
Springer Nature 2021 LATEX template

Exponential Integration for Efficient and

Accurate Multi-Body Simulation with Stiff

Viscoelastic Contacts

Bilal Hammoud1*, Luca Olivieri2, Ludovic Righetti1, Justin
Carpentier3 and Andrea Del Prete2

1*Tandon School of Engineering, New York University, New York,
New York, USA.

2Department of Industrial Engineering, University of Trento, Via
Sommarive 9, Trento, 38123, Italy.

3INRIA, Paris, France.

*Corresponding author(s). E-mail(s): bah436@nyu.edu;
Contributing authors: luca.olivieri-1@unitn.it; lr114@nyu.edu;

justin.carpentier@inria.fr; andrea.delprete@unitn.it;

Abstract

The simulation of multi-body systems with frictional contacts is a fun-
damental tool for many fields, such as robotics, computer graphics,
and mechanics. Hard frictional contacts are particularly troublesome to
simulate because they make the differential equations stiff, calling for
computationally demanding implicit integration schemes. We suggest
to tackle this issue by using exponential integrators, a long-standing
class of integration schemes (first introduced in the 60’s) that in recent
years has enjoyed a resurgence of interest. This scheme can be applied
to multi-body systems subject to stiff viscoelastic contacts, leading to
integration errors similar to implicit Euler, but at much lower computa-
tional costs (between 2 to 100 times faster). In our tests with quadruped
and biped robots, our method demonstrated stable behaviors with large
time steps (10 ms) and stiff contacts (105 N/m). Its excellent prop-
erties, especially for fast and coarse simulations, make it a valuable

1



Springer Nature 2021 LATEX template

2 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

candidate for many applications in robotics, such as simulation, Model
Predictive Control, Reinforcement Learning, and controller design. ∗

Keywords: keyword1, Keyword2, Keyword3, Keyword4

1 Introduction

The interest of the robotics community for fast and reliable methods to sim-
ulate multi-body systems subject to frictional contacts has been constantly
growing in the last two decades [1–5]. This is reasonable considering that sim-
ulation is at the core of many robotics applications, such as the development
and testing of novel controllers before deployment on hardware. Moreover,
many advanced control and planning techniques, such as Model Predictive
Control [6] (MPC) and Optimal Control [7], rely on the ability to predict the
future behavior of the system. Finally, the current bottleneck of many learn-
ing algorithms [8, 9] is their need for huge amounts of data, which therefore
can greatly benefit from fast and accurate simulation methods.

The simulation of articulated rigid multi-body systems without contacts
is a solved problem [10]. The same is not the case for systems with stiff con-
tacts, which can be treated in two ways, each leading to a hard (but different)
numerical problem. The first approach, which more closely follows the physical
phenomenon of contacts, consists in expressing contact forces as a function of
the penetration between bodies. Often, linear spring dampers have been used
in this context [5, 11]. This leads to stiff differential equations that are simple to
evaluate, but difficult to integrate because of their numerical stiffness [12]. The
second approach tries to circumvent these numerical challenges by assuming
contacts to be infinitely rigid. This approach effectively gets rid of the numer-
ical stiffness, but in exchange for non-smoothness. One method that has been
particularly successful for dealing with the resulting non-smooth equations is
velocity-impulse time-stepping [1, 4, 13, 14]. This has become the standard for
robot simulation [15], demonstrating stable behaviors with large time steps
(several ms)—even though it must solve a numerically hard Linear Comple-
mentarity Problem (LCP). Several authors have tried to improve this approach
by getting rid of the strict complementarity constraints [2, 3, 16], which are
the source of the numerical challenge. However, none of these approaches is
currently widely accepted in the robotics community, mainly because of the
unclear effects of the introduced numerical regularization/relaxations on the
physics (i.e., relaxations can be interpreted as implicit spring/dampers but are
not an explicit part of the modeling).

∗This version of the article has been accepted for publication, after peer review and
is subject to Springer Nature’s AM terms of use, but is not the Version of Record
and does not reflect post-acceptance improvements, or any corrections. The Version
of Record is available online at: http://dx.doi.org/10.1007/s11044-022-09818-z



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 3

Fig. 1: Snapshots from our simulation tests with a biped and a quadruped
robot.

The approach we advocate for in this article is based on a well-known soft
contact model: the linear spring damper. Instead of using explicit integration
schemes, which require small time steps, or implicit schemes, which require
solving nonlinear systems of equations and introduce artificial viscosity lead-
ing to nonphysical behaviors, we use Exponential Integrators (EI) [17, 18].
EI are a long-standing class of integration schemes [19] that are particularly
suited for stiff differential equations. EI were initially considered unpractical
because of the computational challenges related to the matrix exponential [20].
However, novel numerical methods to compute the matrix exponential [21–
23] have recently unlocked the potential of EI. This has already been used in
computer graphics for simulating deformable objects, modeled as systems of
particles [24–26]. This model is particularly suited for EI because the stiff part
of the dynamics is linear, which however is not the case for articulated systems
in contact with the environment.

Our main contribution is a simulation algorithm that exploits EI to sim-
ulate articulated robots in contact with a stiff visco-elastic environment.
Particularly, this paper addresses the following questions. (1) Does the pro-
posed simulation scheme provide an improvement in terms of speed vs accuracy
when compared to classic explicit and implicit methods? (2) Is it possible to
develop a simulation scheme that is less sensitive to the choice of contact stiff-
ness and damping? (3) Is it possible to get stable simulations with increased
time step (integration interval)? The last question is of particular importance
for using MPC and reinforcement learning.

In order to address all the above questions in an efficient way, we apply
EI only to the contact dynamics (which is stiff) while using an explicit Euler
scheme for the remaining terms (which are not stiff). Our simulation results on
quadruped and biped robots (see Fig. 1) show the superior performance of our
method compared to standard integration schemes in terms of accuracy, speed



Springer Nature 2021 LATEX template

4 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

and stability. To our knowledge, this class of integrators has never been used
before by the robotics community. The article is organized as follows. Section 2
introduces the problem of multi-body simulation and the basic theory of EI.
Section 3 explains how EI can be used for multi-body simulation with bilateral
contacts. This method is then extended to frictional contacts in Section 4.
Section 5 discusses the implementation details of the algorithm. Section 6
presents the results and Section 7 concludes the article.

2 Background

2.1 Multi-Body Dynamics and Soft Contact Model

We want to simulate a multi-body mechanical system with the following
dynamics [10]:

M(q)v̇ = u(q, v) + J(q)>λ, (1)

where q is the robot joint configuration, v is the robot joint velocity, M is
the joint space mass matrix, u contains gravity, nonlinear effects and actuator
forces, J is the contact point Jacobian, and λ contains the stacked 3D contact
forces. We assume a linear spring-damper contact model, which means that the
contact forces λ are proportional to the inter-penetration of contacting bodies:

λ = −K (p(q)− p0︸ ︷︷ ︸
∆p

)−B (ṗ(q, v)− ṗ0︸ ︷︷ ︸
∆ṗ

),
(2)

where p and ṗ contain the stacked 3D contact point positions and velocities,
p0 and ṗ0 contain the stacked 3D anchor point positions and velocities, and
K and B are the diagonal stiffness and damping matrices, respectively. The
anchor point p0 is a virtual point to which the virtual spring and damper are
attached. It is typically set to the contact point location when contact is first
detected, and as long as contacts are sticking ṗ0 = 0. However, when slipping
occurs then ṗ0 6= 0. A limitation of the “anchor point” model is that to generate
tangential forces, some lateral motion of the contact point is always necessary.
Consequently, pure static friction cannot be modeled with this approach, but
it can be well approximated by using large lateral stiffnesses. Dependencies on
q and v are dropped in the following to ease notation.

2.2 Explicit Integration Schemes

The classic approach to integrate this dynamical system starts by writing it
in standard form. Defining the state as xq , (q, v), its dynamics is:

d

dt

[
q
v

]
︸ ︷︷ ︸
ẋq

=

[
v

M−1(u+ J>λ)

]
︸ ︷︷ ︸

f(xq,u)

(3)



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 5

We can integrate (3) with any numerical integration scheme, such as a high-
order Runge-Kutta scheme, or even a simple explicit Euler [12] (very common
in robotics):

x+
q = xq + δt f(xq, u) (4)

where x+
q represents the next value of the state and δt is the integration time

step. The problem with this approach is that for large values of K and B
the differential equations (3) are stiff [12]. This means that they require very
small integration steps for numerical stability. This is the main reason why
soft contact models have been mostly abandoned in the last decade, in favor
of complementarity-based models (and their relaxations) and time-stepping
integration [2, 4, 27].

2.3 Exponential Integrators (EI)

EI [24–26] are integration schemes particularly suited for stiff dynamical
systems for which the stiffness comes from a linear part of their dynamics:

ẋ = f(x)︸︷︷︸
nonstiff nonlinear function

+ Ax︸︷︷︸
stiff linear function

(5)

In this case, using an explicit integration scheme would result in the prob-
lems mentioned above. Instead, EI exploit the linearity of the stiff part of
the dynamics, which can be solved analytically using the matrix exponential,
thanks to the well-known solution of linear dynamical systems:

ẋ(t) = Ax(t) + b

x(t) = etAx(0) +

∫ t

0

eτA dτ b
(6)

First-order EI apply the solution (6) to the nonlinear system (5), by inter-
preting f() as b and assuming it remains constant during the integration
step:

x(t) = etAx(0) +

∫ t

0

eτAdτ f(x(0)) (7)

Since the stiff part of the equations is integrated via the matrix exponential,
large integration steps can be taken.

3 Bilateral Contacts

Our approach consists in using EI to simulate the system (3). The standard
approach to apply EI to arbitrary dynamics is to use a 1-st order Taylor
expansion:

ẋq(t0 + t) ≈ ẋq(t0) +
∂f

∂xq
(xq(t0 + t)− xq(t0)) (8)



Springer Nature 2021 LATEX template

6 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

However, this would require two demanding computations: the dynamics Jaco-
bian, and a matrix exponential with the size of xq. In the following we present
instead an approach that i) does not require the dynamics Jacobian, and ii)
only computes a matrix exponential with twice the size of λ, which is typically
smaller than xq in legged locomotion.

To get a differential equation with the form (5) we start by projecting (1)
in contact space pre-multiplying both sides by JM−1:

Jv̇ − JM−1J>︸ ︷︷ ︸
Υ

λ = J M−1u︸ ︷︷ ︸
˙̄v

(9)

Then we use the relationship p̈ = Jv̇ + J̇v to express the contact point
accelerations as functions of the robot accelerations:

p̈−Υλ = J ˙̄v + J̇v

p̈+ ΥK∆p+ ΥB∆ṗ = J ˙̄v + J̇v︸ ︷︷ ︸
¨̄p

(10)

Since for bilateral contacts ṗ0 is always null, we have that p̈0 = 0 and thus we
can write the contact point dynamics as:

d

dt

[
∆p
∆ṗ

]
=

[
0 I
−ΥK −ΥB

]
︸ ︷︷ ︸

A

[
∆p
∆ṗ

]
︸ ︷︷ ︸
x

+

[
0
¨̄p

]
︸︷︷︸
b

(11)

This dynamical system does not have the same form as (5) because Υ (and thus
A) depends on q. However, Υ is typically a well-conditioned function, meaning
that it changes little for small variations of q. The same holds for ¨̄p (and thus b),
which is why multi-body systems without contacts can typically be integrated
with large time steps (≈5 ms). This means that we can approximate A and
b as constants during the integration step, and therefore treat (11) as linear.
We can now express the contact forces as:

λ(t) =
[
−K −B

]︸ ︷︷ ︸
D

x(t) = DetAx(0) +D

∫ t

0

eτAdτ b (12)

Substituting (12) in (3) we can compute the robot accelerations:

v̇(t) = M−1(u+ J>λ(t)) = ˙̄v +M−1J>Dx(t), (13)



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 7

where we consider all terms constant during the integration step, except for
x(t). Now we can integrate to get the new velocities v+:

v+ = v +

∫ δt

0

v̇(τ) dτ =

= v + δt ˙̄v +M−1J>D

∫ δt

0

x(τ) dτ

(14)

Finally we integrate twice to get the new configuration q+:

q+ = q +

∫ δt

0

v(τ)dτ =

= q + δt v +
δt2

2
˙̄v +M−1J>D

∫ δt

0

∫ τ

0

x(τ1) dτ1 dτ

(15)

3.1 Integration of Matrix Exponentials

Eq. (14) and (15) are straightforward to compute, except for their last terms,
which are:

xint(t) ,
∫ t

0

x(τ) dτ

xint2(t) ,
∫ t

0

∫ τ

0

x(τ1) dτ1 dτ,

(16)

where

x(t) = etAx(0) +

∫ t

0

eτA dτ b (17)

When A is invertible we can express the integral of etA as an algebraic function
of etA: ∫ t

0

eτAdτ = A−1(etA − I) (18)

However, A is not invertible if the contact Jacobian J is not full-row rank.
Luckily, the computation of integrals involving matrix exponentials has been
thoroughly investigated [28, 29]. In Section 5 we show how to compute
these integrals indirectly, by simply computing the matrix exponentials of an
augmented system.

3.2 Extension to non-Euclidian spaces

When q does not belong to an Euclidian space (as in the case of legged robots,
where q includes the orientation of the base link) the integration of q is slightly
more complicated (while the integration of v remains unchanged). Given the
following definition:

vmean , v +
δt

2
˙̄v +

1

δt
M−1J>Dxint2(δt) (19)



Springer Nature 2021 LATEX template

8 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

The integration step of q is computed as:

q+ = integrate(q, δt vmean), (20)

where the function integrate(·) performs integration in the non-Euclidian space
of q.

4 Frictional Contacts

So far we have assumed that contact forces were bilateral. However, we typ-
ically want to simulate unilateral contacts, where forces oppose penetration
but do not oppose detachment of bodies. Assuming that the contact forces
are expressed in a local reference frame with the z direction aligned with the
contact normal, unilateral forces must satisfy:

fzi ≥ 0 ∀i (21)

Moreover, tangential forces are typically limited as well. Assuming a Coulomb
friction model we have:√

(fxi )2 + (fyi )2 ≤ µfzi ∀i, (22)

where µ ∈ R+ is the coefficient of friction1. We can represent the con-
straints (21) and (22) as λ ∈ Kµ, with Kµ being a second-order cone.

4.1 Force Projection

To account for these constraints, when the value of λ(t) computed by (12) is
outside Kµ, we should project it on the boundaries of Kµ. However, we do not
know how to check this constraint in continuous time. In the same spirit of
time-stepping simulators [1], we suggest to check friction constraints on the
average value of λ(t) during the integration step, which is:

λ̄ ,
1

δt

∫ δt

0

λ(τ) dτ =
1

δt
Dxint(δt) (23)

If λ̄ /∈ Kµ, then we compute its projection on the boundaries of the friction
cone λpr = projKµ(λ̄) and we use it to compute the next state:

v̇pr ,M−1(u+ J>λpr)

v+ = v + δt v̇pr, q+ = q + δt v +
δt2

2
v̇pr

(24)

1We assume that static and dynamic coefficients of friction are equal.



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 9

Note that in case λ̄ ∈ Kµ, then λpr = λ̄ and the velocity update in (24)
is equivalent to (14). However, the position update in (24) approximates the
double integral of λ(t) assuming a constant force (λpr), and so it is not equiv-
alent to (15) in general. In order to exploit also the double integral of x(t),
we can check the friction cone constraints on the average of the average λ(t),
computed as:

¯̄λ ,
2

δt2

∫ δt

0

∫ τ

0

λ(τ1) dτ1dτ =
2

δt2
Dxint2(δt) (25)

If ¯̄λ /∈ Kµ, then we project it on the boundaries of the friction cone λpr2 =

projKµ(¯̄λ) and we use it to compute the next position:

v̇pr2 ,M−1(u+ J>λpr2)

q+ = q + δt v +
δt2

2
v̇pr2

(26)

Using (26) for the position update and (24) for the velocity update, both
updates are equivalent to the original ones in case of no slippage.

4.2 Anchor point update

When slippage occurs, the tangent anchor point state (pt0, ṗ
t
0) (where the index

t indicates the tangent directions) changes, which has two main implications.
First, the assumption p̈0 = 0 that we took to write the contact point dynam-
ics as (11) is no longer valid. This means that, during slippage, (11) is an
approximation of the contact point dynamics, based on a “business as usual”
assumption (i.e., that the anchor point p0 continues slipping at constant veloc-
ity). Second, the anchor point state should be updated so that the contact
forces at the end of the time step are inside the friction cones. When a con-
tact is slipping, the tangent anchor point velocity converges to ṗt. We show it
now for the case of a 2D contact, but a similar reasoning can be applied to the
3D case. While a contact is slipping, the tangential force λt remains on the
boundary of the friction cone, so we have:

λ̇t = µλ̇n

Kt(ṗt0 − ṗt) +Bt(p̈t0 − p̈t) = µλ̇n

(p̈t0 − p̈t) = −(Bt)−1Kt(ṗt0 − ṗt) + µ(Bt)−1λ̇n

(27)

The last equation shows that, if λ̇n = 0, we have an exponential convergence
to zero of (ṗt0 − ṗt), with rate (Bt)−1Kt. Since typically (Bt)−1Kt is large,
whereas µ(Bt)−1λ̇n is small, we can expect this convergence to be fast. For
instance, if (Bt)−1Kt = 103 and λ̇n = 0, then after 3 ms (ṗt0 − ṗt) will be 5%
of its initial value. Given this fast convergence, we neglect the transient and



Springer Nature 2021 LATEX template

10 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

as soon as slippage starts we set ṗt0 := ṗt. Then, we compute pt0 so that the
contact force is on the boundary of the friction cone:

λ := projKµ(λ)

pt0 := pt + (Kt)−1λt
(28)

5 Computational Aspects

The computational bottleneck of the presented approach is the computation
of xint and xint2 defined in (16). This section shows how to compute these
quantities with a matrix exponential, and how this computation can be sped
up.

5.1 Computing xint and xint2

Using the results presented in [29] we can compute xint and xint2 as:

[
xint(t) xint2(t)

]
=
[
In 0n×3

]
etĀ
[
0(n+1)×2

I2

]
(29)

where n is the size of A, and Ā ∈ R(n+3)×(n+3) is an augmented matrix:

Ā ,


A b x(0) 0
0 0 1 0
0 0 0 1
0 0 0 0

 (30)

5.2 Computing the Matrix Exponential

Using (29) we have transformed the problem of computing (16) into a matrix
exponential evaluation. Computing the matrix exponential is a challenging
but well-understood numerical problem [21–23, 30]. We have used as starting
point the scaling&squaring method, as revisited by Higham [21], a widely used
method for computing the exponential of small-medium size dense matrices.
The method scales the matrix by a power of 2 to reduce the norm to order 1,
computes a Padé approximant to the matrix exponential, and then repeatedly
squares to undo the effect of the scaling. A Padé approximant of a function is
its “best” approximation achievable by a ratio of two polynomials Dj(·), Nj(·)
of order j:

eA ≈ Dj(A)−1Nj(A) (31)

These approximants are only accurate around zero, so they cannot be used
directly if ‖A‖ is large. When that is the case, the scaling&squaring method
is used to reduce ‖A‖ by exploiting this property of the exponential:

eA = (eA/(2
s))2s (32)



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 11

The integer scaling parameter s is chosen so that ‖eA/(2s)‖ is sufficiently small.

5.3 Boosting the Matrix Exponential Computation

Our problem has two features that we can exploit to speed up computation:

1. We do not need double machine precision, i.e. ≈ 10−16, (which is the target
of the algorithm of [21]) because we are typically fine with much larger
numerical integration errors, e.g. ≈ 10−4.

2. We do not need the whole matrix exponential, but only its product with a
2-column matrix, as shown in (29).

The first point is easily exploitable. The choice of the scaling parameter s and
the polynomial order j is usually optimized to achieve double machine pre-
cision with the minimum amount of matrix-matrix multiplications. We have
empirically found that for our tests we can set s = 0 and use a relatively low
order j ∈ [1, 2, 3, 5, 7], corresponding to [0, 1, 2, 3, 4] matrix-matrix multiplica-
tions, respectively. Which polynomial order is optimal depends on the specific
test, and is discussed in the next section.

Regarding the second point, given a matrix V , we can directly compute
the product eAV by performing operations in the following order:

V1 := Nj(A)V

eAV := Dj(A)−1 V1

(33)

This is faster than computing eA and then multiplying it times V because we
have to solve the linear system with a much smaller right-hand-side (V1 rather
than Nj).

Finally, we have also observed that the preprocessing step suggested in [21],
which uses matrix balancing, is extremely effective at reducing ‖A‖ in our tests.
This is crucial to achieve accurate results with low polynomial orders, therefore
speeding up computations. Further details can be found in our open-source
online repository2.

6 Results

We assess the performance of our simulation algorithm (Expo) comparing it
to Implicit Euler (Eul-imp), Runge-Kutta 4 (RK4 ) and explicit Euler (Eul-
exp). Our implementation of Eul-imp is described in the Appendix. Our
implementation of RK4 is standard, whereas Eul-exp was implemented as
follows:

v+ = v + δt v̇, q+ = integrate(q, δt v +
δt2

2
v̇) (34)

Our results try to answer to the following questions:

2https://github.com/andreadelprete/consim



Springer Nature 2021 LATEX template

12 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

Table 1: Controller time steps.

Test δtc [ms] Test δtc [ms]
Solo-squat 40 Solo-trot 2
Solo-jump 10 Romeo-walk 40

1. Can our approach (compared to the others) achieve higher accuracy for
equal computation time, or equal accuracy for smaller computation time?
(Section 6.3)

2. How sensitive is the simulator accuracy to contact stiffness and damping?
(Section 6.4)

3. What is the maximum integration time step that results in a stable3 motion?
(Section 6.5)

4. How accurately can (11) predict future contact forces when assuming
constant A and b? (Section 6.6)

5. How much computation time is spent in the different operations of our
simulator? Is there room for improvement? (Section 6.7)

6.1 Accuracy Metric

Following an approach similar to [15], we measure accuracy with a local integra-
tion error. We compute the ground truth trajectory xq(t) using the simulator
under analysis with an extremely small time step δt = 1/64 ms. Let us define
x̂q(t; t− δtc, xq(t− δtc)) as the state at time t obtained by numerical integra-
tion starting from the ground-truth state xq(t − δtc), where δtc(≥ δt) is the
time step of the controller. We define the local integration error as the error
accumulated over one control time step:

e(t) , ‖xq(t)	 x̂q(t; t− δtc, xq(t− δtc)‖∞

where 	 is a difference operator on the space of xq. In the numerical integration
literature [12] the local integration (or truncation) error is typically defined
using the integration step δt rather than the controller step δtc. We chose to
use the controller step to make errors comparable across tests with different
integration steps (as in [15]).

6.2 Test Description

To evaluate the trade-off between accuracy and computation time we tested
each simulator with different time steps. For Expo, RK-4, Eul-imp we have
started from δt = 1/8 ms up to the controller time step δt = δtc with a
logarithmic step of 2 (i.e. 1/8, 1/4, ..., δtc/2, δtc). For Eul-exp we have used
the same approach, but starting from a value of δt resulting in roughly the
same computation time of Expo. For every test we have set δtc to the largest
value that still ensured control stability (see Table 1). Since our main interest
lies in legged robots, our tests focused on quadrupeds and bipeds:

3We say that a simulation is “stable” if the robot state remains bounded.



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 13

• Solo-squat : Quadruped robot Solo [31] performing a squatting motion.
• Solo-jump: Quadruped robot Solo jumping in place.
• Solo-trot : Quadruped robot Solo trotting forward.
• Romeo-walk : Humanoid robot Romeo [32] taking two walking steps.

It is important to note that the quadruped Solo has a total of 13 links, 18
degrees of freedom, 12 of which are actuated revolute joints, and 4 contact
points (one on each foot). As for the humanoid Romeo, it consists of 32 links, 37
degrees of freedom, 31 actuated revolute joints and a total of 8 contact points
(four on each foot). In all tests, the control torques have been computed with a
feedback controller, either a linear controller or a Task-Space Inverse Dynamics
controller. If not specified otherwise, we have used a contact stiffness K = 105

N/m, and a contact damping B = 300 Ns/m, which are reasonable values for
contacts with a hard floor. For homogeneity we have used the same value of
friction coefficient µ = 1 across all our tests, even though this large friction was
only needed for control stability of the quadruped jumping motion. Besides
testing the default Expo simulator, we also tested 5 other versions of the same
scheme where we used a reduced polynomial order in the Padé approximant
of the matrix exponential. This leads to a reduced number of matrix-matrix
multiplications (mmm), between 0 and 4 (see Section 5.3). This results in a
faster but potentially less accurate computation of the matrix exponential.

All the code has been implemented in C++ and binded with Python. For
all dynamics computation we have used the Pinocchio library [33].

6.3 Accuracy-Speed Results

Fig. 2 and 3 summarize the results for the four tests. Fig. 2 plots local errors
vs real-time factor, which measures how many times the simulation was faster
than real time. Fig. 3 instead plots local errors vs integration time step. Even
though our main interest is in the trade-off between computation time and
accuracy, which is depicted in Fig. 2, we decided to report also the accuracy
as a function of integration time in Fig. 3, to provide more information about
the behavior of the different methods.

Overall, Expo outperformed the other methods in all tests, showing faster
computation for equal accuracy, or greater accuracy for equal computation
time. Surprisingly, the second best method overall was the simple Eul-exp,
even though it was partially beaten by Eul-imp in “solo-squat”. RK4 was
comparable to Eul-exp for small time steps, but surprisingly worse for large
time steps. These results show a sudden increase of integration error of Eul-
exp and RK4 for large real-time factors—corresponding to large δt. This is
because of the poor stability of explicit methods.

Eul-imp sometimes failed to converge to the desired error threshold (10−6),
in particular when using large integration steps. This is not surprising because
the system dynamics is non-continuous at impacts, and Eul-imp uses a
gradient-based method (Newton) that is suited for smooth systems. Despite



Springer Nature 2021 LATEX template

14 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

(a) Solo squat (b) Solo jump

(c) Solo trot (d) Romeo walk

Fig. 2: Local integration errors vs real-time factors. The label mmm-1
in the legend corresponds to using the default number of matrix-matrix
multiplications (mmm) in the computation of the matrix exponential.

(a) Solo squat (b) Solo jump

(c) Solo trot (d) Romeo walk

Fig. 3: Local integration errors vs integration time step.



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 15

(a) Varying contact stiffness (with fixed
damping ratio of 0.5)

(b) Varying contact damping ratio
(with fixed stiffness of 105 N/m).

Fig. 4: Local integration errors vs contact stiffness and damping ratio for the
“solo trot” test using a fixed integration time step for Eul-exp (1/2 ms), Expo
(2 ms) and Eul-imp (2 ms).

this, Fig. 3 shows that in most cases Eul-imp gives integration errors sim-
ilar to Expo for the same integration time step. More precisely, Eul-imp is
almost indistinguishable from Expo in “solo-squat” for δt ≤ 5 ms, whereas it
is unstable for larger δt. Eul-imp is a bit worse than Expo in “solo-jump” and
“romeo-walk” (but only for large time steps), and slightly better in “solo-trot”.
Overall, Eul-imp performed similarly to Expo for the same δt, but resulted
in much larger computation times, making it often the worst one in terms of
accuracy-speed trade-off.

Expo instead shows a graceful degradation of accuracy for large real-time
factors, making it an excellent candidate for fast low-accuracy simulations,
which are typically desirable in MPC. In general, the Expo versions using a
reduced number of mmm outperformed the standard Expo, but which number
of mmm is optimal depends on the specific test and time step. As expected,
when δt is smaller we can use a lower number of mmm. Automatically finding
the optimal number of mmm is an interesting direction for future work.

6.4 Stiffness and Damping

This subsection investigates the sensitivity to contact stiffness and damping
ratio of Expo, Eul-exp and Eul-imp. The damping ratio is defined as B

2
√
K

. A

damping ratio of 1 corresponds to a critically damped contact. These results are
based on the “solo-trot” scenario. For Eul-exp we have used δt=1/2 ms (real-
time factor ≈50). Then, we have set δt=2 ms for Expo so that it had roughly
the same computation time, and δt=2 ms for Eul-imp, so that it performed
similarly to Expo (even though with much larger computation times).

Fig. 4 shows the local integration error as we vary the contact stiffness (with
fixed damping ratio) and the damping ratio (with fixed contact stiffness). Expo
performs consistently as damping ratio and stiffness increase up to K = 108,
which roughly corresponds to a ground penetration of 0.01 mm for 100 kg of
weight on a single contact point. The error of Eul-exp instead is highly affected
by both stiffness and damping. Eul-imp performed slightly better than Expo



Springer Nature 2021 LATEX template

16 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

Table 2: Maximum integration time steps to achieve a stable motion.

Test Expo δt [ms] Eul-exp δt [ms] Eul-imp δt [ms]
Solo-squat 40 40/512 ≈ 0.08 40/2 = 20
Solo-jump 10 10/64 ≈ 0.16 10/2 = 5
Solo-trot 2 2/16 ≈ 0.13 2
Romeo-walk 40/8 = 5 40/32 = 1.25 40/4 = 10

(a) Contact velocity at impact: 0.1 m/s. (b) Zero contact velocity at impact.

Fig. 5: Comparison of contact forces in normal direction with forces predicted
using matrix exponential.

in most cases (but at the cost of being 50 times slower), except for very stiff
contacts (K ≥ 106), where it led to larger errors.

6.5 Stability

To test the stability of the simulators we have repeated the previous tests,
but without resetting the state to the ground truth after every control loop.
Table 2 reports, for Expo, Eul-exp and Eul-imp, the largest integration time
step for which the system remained stable. Expo and Eul-imp showed similar
stability, both remaining stable for large time steps, mostly between 5 and
40 ms. In the tests “solo-squat” and “solo-jump” Expo was stable even with
a larger time step than Eul-imp, whereas the opposite happened in “romeo-
walk”. Eul-exp instead showed poor stability, needing a time step between 4
and 512 times smaller than Expo to remain stable.

6.6 Force Prediction

To gain some insights into the internal computations of Expo, we show in
Fig. 5 the normal contact forces predicted with (11) assuming constant A and
b—which is the key assumption of our method. Since A and b depend on q
and v, which vary during the time step, one could expect that neglecting their
variations would result in significant force prediction errors. However, Fig. 5
shows that the force prediction can be accurate over a rather long time horizon
(20 ms). These forces were generated at the beginning of the “solo-squat” test,
using different initial velocities. Since a linear spring-damper model is used,
a sudden discontinuity in the contact force is expected when a point reaches



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 17

(a) Quadruped Trotting. (b) Biped Walking.

Fig. 6: Normal contact force during quadruped trotting and biped walking.

Table 3: Computation times of Expo for “solo-trot”, using zero mmm for
the matrix exponential (in parentheses the values using the standard matrix
exponential routine).

Operation Mean Time
[µs]

Percentage of
Total Time [%]

step 39 (94) 100
computeIntegrals 13 (67) 33 (72)
prepareExpLDS 13 33 (14)
computeContactForces 8 20 (8)
Eul-exp step 9 -

contact with a non-zero velocity. To demonstrate this, the normal contact force
at a single contact point is plotted for the cases of the trotting quadruped and
the walking biped in Fig. 6. Depending on the velocity at contact time, a finite
jump in the contact force is observed.

6.7 Computation Times

We report here a breakdown of the computation time of our method. The times
shown in Tab. 3 are for the “solo-trot” test, which means that v ∈ R18 and
most of the times λ ∈ R6. Most computation time (86%) is spent in three oper-
ations: computeIntegrals, prepareExpLDS, and computeContactForces.
computeIntegrals boils down to computing a matrix exponential. This takes
72% of the total time when using a standard expm routine (without balanc-
ing and reduced matrix-matrix multiplications), but it goes down to 33%
with our optimized version using zero matrix-matrix multiplications—we have



Springer Nature 2021 LATEX template

18 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

seen in Fig. 2 that often this results in only a small loss of integration accu-
racy. The preparation of the linear dynamical system (11) (prepareExpLDS,
which includes the computations of h(q, v) with RNEA, M(q) with CRBA,
and Υ with a custom sparse Cholesky decomposition) takes an equal amount
of time: 13 µs on average, namely 33% of the total time. The third opera-
tion (computeContactForces) takes 20% of the total time, and it includes the
computation of all kinematic quantities (contact point positions, velocities,
accelerations, Jacobian) and the contact detection.

We believe that computation times could be improved, especially for the
first two operations. In computeIntegrals we could test novel techniques [23]
to compute the matrix exponential, exploit the sparse structure of the matrix
A, and warm-start the computation using quantities computed at the previ-
ous cycle. In prepareExpLDS, the inverse contact-space inertia matrix Υ could
be computed faster using a customized algorithm, rather than with prod-
ucts between J , M−1 and J> [34]. Overall, it seems impossible to reach the
same efficiency of a simple Eul-exp step (9 µs), but we think we could reach
computation times in the range [20, 30] µs.

7 Conclusions

This paper has presented a new approach to simulate articulated systems sub-
ject to stiff visco-elastic frictional contacts. The novelty of the approach lies
in the numerical integration, which applies a first-order Exponential Integra-
tor scheme to the contact point dynamics to obtain a time-varying expression
of the contact forces. These contact forces are then integrated analytically,
exploiting theoretical results on the integrals of the matrix exponential [29],
and advanced numerical algorithms for its fast computation [21]. Compari-
son with standard integration schemes, both implicit and explicit, highlighted
the benefits of the proposed approach in terms of speed-accuracy trade
off, and stability. Overall, the proposed approach performed similarly to an
implicit scheme in terms of stability and accuracy, but without the excessive
computational burden.

Given its good behavior in the high-speed/low-accuracy regime, we believe
that this simulation technique could be an excellent candidate for MPC. To do
that, we will need to differentiate the integration scheme, which should be fea-
sible. We also plan to investigate the improvement, in terms of computational
efficiency, of the needed dynamics quantities and the matrix exponential.

Appendix A Implicit Euler

This Appendix reports some details about our implementation of implicit
Euler. The state of our robots lies in a Lie group, so we have taken into account
the derivatives of the integrate and difference functions, which need to be
used in place of the simple + and − operators:

difference(x+, integrate(x, δtf(x+, u))) = 0 (A1)



Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 19

We have computed the dynamics Jacobian using the appropriate functions of
the Pinocchio library. In particular, we have used the analytical derivatives of
the ABA function (28 µs for the Solo quadruped robot), and we have added to it
the derivatives of our contact model (which are fast to compute because they
depend on already computed quantities). For the line search we have used the
ABA function (8 µs for the Solo quadruped robot). This resulted in a rather
efficient implementation of implicit Euler.

For solving the nonlinear equations we have implemented Newton’s method
with line search and regularization. For solving the linear system of equations
we have used the LU decomposition with partial pivoting provided by the
Eigen library. We initialized the search with the solution of an explicit Euler
integration (which proved to be better than initializing with the current state).

We have measured where computation time is spent in implicit Euler, to
make sure that our implementation was efficient and to reason about potential
improvements. For the “solo-squat” test, with an integration step δt = 10 ms,
the average computation time was 0.92 ms. Expo was roughly 10 times faster
for the same test, and gave roughly the same integration error. The Newton’s
method took on average 8 iterations to converge to an error norm below 10−6.
Computation time was distributed in this way4:

• Prepare linear system: 51%

– Dynamics Jacobian: 29%

∗ ABA derivatives: 24%
∗ Contact model derivatives: 4%

– Lie-group derivatives: 21%

• Line search: 29%
• Solve linear system: 12%
• Other: 8%

Most of the time was spent preparing the linear system (51%) and performing
the line search (29%). Given the high efficiency of the Pinocchio library, we
believe that there is not much room for improvement in the steps “ABA deriva-
tives” and “Line search” (which mainly consists of calls to ABA, integrate
and difference). The only significant room for improvement is in the “Lie-
group derivatives” step, which includes the two matrix-matrix multiplications
between the dynamics Jacobian and the sparse Jacobians of the integrate

and difference functions. Since these Jacobians are sparse, these multiplica-
tions could be computed more efficiently than what we are currently doing.
However, this could lead to a computational gain of at most 15%. Therefore,
there seems to be little hope to make implicit Euler 10 times faster (i.e. as
efficient as Expo).

4Percentages do not add up to 100% because of rounding errors.



Springer Nature 2021 LATEX template

20 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

References

[1] Anitescu, M., Hart, G.D.: A constraint-stabilized time-stepping approach
for rigid multibody dynamics with joints, contact and friction. Inter-
national Journal for Numerical Methods in Engineering 60(Jan 2003),
2335–2371 (2004)

[2] Todorov, E.: Implicit nonlinear complementarity: A new approach to con-
tact dynamics. In: 2010 IEEE International Conference on Robotics and
Automation, pp. 2322–2329 (2010). IEEE

[3] Todorov, E.: Convex and analytically-invertible dynamics with contacts
and constraints: Theory and implementation in MuJoCo. In: Proceedings
- IEEE International Conference on Robotics and Automation, pp. 6054–
6061 (2014)

[4] Hwangbo, J., Lee, J., Hutter, M.: Per-Contact Iteration Method for Solv-
ing Contact Dynamics. IEEE Robotics and Automation Letters (RAL)
3(2), 0–8 (2018)

[5] Drumwright, E.: An Unconditionally Stable First-Order Constraint Solver
for Multibody Systems. arXiv preprint arXiv:1905.10828 (2019) https:
//arxiv.org/abs/1905.10828

[6] Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex
behaviors through online trajectory optimization. In: Intelligent Robots
and Systems (IROS), IEEE/RSJ International Conference On, pp. 4906–
4913 (2012)

[7] Von Stryk, D.M.O.: Numerical solution of optimal control problems by
direct collocation. In: Optimal Control, pp. 129–143. Springer, ??? (1993)

[8] Mansard, N., Del Prete, A., Geisert, M., Tonneau, S., Stasse, O.: Using a
Memory of Motion to Efficiently Warm-Start a Nonlinear Predictive Con-
troller. In: IEEE International Conference on Robotics and Automation,
pp. 2986–2993 (2018)

[9] Viereck, J., Kozolinsky, J., Herzog, A., Righetti, L., Aug, R.O.: Learning
a Structured Neural Network Policy for a Hopping Task. IEEE Robotics
and Automation Letters (RAL) 3(4) (2018) https://arxiv.org/abs/arXiv:
1710.00022v2

[10] Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, New York,
NY (2014)

[11] Yamane, K., Nakamura, Y.: Stable penalty-based model of frictional con-
tacts. Proceedings - IEEE International Conference on Robotics and

{arXiv:1905.10828}
{arXiv:1905.10828}
{arXiv:arXiv:1710.00022v2}
{arXiv:arXiv:1710.00022v2}


Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 21

Automation 2006(January), 1904–1909 (2006)

[12] Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential
Equations and Differential-algebraic Equations. Siam, Philadelphia, PA
(1998)

[13] Anitescu, M.: A Fixed Time-Step Approach for Multibody Dynamics with
Contact and Friction. In: IEEE International Conference on Intelligent
Robots and Systems, vol. 4, pp. 3725–3731 (2003)

[14] Peiret, A., Andrews, S., Kövecses, J., Kry, P.G., Teichmann, M.: Schur
complement-based substructuring of stiff multibody systems with contact.
ACM Trans. Graph. 38(5) (2019). https://doi.org/10.1145/3355621

[15] Erez, T., Tassa, Y., Todorov, E.: Simulation Tools for Model-Based
Robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. In:
International Conference on Robotics and Automation (2015)

[16] Drumwright, E., Shell, D.A.: Modeling contact friction and joint friction
in dynamic robotic simulation using the principle of maximum dissipation.
In: Springer Tracts in Advanced Robotics, vol. 68, pp. 249–266 (2010)

[17] Loffeld, J., Tokman, M.: Comparative performance of exponential,
implicit, and explicit integrators for stiff systems of ODEs. Journal of
Computational and Applied Mathematics (2013)

[18] Chen, Y.J.E., Sheen, S.H., Ascher, U.M., Pai, D.K.: Siere: A hybrid semi-
implicit exponential integrator for efficiently simulating stiff deformable
objects. ACM Trans. Graph. 40(1) (2020). https://doi.org/10.1145/
3410527

[19] Certaine, J.: The solution of ordinary differential equations with large
time constants. Mathematical methods for digital computers 1, 128–132
(1960)

[20] Moler, C., Van Loan, C.: Nineteen Dubious Ways to Compute the Expo-
nential of a Matrix, Twenty-Five Years Later. SIAM Review 45(1), 3–49
(2003) https://arxiv.org/abs/arXiv:1011.1669v3

[21] Higham, N.J.: The scaling and squaring method for the matrix exponen-
tial revisited. SIAM Journal on Matrix Analysis and Applications 26(4)
(2005)

[22] Al-Mohy, A.H., Higham, N.J.: Computing the Action of the Matrix Expo-
nential, with an Application to Exponential Integrators. SIAM Journal of
Scientific Computing 33(2), 488–511 (2011)

https://doi.org/10.1145/3355621
https://doi.org/10.1145/3410527
https://doi.org/10.1145/3410527
{arXiv:arXiv:1011.1669v3}


Springer Nature 2021 LATEX template

22 Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts

[23] Sastre, J., Ibáñez, J., Defez, E.: Boosting the computation of the matrix
exponential. Applied Mathematics and Computation 340(August), 206–
220 (2019)

[24] Michels, D.L., Sobottka, G.A., Weber, A.G.: Exponential integrators
for stiff elastodynamic problems. ACM Transactions on Graphics 33(1)
(2014)

[25] Chen, Y.J., Ascher, U.M., Pai, D.K.: Exponential Rosenbrock-Euler
Integrators for Elastodynamic Simulation. IEEE Transactions on Visual-
ization and Computer Graphics 24(10), 2702–2713 (2018)

[26] Luan, V.T., Michels, D.L.: Explicit Exponential Rosenbrock Methods and
their Application in Visual Computing. arXiv preprint arXiv:1805.08337,
1–18 (2018) https://arxiv.org/abs/1805.08337

[27] Todorov, E., Erez, T., Tassa, Y.: MuJoCo: A physics engine for model-
based control. In: Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference On (2012)

[28] Van Loan, C.F.: Computing Integrals Involving the Matrix Exponential.
IEEE Transactions on Automatic Control 23(3), 395–404 (1978)

[29] Carbonell, F., J́ımenez, J.C., Pedroso, L.M.: Computing multiple integrals
involving matrix exponentials. Journal of Computational and Applied
Mathematics 213(1), 300–305 (2008)

[30] Al-Mohy, A.H., Higham, N.J.: A New Scaling and Squaring Algorithm
for the Matrix Exponential. SIAM Journal on Matrix Analysis and
Applications 31(3) (2010)

[31] Grimminger, F., Meduri, A., Khadiv, M., Viereck, J., Wuthrich, M.,
Naveau, M., Berenz, V., Heim, S., Widmaier, F., Flayols, T., Fiene, J.,
Badri-Sprowitz, A., Righetti, L.: An Open Torque-Controlled Modular
Robot Architecture for Legged Locomotion Research. IEEE Robotics and
Automation Letters 5(2), 3650–3657 (2020) https://arxiv.org/abs/1910.
00093

[32] Project Romeo http://projetromeo.com

[33] Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F.,
Stasse, O., Mansard, N.: The Pinocchio C++ library: A fast and
flexible implementation of rigid body dynamics algorithms and their ana-
lytical derivatives. Proceedings of the 2019 IEEE/SICE International
Symposium on System Integration, SII 2019, 614–619 (2019)

[34] Featherstone, R.: Exploiting sparsity in operational-space dynamics. The

{arXiv:1805.08337}
{arXiv:1910.00093}
{arXiv:1910.00093}


Springer Nature 2021 LATEX template

Exponential Integration for Efficient Multi-Body Simulation with Stiff Viscoelastic Contacts 23

International Journal of Robotics Research 29(10), 1–21 (2010)


	Introduction
	Background
	Multi-Body Dynamics and Soft Contact Model
	Explicit Integration Schemes
	Exponential Integrators (EI)

	Bilateral Contacts
	Integration of Matrix Exponentials
	Extension to non-Euclidian spaces

	Frictional Contacts
	Force Projection
	Anchor point update

	Computational Aspects
	Computing xint and xint2
	Computing the Matrix Exponential
	Boosting the Matrix Exponential Computation

	Results
	Accuracy Metric
	Test Description
	Accuracy-Speed Results
	Stiffness and Damping
	Stability
	Force Prediction
	Computation Times

	Conclusions
	Implicit Euler

