
BOLYTROPE ORDERS

YASSINE EL MAAZOUZ, GABRIELE NEBE, AND MIMA STANOJKOVSKI

Abstract. Bolytropes are bounded subsets of an affine building that consist of all
points that have distance at most r from some polytrope. We prove that the points of a
bolytrope describe the set of all invariant lattices of a bolytrope order, generalizing the
correspondence between polytropes and graduated orders.

1 Introduction

The work of this paper finds its purpose within the framework of a larger joint project
involving the three authors, Marvin Anas Hahn, and Bernd Sturmfels, and regarding
the investigation of the interplay between orders Λ over discrete valuation rings (in split
simple algebras) and certain bounded convex subsets Q of affine buildings. The set of
0-simplices, B0, of the building is in bijection with the maximal orders [2, 8]. Closed
orders are intersections of finitely many maximal orders. These are exactly the Plesken-
Zassenhaus orders Λ = PZ(L) of the finite subsets L of the building; cf. Definition 3.10 and
Proposition 3.13. Any order Λ defines a bounded convex set Q(Λ) ⊂ B0 corresponding to
the maximal orders that contain Λ. A set of the form Q(Λ) is called Plesken-Zassenhaus-
closed (PZ-closed, for short). The PZ-closed sets that are contained in one apartment
are exactly the polytropes and the corresponding PZ-orders are the graduated orders; cf.
[7, 14] and references therein. In this paper, we define the new class of bolytrope orders
Λ for which Q(Λ) is a bolytrope. In turn, a bolytrope is defined as the set of all elements
in B0 that have distance at most r from a polytrope, the associated central polytrope.
The special case of ball orders, i.e. bolytrope orders where the central polytrope consists
of one point, is treated in Section 5.

The word “bolytrope” is of our own invention and is the fusion of the words “ball”
and “polytrope”. Polytropes are the tropical analoga of polytopes (see for instance [9])
and describe the sets of lattices that are invariant under graduated orders. A bolytrope
order is the intersection of a ball order and a gradudated order (see Lemma 6.2) and a
bolytrope is the set of invariant lattices of a bolytrope order.

One of the main results of this paper is Theorem 6.6, stating that bolytropes and
bolytrope orders are PZ-closed and closed, respectively.

Closed orders in quaternion algebras have been extensively studied in the context of
class groups, Brandt matrices, and Hecke operators, cf. [3, 4, 5, 6, 15]. In Section 7, we
apply our results to reprove and extend the work from [15], showing in particular that all
closed split quaternion orders are bolytrope orders.

In Section 4, we present our main tool: the radical idealizer chain of an order. This
allows for an inductive procedure to handle bolytrope orders as explained in Lemma 6.5
and also shows that the central polytrope Q is uniquely determined by the bolytrope B;
its Plesken-Zassenhaus order PZ(Q) is the first term in the radical idealizer chain applied
to the bolytrope order PZ(B) that happens to be a graduated order.
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1.1. Notation. Throughout the paper let K be a discretely valued field with valuation
ring OK , unifomizer π, and maximal ideal mK = OKπ 6= {0}. If K is commutative, which
we assume henceforth, there is no need for K to be complete: in particular, K = Q with
some p-adic valuation is allowed. Let, moreover, d be a positive integer. We write 1 for
the vector (1, . . . , 1) ∈ Zd and Jd for the matrix, in Zd×d, with zeros on the diagonal and
ones elsewhere.

2 Graduated orders and apartments

An OK-lattice (or simply lattice) in Kd is a free OK-submodule of maximal rank d.
The (homothety) class of a lattice L in Kd is

[L] = {cL | c ∈ K \ {0}} = {πnL | n ∈ Z},

while EndOK
(L) denotes the endomorphism ring of L as an OK-module. Note that any

two homothetic lattices have the same endomorphism ring.
An OK-order Λ in the matrix ring Kd×d is an OK-lattice that is also a ring, i.e. Λ is

multiplicatively closed and contains the identity element Idd of Kd×d. If Λ is an order in
Kd×d, then a Λ-lattice is a lattice in Kd that is also a Λ-module.

2.1. Graduated orders and polytropes. In the present section, we define graduated
orders following [11] and collect some related results from [7, 11].

Definition 2.1. An OK-order Λ in Kd×d is called graduated if Λ contains a complete set
of orthogonal primitive idempotents ε1, . . . , εd of Kd×d.

The primitive idempotents of Kd×d are exactly the projections onto 1-dimensional sub-
spaces of Kd, so each set {ε1, . . . , εd} as in Definition 2.1 defines a frame

Kd = ε1K
d ⊕ . . .⊕ εdKd = Ke1 ⊕ . . .⊕Ked

i.e. a decomposition of Kd as a direct sum of 1-dimensional subspaces. In any frame
basis (e1, . . . , ed) the idempotents are diagonal matrices with exactly one entry 1 on the
diagonal. The projection onto the ij-matrix entry εiΛεj is anOK-submodule of εiK

d×dεj ∼=
K. Hence, writing matrices with respect to the frame basis (e1, . . . , ed), there exists a
matrix M = (Mij) ∈ Zd×d such that the graduated order Λ is of the form

Λ(M) = {X = (Xij) ∈ Kd×d | Xij ∈ m
Mij

K for all i, j = 1, . . . , d}.

The matrix M is called the exponent matrix of Λ.

Remark 2.2. When we state that a given order Λ is contained in some graduated order
Λ(M) we always mean that there exists a suitable basis such that this graduated overorder
of Λ has the form Λ(M). How to find such a basis is usually indicated in the proofs.

The fact that Λ = Λ(M) is a ring is equivalent to having, for all i, j, k ∈ {1, . . . , d},
that

(2.1) Mii = 0 and Mij +Mjk ≥Mik.

With the polytrope region Pd as defined in [7, Section 4], we have that (2.1) is equivalent
to the condition M ∈ Pd ∩ Zd×d. Putting

Pd(Z) = {M ∈ Zd×d |Mii = 0, Mij +Mjk ≥Mik for all i, j, k = 1, . . . , d},

we can see that (2.1) is equivalent to M ∈ Pd(Z).
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Remark 2.3. For M ∈ Pd(Z), the Λ(M)-lattices L are of the form L =
⊕d

i=1 εiL and
hence there exists u = (u1, . . . , ud) ∈ Zd such that

L = Lu := OKπu1e1 ⊕ . . .⊕OKπuded.
The tuple u is called the exponent vector of the lattice L. Moreover, L = Lu is a Λ(M)-
lattice if and only if, for any choice of 1 ≤ i, j ≤ d, one has Mij + uj ≥ ui and two
Λ(M)-lattices Lu and Lv are isomorphic if and only if u− v ∈ Z1. Put

QM := {[u] ∈ Rd/R1 |Mij + uj ≥ ui for all i, j = 1, . . . , d}.
Then QM is a polytrope and the integral points of QM parametrize the Λ(M)-stable lattices
in Kd.

2.2. Buildings and apartments. In line with the content of this paper, we define the
affine building of SLd(K) via its lattice class model and refer the interested reader to [1]
for the more general description.

Definition 2.4. The affine building Bd(K) is an infinite simplicial complex such that

(1) the vertex set is B0
d(K) = {[L] | L is an OK-lattice in Kd}.

(2) {[L1], . . . , [Ls]} is a simplex in Bd(K) if and only if, up to permutation of the
indices and choice of representatives, one has L1 ⊃ L2 ⊃ · · · ⊃ Ls ⊃ πL1.

An apartment of Bd(K) is any subset A(E) of B0
d(K) of the form

A(E) := {[Lu] | u = (u1, . . . , ud) ∈ Zd}
where E is a frame Kd = ε1K

d ⊕ . . .⊕ εdKd = Ke1 ⊕ . . .⊕Ked of Kd.

Strictly speaking, A(E) consists only of the set of 0-simplices in the apartment. Note
that, whereas the exponent vector u depends on the choice of the basis (e1, . . . , ed), the
whole apartment A(E) only depends on the frame or the corresponding set {ε1, . . . , εd} of
orthogonal primitive idempotents. An explicit choice of the basis gives an identification
of the lattice classes [Lu] ∈ A(E) with the integral points [u] ∈ Zd/Z1 in the (d − 1)-
dimensional space Rd/R1.

2.3. Closed orders.

Definition 2.5. Let Λ be an order in Kd×d. Then

Q(Λ) := {[L] ∈ B0
d(K) | ΛL = L}

denotes the set of homothety classes of Λ-lattices in Kd. The order Λ is called closed if

Λ =
⋂

[L]∈Q(Λ)

EndOK
(L).

Notice that the closed orders are exactly the ones that are determined by their sets of
invariant lattices. This is not the case in general as the following example shows.

Example 2.6. Let M :=
(

0 0

1 0

)
∈ Pd(Z). Then Λ(M) is a graduated order with

Q(Λ(M)) = {[L(0,1)], [L(0,0)]}. Let Λ := {X ∈ Λ(M) | X11 ≡ X22 mod π}. Then Λ is
an order in K2×2 satisfying Q(Λ) = Q(Λ(M)). It follows that Λ is not closed.

3 The distance, balls and bolytropes

In this section, we define a distance on B0
d(K) and use it to define balls and bolytropes

in the building Bd(K). Balls are a special type of bolytropes and bolytropes can be
thought of as balls “around polytropes”.
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3.1. The distance. The work in this paper heavily depends on the following notion of
distance on B0

d(K).

Definition 3.1. Let [L1], [L2] ∈ B0
d(K) be two homothety classes of lattices. Then

dist([L1], [L2]) := min{s | there are L′1 ∈ [L1], L′2 ∈ [L2] with πsL′1 ⊆ L′2 ⊆ L′1}.

For a subset L ⊆ B0
d(K), we put dist([L],L) := min{dist([L], [L′]) | [L′] ∈ L}. The set L

is called bounded, if sup{dist([L], [L′]) | [L], [L′] ∈ L} is finite.

The following result ensures that dist is in fact a distance.

Lemma 3.2. The map dist : B0
d(K)× B0

d(K)→ Z is a distance on B0
d(K).

Proof. We check that the defining properties of a distance hold. For this, let [L1], [L2] ∈
B0
d(K) with dist([L1], [L2]) = s and let L′1, L

′
2 be as in Definition 3.1. Then

(1) dist([L1], [L2]) = 0 if and only L′1 ⊆ L′2 ⊆ L′1, equivalently [L1] = [L2].
(2) If πsL′1 ⊆ L′2 ⊆ L1 then πsL′2 ⊆ πsL′1 ⊆ L′2, so dist([L1], [L2]) = dist([L2], [L1]).
(3) Let [L3] ∈ B0

d(K) and set s′ = dist([L2], [L3]). Let, moreover L′3 ∈ [L3] and
L′′2 ∈ [L2] be such that πs

′
L′′2 ⊆ L′3 ⊆ L′′2. Write L′′2 = πtL′2. Then

πtL′1 ⊇ πtL′2 ⊇ L′3 ⊇ πs
′+tL′2 ⊇ πs+s

′+tL′1 = πs+s
′
(πtL′1),

yielding that dist([L1], [L2]) + dist([L2], [L3]) ≥ dist([L1], [L3]).

The choices of [L1], [L2], [L3] being arbitrary, the proof is complete. �

Thanks to the elementary divisor theorem for modules over PIDs, we know that any
two lattices in Kd have compatible bases, i.e. for any two lattice classes [L1] and [L2],
there is always an apartment containing both. So, to compute their distance, we may
choose a frame basis (e1, . . . , ed) of Kd, so that L1 = L(0,...,0) and L2 = L(u1,...,ud) with
u1 ≥ . . . ≥ ud. With this choice, we obtain that dist([L1], [L2]) = u1 − ud.

Remark 3.3. The distance between lattice classes [Lu] and [Lv] in the same apartment
A(E) is given by

dist([Lu], [Lv]) = max
1≤i≤d

(vi − ui)− min
1≤j≤d

(vj − uj).

In particular, any bounded subset of an apartment is finite. For a connection to tropical
geometry, see for instance [9, Section 5.3].

Note that the distance from Definition 3.1 coincides with the 1-skeleton distance on
B0
d(K), as the following result shows. For L and L′ lattices with πL ⊂ L′ ⊂ L, write

([L], [L′]) for the 1-simplex with ends [L] and [L′].

Lemma 3.4. Let [L1], [L2] ∈ Bd0(K) be distinct and set s = dist([L1], [L2]). Then s > 0,

(1) there exist [L1] = [X0], [X1] . . . , [Xs−1], [Xs] = [L2] ∈ B0
d(K) such that ([Xi−1], [Xi])

are 1-simplices for all 1 ≤ i ≤ s, and
(2) there is no shorter sequence connecting [L1] and [L2] in the 1-skeleton of Bd(K).

Proof. The number s is positive as a consequence of Lemma 3.2. Without loss of generality,
assume that πsL1 ⊆ L2 ⊆ L1 and put X1 := πL1 + L2. Then πL1 ⊆ X1 ⊆ L1 and so
([L1], [X1]) is a 1-simplex in Bd(K). For i = 2, . . . , s, put Xi := πXi−1 + L2 = πiL1 + L2.
Then Xs = L2 and all ([Xi−1], [Xi]) are 1-simplices in the building. We have proven (1),
while (2) follows from the triangle inequality and the fact that two lattice classes in a
1-simplex have distance at most 1. �
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3.2. Balls and bolytropes.

Definition 3.5. Let L be a bounded subset of B0
d(K). Then the closed ball of radius r

and center L is
Br(L) := {[L] ∈ B0

d(K) | dist([L],L) ≤ r}.
If L = {[L]} consists of one element only, then

Br([L]) := Br(L)

is the ball with center [L] and radius r. If L = Q(Λ(M)), then

Br(M) := Br(Q(Λ(M)))

is called the bolytrope with center Q(Λ(M)) and radius r.

In particular, the ball Br([L]) consists of all lattice classes [L′] that are represented
by some lattice L′ such that πrL ⊆ L′ ⊆ L. We close the section by computing the
intersection of a bolytrope with an apartment. Recall that Jd ∈ Pd(Z) is the matrix with
all 1s outside of the main diagonal.

Lemma 3.6. Let A be an apartment containing Q(Λ(M)). Then

Br(M) ∩ A = Q(Λ(M + rJd)).

Proof. Let (e1, . . . , ed) be a frame basis defining A and put Q = Q(Λ(M + rJd)). We will
use Remark 2.3 with respect to this basis. Since πrΛ(M) ⊆ Λ(M+rJd) ⊆ Λ(M), we have
the inclusion Q ⊆ Br(M). Now we show the other inclusion. Let [Lu] in A be of distance
at most r from some lattice [Lv] ∈ Q(Λ(M)). Suppose that [Lu] 6∈ Q(Λ(M + rJd)). This
means that there exist 1 ≤ i 6= j ≤ d such that ui − uj > Mij + r. However, since
[Lv] ∈ Q(Λ(M)), we have vi − vj ≤Mij and hence ui − uj > vi − vj + r. In other words

(ui − vi)− (uj − vj) > r, so dist([Lu], [Lv]) > r.

This is a contradiction and so the proof is complete. �

3.3. Plesken-Zassenhaus closed sets. We have seen that closed orders are determined
by the collection of their stable lattices; such sets are thus of fundamental importance for
the study of closed orders.

Definition 3.7. A subset L of B0
d(K) is called PZ-closed if L = Q(Λ) for some order Λ.

For the study of PZ-closed subsets it clearly suffices to consider closed orders Λ. Note
that the bijection Λ↔ Q(Λ) is a Galois correspondence between

{ closed orders in Kd×d } ←→ { PZ-closed subsets of B0
d(K) }.

As shown in [7] (see also Remark 3.12), the PZ-closed subsets of one apartment A are
exactly the finite and convex subsets of B0

d(K), i.e. the polytropes. In general, being
bounded and convex is a necessary but not sufficient condition for a subset of B0

d(K) to
be closed.

Proposition 3.8. Let Λ be an order in Kd×d. Then Q(Λ) is a non-empty bounded convex
subset of B0

d(K).

Proof. As any order is contained in a maximal order, there is some maximal order Γ, with
Λ ⊆ Γ. Both lattices Λ and Γ have full rank in Kd×d, so there is r ∈ Z≥0 such that
πrΓ ⊆ Λ ⊆ Γ. If [L] is the unique class of Γ-lattices, then [L] ∈ Q(Λ) and hence Q(Λ)
is not empty. Moreover, all lattice classes in Q(Λ) have a representative between L and
(πrΓ)L = πrL, so Q(Λ) is contained in the ball of radius r around [L]. In particular, Q(Λ)
is bounded. To see convexity, let [L′], [L′′] ∈ Q(Λ). Then there is an apartment containing



6 Y. EL MAAZOUZ, G. NEBE, AND M. STANOJKOVSKI

both lattice classes, so Γ′ := EndOK
(L′) ∩ EndOK

(L′′) is a graduated order containing Λ.
But then the convex set Q(Γ′) ⊆ Q(Λ) contains both lattice classes [L′] and [L′′], and,
[L′] and [L′′] being arbitrary, Q(Λ) is convex. �

Remark 3.9. Let Λ be an order in Kd×d and let A be an apartment in Bd(K) such that
Q(Λ) ∩ A 6= ∅. Then

Q(Λ) ∩ A = Q(Γ)

for a unique graduated overorder Γ of Λ. Indeed, if A = A(E) and E = {ε1, . . . , εd} is the
set of projections on the frame E, then there are only finitely many maximal overorders
of Λ that contain E . Their intersection is the desired graduated order Γ.

3.4. The degree of a closed order.

Definition 3.10. Let L be a bounded subset of B0
d(K). The Plesken-Zassenhaus order

associated to L is

PZ(L) :=
⋂

[L]∈L

EndOK
(L).

Proposition 3.11. The Plesken-Zassenhaus order PZ(L) of a bounded subset L of B0
d(K)

is an OK-order in Kd×d

Proof. Put Λ = PZ(L). Then Λ is an OK-module that is closed under multiplication and
contains Idd. It remains to show that Λ is of full rank in Kd×d. As L is bounded, there
are [L] ∈ L and r ∈ Z≥0 such that L ⊆ Br([L]). For the maximal order Γ = EndOK

(L)
we hence have that πrΓL′ ⊆ L′ for all [L′] ∈ L. So πrΓ ⊆ Λ ⊆ Γ and, as πrΓ contains a
K-basis of Kd×d, the same is true for Λ. �

The following remark illustrates the notions introduced in Section 2.3 and Definition
3.10 for the special case of graduated orders.

Remark 3.12. ([7, Proposition 6 and 7, Corollary 9, Theorem 16]) If M ∈ Pd(Z), then
the graduated order Λ(M) is closed and

Q(Λ(M)) = {[Lu] | u ∈ Zd, u+ R1 ∈ QM}
is a finite set which we can identify with the integral points of the polytrope QM . More-
over, the projective Λ(M)-lattices are given by the columns of M in the following way: if
M (1), . . .M (d) denote the columns of M , then, for each projective Λ(M)-lattice L, there
exists i ∈ {1, . . . , d} such that L is homothetic to

Pi := Λ(M)εi = LM(i) .

The polytrope QM is the min-convex hull of the set {M (1) +R1, . . . ,M (d) +R1} and has
dimension dim(QM) = |{[P1], . . . , [Pd]}| − 1. The order Λ(M) = PZ([P1], . . . , [Pd]) is the
Plesken-Zassenhaus order of its projective lattices in Kd.

The next proposition shows that closed orders are always an intersection of finitely
many maximal orders.

Proposition 3.13. Let L ⊆ B0
d(K) be bounded and let Λ = PZ(L) denote its Plesken-

Zassenhaus order. Then there exists a finite subset {[L1], . . . , [Ln]} of L such that Λ =
PZ([L1], . . . , [Ln]).

Proof. Choose [L1] ∈ L arbitrarily and put Γ = EndOK
(L1). As L is bounded, there is

r ∈ Z≥0 such that L ⊆ Br([L1]) and so

πrΓ ⊆ Λ ⊆ Γ.
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In particular, the OK-module Γ/Λ has finite composition length (at most the compo-
sition length d2r of Γ/πrΓ). We proceed by induction on this composition length. If
Γ = Λ then we are done, otherwise there is some [L2] ∈ L such that [L2] 6∈ Q(Γ).
Replace Γ by Γ ∩ EndOK

(L2) = PZ([L1], [L2]) to decrease the composition length of
Γ/Λ. After finitely many steps this process constructs the finite set {[L1], . . . , [Ln]} with
Λ = PZ([L1], . . . , [Ln]). �

For a closed order Λ, the minimal cardinality of a set L such that Λ = PZ(L) is hence
an interesting invariant.

Definition 3.14. Let Λ be a closed order. Then the degree of Λ is

deg(Λ) := min{|L| − 1 | L ⊆ B0
d(K) with Λ = PZ(L)}.

Thanks to Proposition 3.13, any closed order is a finite intersection of maximal orders,
so the degree of a closed order is always finite. The closed orders of degree 0 are exactly
the maximal orders and the ones of degree 1 are certain graduated orders. In general,
the degree of a graduated order Λ(M) is equal to dim(QM), cf. Remark 3.12. In the
coming sections, we will see that, for ball orders and bolytrope orders, the degree is
always bounded from above by d, cf. Theorems 5.6 and 6.9, though such bound need not
always be sharp, cf. Remark 5.7.

4 The radical idealizer process

Let Λ be an order in Kd×d. In this section, we describe the radical idealizer chain of Λ,
a construction that will be at the foundation of the proofs of our main results.

Definition 4.1. Let Λ and L be an order and a lattice in Kd×d, respectively.

• The Jacobson radical Jac(Λ) of Λ is the intersection of all maximal left ideals of
Λ.
• The idealizer of L is Id(L) := {X ∈ Kd×d | XL ⊆ L and LX ⊆ L}.

Remark 4.2. If Λ is an order in Kd×d, then Jac(Λ) is a two-sided ideal of Λ that con-
tains πΛ. The quotient Λ/ Jac(Λ) is a semisimple OK/mK-algebra and, for some n, one
has Jac(Λ)n ⊆ πΛ. Moreover, Jac(Λ) is the unique pro-nilpotent ideal with semisimple
quotient ring. For this and more, see for instance [12, Chapter 1, Section 6].

Definition 4.3. Let Λ be an order in Kd×d. The radical idealizer chain (Ωi)i≥0 of Λ is
recursively defined by

Ω0 := Λ and Ωi+1 = Id(Jac(Ωi)).

Remark 4.4. The radical idealizer chain of an order Λ is an ascending finite chain
Ω0 ⊂ Ω1 ⊂ . . . ⊂ Ωs(= Ωs+1 = . . .); cf. [10, Remark 3.8]. Moreover, as πΛ ⊆ Jac(Λ), we
have

Λ ⊆ Ω1 = Id(Jac(Λ)) ⊂ 1

π
Λ.

This yields an efficient algorithm to compute the radical idealizer chain for orders based
on solving linear equations in the residue field; cf. [10]. The sets of invariant lattices
Li := Q(Ωi) form a descending chain

L0 ⊃ L1 ⊃ . . . ⊃ Ls,
where the last element Ls = Q(Ωs) is known to be a simplex in the building Bd(K); cf.
[12, Theorem (39.14)]. The length s ≥ 0 of the radical idealizer chain is called the radical
idealizer length of the order Λ.
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Lemma 4.5. Let Λ be an order in Kd×d and put Ω1 := Id(Jac(Λ)). Then

Q(Ω1) ⊆ Q(Λ) ⊆ B1(Q(Ω1)).

In particular all lattices in Q(Λ) have distance at most one from Q(Ω1).

Proof. As Ω1 ⊇ Λ, we know that Q(Ω1) ⊆ Q(Λ) and thus we get Q(Ω1) = {[Ω1L] | [L] ∈
Q(Λ)}. Moreover, by Remark 4.4, we have Λ ⊆ Ω1 ⊆ 1

π
Λ, so L ⊆ Ω1L ⊆ 1

π
L and hence

dist([L], [Ω1L]) ≤ 1, for all [L] ∈ Q(Λ). �

Lemma 4.6. Let M ∈ Pd(Z). Then Id(Jac(Λ(M + Jd))) = Λ(M).

Proof. As dim(QM+Jd) = d − 1, we know by [7, Example 23] that the Jacobson radical
of Λ(M + Jd) is equal to πΛ(M). This is a 2-sided principal ideal in the order Λ(M), so
Id(πΛ(M)) = Λ(M). �

Figure 1. The radical idealizer process for the order Λ(M) in Example 4.7

Example 4.7. Consider the configuration of lattice classes [Lu1 ], [Lu2 ] and [Lu3 ] where

u1 = (0, 12, 5) ∼ (−5, 7, 0), u2 = (7, 0, 6) ∼ (1,−6, 0), and u3 = (9, 8, 0).

In the notation of [7], this configuration corresponds to the matrix

M =

 0 7 9
12 0 8
5 6 0


and the decreasing sequence of polytropes (Q(Ωi))i≥0 corresponding to the radical idealizer
process for the order Λ(M) is depicted in Figure 1. As expected, the last polytrope (in
white) is indeed a simplex.

5 Ball Orders

In this section, we define and study a first subfamily of the bolytrope orders, namely
closed orders whose set of invariant lattices is a ball in B0

d(K).

Definition 5.1. A ball order in Kd×d is an order of the form Br([L]) := PZ(Br([L])),
where L is a lattice in Kd and r is a non-negative integer.

Theorem 5.2. Let L be a lattice in Kd and let (e1, . . . , ed) be a basis of L. Let, moreover,
r be a non-negative integer. Then, with respect to (e1, . . . , ed), we have

Br([L]) = {X ∈ Λ(rJd) | X11 ≡ . . . ≡ Xdd mod πr}.
Moreover, Q(Br([L])) = Br([L]) and the ball Br([L]) is PZ-closed.
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Proof. Put Λ = {X ∈ Λ(rJd) | X11 ≡ . . . ≡ Xdd mod πr} and Γ = EndOK
(L) = Λ(0). It

follows from the definition of Λ that πrΓ ⊆ Λ. If L′ is another lattice such that πrL ⊆ L′ ⊆
L, then πrΓL′ ⊆ πrΓL = πrL ⊆ L′, which yields πrΓ ⊆ Br([L]). Now the lattice classes at
distance at most r from [L] can be described as submodules of Vr = L/πrL. In particular,

the image Br([L]) of Br([L]) in the endomorphism ring EndOK
(Vr) ∼= (OK/mr

K)d×d is equal
to the collection of all endomorphisms stabilizing every submodule of Vr. This ensures
that

Br([L]) = (OK/mr
K) Idd = Λ.

As both orders Br([L]) and Λ contain the kernel πrΓ of the projection Γ → EndOK
(Vr),

we conclude that Λ = Br([L]) = PZ(Br([L])). We now show that Q(Br([L])) = Br([L]).
To this end, let [L′] ∈ Q(Λ). Then [ΓL′] ∈ Q(Γ) = {[L]}. Replacing L′ by some
homothetic lattice we hence may assume that ΓL′ = L. But πrΓ ⊆ Λ ⊆ EndOK

(L′)
so πrΓL′ = πrL ⊆ L′ so [L′] ∈ Br([L]). �

Remark 5.3. (Radical idealizer chain of ball orders) Let r be a positive integer. Then the
Jacobson radical of the ball order Br([L]) = PZ(Br([L])) is Jac(Br([L])) = πBr−1([L]), be-
cause πBr−1([L]) is a pro-nilpotent ideal of Br([L]) with simple quotient Br([L])/πBr−1([L])
isomorphic to OK/mK . Now πBr−1([L]) is a principal 2-sided ideal of Br−1([L]) so

Id(Jac(Br([L]))) = Id(πBr−1([L])) = Br−1([L])

and the radical idealizer chain for ball orders is thus

Br([L]) ⊂ Br−1([L]) ⊂ . . . ⊂ B1([L]) ⊂ B0([L]) = EndOK
(L).

The corresponding chain of PZ-closed subsets of B0
d(K) is

Br([L]) ⊃ Br−1([L]) ⊃ . . . ⊃ B1([L]) ⊃ B0([L]) = {[L]}.

The knowledge of the radical idealizer chain of ball orders allows to prove strong prop-
erties of ball orders, like the following.

Proposition 5.4. Let r be a positive integer and Λ a closed order in Kd×d such that
Id(Jac(Λ)) = Br−1([L]). Then one has Br([L]) ⊆ Λ ⊆ Br−1([L]).

Proof. It follows from the hypotheses and the combination of Lemma 4.5 with Theorem 5.2
that Br−1([L]) ⊆ Q(Λ) ⊆ Br([L]). The orders being closed, Remark 5.3 yields that
Br([L]) ⊆ Λ ⊆ Br−1([L]). �

Definition 5.5. Let r be a non-negative integer and L a lattice inKd. A star configuration
?r([L]) with center [L] and radius r is a set

?r([L]) = {[L1], . . . , [Ld], [Ld+1]}

such that the following hold:

(1) πrL ⊆ L1, . . . , Ld+1 ⊆ L,
(2) for each i ∈ {1, . . . , d+ 1}, one has Li/π

rL ∼= OK/mr
K ,

(3) for each i ∈ {1, . . . , d+ 1}, one has L =
∑

j 6=i Lj.

When r = 1, i.e. when OK/mr
K is a field, the 1-dimensional free OK/mr

K-modules
Li/π

rL of L/πrL form a projective basis. In this sense, Definition 5.5 generalizes the
definition of a projective basis to modules over rings.

Theorem 5.6. Let r be a non-negative integer and let L be a lattice in Kd. Let, moreover,
?r([L]) denote a star configuration with center [L] and radius r. Then one has

Br([L]) = PZ(?r([L])) and deg(Br([L])) ≤ d.
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Proof. Write Λ := PZ(?r([L])) and ?r([L]) =: {[L1], . . . , [Ld+1]}. Since ?r([L]) has radius r,
we have that ?r([L]) ⊆ Br([L]), so Λ ⊇ Br([L]). We now claim that Λ stabilizes all lattices
L′ with πrL ⊆ L′ ⊆ L. To this end, write L = L/πrL and use the bar notation for the
submodules of L. For 1 ≤ i ≤ d let ei ∈ Li be such thatOKei = Li. Since L1+. . .+Ld = L,
the set {e1, . . . , ed} is a basis of the free module L. So there are ai ∈ OK such that

OK
∑d

i=1 aiei = Ld+1. Since ?r([L]) is a star configuration, all ai’s are units, so, replacing
ei by aiei, we assume, without loss of generality, that Ld+1 = OK(e1+. . .+ed)+πrL. Since
each Li is Λ-stable, the image of Λ in End(L) ∼= (OK/mr

K)d×d consists of scalar matrices
and so all submodules of L are stable. This yields the claim and so Br([L]) = PZ(?r([L])).
The order Br([L]) has degree at most d, because a star configuration has cardinality
d+ 1. �

The following remark shows that ball orders in Kd×d can have degree smaller than d.

Remark 5.7. The degree of Br([O4
K ]) is at most 3, because Br([O4

K ]) is equal to the
Plesken-Zassenhaus order of the following lattices (where the columns of the matrices are
the basis elements):

1 0 0 0
0 1 0 0
1 0 πr 0
0 0 0 πr

 ,


πr 0 0 0
0 πr 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
1 1 πr 0
1 0 0 πr

 , and


πr 0 0 0
0 1 0 0
0 0 πr 0
0 1 0 πr

 .

Via change of coordinates, one obtains that any ball order in K4×4 has degree at most 3.

6 Bolytrope Orders

Let M ∈ Pd(Z). Recall, from Definition 3.5, that the bolytrope Br(M) is defined to be
Br(Q(Λ(M))).

Definition 6.1. A bolytrope order is an order of the form Br(M) := PZ(Br(M)), where
M is an element of Pd(Z) and r is a non-negative integer.

Until the end of the present section, fix M ∈ Pd(Z) and an apartment A containing
Q(Λ(M)). Let, moreover, r be a non-negative integer. Then, by Lemma 3.6, we have
that Br(M) ∩ A = Q(Λ(M + rJd)), in particular Br(M) ⊆ Λ(M + rJd). Put

Λr(M) = {X ∈ Λ(M + rJd) | X11 ≡ . . . ≡ Xdd mod πr}.
We will show that Λr(M) = Br(M) andQ(Λr(M)) = Br(M) is PZ-closed; cf. Theorem 6.6.

Lemma 6.2. Let [L] be a lattice class in Q(Λ(M)). Then Λr(M) = Λ(M + rJd)∩Br([L])
and Λr(M) is a closed order.

Proof. Let (e1, . . . , ed) be a basis of L that is also a frame basis defining the apartment A.
Then, with respect to this basis, [L] = [OdK ] and thus Λ(M) ⊆ EndOK

(L) = Od×dK = Λ(0).
It follows in particular that M has non-negative entries. The explicit description of the
ball order in Theorem 5.2 allows to deduce that Λr(M) = Λ(M + rJd) ∩ Br([L]). Since
Λ(M + rJd) and Br([L]) are closed orders, then so is Λr(M). �

Lemma 6.3. One has Br(M) ⊆ Q(Λr(M)) and Λr(M) ⊆ Br(M).

Proof. We first show that Br(M) ⊆ Q(Λr(M)). For this, let [L′] ∈ Br(M) and let [L] ∈
Q(Λ(M)) be such that dist([L′], [L]) ≤ r. Then the combination of Remark 5.3 and
Lemma 6.2 yields that

[L′] ∈ Br([L]) = Q(Br([L])) ⊆ Q(Λr(M)).

To conclude, the inclusion Br(M) ⊆ Q(Λr(M)) implies that Λr(M) ⊆ Br(M). �



BOLYTROPE ORDERS 11

To prove that Br(M) = Λr(M) we use the radical idealizer chain of Λr(M), which we
describe in the following remark.

Remark 6.4. Assume that r ≥ 1. Then, similarly to what is done in Remark 5.3, one
sees that Jac(Λr(M)) = πΛr−1(M) is a 2-sided principal ideal of Λr−1(M) and hence
Id(Jac(Λr(M))) = Λr−1(M).

Lemma 6.5. One has Q(Λr(M)) = Br(M).

Proof. Lemma 6.3 shows that Br(M) ⊆ Q(Λr(M)). For the opposite inclusion, we rely
on Remark 6.4 to proceed by induction on r. Assume first that r = 0. Then Q(Λ0(M)) =
Q(Λ(M)) = B0(M) and so we are done. Now assume that r > 0 and that Q(Λr−1(M)) =
Br−1(M). The fact that Λr−1(M) = Id(Jac(Λr(M))) together with Lemma 4.5 then yields
that

Q(Λr(M)) ⊆ B1(Q(Λr−1(M))) = B1(Br−1(M)) ⊆ Br(M).

This concludes the proof. �

The following is the main result of this section and of the paper.

Theorem 6.6. The following hold:

Λr(M) = Br(M) and Q(Br(M))) = Br(M).

In particular bolytrope orders are closed and bolytropes are PZ-closed.

Proof. As a consequence of Lemma 6.2, both Λr(M) and Br(M) are closed orders. We
are now done thanks to Lemma 6.5. �

Corollary 6.7. The beginning of the radical idealizer chain for bolytrope orders is

Br(M) ⊂ Br−1(M) ⊂ . . . ⊂ B1(M) ⊂ B0(M) = Λ(M).

The first r + 1 elements in the corresponding chain of PZ-closed subsets of B0
d(K) are

Br(M) ⊃ Br−1(M) ⊃ . . . ⊃ B1(M) ⊃ Q(Λ(M)).

Note that Λ(M) is the first term in the radical idealizer process that is a graduated
order. The polytrope Q(Λ(M)) is hence canonically determined by the bolytrope Br(M)
and called the central polytrope of Br(M).

In analogy with ball orders, we obtain the following stronger property of bolytrope
orders.

Corollary 6.8. Assume that r ≥ 1 and let Λ be a closed order in Kd×d such that
Id(Jac(Λ)) = Br−1(M). Then one has Br(M) ⊆ Λ ⊆ Br−1(M).

Proof. Analogous to the proof of Proposition 5.4. �

Theorem 6.9. Let [P1], . . . , [Pd] be the distinct classes of projective Λ(M + rJd)-lattices.
Then there is a lattice class [Ld+1] ∈ Br(M), such that

Br(M) = PZ([P1], . . . , [Pd], [Ld+1]).

Moreover, the degree of Br(M) is at most d.

Proof. As a consequence of Remark 3.12, we have that Λ(M + rJd) = PZ([P1], . . . , [Pd]).
In particular, for any lattice class [Ld+1] ∈ Br(M), Lemma 6.2 and Theorem 6.6 imply
that

Br(M) ⊆ PZ([P1], . . . , [Pd], [Ld+1]) ⊆ Λ(M + rJd).

To construct Ld+1 such that the inclusion Br(M) ⊇ PZ([P1], . . . , [Pd], [Ld+1]) holds, choose
[L] ∈ Q(Λ(M)) and a lattice basis (e1, . . . , ed) of L that is also a frame basis for some
apartment containing Q(Λ(M + rJd)). Define Ld+1 := OK(e1 + . . . + ed) + πrL and, for
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each i = 1, . . . , d, put Li := OKei + πrL ∈ Q(Λ(M + rJd)). Then {[L1], . . . , [Ld], [Ld+1]}
is a star configuration with center [L] and radius r. By Theorem 5.6, we thus have

PZ([L1], . . . , [Ld], [Ld+1]) = Br([L]),

which, together with Lemma 6.2 and Theorem 6.6, implies that PZ([P1], . . . , [Pd], [Ld+1])
is contained in Λ(M + rJd) ∩ Br([L]) = Λr(M) = Br(M). �

7 When the building is a tree

Throughout this section, assume that d = 2. Then the building B2(K) is an infinite
tree. Apartments correspond to infinite paths in the tree and the bounded convex subsets
of B2(K) are the bounded subtrees. For more on this and other trees, see for instance
[13].

The following is the main result of this section, which extends [15, Theorem 2] beyond
the case of finite residue fields.

Theorem 7.1. Let Λ be a closed order in K2×2. Then there are r,m ∈ Z≥0 such that

Λ = Br
((

0 m
0 0

))
= {X ∈ O2×2

K | X12 ∈ mm+r
K , X21 ∈ mr

K , X11 ≡ X22 mod πr}.

Proof. Put R := max{dist([L], [L′]) | [L], [L′] ∈ Q(Λ)} and let [L1], [L2] ∈ Q(Λ) be such
that R = dist([L1], [L2]). Then the convex hull

L = Q(PZ([L1], [L2])) ⊆ Q(Λ)

is a line segment and is hence contained in an apartment A. Define

r := max{dist([L],L)|[L] ∈ Q(Λ)}
and let [L3] ∈ Q(Λ) be such that r = dist([L3],L). Let, moreover, [L0] ∈ L denote the
unique lattice class in L satisfying dist([L3], [L0]) = r.

[L1] [L′
1] [L0]

r

[L3]

[L′
2] [L2]

Now choose a frame basis (e1, e2) for A such that, with respect to this basis, there exists
an integer m such that [L1] = [L(0,r)] and [L2] = [L(m+r,0)]. It follows from the definition
of R that

R + 1 = |L| = m+ 2r + 1.

With respect to the chosen basis, note now that L = Q(Λ(M + rJ2)) and hence

Λ ⊆ Λ(M + rJ2).

Moreover, if [L′1] and [L′2] ∈ L are the two lattice classes at distance r from [L0] and such
that dist([L′1], [L′2]) = 2r, then the set {[L3], [L′1], [L′2]} is a star configuration with radius
r and center [L0]. As a consequence of the definition of L, such lattice classes [L′1], [L′2]
exist and thus Theorem 5.6 ensures that

Λ ⊆ Br([L0]).
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We have proven that Λ ⊆ Br([L0])∩Λ(M+rJ2) and so Λ ⊆ Br(M), thanks to Lemma 6.2.
As Q(Λ) ⊆ Br(M) = Q(Br(M)), we obtain Λ = Br(M) as stated in the theorem. �

[L2]

[L1]
[L3]

Figure 2. The bolytrope B1(Q) = B1(
(

07
00

)
) in the Bruhat Tits tree of

SL2(Q2). The green segment is the central polytrope Q := Q(
(

07
00

)
) =

{[L(i,0) | 0 ≤ i ≤ 7}. The set L = Q(
(

08

10

)
) is the convex hull of [L1] = [L(0,1)]

and [L2] = [L(8,0)]. The blue vertices are the points at distance 1 from Q.
The PZ-order of the lattice classes [L1], [L2] and [L3] is the same as the
PZ-order of all the colored vertices.

Corollary 7.2. The PZ-closed subset of B0
2(K) are precisely the bolytropes.

Corollary 7.3. The degree of a closed order Λ in K2×2 is 0, 1, or 2. Orders of degree 0
are the maximal orders, whereas the closed orders of degree 1 are precisely the graduated
non-maximal orders. All non-graduated closed orders in K2×2 have degree 2.

Remark 7.4. Theorem 6.9 implies [15, Theorems 1 and 8]. To see this, note that, by
taking [L1], [L2], [L3] as in the proof of Theorem 7.1, we get that Λ = PZ([L1], [L2], [L3]).
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