is a vector subspace of TΨh(q)Q, and by hypothesis TΨh(Mq) =MΨh(q) then
TΨh(ξq + wq) − ξΨh(q) ∈ DΨh(q), for all wq ∈ Dq, this implies TΨh(Dq) ⊆ DΨh(q) for
every q ∈ Q, hence D is G-invariant. Using 1. we clearly get that D⊥ is also a G-invariant
distribution, and TΨh(ξq + wq)− ξΨh(q) = 0.

The following result is a direct consequence of the invariance of a nonholonomic
system.

Proposition 1.7. [12] Let (Q,L,M) be a G-invariant nonholonomic system. Then the
nonholonomic vector field Xnh of (Q,L,M) is G-invariant and so it defines a vector
field Xnh on M/G which coincides with the nonholonomic vector field of the system
(Q/G, l,M/G), where L = l ◦ ρTQ.

Remark 1.5.1. Apart from the previous Proposition, we consider different kinds of re-
duction and restriction of the equations of motion to invariant submanifolds related to
symmetries. In particular, in Sections 2.4 and 3.4 we present reduction of the almost-
Poisson bracket of nonholonomic systems. Such formulation is given on the cotangent
bundle T ∗Q in which we consider the dual action TΨ∗ : G× T ∗Q→ T ∗Q of TΨ defined
by

〈TΨ∗h(βq), vΨh−1 (q)〉 = 〈βq, TΨh(vΨh−1 (q))〉. (1.25)
The dual action TΨ∗ inherits the properties of TΨ, so it is a free and proper smooth
action.
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Definition 1.6. Suppose there is a given free and proper action of a Lie group G on a
smooth manifold Q, with quotient map ρ : Q → Q/G. The vertical subbundle V ⊂ TQ
is defined fiberwise as

Vq = kerTqρ.
In [14, 59] the authors use the vertical bundle V to perform reduction using a principal

connection adapted to the action, one of the main differences between the two approaches
is the dimension assumption

Definition 1.7. We say the dimension assumption holds for a nonholonomic system
(Q,L,M) if

TQ = V +M.

Observation 1.5.1. As proven in [14], if the dimension assumption is valid then the
nonholonomic connection [12, 14], coincides with a principal connection and one can
project the nonholonomic dynamics into M/G.

1.6 Momentum generated by a vector field
Noether theorem for unconstrained mechanical systems gives conditions on when certain
functions, linear on the velocities are first integrals, so the importance of such functions
is well established.
Definition 1.8. Let Z ∈ X(Q) a vector field on Q and L : TQ → R be a lagrangian
function on TQ. The momentum generated by Z is the function pZ : TQ → R on TQ
defined by

pZ(vq) = 〈FL(vq), Zq〉.
When L is a lagrangian of gyroscopic type then the momentum pZ in bundle coordi-

nates (qi, q̇i) is

pZ(q, q̇) = Z ·A(q)q̇ + Z · γ
= ZiAij q̇

j + Ziγi.

If X is a vector field on TQ a natural question when one has a vector field X is to
see if there are any invariant submanifolds along the flow of X. The existence of such
submanifolds is important because the dynamics can be restricted to it. One way to find
such submanifolds is to look for smooth functions F on TQ, such that LXF = 0. If this
condition holds we say that F is a first integral of the vector field X. By definition of
Lie derivative, see for e.g. [80], it is easily seen that the level sets of the first integral
F are invariant under the flow of X. This notion is general, but here we give a specific
definition for a nonholonomic system (Q,L,M).
Definition 1.9. Let Xnh be the nonholonomic vector field of (Q,L,M) and F :M→ R.
We say F is a first integral of Xnh if

LXnhF = 0.

The conservation of a momentum or when a momentum is a first integral is related
to the following Proposition, the proof of which is given in coordinates, since that way
is a straightforward computation, however it has intrinsic nature as we can see from
Porposition 1.9.
Proposition 1.8 ([56]). Let Z ∈ X(Q) be a vector field on Q and pZ the momentu-
massociated to Z then the derivative of pZ along a curve of the nonholonomic system
(Q,L,M) is

d

dt
pZ = ZTQ [L] + 〈R,Z〉.
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Proof. The proof is given in bundle lifted coordinates (q, q̇) of TQ

d

dt
pZ(q, q̇) = d

dt
〈∂L
∂q̇
, Zq〉

= 〈 d
dt

∂L

∂q̇
, Zq〉+ 〈∂L

∂q̇
,
d

dt
Zq〉

= 〈∂L
∂q

+R(q, q̇), Zq〉+ 〈∂L
∂q̇
,
∂Z

∂q
q̇〉

= ZTQ [L] + 〈R(q, q̇), Zq〉.

Recall the following result from [54], which is clearly inspired from Proposition 1.8.
We include a proof for completeness.

Proposition 1.9. [54] Consider a nonholonomic system (Q,L,M) where L is a gyro-
scopic lagrangian and M is an affine distribution on Q. Let Z ∈ X(Q) then any two of
the following conditions imply the third.

1. Z ∈ Γ(R◦). Where R◦ is the reaction force annihilator distribution.

2. ZTQ [L] |M = 0.

3. pZ |M is a first integral. Where pZ(vq) = 〈FL(vq), Zq〉.

Proof. We may prove this in coordinates. Let (q(t), q̇(t)) be an integral curve of Xnh,
then

d

dt
pZ(q, q̇) = d

dt

∂L

∂q̇
· Zq + ∂L

∂q̇
· d
dt
Zq = (∂L

∂q
+R(q, q̇)) · Zq + ∂L

∂q̇
· d
dt
Zq,

since ( ddtZq)i = ∂Zi

∂qj q̇
j we get

d

dt
pZ(q(t), q̇(t)) = ZTQ(L)(q, q̇) +R(q, q̇) · Zq.

The above expression has three monomials, each one is related to one of the conditions
and the result clearly follows.

We now give a characterization of when two vector fields Z1, Z2 ∈ X(Q) have the same
associated momentum restricted toM, generalizing a result in [2], where the authors give
a characterization in the case of linear constraints and natural lagrangians.

Proposition 1.10. Two vector fields Z1, Z2 on Q define the same momentum, pZ1

∣∣
M,

pZ2

∣∣
M, on M if and only if the following conditions are satisfied.

Z1 − Z2 ∈ Γ(D⊥),
〈Z1, Y +N〉g = 〈Z2, Y +N〉g.

Proof. Suppose pZ1

∣∣
M = pZ2

∣∣
M then

pZ1 |M (vq) = 〈Z1(q), vq〉g(q) + 〈Z1(q), N(q)〉g(q)
= 〈Z2(q), vq〉g(q) + 〈Z2(q), N(q)〉g(q)
= pZ2 |M (vq), ∀vq ∈Mq and q ∈ Q.
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Since the zero section is a section of D we have

〈Z1, Y +N〉g = 〈Z2, Y +N〉g.

Then
〈Z1(q), vq〉g − 〈Z2(q), vq〉g = 〈Z1(q)− Z2(q), vq〉g = 0, ∀vq ∈ Dq,

this happens if and only if Z1 − Z2 ∈ Γ(D⊥).

1.6.1 Gauge momenta
Assume there’s a Lie group G acting on the nonholonomic system (Q,L,M) then we can
consider a special type of momenta which are generated by sections of TOrb. Note that
such sections need not be infinitesimal generators of the action.

Definition 1.10. Let Z ∈ Γ(TOrb) be a vector field tangent to the group orbits. We
say that Z is a gauge-section.

• Z is called a horizontal gauge-symmetry if Z ∈ Γ(D) and ZTQ(L)|M = 0.

• Z is called a gauge-symmetry if ZTQ(L)|M = 0.

Moreover we say that the momentum pZ generated by Z is a (horizontal) gauge-momentum.

Later on we investigate when a gauge-momentum is a first integral, the results depend
on the kind of nonholonomic system we are dealing with. For nonholonomic systems
with linear constraints and natural Lagrangian there is a known result commonly called
nonholonomic Noether theorem, see [94, 55], but for other kind of nonholonomic systems
there is not an analogous result, nevertheless we give partial results about this matter.
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Chapter 2

Linear constrained systems
with natural lagrangian

Nonholonomic systems with linear constraints and natural lagrangian are by far the
most studied in nonholonomic mechanics (a non exhaustive list of recent books includes
[87, 12, 24, 36, 92, 40, 91]). The aim of this Chapter is to present basic aspects and some
relevant result to use them as test case and inspiration for the forthcoming chapters. We
use the same language and notation of Chapter 1 in order to relate and particularize the
theory in an easier way.

As one can expect from this Section’s title we consider a constraint distribution which
is a vector subbundleM = D of TQ, the constraint functions definingM (1.12) are linear
homogeneous in the velocities, and the lagrangian L0 is of natural type and then writes
as L0 = T − V ◦ τQ, where T and V are the kinetic and potential energy, respectively.
Thus a triple (Q,L0,D) defines a nonholonomic system.

2.1 Local Lagrange-d’Alembert equations
Let Q be a n-dimensional smooth manifold and consider lifted coordinates (q, q̇) on its
tangent bundle TQ. Using the same notation as in (1.11), consider a natural lagrangian
L0

L0 = T − V ◦ τQ, in coordinates L0(q, q̇) = 1
2 q̇ ·A(q)q̇ − V (q). (2.1)

Recall that A is the kinetic energy matrix in the coordinates (q, q̇), (we are assuming
that no gyroscopic forces are included i.e. the 1-form γ in (1.1) vanishes). The constraint
submanifoldM = D is a linear subbundle of TQ (because Y = 0 see (1.2)). In coordinates
the constraints equations are

S(q)q̇ = 0,

where the matrix S is such that Dq = kerS(q) as in (1.12). Then the Lagrange-
d’Alembert equations in coordinates areÅ

d

dt

∂L0

∂q̇
− ∂L0

∂q

ã ∣∣∣∣
D

= St(SA−1St)−1(SA−1η − σ)|D, (2.2)

where ηi = ∂2L0
∂qj∂q̇i q̇

j − ∂L0
∂qi , i = 1, ..., n and σa = ∂Saj

∂qi q̇
iq̇j , a = 1, ..., n− r.

Remark 2.1.1. The equations of motion (2.2) are quadratic in the velocities, therefore the
system is reversible, i.e. if t 7→ q(t) is an integral curve of Xnh then so t 7→ q−(t) = q(−t)
is [1].

17
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To prove this assertion note that

L0(q−(t), q̇−(t)) = L0(q−(t),−q̇−(t))

and that the constraint distribution D is also invariant under this diffeomorphism

S(q−(t))q̇−(t) = −S(q(−t))q̇(−t) = 0, ∀t.

Then η(q(−t),−q̇(−t)) = η(q(−t), q̇(−t)) and σ(q(−t),−q̇(−t)) = σ(q(−t), q̇(−t)) there-
fore equations (2.2) are invariant under the tangent lift of the diffemorphism t 7→ −t.

Proposition 1.3 guarantees the conservation of the lagrangian energy EL0,D, see Defi-
nition 1.2, since Y = 0 obviously lies in the reaction-annihilator distribution R◦ [56, 75].

2.2 Quasi-velocities and Hamel-d’Alembert equations
We give here the expressions of Hamel equations in the case a given nonholonomic system
has linear constraints. Consider the orthogonal decomposition TQ = D ⊕ D⊥ of the
tangent bundle induced by the kinetic energy metric g. Let {Xi}ni=1 be a local frame
of TQ such that Xa ∈ Γ(D) and Xα ∈ Γ(D⊥), where the index a = 1, ..., r and α =
r + 1, ..., n. Denote by v = (v1, ..., vn) the quasi-velocities associated to this frame. The
kinetic energy matrix A in this coordinates reads

Ã = BABt =
Å
AD 0
0 AD⊥

ã
,

where B is the frame change matrix as in (1.19), and AD, AD⊥ are the block matrices
corresponding to the restriction of the kinetic energy metric g to D and D⊥, respectively.
The lagrangian L̃0 in quasi-velocities writes as

L̃0(q, v) = 1
2vD ·AD(q)vD + 1

2vD⊥ ·AD⊥(q)vD⊥ − V (q),

where v = vD+vD⊥ is the decomposition of v defined by TQ = D⊕D⊥. The constraints
equations in quasi-velocities adapted to the constraints become

vα = 0, α = r + 1, ..., n.

Observation 2.2.1. This representation of the constraint equations is not exclusive for
the orthogonal decomposition of TQ, but for any frame adapted to a decomposition
TQ = D ⊕W , where W is a subbundle of TQ.

Following (1.23), let L0,c := L̃|D be the restriction of the lagrangian L̃0 to D, then
the Hamel-d’Alembert equations [12] are

d

dt

∂L0,c

∂va
= Bak

∂L0,c

∂qk
− Cmal

∂L0,c

∂vm
vl, a, l,m = 1, ..., r,

dqi

dt
= Baiv

a,

(2.3)

and together with the constraint equations vα = 0, α = r+ 1, ..., n, they characterize the
dynamics.
Observation 2.2.2. By d’Alembert principle the reaction force restricted to the constraint
manifold vanishes, i.e. R|D = 0.
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2.3 Almost hamiltonian formulation
In this Section we introduce the analogous of Hamilton equations for nonholonomic
systems using an almost-Poisson bracket1 in D∗ the dual vector bundle to D. For this
exposition we follow [11, 96, 28, 44]. Many authors [78, 27, 12] construct the almost-
Poisson bracket in D∗ by using the canonical symplectic structure of T ∗Q, and inclusions
and projectors defined by it. Instead we prefer to use elements related to the riemannian
metric structure of Q to define the bracket in the bundle D∗.

2.3.1 Legendre transformation and dynamics in D∗

One of the main obstructions to construct a Poisson bracket in D∗ is its representation as
vector bundle inside the cotangent bundle T ∗Q. We use here the Legendre transformation
induced by the lagrangian L0 and the orthogonal decomposition on the tangent bundle
TQ induced by the kinetic energy metric to define the necessary geometric elements to
construct a bundle isomorphism between D and D∗.

The Legendre transformation and dynamics in D∗ is referred to the fiber derivative
FL, which in this particular case is a linear bundle isomorphism, so we can perform
a push-forward of the dynamics for D onto D∗. Once again consider the orthogonal
decomposition of TQ = D⊕D⊥ induced by the metric g. Using the bundle isomorphism
FL this decomposition induces the decomposition T ∗Q = (D⊥)◦ ⊕ D◦ of the cotangent
bundle, where (D⊥)◦,D◦ are the annihilator distributions of D⊥ and D respectively.
Moreover observe that D∗ is isomorphic to (D⊥)◦2.

To compute the equations of motion in D∗, let (q, v) be local coordinates in D, with
q = (q1, ..., qn) and v = (v1, ..., vr) as in Section 2.2, then (q, p) are local coordinates in
D∗, p = (p1, ..., pr), with respect to the local co-frame {FL0,c(Xa)}ra=1 where

pa = ∂L0,c

∂va
= (AD)abvb, a, b = 1, ..., r, (2.4)

are the fiber coordinates called quasi-momenta. Here we use L0,c instead of L0 because
the constraints in this setup are vα = 0, α = r + 1, ..., n so ∂L0,c

∂va = ∂L0
∂va

∣∣
D.

Since FL0,c : D → D∗ is a diffeomorphism, we can consider the pushforward
(FL0,c)∗(Xnh) ∈ X(D∗) of this vector field is related to the constrained hamiltonian
Hc : D∗ → R, defined by Hc = (EL0 ◦ FL−1

0,c). In bundle adapted coordinates (q, p)

Hc(q, p) = 1
2p ·A

−1
D p+ V (q), (2.5)

this implies
∂Hc

∂qi
= −∂L0,c

∂qi
,

∂Hc

∂pa
= va. (2.6)

Using (2.3) and (2.6) we obtain the equations of motion in D∗:

dqi

dt
= Bai

∂Hc

∂pa
,

dpa
dt

= −Baj ∂Hc

∂qj
− Cmal

∂Hc

∂pl
pm, (2.7)

where a,m, l = 1, ..., r. We denote the dynamical vector field in D∗ by X∗nh, and its
coordinate expression is

X∗nh = Bai
∂Hc

∂pa

∂

∂qi
−
Å
Baj

∂Hc

∂qj
+ Cmal

∂Hc

∂pl
pm

ã
∂

∂pa
. (2.8)

Recall that Ckij are the structure coefficients (1.21) and B is the matrix to pass from
velocities to quasi-velocities (1.19) related to the local frame {Xi}ni=1

1Meaning that Jacobi identity is not satisfied.
2From linear algebra we have (D⊥)◦q ∼= D∗q and D◦q ∼= (D⊥)∗q
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2.3.2 Almost Poisson bracket in D∗

There are different approaches to construct the almost-Poisson bracket in D∗, such as the
symplectic formulation,[11], or the Dirac bracket approach [71, 67], here we follow the
treatment of [28, 44]2. As already anticipated at the beginning of this Section the main
difference between our approach and the others just mentioned is the use of elements
associated to the orthogonal decomposition TQ = D ⊕ D⊥ given by the kinetic energy
metric g on Q. To construct the almost-Poisson bracket we use the canonical Poisson
bracket {·, ·} in T ∗Q, with Π the associated bi-vector field (see Appendix B for more
details).

Definition 2.1. Let (Q,L0,D) be a nonholonomic system and D∗ the dual bundle of
D. We define the bracket in D∗, {·, ·}D∗ : C∞(D∗)× C∞(D∗)→ C∞(D∗) by

{F1, F2}D∗ = {F1 ◦ i∗D, F2 ◦ i∗D} ◦ P ∗D, F1, F2 ∈ C∞(D∗),

where i∗D : T ∗Q → D∗ and P ∗D : D∗ ↪→ T ∗Q are the projector and the inclusion defined
in (1.6).

Observation 2.3.1. There is a correspondence between fiberwise linear functions on D∗
and vector fields on D. This fact is based on the isomorphism (of finite dimensional
vector spaces) Dq ∼= D∗∗q for all q ∈ Q.

Proposition 2.1. Let X`, Y ` ∈ C∞(D∗) and f, h ∈ C∞(Q). Then

{X`, Y `}D∗ = −(PD [iD ◦X, iD ◦ Y ])`, {X`, f ◦ πD∗}D∗ = −X(f) ◦ πD∗ ,

{f ◦ πD∗ , h ◦ πD∗}D∗ = 0.
Where πD∗ : D∗ → Q is the bundle projection.

Proof. First recall the following, since the Poisson bracket on T ∗Q is linear, for W1,W2 ∈
X(Q) and f, h ∈ C∞(Q) we have{

W `
1 ,W

`
2
}

= − [W1,W2] ,
{
W `

1 , f ◦ πQ
}

= −W1(f) ◦ πQ, {f ◦ πQ, h ◦ πQ} = 0.

Also, iD : D ↪→ TQ and PD : TQ → D are vector bundle morphisms, hence the dual
morphism i∗D and P ∗D are too and πQ ◦ P ∗D = πD∗ .

Let X ∈ Γ(D) and β ∈ Ω1(Q), then

(X` ◦ i∗D)(β) = X`(i∗D(β))
= 〈i∗D(β), X〉
= 〈β, iD(X)〉
= (iD ◦X)`(β).

By the same kind of argument we get

W `
1 ◦ P ∗D = (PD ◦W1)`.

The result then follows from the above observations and Definition 2.1.

For a coordinate description, let {Xa, Xα}, a = 1, ..., r and α = r + 1, ..., n, be a
local frame of X(Q) adapted to the orthogonal decomposition TQ = D ⊕ D⊥, that is
Xa ∈ Γ(D), Xα ∈ Γ(D⊥), and Xi = Bij

∂
∂qj . Let {χa, χα} be the associated dual frame.

Using Proposition 2.1 we obtain the expressions for the coordinate functions (qi, pa){
qi, qj

}
D∗ = 0,

{
qi, pa

}
D∗ = Bia,

{pa, pb}D∗ = Ccabpc.
(2.9)
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Then the bivector field ΠD∗ in coordinates reads

ΠD∗ = Bia
∂

∂qi
∧ ∂

∂pa
− 1

2C
c
abpc

∂

∂pa
∧ ∂

∂pb
. (2.10)

We now prove that this bracket is almost-Poisson and compatible with the dynamics,
that is the equations of motion X∗nh are given by the (almost)-hamiltonian vector field
associated to the restricted hamiltonian Hc.
Proposition 2.2. Let (Q,L0,D) be a nonholonomic system and D∗ the dual bundle of
D with almost-Poisson bracket {·, ·}D∗ defined in 2.1. Then the bracket {·, ·}D∗ has the
following properties

1. It is R-bilinear and skew-symmetric.

2. Leibniz rule is satisfied on each entry.

3. Jacobi identity holds if and only if the distribution D is involutive.
Proof. 1. and 2. follow from Definition 2.1, and the properties of the Poisson bracket in
T ∗Q.

To prove 3., let Y,Z ∈ Γ(D), and XY ` = {·, Y }D∗ be the hamiltonian vector field
related to the function Y ` ∈ C∞(D∗). Then by Proposition 2.1 for every f ∈ C∞(Q)

XY `(f ◦ πD∗) = −Y (f) ◦ πD∗ ,

which is equivalent to say that the vector fields XY ` and Y are πD∗ -related, this imply

TπD∗ [XY ` , XZ` ] = [Y,Z] ◦ πD∗ .

. Now assume Jacobi identity is satisfied, then
X−(PD[Y,Z])` = X{Y `,Z`}D∗

= − [XY ` , XZ` ] ,

so [XY ` , XZ` ] and PD [Y,Z] are πD∗ -related therefore [Y,Z] = PD [Y,Z].
If D is involutive then [Y, Z] = PD [Y, Z], using the fact that the bracket in D∗ is

linear and proposition 2.1 Jacobi identity follows.

Observation 2.3.2. The obstruction of the bracket {·, ·}D∗ to be a Poisson bracket is
related to the non-integrability of the (constraint) distribution D, so in general in non-
holonomic mechanics such bracket is not Poisson.

At last, we relate the equations of motion in D∗ and the hamiltonian vector field of
Hc.
Theorem 2.3. Consider a nonholonomic system (Q,L0,D), D∗ the dual bundle of D
with almost-Poisson bracket {·, ·}D∗ defined in 2.1 and Hc = EL0 ◦ FL0,c : D∗ → R.
The equations of motion (2.7) in D∗ are (almost) hamiltonian with respect to the almost-
Poisson bracket in D∗ and the hamiltonian function Hc:

X∗nh(F ) = {F,Hc}D∗ , ∀F ∈ C∞(D∗).

Proof. We may prove this result in adapted coordinates (q, p), q = (q1, ..., qn) and
p = (p1, ..., pr), as in subsection 2.3.1. It suffices to show X∗nh(qi) =

{
qi, Hc

}
D∗ and

X∗nh(pa) = {pa, Hc}D∗ . Since dHc = ∂Hc
∂qi dq

i+ ∂Hc
∂pa

dpa, then using equations (2.9) we get{
qi, Hc

}
D∗ = Bia

∂Hc

∂pa
,

{pa, Hc}D∗ = −Bia
∂Hc

∂qi
− Ccabpc

∂Hc

∂pb
.

Which coincides with the coordinate expression (2.8) of X∗nh.
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Theorem 2.3 implies that equations of motion (2.7) in D∗ can be written in matrix
form Å

q̇i

ṗa

ã
=
Å

0 Bib
−Baj −Ccabpc

ãÇ∂Hc
∂qj
∂Hc
∂pb

å
. (2.11)

2.4 Symmetries and reduction of the almost Poisson
bracket

In Section 1.5 symmetries in nonholonomic systems are introduced in a general way, in
this Section we use them to reduce the almost-Poisson structure in D∗ [78, 94, 27].

Let (Q,L0,D) be a nonholonomic system with a G-symmetry, as in Definition 1.5.
Let Ψ : G×Q→ Q denote the action of G on Q and

ρ : Q→ Q = Q/G,

the quotient map, which is a G-principal bundle. As stated in Section 1.5 the action Ψ
extends to TQ by using its tangent lift, TΨ, and since D is G-invariant, the lifted action
restricts to D. Moreover we can consider the dual TΨ∗g : T ∗Q → T ∗Q action on T ∗Q.
Then we have the principal bundle ρT∗Q : T ∗Q→ T ∗Q = T ∗Q/G. Using the invariance
of D and of L0 (and hence of FL0) we also get that D∗ ⊂ T ∗Q is G-invariant, and we
can consider the principal bundle ρD∗ : D∗ → D∗ = D∗/G. Consequently the vector
field X∗nh ∈ X(D∗) can be projected to the vector field X∗nh ∈ X

(
D∗
)
, by means of the

quotient map ρD∗ . Since D and D∗ are G-invariant the vector bundle morphisms i∗D and
P ∗D are G-equivariant and thus they induce the vector bundle morphisms

i∗D : T ∗Q→ D∗, P ∗D : D∗ → T ∗Q. (2.12)

Definition 2.2. Let {·, ·}D∗ : C∞(D∗) × C∞(D∗) → C∞(D∗) be the bracket in D∗
defined as

{F1, F2}D∗ =
{
F1 ◦ i∗D, F2 ◦ i∗D

}
T∗Q
◦ P ∗D, F1, F2 ∈ C∞(D∗).

On the other hand the nonholonomic bracket is G-invariant in the following sense, if
F,H ∈ C∞(D∗) are G-invariant functions, then so {F,H}D∗ is. We conclude

Corollary 2.4. The quotient map ρD∗ : D∗ → D∗ is an almost-Poisson morphism, i.e.

{F1, F2}D∗ ◦ ρD∗ = {F1 ◦ ρD∗ , F2 ◦ ρD∗}D∗ , F1, F2 ∈ C∞
(
D∗
)
. (2.13)

Proof. To prove this claim we use the fact that the quotient map ρT∗Q : T ∗Q→ T ∗Q is
a Poisson map (see Appendix B) and relations

ρT∗Q ◦ P ∗D = P ∗D ◦ ρD∗ , i∗D ◦ ρT∗Q = ρD∗ ◦ i∗D,

given by the equivariance of the morphisms i∗D, P ∗D. By definitions 2.1 and 2.2 we get

{F1 ◦ ρD∗ , F2 ◦ ρD∗}D∗ = {F1 ◦ ρD∗ ◦ i∗D, F2 ◦ ρD∗ ◦ i∗D} ◦ P ∗D
= (
{
F1 ◦ i∗D, F2 ◦ i∗D

}
T∗Q
◦ ρT∗Q) ◦ P ∗D

= (
{
F1 ◦ i∗D, F2 ◦ i∗D

}
T∗Q
◦ P ∗D) ◦ ρD∗

= {F1, F2}D∗ ◦ ρD∗
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The bracket in D∗ inherits the following properties
Proposition 2.5. The bracket {·, ·}D∗ has the following properties:

1. It is R-bilinear and skew-symmetric.

2. Leibniz rule is satisfied on each entry.

Proof. Bilinearty and skew-symmetry follow directly from the definition of the reduced
bracket. To prove Leibniz rule note that IdD∗ = i∗D ◦ P ∗D, then

{F1F2, F3}D∗ =
{

(F1F2) ◦ i∗D, F3 ◦ i∗D
}
T∗Q
◦ P ∗D

=
Ä
(F1 ◦ i∗D)

{
F2 ◦ i∗D, F3 ◦ i∗D

}
T∗Q

+(F2 ◦ i∗D)
{
F1 ◦ i∗D, F3 ◦ i∗D

}
T∗Q

ä
◦ P ∗D

=F1 {F2, F3}D∗ + F2 {F1, F3}D∗ .

Recall the set bijections C∞(Q)G = C∞(Q), C∞(D∗)G = C∞(D∗) and Γ(D)G =
Γ(D), then the next Proposition is a straightforward computation which follows from
Proposition 2.1
Proposition 2.6. Let X`, Y ` ∈ C∞(D∗) and f, h ∈ C∞(Q). Then

{X`, Y `}D∗ = −(PD [X,Y ])`, {X`, f ◦ πD∗}D∗ = −X(f) ◦ πD∗ ,{
f ◦ πD∗ , h ◦ πD∗

}
D∗ = 0.

Observation 2.4.1. Even if the bracket defined in D∗ is not a Poisson bracket, the bracket
in D∗ might satisfy Jacobi identity. For example this is trivially the case if the manifold
D∗ has dimension 2.

To obtain a coordinate description of the reduced bracket we use adapted coordinates
(xd, yu, pa) to the fibration ρD∗ : D∗ → D∗. We evaluate the coordinate functions xd and
pa {

xd, rk
}
D∗ = 0,

{
xd, pa

}
D∗ = Bda,

{pa, pb}D∗ = Ccabpc,
(2.14)

Now we can give an expression for the reduced dynamics
Theorem 2.7. The reduced dynamics in D∗ are given

X∗nh(F ) =
{
F,Hc

}
D∗ , F ∈ C∞(D∗). (2.15)

Where Hc ◦ ρD∗ = Hc.

Proof. The constrained hamiltonian Hc is G-invariant since Lc, FLc are G-invariant
functions then there exists Hc : D∗ → R such that Hc = Hc ◦ ρD∗ . Using Theorem 2.3,
Corollary 2.4, and the fact that the vector fields X∗nh and X∗nh are ρD∗ -related we get

X∗nh(f) ◦ ρD∗ = X∗nh(f ◦ ρD∗)
= {f ◦ ρD∗ , Hc}D∗
=
{
f ◦ ρD∗ , Hc ◦ ρD∗

}
D∗

=
{
f,Hc

}
D∗ ◦ ρD∗

= XHc
(f) ◦ ρD∗ ,

for every f ∈ C∞(D∗). The quotient map ρD∗ is a surjective sumbersion therefore
X∗nh = XHc

.
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As a consequence, the dynamics in D∗ can be written in matrix formÅ
ṙm

ṗa

ã
=
Å

0 Bmb
−Bak −Ccabpc

ã(∂Hc
∂qk

∂Hc
∂pb

)
. (2.16)

2.5 Symmetries and momenta
Along this Section we assume there is a free and proper action Ψ of a Lie group G on
Q (for a more general exposition see [11], where the authors consider non free actions).
We focus on two aspects related with the presence of symmetries, on one hand on the
existence of first integrals and on the other hand reduction. Here only the former is
treated and the latter has been already presented in Sections 1.5 and 2.4 using the
almost-Poisson formulation of the dynamics.

In this scenario the fiber derivative FL : TQ → T ∗Q is a linear bundle isomorphism
which induces the isomorphism FL0|D between D and its dual D∗. First we give the
particular case of Proposition 1.10

Proposition 2.8. [2] Two vector fields Z1, Z2 on Q define the same linear function,
pZ1

∣∣
D, pZ2

∣∣
D, on D if and only if

Z1 − Z2 ∈ Γ(D⊥).

Using Proposition 1.9 we get the following result.

Theorem 2.9. Suppose Z ∈ X(Q) generates a first integral of the unconstrained system.
Then, pZ |D is a first integral of Xnh if and only if Z ∈ R◦.

Proof. If Z ∈ X(Q) generates a first integral of the unconstrained system then ZTQ [L] =
0, then by Proposition 1.9 the result follows.

Observation 2.5.1. We observe that if Z ∈ X(Q) generates a first integral pZ |D of Xnh,
then by Proposition 1.10 the orthogonal projection ZD ∈ Γ(D) of Z onto D, is such
that pZ |D = (pZD )|D. This mean that all first integrals linear in the velocities admit a
generator which is horizontal, i.e. by sections of the distribution D.

A special instance of Theorem 2.9 is the following result, which sometimes is referred
to as the Nonholonomic Noether theorem see [11, 14, 82, 54, 55]

Theorem 2.10 (Nonholonomic Noether Theorem). Consider a nonholonomic systems
(Q,L0,D) with a G-symmetry. If there exists ξ ∈ g such that ξQ ∈ Γ(D), then pξ|D is a
first integral of (2.2).

We stress the fact that in the case the intersection Γ(D) ∩ Γ(TOrb) is just the zero
section, then there are no conserved quantities of such kind. In [8] the authors extend
previous results proving existence theorems for the so called horizontal gauge momenta.
The following results help us to state similar existence theorems in Section 3.5. We
present here such results without a proof.

Definition 2.3. Let Q be a smooth manifold endowed with a riemannian metric g and a
smooth distribution S on Q. The metric g is said to be strong S-invariant if the following
relation holds for all Yi ∈ Γ(S), i = 1, 2, 3.

〈Y1, [Y2, Y3]〉g = −〈Y3, [Y2, Y1]〉g.

Definition 2.4. Let Q be a smooth manifold and D, S ⊂ TQ be smooth distributions.
A distribution H ⊆ D is said to be S-orthogonal if H = S⊥ ∩ D.
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Definition 2.5. Let Q be a smooth manifold, D ⊆ TQ a distribution and G a Lie groups
acting on Q. Consider the distribution S ⊂ TQ constructed pointwise by Sq := Dq ∩Vq,
where V is the vertical space of the action. The distribution gS ⊂ Q× g is defined by

(gS)q := {ξ ∈ g : ξQ(q) ∈ Sq} .

Definition 2.6. We say that a nonholonomic system (Q,L,D) with a symmetry group
G satisfies conditions A if

1. The action of G is free and proper.

2. The dimension assumption is satisfied.

3. The bundle gS → Q is trivial.

4. The dimension of the quotient space Q/G is 1.

Theorem 2.11 ([8]). Consider a nonholonomic system (Q,L,D) with a Lie group G
acting on it. Suppose conditions A are satisfied and with a S-orthogonal horizontal space
H. Even more assume that the kinetic energy metric is strong invariant on S and that

〈X, [Z,X]〉g = 0,

with X a G-equivariant vector field on Q, which is a section of H, and for all Z ∈ Γ(S).
Then there exist k = rank(S) first integrals of Xnh which are G-invariant horizontal
gauge momenta, additionally they are functionally independent.
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Chapter 3

Linear constrained systems
with gyroscopic type
lagrangian

This Chapter is based on a project in collaboration with J. C. Marrero, D. Mart́ın de
Diego and L. Garćıa-Naranjo. The scope of the Chapter is to investigate the geometric
properties of nonholonomic systems with linear constraints and gyroscopic lagrangians.
For our understanding this type of systems, also with holonomic constraints, serve to
model and control a rigid body with rotors [100, 22, 12, 61], or a rigid body under the
influence of a magnetic field [20, 102, 48]. Nevertheless in the nonholonomic scenario
their geometric aspects, for e.g. the almost-Poisson formulation, had not been fully
explored. To our knowledge the general Dirac structure [71] has not been particularized
and analyzed in this case.

3.1 Local Lagrange-d’Alembert equations
Let Q be a given n dimensional smooth manifold and consider lifted coordinates (q, q̇)
in its tangent bundle TQ. Using the same notation as in (1.11), consider a gyroscopic
lagrangian L 1

L = T + γ` − V, in coordinates L(q, q̇) = 1
2 q̇ ·A(q)q̇ + γ(q) · q̇ − V (q). (3.1)

The constraint submanifold M = D is a linear subbundle of TQ. In bundle coordinates
(q, q̇) the constraints equations are

S(q)q̇ = 0,

where the matrix S on Q is such that Dq = kerS(q) as in (1.12), that is the fibers of D
are given point by point as the kernel of S at that point. Then the Lagrange-d’Alembert
equations in coordinates areÅ

d

dt

∂L

∂q̇
− ∂L

∂q

ã ∣∣∣∣
D

= ST (SA−1ST )−1(SA−1η − σ)|D. (3.2)

Where ηi = ∂2L
∂qj∂q̇i q̇

j − ∂L
∂qi , i = 1, ..., n and σa = ∂Saj

∂qi q̇
iq̇j , a = 1, ..., n− r.

1Recall that T is the kinetic energy, γ is the 1-form which corresponds to the gyroscopic energy and
V is the potential energy.

27
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Proposition 1.3 ensures that the lagrangian energy restricted to D EL|D (see Defini-
tion 1.2) is a constant of motion.

3.2 Quasi-velocities and Hamel-d’Alembert equations
We give here coordinate expressions of Hamel equations. Consider the orthogonal decom-
position TQ = D⊕D⊥ of the tangent bundle induced by the kinetic energy metric g. Let
{Xi} be a local frame of X(Q) adapted to the orthogonal decomposition TQ = D⊕D⊥,
i.e. Xa ∈ Γ(D) and Xα ∈ Γ(D⊥), and v = (v1, ..., vn) be the fiber coordinates induced
by this frame. The kinetic energy matrix A in this coordinates is

BABt =
Å
AD 0
0 AD⊥

ã
.

where B is the frame change matrix as in (1.19) and AD, AD⊥ are the block matrices
corresponding to the restriction of the metric g to D and D⊥ respectively. The lagrangian
L̃ in quasi-velocities writes as

L̃(q, v) = 1
2vD ·AD(q)vD + 1

2vD⊥ ·AD⊥(q)vD⊥ + γD · vD + γ⊥ · vD⊥ − V (q),

where v = vD+vD⊥ is the decomposition of v associated to TQ = D⊕D⊥, γD := P ∗D◦i∗D◦γ
and γ⊥ := P ∗D⊥ ◦ i

∗
D⊥ ◦ γ (the dual morphisms P ∗D, i∗D, P ∗D⊥ and i∗D⊥ are defined in (1.6)).

The constraints equations in quasi-velocities adapted to the constraints become vD⊥ = 0
or equivalently vα = 0, α = r + 1, ..., n.

Following equations (1.23) the Hamel-d’Alembert equations are

dqi

dt
= Baiv

a, a, b, c = 1, ..., r,

d

dt

∂L̃

∂va
= Bak

∂L̃

∂qk
− Ccab

∂L̃

∂vc
vb − Cαab

∂L̃

∂vα
vb,

vα = 0, α = r + 1, ..., n.

(3.3)

Let Lc := L̃|D be the lagrangian restricted to D, in coordinates

Lc(qi, va) = 1
2gabv

avb + γav
a − V (q).

Then equations of motion (3.3) in D take the following expression

dqi

dt
= Baiv

a,

d

dt

∂Lc
∂va

= Bak
∂Lc
∂qk
− Ccab

∂Lc
∂vc

vb − Cαabγαvb, a, b, c = 1, ..., r, α = r + 1, ..., n.
(3.4)

3.3 Almost hamiltonian formulation
In this Section we introduce and give a precise description of the almost-Poisson bracket
in D∗ compatible with the dynamics for a nonholonomic system with linear constraints
and gyroscopic type lagrangian. We decide to use D∗ as phase space instead of the
affine bundle FL(D) because the latter is in general an affine subbundle of T ∗Q, as a
consequence the almost-Poisson bracket in D∗ recovers the affine character. As already
done in the previous Chapter we use elements related to the kinetic energy metric. To
our understanding this particular description is new.
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3.3.1 Equivalence between FL(D) and D∗ and dynamics in D∗

In Subsection 2.3.1 the type of nonholonomic systems considered helped to relate the
fiber bundles FL(D) and D∗. In the case of a nonholonomic system with gyroscopic
lagrangian the fiber bundle FL(D) is affine, nevertheless the vector bundle for which
FL(D) is modeled over is the annihilator distribution (D⊥)◦ of D⊥ and it is isomorphic
to D∗. We use this fact to construct an isomorphism between FL(D) and D∗. First note
that2 FL(uq) = [g(uq) + γq, for all uq ∈ TqQ therefore the fibers of the affine bundle
FL(D) are

FL(D)q =
{
[g(uq) + γq ∈ T ∗qQ : uq ∈ Dq

}
,

and we can then write
FL(D) = (D⊥)◦ + γ.

Thanks to to the splitting T ∗Q = (D⊥)◦ ⊕ D◦ of the cotangent bundle of Q, we can
write γ = γD + γ⊥, and since γD ∈ Γ(D⊥)◦, then we can refine the previous expression
of FL(D) to

FL(D) = (D⊥)◦ + γ⊥.

The 1-form γ⊥ ∈ Γ(D◦) plays an important role on the affine nature in the (almost)
hamiltonian formulation of the dynamics as we see later on this Section.

Using the dual morphisms (1.6), we define the affine bundle morphism between FL(D)
and D∗ by

Φ := i∗D|FL(D) : FL(D) −→ D∗. (3.5)

Note that Φ is clearly an affine bundle morphism, since i∗D is a vector bundle transforma-
tion and FL(D) is an affine subbundle of the cotangent bundle T ∗Q. The expression of Φ
in coordinates (qi, pa, pα) adapted to the cotangent bundle splitting T ∗Q = (D⊥)◦ ⊕D◦
is

Φ(qi, pa, pα + γα) = i∗D(qi, pa, pα + γα) = (qi, pa).

Proposition 3.1. The affine bundle morphism Φ : FL(D) → D∗ is in fact an isomor-
phism with inverse

Φ−1 = P ∗D + γ⊥ ◦ πD∗ .

Proof. Recall the following identities (PD◦iD)∗ = IdD∗ and (PD⊥ ◦iD)∗ = 0. Let βq ∈ D∗q

Φ(P ∗D(βq) + γ⊥(q)) = (i∗D ◦ P ∗D)(βq) + i∗D(γ⊥(q))
= βq + i∗D (P ∗D⊥(i∗D⊥(γq)))
= βq.

Now let wq ∈ Dq, then [g(wq) + γ⊥(q) ∈ FL(D)

P ∗D
(
Φ([g(wq) + γ⊥(q))

)
+ γ⊥(q) = (P ∗D ◦ i∗D)([g(wq)) + (P ∗D ◦ i∗D)(γ⊥(q)) + γ⊥(q)

= [g(wq) + γ⊥(q),

since γ⊥ = (P ∗D⊥ ◦ i∗D⊥)(γ). Therefore Φ−1 = P ∗D + γ⊥ ◦ πD∗ , and it is clearly an affine
bundle morphism.

Using Φ we define the isomorphism between D and D∗

FLc := Φ ◦ FL ◦ iD = D → D∗, (3.6)

equivalently FLc = i∗D ◦ FL ◦ iD.
2Recall that [g : TQ → T ∗Q is the musical isomorphism related to the kinetic energy metric g,

[g(uq)(vq) = 〈uq , vq〉g , for all uq , vq ∈ TqQ.
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Observation 3.3.1. Actually, if we consider the fiber derivative of the constrained la-
grangian Lc : D → R, it coincides with FLc.

In coordinates FLc writes

FLc(qi, va) = (qi, ADvD + γD) = (qi, gabvb + γa),

and its inverse reads

(FLc)−1(qi, pa) = (qi, A−1
D (p− γD)) = (qi, gab(pb − γb)).

We now define the constrained hamiltonian Hc : D∗ → R, and the dynamic equations
X∗nh in D∗:

Hc := EL ◦ iD ◦ (FLc)−1, X∗nh := FLc∗(Xnh).
In order to compute the expressions in coordinates we first note

∂Hc

∂qi
= −∂Lc

∂qi
,

∂Hc

∂pa
= va.

Let p = (p1, ..., pr) and γD = (γ1, ..., γr), then we have

Hc(qi, pa) = 1
2p ·A

−1
D p− γD ·A−1

D p+ 1
2γD ·A

−1
D γD + V (q),

X∗nh(qi, pa) = Bai
∂Hc

∂pa

∂

∂qi
−
Å
Baj

∂Hc

∂qj
+ (Ccabpc + Cαabγα)∂Hc

∂pb

ã
∂

∂pa
.

(3.7)

Furthermore, we relate the constrained and unconstrained dynamics with the elements
just introduced.

Proposition 3.2. Let H = EL◦FL−1 : T ∗Q→ R be the hamiltonian, and XH , XHc◦i∗D ∈
X(T ∗Q) the hamiltonian vector fields of H and Hc ◦ i∗D respectively, then

1. Hc ◦ Φ = H|FL(D),

2. X∗nh ◦ Φ = Ti∗D ◦XH |FL(D),

3. X∗nh ◦ Φ = Ti∗D ◦XHc◦i∗D |FL(D).

Even more, XH |FL(D) = XHc◦i∗D |FL(D).

Proof. 1. Follows from the next equalities, Φ = i∗D|FL(D) = i∗D ◦ (FL ◦ iD), H|FL(D) =
H ◦ (FL ◦ iD) and Hc = EL ◦ iD ◦ (i∗D ◦ FL ◦ iD)−1, then we have Hc ◦ Φ = EL ◦ iD and
H|FL(D) = EL ◦ FL−1 ◦ (FL ◦ iD) = EL ◦ iD.

We do the proofs of 2. and 3. in adapted coordinates (qi, pa, pα) of T ∗Q. The hamil-
tonian vector fields XH , XHc◦i∗D in such coordinates have the following expressions (see
Appendix B)

XH = Bji
∂H

∂pj

∂

∂qi
−
Å
Bij

∂H

∂qj
+ Ckij

∂H

∂pj
pk

ã
∂

∂pi
, i, j, k = 1, ..., n, a = 1, ..., r,

XHc◦i∗D = Bai
∂Hc ◦ i∗D
∂pa

∂

∂qi
−
Å
Bij

∂Hc ◦ i∗D
∂qj

+ Ckia
∂Hc ◦ i∗D
∂pa

pk

ã
∂

∂pi
.

Let βq = (qi, pa, γα) ∈ FL(D), from the coordinate expressions of H and Hc ◦ i∗D we note
that ∂Hc◦i∗D

∂pα
= 0, ∂H

∂pα
(βq) = 0, ∂Hc◦i

∗
D

∂pa
= ∂H

∂pa
, and ∂Hc◦i∗D

∂qj (βq) = ∂H
∂qj (βq), then

XH(βq) = XHc◦i∗D (βq)

= Bai
∂Hc ◦ i∗D
∂pa

∂

∂qi
−
Å
Bij

∂Hc ◦ i∗D
∂qj

+ Ccib
∂Hc ◦ i∗D
∂pb

pc + Cαib
∂Hc ◦ i∗D
∂pb

γα

ã
∂

∂pi
.
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Since the projector i∗D has the coordinate expression i∗D(qj , pa, pα) = (qj , pa), we can
conclude

Tβq i
∗
D(XHc◦i∗D (βq)) = Bai

∂Hc

∂pa

∂

∂qi
−
Å
Baj

∂Hc

∂qj
+ (Ccabpc + Cαabγα)∂Hc

∂pb

ã
∂

∂pa
,

which is precisely the expression of Xnh
∗(Φ(βq)), see equation (3.7).

3.3.2 Affine almost-Poisson bracket in D∗

To extend to the gyroscopic case the construction of the almost-Poisson bracket in D∗,
we need the canonical Poisson bracket {·, ·} in T ∗Q.
Definition 3.1. The map {·, ·}D∗ : C∞(D∗)× C∞(D∗)→ C∞(D∗) defined by

{F1, F2}D∗ = {F1 ◦ i∗D, F2 ◦ i∗D} ◦ (P ∗D + γ⊥ ◦ π∗D), F1, F2 ∈ C∞(D∗).

defines a bracket in D∗.
Observation 3.3.2. If γ⊥ = 0, then we recover the bracket introduced in Definition 2.1,
so this affine bracket is truly a generalization of the bracket defined in Section 2.3.

As in Section 2.3 we now compute the expressions for basic and linear (in the mo-
menta) functions, to prove basic properties and give coordinate description it is sufficient
to do so because of the vector bundle structure of D∗ and the linearity of the Poisson
bracket in T ∗Q.
Proposition 3.3. Let X`, Y ` ∈ C∞(D∗) and f, h ∈ C∞(Q). Then

{X`, Y `}D∗ = −(PD [X,Y ])` + dγ⊥(X,Y ), {X`, f ◦ πD∗}D∗ = −X(f) ◦ πD∗ ,

{f ◦ πD∗ , h ◦ πD∗}D∗ = 0.
Proof. Recall observations made in the proof of Proposition 2.1, using Definition 3.1 we
obtain

{X`, Y `}D∗ =
{
X` ◦ i∗D, Y ` ◦ i∗D

}
◦ (P ∗D + γ⊥ ◦ πD∗)

=
{

(iD ◦X)`, (iD ◦ Y )`
}
◦ (P ∗D + γ⊥ ◦ πD∗)

= − [(iD ◦X), (iD ◦ Y )]` ◦ (P ∗D + γ⊥ ◦ πD∗)
= −(PD [(iD ◦X), (iD ◦ Y )])` − γ⊥ [(iD ◦X), (iD ◦ Y )] ,

using Cartan’s magic formula and γ⊥(iD(X)) = γ⊥(iD(Y )) = 0 we get dγ⊥(X,Y ) =
−γ⊥ [X,Y ], then the result follows.

Similarly, for X ∈ Γ(D) and f ∈ C∞(Q) we have

{X`, f ◦ πD∗}D∗ =
{
X` ◦ i∗D, f ◦ πD∗ ◦ i∗D

}
◦ (P ∗D + γ⊥ ◦ πD∗)

=
{

(iD ◦X)`, f ◦ πQ
}
◦ (P ∗D + γ⊥ ◦ πD∗)

= −(iD ◦X)(f) ◦ πQ ◦ (P ∗D + γ⊥ ◦ πD∗)
= −(iD ◦X)(f) ◦ πD∗
= −X(f) ◦ πD∗ .

At last, a simple computation shows for f, h ∈ C∞(Q)

{f ◦ πD∗ , h ◦ πD∗}D∗ = {f ◦ πD∗ ◦ i∗D, h ◦ πD∗ ◦ i∗D} ◦ (P ∗D + γ⊥ ◦ πD∗)
= {f ◦ πQ, h ◦ πQ} ◦ (P ∗D + γ⊥ ◦ πD∗)
= 0.
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In the following we prove two properties about the bracket defined in 3.1: it is an
almost-Poisson bracket and the vector field X∗nh is compatible with the dynamics, that
is the (almost) hamiltonian vector field associated to the restricted energy Hc (Theorem
3.5).

Proposition 3.4. The affine bracket {·, ·}D∗ has the following properties

1. It is R-bilinear and skew-symmetric.

2. Leibniz rule is satisfied on each entry.

3. Jacobi identity holds if and only if the constraint distribution D is involutive.

4. The bracket in D∗ is affine, and it is linear if and only if dγ⊥(X,Y ) = 0, for all
X,Y ∈ Γ(D).

Proof. 1. and 2. follow directly from the bracket’s definition, i∗D ◦P ∗D = IdD∗ and πD∗ =
πQ ◦ (P ∗D + γ⊥ ◦ πD∗).

To prove 3., let Y,Z ∈ Γ(D), and XY ` = {·, Y }D∗ be the hamiltonian vector field
related to the function Y ` ∈ C∞(D∗). Then, by Proposition 3.3 for every f, g ∈ C∞(Q)
we get

Xg◦πD∗ (f ◦ πD∗) = 0,
XY `(f ◦ πD∗) = −Y (f) ◦ πD∗ ,

the second equation is equivalent to say that the vector fields XY ` and Y are πD∗ -related,
if Z ∈ Γ(D) this imply

TπD∗ [XY ` , XZ` ] = [Y, Z] ◦ πD∗ .

Now we get

X{Y `,Z`}D∗ = X−(PD[Y,Z])`+dγ⊥(Y,Z)◦πD∗

= X−(PD[Y,Z])` +Xdγ⊥(Y,Z)◦πD∗ ,

then X{Y `,Z`}D∗ (f ◦ πD∗) = X−(PD[Y,Z])`(f ◦ πD∗) = −PD [Y,Z] (f) ◦ πD∗
Suppose Jacobi identity is satisfied, then X{Y `,Z`}D∗ = [Y,Z] so [XY ` , XZ` ] and

PD [Y,Z] are πD∗ -related therefore [Y, Z] = PD [Y, Z].
If D is involutive then [Y, Z] = PD [Y, Z], which implies dγ⊥([Y, Z]) = 0 using propo-

sition 3.3 Jacobi identity follows.
Finally, the statement of 4. means that if F,K ∈ C∞(D∗) are affine functions then

so its bracket {F,K}D∗ is. If F,K are affine functions then there exist vector fields
Y,Z ∈ Γ(D) and functions f, k ∈ C∞(Q) such that F = Y ` + fπD∗ and K = Z` + kπD∗ ,
using Proposition 3.3 and 1) we get

{F,K}D∗ =
{
Y ` + f ◦ πD∗ , Z` + k ◦ πD∗

}
D∗

=
{
Y `, Z`

}
D∗ +

{
Y `, k ◦ πD∗

}
D∗ +

{
f ◦ πD∗ , Z`

}
D∗

= −(PD [Y,Z])` + dγ⊥(Y,Z) ◦ πD∗ − Y (k) ◦ πD∗ + Z(f) ◦ πD∗ ,

which is clearly an affine function. If dγ⊥(Y,Z) = 0 for all Y,Z ∈ Γ(D) then the same
computation with f = k = 0 proves the assertion.

The coordinate expressions for the functions (qi, pa) are{
qi, qj

}
D∗ = 0,

{
qi, pa

}
D∗ = Bia,

{pa, pb}D∗ = −Ccabpc − Cαabγα,
(3.8)
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and the bivector field ΠD∗ related to the almost-Poisson bracket in coordinates is

ΠD∗ = Bia
∂

∂qi
∧ ∂

∂pa
− 1

2(Ccabpc + Cαabγα) ∂

∂pa
∧ ∂

∂pb
. (3.9)

At last, we relate the equations of motion in D∗ and the hamiltonian vector field of
Hc.

Theorem 3.5. The equations of motion in D∗ (3.7) are (almost) hamiltonian with re-
spect to the almost-Poisson bracket in D∗ and hamiltonian function Hc,

X∗nh(F ) = {F,Hc}D∗ , ∀F ∈ C∞(D∗).

Proof. Use Proposition 3.2 and Φ−1 = P ∗D + γ⊥ ◦ πD∗ . Let αq ∈ D∗q and βq ∈ FL(D),
such that αq = Φ(βq)

X∗nh(F )(αq) = 〈dF (αq), X∗nh(αq)〉
= 〈dF (αq), Tβq i∗DXHc◦i∗D (βq)〉
= 〈(Tβq i∗D)∗dF (αq), XHc◦i∗D (βq)〉
= 〈(Tβq i∗D)∗d(F ◦ i∗D)(βq), XHc◦i∗D (βq)〉
= XHc◦i∗D (F ◦ i∗D)(Φ−1(α)).

Since XHc◦i∗D is the hamiltonian vector field of the function Hc ◦ i∗D, with respect to the
canonical bracket in T ∗Q, we conclude

X∗nh(F )(αq) = XHc◦i∗D (F ◦ i∗D)(Φ−1(α))
= {F ◦ i∗D, Hc ◦ i∗D} ◦ (P ∗D + γ⊥ ◦ πD∗)(α)
= {F,Hc}D∗ (αq),

where last equality is given by Definition 3.1.

Theorem 3.5 implies that equations of motion (3.7) in D∗ can be written in matrix
form Å

q̇i

ṗa

ã
=
Å

0 Bib
−Baj −Ccabpc − Cαabγα

ãÇ∂Hc
∂qj
∂Hc
∂pb

å
. (3.10)

3.4 Symmetries and reduction of the (affine) almost-
Poisson bracket

In Section 1.5, symmetries in nonholonomic systems are introduced. Along this Section
we use them to reduce to the quotient space the almost-Poisson structure defined in the
phase space D∗.

Consider a nonholonomic system (Q,L,D) with a G-symmetry, and let Ψ : G×Q→ Q
be its action on Q. Denote by

ρ : Q→ Q = Q/G,

the quotient map, which is the projection of a G-principal bundle. This G-action extends
to TQ by the tangent lift, TΨ and since D is G-invariant, the lifted action restricts to
D. Let TΨ∗g : T ∗Q → T ∗Q denote the dual action on T ∗Q, so we have the principal
bundle ρT∗Q : T ∗Q → T ∗Q = T ∗Q/G. Using the invariance of D and L, and hence of
FL, we also get that D∗ ⊂ T ∗Q is G-invariant, then we can consider the principal bundle
ρD∗ : D∗ → D∗ = D∗/G. Consequently the dynamical vector field X∗nh ∈ X(D∗) can
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be projected to the vector field X∗nh ∈ X(D∗), by means of the quotient map ρD∗ . The
vector bundle morphisms i∗D and P ∗D are G-equivariant, since D and D∗ are G-invariant,
so they induce the following vector bundle morphisms

i∗D : T ∗Q→ D∗, P ∗D : D∗ → T ∗Q. (3.11)

Proposition 1.6 opens the path to define a reduced bracket in D∗.

Definition 3.2. Let {·, ·}D∗ : C∞(D∗) × C∞(D∗) → C∞(D∗) be the bracket in D∗
defined as

{F1, F2}D∗ =
{
F1 ◦ i∗D, F2 ◦ i∗D

}
T∗Q
◦ (P ∗D + γ⊥ ◦ πD∗), F1, F2 ∈ C∞(D∗).

On the other hand the nonholonomic bracket is G-invariant in the following sense, if
F1, F2 ∈ C∞(D∗) are G-invariant functions then so {F1, F2}D∗ is. We conclude

Corollary 3.6. The quotient map ρ : D∗ → D∗ is an almost Poisson bracket transfor-
mation, i.e.

{F1, F2}D∗ ◦ ρD∗ = {F1 ◦ ρD∗ , F2 ◦ ρD∗}D∗ , F1, F2 ∈ C∞
(
D∗
)
. (3.12)

Proof. To prove this claim we use the fact that the quotient map ρT∗Q : T ∗Q→ T ∗Q is
a Poisson map (see Appendix B) and relations

ρT∗Q ◦ P ∗D = P ∗D ◦ ρD∗ , i∗D ◦ ρT∗Q = ρD∗ ◦ i∗D, ρT∗Q ◦ γ⊥ = γ⊥ ◦ ρQ,

given by the equivariance of the morphisms i∗D, P ∗D and the 1-form γ⊥. By definitions
3.1 and 3.2 we get

{F1 ◦ ρD∗ , F2 ◦ ρD∗}D∗ = {F1 ◦ ρD∗ ◦ i∗D, F2 ◦ ρD∗ ◦ i∗D} ◦ (P ∗D + γ⊥ ◦ πD∗)

=
Ä{
F1 ◦ i∗D, F2 ◦ i∗D

}
T∗Q
◦ ρT∗Q

ä
◦ (P ∗D + γ⊥ ◦ πD∗)

=
Ä{
F1 ◦ i∗D, F2 ◦ i∗D

}
T∗Q
◦ (P ∗D + γ⊥ ◦ πD∗)

ä
◦ ρD∗

= {F1, F2}D∗ ◦ ρD∗

The bracket in D∗ inherits the following properties from those of the bracket in the
dual bundle D∗

Proposition 3.7. The bracket {·, ·}D∗ has the following properties:

1. It is R-bilinear and skew-symmetric.

2. Leibniz rule is satisfied on each entry.

3. The bracket is fiberwise linear if and only if dγ⊥(X,Y ) = 0, for all G-equivariant
vector fields X,Y ∈ X(Q).

Proof. 1. is proved directly using Corollary 3.6 and Proposition 3.4. The computations
to prove 2. are analogous to those performed in Proposition 2.5, with the extra relation
i∗D ◦ γ⊥ = 0.

3. follows from the fact that there is a bijection between equivariant sections of D,
Γ(D)G, and sections of Q → D, Γ(D). Then dγ⊥(X,Y ) = dγ⊥(X,Y ) ◦ ρQ and clearly
{·, ·}D∗ is a linear bracket if and only if dγ⊥ = 0.
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The next proposition is a consequence of Corollary 3.6 and Proposition 3.3, it gives
expressions for the reduced bracket of fiberwise linear functions in D∗ and basic functions
on Q.

Proposition 3.8. Let X`, Y ` ∈ C∞(D∗) and f, h ∈ C∞(Q). Then

{X`, Y `}D∗ = −(PD [X,Y ])` + dγ⊥(X,Y ) ◦ πD∗ , {X`, f ◦ πD∗}D∗ = −X(f) ◦ πD∗ ,{
f ◦ πD∗ , h ◦ πD∗

}
D∗ = 0.

To obtain a coordinate description of the reduced bracket we use adapted coordinates
(xd, yu, pa) to the fibration ρD∗ : D∗ → D∗, that is ρD∗(xd, yu, pa) = (xd, pa). We
evaluate the coordinate functions xd and pa{

xd, xk
}
D∗ = 0,

{
xd, pa

}
D∗ = Bda,

{pa, pb}D∗ = −Ccabpc − Cαabγα,
(3.13)

Now we give an (almost) Poisson formulation for the reduced dynamics.

Theorem 3.9. 1. The constrained hamiltonian Hc is G−invariant, so there exists
Hc ∈ C∞(D∗) such that Hc ◦ ρD∗ = Hc.

2. The reduced dynamics in D∗ are given by

X∗nh(F ) =
{
F,Hc

}
D∗ , F ∈ C∞(D∗).

Proof. The constrained hamiltonian Hc is G-invariant since L, FLc are G-invariant func-
tions, then there exists Hc : D∗ → R such that Hc = Hc ◦ ρD∗ . Using Theorem 3.5,
Corollary 3.6, and the fact that the vector fields X∗nh and X∗nh are ρD∗ -related we get

X∗nh(F ) ◦ ρD∗ = X∗nh(F ◦ ρD∗)
= {F ◦ ρD∗ , Hc}D∗
=
{
F ◦ ρD∗ , Hc ◦ ρD∗

}
D∗

=
{
F,Hc

}
D∗ ◦ ρD∗ ,

for every F ∈ C∞(D∗). Since the quotient map ρD∗ is a surjective sumbersion we have
proven the statement.

A consequence of Theorem 3.9 the dynamics in D∗ can be written in matrix form asÅ
ṙm

ṗa

ã
=
Å

0 Bmb
−Bak −Ccabpc − Cαabγα

ã(∂Hc
∂qk

∂Hc
∂pb

)
. (3.14)

3.5 Symmetries and affine momenta
In this Section we generalize, in a sense to be defined, what is done in Section 2.5, to
this end we consider a family of nonholonomic systems (Q,Lν ,D) parametrized by a real
parameter ν ∈ R, such that the lagrangian Lν : TQ→ R is defined as

Lν(vq) = L0(vq + νNq),

where N ∈ X(Q) is any vector field on Q, and for ν = 0 the lagrangian L0 is natural,
i.e. L0 = T − V ◦ τQ. Observe that the lagrangian is of gyroscopic type except when
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ν = 0, in such case we have a nonholonomic system with linear constraints and natural
lagrangian as in Chapter 2.

The procedure of generalization is the following: under the assumption that the non-
holonomic system (Q,L0,D) admits a first integral which is a momentum generated by a
vector field we show that under certain conditions such vector field properly deformed in
a way that it generates a first integral for every ν 6= 0. To present a precise mathematical
statement we introduce the following notation.

• Denote by Xν
nh the nonholonomic vector field in D of (Q,Lν ,D).

• Denote by pνZ : TQ → R the momentum associated to a vector field Z on Q with
respect to the lagrangian Lν : TQ→ R.

Given Z ∈ X(Q) such that LX0
nh
p0
Z = 0, we look for a family of vector fields on Q Zν

such that LXν
nh
pνZν = 0, p0

Zν
= p0

Z .
The generalization mentioned above goes as follows: let vq ∈ TqQ then

Lν(vq) = L0(vq) + ν〈Nq, vq〉g + ν2

2 ‖Nq‖
2
g .

Observation 3.5.1. As noted before, Lν contains a linear term in the velocities, to relate
such term with the previous notation we have

γ` = (ν [g(N))`.

Consider the nonholonomic system (Q,Lν ,D) and let Z ∈ X(Q) be a vector field on
Q, then the momenta pνZ : TQ→ R generated by Z is defined as

pνZ(vq) = 〈FLν(vq), Z(q)〉 = 〈vq, Zq〉g + ν〈Nq, Zq〉g. (3.15)

Proposition 1.10 characterize this kind of functions restricted to D, indeed.

Corollary 3.10. Two vector fields Z1, Z2 on Q define the same affine function, pνZ1

∣∣
D,

pνZ2

∣∣
D, on D, if and only if the following conditions are satisfied.

Z1 − Z2 ∈ Γ(D⊥), ν〈Z1, N〉g = ν〈Z2, N〉g.

We now define in a more precise way what we mean by an extension of a momenta
generator Z ∈ Γ(D) for the system (Q,L0,D).

Definition 3.3. Consider a given family of nonholonomic systems (Q,Lν ,D). Let Z ∈
Γ(D), we say Z̃ ∈ X(Q) is an extension of Z if and only if the following two conditions
are satisfied

1. Z̃ − Z ∈ Γ(D⊥),

2. p0
Z |D = p0

Z̃
|D.

Since we want pν
Z̃
|D to be a first integral of (Q,Lν ,D), we can refine the choice of

Z̃ by using Proposition 1.10. So we can consider Z̃ ∈ Γ(D + Lξ), where Lξ is the TQ
subbundle with fibers Lξq = span {ξq} and ξq is the orthogonal projection of Nq onto
D⊥, with respect to the kinetic energy metric. Note that a section Z̃ ∈ Γ(D + Lξ) can
be written as Z̃ = Z + fξ, where Z ∈ Γ(D) and f ∈ C∞(Q).

Our purpose to find an extension Z̃ = Z + fξ of Z such that the function pν
Z̃

is
a first integral of Xν

nh translates on when the function f exists. In the general case
the existence of f is related to the existence and uniqueness of solutions of a suitable
differential equation. Denote by Xν

nhX(D) the nonholonomic vector field of (Q,Lν ,D)
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and let Z ∈ Γ(D) be the horizontal generator of a first integral p0
Z |D of X0

nh, then the
conditions on the existence of f are related to the existence and uniqueness of solutions
of the following equation

0 = LXν
nh
pνZ+fξ|D = LXν

nh
pνZ |D + fLXν

nh
pνξ |D + pνξ |DLXνnhf

= LXν
nh
pνZ |D + νfLXν

nh
‖ξ‖2g + ν ‖ξ‖2g LXνnhf.

(3.16)

We now study the existence and uniqueness of the function f for three particular
scenarios.

The following Proposition is in a sense a generalization of the Nonholonomic Noether
Theorem.

Proposition 3.11. Consider a given nonholonomic systems (Q,Lν ,D) and a vector
field Z ∈ Γ(D). If ZTQ [L0] = 0 and [Z,N ] = 0, then pνZ |D is a first integral of Xν

nh. In
particular in this case f ≡ 0.

Proof. By Proposition 1.9 we have that p0
Z |D is a first integral of X0

nh and by the same
proposition we just need to see that ZTQ [Lν ] |D = 0 for all ν ∈ R, and this is clearly true
since by hypothesis Z preserves the kinetic energy metric and (ΦZt )∗(N) = N . Therefore
the 1-form [g(N) and the basic function ‖N‖2g are preserved by the flow of the vector
field Z.

Observation 3.5.2. Let γ ∈ Ω1(Q) and γ` ∈ C∞(TQ) be the associated linear function.
Let X ∈ X(Q) and vq ∈ TqQ then (LXγ)` = LXTQγ`. Let Z be a given vector field on Q
such that ZTQ [Lν ] = 0 this implies LZTQ[g(N)` = 0 and by the above observation the
1-form [g(N) is invariant under the flow of Z.

In the next result one of the hypothesis is the vector field N is in D, this implies that
the almost-Poisson structure associated to (Q,Lν ,D) is in fact linear, and a first integral
of the system (Q,L0,D) can be easily translated into a first integral when ν 6= 0.

Proposition 3.12. Consider a given family of nonholonomic systems (Q,Lν ,D). Let
Z ∈ Γ(D), such that p0

Z |D is a first integral of X0
nh, and N ∈ Γ(D). If [Z,N ] = 0, then

pνZ |D is a first integral of Xν
nh.

Proof. Proposition 1.9 and the hypothesis imply that Z preserves the kinetic energy
metric in D. And we just need to verify

ZTQ [Lν ] |D = 0,

to see that the above assertion is true it is sufficient to prove

LZ[g(N)|D = 0 and LZ ‖N‖2g = 0.

Let vq ∈ Dq then

(LZ[g(N))q(vq) = d

dt

∣∣∣∣
t=0

ΦZ∗t [g(N)(vq) = d

dt

∣∣∣∣
t=0

[g(N)ΦZt (q)(TqΦZt vq)

= d

dt

∣∣∣∣
t=0
〈NΦZt (q), TqΦZt vq〉g = d

dt

∣∣∣∣
t=0
〈TqΦZt Nq, TqΦZt vq〉g

= d

dt

∣∣∣∣
t=0
〈Nq, vq〉g = 0.
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And

LZ ‖N‖2g = d

dt

∣∣∣∣
t=0

ΦZ∗t ‖N‖
2
g = d

dt

∣∣∣∣
t=0
‖N‖2g ◦ ΦZt

= d

dt

∣∣∣∣
t=0
〈N ◦ ΦZt , N ◦ ΦZt 〉g = d

dt

∣∣∣∣
t=0
〈TΦZt N,TΦZt N〉g

= d

dt

∣∣∣∣
t=0
〈N,N〉g = 0

For the following result we assume that all nonholonomic systems (Q,Lν ,D) define
the same vector field, hence a first integral of (Q,L0,D) is a first integral for all systems
with ν 6= 0. We use this fact to retrieve the expressions in the case the first integral is a
gauge momenta.

Proposition 3.13. Consider a family of nonholonomic systems (Q,Lν ,D). Let Z ∈
Γ(D), such that p0

Z |D is a first integral of X0
nh. If d([g(N)) = 0 and LZ ‖N‖2g = 0 then

pν
Z̃
|D is a first integral of Xν

nh, where Z̃ = Z − 〈N,Z〉〈N,ξ〉 ξ.

Proof. Assume the gyroscopic 1-form is closed, i.e. d([g(N)) = 0, then the vector fields
defined by (Q,Lν ,D) and (Q,L0 + ν2

2 ‖N‖
2
g ,D) are the same. By proposition 1.9 and by

hypothesis it is obvious that

ZTQ
ï
L0 + ν2

2 ‖N‖
2
g

ò ∣∣∣∣
D

= 0.

Then p0
Z |D is a first integral of Xν

nh and we just need to find the function f for which

p0
z|D = pνZ+fξ|D

= p0
z|D + ν〈N,Z〉g + fp0

ξ |D + νf〈N, ξ〉g
= p0

z|D + ν〈N,Z〉g + νf〈N, ξ〉g.

Then f = − 〈N,Z〉〈N,ξ〉 does the trick.

3.5.1 Existence of first integrals coming from symmetry
Now we focus on a nonholonomic systems (Q,Lν ,D) with a Lie group G acting on Q,
moreover assume the action of is free and proper. For the next result we assume the
following conditions are satisfied

H1. L0 is G-invariant.

H2. D is G-invariant.

H3. N = ζQ, with ζ ∈ g.

H4. [N, ηQ] = 0 for all η ∈ g.

H5. Z ∈ Γ(D ∩ TOrbG).

H6. Z is G-equivariant.

H7. dim Q/G=1.
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Conditions H1-H4 imply that (Q,Lν ,D) is a G-symmetric nonholonomic system. Condi-
tions H3 and H4 say that ζ is in the center of the Lie algebra g, and by condition H6 we
have [Z,N ] = 0. Finally, conditions H1-H2 imply the G-invariance of the distribution D⊥
and by H4 N is G-equivariant, then ξ is also G-equivariant. If f : Q→ R is a G-invariant
function, then the momentum pνZ+fξ is an invariant function under the lifted action of
G on TQ. So the existence and uniqueness of the function f is related to solving an
ordinary differential equation obtained by H7 and (3.16), in the case H7 is not satisfied
then one must solve a partial differential equation.

Theorem 3.14. Consider a nonholonomic system (Q,Lν ,D) and a vector field Z on
Q. Suppose conditions H1-H7 hold and furthermore p0

Z |D is a first integral of X0
nh, then

there exists a G-invariant function f ∈ C∞(Q) such that pνZ+fξ|D is a first integral of
Xν
nh.

Proof. We prove this result locally and then globalize it . In this scenario the quotient
map ρ : Q→ Q/G is a surjective submersion so in a suitable charts U ⊆ Q and ρ(U) ⊆
Q/G it can be thought as the projection (r, x) 7→ r, furthermore we have C∞(U)G =
ρ∗C∞(ρ(U)) and Ω1(U)G = ρ∗Ω1(ρ(U)); in other words G-invariant functions on U
just depend on the variable r and G-invariant 1-forms can be written as h(r)dr, where
h : U → R is G-invariant. Let f ∈ C∞(Q) be G-invariant. Recall equation (3.16) that is

LXν
nh
pνZ+fξ|D = LXν

nh
pνZ |D + νfLXν

nh
‖ξ‖2g + ν ‖ξ‖2g LXνnhf.

Note that for any G-invariant function h ∈ C∞(U) we have LXν
nh
h(r)|D = h′(r)LXν

nh
r|D.

The function ‖ξ‖2g isG-invariant since the metric isG-invariant and ξ is equivariant, hence
we rewrite ‖ξ‖2g as a(r). By construction we have the following identity

LXν
nh
r|D = ṙ|D.

The only term left to analyze is LXν
nh
pνZ+fξ|D. Since p0

Z |D is a first integral of X0
nh,

Z ∈ Γ(D) and proposition 1.9 we have

LXν
nh
pνZ |D = ZTQ [Lν ] |D + 〈Rν |D, Z〉 = νZTQ

[
[g(N)`

]
|D.

Observation 3.5.2 gives
ZTQ

[
[g(N)`

]
|D = LZ[g(N)`|D.

Clearly LZ[g(N) is a G-invariant 1-form so locally (LZ[g(N))(r,x) = b(r)dr for a certain
function b, in consequence LZ[g(N)`(q, q̇) = b(r)ṙ. Then

LXν
nh
pνZ+fξ|D = νLXν

nh
r|D (b(r) + a′(r)f(r) + a(r)f ′(r)) .

Even though equation (3.16) is of intrinsic nature we need to relate the differential
equation LXν

nh
pνZ+fξ|D in two coordinate charts (U, r) and (Ũ , r̃) of the base space Q/G,

and a diffeomorphism φ : Ũ → U , r = φ(r̃. The function f is globally defined, we have
f̃ = f ◦ φ, the vector field ξ is G−equivariant and the metric is G-invariant then the
restriction of ‖ξ‖2g to both charts are related by ã = a ◦ φ, at last the 1-form LZ[g(N) is
also G-invariant then the restrictions to U and Ũ are related by the pull-back of φ, that
is b̃(r̃)dr̃ = φ∗(b(r)dr) = b(φ(r̃))φ′dr̃. Then

b̃(r̃) + ã′(r̃)f̃(r̃) + ã(r̃)f̃ ′(r̃) = φ′(b(r) + a′(r)f(r) + a(r)f ′(r)) ◦ φ,

therefore the differential equation is globally defined. The ordinary differential equation
b(r) + a′(r)f(r) + a(r)f ′(r) = 0 is non degenerate if and only if ξ is a non vanishing
vector field, i.e. a(r) 6= 0, this is a topological obstruction of Q.
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Chapter 4

Affine constrained systems
with a Noether Symmetry

In this Chapter we study a special kind of nonholonomic systems with affine constraints
and natural lagrangians: the ones that are endowed with a Noether symmetry (in [57] the
authors also consider a vector field with equivalent definition). In contrast to Chapters
2 and 3 we do not investigate the almost-hamiltonian nature but we do explore the
relations, induced by the Noether symmetry, with nonholonomic systems with linear
constrains and gyroscopic lagrangians. The material related to Noether symmetries is
based on [57] and on a work in progress in collaboration with J.C. Marrero, D. Mart́ın
de Diego and L. Garćıa-Naranjo.

The local expression of the equations of motion for nonholonomic systems with affine
constraints and natural lagrangian can be obtained in lifted coordinates (1.17) and qua-
sivelocities (1.23) by considering the 1-form γ to be identically zero.

4.1 Time dependent diffeomorphisms
A key idea is to use the flow of a Noether symmetry to construct a time dependent
diffeomorphism and get an equivalent nonholonomic system with linear constraints. The
theory involved is somehow standard and it is very similar to the techniques used to
investigate non-autonomous ordinary differential equations, we refer the reader to [80, 32],
and for a detailed exposition on time-dependent nonholonomic systems see [43].

Let Q be a n dimensional smooth manifold and F : R × Q → Q a time dependent
diffeomorphism, that is for every time t ∈ R the function Ft := F (t, ·) : Q → Q is a
diffeomorphism. We extend F to the product manifold

Ψ : R×Q −→ R×Q, Ψ := IdR × Ft,

where IdR is the identity function of R. Note that Ψ is also a diffeomorphism. Moreover
we consider the tangent lift TΨ of Ψ

TΨ : TR× TQ→ TR× TQ, TΨ(εt, vq) =
Å
εt, TqFt(vq) + ∂F

∂t
(εt, vq)

ã
.

The restriction of TΨ to the submanifold R × {1} × TQ, i.e. when εt = 1, is called the
1− jet prolongation [43], of Ft and we denote it by Λ : R× TQ→ R× TQ

Λ(t, vq) =
Å
t, TqFt(vq) + ∂Fq

∂t

ã
.

41
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Let ρTQ : R× TQ→ TQ denote the projection onto the second factor TQ, the map

F̃ : R× TQ −→ TQ, by F̃ := ρTQ ◦ Λ,

is a time dependent diffeomorphism that induces the diffeomorphism F̃t := F̃ (t, ·) :
TQ→ TQ given by F̃t = TFt + ∂F

∂t .

4.2 Equivalence of affine constrained with natural la-
grangian and linear constrained with gyroscopic
lagrangian nonholonomic systems

Let (Q,L,M) be a nonholonomic system with affine constraints, and L = T − V ◦ τQ a
natural lagrangian. Using the same notation as in (1.11), we consider the lagrangian L
in lifted bundle coordinates (q, q̇)

L(q, q̇) = 1
2 q̇ ·A(q)q̇ − V (q).

Recall that locally the affine distribution M = ξ + D, where ξ ∈ Γ(D⊥) ⊂ X(Q) is a
vector field on Q and D is a linear non-integrable distribution over Q.

Definition 4.1. Let N ∈ X(Q) be a vector field on Q and ΦNt : Q → Q the associated
flow at time t. The vector field N is a Noether symmetry of the nonholonomic system
(Q,L,M), if the following conditions are satisfied

1. N ∈ Γ(M),

2. D is ΦNt -invariant, i.e. TqΦNt (Dq) = DΦNt (q), for all q ∈ Q,

3. NTQ(L) = 0 or equivalently L is invariant with respect to the tangent lift of ΦNt .

Remark 4.2.1. If N is a Noether symmetry, then by Proposition 1.6 the kinetic energy
metric g is also preserved by the tangent lift of ΦNt , that is N is a Killing vector field for it.
This fact implies that D⊥ is also invariant under ΦNt . As a consequence the vector field
ξ is equivariant with respect to the action induced by the flow, in other words [ξ,N ] = 0.

Let (Q,L,M) be an affine constrained nonholonomic system with a Noether symme-
try, we aim to construct a nonholonomic system equivalent to (Q,L,M) for which the
constraint distribution is linear. In the following we use the same notation as in Section
4.1. Denote by Ft := ΦN−t for all t ∈ R, the inverse of the Noether symmetry flow, then
Ft induces the 1-jet prolongation

Λ : R× TQ −→ R× TQ,

which is a diffeomorphism. Now, since the Noether symmetry N ∈ Γ(M) is a section of
M, let vq ∈Mq so that vq = Nq + wq, with wq ∈ Dq. Then

Λ(t, vq) =
Å
t, TFt(vq) + ∂F (t, q)

∂t

ã
=
Ç
t, TΦN−t(vq) +

∂ΦN−t(q)
∂t

å
=
Ä
t, TΦN−t(wq +Nq)−NΦN−t(q)

ä
=
(
t, TΦN−t(wq)

)
.

(4.1)
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Note that TΦN−t(wq) ∈ DΦN−t(q)
since the distribution D is invariant under the flow of N ,

therefore
Λ
∣∣
R×M : R×M −→ R×D,

and consequently
F̃t
∣∣
M :M−→ D,

is a diffeomorphism for all t ∈ R.
Observation 4.2.1. We observe that by construction, for every vq ∈ TqQ

F̃t(vq) = TqFt(vq)−NFt(q),

which in general defines an affine bundle morphism.
We now define the function L̃ := L ◦ F̃−1

t . Since the lagrangian L is TFt-invariant we
get

L̃(vq) = L(TqFt(vq) +NFt(q)) = L(vq +Nq)

= L(vq) + 〈Nq, vq〉g + 1
2 ‖Nq‖

2
g ,

(4.2)

that ensures the function L̃ to be time independent. In bundle coordinates (q, q̇) we have

L̃(q, q̇) = 1
2 q̇ ·A(q)q̇ +N(q) ·A(q)q̇ + 1

2N(q) ·A(q)N(q)− V (q).

We can then consider the nonholonomic system with linear constraints and gyroscopic
lagrangian (Q, L̃,D). To relate both systems (Q,L,M) and (Q, L̃,D), we first define
the extended dynamics which are the nonholonomic vector fields associated to (R ×
Q,L ◦ ρTQ,R ×M) and (R × Q, L̃ ◦ ρTQ,R × D)1. In symbols, the “extensions” are
related as follows: let XMnh ∈ X(M) and XDnh ∈ X(D) be the nonholonomic vector fields
associated to (Q,L,M) and (Q, L̃,D) respectively. The vector fields XR×M

nh ∈ X(R×M)
and XR×D

nh ∈ X(R × D) denote the extended vector fields associated to (Q,L,M) and
(Q, L̃,D)

XR×M
nh = XMnh + ∂

∂t
, XR×D

nh = XDnh + ∂

∂t
.

Proposition 4.1. The extended dynamics of (Q,L,M) and (Q, L̃,D) are equivalent,
that is they are related by the 1-jet prolongation, Λ, of the diffeomorphism Ft, i.e.

Λ∗|R×M
Å
XMnh + ∂

∂t

ã
= XDnh + ∂

∂t
.

Moreover we have
Λ∗
∣∣
R×M(XMnh) = XDnh +NTQ

∣∣
R×D.

Proof. The first claim of the proof follows from Observation 1.2.1 considering the non-
holonomic systems (R ×Q,L ◦ ρTQ,R ×M) and (R ×Q, L̃ ◦ ρTQ,R × D), where ρTQ :
R × TQ → TQ is the fiber projection, and the diffeomorphism relating both systems is
Λ|R×M.

To prove the second relation note that ∂TΦN−t
∂t = −NTQ, then from equation (4.1) and

we get
Λ∗
∣∣
R×M

Å
∂

∂t

ã
= ∂

∂t
−NTQ

∣∣
D.

Using the linearity property of the derivative and the first part of this Proposition we
conclude

Λ∗
∣∣
R×M(XMnh) = XDnh +NTQ

∣∣
R×D.

1The “extensions” are the same as in the non-autonomous case of ordinary differential equations [32]
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4.2.1 Moving energy
An important consequence of Proposition 4.1 is the construction of the so called mov-
ing energy first introduced in [57] and, then the concept was generalized in [51]. To
motivate the definition of moving energy we first introduce the concept of kinemati-
cally interpretable moving energy, and afterwards present the general definition with a
characterization on when it is a first integral.

Definition 4.2. Let (Q,L,M) be a nonholonomic systems with affine constraints, natu-
ral lagrangian and Noether symmetry N . The kinematically interpretable moving energy
EL,N :M→ R of the nonholonomic system is the function

EL,N := EL̃ ◦ F̃t|M.

Where EL̃ is the lagrangian energy of L̃.

We observe that the moving energy is time independent, i.e. EL̃ ◦ F̃t|M = EL̃ ◦ F̃t′ |M,
for all t, t′ ∈ R. To see this first note that EL̃ = T +V ◦ τQ− 1

2 ‖N‖
2
g ◦ τQ and recall that

the kinetic energy metric g and the potential energy V are invariant with respect to the
flow ΦNt . Let vq ∈Mq then

EL,N (vq) = T (vq) + V (q)− [g(N)`(vq)
= T (vq)− 〈Nq, vq〉g + V (q)
= EL(vq)− pN (vq).

Since for a linear constrained nonholonomic system the lagrangian energy is always
preserved we can use the equivalence of the vector fields XMnh and XDnh to get the following
result.

Theorem 4.2. [57] The moving energy EL,N is a first integral of the nonholonomic
vector field XMnh .

Proof. The lagrangian energy restricted to D, EL̃,D is a first integral of XDnh, since
(Q̃, L̃,D) is a nonholonomic system with linear constraints, then because it is time-
independent, its trivial extension to R×D, is also a first integral of XDnh + ∂

∂t , therefore
by Proposition 4.1 the function Λ∗

∣∣
R×M(EL̃,D), because it is time-independent, is a first

integral of XMnh . In symbols it is easily proven using the Lie derivative, on one hand

LXD
nh

+ ∂
∂t
EL̃,D = LXD

nh
EL̃,D +

∂EL̃,D
∂t

dt

Å
∂

∂t

ã
= LXD

nh
EL̃,D

= 0,

and on the other hand

0 = Λ∗
∣∣
R×M

Ä
LXD

nh
+ ∂
∂t
EL̃,D

ä
= L

Λ−1
∗

∣∣
R×D(XDnh+ ∂

∂t )
(Λ∗
∣∣
R×D(EL̃,D))

= LXM
nh

+ ∂
∂t
EL,N

= LXM
nh
EL,N + ∂EL,N

∂t
dt

Å
∂

∂t

ã
= LXM

nh
EL,N .
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For the generalization of the kinematically interpretable moving energy we consider
a nonholonomic system (Q,L,M) with affine contraints, M = Y + D, and gyroscopic
lagrangian. Given a vector field Z on Q define

EL,Z := EL − pZ : TQ −→ R.

Definition 4.3. A function f : M→ R is a moving energy of the system (Q,L,M) if
there exists a vector field Z ∈ X(Q) such that f = EL,Z

∣∣
M.

The next characterization is not exhaustive, in the sense there could exist vector
fields Z for which EL,Z

∣∣
M is a first integral of (Q,L,M), but not satisfying the other

conditions.

Proposition 4.3. [51] Any two of the following statements imply the third.

1. Z − Y ∈ Γ(R◦).

2. ZTQ [L] |M = 0.

3. EL,Z
∣∣
M is a first integral of (Q,L,M).

Proof. We perform the prove in coordinates, it is elementary and similar to that of
Proposition 1.9. By Proposition 1.3 we have

d

dt
EL|M = R · Y.

On the other side Proposition 1.9 implies

d

dt
pZ |M = ZTQ [L] +R · Z.

Combining both equations

d

dt
EL,Z

∣∣
M = R · (Y − Z)− ZTQ [L] .

And the result follows.

4.3 Gauge momenta relations in the presence of a
Noether symmetry

The next result relates the momentum of a vector field Z on Q in both nonholonomic
systems (Q,L,M) and (Q, L̃,D), when they are related by a Noether symmetry.

Theorem 4.4. Let Z ∈ X(Q) be a vector field on Q such that [Z,N ] = 0. The momentum
pZ
∣∣
M is a first integral of XMnh if and only if p̃Z

∣∣
D is a first integral of XDnh. Where

pZ(vq) = 〈FL(vq), Zq〉, p̃Z(vq) = 〈FL̃(vq), Zq〉.

In order to prove the Theorem 4.4 we first prove some properties which are helpful.

Proposition 4.5. Let Z ∈ X(Q) be a vector field on Q, such that [Z,N ] = 0. Then
pZ = F̃ ∗t p̃Z .
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Proof. Let vq ∈ TqQ, F̃t(vq) = TqFt(vq)−NFt(q). Then

p̃Z ◦ F̃t(vq) = p̃Z(TqFt(vq)−NFt(q))
= 〈TqFt(vq)−NFt(q), ZFt(q)〉g + 〈NFt(q), ZFt(q)〉g
= 〈TqFt(vq), TqFt(Zq)〉g
= pZ(vq).

Where we used (Ft)∗Z = Z.

As a consequence the momenta pZ and p̃Z associated to the vector field Z restricted
to M and D respectively are related by the diffeomorphism F̃t, i.e.

pZ
∣∣
M = F̃t

∣∣∗
Mp̃Z

∣∣
D.

Moreover if [N,Z] = 0 and pZ
∣∣
M is a first integral of XMnh , then we show that the

Lie derivative is zero LNTQ|D p̃Z
∣∣
D = 0. This claim is true because the tangent lift NTQ

is tangent to D, so it makes sense to consider the restriction NTQ
∣∣
D. Now we prove the

following general result.
Proposition 4.6. Let H ∈ C∞(TQ) be a smooth function on TQ and X,Y ∈ X(Q) be
two commuting vector fields on Q, i.e. [X,Y ] = 0. If LY TQ [H] = 0, then the function
pHX : TQ→ R defined as pHX(vq) = 〈FH(vq), Xq〉 is a first integral of Y TQ.

Proof. It suffices to prove that pHX is TΦYt -invariant for all t and then we apply the
definition of Lie derivative. Let vq ∈ TqQ then

pHX ◦ TΦYt (vq) = d

dt

∣∣∣∣
t=0

H
Ä
TΦYt (vq) + tXΦYt (q)

ä
= d

dt

∣∣∣∣
t=0

H
(
TΦYt (vq) + tTΦYt (Xq)

)
= d

dt

∣∣∣∣
t=0

H
(
TΦYt (vq + tXq)

)
= d

dt

∣∣∣∣
t=0

H(vq + tXq)

= pHX(vq).

Where we used the fiberwise linearity of TΦYt and the TΦYt -invariance of H, which
is given in the hypothesis.

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. We just do one implication the other one is proven in the same
fashion.

Suppose pZ
∣∣
M is a first integral of XL,M

nh , in symbols it is LXL,M
nh

(pZ
∣∣
M) = 0. Then

0 = (F̃t
∣∣
M)∗

(
LXL,M

nh
(pZ
∣∣
M)
)

= L(F̃t|M)∗(XL,Mnh
)
(
(F̃t
∣∣
M)∗(pZ

∣∣
M)
)

= L
XL̃,D
nh

+NTQ|D
(pZ
∣∣
M ◦ F̃

−1
t

∣∣
M)

= L
XL̃,D
nh

(p̃Z
∣∣
D) + LNTQ|D (p̃Z

∣∣
D)

= L
XL̃,D
nh

(p̃Z
∣∣
D).
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Observation 4.3.1. Using Theorem 4.4 we can recover the results of Section 3.5 in terms
of nonholonomic systems with affine constraints and natural lagrangian.
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Chapter 5

Ball rolling without slipping on
a turning surface of revolution

5.1 Introduction to the system
In this Chapter we analyze the system of a homogeneous ball that rolls without slipping
in a rotating surface of revolution.

The system consist on three parts, first we use the kinematics on the Lie group
SO(3) to represent the attitude of the ball, and since we deal with a symmetric and
homogeneous ball we may only use the angular velocity of the ball 1. Second, the ball’s
movement along the surface is given by its center of mass coordinates. And third, the
nonholonomic constraint is the rolling without slipping condition.

We make the following assumptions on the physical properties of the ball, we assume
that the ball has unitary mass m = 1, and radius r = 1, that do not change the qualitative
behavior of the system but simplify the computations.

The surface of revolution in which the ball’s center of mass is constrained to move
along is parametrized by a function f : R → R. Without loss of generality we assume
f(0) = 0, then the surface is given by

R2 → R3, (x, y) 7→ (x, y, f(
√
x2 + y2)).

Note that the function f just depends on the radius, then the position of the center of
mass in polar is given by (r, β) 7→ (r, β, f(r)). To investigate the dynamics we use polar
coordinates since they are better suited to put in evidence the symmetry of the system.
As usual, the relation between cartesian and polar coordinates is given by

x = r cosβ, y = r sin β, r ≥ 0, β ∈ [0, 2π) . (5.1)

5.1.1 Rigid body dynamics
The system is formed by a homogeneous ball moving along a surface of revolution under
the action of gravity and of nonholonomic constraints. To represent the orientation of the
ball we first consider two orthonormal coordinate frames: an inertial frame {e1, e2, e3}
and a body frame {E1, E2, E3} rigidly attached to the ball and that rotates with it. The
orientation of the rigid body at time t is given by the attitude matrix R(t) ∈ SO(3),
which is precisely the change of basis matrix between the inertial and body frames.
The angular velocity vector with respect to the inertial frame {e1, e2, e3} is denoted by

1Euler equations for the rigid body [84].

49
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ω = (ωx, ωy, ωz) ∈ R3 and Ω = (Ωx,Ωy,Ωz) ∈ R3 denotes the one with respect to
the body frame {E1, E2, E3}. The coordinate representations of the angular velocity ω
and Ω respectively correspond to the right and left trivialisations of the velocity vector
Ṙ ∈ TRSO(3), namely [84]:

Ω̂ = R−1Ṙ, ω̂ = ṘR−1,

where ˆ : R3 → so(3) is the well known hat isomorphism, to each vector v ∈ R3

associates the skew-symmetric matrix v̂ ∈ so(3), characterized by the following condition
v̂u = v×u, for all u ∈ R3, ‘×’ denotes the standard vector product in R3. In coordinates

v = (v1, v2, v3) 7→ v̂ =

Ñ
0 −v3 v2
v3 0 −v1
−v2 v1 0

é
.

The angular velocity vectors in space and body representations are related by ω = RΩ.
In matrix notation ω̂ = RΩ̂R−1 = AdR−1(Ω̂), with Ad : SO(3)→ GL(so(3)) the adjoint
representation of the Lie group SO(3).

We use the inertia tensor I in body coordinates to obtain an isomorphism between
so(3) and its dual so∗(3), the angular momentum vector is then expressed in the body
frame as M = IΩ ∈ R3, where the inertia tensor I is a 3 × 3 symmetric, positive
definite matrix, which encodes the mass distribution of the body. In our case (the ball is
homogeneous of mass and radius equal to 1) the inertia tensor I is a diagonal matrix with
moment of inertia k = 2

5 . The “rotational” kinetic energy of the ball is 1
2M ·Ω = 1

2IΩ ·Ω,
where ‘·’ denotes the standard scalar product in R3. For more details on the subject we
refer the reader to [4, 84].

5.1.2 Quasivelocities
The configuration space is Q = SO(3)×R2, endowed with local coordinates (φ, θ, ψ, r, β),
where (r, β) ∈ R>0 × [0, 2π) are polar coordinates and 0 < ϕ,ψ < 2π, 0 < θ < π are
Euler angles in accordance with the x-convention (see e.g. [84]). We parametrize a
matrix R ∈ SO(3) as

R =

Ñ
cosψ cosϕ− cos θ sinϕ sinψ − sinψ cosϕ− cos θ sinϕ cosψ sin θ sinϕ
cosψ sinϕ+ cos θ cosϕ sinψ − sinψ sinϕ+ cos θ cosϕ cosψ − sin θ cosϕ

sin θ sinψ sin θ cosψ cos θ

é
,

(5.2)
According to this convention the angular velocity in space coordinates ω reads:

ω =

Ñ
θ̇ cosϕ+ ψ̇ sinϕ sin θ
θ̇ sinϕ− ψ̇ cosϕ sin θ

ϕ̇+ ψ̇ cos θ

é
. (5.3)

The matrix B : Q→ GL(Rn) to pass from velocities to quasivelocities v = B(q)q̇ is

B =

à
0 cosϕ sin θ sinϕ 0 0
0 sinϕ − sin θ cosϕ 0 0
1 0 cos θ 0 0
0 0 0 1 0
0 0 0 0 1

í
.

To obtain an explicit expression of the inertial frame
¶
e1, e2, e3,

∂
∂r ,

∂
∂β

©
in terms of the

frame induced by the coordinates we need to consider the inverse matrix B−1.
The quasivelocities just introduced in TQ we denote them as (q, v), where q =

(φ, θ, ψ, r, β) and v = (ω, ṙ, β̇).
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5.1.3 Lagrangian
The lagrangian of the system is of natural type, meaning that it is kinetic minus potential
energy. Due to the nature of the system we can split the kinetic energy into two parts,
one is related to the rotation of the ball and the other with the velocity of its center of
mass. As we already noted the rotational kinetic energy of the ball is k

2ω · ω. And the
kinetic energy related to the center’s of mass velocity is
1
2
(
ṙ cosβ − rβ̇ sin β, ṙ sin β + rβ̇ cosβ, ṙf ′(r)

)
·
(
ṙ cosβ − rβ̇ sin β, ṙ sin β + rβ̇ cosβ, ṙf ′(r)

)
.

Then the total kinetic energy of the system is equal to T (q, v) = k
2ω ·ω+ 1

2 (ṙ2 + r2β̇2) +
1
2f
′(r)2ṙ2, and the associated kinetic energy matrix in quasivelocities is

A = 1
2

à
k 0 0 0 0
0 k 0 0 0
0 0 k 0 0
0 0 0 1 + f ′(r)2 0
0 0 0 0 r2

í
.

The potential energy V of the system is given by the weight applicated to the ball’s
center of mass, V (r) = gf(r), where g is the constant of gravity. The lagrangian of the
system is then the smooth function L0 : TQ→ R defined by

L0(q, v) = T (q, v)− V (q) = k

2 (ω2
x + ω2

y + ω2
z) + 1

2(F 2(r)ṙ2 + r2β̇2)− gf(r), (5.4)

where F 2(r) = 1 + f ′(r)2.

5.1.4 Nonholonomic Constraints
The nonholonomic constraint considered for this system is the rolling without slipping
condition. Let P be the point in space representing the ball’s center of mass, vP its
velocity and N the outwards normal vector to the surface. The non slipping condition
writes as

vP + ω ×N − Ωez × (N + P ) = 0. (5.5)

Figure 5.1: Cross section

Remark 5.1.1. Notation disclaimer, from here to the end of the Chapter we use the
symbol Ω to represent the angular velocity of the surface of revolution. It should not
give place to confusion since the angular velocity of the ball in body representation is
not used again.
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In polar coordinates and spatial angular velocity we have, P = (r cosβ, r sin β, f(r)),
vP = d

dtP , N = ( f
′

F cosβ, f
′

F sin β, −1
F ), ez = (0, 0, 1), and then the constraint condition

(5.5) reads

−ωy
F
− f ′

F
sin βωz + cosβṙ − r sin ββ̇ + Ω sin β

Å
r + f ′

F

ã
= 0,

ωx
F

+ f ′

F
cosβωz + sin βṙ + r cosββ̇ − Ω cosβ

Å
r + f ′

F

ã
= 0.

(5.6)

The constraint functions are defined as

f1(q, v) = ωx
F

+ f ′

F
cosβωz + sin βṙ + r cosββ̇, s1(r, β) = −Ω cosβ

Å
r + f ′

F

ã
,

f2(q, v) = −ωy
F
− f ′

F
sin βωz + cosβṙ − r sin ββ̇, s2(r, β) = Ω sin β

Å
r + f ′

F

ã
.

(5.7)

And allow us to define the 8-dimensional constraint submanifolds M and D of TQ

M := (f1 + s1)−1(0) ∩ (f2 + s2)−1(0),
D := f−1

1 (0) ∩ f−1
2 (0).

As stated in Section 1.1, constraints linear in the velocities can be rephrased in terms
of 1-forms over Q, so in Euler angles we can rewrite the linear part of the constraints as

f ′

F
cosβdφ+ cosφ

F
dθ + 1

F
(sin θ sinφ+ f ′ cos θ cosβ) dψ + sin βdr + r cosβdβ,

−f
′

F
sin βdφ− sinφ

F
dθ + 1

F
(sin θ cosφ− f ′ cos θ sin β) dψ + cosβdr − r sin βdβ.

(5.8)

We define the following vector fields on Q

X1 = F
∂

∂φ
− f ′

r

∂

∂β
,

X2 = (−1 + f ′ cot θ sin(β − φ)) ∂

∂φ
+ f ′ cos(β − φ) ∂

∂θ
− f ′ csc θ sin(β − φ) ∂

∂ψ
,

X3 = F cot θ cos(β − φ) ∂
∂φ
− F sin(β − φ) ∂

∂θ
− F csc θ cos(β − φ) ∂

∂ψ
+ ∂

∂r
,

(5.9)

by direct computation we can see that X1, X2, X3 form a frame for D. Aided by the
kinetic energy metric we construct the following frame for the orthogonal complement
D⊥ of D

X4 = r

kF
(f ′ + cot θ sin(β − φ)) ∂

∂φ
+ r

kF
cos(β − φ) ∂

∂θ
− r

kF
csc θ sin(β − φ) ∂

∂ψ
+ ∂

∂β
,

X5 = −F
k

cot θ cos(β − φ) ∂
∂φ

+ F

k
sin(β − φ) ∂

∂θ
+ F

k
csc θ cos(β − φ) ∂

∂ψ
+ ∂

∂r
.

(5.10)

Using the constraint 1-forms (5.8) it is straight forward to verify that the vector field
ξ ∈ X(Q) such that Mq = ξq +Dq and ξ ∈ Γ(D⊥) is

ξ = Ωµ
Å

1 + f ′

rF

ã
X4, (5.11)

where the constant µ = k
k+1 = 2

7 .
In matrix notation, the matrices S(q) and s(q) are

S(r, β) =
Ç

1
F 0 f ′

F cosβ sin β r cosβ
0 − 1

F − f
′

F sin β cosβ −r sin β

å
, s(r, β) =

(
−Ω cosβ

Ä
r + f ′

F

ä
Ω sinβ

Ä
r + f ′

F

ä ) .
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5.1.5 Symmetries
The system has two kinds of symmetries, one comes from the ball’s homogeneity and
the other from the rotational symmetry of the surface. In mathematical terms these
symmetries are described by an action of the Lie group G = SO(3) × SO(2) on Q =
SO(3)× R2 defined as follows. Let (K,H) ∈ G and (R, p) ∈ Q then

(K,H) · (R, p) = (H̃RK,Hp),

where
·̃ : SO(2) ↪→ SO(3),

is the inclusion given by the rotation around the z-axis. In matrix notation

H̃ =
Å
H 02×1

01×2 1

ã
,

with 02×1 ∈M2×1(R) and 01×2 ∈M1×2(R) are the zero matrices, and

H =
Å

cos Ω − sin Ω
sin Ω cos Ω

ã
.

Using the matrix representation (5.2) and polar coordinate relations (5.1) we get that
the action of SO(2) on Q written in coordinates is

(φ, θ, ψ, r, β) 7→ (φ+ Ω, θ, ψ, r, β + Ω). (5.12)

The infinitesimal generators of this action are

ξQ1 = cos θ sinψ ∂

∂φ
+ cosψ ∂

∂θ
− cot θ ∂

∂ψ
, ξQ3 = ∂

∂ψ
,

ξQ2 = csc θ cosψ ∂

∂φ
− sinψ ∂

∂θ
− cot θ cosψ ∂

∂ψ
, ξQ4 = Ω ∂

∂φ
+ Ω ∂

∂β
.

(5.13)

The vector fields ξQi on Q, i = 1, 2, 3 are the infinitesimal generators of the SO(3) action
and ξQ4 is associated to the SO(2) action.

Proposition 5.1. The vector fields {Xi}5i=1 are equivariant with respect to the action
of the group G.

Proof. It is sufficient to prove[
Xi, ξ

Q
a

]
= 0, i = 1, 2, 3, 4, 5, a = 1, 2, 3, 4.

This can be seen directly by doing the computations. We used mathematica for such
end.

The following Corollary is a direct implication of the above result

Corollary 5.2. The distribution D is G-invariant.

Observation 5.1.1. Note that X1, X2, X4 ∈ Γ(TOrbG), in fact X1, X2 generate D∩TOrbG
and X4 generates D⊥ ∩ TOrbG. Even more, ξ is the orthogonal projection of ξQ4 onto
D⊥ and is equivariant.
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The action of G on SO(3) comes from a linear action, so the lifted action of G on
TSO(3) is

(K,H) · (R, Ṙ) = (H̃RK, H̃ṘK),
the action of G translates to the Lie algebra so(3) as

ω̂ 7→ AdH̃ ω̂,

and equivalently we get
ω 7→ H̃ω.

Therefore the action of G on TQ in quasivelocities writes

(φ, θ, ψ, r, β,ωx, ωy, ωz, ṙ, β̇)
7→ (φ+ Ω, θ, ψ, r, β + Ω, ωx cos Ω− ωy sin Ω, ωx sin Ω + ωy cos Ω, ωz, ṙ, β̇).

Using the above coordinate representation of the action we see, by direct computation,
that the lagrangian L0 (5.4) is G-invariant.
Remark 5.1.2. The infinitesimal generator ξQ4 is a Noether symmetry of the nonholonomic
system (Q,L,M).

We just proved the following result

Proposition 5.3. The nonholonomic system (Q,L0,M) is G-symmetric. Hence the
vector field XΩ

nh on M is G-invariant.

5.1.6 Equations of motion
To compute the equations of motion we follow the treatment developed in Section 1.4.
We use (q, v) as coordinates on TQ, where q = (φ, θ, ψ, r, β) and v = (ωx, ωy, ωz, ṙ, β̇),
and the quasivelocities expression of L0, A, S and s are given in the previous subsections.
Then the equations of motion of the system are

q̇ = B−1v,

r̈ = −f
′f ′′

F 2 ṙ2 + (1 + µf ′2)r
F 2 β̇2 + µf ′

F
β̇ωz −

µΩ
F 2 (f ′ + rF )β̇ − γf ′

F 2 ,

β̈ = ṙ

Å
−
Å2
r

+ µf ′f ′′

F 2

ã
β̇ − µf ′′

rF
ωz + µΩ

Å1
r

+ f ′′

rF
+ f ′f ′′

F 2

ãã
,

ω̇z = − (1− µ)
F 2 ṙ

Å
rf ′2f ′′

F
β̇ + f ′f ′′ωz −

Ωf ′
F

(F 2 + rf ′f ′′ + f ′′F )
ã
,

ωx = −f ′ cosβωz − F sinβṙ − rF cosββ̇ + Ω cosβ (rF + f ′) ,
ωy = −f ′ sinβωz + F cosβṙ − rF sinββ̇ + Ω sinβ (rF + f ′) ,

(5.14)

where µ = k
k+1 and γ = g

k+1 . Note that in our case µ = 2
7 , because the ball is homoge-

neous.
We denote by XΩ

nh ∈ X(M) the vector field defined by the equations of motion (5.14).

5.1.7 Moving Energy
The moving energy EL0,Y :M→ R associated to the Noether symmetry Y = ξQ4 is the
restriction to M of the function E : TQ→ R :

E = T + V ◦ τQ − [g(Y )`,

E(q, v) = 1
2F

2ṙ2 + 1
2r

2β̇2 + 1
2k(ω2

x + ω2
y + ω2

z) + gf − Ω(r2β̇ + kωz).
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For more details on the construction of the moving energy see Subsection 4.2.1.
Its restriction to M is

EL0,Y = 1
2(k + 1)F 2ṙ2 + 1

2r
2(1 + kF 2)β̇2 + 1

2kF
2ω2

z + krf ′Fβ̇ωz

− Ωr(r + krF 2 + kf ′F )β̇ − Ωk(F 2 + rf ′F )ωz + 1
2Ω2k

(
r2F 2 + f ′(f ′ + 2rF )

)
+ gf,

where we used (5.6) for explicit expressions of ωx and ωy as functions of (r, β, ṙ, β̇, ωz),
and observed that ω2

x + ω2
y doesn’t depend on β.

Proposition 4.3 imply that the moving energy EL0,Y is a constant of motion of the
nonholonomic system (Q,L0,M).

5.2 Invariant Polynomials and Routh integrals
Along this Section we use polar coordinates and angular velocity to define the invariant
polynomials, we use them to compute Routh integrals. The SO(2) action over Q =
SO(3)×R2 is free, proper and linear, nevertheless since the action of SO(2) on R2 is linear,
then it is not free. To avoid dealing with singular reduction we do not consider any motion
of the vector field XΩ

nh on M passing through the vertex of the surface of revolution,
in other words we restrict the action to SO(3) × R2 \ {0, 0}. We proceed as follows,
the action of SO(3) on Q is free and proper in both factors, and since the constraint
manifoldM is G−invariant then we can consider the quotient manifoldM5 :=M/SO(3)
which is smooth. Consider coordinates (r, β, ωz, ṙ, β̇) in M5. A set of SO(2)-invariant
polynomials on this variables is

p0 = ṙ2 + r2β̇2

2 , p1 = r2

2 , p2 = rṙ, p3 = r2β̇,

p4 = ω ·N = −rf ′β̇ − Fωz + Ωf ′
Å
r + f ′

F

ã
,

(5.15)

where N is the normal vector to the surface. Then the quotient manifold M5/SO(2)
can be represented as the semi-algebraic variety

M̃4 =
{

(p0, p1, p2, p3, p4) ∈ R5 : 4p0p1 = p2
2 + p2

3, p0, p1 ≥ 0
}

and we may restrict the analysis to

M4 =
{

(p0, p1, p2, p3, p4) ∈ R5 : 4p0p1 = p2
2 + p2

3, p0, p1 > 0
}

.
For a discussion about invariant polynomials and singular reduction of nonholonomic

systems, i.e. when the Lie group action is proper but not free, see [11].
We use invariant polynomials to compute the so called Routh first integrals in a

constructive manner, and then analyze the system restricted to the levels sets of the first
integrals. First we rewrite the equations of motion in terms of invariant polynomials. To
this end we introduce the smooth function

Ψ : R→ R,

such that Ψ(p1) = f(r) see [52] for details. Observe that the following relations hold

f ′(r) =
√

2p1Ψ′(p1), f ′′(r) = Ψ′(p1) + 2p1Ψ′′(p1),
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then the equations of motion for invariant polynomials write

ṗ0 = p2F2 ((µΨ′′p3p4 − γΨ′ − 2Ψ′2 −Ψ′Ψ′′p2
2
)

+ Ωµ
(
Ψ′2 + FΨ′′

)
p3
)

ṗ1 = p2,

ṗ2 = F2 (2p0 − 2γΨ′p1 − µΨ′p3p4 − 2Ψ′Ψ′′p1p
2
2
)
− Ωµ (1 + Ψ′F)F2p3,

ṗ3 = p2 (G3p4 + Ωg3) ,
ṗ4 = p2 (G4p3 + Ωg4) ,

(5.16)

where F = 1√
1+2p1Ψ′2

, G3 = µF2 (Ψ′ + 2p1Ψ′′), G4 = F2 (Ψ′3 −Ψ′′
)
,

g3 = µ
(
1 + (Ψ′ + 2p1Ψ′′)F3), g4 = F2 (1 + FΨ′) (Ψ′ + 2p1Ψ′′).

The moving energy (5.1.7) in M5 written in terms of invariant polynomials reads

E = Ψ′2
2 p2

2 + µ

2 p
2
4 + p0 + Ω (µFp4 − p3) + Ω2µp1

(
1−F2Ψ′2

)
+ γΨ. (5.17)

5.2.1 Routh integrals
We here follow the approach and construction of the Routh integrals given in [41]. There
one can find proofs about functional independence between the two Routh integrals and
the moving energy. As we already anticipated, Routh integrals are two first integrals
of the system, they arise as solutions of the following system of ordinary differential
equations

ṗ3 = p2 (G3p4 + Ωg3) ,
ṗ4 = p2 (G4p3 + Ωg4) .

(5.18)

Thanks to the equation ṗ1 = p2 we can perform a change of variables and time
reparametrization on (5.18), and then consider the linear, non-autonomous and non-
homogeneous system of differential equations

u′ = Gu+ g (5.19)

where u = u(p1), here the ’′‘ symbol denotes derivative with respect to p1 and

G =
Å

0 G3
G4 0

ã
and g =

Å
g3
g4

ã
.

To solve this differential equation we use the variation of parameters method [32]. Let
U be a fundamental matrix solution, at zero, of

U ′ = GU

and u an integral curve of (5.19) such that u(0) = (0, 0) then define the function

J =
Å
J1
J2

ã
= U(p1)−1

ÅÅ
p3
p4

ã
− Ωu(p1)

ã
, (5.20)

J1 and J2 are the so called Routh integrals. A straightforward computation shows that
these functions are first integrals of (5.16).

To obtain dynamical results of the nonholonomic system (Q,L,M) we analyze the
vector field in M4 restricted to the level sets of the Routh integrals J = (J1, J2), where
we can express the variables p3, p4 as functions of p1 and of the value of J . Even more,
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the moving energy (5.17) restricted to the level sets J−1(j1, j2) plays the role of a nat-
ural lagrangian of a second order differential equation (this fact can be shown by direct
computation). Denote by Ej := E|J−1(j), j ∈ R2, and write Ej = T − Vj with

T (p1, p2) = 1
4p1F2 p

2
2,

Vj(p1) = µ

2 p
2
4 + 1

4p1
p2

3 + Ω (µFp4 − p3) + Ω2µp1
(
1−F2Ψ′2

)
+ γΨ,

(5.21)

where p3 and p4 are thought as functions of (p1, j1, j2) and the function Vj is called the
effective potential.

5.3 First integrals coming from horizontal gauge mo-
menta of the static case Ω = 0.

It is known that in the static case, Ω = 0, the system admits two horizontal gauge
momenta [103, 70, 19, 52, 58]. Here we prove that their generators can be extended
to obtain two first integrals also when the surface is uniformly rotating. To do this we
use an algorithm to produce a first integral and then we compare them with the Routh
integrals obtained above.

First we consider a vector field Z = h1(r)X1 + h2(r)X2 + h3(r)ξ on Q, where
h1, h2, h3 ∈ C∞(Q) are smooth G-invariant functions, and consider the associated linear
function pZ |M restricted to M. Recall that X1(q), X2(q) ∈ Dq

⋂
TqOrbG, ∀q ∈ Q. We

now search for conditions on the functions h1, h2, h3 such that

LXΩ
nh
pZ |M = 0,

recall XΩ
nh is the vector field onM of the nonholonomic system (Q,L0,M). To simplify

the computations we introduce the following variables

ω̃x = cosβωx − sin βωy, ω̃y = sin βωx + cosβωy. (5.22)

In this variables the constraints can re-write as

ṙ = ω̃y
F
, β̇ = − ω̃x

rF
− f ′ωz

rF
+ Ω
Å

1 + f ′

rF

ã
. (5.23)

The following Theorem is a consequence of Theorem 3.14, this fact is elucidated in
Subsection 5.4.2, nevertheless we present a constructive proof which is useful as a possible
algorithm to compute first integrals.

Theorem 5.4. The nonholonomic system (Q,L0,M) has two functionally independent
G-invariant gauge momenta.

Proof. Let Z = h1(r)X1 + h2(r)X2 + h3(r)ξ then the function pZ |M : M → R in
quasivelocities is written as

pZ |M (r, ω̃x, ωz) =f ′
Å
kh2 + h1

F

ã
ω̃x +

Å
h1

Å
f ′2

F
+ kF

ã
− kh2

ã
ωz − Ωh1f

′
Å
r + f ′

F

ã
+ µΩ2h3

Å
r2 + f ′2

F 2 + 2rf ′
F

ã
.

(5.24)
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To compute the Lie derivative LXΩ
nh
pZ |M in such coordinates first note

˙̃ωx = ω̃y
(k + 1)rF 5

[(
rf ′f ′′ − (k + 1)F 4) ω̃x − ((k + 1)f ′F 4 + rf ′′

)
ωz

+Ω
(
rf ′′ + rF 3 + (k + 1)F 4(f ′ + rF )

)]
,

ω̇z = f ′ω̃y
(k + 1)F 5

[
f ′f ′′ω̃x − f ′′ωz + Ω(f ′′ + F 3)

]
.

Then

d

dt
pZ |M = ω̃xω̃y

rF 2 [rf ′(h′1 + kFh′2) + (rf ′′ − f ′)(h1 + kFh2)]

+ ω̃yωz
rF 2

[
r(kF 2 + f ′2)h′1 − krFh′2 + f ′((k + 1)rf ′′ − f ′)h1 − kFf ′2h2

]
+ Ω(f ′ + rF )

rF 2 ω̃y [−rf ′Fh′1 + (rf ′′ − f ′)h1 + kFf ′h2]

+ Ω2k(f ′ + rF )
(k + 1)F 5 ω̃y

[
F (rF + f ′)h′3 + 2(F 3 + f ′′)h3

]
,

(5.25)

since we want to impose the condition d
dt pZ |M = 0, we solve the system for the quadratic

terms in the velocities. This leads to solve the following system of ordinary differential
equations for h1, h2

h′1 = 1
(k + 1)rf ′F 2

[
(G1 − krf ′2f ′′)h1 + kFG2h2

]
,

h′2 = 1
(k + 1)rf ′F 3

[
G2h1 + F (kG1 − rf ′2f ′′)h2

]
.

(5.26)

Where G1 = F 2(f ′− rf ′′) and G2 = f ′F 2− rf ′′. It is a non autonomous linear ordinary
differential equations so it has two independent solutions, each of such solutions give
place to the differential equation for h3

h′3 = − 1
ΩrF 2(rF + f ′)

[
FG2h1 + F 2(kf ′F 2 + rf ′′)h2 + 2Ωr(F 3 + f ′′)h3

]
, (5.27)

this is a linear non homogeneous, non autonomous differential equation so it always has a
solution. Each solutions give place to an equivariant vector field Z so the linear function
generated by it is G−invariant, and by construction the restriction of pZ to M is a first
integral.

Observation 5.3.1. To characterize when the vector field Z is a D or R0 gauge symmetry
we note the following. If the function h3 is not identically zero then by construction
Z /∈ Γ(D), but in the case where h3 ‖ξ‖2g is a constant function then we can consider
Z̃ = h1X1 + h2X2 as the generator and obviously the gauge momenta generated by
Z̃ is still a first integral and it is functionally dependent to pZ |M, we encounter this
situation in Section 5.6. Now, to see under which conditions Z ∈ Γ(R0) we have the
following alternatives: on one hand if h3ξ ∈ Γ(R0) clearly Z ∈ Γ(R0), on the other hand
if ZTQ(L0)

∣∣
M = 0 we use Proposition 1.9 to obtain that Z is a R0−gauge symmetry.

Theorem 5.5. The two Routh integrals and the two gauge momenta obtained in Theorem
5.4 are pairwise functionally dependent.
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Proof. Consider the constraint space M, recall that dimM = 8. Then dimM/G = 4,
whereG = SO(3)×SO(2). Furthermore, the moving energy EL0,Y isG-invariant then the
nonholonomic system can only posses two more functionally independent first integrals
(because it is a non-zero vector field), therefore it must happen that Routh integrals are
a functional combination of the first integrals found in Theorem 5.4.

5.4 Equivalent gyroscopic system

This Section is devoted to exemplify the theory developed in Chapters 3 and 4. Along
this Section use the notation and elements introduced in the current Chapter.

5.4.1 Equivalence using the Noether symmetry

We use the Noether symmetry Y = ξQ4 (see Remark 5.1.2) of the nonholonomic system
(Q,L0,M) to linearize the system as presented in Section 4.2. We use quasi-velocities
(q, v), q = (φ, θ, ψ, r, β), v = (ωx, ωy, ωz, ṙ, β̇) defined in (5.3). The lagrangian L0 is
defined in (5.4) and the constraint manifold M in (5.6).

The flow ΦYt : Q → Q of the vector field Y = Ω ∂
∂φ + Ω ∂

∂β on Q in coordinates
(φ, θ, ψ, r, β) reads

ΦYt (φ, θ, ψ, r, β) = (φ+ tΩ, θ, ψ, r, β + tΩ).

Therefore the 1-jet prolongation Λ : R × TQ → R × TQ of the function Ft = ΦY−t in
quasivelocities has the expression

Λ(t, (φ, θ, ψ, r, β), (ωx, ωy, ωz, ṙ, β̇)) = (t, (φ− tΩ, θ, ψ, r, β− tΩ), (ωx, ωy, ωz−Ω, ṙ, β̇−Ω))

and

F̃t(φ, θ, ψ, r, β, ωx, ωy, ωz, ṙ, β̇) = (φ− tΩ, θ, ψ, r, β − tΩ, ωx, ωy, ωz − Ω, ṙ, β̇ − Ω).

Then the lagrangian LΩ = F̃−1
t ◦L0 of the nonholonomic system (Q,LΩ, D) writes as

LΩ(q, v) = F 2(r)
2 ṙ2 + r2

2 β̇
2 + k

2 (ω2
x + ω2

y + ω2
z) + Ω

(
kωz + r2β̇

)
+ Ω2

2
(
k + r2)− gf(r).

(5.28)
Constraint equations (5.6) using F̃t translate to

−ωy
F
− f ′

F
sin βωz + cosβṙ − r sin ββ̇ = 0,

ωx
F

+ f ′

F
cosβωz + sin βṙ + r cosββ̇ = 0.

(5.29)

The matrix S, such that Dq = kerSq, in this coordinates is

S(r, β) =
Ç

1
F 0 f ′

F cosβ sin β r cosβ
0 − 1

F − f
′

F sin β cosβ −r sin β.

å
Using Proposition 1.4 we get the equations of motion of the nonholonomic system
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(Q,LΩ, D)

q̇ = B−1v,

r̈ = −f
′f ′′

F 2 ṙ2 + (1 + µf ′2)r
F 2 β̇2 + µf ′

F
β̇ωz + Ωr

(k + 1)F 2 (2 + kF 2)β̇ + Ωµf ′
F

+ Ω2r − γf ′

F 2 ,

β̈ = ṙ

Å
−
Å2
r

+ µf ′f ′′

F 2

ã
β̇ − µf ′′

rF
ωz −

Ω
r

(2− µ)
ã
,

ω̇z = − (1− µ)
F

ṙ

Å
rf ′2f ′′

F 2 β̇ + f ′f ′′

F
ωz − Ωf ′

ã
,

ωx = −f ′ cosβωz − F sinβṙ − rF cosββ̇,
ωy = −f ′ sinβωz + F cosβṙ − rF sinββ̇,

(5.30)

where µ = k
k+1 and γ = g

k+1 . Denote by XDnh the vector field defined by equations (5.30).
The tangent lift of Y is

Y TQ = Ω
Å
e3 + ∂

∂β

ã
,

then it is easy to check that (Λ|M)∗(XΩ
nh) = XDnh + Y TQ|D.

Note that the two generators of the gauge momenta obtained in Theorem 5.4 sat-
isfy the hypothesis (by construction they commute with the Noether symmetry Y ) of
Theorem 4.4.

5.4.2 Almost-Poisson bracket
We construct the almost-Poisson bracket for the nonholonomic system (Q,LΩ,D) using
the theory developed in Section 3.3.

Consider the lagrangian L0 : TQ→ R, given in quasi-velocities by

L0(q, v) = F 2(r)
2 ṙ2 + r2

2 β̇
2 + k

2 (ω2
x + ω2

y + ω2
z)− gf(r).

Furthermore consider the vector field on Q

Y = Ωe3 + Ω ∂

∂β
.

Now we define the lagrangian with gyroscopic term

LΩ(q, v) = L0(q, v + Yq)

= F 2(r)
2 ṙ2 + r2

2 β̇
2 + k

2 (ω2
x + ω2

y + ω2
z) + Ω

(
kωz + r2β̇

)
+ Ω2

2
(
k + r2)− gf(r),

(5.31)

so the 1-form γ associated to the gyroscopic term is γ = Ωke3 + Ωr2dβ. Observe that
lagrangians (5.28) and (5.31) coincide and the notation used is consistent.

Recall the frame {X1, X2, X3} of D (5.9) and {X4, X5} of D⊥ (5.10). Then we get the
coefficients of the change of frame matrix ρ associated to the frame {X1, X2, X3, X4, X5}

ρ11 = F, ρ15 = − f
′

r , ρ34 = 1,
ρ21 = −1 + f ′ cot θ sin(β − φ), ρ22 = f ′ cos(β − φ), ρ23 = −f ′ csc θ sin(β − φ),
ρ31 = F cot θ cos(β − φ), ρ32 = −F sin(β − φ), ρ33 = −F csc θ cos(β − φ),
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and ρ12 = ρ13 = ρ14 = ρ24 = ρ25 = ρ35 = 0.
The velocities (v1, v2, v3, v4, v5) defined {Xi}5i=1 relate to (5.3) as

v1 = µ

f ′
(cosβωx + sin βωy) + µωz −

rF

(k + 1)f ′ β̇,

v2 = µ+ f ′2

f ′F 2 (cosβωx + sin βωy)− 1
(k + 1)F 2ωz −

r

(k + 1)f ′F β̇

v3 = µ

F
(cosβωy − sin βωx) + 1

k + 1 ṙ,

v4 = µ

rF
(cosβωx + sin βωy) + µf ′

rF
ωz + µβ̇,

v5 = − µ
F

(cosβωy − sin βωx) + µṙ.

Conditions v4 = 0 and v5 = 0 are equivalent to the constraints functions (5.29). Along
the constraint D the quasivelocities read

v1 = −rF
f ′
β̇, v2 = −ωz −

rF

f ′
β̇, v3 = ṙ.

Then it is easy to calculate the restricted lagrangian LΩ,c : D → R, in these quasivelocities
reads

LΩ,c =1
2

Å
k + 1− 1

F 2

ã
v2

1 + 1
2kF

2v2
2 + 1

2(k + 1)v2
3 − kv1v2 + Ω

Å
k − rf ′

F

ã
v1 − Ωkv2

+ Ω2 k + r2

2 − gf.

Hence the quasi momenta p1, p2, p3 are

p1 = (k + 1− 1
F 2 )v1 − kv2 + Ω

Å
k − rf ′

F

ã
,

p2 = kF 2v2 − kv1 − Ωk,
p3 = (k + 1)v3.

And the restricted hamiltonian Hc : D∗ → R is calculated to be

Hc = F 2

2(k + 1)f ′2 p
2
1 + µ+ f ′2

2kf ′2F 2 p
2
2 + 1

2(k + 1)F 2 p
2
3 + 1

(k + 1)f ′2 p1p2

+ Ω
Å

rF

(k + 1)f ′ − µ
ã
p1 + Ω f ′ + rF

(k + 1)f ′F 2 p2 −
Ω2µ

2

Å
f ′

F
+ r

ã
+ gf.

Using the kinetic energy metric we calculate the dual basis of {Xi}5i=1 defined in (5.9)
and (5.10)

χ1 =µdφ+ µ cos(β − φ)
f ′

dθ + µ

f ′
(f ′ cos θ − sin θ sin(β − φ)) dψ − rF

(k + 1)f ′ dr,

χ2 =(µ+ f ′2) cos(β − φ)
f ′F 2 dθ − 1

k + 1

Åcos θ
F 2 +

Å
k

f ′
+ f ′

F 2

ã
sin θ sin(β − φ)

ã
dψ

+ 1
(k + 1)F 2 dφ−

r

(k + 1)f ′F dβ,

χ3 =− µ sin(β − φ)
F

dθ − µ sin θ cos(β − φ)
F

dψ + 1
k + 1dr,

χ4 =µf ′

rF
dφ+ µ cos(β − φ)

rF
dθ + µ

rF
(f ′ cos θ − sin θ sin(β − φ)) dψ + µdβ,

χ5 =µ sin(β − φ)
F

dθ + µ sin θ cos(β − φ)
F

dψ + µdr.
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Hence the 1-form γ written in the above frame writes

γ = Ω
Å
k − rf ′

F

ã
χ1 − Ωkχ2 + Ωr

Å
r + f ′

F

ã
χ4,

and this yields an expression for γ⊥

γ⊥ = Ωr
Å
r + f ′

F

ã
χ4.

To compute the structure coefficients Ciab related to the frame {Xi}3a=1 of Γ(D) we
note

[X1, X2] =− µf ′

rF 2 (f ′ + rF )X3 + µf ′

rF 2 (f ′ + rF )X5,

[X1, X3] =
Å1
r

+ µF

f ′
− f ′′

(k + 1)f ′F 2

ã
X1 +

Å1
r
− 1

(k + 1)f ′F + F

f ′
− f ′′

(k + 1)f ′F 4

ã
X2

+ µ

r

Å
1 + f ′′

F 3

ã
X4,

[X2, X3] =− µ

f ′
(
F 3 + f ′′

)
X1 −

Å
µF

f ′
+ µ+ f ′2

f ′F
f ′′
ã
X2 −

Å
µF 2

r
+ µf ′′

rF

ã
X4.

Then these are

C3
12 = − µf

′

rF 2 (f ′ + rF ), C5
12 = µf ′

rF 2 (f ′ + rF ), C1
13 = 1

r
+ µF

f ′
− f ′′

(k + 1)f ′F 2 ,

C2
13 = 1

r
− 1

(k + 1)f ′F + F

f ′
− f ′′

(k + 1)f ′F 4 , C4
13 = µ

r

Å
1 + f ′′

F 3

ã
,

C1
23 = − µ

f ′
(
F 3 + f ′′

)
, C2

23 = −
Å
µF

f ′
+ µ+ f ′2

f ′F
f ′′
ã
, C4

23 = −
Å
µF 2

r
+ µf ′′

rF

ã
.

Now we have all the elements to obtain an expression for the almost-Poisson bracket in
accordance to Subsection 3.3.2. We get

{p1, p2}D∗ = µf ′

rF 2 (f ′ + rF )p3,

{p1, p3}D∗ =−
Å1
r

+ µF

f ′
− f ′′

(k + 1)f ′F 2

ã
p1 −

Å1
r
− 1

(k + 1)f ′F + F

f ′
− f ′′

(k + 1)f ′F 4

ã
p2

− Ωµ
F 4 (F 3 + f ′′)(f ′ + rF ),

{p2, p3}D∗ = µ

f ′
(
F 3 + f ′′

)
p1 +

Å
µF

f ′
+ µ+ f ′2

f ′F
f ′′
ã
p2 + Ωµ

F 2 (F 3 + f ′′)(f ′ + rF ),

and denote by q = (φ, θ, ψ, r, β) therefore
{
pa, q

i
}
D∗ = ρai. We then have an expression

for the almost-Poisson bracket in D∗.

5.5 Dynamical consequences for particular surfaces of
revolution

5.5.1 Bounded from above profiles
In this part we assume the surface is at rest, i.e. Ω = 0, otherwise stated.
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Proposition 5.6. Let Ω = 0 and f : R+ → R be a smooth function.

1. If f is bounded from above, then the vector field X0
nh (5.14) has unbounded motions

with β̇ = 0.

2. Assume that limr→∞ f ′ < 0. If there is a reduced motion, in J−1(j), for which
limr→∞−f ′r3β̇2−Fr2β̇ωz > 0, then there exists an unbounded motion with β̇ 6= 0.

Where again we think β̇ and ωz as functions of r, j1, j2 by means of the Routh integrals.

Proof. 1. Consider the level set M0 := J−1(0, 0), we know it is an invariant set and on
it we have that β̇ = 0, ωz = 0. On M0 the equations of motion are

ṙ = ṙ, v̇r = −γf
′

F 2 −
f ′f ′′

F 2 ṙ2,

which is a lagrangian system with `0 = 1
2F

2(r)ṙ2 − γf(r) being the lagrangian. It is
known that for this kind of systems if the potential part of the lagrangian, in this case it
is γf , is bounded from above then there are unbounded solutions. By reconstruction we
obtain an unbounded solution of the unreduced system.

2. We first note that condition f ′ < 0 is equivalent to Ψ′ < 0 since Ψ′(p1) = f ′(r)
r

and r > 0. Using (5.15) we get the relation p3(r, β̇)p4(r, β̇, ωz) = −f ′r3β̇2−Fr2β̇ωz. We
then prove the claim using invariant polynomials and Routh integrals.

Consider the effective potential Vj (5.21), since Ω = 0

Vj = γΨ + p2
3

4p1
+ µ

2 p
2
4

where we understand p3 and p4 as functions of p1, j1 and j2, see Subsection 5.2.1. SinceÅ
p3
p4

ã
= U

Å
j1
j2

ã
, U ′ = GU

we get that
∂p3

∂p1
= G3p4,

∂p4

∂p1
= G4p3.

Which leads to
∂Vj
∂p1

= γΨ′ + µΨ′
Å 1
p1

+ Ψ′2
ã
p3p4 −

p2
3

4p2
1
.

So if there is a reduced motion for which limp1→∞ p3p4 > 0 then limp1→∞
∂Vj
∂p1

< 0 and
since the reduced system is a 2 dimensional lagrangian system with potential Vj , which
is a decreasing function, there is an unbounded motion. Because limp1→∞ p3p4 > 0, then
limp1→∞ p3 6= 0 which implies limr→∞ β̇ 6= 0 since p3 = r2β̇.

Observation 5.5.1. For a general profile f it is hard to prove the existence of reduced
motions agreeing statement 2. of Proposition 5.6. To see that condition limp1→∞ p3p4 >
0 is not empty, for all profiles f , we show there exist such a reduced motion for the
particular case of the downward cone f(r) = −br, see Section 5.6 for details on this
particular case. In this case we have explicit expressions for the Routh integrals and lead
to

p3(p1, j1, j2) = j1, p4(p1, j1, j2) = bj1√
2p1

+ j2,

and by direct computation we get

p3p4 = j1j2 + bj2
1√

2p1
.
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Therefore when j1 and j2 have the same sign the desired reduced motion exists. The
product p3p4 as a function of p1, j1, j2 has not definite but when we consider the limit
as p1 tends to infinity it does.

5.5.2 Mexican hat
In this section we study a special type of profiles which are defined in parts using bump
functions or mullifiers2 to “glue” two or more functions. To illustrate the mechanism we
first present an example of such kind of construction.

Example. Let f, h : R→ R be smooth functions and define

f(r) =
®
e−1/(1−εr2) + h(r), if r < 1√

ε

h(r), if r ≥ 1√
ε

where ε ∈ R>0 is a parameter. Note that f is smooth if the function h is and that their
derivatives coincide in the interval

dnf

drn
= dnh

drn
, at r ≥ 1√

ε
.

This implies that equations of motion for the surface of revolution with profile h change
significantly when r < 1√

ε
and r ≥ 1√

ε
.

Definition 5.1. Consider a smooth real function h : R → R. A function f : R → R
is said to be a h-hat function if there exists a positive real number r0 > 0 such that
f(r) = h(r) for all r > r0.

Proposition 5.7. Consider a smooth real function h and let f be a h-hat function.

1. If the integral curves of equations of motion (5.14) with profile h are all bounded
then the motions of the system with profile f are all bounded.

2. Let Ω = 0. If the function h is bounded from above then equations of motion (5.14)
with profile f have an unbounded motion.

Proof. 1. Suppose that the motions of the system with profile h are all bounded, this
property is independent of initial conditions. If f is a h-hat profile we have 4 scenarios
for its motions. First if the initial conditions for a motion has r < r0 it has two options
either there exists a time t0 such that r(t0) ≥ r0 or for all t we have r(t) < r0, if the
latter happens then that motion is bounded and for the former we have the other two
possibilities either there exists a time t1 > t0 such that r(t1) < r0, for this case use
a recursive argument, or for all t > t1 we have r(t) ≥ r0 this case corresponds to the
hypothesis that motions for the profile h are bounded. Note that if the initial condition
is such that r ≥ r0 then we can apply similar arguments.

2. Now assume Ω = 0 and the function h is bounded from above, then by Proposition
5.6 the system with profile f has an unbounded motion.

5.6 Example: Downward cone
We focus to the particular case when the profile f(r) = −br, with parameter b > 0,
the surface generated by f corresponds to a downward cone (without its vertex). The

2The existence of bump functions is assured by partitions of unity in a smooth manifold [47, 80].



5.6. EXAMPLE: DOWNWARD CONE 65

parameter b > 0 regulates the amplitude of the cone. We investigate the dynamics of
the system and in particular we look for bounded, unbounded, periodic and asymptotic
motions. In [41] the authors give general conditions to analyze the stability of reduced
equilibria, since here we treat a particular case we can say more about it. For example
we add the possible scenarios regarding quantity and types of reduced equilibria with
their dependence on the parameters.

Consider the profile function f(r) = −br, b > 0. In invariant polynomials it reads
Ψ(p1) = −b

√
2p1. Since the cone with its vertex is not a differentiable manifold its vertex

is not considered, so in this case Q = SO(3) ×
(
R2 \ {0, 0}

)
, and we parametrize it by

Euler angles and polar coordinates. We use quasivelocities (q, v) in TSO(3) as in 5.1.2,
where q = (φ, θ, ψ, r, β) and v = (ωx, ωy, ωz, ṙ, β̇). The lagrangian L (5.4) reads as

L(q, v) = k

2 (ω2
x + ω2

y + ω2
z) + 1

2(F 2ṙ2 + r2β̇2) + gbr,

where F 2 = b2 + 1. Using constraint equations (5.5) we write ωx and ωy as functions of
(r, β, ωz, ṙ, β̇)

ωx = −F sin βṙ + cosβ(−rF β̇ + bωz) + Ω cosβ(rF − b),
ωy = F cosβṙ + sin β(−rF β̇ + bωz) + Ω sin β(rF − b),

(5.32)

then the submanifold M of TQ can be represented in quasi-velocities as

M =
{

(q, v) ∈ TQ : ωx = ωx(r, β, ωz, ṙ, β̇), ωy = ωy(r, β, ωz, ṙ, β̇)
}
.

And the equations of motion for the inverted cone are

q̇ = Bv,

v̇r = (µb2 + 1)r
F 2 β̇2 − bµ

F
β̇ωz + µΩ

Å
b

F
− r
ã
β̇ + γb

F 2 ,

v̇β = −2
r
ṙβ̇ + µΩ

r
ṙ,

ω̇z = bΩ(µ− 1)
F

ṙ,

(5.33)

together with the constraint equations (5.32).
The moving energy and Routh integrals are

1
k + 1EL,Y (r, ṙ, β̇, ωz) = F 2

2 ṙ2 + µb2 + 1
2 r2β̇2 + µF 2

2 ω2
z − µbrF β̇ωz

+ Ω
[
µF (br − F )ωz + (µbr(F − br)− r2)β̇

]
+ µΩ2

2 (rF − b)2 − γbr,

J1(r, β̇) = r2

2
(
2β̇ − µΩ

)
,

J2(r, ωz) = −F ωz + bΩ
Å

(µ− 1)r + b

F

ã
.

Where γ = g
k+1 , µ = k

k+1 , note that in this case F =
√
b2 + 1.

We now present the two gauge symmetries constructed by means of Theorem 5.4.

Z1 = 1
k + 1X1 −

1
k(k + 1)F X2 −

e2

(k + 1)(rF − b)2 ξ

Z2 = r

(k + 1)bF X1 + r

(k + 1)bF 2X2 + r(2b− rF )
2Ω (b− rF )2 ξ
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Note that

− e2

(k + 1)(rF − b)2 ‖ξ‖
2
g = − kΩ2e2

(k + 1)2F 2 ,

is a constant function. Therefore Z̃1 = 1
k+1X1 − 1

k(k+1)FX2 is a horizontal gauge sym-
metry. For the vector field Z2 on Q by direct computation we see that ZTQ2 [L] 6= 0 so it
is not a R0-gauge momentum. The first integrals generated by Z̃1, Z2 are

pZ̃1

∣∣
M = Fωz + Ω b

k + 1

Å
r − b

F

ã
,

pZ2

∣∣
M = r2

Å
β̇ − Ω k

2(k + 1)

ã
.

5.6.1 Reduced equations of motion

To analyze the qualitative behavior of the motions we use the reduced system and the
fact that it is a second order ordinary differential equation, with langrangian energy being
equal to the reduced moving energy. Therefore the qualitative properties are intimately
related with the effective potential Vj , and then by reconstruction arguments we obtain
information about unreduced motions.

We first project the equations of motion to M4 =M/G

ṙ = ṙ,

r̈ = (µb2 + 1)r
F 2 β̇2 − bµ

F
β̇ωz + µΩ

Å
b

F
− r
ã
β̇ + γb

F 2 ,

β̈ = −2
r
ṙβ̇ + µΩ

r
ṙ,

ω̇z = bΩ(µ− 1)
F

ṙ.

(5.34)

Observe that since all the first integrals are G-invariant then they pass to the quotient
as first integrals of the reduced system.

We restrict equations (5.34) to the level sets of the Routh integrals J = (J1, J2). To
this end we write β̇ and ωz as functions of r, j1 and j2, where j = (j1, j2) are regular
values of the Routh integrals J = (J1, J2)

β̇(r, j1, j2) = j1
r2 + µΩ

2 , ωz(r, j1, j2) = Ω
Å
b(µ− 1)

F
r + b2

F 2

ã
− j2
F
. (5.35)

Then the reduced equations of motion are the first two element of (5.34)

ṙ = ṙ,

r̈ = (µb2 + 1)r
F 2 β̇2 − bµ

F
β̇ωz + µΩ

Å
b

F
− r
ã
β̇ + γb

F 2

(5.36)

considering β̇ and ωz as in (5.35). Denote by Ej(r, ṙ) = EL,Y
(
r, ṙ, β̇(r, j1, j2), ωz(r, j1, j2)

)
the moving energy restricted to J−1(j)

Ej = T + Vj ◦ τM4 ,

where τM4 :M4 → Q/G is the bundle projection and Vj is called the effective potential.
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The explicit expressions of the functions T and Vj are

T (r, ṙ) =F 2

2 ṙ2,

Vj(r) =− γbr + µ

2

Å
j2 + b

r
j1

ã2
+ j2

1
2r2 + Ω

ïÅ
µ

F
− bµ2

2 r

ãÅ
j2 + b

r
j1

ã
+ µ− 2

2 j1

ò
+ Ω2

ñ(
b2µ+ 1

)
8 µ2r2 − bµ

2F

Å
b

F
+ µr

ãô
.

The reduced equations of motion (5.34) restricted to J−1(j) form a system of ordi-
nary differential equations of second order with Ej as first integral, then to study the
qualitative properties of such system it suffices to analyze the effective potential Vj . We
split the investigation of the effective potential into two cases, when the surface is at rest
and Ω = 0, and when the surface is rotating Ω 6= 0.

To obtain the number and type of the critical points of Vj we use Descartes’ rule of
signs and the discriminant, denoted by dΩ, of the polynomial

PΩ = r3 dVj
dr

= Ω2µ2 b
2µ+ 1

4 r4 −
Å
γb+ Ωbµ

2j2
2 + Ω2 bµ

2

2F

ã
r3

−
Å
bµj1j2 + Ωµbj1

F

ã
r − (b2µ+ 1)j2

1 .

(5.37)

We emphasize the dependency of the functions dΩ and PΩ on the real parameter Ω, since
there is a substantial difference between the cases Ω = 0 and Ω 6= 0.

Case Ω = 0. If the surface is not rotating, i.e. Ω = 0, the effective potential reads

Vj(r) = −γbr + (µb2 + 1)j2
1

2r2 + bµj1j2
r

+ µj2
2

2 .

The function Vj has two main asymptotic behaviors, if j1 6= 0 then limr→0 Vj = ∞ and
limr→∞ Vj = −∞, and if j1 = 0 then limr→0 Vj = µj22

2 and limr→∞ Vj = −∞.
Using Proposition 5.6, we can conclude that the downwards cone has unbounded

motions.

Proposition 5.8. Consider reduced equations of motion (5.36) and Ω = 0, then there
are three possibilities for the reduced equilibria.

i) There are no equilibrium if one of the following conditions is satisfied, j1j2 ≥ 0 or
d0 < 0.

ii) There is one equilibrium, a cusp, if and only if the following two conditions are
satisfied, d0 = 0 and j1j2 < 0.

iii) There are two equilibria, one of elliptic type and one saddle, if and only if the
following two conditions are satisfied, d0 > 0 and j1j2 < 0.

Proof. Since r > 0, to compute the zeros of dVj
dr is the same as to compute the zeros of

r3 dVj
dr which is the following degree 3 polynomial, P0, on r

P0 = −γbr3 − bµj1j2r − (µb2 + 1)j2
1 .

Let d0 be the discriminant of P0, then we have the following three alternatives

• d0 = 0 if and only if j1 = − 4b2µ3j32
27γ(µb2+1)2 ,
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• d0 > 0 if and only if one of the following two conditions hold{
j1 > 0 and j1 < − 4b2µ3j32

27γ(µb2+1)2

}
or
{
j1 < 0 and j1 > − 4b2µ3j32

27γ(µb2+1)2

}
,

• d0 < 0 if and only if one of the following two conditions hold{
j1 > 0 and j1 > − 4b2µ3j32

27γ(µb2+1)2

}
or
{
j1 < 0 and j1 < − 4b2µ3j32

27γ(µb2+1)2

}
.

i) If we consider P0 as a real variable polynomial then by Descartes’ rule of signs P0
has only one negative root if j1 6= 0, and if j1 = 0 then there are no positive roots, this
implies that there are no equilibria.

ii) If d0 = 0 and j1j2 < 0 then Vj has just one critic point which correspond to an
almost saddle.

iii) If d0 > 0 and j1j2 < 0 then Vj has two critic points a minimun and a maximum
which correspond to a center and a saddle point of the reduced system.

Remark. In polar coordinates the inequality d0 ≥ 0 is written as

d0 = 0 iff r2β̇ = 4b2(b2 + 1)3/2µ3

27γ(µb2 + 1)2 ω3
z ,

d0 > 0 iff
®
β̇ > 0 and r2β̇ <

4b2(b2 + 1)3/2µ3

27γ(µb2 + 1)2 ω3
z

´
,

d0 > 0 iff
®
β̇ < 0 and r2β̇ >

4b2(b2 + 1)3/2µ3

27γ(µb2 + 1)2 ω3
z

´
.

So we have that case ii) implies that β̇ and ωz have opposite signs and case iii) implies
that β̇ and ωz have the same sign.

Proposition 5.8 gives conditions on the behavior of the reduced motions, this con-
ditions can be shown as the qualitative structure of the effective’s potential graph and
phase space and bifurcation diagrams. We add some graphs in order complement with
visual representations. All graphs are done with the following values for the parameters
γ = b = 1, µ = 2

7 and Ω = 0.

(a) Graph of the effective po-
tential.

(b) Level sets of the reduced
energy.

Figure 5.2: j1 = 10000
15309 , j2 = −10. Reduced system with 2 equilibria.

In figures 5.2 and 5.3 we have heteroclinic orbits so there are asymptotic motions
towards an equilibrium point, this in the unreduced system traslates as motions that go
asymptotically to a certain height of the cone. Along these motions the angular velocities
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(a) Graph of the effective po-
tential.

(b) Level sets of the reduced
energy.

Figure 5.3: j1 = 32000
15309 , j2 = −10. Reduced system with 1 equilibrium.

(a) Graph of the effective po-
tential.

(b) Level sets of the reduced
energy.

Figure 5.4: j1 = 60000
15309 , j2 = −10. Reduced system with no equilibria.

β̇ is bounded and ωz ≡ − j2√
b2+1 , this is due to the fact that the reduced equilibria have

coordinate r non zero and expressions given by (5.35).
In the scenario of Figure 5.4 the motions are unbounded and the angular velocity β̇

has limr→∞ β̇ = 0, see (5.35).
The shadowed region of Figure 5.5 corresponds to values of j1, j2 on which there are

two equilibria. The red curve is when there is just one equilibrium.

Figure 5.6: Critical points of Vj , j1, j2 are variables.
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Figure 5.5: Bifurcation diagram of j1 and j2.

Case Ω 6= 0.

Proposition 5.9. Consider the reduced equations of motion (5.36) and let Ω 6= 0. Then
the reduced motions are bounded for all values j ∈ R2.

Proof. The highest degree monomial of r in Vj is (b2µ+1)
8 µ2Ω2r2, it is positive for every

Ω 6= 0 then we have
lim
r→∞

Vj =∞,

so all the level sets of Ej = T + Vj are bounded this implies that all motions of the
reduced system are bounded.

Proposition 5.10. Suppose Ω 6= 0 then we have the following possibilities for the reduced
equilibria. We treat the cases j1 = 0 and j1 6= 0 separately. Assume j1 6= 0 then

i) There are two equilibrium points, one of elliptic type and one cusp if and only if
the following three conditions hold

j2 > −
2γ
µ2Ω −

Ω√
b2 + 1

, j1
Å
j2 + Ω√

b2 + 1

ã
< 0 and dΩ = 0.

ii) There are three equilibrium points, two elliptics and one saddle point if and only if
the following three conditions hold

j2 > −
2γ
µ2Ω −

Ω√
b2 + 1

, j1
Å
j2 + Ω√

b2 + 1

ã
< 0 and dΩ > 0.

iii) Otherwise there is just one equilibrium point of elliptic type.

iv) Suppose j1 = 0. There is one elliptic type equilibrium point if and only if

j2 > −
2γ
µ2Ω −

Ω√
b2 + 1

,

otherwise there are no equilibrium points.

Recall that dΩ is the discriminant of the polynomial PΩ.

Proof. First we prove i), ii) and iii) so assume j1 6= 0. To prove i) and ii) observe the
following, extend the definition of PΩ to a real variable polynomial, then using Descartes’
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rule of signs to analyze the positive roots of PΩ one can see that the only possibility for
this polynomial to have more than one positive root is when

j2 > −
2γ
µ2Ω −

Ω√
b2 + 1

and j1

Å
j2 + Ω√

b2 + 1

ã
< 0.

Now use the same result to analyze PΩ(−x), with the above assumptions on j1 and j2,
we get that there is just one negative root. Now if dΩ = 0 then there should be a multiple
root and since it can’t be a complex one then PΩ must have three positive roots (counting
multiplicity) but limr→∞ Vj = ∞ then Vj is forced to have one minimum and a degree
2 critic point. If dΩ > 0 all the roots of PΩ must be real and different so Vj has two
minima and one maximum. Analyzing the phase portrait we prove i) and ii).

To prove iii) again we use Descartes’ rule of signs and observe that there is always
one and only one positive root which corresponds to a minimum of Vj .

iv) Let j1 = 0 then

lim
r→0

Vj = µ

2

Å
j2
2 + 2j2Ω√

b2 + 1
− b2Ω2

b2 + 1

ã
, lim
r→∞

Vj =∞

PΩ(r) = µb2 + 1
4 µ2Ω2r − b

2

Å
2γ + µ2Ω

Å
j2 + Ω√

b2 + 1

ãã
.

so there is just one critic point if and only if

j2 > −
2γ
µ2Ω −

Ω√
b2 + 1

Observation. We analyze the polynomial PΩ because its roots are the non zero critic
points of Vj . In fact PΩ(r) in upward cone case corresponds to PΩ(−r) on the downward
cone case.

Proposition 5.10 gives conditions on the behavior of the reduced motions, this con-
ditions can be shown as the qualitative structure of the effective’s potential graph and
phase space and bifurcation diagrams. We add some graphs in order give visual repre-
sentations. For following graphs we consider the values for the parameters γ = b = 1,
µ = 2

7 , and Ω = 15.

0 1 2 3 4 5 6
r

50

60

70

80

Vj

(a) Graph of the effective po-
tential.

0 1 2 3 4 5

-4

-2

0

2

4

(b) Level sets of the reduced
energy.

Figure 5.7: j1 = −0.7, j2 = 15. Reduced system with three equilibria.
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(a) Graph of the effective po-
tential.

0 1 2 3 4 5

-4

-2

0

2

4

r

(b) Level sets of the reduced
energy.

Figure 5.8: j1 ≈ −2.95, j2 = 15. Reduced system with two equilibria.

In figures 5.7 and 5.8 we have heteroclinic orbits so there are asymptotic motions
towards an equilibrium point, this in the unreduced system traslates as motions that go
asymptotically to a certain height of the cone. Along these motions the angular velocities
β̇ and ωz are bounded, this is due to the fact that the reduced equilibria have coordinate
r non zero and the expressions given by (5.35).
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(a) Graph of the effective po-
tential.

0 1 2 3 4 5 6

-4

-2

0

2

4

(b) Level sets of the reduced
energy.

Figure 5.9: j1 = 3, j2 = 15. Reduced system with just one equilibrium.

In the scenario of Figure 5.9 have an elliptic type behavior on the reduced system
which by reconstruction arguments this means that motions are trapped on a height
strip.

The case of Figure 5.10 is an odd setting because r = 0 is not defined, but in this
case the limit limr→0 Vj < ∞, since the limit of the reduced motions when r goes to 0
exists it is not clear what kind of motions we have because they aren’t asymptotic to
the vertex but in theory, after analytic extension, must reach it. The angular velocities
β̇ ≡ µΩ

2 and ωz are bounded but can change signs, see expression (5.35).
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(a) Graph of the effective po-
tential.
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(b) Level sets of the reduced
energy.

Figure 5.10: j1 = 0, j2 = −13. Reduced system with no equilibria.

Figure 5.11: Bifurcation diagram of j1 and j2.

The squared region of Figure 5.11 represents the values of (j1, j2), for which the
reduced system has three equilibria, the blue line is when it has two equilibria.

Figure 5.12: Critical points of Vj , j1, j2 are variables.
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Chapter 6

Conclusions

The interesting behavior of nonholonomic systems with affine constraints or with me-
chanical lagrangian comes from their affine nature, this feature prevents such systems to
have an evident (almost) Poisson formulation, and in general linear functions in the ve-
locities are not first integrals. In this Chapter we give an overview of the work and future
perspectives. We separate in three directions the contributions made in this Thesis.

Overview and future perspectives
Almost-Poisson bracket
In Chapter 2 we recall a known construction of an almost-Poisson bracket for linear con-
strained systems and natural lagrangian, then in Chapter 3 we presented a generalization
for linear constrained nonholonomic systems with gyroscopic lagrangian.

Our contribution consists in the intrinsic construction and coordinate representation
of an affine almost-Poisson bracket for this kind of systems. The formulation uses ele-
ments related to the kinetic energy metric and the canonical bracket on the cotangent
bundle of a smooth manifold, moreover particular emphasis is made on the role that
plays the gyroscopic 1-form for the bracket failing to be linear. Furthermore in the case
symmetries are present we give a standard reduction procedure for the almost-Poisson
bracket, the affine nature of the reduced bracket is again related to the gyroscopic 1-form.
This material is developed in Sections 3.3 and 3.4.

Future perspectives

• We are working on a construction of this type of almost-Poisson bracket for affine
constrained nonholonomic systems.

• We also aim to study gauge transformations for this affine almost-Poisson brackets
and use them as a technique for hamiltonization (generalization in the spirit of
[6, 64]).

• In the case the almost-Poisson system is invariant under a Lie group action to
determine when such symmetries give place to Casimir functions of the bracket.

First integrals affine in the velocities
In Chapter 2 we treat nonholonomic systems with linear constraints and natural la-
grangian, we presented known results on the existence and classification of momentum
generated by a vector field which is also a first integral of the system. Inspired by these

75
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results in Chapter 3 we classify and introduce momentum generated by a vector field in
the setting of nonholonomic systems with gyroscopic lagrangian.

The new theoretical contribution consists on the characterization of momentum gen-
erated by a vector field which are first integrals of certain nonholonomic systems with
gyroscopic lagrangian. The construction uses a momentum of the underlying system
(with natural lagrangian). The scenario when the system has symmetries is also treated,
that is when a momentum is in fact a gauge momentum, this material is developed in
Section 3.5.

In Chapter 4 we relate affine constrained systems with natural lagrangian and linear
constrained systems with gyroscopic lagrangian, in the case the former system posses a
Noether symmetry. We present conditions on when the momentum of both systems are
related, and moreover when a vector field generates a momentum which is a first integral
in both systems ( Section 4.3).

Future perspectives

• As a future research project we pretend to investigate the relations of momentum
affine in the velocities with the almost-Poisson structure, namely to determine when
such momentum are Casimir functions of the bracket.

• Another interesting path is to give conditions on the existence of momentum which
are first integrals for affine constrained systems not possessing a Noether symmetry.

Dynamics of a ball rolling without slipping in a rotating surface
of revolution
In Chapter 5 we analyze the system of a homogeneous ball rolling without slipping in
an uniformly rotating surface of revolution, the formulation of the equations of motions
is based on [51, 41]. We analyzed the system from a geometric and dynamical point of
view. Our contributions are in several directions: we prove the existence of two gauge
momenta and are functionally dependent to them. As a result Corollary we elucidated
the nature of the Routh integrals which was missing, (Section 5.3). We give an almost-
Poisson bracket for this system using the theory developed in Sections 3.3 and 4.2. On
the dynamical side we gave conditions on the existence of unbounded motions. Moreover
when the surface is an inverted cone we analyze qualitatively and characterize all the
motions (for both cases when the surface is at rest and rotating), namely we prove the
existence of bounded, unbounded (for the static case), asymptotic and quasi-periodic
motions.

Future perspectives

• To define an equivalent almost-Poisson bracket without the need to linearize the
system, relate it to the existing reduced brackets [41] and explore its properties,
and to see if the gauge momenta are Casimir for it.

• Investigate if the rotation of the surface stabilizes the system for general profiles,
that is when the surface rotates then all motions are bounded.



Appendix A

The geometry of the
nonholonomic Routh reduction

A.1 Intrinsic Routh reduction
This Appendix is devoted to the intrinsic construction of the nonholonomic Routh reduc-
tion presented in the Introduction. Consider a given configuration manifold M = Q×K,
with Q a n-dimensional manifold and K a l−dimensional abelian Lie group and a me-
chanical lagrangian L : TM → R which induces a riemannian metric G on M . The group
K acts on M by left/right translations on the K-factor so the manifold M is trivially a
principal K-bundle, with projection ρ : M → M/K = Q. The nonholonomic constraint
is given by a regular non integrable distribution D̃ = D×TK, where D is a non integrable
regular distribution over Q. Furthermore we assume L is a K-invariant function and D̃ is
clearly K-invariant. Under this assumptions we can consider two principal connections
Λ,A : TM → k, where Λ is the connection associated to the trivial principal bundle
structure, A is the mechanical connection, see for e.g.[12], and k is the Lie algebra of the
group K. Note that both connections have as vertical space V Pp = kerTpρ, ∀p ∈ M,
but their horizontal spaces may be different, in fact

ker Λp = TqQ× {0} and kerAp = (V Pp)⊥.

We consider the horizontal lift h : TQ → TM associated to A which is uniquely
characterized by Tρ ◦ h = idTQ and A ◦ h = 0, [29]. Using the horizontal lift we can
define the orthogonal projections hor, ver : TM → TM as

hor = h ◦ Tρ and ver = idTM − hor.

For each µ ∈ k∗ consider the 1-form Λµ on M defined as

Λµ(wp) = 〈µ,Λ(wp)〉, ∀wp ∈ TM.

And its metric equivalent vector field Zµ = ]G(Λµ).
With all of the above elements and for every µ ∈ k∗ the routhian Rµ : TQ → R is

defined as
Rµ(vq) = (L − Λ`µ)(vhq + ver(Zµ)).

Using Λ`µ(ver(Zµ)) = 〈Zµ, ver(Zµ)〉G = 〈ver(Zµ), ver(Zµ)〉G , we obtain

Rµ(vq) = 1
2
∥∥vhq ∥∥2

G − Λ`µ(vhq )− 1
2 ‖ver(Zµ)‖2G − Ṽ . (A.1)
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Letting L = Rµ, γ` = Λ`µ◦ h and V = 1
2 ‖ver(Zµ)‖2G+Ṽ we obtain the same expression

as in (9).
Remark. Even though Λµ is a closed 1-form on M , γ ∈ Ω1(Q) need not be closed.

The non holonomic vector field of (L − Λ`µ,M, D̃), restricted to hor(D̃) + ver(Zµ),
projects on the one of the system (Rµ, Q,D) because

Tρ(D̃) = D, D̃ = {vhq + ver(Zµ) ∈ TM | vq ∈ D, µ ∈ k∗}.

A.2 Local expressions
Let (qj , θJ) ∈ Q×K be coordinates on M , j = 1, ..., n, J = 1, ..., l. The principal bundle
projection ρ :M→ Q in coordinates is ρ(q, θ) = q. Since L is K-invariant then

L(q, q̇, θ̇) = 1
2Gij(q)q̇

iq̇j + GiJ(q)q̇iθ̇J + 1
2GIJ(q)θ̇I θ̇J − Ṽ (q).

On k we choose the basis {oJ}, J = 1, ..., l, induced by the coordinates θJ and on k∗

the dual basis {oJ} associated to it. So we have

A(q, q̇, θ, θ̇) = (θ̇J + GJIGjI q̇j)oJ , Λ(q, q̇, θ, θ̇) = θ̇JoJ .

The horizontal lift in coordinates is

(q, q̇)h = q̇j
∂

∂qj
− GJIGjI q̇j

∂

∂θJ
.

Then the projections hor and ver write as

hor(q, q̇, θ, θ̇) = q̇j
∂

∂qj
− GJIGjI q̇j

∂

∂θJ
,

ver(q, q̇, θ, θ̇) = (θ̇J + GJIGjI q̇j)
∂

∂θJ
.

The 1-form Λµ is Λµ(q, θ) = µJdθ
J , then

Λ`µ(q, q̇, θ, θ̇) = µJ θ̇
J ,

Zµ(q, θ) = µI

Å
G̃jI ∂

∂qj
+ G̃IJ ∂

∂θJ

ã
,

ver(Zµ(q, θ)) = µI
(
G̃IJ + GJNGjN G̃jI

) ∂

∂θJ
.

Where G̃ = G−1. We note that GIJ = G̃IJ + GJNGjN G̃jI , then

ver(Zµ(q, θ)) = µIGIJ
∂

∂θJ
.

Using (A.1) the routhian Rµ : TQ→ R in coordinates is represented as

Rµ(q, q̇) =1
2Gjiq̇

j q̇i − GiJGJIGjI q̇j q̇i + 1
2GIJ

(
GJNGjN q̇j

) (
GISGiS q̇i

)
+ µJGJIGjI q̇j −

1
2GIJ

(
µNGNI

) (
µSGSJ

)
− Ṽ

=1
2
(
Gij − GIiGIJGJj

)
q̇iq̇j + GIjGIJµJ q̇j −

1
2G

IJµIµJ − Ṽ .



Appendix B

Poisson brackets

In this Appendix we present a brief and direct to the point introduction to Poisson
manifolds, for a historical and more in depth exploration on the subject we refer the
reader to [101, 4, 84, 38] and references therein.

B.1 Brief introduction to Poisson manifolds
Definition B.1. A Poisson manifold (P, {·, ·}) is conformed by a smooth manifold P
and a Poisson bracket {·, ·}, which is a function

{·, ·} : C∞(P )× C∞(P )→ C∞(P ),

with the following properties

1. Skew-symmetric {f, g} = −{g, f}.

2. R-bilinear {λf + g, h} = λ {f, h}+ {g, h}.

3. Leibniz rule {fh, g} = h {f, g}+ f {h, g}.

4. Jacobi identity {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.

For all functions f, g, h ∈ C∞(P ) and λ ∈ R.
If Jacobi identity is not satisfied we say that {·, ·} is an almost-Poisson bracket.

As is standard, after defining the objects of study the functions that preserve them
are introduced.

Definition B.2. Let (P1, {·, ·}1) and (P2, {·, ·}2) be two Poisson manifolds. A smooth
map Φ : P1 → P2 is called Poisson if for all f, g ∈ C∞(P2)

{f ◦ Φ, g ◦ Φ}1 = {f, g}2 ◦ Φ.

The hamiltonian formulation of the equations of motion in a mechanical system is a
fundamental idea, in geometric mechanics more specifically in the Poisson setting it is
defined as follows

Definition B.3. Let (P, {·, ·}) be a Poisson manifold andH ∈ C∞(P ) a smooth function.
The hamiltonian vector field XH ∈ X(P ) associated to H is defined as

XH(f) = {f,H} , ∀f ∈ C∞(P ).
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Then we have that hamilton equation of motion with hamiltonian H is given by

ḟ = {f,H} .

Furthermore, let φt be the flow of XH then

d

dt
F ◦ φt = dφtF (XH) = XH(F ◦ φt) = {F ◦ φt, H} . (B.1)

A direct consequence of Definition B.3 is the relation between the sets of smooth
functions and hamiltonian vector fields.

Proposition B.1. The assignation H 7→ XH is a Lie algebra antihomomorphism, i.e.

X{F,H} = − [XF , XH ]

Proof. By definition it is clearly a bilinear and skew-symmetric map. To prove that it
preserves the Lie bracket we use Jacobi identity and the equality XH(f) = {f,H}. Let
f ∈ C∞(P ) then

X{F,H}(f) = {f, {F,H}} = −{H, {f, F}} − {F, {H, f}}
= XH(XF (f))−XF (XH(f)) = − [XF , XH ] (f),

since this is for all functions f we get the desired result.

Because for every function f ∈ C∞(P ) there is a linear derivation related to it,
concretely the hamiltonian vector field Xf , and {g, f} = Xf (g) = dg(Xf ), then the
function {g, f} just depends on the differentials dg and df , therefore there is a bivector
field Π ∈

∧2(TP ) such that
{f, g} = Π(df, dg).

Observation B.1.1. A bivector field Π ∈
∧2(TP ) is said to be Poisson if [Π,Π] = 0, where

the considered bracket is the Schouten bracket, this condition is equivalent to the Jacobi
identity being satisfied, see [84, 38].

Let (x1, ..., xn) be local coordinates on the manifold P , then, locally, the Poisson
bracket is determined by the functions{

xi, xj
}

= Πij i, j = 1, ..., n. (B.2)

So we obtain the coordinate expression for the bivector field Π

Π = Πij
∂

∂xi
∧ ∂

∂xj

The Poisson bivector field has such local representation because, locally, T ∗P is generated
by the differentials dxi. Using the local expression of Π we get

{f, g} = Πij
∂f

∂xi
∂g

∂xj
.

The bivector field Π induces a vector bundle morphism Π] : T ∗P → TP given by the
property

Π(df, dg) = 〈df,Π](dg)〉,

and as a consequence a hamiltonian vector field can be represented as Xf = Π](df).
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Definition B.4. The rank of a Poisson bracket at a point p ∈ P is the rank of the
function

Π]
p : T ∗pP → TpP.

Two functions are said to be in involution or Poisson commute if their bracket is zero,
this implies that each function is a first integral of the other ones hamiltonian vector
field, or equivalently.

Proposition B.2. Let F,G be two smooth functions. {F,G} = 0 if and only if the flows
of XF and XG commute.

Among all functions there are special ones which are first integrals for all hamiltonian
vector fields.

Definition B.5. A function F ∈ C∞(P ) is called a Casimir for the Poisson bracket if
and only if

{F,G} = 0 ∀G ∈ C∞(P ).

Proposition B.3. Let Φ : P1 → P2 be a Poisson map and a function H ∈ C∞(P2). If
γ(t) is an integral curve of the hamiltonian vector field XH◦Φ then Φ ◦ γ(t) is an integral
curve of XH .

Proof. Let F ∈ C∞(P2) then

d

dt
F ◦ Φ(γ(t)) = d

dt
(F ◦ Φ)(γ(t)) = {F ◦ Φ, H ◦ Φ}1 (γ(t)) = {F,H}2 (Φ(γ(t))) ,

so d
dtF ◦ Φ(γ(t)) = (XH(F )) (Φ ◦ γ(t)) for all functions F ∈ C∞(P2). Therefore Φ ◦ γ is

an integral curve of XH .

Proposition B.4. The flow of a hamiltonian vector field is a Poisson map.

Proof. Let φt be the flow of the hamiltonian vector field XH and F,G ∈ C∞(P ) smooth
functions. Define the function f = {F ◦ φt, G ◦ φt} − {F,G} ◦ φt then using bilinearity
of the Poisson bracket and equation (B.1) we get

d

dt
f = d

dt
{F ◦ φt, G ◦ φt} −

d

dt
{F,G} ◦ φt

= {{F ◦ φt, H} , G ◦ φt}+ {F ◦ φt, {G ◦ φt, H}} − {{F,G} ◦ φt, H}

using Jacobi identity on the first two

d

dt
f = {f,H} = XH(f),

the function f being a solution of the ordinary differential equation is equivalent to write
f(t, p) = f(0, φt(p)) but f(0, p) = 0 for all points p, therefore φt is a Poisson map.

Definition B.6. Let (P1, {·, ·}1) and (P2, {·, ·}2) be Poisson manifolds and i : P2 ↪→ P1
an injective immersion. (P2, {·, ·}2) is a Poisson submanifold if and only if i is a Poisson
map.

The next theorem is fundamental because it locally characterizes the structure of a
Poisson manifold.
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Theorem B.5 (Splitting theorem). [101] Let x0 be an element on a Poisson manifold P .
Then there exists a neighborhood U of x0 and a diffeomorphism φ = φS×φN : U → S×N ,
where S is a symplectic manifold with dimS = rankΠ]

x0
and the induced Poisson bracket

in N has rank zero at φN (x0).

The proof of the splitting Theorem B.5 is similar to the one of Darboux’s Theorem,
see [84, 26]. In fact if the Poisson structure is of constant rank in the neighborhood U
we obtain a similar coordinate description.

Corollary B.6. Suppose the Poisson structure has constant rank around x0. Then
there exists a coordinate chart of x0 (U, (q, p, y)), with q = (q1, ..., qk), p = (p1, ..., pk)
and y = (y1, ..., yr), and the coordinate functions satisfy

{
qi, qj

}
=
{
pi, pj

}
=
{
qi, ya

}
={

pi, ya
}

=
{
ya, yb

}
= 0, with i, j = 1, ..., k and a, b = 1, ..., r.

B.1.1 Linear Poisson brackets
Let V be a finite dimensional vector space endowed with a linear Poisson bracket {·, ·},
i.e. the bracket of linear functions is again a linear function, this condition makes the
dual space V ∗ into a Lie algebra (with the Poisson bracket as Lie bracket). The Poisson
bracket on V is given as follows. Let f, g ∈ C∞(V ) and v ∈ V then

{f, g} (v) = 〈[df(v), dg(v)] , v〉, (B.3)

where 〈·, ·〉 is the pairing between V and its dual V ∗. This construction can be used
when we consider a Lie algebra g (take g = V ∗), in such case the resulting Poisson
bracket defined by equation (B.3) in g∗ is called Lie-Poisson bracket. For a coordinate
description let X1, ..., Xr ∈ g be a basis, with structure coefficients [Xi, Xj ] = CkijXk and
x1, ..., xr : g → R the coordinate functions associated to such basis. Then the Poisson
bracket of the coordinate functions is

{
xi, xj

}
= Ckijx

k, and for functions f, g ∈ C∞(g)
we get

{f, g} = Πij
∂f

∂xi
∂g

∂xj
, where Πij = Ckijx

k.

We can extend the idea of a linear Poisson bracket in the vector bundle scenario by
requiring that on each fiber the restriction of the Poisson bracket is linear, for example
the canonical Poisson bracket on T ∗Q is linear, where Q is a smooth manifold.

B.2 Poisson brackets and symmetry
Suppose there is a Lie group G acting free and properly on a Poisson manifold P , fur-
thermore assume that for every g ∈ G the diffeomorphism Ψg : P → P is a Poisson map,
then

Definition B.7. Let (P, {·, ·}) be a Poisson manifold and G a Lie group acting free and
proper on P . We say that the Poisson structure is G-invariant if for every g ∈ G the
diffeomorphism Ψg : P → P is a Poisson map.

The above definition is equivalent to ask for the invariance of the bivector field Π
associated to the Poisson bracket, i.e. (Ψg)∗Π = Π.
Observation B.2.1. In the setting of Definition B.7 it implies that the set of smooth
G-invariant functions C∞(P )G is closed under the bracket,

{
C∞(P )G, C∞(P )G

}
⊆

C∞(P )G.

Theorem B.7. Let G be a Lie group acting free and properly on a Poisson manifold P
such that the Poisson bracket is G-invariant. Then there is a unique Poisson structure
on the manifold P/G such that the quotient map ρ : P → P/G is a Poisson map.
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Proof. First we prove uniqueness of the reduced Poisson bracket in P/G follows from
Observation B.2.1 and the bijection between C∞(P )G and C∞(P/G), in other words for
every G-invariant function F ∈ C∞(P )G there exist a unique function f ∈ C∞(P/G)
such that F = f ◦ ρ, we apply this reasoning to the function {f ◦ ρ, k ◦ ρ}P ∈ C∞(P )G,
where f, k ∈ C∞(P/G) and by hypothesis we have {f ◦ ρ, k ◦ ρ}P = {f, k}P/G ◦ ρ, since
ρ is surjective then the reduced bracket is uniquely determined.

The bracket just defined is clearly our candidate, the above argument also proves that
it is well defined. To prove that it is in fact Poisson is a straightforward computation
involving the properties of the Poisson bracket in P , the quotient map ρ being Poisson
and the bijection between C∞(P )G and C∞(P/G).

In the case a function H ∈ C∞(P ) is G-invariant then there exists a function h ∈
C∞(P/G) such that H = h ◦ ρ and the hamiltonian vector fields XH ∈ X(P ) and
Xh ∈ X(P/G) are ρ-related, in symbols TρXH = Xh ◦ ρ, to prove this assertion we show
that XH(f ◦ ρ) = Xh(f) ◦ ρ, for every function f ∈ C∞(P/G)

XH(f ◦ ρ) = {f ◦ ρ,H}P = {f ◦ ρ, h ◦ ρ}P
= {f, h}P/G ◦ ρ = Xh(f) ◦ ρ.

B.3 Poisson structure on T ∗Q

Let Q be a smooth manifold. It is well known that the cotangent bundle T ∗Q has
a canonical symplectic structure constructed as follows. Consider the cotangent and
tangent bundle projections

πQ : T ∗Q→ Q, τT∗Q : T (T ∗Q)→ T ∗Q,

using the bundle projections we define the tautological or Liouville 1-form θ ∈ Ω1(T ∗Q)
as

θ(X) := 〈τT∗Q(X), TπQ(X)〉, ∀X ∈ X(T ∗Q).

And the symplectic form ω ∈ Ω2(T ∗Q) on the cotangent bundle T ∗Q is

ω = dθ.

For all the local descriptions along the section we use the (canonical) coordinates
(q, p) = (q1, ..., qn, p1, ..., pn) on T ∗Q, where q are local coordinates on Q and the fiber
coordinates p are induced by the differentials, dq1, ..., dqn in Ω1(Q).

Then a local representation of the Liouville 1-form θ in the mentioned coordinates is

θ = pidq
i,

and therefore the symplectic form ω is given by

ω = dqi ∧ dpi.

As in a Poisson manifold we define the, symplectic, hamiltonian vector field
XH ∈ X(T ∗Q) of a function H ∈ C∞(T ∗Q) to be the unique vector field satisfying

iXHω = −dH.

Locally we have
XH = ∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
.
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Using the symplectic form and hamiltonian vector fields, we can define a Poisson
bracket on T ∗Q, the construction goes as follows. Let f, g ∈ C∞(T ∗Q) then the Poisson
bracket is defined as

{f, g} := ω(Xf , Xg). (B.4)

The prove that such bracket is in fact Poisson are straightforward computations, all
properties but Jacobi identity are easily verified using the inherited properties of the
symplectic form ω. Jacobi identity for this Poisson bracket follows from the symplectic
form being closed, i.e. dω = 0.

The bivector field Π associated to such Poisson structure locally writes

Π = ∂

∂qi
∧ ∂

∂pi
.

Since the Poisson bracket in T ∗Q is linear we can easily compute the coordinate
expression for it in generalized coordinates. Let {Xi}ni=1 ⊂ X(Q) be a local frame such
that Xi = Bij

∂
∂qj , where Bij : Q→ R are smooth function, associated to this frame are

the structure constant Ckij : Q→ R. If p̃ = (p̃1, ..., p̃n) are the fiber coordinates, in T ∗Q,
induced by the dual frame of {Xi}ni=1 then the bivector field Π has the local expression

Π = Bji
∂

∂qi
∧ ∂

∂p̃j
− 1

2C
k
ij p̃k

∂

∂p̃i
∧ ∂

∂p̃j
.

Observation B.3.1. In the case ω is not closed but it is non degenerate formula (B.4) still
makes sense to define an almost-Poisson bracket.
Observation B.3.2. The above construction of a Poisson bracket using a symplectic form
proves that all symplectic manifolds are Poisson, the converse is not true see [85, 101].

Poisson structures derived from symplectic ones have special properties such as the
followings. The symplectic form ω induces a vector bundle isomorphism ω[ : T (T ∗Q)→
T ∗(T ∗Q) given by ω[(X) = iXω. The fact that it is an isomorphism is due to the non-
degeneracy of ω. Moreover we have (ω[)−1 = Π], this implies that Π] is of maximal
constant rank at every point of T ∗Q.
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electronics and communications, 49(5/6):362–371, 1995.

[98] A. M. Vershik and L. D. Fadeev. Differential geometry and lagrangian mechanics
with constraints. Sov. Phys. Doklady, 17(1):34–36, 1972.

[99] A. P. Veselov and L. E. Veselova. Integrable nonholonomic systems on lie groups.
Mathematical Notes of the Academy of Sciences of the USSR, 44(3):810–819, 1988.

[100] L.-S. Wang and P. S. Krishnaprasad. Gyroscopic control and stabilization. J.
Nonlinear Sci., 2(4):367–415, 1992.

[101] A. Weinstein. The local structure of Poisson manifolds. Journal of Differential
Geometry, 18(3):523 – 557, 1983.

[102] H.M. Yehia. Rigid Body Dynamics. Advances in Mechanics and Mathematics.
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