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Abstract 

Purpose: in the present paper we investigate how some stochastic effects are included in a class of 

radiobiological models with particular emphasis on how such randomnesses reflect into the predicted cell 

survival curve. 

Materials and Methods: we consider four different models, namely the Generalized Stochastic 

Microdosimetric Model GSM2 , in its original full form, the Dirac GSM2, the Poisson GSM2  and the Repair-

Misrepair Model (RMR). While GSM2  and the RMR models are known in literature, the Dirac and the Poisson 

GSM2  have been newly introduced in this work. We further numerically investigate via Monte Carlo 

simulation of four different particle beams, how the proposed stochastic approximations reflect into the 

predicted survival curves. To achieve these results, we consider different ion species at energies of interest 

for therapeutic applications, also including a mixed field scenario. 

Results: we show how the Dirac GSM2, the Poisson GSM2  and the RMR can be obtained from the GSM2  under 

suitable approximations on the stochasticity considered. We analytically derive the cell survival curve 

predicted by the four models, characterizing rigorously the high and low dose limits. We further study how 

the theoretical findings emerge also using Monte Carlo numerical simulations. 

Conclusions: we show how different models include different levels of stochasticity in the description of 

cellular response to radiation. This translates into different cell survival predictions depending on the 

radiation quality. 

Introduction 

The last decades have seen increasing attention to the development of mathematical 

models to describe the biological damage due to irradiation of different types. The main 

applications of such models are radiotherapy and space radioprotection. Although a 



plethora of mathematical models has been proposed over the years (Albright 1989; 

Bellinzona et al. 2021; Curtis 1986; Thomas Friedrich et al. 2012; Hawkins 1994, 2003, 

2018; Inaniwa et al. 2013; Kase et al. 2006; Kellerer and Rossi 1978; McMahon 2018; 

Nomiya 2013; Rossi and Zaider 1988; Sato and Furusawa 2012; Scholz et al. 1997; Tobias 

1980, 1985; Vassiliev 2012; Zhao et al. 2015, 2015; Zhao, Mi, and Sun 2017), providing 

several mechanistic insights and successful predictive power in some cases, a rigorous 

analysis of the probabilistic setting of the model themselves is often missing. In particular, 

special attention on the assumed probability distributions for the driving processes and 

how much they reflect into the prediction of the cell–survival curves, is of interest to 

understand the range of validity of each model. 

In (Cordoni, Missiaggia, Attili, et al. 2021), the Generalized Stochastic Microdosimetric Model 

(GSM2) has been formally introduced, which aims at deriving a general probabilistic 

framework to treat DNA-damage formation and kinetics and a differential equation for the 

time–evolution of the probability distribution of DNA damage. GSM2  is in fact a fully 

probabilistic model whose goal is to accurately describe the stochastic nature of energy 

deposition in volumes of interest for cellular systems. The final objective of GSM2  is to 

overcome the main limitations of existing models, which most assume a Poisson density for 

damages induced by ionizing radiation, to provide a better prediction of biological 

endpoints relevant for radiotherapy applications. In complete generality, it has been shown 

how the stochastic nature of energy deposition and a suitable probabilistic description of 

the damage kinetics can be used to obtain a master equation describing the spatio–

temporal damage density function. It is further described in (Cordoni, Missiaggia, Scifoni, et 

al. 2022) how different parameters, initial DNA damage distribution or irradiation 



conditions can lead naturally to several possible probability distributions that can be 

significantly different from the typically assumed Poissonian law. Thus, in (Cordoni, 

Missiaggia, Scifoni, et al. 2022; Missiaggia, Cordoni, et al. 2021), a detailed treatment of the 

survival fraction curve predicted by GSM2  has been carried out, studying the theoretical 

properties of its behavior and validating it with Monte Carlo simulations. The current work 

proceeds with the systematic investigation of the stochastic effects inherent to energy 

deposition started in (Cordoni, Missiaggia, Attili, et al. 2021; Cordoni, Missiaggia, Scifoni, et 

al. 2022; Missiaggia, Cordoni, et al. 2021). 

It is, however, worth stressing that, a relevant limitation shared by most of the 

mathematical models and by GSM2, is a spatial ideal homogeneity. It is in fact assumed for 

computational reasons that the probability that a pair of DSBs undergoes a certain process 

is independent of the initial distance between the DSBs. Regarding GSM2, although the 

mathematical formalism can in principle include information on energy deposition and 

radiation quality at the micrometer scale, as well as relevant deviations from a purely 

Poissonian distribution on the number of DNA damages induced, it requires that damage 

processing should be homogeneous throughout the domain considered, neglecting thus the 

real distance between DSBs. At the same time, there is clear evidence that track structure at 

the nano and micrometer scale is extremely relevant to DSB processing. For these reasons, 

over the years numerous track structure codes have been developed, (Bernal et al. 2015; 

Brenner 1990; Charlton, DE and Nikjoo, H and Humm, JL 1989.; Dingfelder 2012; Friedland 

et al. 2011; Goodhead, DT and Leenhouts, HP and Paretzke, HG and Terrissol, M and Nikjoo, 

H and Blaauboer, R 1994.; Incerti et al. 2016, 2018; Kyriakou et al. 2017, 2021; Nikjoo H., S. 

Uehara W.E. Wilson M. Hoshi M.  D.T. Goodhead. 1998; Paretzke, Herwig G 1987; Plante 



2011; Plante, Poignant, and Slaba 2021; Schuemann et al. 2019; Wälzlein et al. 2014; 

Zaider, M and Brenner, DJ and Wilson, WE 1983), to describe physical deposition inside the 

nucleus at the nano and micron scale. 

In previous works, (Cordoni, Missiaggia, Attili, et al. 2021; Cordoni, Missiaggia, Scifoni, et al. 

2021; Missiaggia, Cordoni, et al. 2021), it has been often noted how GSM2, despite its more 

general probabilistic framework, shares several aspects and analogies with existing 

radiobiological models. Therefore, broadly speaking, GSM2  can be interpreted as a suitable 

generalization of some existing models to account for several levels of stochastic effects 

relevant to energy deposition and damage induced by ionizing radiation. 

In particular, (Cordoni, Missiaggia, Attili, et al. 2021) proves how the main equation of the 

GSM2, named Microdosimetric Master Equation (MME), can be linked, under a specific 

Poissonian assumption, to the main equations of the Repair-misrepair (RMR) model, 

(Tobias 1980, 1985). The RMR is a purely Poissonian model that has been developed to 

interpret radiobiological experiments with heavy ions. The present paper is devoted to 

deepening some insights made in previous publications, (Cordoni, Missiaggia, Attili, et al. 

2021; Cordoni, Missiaggia, Scifoni, et al. 2022), to establish a clear connection between 

GSM2  and RMR, with particular attention to the cell survival curve predicted and on its 

dependence on radiation quality and biological parameters. 

Besides GSM2  and the RMR, two other models will be here newly introduced and studied. 

Such models place themselves in between RMR and the GSM2  in terms of generality from a 

purely probabilistic point of view, thus providing a theoretical link between them. The first 

model considered, called in the current work Poisson GSM2 , is governed by the MME 



introduced in (Cordoni, Missiaggia, Attili, et al. 2021) equipped with a Poisson initial law. In 

this sense, as commented in (Cordoni, Missiaggia, Scifoni, et al. 2022), it can be seen that for 

low LET radiation, GSM2  initial DNA damage assessment closely recovers Poissonian 

behavior. 

The other new model considered, named Dirac GSM2  , is a probabilistic model based on 

GSM2  with a specific assumption on the energy deposition described by microdosimetry. 

Such assumption replaces the microdosimetric energy spectra by their average value 𝑧𝐹; in 

doing so the Dirac GSM2  neglects energy deposition fluctuations. The Dirac GSM2  is 

computationally less complex than the GSM2  so it can be regarded as fast implementation 

of the GSM2  . It is worth stressing that such microdosimetric approximation, to the best of 

our knowledge, has been first considered in the early work, (Albright 1989). The resulting 

DNA damage distribution is a known probability distribution studied under a purely 

mathematical point of view in (Neyman 1939), and more recently it has been used as the 

main distribution in a Multi-hit model (MH), (Vassiliev 2012, 2017). 

The aim of the present research is to study the range of validity of different probabilistic 

assumptions and how this is reflected in the survival curve shape predicted by the models. 

Such a study will also highlight how different stochastic effects are naturally embedded in 

the original formulation of GSM2 . Such terms are usually referred to in the literature as 

non-Poissonian effects since they are non-linear terms that concur to deviate the true 

underlying probability distribution from the Poisson random variable. We will therefore 

show how such non-Poissonianity in the number of DNA damages, may arise either at the 



DNA damage formation level or also due to cluster effects in the kinetics and repair of 

lesions. 

The present work therefore analytically studies the survival curve predicted by the four 

above-mentioned models, i.e., RMR, Poisson GSM2, Dirac GSM2, and GSM2 , characterizing 

the asymptotic behaviors of the log-survival at both low and high dose limits. We will thus 

analyze and compare the high and low dose limit, studying similarities and differences as 

well as their dependence on either biological or radiation quality parameters. Thus, we will 

further investigate the relevance of the differences in the models emphasized by the 

theoretical results using Monte Carlo simulations of different ions of therapeutic interest. 

It is worth stressing that, although the paper has a purely theoretical flavor, we believe that 

points raised in the present work can be significant to improving the knowledge of the 

community on the effect of ionizing radiation on biological tissue, with in turn an impact on 

radiotherapy. In fact, a robust understanding of DNA-damages kinetics and repair can 

improve radiotherapy treatment, e.g. in out-of-field regions, where healthy tissue 

necessarily receives unwanted doses or also heavy ion treatments. Both these situations 

are dominated by a number of relevant stochastic effects, which must be well described 

and predicted by a biophysical model in order to deliver the best possible radiotherapy 

treatment for maximum tumor control while minimizing the occurrence of side effects. 

At last, it is worth explicitly mentioning that one of the most relevant radiobiological 

models that exhibits a clear connection to GSM2  , namely the Microdosimetric Kinetic Model 

(MKM), and its following generalizations, (Bellinzona et al. 2021; Hawkins 1994, 2003, 

2018; Inaniwa et al. 2013; Kase et al. 2006; Sato and Furusawa 2012), have not been 



included into the current work. This is due to the fact that, although GSM2  is clearly 

inspired by the aforementioned work, there is a typical assumption made in all of the above 

works that it is not made in GSM2  . In particular, the MKM assumes that 𝑏𝑥2 ≪

(𝑎 + 𝑟)𝑥, 𝑠𝑒𝑒 𝑏𝑒𝑙𝑜𝑤 𝑓𝑜𝑟 𝑑𝑒𝑡𝑎𝑖𝑙𝑠. This simple assumption has the immediate consequence 

that parameters used in the MKM cannot be directly compared to the ones used in GSM2  at 

the level of the kinetic equations whereas the original idea of the work was to give a 

theoretical comparison of some models whose parameters have the same meaning. This 

would lead to an exact understanding of how certain assumptions reflects in the predicted 

cell survival curve, given the exact same parameters. Including the MKM would necessarily 

imply dropping the parallelism between used parameters and turning to an empirical 

comparison of the models. Nonetheless, a deep analysis of the similarities and differences 

between GSM2  and the MKM is currently under dedicated investigation and, given its 

extreme relevance, it will the object of future research. 

Theory and calculations 

The Generalized Stochastic Microdosimetric Model 

GSM2 has been first introduced in (Cordoni, Missiaggia, Attili, et al. 2021), where a detailed 

description of the model structure can be found. The model is based on the following 

founding assumptions: 

1. the cell nucleus can be divided into 𝑁𝑑  independent domains 𝑑; 



2. radiation can create two different types of DNA damages, called lethal and sublethal 

lesions; 

3. lethal lesions represent a damage that cannot be repaired, while sublethal lesions 

can be either repaired or converted into a lethal lesion either by spontaneous dead 

or by combining with another sublethal lesion; 

4. the number of lethal and sublethal lesions in a single domain 𝑑 is proportional to the 

specific energy 𝑧 deposited by radiation on the domain. 

The further assumptions are then made to decide the cell fate: 

5. if at least one domain suffers a lethal lesion, then it is considered dead; 

6. if at least one domain is dead, then the whole cell is dead. 

Remark 1.  Regarding point 4 in previous assumptions, it is worth mentioning that, 

although in the previous works (Cordoni, Missiaggia, Attili, et al. 2021; Cordoni, Missiaggia, 

Scifoni, et al. 2022) the constant 𝜅 of the average yield per Gy has been assumed to be 

independent of the radiation quality, in the present paper we will include an enhancement 

of the average number of lesion yield per unit Gy depending on the radiation quality, as 

introduced in (Chen et al. 2017; Wang et al. 2018). Such GSM2 will be explained in more 

details later in the paper. 

A comment on this point is necessary. In fact, correctly estimating the initial number of 

DNA damages induced by radiation is by far not an easy task. Several approaches are 

possible, such as fitting the parameter from MC simulations, (Wang et al. 2018). In order to 

maintain analytical tractability, most of the mathematical models assumes a linear 



dependence on the dose of the average DNA damages yields, which is independent on the 

radiation quality. The independence on the average number of damages induced and the 

radiation quality is however not true, as shown by several works, (Chen et al. 2017; Wang 

et al. 2018). For these reasons, ad hoc corrections are typically added to account for the 

variability as a function of the radiation quality of the number of induced damages, as done 

for instance in (T Friedrich, Durante, and Scholz 2015) within the context of the Local Effect 

Model (LEM) or in (Chen et al. 2017) within the context of the MKM. Ongoing research is 

currently under study to generalize GSM2  to include radiation quality dependent average 

damage yield, generalizing thus the linear dependence on the average damage yield per Gy. 

Using this description, lethal lesions represent clustered DNA damage that cannot be 

repaired whereas sublethal lesions are double-strand breaks that can be repaired. Since the 

final goal of the present research is to compare the survival curve resulting from the GSM2 

to the survival curve predicted by the RMR and by two newly introduced radiobiological 

models obtained introducing certain assumptions on the initial damage distribution, we 

will consider the trivial case of a single domain equal to the nucleus size. This is due to two 

main reasons: on one side both the RMR and the MH model are formulated without any 

domain division of the cell nucleus and on the other side we focus solely on the shape of the 

predicted survival curve without any inter-cellular corrections. On this last point, it is clear 

that inter-cellular corrections and domain division increase the predicting power of GSM2, 

but results contained in the present paper show that major differences in the stochastic 

formulation of above-mentioned models already emerge at the domain level. 



It is worth stressing that, although GSM2  includes several relevant stochasticity levels in 

the radiation induced DNA damages formation and kinetics, some limitations are still 

present. Among the most relevant we mention a spatial homogeneity within the domain at 

both biological levels, in the sense that the distance between DSBs is not explicitly included 

into GSM2, and at physical level, in the sense that a track-structure of energy deposition 

accounting for track length stochasticity, delta-rays and spatial correlation between tracks 

is not accounted in GSM2 . The choice on the GSM2  assumptions have been clearly done to 

have a good compromise to a fairly general stochastic model and to maintain a reasonable 

computational time. Nonetheless, research is currently ongoing to generalize 

GSM2  dropping these assumptions. In this direction in fact, a novel detector based on an 

augmented microdosimetric information has been proposed in, (Missiaggia, Pierobon, et al. 

2021), with the final goal to experimentally measure the microdosimetric track length of 

particles traversing the region of interest. Such information of track stochasticity can help 

in establishing a more meaningful connection between energy deposition and DNA damage 

formation. 

Aiming therefore at modelling the time–evolution of the number of type lethal and sub–

lethal lesion, we will denote by (𝑌(𝑡), 𝑋(𝑡)) the state of the system at time 𝑡, where 𝑋 and 𝑌 

are two ℕ −valued random variables counting the number of lethal and sub–lethal lesions, 

respectively. 

Let us consider two different sets 𝒳 and 𝒴 denoting respectively the number of lethal and 

sublethal lesions, while 𝒜 is the set that accounts to healthy cells. We assume that a 

sublethal lesion becomes a lethal lesion at rate 𝑎 and recovers at rate 𝑟, going back to the 



set 𝒜, whereas 𝑏 is the rate at which two sublethal lesion interact with each other to 

become a lethal lesion. 

Above reasoning can be represented as follows 

𝑋 →
𝑎

𝑌 ,

𝑋 →
𝑟

𝐴 ,

𝑋 + 𝑋 →
𝑏

𝑌 .

(1) 

Defining the probability to observe, at a given time 𝑡 > 0, x sub-lethal lesions and y lethal 

lesions 

𝑝(𝑡, 𝑦, 𝑥) = ℙ ((𝑌(𝑡), 𝑋(𝑡)) = (𝑦, 𝑥)) . 

we have that 𝑝(𝑡, 𝑦, 𝑥) solves the Microdosimetric Master Equation (MME), (Cordoni, 

Missiaggia, Attili, et al. 2021), 

∂𝑡𝑝(𝑡, 𝑦, 𝑥) = ℰ−1,2[𝑥(𝑥 − 1)𝑏𝑝(𝑡, 𝑦, 𝑥)] +

+ℰ−1,1[𝑥𝑎𝑝(𝑡, 𝑦, 𝑥)] + ℰ0,1[𝑥𝑟𝑝(𝑡, 𝑦, 𝑥)] ,
(2) 

where above we have denoted the creation operators defined as 

ℰ 𝑖,𝑗[𝑝(𝑡, 𝑦, 𝑥)] : = 𝑝(𝑡, 𝑦 + 𝑖, 𝑥 + 𝑗) − 𝑝(𝑡, 𝑦, 𝑥) . 

The MME (2) is coupled with an initial damage distribution. Such distribution can be 

obtained from microdosimetric spectra as follows. 

Let 𝑓1(𝑧) be the single–event distribution of energy deposition on a domain 𝑑, (Zaider, 

Rossi, and Zaider 1996). The single–event distribution 𝑓1 can be either computed 

numerically via a Monte Carlo toolkit or retrieved by experimental microdosimetric 

measurements. 



The probability distribution of an energy deposition on a single domain depends on the 

number of events that deposit energy on the cell nucleus. Given a cell nucleus domain 𝑑 the 

probability that 𝜈 events deposit an energy 𝑧 obeys to a Poissonian distribution of mean 𝜆𝑛

: =
𝐷

𝑧𝐹
, being 𝐷 the mean energy deposition on the nucleus and 𝑧𝐹 the first moment of the 

single event distribution 𝑓1. Then, assuming a Poissonian probability that a domain register 

𝜈 events, the energy deposition distribution is given by 

𝑓𝑛(𝑧|𝐷) : = ∑
𝑒

−
𝐷

𝑧𝐹

𝜈!
∞
𝜈=0 (

𝐷

𝑧𝐹
)

𝜈

𝑓𝜈(𝑧) , (3) 

where 𝑓𝜈;𝑑(𝑧) is the energy deposition distribution resulting from 𝜈 depositions. 

In particular, the distribution resulting from 𝜈 events can be computed convolving 𝜈 times 

the single event distribution, see, (Zaider, Rossi, and Zaider 1996). Therefore, the imparted 

energy 𝑧 has distribution 𝑓𝜈;𝑑, computed iteratively as 

𝑓2(𝑧) : = ∫ 𝑓1

∞

0

(𝑧‾)𝑓1(𝑧 − 𝑧‾)𝑑𝑧‾ ,

…  ,

𝑓𝜈(𝑧) : = ∫ 𝑓1

∞

0

(𝑧‾)𝑓𝜈−1(𝑧 − 𝑧‾)𝑑𝑧‾ .

 

Given an energy deposition 𝑧, the induced number of lesions is again a random variable. 

The standard assumption is that the distribution of sublethal lesions 𝑋 given 𝑧, is a Poisson 

random variable of mean value 𝜅𝑧. Analogous reasoning holds for 𝑌, being the number of 

induced lethal lesions given 𝑧, a Poisson random variable of mean 𝜆𝑧. 

Putting all the above reasoning together, the MME (2) becomes 



{

∂𝑡𝑝(𝑡, 𝑦, 𝑥) = ℰ−1,2[𝑥(𝑥 − 1)𝑏𝑝(𝑡, 𝑦, 𝑥)] +

+ℰ−1,1[𝑥𝑎𝑝(𝑡, 𝑦, 𝑥)] + ℰ0,1[𝑥𝑟𝑝(𝑡, 𝑦, 𝑥)] ,

𝑝(0, 𝑦, 𝑥) = 𝑝0
𝑋(𝑥)𝑝0

𝑌(𝑦) ,

 (4) 

where the initial distribution is obtained as 

𝑝0
𝑋(𝑥) = ∫ 𝑝𝑧

𝑋∞

0
(𝑥|𝜅𝑧)𝑓(𝑧|𝐷)𝑑𝑧 ,

𝑝0
𝑌(𝑦) = ∫ 𝑝𝑧

𝑌∞

0
(𝑦|𝜆𝑧)𝑓(𝑧|𝐷)𝑑𝑧 .

 (5) 

The initial condition (5) represents a simple and yet important generalization of the 

standard assumptions, and it must be stressed that both 𝑝0
𝑋 and 𝑝0

𝑌 may fail to be 

Poissonian distributed even if 𝑝𝑧
𝑋(𝑥|𝜅𝑧) and 𝑝𝑧

𝑌(𝑦|𝜆𝑧) are Poisson random variables. In fact, 

in (Cordoni, Missiaggia, Scifoni, et al. 2022), it has been shown how, even in the case 

𝑝𝑧
𝑋(𝑥|𝜅𝑧) to be a Poisson random variable, the initial distribution 𝑝0

𝑋(𝑥) does not need to be 

Poissonian. The details of the calculations, not repeated here, are reported in Appendix A.1 

or also available for the interested reader in (Cordoni, Missiaggia, Scifoni, et al. 2022; 

Missiaggia, Cordoni, et al. 2021). 

As mentioned above, for the sake of simplicity, in the present work we will assume that no 

initial lethal lesions can be made. In particular, we will consider 𝜆 = 0, so that 𝑝0
𝑌(𝑦) ≡ 0. 

Although the number of initial lethal lesions plays a key role in the damage formation, the 

previous choice of 𝜆 = 0 is made to focus on sub-lethal lesion formation and evolution and 

on its stochastic effects, without any additional terms. Further, the addition of initial lethal 

damage, from a mathematical point of view, would be a linear term, (Cordoni, Missiaggia, 

Scifoni, et al. 2022), that typically follows a Poisson distribution since 𝜆 ≪ 1. 



In (Cordoni, Missiaggia, Scifoni, et al. 2022) it has been shown that the cell-survival curve 

for the GSM2 as developed in (Cordoni, Missiaggia, Attili, et al. 2021) can be explicitly 

computed as 

𝑆(𝐷) = 𝑝0
𝑋(0|𝐷) +

𝑟

𝑎+𝑟
𝑝0

𝑋(1|𝐷) + ∑ 𝑝0
𝑋∞

𝑥0=2 (𝑥0|𝐷)𝐶(𝑥0) , (7) 

with 

𝐶(𝑥0) : =
𝑟𝑥0𝑥0!

𝛾(1) … 𝛾(𝑥0)
  ,  𝛾(𝑥) : = ((𝑎 + 𝑟)𝑥 + 𝑏𝑥(𝑥 − 1)) . 

𝑑

𝑑𝐷
log𝑆(𝐷) =

1

𝑆(𝐷)

𝑑

𝑑𝐷
𝑆(𝐷) , 

using asymptotic arguments, together with the survival equation (7), it can be shown that 

the cell-survival curve tangent at the limit of low doses is given by 

𝑑

𝑑𝐷
log(𝑆(𝐷)|

𝐷=0
= −

1

𝑧𝐹
∫ (1 − 𝑒−𝜅𝑧)

∞

0

𝑓1(𝑧)𝑑𝑧 +

+
1

𝑧𝐹
∑ 𝐶

𝑥0≥1

(𝑥0) ∫
𝑒−𝜅𝑧

𝑥0!

∞

0

(𝜅𝑧)𝑥0𝑓1(𝑧)𝑑𝑧 .
 

Further, the tangent to the cell-survival curve at asymptotically high dose is given by 

𝑑

𝑑𝐷
log(𝑆(𝐷)|

𝐷=∞
= −

1

𝑧𝐹
∫ (1 − 𝑒−𝜅𝑧)

∞

0

𝑓1(𝑧)𝑑𝑧 +

+
1

2𝑧𝐹
∫ 𝑒−𝜅𝑧

∞

0

𝜅𝑧𝑓1(𝑧)𝑑𝑧 .

 

Above two asymptotic limits show an extremely relevant feature of GSM2  that is both low 

and high dose cell-survival asymptotic depends on the radiation quality as fully described 

by microdosimetric spectra. 



The Repair-Misrepair Model 

The RMR model considers that the amount of DSBs in the DNA, 𝑈(𝑡), is linearly 

proportional to the radiation dose rate; further DSBs evolve in lethal lesions, 𝐿(𝑡), while 

most breaks are successfully repaired with a first-order process. The model also includes 

the possibility of a misrepair as a second-order process, since it involves two broken DNA 

strands to form a chromosomal aberration. 

These assumptions yield the following kinetic equations: 

{

𝑑

𝑑𝑡
𝑈(𝑡) = −𝜌𝑈 − 𝜓𝑈2 ,

𝑑

𝑑𝑡
𝐿(𝑡) = (1 − 𝜙)𝜌𝑈 + 𝜎𝜓𝑈2 .

 (6) 

where 𝜌 is the rate at which DSBs are repaired 𝜓 is the rate constant for second-order DSB 

interaction and 𝜙 is the fraction of simple successful repairs. The fraction of misrepairs that 

result in a lethal lesion is 𝜎. 

Consider also the MME given in equation (2), denoting by 𝔼 the mean value of a random 

variable, we thus obtain  

{

𝑑

𝑑𝑡
𝔼[𝑌(𝑡)] = 𝑎𝔼[𝑋(𝑡)] + 𝑏𝔼[𝑋(𝑡)(𝑋(𝑡) − 1)] ,

𝑑

𝑑𝑡
𝔼[𝑋(𝑡)] = −(𝑎 + 𝑟)𝔼[𝑋(𝑡)] − 2𝑏𝔼[𝑋(𝑡)(𝑋(𝑡) − 1)] .

(7) 

Setting the parameters in the RMR driving equations (6) as 

𝜓 = 2𝑏 ,  𝜎 =
1

2
 ,  𝜌 = 𝑎 + 𝑟 ,  𝜙 =

𝑟

𝑎 + 𝑟
 , 

then equations (6) become 



{

𝑑

𝑑𝑡
𝐿(𝑡) = 𝑎𝑈 + 𝑏𝑈2 ,

𝑑

𝑑𝑡
𝑈(𝑡) = −(𝑎 + 𝑟)𝑈 − 2𝑏𝑈2 .

(8) 

Equations (7) and (8) have a similar form, but still not identical; in particular, (7) exhibits a 

dependence on a second order moment 𝔼[𝑋(𝑡)(𝑋(𝑡) − 1)]. Assuming a Poissonian 

distribution for the random variable 𝑋, we obtain that 

𝔼[𝑋(𝑡)(𝑋(𝑡) − 1)] = 𝔼[𝑋(𝑡)]2  

so that, denoting further by 𝑦‾ 𝑎𝑛𝑑 𝑥‾ the average number of lethal and sub-lethal lesions 

respectively, at last equation (7) becomes 

{

𝑑

𝑑𝑡
𝑦‾(𝑡) = 𝑏𝑥‾2(𝑡) + 𝑎𝑥‾(𝑡) ,

𝑑

𝑑𝑡
𝑥‾(𝑡) = −2𝑏𝑥‾2(𝑡) − (𝑎 + 𝑟)𝑥‾(𝑡) .

(9) 

which are exactly the main kinetic equations of the RMR model given in equation (8). 

Remark 2.  Typically to solve an infinite system of interconnected moments equations, the 

so–called mean–field assumption is required; that is, we assume that 

𝔼[𝑋(𝑡)(𝑋(𝑡) − 1)] ∼ 𝔼[𝑋(𝑡)]2 . 

A quick remark on the mean–field assumption is needed. In the case of 𝑥 being large enough, 

we have that the following approximation holds true 𝔼[𝑋(𝑡)(𝑋(𝑡) − 1)] ∼ 𝔼[𝑋(𝑡)]2; 

therefore, the mean field assumption means that 𝔼[𝑋(𝑡)(𝑋(𝑡) − 1)] − 𝔼[𝑋(𝑡)]2 ∼ 0. 

Noticing that the last term is nothing but the variance and recalling that the variance for a 

random variable is null if and only if the random variable is in fact deterministic, if the 

mean field assumption is realistic, then the realized number of lesions does not differ much 



from the mean value, and thus everything we need to know is the mean value. On the 

contrary if there are evidences that the mean value is not a realistic approximation for the 

realized number of lesions, the mean–field assumption must be considered unrealistic so 

that the knowledge of the full probability distribution is essential to have a complete 

understanding of the system. 

Having cleared out the connection between the MME and the RMR, we aim now at explicitly 

solving equations (8). As reported in the Appendix A.2, the RMR can be solved explicitly to 

obtain 

{
𝑈(𝑡) =

(𝑎+𝑟)

𝑐𝑒(𝑎+𝑟)𝑡−2𝑏
  ,

𝐿(𝑡) =
1

2
(𝜅𝐷 − 𝑈(𝑡)) +

𝑎−𝑟

4𝑏
log (−

2𝑏𝜅𝐷−𝑒(𝑎+𝑟)𝑡(𝑎+𝑟+2𝑏𝜅𝐷)

𝑒(𝑎+𝑟)𝑡((𝑎+𝑟)
)  .

(10) 

We can eventually calculate the long-time convergence toward the stationary solution of 

above equations (10) to be 

lim
𝑡→∞

𝑈(𝑡) =: 𝑈∞ = 0 ,

lim
𝑡→∞

𝐿(𝑡) =:
1

2
𝜅𝐷 +

𝑎−𝑟

4𝑏
log (1 +

2𝑏𝜅𝐷

𝑎+𝑟
)  .

(11) 

The survival probability at time t is thus obtained computing the probability of having 0 

lethal or sublethal lesions, under the assumption that they obey a Poissonian law. This 

implies, using equations (11), 

𝑆𝑅𝑀𝑅(𝐷) = exp[−𝐿∞] = 𝑒−
1

2
𝜅𝐷 (1 + 𝜅𝐷

2𝑏

𝑎+𝑟
)

𝑟−𝑎

4𝑏
 . (12) 

Proceeding as above we can thus calculate the tangent of the logarithm of the cell–survival 

at low doses, i.e. 



𝑑

𝑑𝐷
log(𝑆𝑅𝑀𝑅(𝐷)|

𝐷=0
= −𝜅 (

𝑎

𝑎+𝑟
)  . (13) 

Similarly, at as the doses increases, the tangent of the log-survival becomes 

𝑑

𝑑𝐷
log(𝑆𝑅𝑀𝑅(𝐷)|

𝐷=∞
= −

1

2
𝜅 . (14) 

The GSM𝟐 in the Poisson initial damage case 

As studied in details in (Cordoni, Missiaggia, Scifoni, et al. 2022), the initial damage–

distribution according to the GSM2  does not necessarily follow a Poisson distribution; 

nonetheless, in certain regimes, typically at both low-dose and low-LET, the initial 

distribution is significantly close to a Poisson law of average value 𝜅𝐷. In such a case, the 

initial–damage distribution given in equation (5) simplifies to 

𝑝0
𝑋(𝑥) = 𝑒−𝜅𝐷 (𝜅𝐷)𝑥

𝑥!
 . (15) 

Consider thus the MME (2) coupled with a Poisson initial condition (15). Such model will 

only exhibit non-Poissonian effects due to kinetic recombination of sub-lethal lesions. 

Therefore, plugging-in the initial damage distribution (15) into the survival equation (7) 

we obtain 

𝑆𝑃(𝐷) = 𝑒−𝜅𝐷 (1 + ∑
(𝜅𝐷)𝑥

𝑥!
∞
𝑥0=1 𝐶(𝑥0)) , (16) 

It is worth stressing that, although the initial-damage distributed is Poissonian, the 

predicted cell-survival equation (16) includes some non-Poissonian terms coming from the 

coefficient 𝑏 in the factor 𝐶(𝑥0). 



Again, we can study the tangent at high and low doses of the log-survival, to obtain 

𝑑

𝑑𝐷
log(𝑆𝑃(𝐷)|

𝐷=0
= −𝜅 (

𝑎

𝑎+𝑟
)  ,

𝑑

𝑑𝐷
log(𝑆𝑃(𝐷)|

𝐷=∞
= −

1

2
𝜅 .

 (17) 

The Dirac GSM𝟐 in the 𝒇𝝂(𝒛) ≈ 𝜹(𝒛 − 𝝂𝒛𝑭) case 

Recall that the initial damage distribution at a given dose 𝐷 according to the GSM2  is given 

by 

𝑝0
𝑋(𝑥) : = ∑ ∫ 𝑝𝑧

𝑋∞

0𝜈≥0 (𝑥|𝜅𝑧)
𝑒

−
𝐷

𝑧𝐹

𝜈!
(

𝐷

𝑧𝐹
)

𝜈

𝑓𝜈(𝑧)𝑑𝑧 . (18) 

In order to simplify the GSM2  initial damage distribution we can notice that the multi-event 

distribution 𝑓𝜈(𝑧) is sharply peaked around its average 𝑧𝐹; neglecting thus all the 

fluctuation around the mean value we can assume the following 

𝑓𝜈(𝑧) ≈ 𝛿(𝑧 − 𝜈𝑧𝐹) . (19) 

Equation (19) implies that the energy deposition by 𝜈 events equals 𝜈𝑧𝑓, so that every 

events always deposits 𝑧𝐹 .  

Using assumption (19), the initial damage distribution thus (18) becomes 

𝑝0
𝑋(𝑥) = ∑ 𝑒−𝜅𝜈𝑧𝐹

𝜈≥0
(𝜅𝜈𝑧𝐹)𝑥

𝑥!

𝑒
−

𝐷
𝑧𝐹

𝜈!
(

𝐷

𝑧𝐹
)

𝜈

  . (20) 

 

Assumption (19) is clearly strong and not always valid. In fact, in the case of a low-LET 

radiation, whenever the number of registered microdosimetric events is close to the 



theoretical average number of events 
𝐷

𝑧𝐹
,  it is true that 𝑓𝜈 is sharply peaked at 𝜈𝑧𝐹 . On the 

contrary, if the number of microdosimetric events is significantly smaller than 
𝐷

𝑧𝐹
, the Dirac 

approximation (19) is not accurate, and the multi-event distribution could in principle be 

not well represented by the approximation (20). Nonetheless, it should be noticed that 

whenever 𝜈 ≪
𝐷

𝑧𝐹
, the term 

𝑒
−

𝐷
𝑧𝐹

𝜈!
(

𝐷

𝑧𝐹
)

𝜈

  

appearing in the damage distribution (20) is small, so that the approximated damage 

distribution according to equation (20) can still be sufficiently close to the original damage 

distribution (18). The validity of such approximation will be investigated numerically in the 

next Section. 

The distribution appearing in equation (20) is known in literature as Neyman distribution 

and it has been deeply studied and characterized in (Neyman 1939), in a purely theoretical 

context with no specific application. 

The approximated initial damage distribution (20) can be thus inserted into the survival 

equation (7), to obtain 

𝑆𝐷(𝐷) = 𝑝0
𝑋(0|𝐷) +

𝑟

𝑎+𝑟
𝑝0

𝑋(1|𝐷) + ∑ 𝑝0
𝑋∞

𝑥0=2 (𝑥0|𝐷)𝐶(𝑥0) , (21) 

where 𝑝0
𝑋(𝑥0|𝐷) is given by equation (20). 

The tangent of the log-survival at low doses can be thus computed to be 



𝑑

𝑑𝐷
log(𝑆(𝐷)|

𝐷=0
= −

1

𝑧𝐹
(1 − 𝑒−𝜅𝑧𝐹) +

+
1

𝑧𝐹
∑ 𝐶𝑥≥1 (𝑥0)

𝑒−𝜅𝑧𝐹

𝑥!
(𝜅𝑧𝐹)𝑥  ,

  

whereas the tangent to the cell-survival curve at high dose is given by 

𝑑

𝑑𝐷
log(𝑆(𝐷)|

𝐷=∞
= −

1

𝑧𝐹
(1 − 𝑒−𝜅𝑧𝐹 −

1

2
𝑒−𝜅𝑧𝐹𝜅𝑧𝐹)  . 

Connection to the Multi–hit model 

As briefly mentioned in (Cordoni, Missiaggia, Scifoni, et al. 2022), equation (7) can be seen 

as a microdosimetric generalization of the multi–hit model to account for damage dynamics 

and repair, as described by the term C(x0). In fact, choosing C(x0) to be either 0 or 1 

respectively if x0 is below or above a certain threshold, the standard formulation of a multi-

hit model, (Zaider, Rossi, and Zaider 1996) can be recovered from the survival equation (7). 

Notable enough, in (Vassiliev 2012), a non–Poissonian multi–hit model has been derived as 

follows. The survival curve is given by 

𝑆 = ∑ 𝑝𝑛−1
𝑘=0 (𝑘) ,  𝑝(𝑘) = 𝑒−𝑎−𝑎𝑒−𝑏 𝑏𝑘

𝑘!
𝐵𝑘(𝑎𝑒−𝑏) , (22) 

being 𝐵𝑘 the Bell’s polynomial. 

Recall that, under assumption (19), the initial damage (18) distribution is given by 

equation (20). Choosing 

𝑎 =
𝐷

𝑧𝐹
  ,  𝑏 = 𝜅𝑧𝐹  , 

and using the relation 



∑
𝑖𝑘𝑥𝑖

𝑖!

∞

𝑖=0

= 𝑒𝑥𝐵𝑘(𝑥) , 

we can thus rewrite equation (20) as 

𝑝0
𝑋(𝑥) = 𝑒

−
𝐷

𝑧𝐹
(1−𝑒−𝜅𝑧𝐹) 𝜅𝑧𝐹

𝑥

𝑥!
𝐵𝑘 (

𝐷

𝑧𝐹
𝑒−𝜅𝑧𝐹) . (23) 

Distribution (23) thus provides a microdosimetric version of the distribution given in 

equation (20) and used in (Vassiliev 2012). 

Comparing therefore the survival curve predicted by the Multi-hit model in (Vassiliev 

2012), as given in equation (23), and the survival probability predicted by the Dirac 

GSM2  in equation (7), it can be seen that the GSM2 survival curve given in (23) provides a 

generalization to the survival given in (Vassiliev 2012) with the following added 

considerations: 

• the parameters 𝑎 and 𝑏 given in (23) have a natural physical and mechanistic 

interpretation from microdosimetric arguments; 

 

• the maximum number of hits is not a system parameter but it is naturally described 

by biological parameters of damage dynamics and repair; 

 

• each term 𝑝0
𝑋(𝑥) is weighted by a term C(x0) that accounts for possible repair; 

 

• a term accounting for initial lethal lesion formation is added. 



Summary 

Gathering results provided in this section, we get the following tangents for the log-survival 

curve, predicted including different levels of stochasticity, as collected in Table1. 

In particular, notice first that considering the high and low–dose asymptotes in the 

GSM2with assumption (19), we immediately recover the high and low–dose asymptotes of 

the Dirac GSM2.  

Further, in the case of a low–LET radiation, that is 𝜅𝑧𝐹 ≪ 1, considering the low and high 

dose asymptote for the log survival curve in the Dirac GSM2 , we obtain 

−
1

𝑧𝐹

(1 − 𝑒−𝜅𝑧𝐹) +
1

𝑧𝐹
∑ 𝐶

𝑥0≥1

(𝑥0)
𝑒−𝜅𝑧𝐹

𝑥0!
(𝜅𝑧𝐹)𝑥0 ∼

𝜅𝑧𝐹<<1
− 𝜅 (

𝑎

𝑎 + 𝑟
) 

−
1

𝑧𝐹
(1 − 𝑒−𝜅𝑧𝐹 −

1

2
𝑒−𝜅𝑧𝐹𝜅𝑧𝐹) ∼

𝜅𝑧𝐹<<1
−

1

2
𝜅

 

so that for a low–LET radiation quality, from both the Dirac GSM2 and GSM2 log survival 

curves we recover a Poissonian behavior. 

Numerical results 

The following numerical results of the theoretical predictions described in Section 2 will be 

shown. Microdosimetric spectra have been simulated using the TOPAS Monte Carlo toolkit 

(version 3.2.2 (Perl et al. 2012)) exploiting its microdosimetric extension, (Zhu et al. 2019); 

in particular, we employed the spherical tissue equivalent proportional chamber (TEPC) 

geometry available in the code. In particular, as previously done in (Missiaggia, Cordoni, et 

al. 2021), for numerical calculations a TEPC with a spherical active region equivalent to a 



spherical tissue volume of 1 𝜇m radius has been considered. This choice is mainly related 

to the authors’ desire to stick to quantities usually measured experimentally with 

microdosimetry. 

Four radiation fields have been simulated: (i) 80 MeV and (ii) 18.6 MeV proton undegraded 

"pristine" beams, (iii) 34 MeV/u carbon ion pristine beam, all impinging directly on the 

TEPC, and finally (iv) 70 MeV/u carbon ion impinging on a target phantom with 2 cm of 

water upstream the TEPC. The first three pencil beams radiation have been already used in 

(Missiaggia, Cordoni, et al. 2021), as exemplary cases of relatively low and high LET 

regimes with different particles, whereas the latter has been chosen, allowing a substantial 

build-up of fragments, in order to study a realistic mixed radiation field. It is in fact worth 

stressing that typically assumed approximations used in many existing radiobiological 

models fail in a strongly heterogeneous field, where instead GSM2  is believed to provide an 

accurate prediction. Biological parameters considered are as follows: 𝑎 = 0.01 [1/h], 𝑏 =

0.01 [1/h] and 𝑟 = 2.9 [1/h]. Such parameters have been fitted in (Missiaggia, Cordoni, et 

al. 2021) to predict the cell survival curve in the V79 cell line; different parameters can be 

chosen to predict cell survival in a different cell line. As regards the average yield of lesions 

per unit Gy, differently than previous works, the current paper implements a radiation 

quality-dependent parameter 𝜅. In particular, following (Wang et al. 2018), the average 

yield of lesions Κ induced per unit Gy and per cell by certain ionizing radiation has been 

calculated via the fast Monte Carlo damage simulation (MCDS) software, (Wang et al. 2018) 

. The obtained parameters, according to Figure 1, are reported in Table 3. 



Further, the average yield κ has been normalized to the volume of a spherical domain of 1 

μm radius, as considered in this work. In particular, assuming that the cell nucleus has a 

radius of 5 μm, the resulting average yield κ in a 1 μm domain is obtained as 

𝑘 [
1

𝐺𝑦
] = 𝐾 (

13

53
) [

1

𝐺𝑦
] 

where K is the average number of DNA damages per unit Gy per cell as calculated in (Wang 

et al. 2018).  

In the present section, we analyze how the above-described radiation fields may affect cell 

survival prediction. In particular, different stochastic descriptions will be compared from a 

purely Poissonian description, as in the RMR, up to the general setting described by GSM2  . 

Figure 1 reports the multi-event microdosimetric distribution (3) compared to the Dirac 

approximation as described in equation (19) for a given dose 𝐷 = 1 Gy, for the four 

radiation fields considered. 

Panel (a) and (b), showing respectively the 18.6 MeV and 80 MeV proton beams, highlight 

that the Dirac approximation, despite having a clear Dirac comb-like behavior, well 

reproduces the first two moments of the multi-event distribution. Panel (c) shows how a 

slight underestimation in the Dirac approximation of the true variance appears in the 34 

MeV/u carbon beam. Finally, for the mixed-field radiation beam illustrated in panel (d) a 

significant deviation of the Dirac approximated distribution emerges. 

In Figure 2, the same study as Figure 1 is reported for a different dose of 𝐷 = 10 Gy. In both 

the proton cases (panel (a) and (b)) the goodness of the Dirac approximation is confirmed; 



in the 34 MeV/u carbon ion case (panel (c)) the approximated Dirac distribution is in 

better agreement compared to the previous case at 𝐷 = 1 Gy. At last, the mixed field 

condition still shows clear discrepancies, especially in the second moment of the multi-

event distribution. 

Figure 3 shows the comparison of the sub-lethal damage distribution as described by GSM2, 

the Dirac GSM2, and the Poisson distribution, at low doses, i.e., 𝐷 = 1 Gy. Panel (a) and (b) 

report respectively the case of higher LET and lower LET protons, showing how the three 

distributions are similar, with a slight discrepancy in the Poisson case. For the case of 

pencil beam carbon ion (panel (c)), it can be seen how the Dirac GSM2  and the 

GSM2  damage distributions are identical, whereas the Poisson case is significantly 

different. Regarding the mixed field case, its damage distribution slightly differs from the 

GSM2  one, as it can be seen in the main peak, and they both are significantly different in the 

Poisson density. 

Figure 4 reports the same analysis as Figure 3 in the case of 𝐷 = 10 Gy; the same comments 

of the previous figure hold also in the higher dose scenario, with no significant differences 

to be reported. Nonetheless, a clear difference between the damage distribution for GSM2 

and the Dirac GSM2 in both the carbon ions beams. 

Figure 5 illustrates the cell-survival curve prediction by the four different models in the 

four radiation fields. In panel (a), for the case of 18.6 MeV protons, an agreement emerges 

for all the models at low doses. As the doses increase, the behavior of the models starts to 

differ, with the RMR model giving a lower survival probability, followed by the Poisson 

GSM2  and at last the Dirac GSM2  and the GSM2  predict a higher survival fraction. Panel (b) 



Discussion and Conclusions 

In Section 2 we have studied four different models, namely the RMR, the Poisson GSM2  , the 

Dirac GSM2, and the GSM2  , of increasing generality with respect to the stochastic effects 

included in them. In particular, the RMR assumes a purely Poissonian initial damage 

distribution as well as Poissonian dynamics. In fact, the kinematic equations are purely 

deterministic, and they describe the time evolution of the average values of damages. Also, 

the Poisson-GSM2   neglects non–Poissonian stochastic fluctuations in the initial damage 

distribution but Poissonian effects of repair and cluster death are included via the MME (2). 

The Dirac-GSM2 is instead a purely non-Poissonian model in the sense that both initial 

damage distribution and the dynamical equation include non-Poissonian effects of both 

overkilling and clustered death. The Dirac GSM2  can be thus regarded as a faster 

implementation of the GSM2  since the initial damage distribution calculation is less 

demanding numerically compared to the original formulation of the GSM2. Nonetheless, the 

second moment of the microdosimetric distribution 𝑧𝐷 is not included in the model so 

fluctuations in the energy deposition are not fully described. It can be thus expected that 

for monoenergetic undegraded beams such approximation is valid as the microdosimetric 

distribution is in fact sharply peaked at the average value 𝑧𝐹 . 

At last, GSM2  is the most general model of the four considered when it comes to including 

several levels of stochasticity. GSM2  accounts in fact for non-Poissonian effects at both 

initial and dynamical levels. Further, all the variations in the energy deposition at the 

micrometer scale are included in the model via a full microdosimetric treatment. Such 



generality is believed to be relevant and leads to significantly different results, especially in 

mixed radiation fields. 

All of the above considerations of the different levels of stochasticity taken into account in 

the four different models are summarized in Table 2 and depicted in Figure 6. 

In Section 2 we have further seen how the low and high dose log-survival tangent of the 

four models may be significantly different and, most important by, how different 

information on the radiation quality is included in the predicted cell survival curve. Results 

on this topic are summarized in Table 1. 

From Table 1 it emerges how both the RMR and the Poisson GSM2  predict cell survival 

with the same tangent at both low and high doses. Nonetheless, it is worth stressing that 

the two cell survival curves may have different curvatures due to non-Poissonian effects 

included in the GSM2  via the MME (2). In addition, both asymptotes of the low and high 

dose do not depend on the radiation quality. Regarding the biological parameters, the low 

dose limits depend on the linear rates 𝑎 and 𝑟, and the rate of decrease of the log-survival is 

proportional to the rate at which a sub-lethal lesion dies normalized to the overall linear 

rates, i.e., 
𝑎

𝑎+𝑟
. Also, the quadratic rate given by 𝑏 does not appear in the low-dose 

asymptote since it gives a term of order 2, which is negligible compared to the linear terms. 

Regarding the high-dose asymptotics, it depends only on the average damage yield 

parameter 𝜅 since at infinite dose only initial damage matters with no significant role 

played by dynamics. 

The Dirac GSM2  has both high and low–dose log-survival tangents that depend on the 

radiation quality only via the first microdosimetric moment 𝑧𝐹 . This is expected since the 



assumption (19) neglects all the fluctuations in the energy deposition. The low-dose limit, 

in this case, is more complex than in the Poisson case with an explicit dependence on the 

number of damages, given by the summation over 𝑥0 weighted for the repair weighting 

function 𝐶(𝑥0). The high–dose limit depends as before on the average damage yield 

parameter 𝜅 with no repairs involved; differently again from the Poisson case, the 

asymptote is more complex, and the radiation quality affects the limit via the first moment 

𝑧𝐹 . As regard to this point, as already commented in (Vassiliev et al. 2019), fluence–average 

values, e.g. 𝑦𝐹 and 𝑧𝐹 , can be measured more reliably than dose–average values, e.g. 𝑦𝐷 and 

𝑧𝐷, (Inaniwa et al. 2013). This fact implies that a model based on 𝑧𝐹 , for instance, the Dirac 

GSM2, is more robust to experimental uncertainties than classical radiobiological models 

based on 𝑧𝐷, such as the MKM and its variants. 

At last, GSM2  shows low and high–dose limit that depends on the full microdosimetric 

description of the radiation quality besides a general description of the DNA–damage 

complexity. As before, in the high-dose case, only initial damage is relevant. 

As shown in Section 2.5, the asymptotes of the models are strictly related in the sense that, 

starting from the more general GSM2  , we can recover other models’ asymptotes by making 

specific assumptions. In particular, if we assume a Dirac-like microdosimetric initial 

distribution in the GSM2  we recover, as expected, the tangents as predicted by the Dirac 

GSM2  . Further, for a low–LET radiation, meaning that 𝜅𝑧𝐹 ≪ 1, the Dirac GSM2  gives the 

same asymptotes as the Poisson GSM2  and the RMR. 

From Figures 1–2, it can be seen how the multi–event distribution computed under the 

Dirac assumption (25) is a Dirac comb-like version of the full multi–event distribution 𝑓𝑛. In 



both cases of the proton pencil beam, the Dirac multi–event distribution well reproduces 

both the mean and variance of the multi–event distribution 𝑓𝑛, especially as the dose 

increases the two distributions are extremely similar. In the case of the carbon pencil beam, 

a larger discrepancy compared to the proton case can be seen, even if still the Dirac 

distribution is able to capture the main features of the distribution 𝑓𝑛. In particular, both 

distributions share a similar description of the no-hit probability, a fact that is extremely 

relevant in capturing overkilling effects of high–LET radiations. Nonetheless, in the high 

dose case, some discrepancies emerge as the two distributions appear to have a slightly 

different variance. The mixed radiation field, on the contrary, highlights how a radiation 

quality description only via the microdosimetric first moment is inadequate. There are in 

fact clear discrepancies between the two distributions. Therefore, Figures 2–1 suggest that 

although the Dirac assumption (19) completely neglects energy deposition fluctuations, it 

is still able to provide an accurate description of the energy deposition at the micrometer 

scale. This is coherent since, in a purely monoenergetic pristine beam, the microdosimetric 

distribution is sharply peaked around its average. Therefore, since the Dirac–like multi–

event distribution neglects the fluctuations in the energy deposition but still includes the 

fluctuations in the number of registered events, a good agreement between the Dirac 

multi–event and the full microdosimetric multi–event distribution emerges. On the 

contrary, more complex radiation fields such as the exemplary mixed field considered, are 

not very well described by the Dirac multi–event distribution. In such cases, the 

microdosimetric distributions are not simply peaked around the mean values since 

contributions from different ions at different energies are extremely relevant.  Therefore, in 



these fields, a more complex and consistent radiation quality description, like the one 

included in GSM2 , appears to be necessary. 

The multi–event distribution directly affects DNA damage distribution. As noted above, 

since the Dirac multi–event distribution well describes the multi–event microdosimetric 

distribution in the monoenergetic case, we immediately obtain that the initial damage 

distribution as described by GSM2  and the Dirac GSM2  is in good agreement. Further, as 

expected, the proton pencil beam cases are also well described by a Poisson law, with the 

higher LET proton’s initial damage distribution predicted by GSM2  and the Dirac 

GSM2  being slightly different from a Poisson distribution. A similar analysis has already 

emerged in (Missiaggia, Cordoni, et al. 2021). The Dirac GSM2  and the GSM2  also give a 

similar initial damage distribution in the carbon pristine beam, both being extremely 

different from a Poisson distribution. Relevant enough, the GSM2  initial damage 

distribution shows a clear bi-modal distribution with a significant probability of inducing 

no damages, as typical in the high–LET case. Finally, previously noted differences in the 

mixed field case are still evident in the DNA damage distribution. 

At last, the above discrepancies and analogies emerge in the cell–survival curve prediction. 

The lower–LET case shows an overall agreement in the survival fraction prediction by all 

four models. In this sense, GSM2  recovers a Poissonian description of the DNA damage 

formation and evolution. In the case of higher LET protons, it can be seen that GSM2  , the 

Dirac GSM2, and the Poisson GSM2 predict the same cell survival curve, whereas the RMR 

gives a significantly lower cell survival curve. Since the three versions of the GSM2  share 

the same dynamical description, the previously noted similarity in the initial damage 



distribution is reflected in the cell survival computation. Therefore, since the RMR and the 

Poisson GSM2  predict different survival curves, it can be deduced that recombination of 

lesions leading to cell death is relevant already in higher LET protons. Further, it is worth 

stressing that, even if the RMR and the Poisson GSM2  have the same high and low–dose 

asymptotes, the predicted cell–survival curves can differ. The cell survival curve in the 

carbon pristine beam shows instead how a Poissonian initial damage distribution leads to 

different results compared to the GSM2  and the Dirac–GSM2  . Both RMR and the Poisson–

GSM2  give the same cell–survival curve which is clearly different from the one predicted by 

the Dirac GSM2  and GSM2. Important enough, the cell–survival curve given by the Dirac 

GSM2  and the GSM2  presents in the high LET cases a clear linear trend, a feature that 

emerges consistently in radiobiological experiments with high LET ions. On the contrary, 

the RMR and the Poisson GSM2  predict a cell survival curve where a quadratic non-linear 

term lowers the cell survival curve at higher doses. Further, slight differences between the 

GSM2  and the Dirac GSM2  emerge in the cell survival curve prediction at high doses. 

Finally, coherently with the previous analysis, differences emerge in the cell survival 

predicted by the four models in the mixed radiation field. This might suggest that in a 

general, complex radiation field various effects may contribute to cell death. It can be seen 

how the RMR predicts the lower cell survival, bounded above by the Poisson GSM2  , 

followed by a higher cell survival curve predicted by the Dirac GSM2  and at last the 

GSM2  shows the higher survival probability. Moreover, the slope is increasing, with the 

GSM2  giving an almost linear behavior. Regarding the difference between the cell survival 

curve predicted by the Dirac GSM2  and by the GSM2  , the following considerations can 

further be made. As extensively noted above, the Dirac GSM2  describes the radiation 



quality via the fluence–average parameter 𝑧𝐹 . For monoenergetic beams, such a value well 

represents the whole microdosimetric distribution. Therefore, the cell survival prediction 

made by GSM2  , which instead considers the whole microdosimetric distribution, coincides 

with the prediction made by the Dirac GSM2  . On the contrary, in mixed radiation fields 𝑧𝐹 

is no longer significant to describe the whole distribution. This in fact emerges as the 

GSM2  and the Dirac GSM2  predict different cell survival curves. 

 We thus presented how deeply investigating the different levels of stochasticity included 

in a radiation damage process, induced by a general type of radiation field, provides 

important insights into how such levels affect cell killing in different cases. At the same 

time, the present results emphasize on one side the consistency of GSM2  with other models 

when decreasing its level of generality, and on the other side how GSM2  can be a 

comprehensive tool allowing a larger mechanistic significance to the adopted parameters, 

strictly bound to microdosimetric arguments. 
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 Appendix 

A.1 Some further results on the GSM2  

Taking into account further the specific form for the initial damage as given in equation (5), 

it has been showed in (Cordoni, Missiaggia, Scifoni, et al. 2021) that, via classical properties 

of the Laplace transform, the survival curve can be written as 

𝑆(𝐷) = exp [−
𝐷

𝑧𝐹
∫ (1 − 𝑒−𝜅𝑧)

∞

0
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with 
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𝐶(𝑥0)𝑀𝑖−𝑘𝐵𝑥0,𝑘(𝑀1, … , 𝑀𝑥0−𝑘+1) ,  

with 𝐵𝑥,𝑙(𝑀1, … , 𝑀𝑥−𝑙+1) the Bell’s polynomial defined as 

𝐵𝑥,𝑙(𝑀1, … , 𝑀𝑥−𝑙+1) : = ∑
𝑥!

𝑗1! … 𝑗𝑥−𝑙+1!
(𝑀1)𝑗1 … (𝑀𝑥−𝑙+1)𝑗𝑥−𝑙+1  , 

where the sum ranges over multiple indexes such that 

𝑗1 + 𝑗2 + ⋯ + 𝑗𝑥−𝑙+1 = 𝑙 ,

𝑗1 + 2𝑗2 + ⋯ + (𝑥 − 𝑙 + 1)𝑗𝑥−𝑙+1 = 𝑥 .
 

We can give a probabilistic interpretation to the terms above; in fact, in the survival in 

equation (7) the terms 𝑝0
𝑋(𝑥0|𝐷) gives the probability that the domain suffers 𝑥0 lesions. 



This probability is weighted by a term 𝐶(𝑥0) that represents the probability that 𝑥0 sub–

lethal lesions recover in order to let the domain survive. 

From equation (8) we obtain the log–survival curve 

log𝑆(𝐷) =

= [−
𝐷
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∞
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A.2 Explicit derivation of the solution to the RMR model 

The present Section is devoted to an explicit solution of the dynamical equations (11) as 

described by the RMR. In particular, we have that 

𝑑

𝑑𝑡
𝑈(𝑡) = −(𝑎 + 𝑟)𝑈 − 2𝑏𝑈2 ,  𝑈(0) = 𝜅𝐷 . (31) 

Previous equation (31) is known in literature as Bernoulli equation. In order to solve it, the 

transformation 𝑢 =
1

𝑈̇
 can be applied, so that explicit calculation lead to the following 

differential equation 

𝑢̇(𝑡) = (𝑎 + 𝑟)𝑢(𝑡) + 2𝑏 . 

This last equation is a linear equation in 𝑢, so that explicit solution is given by 

𝑢(𝑡) = 𝑐𝑒(𝑎+𝑟)𝑡 −
2𝑏

(𝑎 + 𝑟)
 . 

Coming back to the original equation we obtain 

𝑈(𝑡) =
(𝑎+𝑟)

𝑐𝑒(𝑎+𝑟)𝑡−2𝑏
 , (32) 



with 

𝑐 : =
(𝑎 + 𝑟)

𝜅𝐷
+ 2𝑏 . 

We can therefore substitute 𝑈 into the equation for 𝐿 in (11) to obtain 
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so that after integration we obtain 
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Table 1: Low and high dose log-survival tangent limits for the RMR, Poisson GSM2, Dirac 

GSM2 and GSM2. 

 

 

 

 

 



 

  

Table 2: Levels of non–Poissonian effects included into the models, both for the initial damage 

distribution or for kinetics equations. Radiation quality dependence of the high and low-dose 

log-survival asymptotic, either including the first moment of the microdosimetric distribution 

or the whole microdosimetric spectra. 

 

 

 

 

 

 

 



 

 

 

 

 

 

Ion p 18.6 MeV p 80 MeV C 34 MeV C mixed field 

Average yield 

per Gy per cell 

Κ [1/Gy] 

50 50 90 100 

Average yield 

per Gy per 

domain               

κ [1/Gy] 

0.4 0.4 0.72 0.8 



 

Table 3: considered average number of radio-induced damages for the four radiation fields 

considered in the present work. 

 

 



 

 

 

 

 

 

 

Figure 1: Comparison between the multi–event microdosimetric distribution fn, as given in 

equation (3), (blue line) compared to the Dirac approximation multi-event distribution (red 

line), at D = 1 Gy. Vertical black dotted line denotes the average of the distribution, 



corresponding to D = 1 Gy. Panels refer to (a) protons at 18.6 MeV (top left panel), (b) protons 

at 80 MeV (top right panel), (c) carbon ions at 24 MeV (bottom left panel) and (d) carbon ions 

after 2 cm of water (bottom right panel). 

 

 

 

 

 

 



Figure 2: Comparison between the multi–event microdosimetric distribution fn, as given in 

equation (3), (blue line) compared to the Dirac approximation multi-event distribution (red 

line), at D = 10 Gy. Vertical black dotted line denotes the average of the distribution, 

corresponding to D = 10 Gy. Panels refer to (a) protons at 18.6 MeV (top left panel), (b) 

protons at 80 MeV (top right panel), (c) carbon ions at 24 MeV (bottom left panel) and (d) 

carbon ions after 2 cm of water (bottom right panel). 

 

 

 

 

 

 



 

 

Figure 3: Comparison between the sub–lethal damage distribution, as given in equation (5), 

(blue line) compared to the Dirac approximation sub–lethal distribution equation (29) (red 

line), and to the Poisson distribution (green line), at D = 1 Gy. Vertical black dotted line 

denotes the average of the distributions. Panels refer to (i) protons at 18.6 MeV (top left 

panel), (ii) protons at 80 MeV (top right panel), carbon ions at 24 MeV (bottom left panel) and 

(iv) carbon ions after 2 cm of water (bottom right panel). 

 

 



 

 

Figure 4: Comparison between the sub–lethal damage distribution, as given in equation (5), 

(blue line) compared to the Dirac approximation sub–lethal distribution equation (29) (red 

line), and to the Poisson distribution (green line), at D = 10 Gy. Vertical black dotted line 

denotes the average of the distributions. Panels refer to (a) protons at 18.6 MeV (top left 

panel), (b) protons at 80 MeV (top right panel), (c) carbon ions at 24 MeV (bottom left panel) 

and (d) carbon ions after 2 cm of water (bottom right panel). 

 

 



 

Figure 5: Survival curves for the GSM2 (blue line), the Dirac GSM2 (red line), Poisson GSM2 

(green line) and the RMR (purple line), at different doses. Panels refer to (a) protons at 18.6 

MeV (top left panel), (b) protons at 80 MeV (top right panel), (c) carbon ions at 24 MeV 

(bottom left panel) and (d) carbon ions after 2 cm of water (bottom right panel). 

 

 



 

Figure 6: Levels of non–Poissonian effects included into the models, both for the initial 

damage distribution or for kinetics equations. Radiation quality dependence of the high and 

low-dose log-survival asymptotic, either including the first moment of the microdosimetric 

distribution or the whole microdosimetric spectra. 

 

 

 

 

 

 

 



 

 

 

 

 


