
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 1

Efficient Error Detection for Matrix Multiplication
with Systolic Arrays on FPGAs

Fabiano Libano, Paolo Rech, Senior Member, IEEE, and John Brunhaver, Member, IEEE

Abstract—Matrix multiplication has always been a cornerstone in computer science. In fact, linear algebra tools permeate a wide
variety of applications: from weather forecasting, to financial market prediction, radio signal processing, computer vision, and more.
Since many of the aforementioned applications typically impose strict performance and/or fault tolerance constraints, the demand for
fast and reliable matrix multiplication (MxM) is at an all-time high. Typically, increased reliability is achieved through redundancy.
However, coarse-grain duplication incurs an often prohibitive overhead, higher than 100%. Thanks to the peculiar characteristics of the
MxM algorithm, more efficient algorithm-based hardening solutions have been designed to detect (and even correct) some types of
errors with lower overhead. We show that, despite being more efficient, current solutions are still sub-optimal in certain scenarios,
particularly when considering persistent faults in Field-Programmable Gate-Arrays (FPGAs). Based on a thorough analysis of the fault
model, we propose an error detection technique for MxM that decreases both algorithmic and architectural costs by over a polynomial
degree, when compared to existing algorithm-based strategies. Furthermore, we report arithmetic overheads at the application level to
be under 1% for three state-of-the-art Convolutional Neural Networks (CNNs).

Index Terms—Error Detection, Matrix Multiplication, Systolic Array, FPGA.

✦

1 INTRODUCTION

From high-performance computing, to low-latency radio,
and image processing tasks, matrix operations are com-
monly at the core of a variety of compute-intensive algo-
rithms. Scientific applications, such as climate and particle
physics simulations [1], compute their solutions by solving
large systems of equations, which frequently reduce to ma-
trix multiplication. Matrix operations are so representative
and relevant in computer science, that the list of the top 500
supercomputers in the world is determined by execution
time figures of benchmarks mostly composed of linear al-
gebra calculations [2]. Additionally, useful computer vision
tasks, like edge-detection and image segmentation can be
accomplished using the convolution operation, which by its
turn can be expressed as an equivalent MxM [3].

Recent advances in the Machine Learning (ML) field
have led to significant improvements in the accuracy of
Convolutional Neural Networks (CNNs), making them at-
tractive alternatives to more traditional image processing al-
gorithms [4]. Such improved capability for object-detection
and classification tasks sparked the interest of the trillion
dollar automotive industry to deploy CNNs in autonomous
cars [5]. Likewise, military organizations have increased
fleets of Unmanned Aerial Vehicles (UAVs) [6], while the
space exploration sector is investing in autonomous rovers
and helicopters for missions on Mars [7]. As the aforemen-
tioned applications fall into the real-time safety-critical cat-

• F. Libano and J. Brunhaver are with Arizona State University (ASU),
Tempe, AZ, 85287.
E-mail: {flibano, jbrunhaver}@asu.edu

• P. Rech is with Federal University of Rio Grande do Sul (UFRGS), Porto
Alegre, RS, Brazil, and with Polytechnic of Torino (PoliTO), Turin, TO,
Italy.
E-mail: prech@{inf.ufrgs.br, polito.it}

Manuscript received November 1, 2021; revised November 1, 2021.

egory, where failures can lead to human casualties and/or
substantial losses of capital, the need for fast and reliable com-
puter vision (matrix multiplication) becomes fundamental
[8] [9].

In order to comply with the performance constraints
imposed by real-time applications, compute intensive work-
loads based on matrix multiplication require some sort of
hardware acceleration. Graphics Processing Units (GPUs)
offer a highly parallel general purpose architecture, and
design flexibility through optimized software libraries. In
fact GPUs are the most commom device for matrix multi-
plication, mainly due to the General Matrix Multiplication
(GEMM) algorithm, which is tightly coupled with the de-
vice’s memory hierarchy [10]. However, GPUs are still gen-
eral purpose, which means that some performance is sac-
rificed for genericism. Furthermore, GPUs are also known
to be power-hungry, which prohibits their deployment
in power-constrained scenarios, such as space missions
[11]. Alternatively, Application-Specific Integrated-Circuits
(ASICs) can be designed to deliver top-tier performance and
energy efficiency. However, once fabricated, there is little to
no design flexibility to be explored, which can be a problem
for long-life consumer products (such as self-driving cars,
for example, with system improvements and bug fixes being
considerably more challenging). On the other hand, Field-
Programmable Gate Arrays (FPGAs) deliver high perfor-
mance along with full hardware reprogrammability and
low power consumption [12]. Such characteristics make
FPGAs very attractive candidates for accelerating real-time
applications and, thus, are the focus of our study.

Unfortunately, computing devices are prone to expe-
riencing radiation-induced faults, potentially manifesting
as errors and failures at the application and system level,
respectively. Specifically in the case of SRAM-based FPGAs,
the main concerns are upsets in their configuration mem-



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 2

ories [13], which can disrupt the functioning of the logic
circuit implemented on the fabric, ultimately leading to
untrustworthy computation. As a practical example, a faulty
DSP element within a systolic array architecture can gener-
ate errors in a matrix multiplication, which can then lead
to misdetections in a CNN, potentially causing a vehicle
to crash. Another very important peculiarity regarding the
fault model of FPGAs is that the aforementioned configura-
tion faults are persistent until actively corrected (through the
loading of a new bitstream or scrubbing [14]). To put it an-
other way, after a fault has been installed, every subsequent
computation running on top of such faulty circuit is very
likely to also present output errors. Therefore, it becomes
of paramount importance to quickly and cheaply detect
erroneous behaviors, to then trigger repairing mechanisms
on the FPGA’s configuration memory, ultimately restoring
functional correctness in the system.

In order to achieve mandatory levels of reliability for
safety-critical applications, computing systems must em-
ploy appropriate hardening techniques. Most commonly,
modular redundancy can be considered with different gran-
ularities (i.e. multiple devices, circuit replication [15]). The
number of redundant modules also determines whether the
system is able to detect or correct errors: Duplication With
Comparison (DWC) allows for single error detection [16],
while Triple Modular Redundancy (TMR) allows for single
error correction [17]. In fact, the gold-standard hardening
strategy for FPGAs is a combination of circuit-level TMR
along with active scrubbing of configuration bits [18]. How-
ever, it is not always possible to triplicate a circuit that
utilizes a high number of resources as is. Furthermore, the
adoption of modular redundancy is also known to hinder
performance, since routing tasks become more difficult as
fabric congestion increases [19], and, in the case of DWC, the
added redundancy is also prone to producing false detections
(i.e. when the output is correct, but a detection is wrongly
signaled) [20] [21]. As an alternative, Algorithm-Based Fault
Tolerance (ABFT) can be used to increase the reliability of
specific applications with a lower overhead than traditional
modular redundancy, but, as we will discuss in later sec-
tions, existing ABFT methods [22] [23] are still too expensive
for FPGAs. We show that, in order to maximize hardening
efficiency (i.e. deliver maximum error detection rates with
minimum added costs), one must first obtain an accurate
depiction of the fault model.

In pursuance of addressing the aforementioned issues,
and advancing the state-of-the-art towards reliable matrix-
multiplication-based computation, the main contributions
in our paper are:

• A multi-level fault propagation model, that provides an
overview of how faults transition across abstraction lay-
ers, considering the following case-study stack: FPGA -
Systolic Array - Matrix Multiplication - CNN.

• A novel ABFT technique for low overhead error de-
tection in matrix multiplication operations, tailored for
systolic arrays on SRAM-based FPGAs.

• A state-of-the-art, open-source, systolic array imple-
mentation for Xilinx FPGAs, along with an RTL code
generator that allows for seamless deployment of hard-
ened matrix multiplication cores.

The remainder of the paper is organized as follows.
Section 2 provides a background on radiation effects in FP-
GAs and the systolic computation paradigm, while hinting
why this superposition significantly impacts the fidelity of
existing fault models. Section 3 presents architectural details
of our case-study, state-of-the-art, systolic array implemen-
tation. Section 4 explains our fault-injection experimental
methodology, while Section 5 provides an in-depth analysis
of how faults propagate across levels of abstraction, high-
lighting the importance of appropriate hardening mecha-
nisms along the way. Section 6 then presents our novel
error detection strategy for matrix multiplication operations,
while explaining the reasons why it is the most sensible
choice for FPGA-accelerated systems. Section 7 contains an
experimental validation of our idea, which confirms our
formal demonstration. Section 8 concludes the paper and
briefly mentions future work opportunities.

2 BACKGROUND AND RELATED WORK

2.1 Radiation Effects on Computing Devices
Radiation is a naturally occurring phenomenon that can
simply be viewed as transmission of energy. Due to radioac-
tive emissions of stars and major celestial events, charged
ions are constantly released, and gain energy as they wander
around in the Universe. Luckily, Earth’s magnetic field acts
as a shield, deviating the majority of particles away, but
sufficiently energetic cosmic rays collide with nuclei in our
atmosphere, producing a variety of secondary particles,
including alpha, protons, gamma, and, mainly, neutrons
[13]. For example, the neutron flux at sea level has been
measured to be of about 13n/(cm2·h) [24].

Since computing devices are made out of silicon, ra-
diation is a threat. Ionizing particles generate electron-
hole pairs within the transistor’s oxide, eventually releasing
enough charge to force state changes from ON to OFF (or the
other way around) [25]. Non-ionizing radiation (neutrons)
on the other hand, does not deposit any charge, but instead
leaves a trail of ionization on the silicon as it passes through
the device, creating charged particles that then lead to
state changes [26]. Furthermore, the advances in fabrication
processes and overall scaling of technology have allowed
for reduced transistor sizes, increased transistor density, and
reduced operating voltages, which in turn led to an even
greater radiation sensitivity [27].

Ultimately, each type of particle will interact with each
type of computing device in a distinct manner. In particu-
lar, as our work focuses on SRAM-based FPGAs, the vast
majority of Single-Event Effects (SEEs) are actually Single-
Event Upsets (SEUs) on the FPGA’s configuration memory
[13]. SEUs are transient faults, in the sense that the device
is not permanently damaged, but the information stored
in memory or the output of operations is wrong. Such
corruptions, when affecting the configuration memory of
an FPGA, can potentially modify the content and settings
of logic resources (LUTs, DSPs, BRAMs, FFs), as well as
affect routing connections. Furthermore, such SEUs, will
exhibit a persistent effect until a new (corrected) bitstream is
loaded into the FPGA’s configuration memory. This specific
characteristic of FPGAs fundamentally changes the fault
model of hypothetical hardware accelerators which only



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 3

consider non-reprogrammable devices, in which SEUs only
affect the current operation or data. In other words, while on
a CPU, GPU, or ASIC the SEU corrupts only one operation,
in FPGAs most of SEUs will likely impact all operations that
follow its occurrence, up until the point where corrective
action is taken, through partial or full reloading of the
configuration memory. If left undetected/unmitigated, such
hardware faults can propagate to the application level and
eventually become Silent Data Corruptions (SDCs).

2.2 Matrix Multiplication on Systolic Arrays

As previously stated, matrix multiplication is a staple in
computer science. However, the MxM algorithm is inher-
ently expensive: Assuming square matrices of size M, we
need to perform a total of M3 multiply-accumulate (MAC)
operations. Luckily, as there are no data dependencies be-
tween output elements, MxM is also extremelly paralleliz-
able. In GPUs, the aforementioned GEMM algorithm clev-
erly positions data in cache and distributes the workload
across available cores. However, input elements must still
be read from memory multiple times. Systolic arrays on
the other hand establish specific interconnection and data
movement patterns between computing units to reduce
memory accesses, ultimately having an edge over other
architectures in MxM computation.

A systolic array is simply a network of processing ele-
ments (PEs) that work together, to accomplish some higher
level computation. The term systolic is a reference to the
functioning of a biological heart, since the computation is
performed in a rhythmic fashion, with input data being
pumped in, and output data being pumped out, at every
clock cycle. These ideas were first introduced decades ago
by [28], as the authors showed how systolic systems could
be viable as application-specific hardware. In fact, depend-
ing on geometry and interconnect, systolic arrays can also be
used to solve problems like LU-decomposition and Fourier
transform.

Much more recently, there has been an increased interest
in systolic computation due to the rise of neural network
accelerators, such as Google’s Tensor Processing Unit (TPU)
[29] and Xilinx’s Deep Processing Unit (DPU) [30]. Since the
workload of a modern CNN is dominated by convolution
(which can be translated as an equivalent MxM [3]) and
inner product operations, weight-stationary systolic arrays
became the perfect fit for these workloads. Fig. 1 illustrates
how MxM can be performed on such an architecture. At
each clock cycle, inputs are pumped in. Once the pipeline
fills up, outputs start flowing out.

Note that the interconnected nature of the architecture,
and the systolic pattern of dataflow, makes it so that mul-
tiple PEs are used to compute each output element. At the
same time, each PE contributes to the calculation of multiple
output elements. This simple observation, combined with the
aforementioned predominance of persistent faults in FP-
GAs, massively impacts the fault model (as we will discuss
in Section 5), and consequently the relevance/effectiveness
of hardening strategies (as we will discuss in Section 6).

Morever, large MxM operations often need to be broken
down into smaller blocks, ahead of their execution. In other
words, large input matrices are partitioned, and execution

produces pieces of the output in a step-by-step fashion. This
characteristic becomes particularly useful in GPUs when it
comes to fitting just the right amount of data into each cache
level, as a way of minimizing latency in memory opera-
tions. Likewise, in the context of systolic accelerators for
FPGAs/ASICs, the size of the array is set at implementation
time. Effectively this means that, in order to execute sizeable
matrix operations, multiple sub-matrices must pass through
the array. This, of course, also impacts the fault model and
the inherent overhead of hardening solutions.

Figure 1. The functioning of a generic NxN weight-stationary systolic
array for matrix multiplication. The calculation in this example is AxB=C.
The values of B are pre-loaded into the array. Then the values of A flow
from left to right, while accumulations are propagated from top to bottom.
The timing for inputs and outputs is specified as tx.

2.3 Related Work
Traditional Hardening for FPGAs: Strategies for increas-
ing the reliability of SRAM-based FPGA systems have ex-
isted for long time, as FPGAs were within the first high-
performance devices to be deployed in space [13]. Generally,
increased hardness is achieved through modular redun-
dancy, such as TMR (circuit triplication followed by majority
voting) [17], and DMR/DWC (circuit duplication followed
by comparison) [16]. In fact, the number of redundant
modules determines the number of simultaneous faults that
can be tolerated: An N-Modular-Redundant (NMR) system
is able to detect N-1 and correct N-2 faults. Moreover, as the
upsets in the FPGA’s configuration memory tend to have
a persistent effect, modular redundancy must be paired
with active scrubbing [14] [18], in order to prevent the
accumulation of faults over time. However, these circuit
replication strategies are not always feasible (depending on
original circuit complexity and target device capabilities),
as they inherently incur significant overheads in resource
utilization (100N+% for NMR). Furthermore, modular re-
dundancy is also known to negatively affect performance,



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 4

as the increased fabric congestion makes routing efforts
more difficult [19]. Finally, we must highlight that, although
DWC theoretically delivers an error detection rate of 100%,
by doubling the circuit’s area it also introduces a high
probability of false detections [20] [21]. Moreover, if the
checker module itself is not hardened (i.e. with a dual rail
scheme [16]), it can become the root cause for undetected
errors in the system.

Algorithm-Based Fault Tolerance: ABFT techniques go
beyond naive redundancy as they tend to provide similar
error detection and correction capabilities, but with consid-
erably lower overheads. This is because good ABFT strate-
gies are typically based on a deep knowledge of the algo-
rithm’s characteristics and fault model. In fact, the first ever
ABFT scheme was proposed specifically for error detection
and correction on matrix operations, back in the 80s [22].
We will revisit the authors contributions in the following
sections, while highlighting two of its shortcomings (lack
of consideration for persistent faults and underestimation
of algorithmic/architectural overheads). More recently, an
extended version of the MxM ABFT [23] addressed the
original’s limited correction capability (single errors only).
By adding a number of extra steps (and computation) to the
data reconstruction process, authors have reported correc-
tion of a wider variety of error patterns. We, however, go
in the opposite direction of the spectrum, eliminating the
overhead necessary for error correction, and solely focusing
on extremely low-cost detection. This is mainly because,
as the majority of faults in FPGAs have a persistent effect,
without (partially) reconfiguring the device all subsequent
computations would very likely trigger the algorithmic cor-
rection procedures. Moreover, for not-so-harsh deployment
environments with a low expected error rate (i.e. terrestrial),
the cost of recovery (recomputation) is diluted across all the
error-free executions. In simpler words, it is preferable to
pay a slightly higher price every once in a while, instead of
paying for insurance every time.

Application-Specific Fault Tolerance: Although we have
previously mentioned a diverse number of MxM-based ap-
plications, the current prominence of CNNs, and the desire
to use them in real-time safety-critical applications, has
significantly skewed research interest towards the proposal
of CNN-specific hardening strategies. Most notably, authors
have very recently presented a low-cost, checksum-based,
error detection technique for convolution operations, and
integrated their solution within standard ML flows to facil-
itate the deployment of hardened CNNs in state-of-the-art
GPUs [31]. The authors reported arithmetic overheads be-
tween 1% and 7%, while runtime overheads were between
6% and 23% in their case-study neural networks. An experi-
mental demonstration of the technique’s ability to detect all
errors in convolutional layers was also provided. Such work
builds on top of the algebraic observations made by [32],
regarding convolution. The authors of [32] were particularly
interested in mitigating faults derived from overclocking, as
opposed to radiation-induced. Furthermore, the authors of
[33] have implemented the aforementioned MxM ABFT in
convolutional and inner product layers of CNNs, while also
proposing a novel ABFT technique for pooling operations,
ultimately achieving over 90% correction on critical SDCs
when executing state-of-the-art neural network topologies

in GPUs. Finally, from a more computer-vision perspec-
tive, authors have exploited spatio-temporal correlations
in CNNs’ input image frames, achieving over 80% error
detection while adding less than 5% of runtime overhead
in a CPU execution [34].

Fault Modeling: Also worth noting are some works pre-
dominantly concerned with fault modeling in a variety of
scenarios. For instance, the authors of [35] have investigated
the error patterns that emerged in matrix multiplication as
a result of spatially and/or temporally separated faults in
arithmetic and/or memory components, within the context
of GPU-based clusters for High-Performance Computing
(HPC). Some of the error patterns discussed by the authors
are also observed in our experiments, despite occurring
for different reasons, to be explained in Section 5. From
another standpoint, the authors of [36] have analyzed the
potential impact of permanent fabrication defects in a TPU-
like systolic array, by injecting faults directly at the gate-
level netlist of a synthesized design. The authors reported
that, after introducing only 0.005% of faultyness to the ar-
ray, the test accuracy on their case-study neural network
dropped from 74% to 39%. Moreover, the authors of [37]
have conducted software-based fault injection experiments
corrupting weight values of floating-point and fixed-point
variants of case-study CNNs. In this case, authors have
reported weight corruptions in convolutional layers to be
significantly more likely to generate classification errors
than weight corruptions in inner product layers, due to the
inherent weight reutilization that exists in convolution. Our
fault model analysis is dissimilar to these works mainly
because the persistent faults in FPGAs tend to alter the
functioning of the circuit, as opposed to simply disturbing
the inputs/outputs. Moreover, we further emphasize the
impact of fault propagation across the computing stack, up
to the application level.

3 A STATE-OF-THE-ART SYSTOLIC ARRAY IM-
PLEMENTATION ON FPGAS

In this section we present details of our high-performance
systolic array implementation on FPGAs. Even though this
is not our main contribution, it is a necessary component
of our work, as we later use it as a Design Under Test
(DUT) on two separate occasions: First, to construct the
fault model that is presented in Section 5. Second, to ex-
perimentally validate our novel error detection strategy in
Section 7. Nonetheless, we have decided to make our imple-
mentation publicly available, along with a parametric RTL
code generator (https://github.com/lllibano/LABFT) that
allows anyone to deploy custom-sized arrays in a matter of
minutes. Fig. 2 comprehensively illustrates our discussion.

There are two main particularities about our implemen-
tation (both of which are closely tied to state-of-the-art CNN
accelerators such as Google’s TPU [29] and Xilinx’s DPU
[30]. First, we should point out that our inputs are 8-bit
integers. This is because industry-standard ML frameworks,
offer lossless quantization tools for reducing the precision of
data representation in trained models. In other words, after
the training process is complete (using 32-bit floating point),
the model goes through an additional step, in which it is
converted to an 8-bit integer equivalent, while maintaining



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 5

the original accuracy level. Both TPU and DPU also use 8-
bit integers as inputs. Second, we shall mention that our
MxM array is weight-stationary. This simply means that
each element of the second input matrix is loaded into its
respective PEi,j, before the first input matrix starts flowing
into the array (instead of both moving together). Having
one stationary matrix mimics the behavior of convolutional
filters in a CNN, and allows for optimal DSP utilization.

For matrix multiplication, the PEs in the systolic array
must be MAC units. On modern FPGAs, DSP slices are the
fastest arithmetic elements. As such, DSPs are the center-
point of our PEs. We simultaneously employ two techniques
that allow us to extract top-tier performance out of each DSP.
Such techniques are also known to be used in Xilinx’s DPU
[30]. First, we take advantage of the adder that precedes
the multiplier (conveniently named pre-adder) to execute
(A + B) · E. Given that the inputs are 8 bits wide, and
that the pre-adder has a bitwidth of 25 and 27 (for DSP48E1
and DSP48E2, respectively [38]), it is possible to pack two
8-bit integer multiplications (AE, BE) into a single DSP,
merely through clever shifting and slicing of bits. This DSP
implementation is pretty much the same as [39]. Second, we
adopt a standard time-multiplexing scheme for the DSPs, as
suggested by Xilinx [38]. With proper muxing and instanti-
ation of registers, we are able to run the DSPs at twice the
clock frequency used by the rest of the circuit. The com-
bined effect of these two techniques is a multiplier with a
parallelism factor of 4 (i.e. it simultaneously calculates AE, BE,
CE, DE). To match such throughput, each PE also has four
adders that are implemented with abundant CLB elements
(LUTs and CARRYs). At the top level, our implementation
simply accommodates the degree of parallelism established
by the PEs. In other words, there are four simultaneous

matrix calculations being executed by the systolic array, at
all times (W=AxE, X=BxE, Y=CxE, Z=DxE).

In terms of resource utilization, we should highlight that
on top of being the fastest, DSP slices are also the most scarce
type of resource in Xilinx FPGAS. Therefore an efficient
FPGA accelerator must make good use of them. Looking
at Fig. 2, we can immediately see that our systolic arrays are
N-squared, and that each processing element uses a DSP.
Therefore, DSP utilization is predictable and parametric: an
N-sized array will use N2 DSP48E{1,2}.

In terms of performance, each of the N2 PEs executes
4 multiplications and 4 additions at each clock cycle, total-
ing 8N2 Operations Per Cycle (OPC). Then, if we multiply
OPC by frequency, we get the Giga Operations Per Second
(GOPS) metric. Since the maximum operating frequency
depends on target device, GOPS will vary. However, OPC
exclusively depends on array size. In order to prove that
our implementation is representative of the state-of-the-art,
we will compare two of Xilinx’s DPU configurations (one
B1152 core, and three B4096 cores) [30] to two of our de-
sign combinations (one 14x14 array, and two 32x32 arrays).
These two DPU configurations (B1152x1 and B4096x3) were
chosen because they respectively max out the resources on
a low-end (XC7Z020-3) and on a high-end (XCZU9EG-3)
Xilinx FPGA device [30]. In order to conduct a fair com-
parison, our design combinations were constrained to the
DSP budgets of those same devices. Although not explicitly
declared by Xilinx, the DPU product guide suggests array
sizes of 12x12 and 16x16 for B1152 and B4096, respectively
[30]. All numbers are shown in Table 1, and are also publicly

available in our repository.
Although our peak theoretical performance is higher

than that reported by Xilinx (36% and 19% for the 7 Series

Figure 2. Our systolic array implementation, viewed from different granularity standpoints. At the top level, input and output matrices get in and out
of the unit through AXI-Stream interfaces. Inside the array, the values of E are pre-loaded into their respective PEs. Then, the values of A/B/C/D
flow from left to right, while the accumulation results are propagated from top to bottom. Inside each PE, we combine clever shifting and slicing
of bits, with a standard time-multiplexing scheme, to achieve an effective throughput of 4 multiplications per cycle, using a single DSP. In order to
match such degree of parallelism, we use CLBs to implement 4 adders.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 6

and the UltraScale, respectively), so is our DSP utilization
(34% and 32%). Therefore, the numbers in Table 1 indicate
that our MxM systolic array architecture is very close to (if
not past) the state-of-the-art for 8-bit integer computation
on modern Xilinx FPGAs.

Table 1. Resource utilization and peak theoretical performance
comparison between DPU configurations [30], and our design

combinations, in a 7 Series (XC7Z020-3) FPGA, and in an UltraScale
(XCZU9EG-3) FPGA.

Device Design Combo # DSPs Frequency GOPS

XC7Z020-3 B1152 x 1 [30] 146 200MHz 230.0
14x14 x 1 196 200MHz 313.6

XCZU9EG-3 B4096 x 3 [30] 1542 333MHz 4100.0
32x32 x 2 2048 300MHz 4915.2

4 FAULT INJECTION METHODOLOGY

In this section we provide details pertaining to our fault
injection setups and methodologies. First, we run injection
campaigns on the FPGA, in order to gain insights regarding
the fault model of general MxM systolic arrays. Second, we
run application-level campaigns, where we inject the earlier
observed MxM error patterns, and quantify the criticality
of persistent fault propagation in the context of a CNN
execution. Both of these steps are included in our multi-
level fault propagation model (Section 5). Finally, we use our
FPGA fault injection setup an additional time, to experimen-
tally validate the effectiveness of our novel error detection
strategy against persistent configuration upsets (Section 7).

4.1 FPGA Fault Injection Setup
In order to emulate SEUs in the FPGA’s configuration mem-
ory, as well-established and well-validated in prior work,
we take advantage of the Internal Configuration Access
Port (ICAP) [40] that is present in modern Xilinx FPGAs.
More specifically, since we have chosen the XC7Z020 de-
vice from Xilinx’s Zynq-7000 family, we are able to use
its heterogeneity to facilitate our fault injection campaigns.
The XC7Z020 is a System-On-Chip (SOC), composed of a
Programmable Logic (PL) and pair of ARM A9 processors,
which Xilinx calls Processing System (PS). In practice, this
means that system designers can write C code to run on
the PS and easily control units instantiated in the PL. In our
case, the PS is used to send fault injection commands to the
ICAP-controlling unit, and to send/receive inputs/outputs
to/from the Design Under Test (DUT). For each iteration,
we also use the PS to perform a comparison of the outputs
against pre-computed golden values, as a way of evaluating
the effect of every injected fault. Finally, a monitor PC
logs all the relevant data for a later, more comprehensive
analysis. Fig. 3 shows a summarized flowchart of our fault
injection campaigns.

4.2 Application-Level Fault Injection
To better understand fault propagation at the application
level, besides flipping configuration bits in the FPGA, we
also conduct a separate fault injection experiment. Instead
of corrupting a systolic array’s architecture and observing

Figure 3. The steps involved in our FPGA fault injection campaigns.

matrix multiplication errors, during this second phase we
corrupt data on MxM operations and observe CNN errors
(application-level). In order to evaluate how corrupted ma-
trix calculations affect overall CNN computation, we have
developed a software-based fault injection methodology.
Given case-study CNNs and their topologies, we select (1)
target layer and (2) corruption severity. We stop computa-
tion halfway through (at target layer), and inject a persistent
matrix corruption pattern (with the given severity). We then
continue the CNN’s execution until the end and compare
the output against golden values. Our software-based injec-
tion emulates the behavior of a systolic-based execution in
all MxM operations (breaking them down in appropriately-
sized blocks), as we are able to specify array size N as a
parameter. Moreover, our injection patterns are persistent in
the sense that we corrupt all subsequent MxM operations
(from target layer onwards), mimicking the behavior of a
persistent fault in a systolic architecture. Performing this set
of experiments in software (as opposed to hardware) allows
for (1) increased injection detail/control, and (2) speed of
execution. We will discuss which matrix corruption patterns
were injected in our case-study CNNs when we present our
multi-level fault propagation model in Section 5.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 7

5 MULTI-LEVEL FAULT PROPAGATION MODEL

As previously stated, we are not the first to study the fault
model of matrix multiplication [23] [35]. However, prior
work mostly describes faulty behavior as a result of tran-
sient events in GPUs and CPUs. As our focus is on FPGAs,
our model revolves around the incidence of persistent faults.
Furthermore, we aim to provide a broader context, by dis-
cussing the bottom-up propagation of faults/errors/failures
across abstraction levels. We analyze a device, architecture,
algorithm, and application case-study stack, respectively com-
posed by: FPGA, Systolic Array, MxM, and CNN.

From the device (FPGA) perspective, permanent upsets
in the configuration memory are the main concern. When-
ever configuration bits are affected, the circuit implemented
on the fabric can start malfunctioning and providing erro-
neous outputs. Once the programmable logic’s behavior is
altered, faults are able to propagate to the architectural level.
We should also mention that, technically, logic resources on
the FPGA are prone to experiencing transient faults. How-
ever, as FPGAs do not run at frequencies nearly as fast as
a modern ASICs/CPUs/GPUs, the SET cross section pales
in comparison to the SEU cross section of the configuration
memory (the former typically being orders of magnitude
higher) [41]. Specifically, the SET cross section (i.e. likelihood
of capturing transient events) depends on switching fre-
quency because transient spikes at the circuit level need to
be latched by edge-triggered register-like elements in order
to manifest and propagate from the logic level upwards.

As, in this case, architecture (Systolic Array) and al-
gorithm (MxM) are tightly coupled, we are going to dis-
cuss them together. Previous works [23] [35] have already
outlined the following MxM error categories from both
analytical and experimental standpoints:

• Single: only one element is corrupted.
• Partial Line: only one row/column is partially cor-

rupted.
• Full Line: only one row/column is fully corrupted.
• Full Matrix: the entire matrix is corrupted.
• Random: none of the above.

Fig. 4 showcases some pattern examples of each of these
error categories.

Using the FPGA-based setup described in Section 4.1,
we have injected over 618,000 faults in a small 4x4 ver-
sion of our systolic array. For each injected fault, we have
ran ten different matrix multiplication operations, meaning

that, effectively, we have performed more than 6 million
tests. Approximately 300 thousand of such tests ended with
corrupted outputs. Our expected statistical error is ±0.025%
(95% confidence). Table 2 shows the distribution of errors
within the aforementioned categories. Very clearly, we can
see that Partial Line and Full Line errors account for the vast
majority of cases (69.96% to be exact). As we previously
discussed, this is due to the pattern of interconnection and
data movement in a systolic array, where each processing
element contributes to the calculation of multiple output
elements. Therefore, whenever an upset alters the function-
ing of a PE, it has a high probability of affecting multiple
outputs that share the same row/column. Namely, after
the fault has been installed, every subsequent multiplica-
tion/addition in that given PE is likely to produce errors
(except for possible input-dependent masking effects). In
fact, for over 90% of injections that result in matrix errors,
all ten output matrices present corruptions of the same
error category. Since the patterns persist across the following
operations in the pipeline, in an application context such as
a CNN (executing MxM over and over again), stuck-at faults
in a systolic array will exhibit a dangerous compounding
effect. If left unmitigated, catastrophic failures may occur.

Table 2. The distribution of MxM error categories, as a result of
architectural faults injected in a systolic array.

Single Partial Line Full Line Full Matrix Random

27.07% 43.28% 26.68% 0.25% 2.72%

Prior work has also observed a predominance of line
errors (49%) in a GPU context [23]. The authors argued
that upsets in the memory hierarchy are the most probable
reason why. Likewise, the authors of [35] analytically noted
that a single corruption in an input element will cause an
entire line (row or column) corruption in the output matrix.
As we will later explain in Section 6, the prevalence of
line errors is one of the key motivations behind our novel
hardening strategy. Finally, we shall state that, although
our experiments were performed with a simple 4x4 array,
the prevalence of line errors holds for any size N, since
it is inherently linked to the superposition of persistent
faults in PEs and systolic computation itself. In fact, we
might intuitively argue that the frequency of line errors shall
actually increase with N, as it only takes a single faulty PE
within the array to induce them.

Figure 4. Pattern examples for each of the output error categories in matrix multiplication.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 8

In order to contextualize the severity of propagating ma-
trix multiplication errors in CNNs, we perform application-
level fault injection campaigns as described in Section 4.2.
As a foundational first case-study, we have chosen the
simple and well known LeNet CNN for handwritten digit
classification [42].

After observing five well-defined matrix error categories
in our FPGA-based injections (Fig. 4 and Table 2), we pur-
posely corrupt matrices in our CNN execution to generate
random patterns within those five categories. These patterns
are random in the sense that, for example, there are 32
different ways of creating a Full Line error in a 16x16 matrix.
In fact, for generating patterns within Partial Line and Full
Line categories, we first randomly choose between row or
column, then randomly choose the line index. Specifically
for Partial Line patterns, the number of corrupted elements
is also randomly chosen (between 2 and the line’s width).
For injecting Single corruptions, we randomly draw row
and column indexes. Once the corruption pattern is defined,
we apply it to every subsequent MxM operation from the
CNN’s target layer onwards (thus emulating a persistent
fault). It is worth restating (as mentioned in Section 4.2)
that all matrix operations are properly broken down into
blocks, given the size of the underlying systolic array being
emulated in our software-based injection campaign.

We present the results in Fig. 5 measured as Program
Vulnerability Factor (PVF) [43] (i.e. the likelihood of an
injected fault generating an observable error), subdivided
in Tolerable Errors and Critical Errors, according to whether
or not the final output corruption was significant enough
to compromise the image classification task. For each bar
plotted in Fig. 5, 1000 faults were injected, which establishes
a statistical error of around ±6% in our PVF estimates.

Very clearly, PVF is lower and less critical in larger
arrays. This is because, given a large MxM operation, the
number of sub-blocks required to complete the execution is
inversely proportional to the available systolic array size.
For instance, if we were to execute a 256x256 operation in a
4x4 array, then we would have to compute 218 4x4 blocks.
Given that a persistent fault exists in the array, then most
of the block computations are very likely to exhibit the

same error pattern. In other words, a persistent fault in a
KxK array will cause many more corruptions in a particular
matrix multiplication operation than the same persistent
fault in a LxL array, given K<L. Moreover, we see that the
PVF increases with the criticality of MxM errors, regardless
of array size, which is rather intuitive. For example, a persis-
tent fault generating Partial Line errors in a 64x64 array has
a 75.6% probability of generating output errors, compared
to only 13.7% with a stuck-at Single error. This, of course, is
also true in terms of criticality: a persistent fault generating
Full Line errors in a 64x64 array has a 97% probability of
generating critical errors in the CNN, compared to only
30.6% with Partial Line errors. Finally, we see in Fig. 5 that
the earlier the persistent fault is injected, the higher the
probability of compromising the CNN’s correctness. If we
inject a persistent Full Line error at the beginning of LeNet’s
computation (layer 1) using a 256x256 array, the likelihood
of observing critical errors is 43.5%, whereas if we only start
having faulty MxM operations from layer 2 onwards, that
probability diminishes to 10.8%.

As a way of investigating how the criticality of persis-
tent faults would change when increasing the complexity
of the CNN, we have conducted additional fault injec-
tion experiments with the state-of-the-art 25-layer VGG16
topology [44]. Out of the 25 layers, 16 are MxM-based
(13 of which are convolutional and 3 of which are inner
product). Once again, we have separately injected random
persistent patterns of Single, Partial Line, Full Line, and Full
Matrix errors in matrix multiplication operations from each
of the target layers onwards. Furthermore, each operation is
broken down into 256x256 blocks. We present the results in
Fig. 6 measured as PVF, subdivided in Tolerable Errors and
Critical Errors. For each bar plotted in Fig. 6, 1000 faults were
injected, establishing a statistical error of around ±6%.

We can clearly perceive that, again, the criticality of CNN
errors increases with the severity of persistent MxM error
categories. In fact, for both Full Line and Full Matrix patterns,
VGG16 always experienced misclassifications, regardless of
which first target layer was chosen. In the case of Single and
Partial Line patterns, it is clear that the earlier the fault is
installed, the higher the probability of it manifesting as a

Figure 5. Program Vulnerability Factor (PVF) of the case-study LeNet CNN [42]. Persistent matrix multiplication error patterns were injected
at convolutional (1,2,3) and inner product (4,5) layers. Separate campaigns were performed for different systolic array sizes N={4,16,64,256}.
Application errors are considered tolerable or critical according to whether or not the final output corruption was significant enough to compromise
the image classification task.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 9

Figure 6. Program Vulnerability Factor (PVF) of the case-study VGG16 CNN [44]. Persistent matrix multiplication error patterns were injected at
convolutional (0-C) and inner product (D,E,F) layers. The campaign was performed considering a systolic array size N=256. Application errors are
considered tolerable or critical according to whether or not the final output corruption was significant enough to compromise the image classification
task.

CNN output error (and of such error being considered crit-
ical), which was expected, and is now properly quantified.
Moreover, we also tested VGG16 considering an underlying
32x32 array. However, with the exception of Single errors
injected on the MxM computation of the last layer of the
network, all test cases led to 99+% probabilities of critical
errors. As this graph would not be very insightful, we
only report the 256x256 case. Conveniently, as 256 is the
dimension of Google’s TPU design [29], we believe it to be
the single most important scenario to evaluate.

Finally, we must highlight that, as real-time CNNs work
at high frame rates, even if a persistent fault is first installed
at the last layer of frame fi, it will very likely affect the
computation of the first layer of frame fi+1, and all the
following frames. This scenario then further motivates the
design of a fast error detection and reconfiguration scheme.

6 LIGHT ABFT
Motivated by the need for low-cost hardening strategies,
and the aforementioned predominance of line errors, we
present Light ABFT: a lightweight error detection tech-
nique for matrix multiplication, specially tailored for high-
performance systolic arrays on FPGAs. Next, we shall dis-
cuss the idea itself, and its costs of implementation, from
algorithmic (arithmetic operations), and architectural (arith-
metic units) perspectives. We will also compare our costs to
the original and most traditional ABFT [22], and to the most
recent work on convolution-specific error detection [31].

6.1 Overview & Formal Demonstration

At the core, the original ABFT algorithm [22] works because
of redundancy of information. The calculation and attach-
ment of summation vectors to the input matrices, prior to
the execution of matrix multiplication, makes it possible to
detect, and potentially correct, arithmetic errors at the end
of computation. As it can be seen in Fig. 7, input matrices A
and B grow by one row/column respectively.

Given an input matrix A with i rows and j columns, then
the j elements in A’s summation vector (row i+1) are:

SVAz
:= Ai+1,z =

i∑
x=1

Ax,z for 1 ≤ z ≤ j (1)

Given an input matrix B with j rows and k columns, then
the j elements in B’s summation vector (column k+1) are:

SVBz
:= Bz,k+1 =

k∑
y=1

Bz,y for 1 ≤ z ≤ j (2)

Figure 7. Visual comparison between [22] and Light ABFT in terms of
information redundancy and cost. Light ABFT only calculates L, instead
of the entire checksum row/column.

Carrying out the calculation with the original ABFT
algorithm would then result in an output matrix C with
i+1 rows an and k+1 columns. Effectively, this means that
an extra i+k+1 elements would have to be computed, on top
of the useful workload. As proved by [22], the checksum
information can be used to detect errors in C, and, in the case
of single errors, to reconstruct corrupted data. However, as
per Section 5, when considering systolic arrays in FPGAs,
line errors are much more frequent, meaning that the benefit
of having error correction capabilities would vanish, most of
the time.

Therefore, the fundamental insight behind Light ABFT is
that, by focusing solely on error detection, it is possible to
eliminate a significant amount of unnecessary computation.
More specifically, instead of calculating i+k+1 extra output
elements, we only calculate one, which is showcased in red
with the letter L in Fig. 7. Directly from Fig. 7, we can see
that L is the dot product of summation vectors A and B.
At the same time, it is easy to prove that L also equals to
the sum of all elements in C.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 10

Theorem 6.1.

L = SVA · SVB =
i∑

x=1

k∑
y=1

Cx,y (3)

Proof.

The dot product between the summation vectors A and
B can be rewritten as:

SVA · SVB =

j∑
z=1

SVAzSVBz (4)

Substituting Eq. 1 and Eq. 2 in Eq. 4 we get:

SVA · SVB =

j∑
z=1

(
i∑

x=1

Ax,z

k∑
y=1

Bz,y) (5)

Using distributive properties, we can rewrite Eq. 5 as:

SVA · SVB =
i∑

x=1

k∑
y=1

j∑
z=1

Ax,zBz,y (6)

By definition, each element Cx,y of output matrix C is
calculated as the dot product between the xth row of input
matrix A (Ax) and the yth column of input matrix B (By):

Cx,y = Ax ·By =

j∑
z=1

Ax,zBz,y (7)

Therefore, it is also true that:

i∑
x=1

k∑
y=1

Cx,y =
i∑

x=1

k∑
y=1

j∑
z=1

Ax,zBz,y (8)

Since the right-hand side of Eq. 6 is equal to the right-
hand side of Eq. 8, by transitivity we have proved that Eq. 3
is true, as we intended to do.

As a consequence of having two distinct ways for cal-
culating L (via the inputs, and via the outputs), a simple
comparison between the two is sufficient to verify the cor-
rectness of the matrix multiplication.

6.2 Cost Analysis
To facilitate the discussion about costs, we shall first enu-
merate the steps involved in the traditional ABFT [22]:

1) Calculation of summation vectors
2) Matrix multiplication (useful work)
3) Calculation of checksums
4) Error detection
5) Error correction

For each step (with the exception of error correction), we
will express cost in algorithmic (raw workload) and archi-
tectural (systolic array) terms. Once again, we will consider
that input matrix A has i rows and j columns, and that input
matrix B has j rows and k columns. As a direct consequence
of the matrix multiplication algorithm itself, output matrix
C has i rows and k columns.

In order to calculate the summation vectors, we must
perform j sums of i elements for matrix A and j sums

of k elements for matrix B, totaling a cost of j(i+k) sums.
Architecturally, we need 2j extra adders to accumulate the
summation vectors as data enters the systolic array, while
maintaining a fully-streaming behavior.

Given the aforementioned matrix sizes, the intrinsic cost
of the matrix multiplication is to perform j MACs for
each of the ik output elements, totaling j(ik) MACs. Since
the original ABFT grows matrix C to i+1 rows and k+1
columns, the cost becomes the calculation of j MACs for
(i+1)(k+1) output elements, totaling j(ik+i+k+1). Therefore,
ABFT’s added cost is j(i+k+1). Architecturally, the authors of
[22] suggest growing the systolic array accordingly, adding
a total of i+k+1 extra PEs. In the case of Light ABFT, the sizes
of the matrices remain unaltered, and we only calculate L as
the dot product between the summation vectors, incurring
a cost of j MAC operations, which can be accommodated
with a single extra PE. Interestingly, as [31] pointed out,
the increase in size for the input matrices is actually one
of the main reasons why Traditional ABFT incurs such a
high runtime overhead in GPUs: As a larger GEMM must
be executed, inefficiencies in cache arise due to additional
online data management procedures, directly translating to
increased execution times.

In the error detection phase, the original ABFT algorithm
performs i accumulations of k elements horizontally (row-
wise), and k accumulations of i elements vertically (column-
wise), along with i+k comparisons against checksum values,
totaling 2ik additions and i+k comparisons. The authors do
not explicitly suggest an architectural implementation cost,
but i+k adders and 2 comparators would be needed, at a
minimum, to maintain a fully utilized systolic pipeline. In
the case of Light ABFT, it is necessary to add all the ik
output elements of C, as they come out of the array, and
then compare it to L. This can be architecturally accom-
plished with k+1 adders and a single comparator. It must
be mentioned, however, that the original ABFT is able to
pin-point the x and y indexes of the error (which is needed
for the following error correction step), while Light ABFT
only signals that something went wrong (which can then
trigger a system-level action, such as moving to a fail-safe
state until corrective measures take place).

We summarize the algorithmic and architectural costs
of Light ABFT in Table 3, while comparing it to [22]. As
a way to simplify the data, we assume that a compari-
son/comparator costs the same as an addition/adder. More-
over, if we assume square matrices of size M (i.e. i=j=k=M),
or square arrays of size N (i.e. i=j=k=N), we are able to
reduce our cost expressions to single variables, making it
is easier to perceive the savings of Light ABFT. In particular,
the architectural cost of Light ABFT is made evident in our
suggested architectural implementation (Fig. 8).

Previously, in Section 2, we have mentioned that large
matrix operations are often completed in steps. Since the
dimensions of the systolic array are fixed at implementation
time, chunks of input data must pass through the accelerator
multiple times to finish computation. Precisely, if we intend
to run an operation with square matrices of size M, and we
choose to break such operation into square blocks of size
B, with M≥B, and both M and B being positive powers of
2, then the number of B-sized matrix multiplications to be
executed is (M/B)3. This is somewhat intuitive if we recall



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 11

Table 3. Costs of [22] compared to Light ABFT,
in algorithmic (raw workload) and architectural (systolic array) terms.

Step Cost Type [22] Light ABFT

1) Algorithmic ADD j(i+k) j(i+k)
Architectural ADD 2j 2j

3)
Algorithmic MUL j(i+k+1) j

ADD j(i+k+1) j
Architectural MUL i+k+1 1

ADD i+k+1 1

4) Algorithmic ADD 2ik+i+k ik+1
Architectural ADD i+k+2 k+2

Total
Algorithmic ADD 2(ik+ji+jk)+i+j+k ik+ji+jk+j+1

MUL ji+jk+j j
Architectural ADD 2(i+j+k)+3 2j+k+3

MUL i+k+1 1

i=j=k
Algorithmic ADD 6M2+3M 3M2+M+1

MUL 2M2+M M
Architectural ADD 6N+3 3N+3

MUL 2N+1 1

Figure 8. Our suggested Light ABFT architecture for a systolic array
context. The array is assumed to be square and of size N. Input matrices
enter the unit from the left, while the output matrix enters the unit from
the right. The unit then outputs a signal indicating if errors are present
in the MxM computation.

that the total number of MAC operations involved in matrix
multiplication must be maintained regardless of blocking:

M3 =

(
M

B

)3

·B3 (9)

However, when applying error detection techniques to
blocks as opposed to the entire matrix, the algorithmic cost
expressions shown in Table 3 no longer tell the whole story.
In general, for both [22] and Light ABFT, we have that the
following relationship holds for the hardening cost H:

H(M) ≤
(
M

B

)3

·H(B) (10)

Eq. 10 effectively states that hardening an MxM oper-
ation is cheaper than hardening all blocks of that same
operation (regardless of block size, since M/B ≤ 1). As
an example, for M=B=4 (i.e. no blocking), the algorithmic
cost H(4) of Light ABFT would be 53 ADDs and 4 MULs.
However, for M=4 and B=2, 8 blocks, with hardening cost
H(2) of 15 ADDs and 2 MULs each, would total 120 ADDs
and 16 MULs.

Simultaneously though, block utilization increases the
granularity of checking, meaning that (1) errors can be de-
tected in the middle of computation, as opposed to just at
the end, and (2) the cost of recomputation diminishes, as
we do not need to re-run the entire operation after an error
detection.

To get a sense of precisely when the benefits of blocking
outweigh its added costs, we came up with yet another cost
expression F. In addition to matrix size (M), and block size
(B), our function F also depends on the expected number of
executions between errors (R). The idea is that, if we expect
to have, on average, one error after every R executions, then
the cost of block recomputation is diluted throughout those
R executions. Hence, F actually represents the failure-free
execution cost, and can be broken in two components. The
F1 component is the cost of R executions:

F1(M,B,R) = R ·
((

M

B

)3

·
(
B3 +H(B)

))
(11)

The inner-most parenthesis in Eq. 11 (B3 + H(B)) rep-
resents the cost of computing plus hardening a block. This
cost is multiplied by the number of blocks (M/B)3, and
then by our newly introduced average number of executions
between errors R. Therefore, F1 represents how much math
will be done, on average, in between errors.

The F2 component is simply the cost of recomputing a
block:

F2(M,B,R) = 1 ·
(
B3 +H(B)

)
(12)

Hence, the actual failure-free execution cost F is the sum of
all arithmetic operations performed in between errors (F1)
with the cost of recomputing a block after a detection (F2),
times the expected rate of errors (1/R):

F (M,B,R) =
F1 + F2

R
(13)

Expanding the numerator in Eq. 13 gives us a final
expression in terms of M, B and R:

F (M,B,R) =

((
M

B

)3

+
1

R

)
·
(
B3 +H(B)

)
(14)

Notice that, if R tends to infinity (i.e. no errors), the
term 1/R vanishes, symbolizing a lack of recomputation
payments.

To ease our discussion, in Fig. 9 we plot the cost F
divided by the inherent cost of matrix multiplication (M3),
minus 100%, with M=256 and increasing values of R. Then
in Fig. 10 we plot the same curves, but for a very large ma-
trix size (M=4096). As we can see, for each R curve there is
a different choice of B that delivers the minimum arithmetic
overhead. Moreover, the higher the expected error rate, the
sooner that inflection point appears. Given specific M=M0
and R=R0, the optimal B is found by solving:

∂F (M0, B,R0)

∂B
= 0 (15)



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 12

Figure 9. Arithmetic overhead of Light ABFT, for matrix size M=256,
growing block size (B) and expected executions between errors (R).

Figure 10. Arithmetic overhead of Light ABFT, for matrix size M=4096,
growing block size (B) and expected executions between errors (R).

Finally, we thought that it would be helpful to also
include a cost evaluation in a real-world application sce-
nario. Since we have previously mentioned CNNs as being
one of the most prominent MxM-based applications, and
[31] being the most recent and efficient piece of related
work for CNN-specific ABFT-based error detection, an in-
context comparison becomes very relevant. More specifi-
cally, the authors of [31] have chosen three well-known
CNNs (VGG16, ResNet18 and ResNet50), and estimated the
overheads incurred by two of their proposed convolution
error detection mechanisms. They have included numbers
for average increase in number of operations, as well as runtime
overhead in a GPU execution. As the latter is not directly
comparable to our work, we will stick to the former. Authors
have reported their average increase of arithmetic opera-
tions to be <7% and <1% for their FC and FIC techniques,
respectively.

In order to employ Light ABFT in a convolution opera-
tion, it suffices to translate it to an equivalent matrix mul-
tiplication, using the well-known im2col method [3]. Then
we must calculate the cost of adding Light ABFT to each of
such MxM operations (using the expressions in Table 3), and
the cost of the (unhardened) MxM operation itself. Finally,
the ratio between the two aforementioned costs gives us the
overhead of having Light ABFT as a percentage of useful
workload. The calculated overheads were 0.35%, 0.81%, and
0.71% for VGG16, ResNet18 and ResNet50, respectively.
Therefore, the average overhead of adding Light ABFT to

the convolutional layers of the case-study CNNs comes out
to 0.63%, which is, at least, as good as the state-of-the-art
convolution-specific technique presented by [31]. Moreover,
Light ABFT can also be directly employed in the inner
product (i.e. fully connected) layers of neural networks, as
these are, by definition, matrix multiplication operations
between inputs and weights.

7 EXPERIMENTAL VALIDATION

Since we have already formally demonstrated that Light
ABFT works for arbitrarily-sized matrix multiplication op-
erations in Section 6, the goal of this section is simply to
experimentally evaluate Light ABFT in a concrete FPGA
scenario. To be specific, we integrate the Light ABFT module
(proposed in Section 6) into the hierarchy of our systolic
array implementation (detailed in Section 3). As the unhard-
ened DUT was already tested in Section 5, we simply repeat
the experiments (using the FPGA setup described in Section
4) to measure the newly added error detection capabilities.

After injecting over 623,000 faults in our design, we have
measured a detection rate of 97.4%, with a statistical error
of ±0.15% (95% confidence). We believe that the remaining
2.6% of undetected faults are due to errors (1) in the interface
of the module, (2) in control signals throughout the unit,
or (3) in the Light ABFT hardware itself. Prior studies have
investigated hardening alternatives for (1) and (2) [17] [45],
but they are out of scope for this work. Nonetheless, as the
intention of Light ABFT is to protect MxM computation,
our experimental results are very much indicative of suc-
cess. Moreover, prior work has also reported experimental
FPGA fault injection numbers that do not quite reach the
theoretical 100% detection rate, even for coarse grain DMR
implementations. For instance, [20] achieves a maximum
of 96.1% detection when duplicating an FIR filter design.
Similarly, [21] proposes and experimentally evaluates a
handful of ABFT-based error detection techniques for Fast
Fourier Transform (FFT), reporting detection rates between
94.12% and 99.77%. This means that, in practice, there is an
asymptotic limit for achievable error detection rates with
redundant hardware.

Furthermore, the authors of [21] also report the occur-
rence of another known event in redundant circuits: false
detections. As we mentioned in Sections 1 and 2, the added
redundancy is also prone to experiencing upsets, in which
case untrue detections may arise. In our experiments with
a 4x4 array, we have measured a 2.39% probability for
such events. For comparison purposes, [21] reports false
detection rates as high as 45%. Luckily, in our case, since
the percentage area overhead of Light ABFT diminishes
with increasing array sizes (as per Section 6), so does the
ratio between true and false detections in real radiation-
rich environments. Thus, for sufficiently large arrays, the
rate of false detections would pale in comparison to true
detections. Nevertheless, for extremely strict scenarios, it
would suffice to instantiate a DMR Light ABFT module, as a
way of eliminating false detections, while still paying much
less than with full DMR.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 13

8 CONCLUSION

We discussed the importance of having fast and reliable
matrix multiplication, and key steps to achieve it, such as
selecting inherently parallel devices, and adopting proper
error detection techniques at different abstraction levels. We
pointed out that the combination of stuck-at faults with the
data movement pattern in systolic arrays makes current
fault models incomplete. To address this, we showcased
an extended fault propagation model, particularly account-
ing for permanent upsets in SRAM-based FPGAs. After
acknowledging that most matrix errors tend to affect lines
instead of single elements (case in which traditional ABFT
strategies fail to correct [22], or become too expensive [23]),
we argued that it is preferable to opt for error detection
mechanisms that incur the lowest possible cost. Then, we
proposed, formally proved, and experimentally validated
Light ABFT: a lightweight error detection technique for
matrix multiplication, tailored for systolic arrays on FPGAs.
We also discussed optimal design decisions for minimizing
the arithmetic overhead of Light ABFT, given expected error
rates, and the involvement of arbitrarily large matrices.

ACKNOWLEDGMENTS

This material is based on research sponsored by Air Force
Research Laboratory (AFRL) and Defense Advanced Re-
search Projects Agency (DARPA) under agreement number
FA8650-18-2-7860. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. This
research has been supported by the European Union’s Hori-
zon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No 886202.

REFERENCES

[1] J. Faeldon, K. Espana, and D. J. Sabido, “Data-centric HPC for Nu-
merical Weather Forecasting,” in 2014 43rd International Conference
on Parallel Processing Workshops. New York, NY, USA: IEEE, 2014,
pp. 79–84.

[2] Top500.org, “The Linpack Benchmark,” 2020. [Online]. Available:
https://www.top500.org/project/linpack/

[3] K. Chellapilla, S. Puri, and P. Simard, “High Performance
Convolutional Neural Networks for Document Processing,” in
10th International Workshop on Frontiers in Handwriting Recognition,
Université de Rennes 1. La Baule (France): Suvisoft, Oct. 2006.
[Online]. Available: https://hal.inria.fr/inria-00112631

[4] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep Convolutional Neural
Networks for Computer-Aided Detection: CNN Architectures,
Dataset Characteristics and Transfer Learning,” IEEE Transactions
on Medical Imaging, vol. 35, no. 5, pp. 1285–1298, May 2016.

[5] Tesla. Autopilot. [Online]. Available: https://www.tesla.com/
autopilot

[6] T. Samad, J. S. Bay, and D. Godbole, “Network-Centric Systems
for Military Operations in Urban Terrain: The Role of UAVs,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 92–107, 2007.

[7] NASA. Mars Helicopter. [Online]. Available: https://mars.nasa.
gov/technology/helicopter/

[8] V. Neagoe, A. Ciotec, and A. Bărar, “A Concurrent Neural Net-
work Approach to Pedestrian Detection in Thermal Imagery,” in
2012 9th International Conference on Communications, June 2012, pp.
133–136.

[9] H. R. Kerner, K. L. Wagstaff, B. D. Bue, P. C. Gray, J. F. Bell,
and H. Ben Amor, “Toward Generalized Change Detection on
Planetary Surfaces With Convolutional Autoencoders and Trans-
fer Learning,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 12, no. 10, pp. 3900–3918, Oct
2019.

[10] V. Volkov and J. W. Demmel, “Benchmarking GPUs to Tune Dense
Linear Algebra,” in Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, ser. SC ’08. IEEE Press, 2008, paper 31, pp. 1–11.

[11] T. Piovesan, H. C. Sartori, J. E. Baggio, and J. R. Pinheiro, “CubeSat
Electrical Power Supplies Optimization — Comparison Between
Conventional and Optimal Design Methodology,” in 2016 12th
IEEE International Conference on Industry Applications (INDUS-
CON), 2016, pp. 72–78.

[12] M. Qasaimeh, J. Zambreno, P. H. Jones, K. Denolf, J. Lo, and
K. Vissers, “Analyzing the Energy-Efficiency of Vision Kernels
on Embedded CPU, GPU and FPGA Platforms,” in 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2019, pp. 336–336.

[13] M. Wirthlin, “High-Reliability FPGA-Based Systems: Space, High-
Energy Physics, and Beyond,” Proceedings of the IEEE, vol. 103,
no. 3, pp. 379–389, March 2015.

[14] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA Partial Re-
configuration via Configuration Scrubbing,” in 2009 International
Conference on Field Programmable Logic and Applications, 2009, pp.
99–104.

[15] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and
K. Lundgreen, “Domain Crossing Errors: Limitations on Single
Device Triple-Modular Redundancy Circuits in Xilinx FPGAs,”
IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2037–2043,
2007.

[16] J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan, “Using Duplication with Compare for
On-line Error Detection in FPGA-based Designs,” in 2008 IEEE
Aerospace Conference, 2008, pp. 2322–2333.

[17] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda, “On the
Optimal Design of Triple Modular Redundancy Logic for SRAM-
based FPGAs,” in Design, Automation and Test in Europe, 2005, pp.
1290–1295 Vol. 2.

[18] A. M. Keller and M. J. Wirthlin, “Benefits of Complementary SEU
Mitigation for the LEON3 Soft Processor on SRAM-Based FPGAs,”
IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 519–528,
2017.

[19] L. Sterpone and N. Battezzati, “A Novel Design Flow for the Per-
formance Optimization of Fault Tolerant Circuits on SRAM-based
FPGA’s,” in 2008 NASA/ESA Conference on Adaptive Hardware and
Systems, 2008, pp. 157–163.

[20] L. A. Aranda, P. Reviriego, and J. A. Maestro, “A Comparison
of Dual Modular Redundancy and Concurrent Error Detection
in Finite Impulse Response Filters Implemented in SRAM-Based
FPGAs Through Fault Injection,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 65, no. 3, pp. 376–380, 2018.

[21] R. González-Toral, P. Reviriego, J. A. Maestro, and Z. Gao, “A
Scheme to Design Concurrent Error Detection Techniques for the
Fast Fourier Transform Implemented in SRAM-Based FPGAs,”
IEEE Transactions on Computers, vol. 67, no. 7, pp. 1039–1045, 2018.

[22] Kuang-Hua Huang and J. A. Abraham, “Algorithm-Based Fault
Tolerance for Matrix Operations,” IEEE Transactions on Computers,
vol. C-33, no. 6, pp. 518–528, 1984.

[23] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An Efficient and Exper-
imentally Tuned Software-Based Hardening Strategy for Matrix
Multiplication on GPUs,” IEEE Transactions on Nuclear Science,
vol. 60, no. 4, pp. 2797–2804, 2013.

[24] JEDEC. Tech (2006). rep. jesd89a, jedec standard.
[Online]. Available: https://www.jedec.org/sites/default/files/
docs/jesd89a.pdf

[25] J. R. Srour and J. M. McGarrity, “Radiation Effects on Microelec-
tronics in Space,” Proceedings of the IEEE, vol. 76, no. 11, pp. 1443–
1469, 1988.

[26] R. C. Baumann, “Soft Errors in Advanced Semiconductor Devices-
Part I: The Three Radiation Sources,” IEEE Transactions on Device
and Materials Reliability, vol. 1, no. 1, pp. 17–22, 2001.

[27] R. C. Baumann., “Radiation-induced Soft Errors in Advanced
Semiconductor Technologies,” IEEE Transactions on Device and
Materials Reliability, vol. 5, no. 3, pp. 305–316, 2005.

[28] H. T. Kung and C. E. Leiserson, “Systolic Arrays (for VLSI),” in
Sparse Matrix Proceedings 1978, vol. 1. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1978, pp. 1–29.

[29] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). New York, NY, USA:
IEEE, 2017, pp. 1–12.

https://www.top500.org/project/linpack/
https://hal.inria.fr/inria-00112631
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://mars.nasa.gov/technology/helicopter/
https://mars.nasa.gov/technology/helicopter/
https://www.jedec.org/sites/default/files/docs/jesd89a.pdf
https://www.jedec.org/sites/default/files/docs/jesd89a.pdf


IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, NOVEMBER 2021 14

[30] Xilinx. (2019) Zynq DPU. Xilinx. [Online].
Available: https://www.xilinx.com/support/documentation/ip
documentation/dpu/v3 1/pg338-dpu.pdf

[31] S. K. S. Hari, M. Sullivan, T. Tsai, and S. W. Keckler, “Making
Convolutions Resilient via Algorithm-Based Error Detection Tech-
niques,” IEEE Transactions on Dependable and Secure Computing, pp.
1–1, 2021.

[32] T. Marty, T. Yuki, and S. Derrien, “Enabling Overclocking Through
Algorithm-Level Error Detection,” in 2018 International Conference
on Field-Programmable Technology (FPT), 2018, pp. 174–181.

[33] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and Increasing the Reliability of
Convolutional Neural Networks on GPUs,” IEEE Transactions on
Reliability, vol. 68, no. 2, pp. 663–677, 2019.

[34] L. K. Draghetti, F. F. d. Santos, L. Carro, and P. Rech, “Detecting Er-
rors in Convolutional Neural Networks Using Inter Frame Spatio-
Temporal Correlation,” in 2019 IEEE 25th International Symposium
on On-Line Testing and Robust System Design (IOLTS), 2019, pp. 310–
315.

[35] P. Wu, Q. Guan, N. DeBardeleben, S. Blanchard, D. Tao, X. Liang,
J. Chen, and Z. Chen, “Towards Practical Algorithm Based Fault
Tolerance in Dense Linear Algebra,” in Proceedings of the 25th
ACM International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 31–42. [Online].
Available: https://doi.org/10.1145/2907294.2907315

[36] J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating
the impact of permanent faults on a systolic array based neural
network accelerator,” in 2018 IEEE 36th VLSI Test Symposium
(VTS), 2018, pp. 1–6.

[37] A. Ruospo, A. Bosio, A. Ianne, and E. Sanchez, “Evaluating
Convolutional Neural Networks Reliability depending on their
Data Representation,” in 2020 23rd Euromicro Conference on Digital
System Design (DSD), 2020, pp. 672–679.

[38] Xilinx. (2019) UltraScale Architecture DSP Slice User Guide.
Xilinx. [Online]. Available: https://www.xilinx.com/support/
documentation/user guides/ug579-ultrascale-dsp.pdf

[39] Xilinx. (2017) Deep Learning with INT8 Optimiza-
tion on Xilinx Devices. Xilinx. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/white
papers/wp486-deep-learning-int8.pdf

[40] S. Di Carlo, P. Prinetto, D. Rolfo, and P. Trotta, “A Fault Injection
Methodology and Infrastructure for Fast Single Event Upsets Em-
ulation on Xilinx SRAM-based FPGAs,” in 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2014, pp. 159–164.

[41] E. Keren, S. Greenberg, N. M. Yitzhak, D. David, N. Refaeli,
and A. Haran, “Characterization and Mitigation of Single-Event
Transients in Xilinx 45-nm SRAM-Based FPGA,” IEEE Transactions
on Nuclear Science, vol. 66, no. 6, pp. 946–954, 2019.

[42] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.

[43] V. Sridharan and D. R. Kaeli, “Eliminating Microarchitectural
Dependency from Architectural Vulnerability,” in 2009 IEEE 15th
International Symposium on High Performance Computer Architecture,
2009, pp. 117–128.

[44] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and
Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/
1409.1556

[45] S. Niranjan and J. Frenzel, “A Comparison of Fault-Tolerant State
Machine Architectures for Space-Borne Electronics,” IEEE Transac-
tions on Reliability, vol. 45, no. 1, pp. 109–113, 1996.

Fabiano Libano received his B.S and M.S de-
grees from Federal University of Rio Grande
do Sul, Porto Alegre, Brazil. He is currently a
PhD candidate at Arizona State University. He
is mainly interested in the reliability of hard-
ware accelerators and high-performance archi-
tectures for real-time safety critical applications.
His most recent work has focused on effi-
cient radiation hardening strategies for matrix-
multiplication-based computation, such as High-
Performance Computing and Neural Networks.

Paolo Rech received his M.S. and Ph.D. de-
grees from Padova University, Padova, Italy.
Since 2012 Paolo is an associate professor at
UFRGS in Brazil. He is the 2019 Rosen Scholar
Fellow at the Los Alamos National Laboratory.
He received the 2020 impact in society award
from the Rutherford Appleton Laboratory, UK.
Since 2020 Paolo is a Marie Curie Fellow at Po-
litecnico di Torino. His research interests include
the evaluation and mitigation of radiation effects
in HPC and autonomous vehicles.

John Brunhaver is an Assistant Professor at
Arizona State University in the School of Elec-
trical Computer Energy Engineering as of 2015.
His research focuses on developing a machine
understanding of computation, VLSI-design pro-
ductivity, and radiation-hardened circuits and ar-
chitectures. His Stanford University Ph.D. the-
sis, The Design and Optimization of A Stencil
Engine, examines the virtual machine model for
an image processing and image understanding
domain-specific processor.

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_1/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_1/pg338-dpu.pdf
https://doi.org/10.1145/2907294.2907315
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

	Introduction
	Background And Related Work
	Radiation Effects on Computing Devices
	Matrix Multiplication on Systolic Arrays
	Related Work

	A State-Of-The-Art Systolic Array Implementation on FPGAs
	Fault Injection Methodology
	FPGA Fault Injection Setup
	Application-Level Fault Injection

	Multi-Level Fault Propagation Model
	Light ABFT
	Overview & Formal Demonstration
	Cost Analysis

	Experimental Validation
	Conclusion
	References
	Biographies
	Fabiano Libano
	Paolo Rech
	John Brunhaver


