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Abstract 

 

Vibration neutralisers are widely used to suppress vibration of a host structure subject to 

external excitation at a specific frequency. When attached to a structure, they create a 

notch filter in frequency response, reducing the vibration levels considerably. An inherent 

limitation is related to the narrow frequency range in which they are effective. Over the 

years, there have been different attempts to make the vibration absorber more robust. 

These attempts include using active and semi-active control strategies to change the 

tuning frequency, using piezoelectric elements with shunt circuits, electromagnetic 

actuators, servo motors, and even exploring nonlinear effects. In many cases, there is a 

need for an external power source to modify the characteristics of the system. In this 

paper, a vibration neutraliser that can adapt automatically to one of two frequencies 

corresponding to the frequency of an external harmonic force is described. Importantly it 

does this without the need for an external power source. The device consists of a beam-

like neutraliser that is attached to the host structure at its centre through a roller bearing. 

The stiffness element is a rectangular beam that can rotate in the bearing, changing the 

stiffness it presents to the direction of excitation. The paper describes an experimental 

study into such a device, and an analytical model is proposed that qualitatively captures 

the time-domain behaviour of the experimental device. A possible mechanism by which 

the device self-tunes to either of the two frequencies of excitation is discussed. 

Supplementary material is also provided showing the device in operation.  
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1 Introduction 

 

The vibration neutraliser consists of mass and stiffness elements tuned to a particular 

frequency, almost always related to an external harmonic force. This characteristic makes 

it different from the tuned vibration absorber that is often tuned to a resonance frequency 

of the host structure. Although they consist of similar elements, they have very different 

objectives. The neutraliser is commonly designed with relatively low damping to act as a 

mechanical notch-filter at a desired non-resonant frequency. Usually, the vibration 

absorber has an optimum damping value that could be relatively high to suppress 

vibration in a frequency range around a targeted resonance frequency.  

 

In many practical engineering applications, the frequency of a vibration source is not 

constant, such as rotating machinery, propellers and reciprocating machines. In these 

conditions, the performance of the neutraliser can be compromised. A solution would 

require the neutraliser to adjust to the excitation frequency using an adaptation 

mechanism. This topic has been extensively studied, and there are some review articles 

describing this work [1–3]. 

 

Research on self-adaptive or self-tuning devices can be found in the literature. However, 

most of these absorbers and neutralisers require an external source to provide the 

adaptation capability. For instance, Buhr et al. [4], design a vibration absorber used in a 

four degree of freedom building model, where the absorber has a variable stiffness 

element which is adjusted using a motor and gearing mechanism. The stiffness is changed 

by rotating the spring through a collar and modifying the number of active spring coils. 

MacDaid and Mace [5] designed an electromechanical tuned vibration absorber with an 

adaptive synthetic shunt impedance. The adaptation requires the use of both feedforward 

and feedback control schemes to change the parameters of the shunt circuit to achieve the 

desired tuned frequency. A similar strategy was implemented by Hollkamp and 

Starchville [6] using piezoelectric transducers and shunt circuits.  

 

An alternative design of a self-adaptive passive device is based on a mass on a string. 

This was explored by Acar and Yilmaz [7], who used a negative stiffness tension 

adjusting mechanism to change the natural frequency. Again, this required an external 

energy source to adjust the stiffness, using a motor and an external controller. Ghorbani-

Tanha et al. [8]  described a semiactive variable stiffness device in which the elastic 
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element consists of a rotational beam with a rectangular cross-section. The stiffness is 

controlled by an electrical motor that rotates the beam about its normal axis, causing a 

change in the second moment of area and consequently the stiffness in the desired 

direction. Again, this system required an external power source.   

 

Rustighi [9] used a rotating stiffness element in a variable stiffness tunable absorber. The 

rotating stiffness element comprises of two springs with different stiffnesses arranged 

perpendicularly to each other and attached to a rotational mass. The rotation angle 

changes the effective absorber stiffness. Two configurations were experimentally 

investigated, and the broadest tuning range was obtained when two motors were used to 

rotate the two spring elements attached to the same mass.  Also, using a rotating absorber 

stiffness element, Minaei and Ghorbani-Tanha [10] proposed a variable stiffness device 

using ball bearing and springs. An electric motor controlled the orientation of the springs 

to provide the required absorber stiffness. Alternative control strategies for tunable 

vibration absorbers have been discussed in [11–14]. 

 

The specific interest in this paper is the design of a passive self-tuning vibration 

neutraliser that does not require an external power source. However, only a few of such 

devices have been proposed in the literature. Sachau and Hanselka [15] designed a self-

tuning absorber to track the rotational speed of a car engine. The device consisted of 

swing arms clamped to a disc in the radial direction. Each swing arm has a mass at its 

end. Because of the centrifugal force, which increases the geometric stiffness of the swing 

arms, the vibration absorber resonance frequency continuously adapts to the engine 

rotational speed. Another passive device was proposed by Ivers et al. [16]. The self-tuning 

vibration absorber consists of a cantilever beam with asymmetric damping at one end. 

The beam is threaded with a loosely threaded mass on it. The asymmetric damping 

induces the beam to whirl, and then the loose mass moves in a position that starts to 

resonate in opposition to the structural mass. The neutraliser considered in this work is 

based on the design proposed in a patent by Gustavsson [17], who also described some 

characteristics of the device in a conference paper [18]. It consists of a beam-like vibration 

neutraliser, where the beam has a rectangular cross-section, such that there are two 

different stiffnesses in orthogonal directions. The beam is placed inside a bearing 

allowing it to rotate around such that the stiffness in the direction of excitation changes 

as the rotation of the beam changes. The aim of the device is to self-tune to one of its two 

different natural frequencies to suppress vibration of a host structure at these frequencies.  
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Some numerical and experimental results were presented in [18], but an explanation into 

the physics governing the self-tuning mechanism was not provided. 

 

The aim of this paper is to fill this gap. A device similar to that described by Gustavsson 

was built and tested, and an analytical model is proposed that contains a possible 

nonlinear mechanism by which the neutraliser self-tunes to either of two frequencies. The 

paper is organised into six sections, including this introductory text. A description of the 

neutraliser is given in Section two. In section three, the steady-state behaviour of the 

device is investigated both experimentally and analytically. A time-domain model is 

developed in section four to facilitate the understanding of how the device operates, which 

is discussed in relation to the experimental device in section five. Finally, the paper is 

closed with some conclusions in section six.  

 

Five videos are provided as supplementary material. One is an animation showing the 

behaviour of the system point and transfer accelerance as a function of the angular 

configuration of the neutraliser. The other four videos show various aspects of the 

experimental device in operation. 

 

2 Description of the device  

 

The vibration neutraliser considered in this work is illustrated in Figure 1. It consists of a 

beam-like neutraliser that is attached to the host structure at its centre through a roller 

bearing and is designed to operate in the Y direction in the global coordinate reference 

system XYZ. The stiffness element is a rectangular beam that can rotate in the bearing 

about the Z-axis, as shown in the figure. Tip masses are attached at the ends of the beam. 

As the beam has a rectangular cross-section, two different orthogonal stiffnesses are 

defined in local coordinates that can rotate with respect to XYZ. Figure 1(a) depicts a side 

view of the device, and Figure 1(b) shows the beam set at three different angles, 0º, 45º 

and 90º. 
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Figure 1. Schematic views of the device. (a) side view, (b) device configured at three 

different angles. 

 

 

3 Steady-state behaviour with the beam set at fixed angles 

 

Before carrying out time-domain experiments on the vibration neutraliser, the device was 

fixed at three angles 0 = , 90 =  and 45 = as shown in Figure 1(b) and the steady- 

state responses were measured. The position 0 =  corresponds to when the cross-section 

of the beam is orientated so that the thinner part is horizontal and when 90 =  the thinner 

part is orientated so that it is vertical.  
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Figure 2. An illustration of the experimental test setup showing the shaker, force sensor 

at the base of the neutraliser.  

 

The test setup is shown in Figure 2. The neutraliser was fixed to a Modal Shop type 2007E 

electromagnetic shaker through a PCB-208C01 force sensor. White noise was used to 

excite the system and the base and tip mass accelerations were measured using PCB-

352C33, and PCB-352A59 accelerometers, respectively (not shown in the figure). All 

signals were recorded using an NI-USB 4431 board with a sampling frequency of 5 kHz.  

Point and transfer accelerances (acceleration/force) were estimated using the H1 transfer 

function estimator in LabView. Hanning windows of 10 second duration were used in the 

transformation of the data from the time to the frequency domain, and 30 averages were 

taken.   

 

The experimental results are shown in Fig. 3. The point accelerance, is shown in the left-

hand set of graphs and is given by (Y)| / |bA F , where (Y)

bA  is the spectrum of the 

acceleration of the base mass in the Y direction and F is the spectrum of the applied force. 

The transfer accelerance, is shown in the right-hand set of graphs and is given by

(Y)| / |tA F , where (Y)

tA  is the spectrum of the acceleration of the tip mass in the Y 

direction. Also shown in this figure are thin solid lines which are obtained from a 

simplified model of the device, which is discussed next. 
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Figure 3. The magnitudes of the accelerances for different angles. The thin blue lines are 

the model responses, and the thick grey lines are the experimental responses.  Subfigures 

(a) are the base accelerance (Y)| / |bA F  and subfigures (b) are the tip accelerance 
(Y)| / |tA F . (dB ref. 1 Ns2/m). 

 

 

To gain some physical insight into the steady-state behaviour of the neutraliser, when the 

beam is set at different angles, a model of the device is developed. The model is also used 

to estimate some key parameters of the neutraliser which are used in time domain 

simulations described in section 4. A photograph of the neutraliser is shown in Figure 

4(a), and a simple model of the device is depicted in Figure 4(b). The device is symmetric 

about the point of excitation, and the stiffnesses of the beam on either side of the central 

0o

90o

45o

T
ip

 A
cc

el
er

an
ce

-
d

B

Frequency (Hz)

(b-i)

(b-ii)

(b-iii)

T
ip

 A
cc

el
er

an
ce

-
d

B
T

ip
 A

cc
el

er
an

ce
-

d
B

0o

90o

45o

Frequency (Hz)

(a-i)

(a-ii)

(a-iii)

B
as

e 
A

cc
el

er
an

ce
-

d
B

B
as

e 
A

cc
el

er
an

ce
-

d
B

B
as

e 
A

cc
el

er
an

ce
-

d
B

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

bearing are denoted by xxk  and 
yyk , which are defined in local coordinates xy. Each tip 

mass is denoted by tm  and the polar moment of inertia J  around the Z-axis comprises 

the beam, the tip mass moments and bearing inner ring altogether. The bearing support 

block, outer bearing ring and fixing part masses are all lumped together to give the base 

mass bm . 

 

 

Figure 4. (a) A photograph of the neutraliser and a (b) schematic of the lumped 

parameter model showing the local (xyz) and global (XYZ) coordinate systems.   

 

A simplified lumped parameter frequency domain model of the neutraliser can be written 

down as   

 

 ( )T 2 i − + + =T CM K Tq f , (1) 

 

where M, K and C are the mass, stiffness and viscous damping matrices, respectively 

given by 

 

 

Y
X

yyk
xxk



y x



Tip mass

Tip mass

Beam with 

rectangular

cross section

Base mass

Bearing

Direction of excitation



Base mass

(a) (b)

Z

Y
X

,tm J

Direction of excitation

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 

 

 

0 00 0 0

0 00 0 0
, ,

0 00 0 0

0 00 0 0

0 0

0 0

0 0

0 0

x

yy yy

y

x

y yy

yy

x

yy

yy yy

xxb

b

xx xxt

t

xx xx

x xx

k km

k km

k km

k km

c c

c c

c c

c c

−  
   −
  = =
 − 
  

−    

− 
 

−
 =
 −
 

−  

M K

C

,  (2a,b,c) 

in which xxc  and 
yyc  c viscous damping coefficients, artificially added to take into 

account the damping mechanisms in the device; T is a coordinate transformation matrix 

given by  

 

 

cos( sin( 0 0

sin( cos( 0 0
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sin(
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where corresponds to the angle shown in Fig. 3, at which the beam is rotated with respect 

to the origin; X
T

(X) (Y) ( ) (Y)

b b t bQ Q Q Q =  q  
T

(X) (Y) (X) (Y)

b b t bQ Q Q Q  =  q is the 

displacement vector, where bQ  and tQ  ( ) are complex amplitudes of the base and tip 

in the X and Y directions;  0 0 0
T

F=f   0 0 0 0
T

F=f is the force vector 

in which F is the amplitude of the force applied in the Y direction;  ( )T denotes the matrix 

or vector transpose. The moment of inertia J does not appear in equations 2(a) because 

the analysis in this section is done using fixed angles.   

 

The parameters of the model were estimated qualitatively by setting the low and high 

frequencies asymptotes and matching the resonance frequencies. Later, the viscous 

damping was adjusted manually such that the peaks of the model and experiments have 

similar magnitudes. The identified parameters of the model are shown in Table 1. 
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Table 1. Parameters estimated from the experimental tests 

Property Value 

Base mass ( )bm  0.2210 kg 

Tip mass ( )tm  0.0638 kg 

Stiffness in x direction ( )xxk  12900.0 N/m 

Stiffness in y direction ( )yyk  235300.0 N/m 

Viscous damping in x direction ( )xxc  2.7 Ns/m 

Viscous damping in y direction ( )yyc  0.42 Ns/m 

 

 

 

The point and accelerances calculated using the model were obtained by multiplying the 

complex displacements by the square of the circular frequency, i.e.,  (Y) (Y)2

b bA Q= and 

(Y) (Y)2

t tA Q= . The resulting accelerances using the estimated parameters from Tab. 1 

are shown as thin solid lines in Fig. 2. The magnitudes of the accelerances shown in 

Figure 2 (i, ii and iii) correspond to the fixed angles 0 ,  90  and 45 = , respectively. 

Figures 2(a) and 2(b) show the comparison of the model and experimental accelerances 

measured at the base and at the tip mass, respectively.  

The model and experimental results generally show good agreement, except at some 

frequencies, such as at approximately 100 Hz, which can be seen in Figure 4(a-iii). This 

is probably because of a torsional resonance that has not been modelled.  

It is also important to note a small difference between the experiment antiresonance 

frequencies and the model, which must be considered in the discussion presented in 

section four. 
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The following observations can be made: 

 

1. The natural frequencies of the system do not change with the angular position of 

the device.  

2. In general, the frequency responses are sensitive to the angle, mainly at the 

antiresonance frequencies. To explore this further, the way in which the 

antiresonance frequencies change as a function of   are plotted in Fig. 5 using 

the model. Figure 5(a) shows the model base accelerance and Figure 5(b) shows 

the model tip accelerance when 45 = . There are two resonance frequencies 1f  

and 2f  which are fixed. The frequency 3f  is the antiresonance for the tip response. 

Frequencies 4f  and 5f  are antiresonance frequencies for the base response.  

3. The antiresonance frequencies 4f  and 5f  are equivalent to the natural frequencies 

of a cantilever beam (base mass is fixed) with a tip mass. Here they correspond to 

4 /xx tkf m=  and 5 /yy tkf m= (only when   = 0o and 90o, respectively, when 

the two equations are uncoupled). These frequencies are used in the model 

discussed in section 4. 

4. Figure 5(c) shows how these frequencies change according to the value of the 

angle  . It is notable that the antiresonance frequency 3f , varies from the second 

resonance when 0 =  to the first resonance when 90 = .  

5. When 0 = , resonance frequency 2f , and antiresonance frequencies 3f  and 5f  

merge, counteracting the second resonance. This results in a single resonance 

frequency 1f . 

6. When 90 =  the resonance frequency 1f  merges with antiresonance frequencies 

3f  and 4f , counteracting the first resonance. This results in a single resonance 

frequency 2f . These effects can be observed in the [supplementary material – 

video 1] 
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Figure 5. Resonance and antiresonance behaviour as a function of  . (a) tip accelerance 

for 45 = , (b) base accelerance for 45 =  (dB ref. 1 N.s2/m), (c) Behaviour of the 

resonance and antiresonance as   varies between 0 and 180o. 

 

4 Harmonic excitation with the beam free to rotate 

The intended use for the vibration neutraliser is that it can track an excitation force to 

self-tune to either of the two antiresonance frequencies at 73 Hz or 295 Hz, these are the 

measured antiresonance at 0o and 90o, respectively, such that vibration of a host structure 

is reduced at these frequencies. This behaviour is demonstrated experimentally, and a 

simplified model is proposed to explain why the device rotates and self-tunes to the 

excitation frequency.  

 

Experimental tests were performed with the neutraliser free to rotate. The set-up was 

similar to that in Fig. 2, but the vertical displacement of the tip mass and the angular 

displacement of the beam were measured using a SONY Camera RX100-V at 960 frames 

per second to avoid the accelerometer cable interfering with the beam rotation. The base 

acceleration was measured using a PCB-352C33 accelerometer, and was recorded using 

the NI-USB 4431 data acquisition system with a sampling frequency of 5 kHz. The 

vertical displacement of the tip mass and the angular displacement of the beam were 

extracted from the recorded movie using Tracker software [19]. To enable the base 

motion to be compared with the tip vibration, the measured acceleration time history is 

integrated numerically to give the base displacement as a function of time. The time 

histories obtained from the camera and the accelerometer were synchronised using 

correlation.  
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Two experiments were conducted. First, the neutraliser was arranged with the angle 

0 = . The system was then excited at a fixed frequency of 295 Hz, see the 

[supplementary material - video 2]. The results of this test are shown in Figure 6.  

 

Figure 6(a) shows the tip angular displacement changing from 0 = to approximately 

100 = . The tip mass displacement increases (Figure 9(a-ii)), while the base 

displacement is reduced (Figure 9(a-iii)). This illustrates the effectiveness of the 

neutraliser to reduce vibration on a host structure, here represented as the base 

displacement.  

 

The second procedure initially arranged the neutraliser with angle 90 =  and excited at 

fixed frequency sine force at 73 Hz, see the [supplementary material – video 3]. 

 

The results of this test are shown in Figure 9b. Figure 9(b-i) shows the angular 

displacement of the tip mass changing from 90 =  to approximately 7 = . The tip 

displacement is shown in Figure 9(b-ii) and base displacement in Figure 9(b-iii).  

 

It should be pointed out that the device requires some amplitude to rotate. In general, the 

base acceleration needs to be higher than 1 g to allow the device to adapt. Also, friction 

damping for the rotation greatly influences how fast the device tunes itself. Higher friction 

requires higher excitation levels to allow the device to self-adjust to the excitation 

frequency. Some other supplementary videos show the neutraliser in operation 

[supplementary materials - video 4, video 5]. 
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Figure 6. Time histories for fixed harmonic excitation. (a) excited at 295 Hz and (b) 

excited at 73 Hz. Subfigures (i) are the angular displacement, subfigures (ii) are the tip 

displacement and subfigures (iii) are the base displacements for the two experimental 

procedures. 

 

 

The physical behaviour of the self-tuning neutraliser can be reproduced by a lumped-

parameter, three degrees-of-freedom model, considering the tip displacements in the XY 

axis, plus the rotation around the Z-axis, represented by  . The mechanical model is that 

shown in Fig. 2(b) with the beam able to rotate, and with harmonic excitation of the base. 

A time domain model is now required, however, so the variables xq  and 
yq  are introduced 

to describe the translational motion of the mass suspended at the end of the cantilever 
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beam in the X and Y directions. As before, the variable 𝜃 describes the rotation of the 

mass-spring assembly. In this case, the central support (base of the neutraliser) is assumed 

to be massless since its displacement has been imposed vertically and constrained 

horizontally. A harmonic base excitation, (Y) cos( )b Aq t= , is assumed as the external 

forcing excitation. 

 

The equation of motion of the system is obtained using Lagrange's method. The kinetic 

energy of the system is given by 

 

 ( )2 2 21 1

2 2
T m x y I= + +  (3) 

 

The potential energy is due to the gravitational field and the strain energy stored in the 

springs. The deformation of the two-springs depends on 𝜃 and the relative motion 

between the base and the suspended mass, so that 

 

 

T

11 12

21 21
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m q
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Three equations of motion are obtained as follows, 
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to which some viscous damping term has been added to include a dissipation mechanism. 

Equations (5b) and (5c) represents the equation of a point mass on a plane constrained by 

an orthotropic spring. They are coupled by the out-of-plane terms in the stiffness matrix. 

The elastic forces depend on the angular orientation of the device and in this sense they 

are characteristic of an auto-parametric system  [20,21]. Equations (5b) and (5c) are not 

inherently nonlinear. However, if the system is rotating, the stiffness is time-variant and 

this could potentially give rise to parametric excitation. Equation (8a) is nonlinear due to 

the trigonometric terms in the equation. When the mass is displaced, the elastic forces 

applied to the inner ring of the bearing result in a none-zero elastic torque as illustrated 

in Figure 7. Since the torque is obtained by multiplying the elastic forces (proportional to 

displacements) by their arm, the elastic torque depends on quadratic terms of the 

displacement. 

 

Figure 7. Elastic forces due to the mass displacement resulting in a torque. 

2 2[ cos sin ( )c( ) ( )] ( )sin( )osx xx yy x xx yy yk qf k k k q   += + −  and 

2 2[ sin co c( ) ( )] ) os( )sin( )s (y xx yy y xx yy xk qf k k k q   += + −  

 

The same observation can be applied to the forced vibration equations. The sinusoidal 

base excitation translates into a quadratic torque term. The quadratic term occurs because 

the torque is the product of the elastic forces and a mass displacement term which are 

both sinusoidal, i.e., harmonic at the frequency of excitation. Hence, the excitation term 

has a sinusoidal component at frequency   a sinusoidal component at 2  and a constant 
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step-like term 2sin( )cos( )
2

yy xxk k
A 

− 
 
 

. The latter term becomes zero when 

0  or 90 =   . The harmonic excitation term at frequency   is found to be negligible as 

it depends on 𝐴 instead of 𝐴2. The harmonic excitation term at frequency 2  also seems 

to generate negligible components compared to the large rotation due to the constant term. 

Given that the rotation mainly responds to this term and it changes relatively slowly, no 

parametric excitation phenomena is observed. 

 

The nonlinear system of the equations of motion is integrated numerically to simulate the 

physical response to see if it is similar to the experimental results. Figure 8 shows the 

numerical results. The system is excited with a sinusoidal base excitation at either 71 or 

300 Hz, which are approximately the two resonance frequencies of model. These 

resonance frequencies are associated with the antiresonance of the experimental system 

when the vibration neutraliser is attached to a host structure as seen in the previous 

section. 

 

 The results are compared with the case in which the system is free to rotate and the case 

in which the rotation is constrained. The system rotates so that the resonance frequency 

of the system coincides with that of the system aligned to direction of the excitation. 

Hence, the system is able to self-tune to each of the two resonance frequencies. The 

system rotation is driven by a second-order system, and exhibits no overshoot since the 

rotational behaviour of the system is overdamped (representing the same behaviour as the 

experimental rig). Once the system is in the tuned position, the constant term of excitation 

becomes negligible, and no further rotation is recorded. 
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Figure 8. Numerical simulation for sinusoidal excitation at the lower (a) and higher (b) 

resonance frequency: (a) 71 Hz excitation with base acceleration of 10 ms-2; (b) 300 Hz 

excitation with base acceleration of 20 ms-2; (i) rotation for the system free to rotate or 

blocked at 0 or 90 degrees; vertical mass displacement for free rotation (ii), for system 

blocked at 0 degrees (iii) and for system blocked at 90 degrees (iv). 

 

Fixed at 90o

Fixed at 0o

Free

Time (seconds)

Free

(a-i)

(a-ii)

(a-iii)

(a-iv)

Fixed at 0o

Fixed at 90o

D
is

p
la

ce
m

en
t 

(m
m

)
D

is
p

la
ce

m
en

t 
(m

m
)

D
is

p
la

ce
m

en
t 

(m
m

)
A

n
g
le

 (
d

eg
re

e)

(b-i)

Free

Fixed at 90o

Fixed at 0o

Free

Fixed at 0o

(b-ii)

(b-iii)

(b-iv)

Time (seconds)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 

 

5 Discussion 

 

The experimental results and model output show a strong qualitative agreement. They 

both show the ability of the device to self-tune or spin the beam so that the structure is 

excited at a resonance frequency. Such behaviour has demonstrated that the device can 

self-tune to two resonance frequencies. The time responses of the experimental device 

and the model have some differences, resulting in some dissimilarities which have been 

minimised by the manual optimisation of two parameters, namely the torsional damping 

coefficient and the amplitude of the base oscillations. These were chosen to obtain a 

similar time response of the rotation of the neutraliser in terms of the rise time and 

overshoot. In the model, the beam rotates with the same rise time but with smaller base 

acceleration than in the experimental device, which is possible because there is some play 

and friction in the bearing, which were not accounted for in the model. The effect of such 

a simplification may also be seen in the effects caused by the choice of the initial 

conditions. In the model, it is necessary to use an initial condition which is slightly 

different to zero or ninety degrees for the beam to rotate from one position to another. 

This was not necessary in the experimental device because of inevitable mechanical 

imperfections, which meant that the bearing system was not strictly symmetrical, making 

small initial rotations possible. When a small rotation is present, the moment due to the 

deformation of the beam causes the self-tuning of the device. 

 

The most significant difference between the model and the experiment is, however, in the 

way the systems are excited. In the experimental device the excitation is in the form of a 

force applied by the shaker table. In the model, a base motion excitation was applied, 

which was done to minimise the number of degrees-of-freedom, but at the same time 

being able to describe the physical behaviour of the system. Also, such a model is similar 

to that of a spring pendulum, which is a model that exhibits auto-parametric excitation. 

Although the accelerance function of the base cannot be obtained from this model, the tip 

accelerations show similar behaviour to those measured in the experimental results. Note 

that at the two extreme angular positions of 0° and 90°, which correspond to the tuned 

frequencies of the device, the natural frequency of the beam tip in the time domain model 

corresponds to an antiresonance of the base mass in the steady-state model. Such 

correspondence is not exact for the other angular positions due to the cross term in the 

stiffness matrix. However, the shift in the antiresonance with the angular position may 

increase the robustness of the actual device due to the fact that the antiresonance tuning 
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range is slightly increased, as seen in Figure 5(c). Despite the difference between the 

experimental device and the model, and the limitations of the model, it can be seen that it 

captures the general behaviour of the experimental neutraliser and provides a possible 

mechanism by which the device self-tunes.  

 

6 Conclusions  

 

This paper has described a vibration neutraliser that can passively self-tune to either of 

two natural frequencies in response to an external excitation source. The device is a beam-

like neutraliser, in which a rectangular beam can rotate freely within a roller bearing at 

the centre of the beam, which is fixed to a host structure. The two tuned frequencies 

correspond to when the beam is aligned such that the thinner beam cross-section or the 

thicker beam cross-section align with the direction of excitation. The device has been 

studied experimentally with steady-state excitation for fixed rotational angles of the 

beam, and with harmonic excitation when the beam is allowed to rotate to its optimum 

position. The system has also been modelled when the beam angle is fixed to gain 

physical insight into the system behaviour and to obtain physical parameters that were 

used in the time domain model, which was used to investigate the self-tuning behaviour.   

The model illustrates a likely mechanism for the self-tuning properties. This is a time 

varying moment that is the product of a time varying force due to the vibrating tip mass, 

and a time varying moment arm. The result is a dominant DC moment whose magnitude 

is a function of the difference between the excitation frequency and the target natural 

frequency of the device, which diminishes as the natural frequency approaches the 

excitation frequency. The work discussed here opens the possibility of improving the 

robustness of neutralisers that are only effective at a narrow frequency range. 
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