
UNIVERSITY OF TRENTO

DOCTORAL THESIS

An Electronic Control Architecture for a

Photonic Integrated Circuit

Author:

Luca GEMMA

Supervisor:

Prof. Davide BRUNELLI

Supervisor:

Dr. Martino BERNARD

A thesis submitted in fulfillment of the requirements

for the PhD in Materials, Mechatronics and Systems Engineering

in the

Department of Industrial Engineering

March 24, 2023

http://www.unitn.it
luca.gemma.91@gmail.com
davide.brunelli@unitn.it
bernard@fbk.eu
https://www.dii.unitn.it/

iii

Declaration of Authorship
I, Luca GEMMA, declare that this thesis titled, “An Electronic Control Architecture

for a Photonic Integrated Circuit” and the work presented in it are my own. I confirm

that:

• This work was done wholly or mainly while in candidature for a research de-

gree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed my-

self.

Signed:

Date:

luca.gemma.91@gmail.com

v

“Thanks to my solid academic training, today I can write hundreds of words on virtually any

topic without possessing a shred of information, which is how I got a good job in journalism.”

Dave Barry

vii

UNIVERSITY OF TRENTO

Abstract
Mechatronic Engineering

Department of Industrial Engineering

Materials, Mechatronics and Systems Engineering

An Electronic Control Architecture for a Photonic Integrated Circuit

by Luca GEMMA

Quantum computing is rapidly growing as well as the interest in it, not only by

the scientific community but also by impacting realities such as IBM and Microsoft,

which are aiming to be the first to acquire quantum supremacy, a meaningful theo-

retical step in quantum research where a quantum computer would win undisputed

once and for all the race with traditional supercomputers. One of the main enabling

technologies for quantum computing is photonics, that features photons as the quan-

tum actors "interacting" in a Photonic Integrated Circuit (PIC), mostly based on the

mature silicon technology of electronics. This thesis presents my work on electronic

control architecture for PICs. The work is based on PICs fabricated in Fondazione

Bruno Kessler (FBK) with silicon and dielectric technology, using silicon oxynitride

(SiON) as the wave-guiding dielectric medium. The PIC were integrated on Printed

Circuit Board (PCB) boards through wire-bonding technique, realizing modules eas-

ily integrated and re-configured with the custom made interposer board and the

multiple voltage drivers that are at the core of the electronic architecture. Then, both

the thermistors and the photodiodes were characterized. A custom firmware was

then developed to control the thermistors by providing an analog voltage in the 0-12

V range, and each of those elements effectively acts as a Degree of Freedom (DoF)

for the photonic architecture. In addition, to validate the results obtained by voltage

driving the phase-shifters, the theoretical output of a single Mach Zehnder Inter-

ferometer (MZI) was computed and compared to the one achieved experimentally.

Furthermore, such systems are controlled in a closed loop by using as a feedback

the photocurrent produced by photodiodes placed either on each output of the PIC

or homogeneously integrated withing the PIC itself. Finally, a secondary source of

HTTP://WWW.UNITN.IT
https://offertaformativa.unitn.it/en/lm/mechatronics-engineering
https://www.dii.unitn.it/
luca.gemma.91@gmail.com

viii

feedback was developed and investigated. Although it is a feasible method to esti-

mate the light intensities of outputs, basing the feedback on invasive sensors implies

strict bindings during the design stage and limits the measurable scenarios of a PIC,

thus in this thesis I also propose an optical tool to arbitrary tune and control a PIC

based solely on camera inspection. By using such technique it would be possible not

only to achieve comparable results with respect to the traditional invasive sensing,

but also to inspect the system configuration in any section of the chip, without being

limited to only the regions where photodiodes would be present.

ix

Acknowledgements

I acknowledge the support of the MNF Laboratory staff of FBK during sample fab-

rication.

I acknowledge financial support from the Autonomous Province of Trento, under

the initiative "Quantum at Trento - Q@TN", projects Q-PIXPAD and CoSiQuP.

The project this work is based on has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreements No 777222,

ATTRACT INPEQuT and No 899368, EPIQUS.

I acknowledge the great support of my two supervisors, Prof.Davide Brunelli from

University of Trento and Dr.Martino Bernard from the FBK Institute: they not only

guided me in such a complex path as the Quantum photonics is, but also they al-

ways were solid reference points I knew I could have when dealing with the several

hard issues I encountered during this doctoral project.

I want to thank also the University of Trento and the FBK Institute for the availability

of resources and the access to laboratories they granted me, the knowledge transmit-

ted through the offered courses and the warm social environment given to doctoral

students as me which stimulates the growth and exchange of knowledge. I have to

spend few words also on a great calamity that trampled the university environment

as well as the whole society during the last few years: the Covid emergency. For

probably the first time ever, all academic members were overwhelmed by a para-

lyzing emergency which increased distances between them and for several months

slowed down if not freezed all scientific activities. This world emergency taught us

the crucial role of collaboration and once again showed the importance of the scien-

tific research.

Last but not least, I want to thank all the people I encountered during this great

journey I had in these years, from my closest friends to professors, researchers and

people I had the luck and pleasure to meet and share my journey, even just for a

short period.

Thank you all, my friends.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1

2 Related Works 9

Introduction to this Chapter . 9

2.1 Related Works . 9

3 Photonic Integrated Circuits 13

Introduction to this Chapter . 13

3.1 Mach Zehnder Interferometers . 13

3.2 Phase shifters . 16

Our devices . 18

3.3 Waveguides . 21

3.3.1 Numerical simulations . 22

3.3.2 Device fabrication . 24

3.3.3 Measurements . 25

3.4 Output detectors . 27

Conclusions to this Chapter . 28

4 The Control Architecture 37

Introduction to this Chapter . 37

4.1 General Overview . 38

4.2 Software . 39

4.2.1 General overview . 39

4.2.2 Custom Module and Installation script 40

xii

4.2.3 Interface with the Q8b driver module 40

4.2.4 Interface with the Picoscope 4224 41

Initialization . 41

Measurement acquisition . 42

Closing the connection . 42

Short example . 43

4.2.5 Interface with the Keithley 2450 43

Initialization . 43

Measurement acquisition . 43

Closing the connection . 45

Short example . 45

4.2.6 Data logging . 45

4.2.7 Screenshot capture . 45

4.2.8 Voltage sweep . 46

4.2.9 Hand tuning of the PIC . 47

4.2.10 Simulation of the theoretical output of a single MZI 49

4.2.11 Simulation of the theoretical output of a Clements architecture 50

4.2.12 Output optimization algorithm 54

4.2.13 Theoretical MZI output formulas 58

Conclusions to this Chapter . 60

5 Measurements 77

Introduction to this Chapter . 77

5.1 Measurement Routine . 77

Setting up the laser . 78

Configuring the Peltier cell . 79

Aligning the fiber and maximizing the output signal 81

5.2 Calibrating the output power and checking optical fiber deterioration . 84

Using the PM100D Powermeter to get precise output power . . 85

Analyzing fiber deterioration: fiber to fiber alignment 87

Analyzing fiber deterioration: test waveguides 88

5.3 Voltage Sweep and checking thermistor integrity 89

5.4 Mapping the interposer to the current PIC 91

Adding a backplane . 91

xiii

Adding a custom PCB interposer 92

5.5 Testing the output optimization algorithm 94

5.5.1 Measurements conditions . 94

5.5.2 Results . 97

Conclusions to this Chapter . 101

6 Future Improvements 107

Introduction to this Chapter . 107

6.1 Performance oriented software . 107

6.2 Lab state retrieving routine . 108

6.3 Automatic fine optimization of micro manipulators 108

6.4 Straight interface with the camera . 108

6.5 Automatic election of the best DoFs for a specific I/O combination . . 109

6.6 Inspect the impact of AI in the output optimization algorithm 109

Conclusions to this Chapter . 109

7 Conclusions 111

A Help in replicating this work 113

Bibliography 155

xiv

xv

Acronyms

ADC Analog-to-Digital Converter.

Al Aluminum.

AlN Aluminum Nitride.

API Application Programming Interface.

CAD Computer-Aided Design.

CMOS Complementary Metal–Oxide–Semiconductor.

DoF Degree of Freedom.

FBK Fondazione Bruno Kessler.

FEM Finite Element Method.

HF Hydrofluoric acid.

HMI Human Machine Interface.

IDE Interactive Development Environment.

LWIR Long-Wave Infrared.

MEMS Micro-Electromechanical Systems.

MZI Mach Zehnder Interferometer.

OS Operative System.

PCB Printed Circuit Board.

PD Photodiode.

xvi

PIC Photonic Integrated Circuit.

PID Proportional Integral Derivative.

Q.E. quantum efficiency.

RIE Reactive ion etching.

SCPI Standard Commands for Programmable Instruments.

Si Silicon.

SiN Silicon Nitride.

SiON silicon oxynitride.

SPAD Single-Photon Avalanche Diode.

TE transverse-electric.

TEC Thermo-Electric Cooler.

TEOS Tetraethylorthosilicate.

Ti Titanium.

TiN Titanium Nitride.

TiTiN Titanium-Titanium Nitride.

TM transverse-magnetic.

VI Virtual Interface.

VLSI Very Large Scale Integrated.

xvii

List of Figures

1.1 Sycamore . 2

1.2 D-Wave quantum photonic processors 3

1.3 IBM quantum photonic processors . 4

1.4 Quix quantum photonic processors . 5

1.5 A 3d rendering of the Q-PIXPAD device 7

3.1 Common MZI architectures . 14

3.2 MZI architectures . 15

3.3 MZI CAD and camera view . 16

3.4 Phase shifters architectures . 18

3.5 A sketch of the PIC prototype . 19

3.6 I-V characterization curves for thermistors. 20

3.7 Power consumption per unit length for thermistors. 21

3.8 Resistance Values for thermistors. 22

3.9 Wedge profile fabrication process . 23

3.10 Numerical simulation of electromagnetic field intensity 29

3.11 CAD layout of the detector . 30

3.12 Diodes quantum efficiency . 30

3.13 Experimental setup for diode responsivity measurements 31

3.14 Diodes responsivity . 32

3.15 A close up on the designed photodetectors. 32

3.16 Typical I-V curves near breakdown. 33

3.17 I-V curve in forward region. 33

3.18 I-V curve for bright current. 34

3.19 I-V curve in photovoltaic mode for different illumination conditions. . 35

3.20 Measured A/W responsivity of the fabricated PDs. 35

4.1 System architecture . 38

xviii

4.2 Lab setup . 38

4.3 A portion of a data log. 46

4.4 HMI for hand tuning of thermistors . 49

4.5 Two stages Clements architecture . 52

4.6 Two stages Clements - first stage formulas 53

4.7 Two stages Clements - two stages formulas 54

4.8 MZI theoretical output . 60

4.9 MZI experimental output . 61

4.10 Single MZI actuation . 62

4.11 Clements structure actuation . 63

4.12 Interfacing with the Q8b driver module and voltage driving a single

channel . 64

4.13 Interfacing with the 4224 Picoscope digital oscilloscope 64

4.14 Acquiring and retrieving a measurement from the 4224 Picoscope dig-

ital oscilloscope . 65

4.15 Stopping and disconnecting the 4224 Picoscope digital oscilloscope . . 65

4.16 A sample of complete measurement routine for the 4224 Picoscope

digital oscilloscope . 66

4.17 Connecting and initializing the 2450 Keithley digital multimeter 67

4.18 Acquiring a single measurement from the 2450 Keithley digital mul-

timeter . 67

4.19 Performing a voltage sweep with the 2450 Keithley digital multimeter 68

4.20 Stopping and disconnecting the 2450 Keithley digital multimeter . . . 69

4.21 A sample of a complete routine for connecting, initializing, acquir-

ing a single measurement and disconnecting the 2450 Keithley digital

multimeter . 69

4.22 The custom function to take a screenshot of a region of the screen . . . 70

4.23 Interfacing with a single Q8b driver module and performing a single

channel voltage sweep . 70

4.24 Hand tuning the PIC by controlling each DoF via sliders and display-

ing them via a dynamic plot . 71

4.25 Creating dynamic sliders and plot for MZI output simulation 72

4.26 The custom function for reading the stored data 73

xix

4.27 The custom function for computing the outputs for an arbitrary Clements

architecture with any number of inputs and stages of MZIs 73

4.28 The optimization algorithm based on image processing 74

4.29 The optimization algorithm based on the 2450 Keithley digital multi-

meter . 75

4.30 The optimization algorithm based on the 4224 Picoscope digital oscil-

loscope . 76

5.1 Lab setup . 78

5.2 Close up of lab setup . 78

5.3 LP850 Laser diode absolute maximum ratings 79

5.4 LP850 Laser diode specifications . 80

5.5 Block scheme for setup with the Peltier cell 81

5.6 Closeup of the Peltier cell and the MD415L temperature controller. . . 82

5.7 Temperature controller HMI . 82

5.8 Block scheme for Picoscope-based optimization 84

5.9 Sample PIC wirebonded . 85

5.10 Closeup of alignment of input fiber . 85

5.11 Laser injection closeup . 86

5.12 Laser beam passing through silicon photodiode 86

5.13 Output fiber alignment . 87

5.14 Block scheme for setup with the Power meter 88

5.15 Fiber to fiber alignment . 89

5.16 Block scheme for setup for thermistor integrity check 90

5.17 I-V characterization curves for thermistors. 91

5.18 Thermistor integrity check . 92

5.19 Closeup of lab final setup . 93

5.20 Block scheme for setup with backplane and interposer 94

5.21 Interposer CAD . 95

5.22 Interposer and PIC PCB mapping . 96

5.23 PIC PCB and PIC mapping . 97

5.24 PIC PCB and PIC image . 98

5.25 PIC DoFs mapping . 99

xx

5.26 Block scheme for setup when using Keithley-based optimization al-

gorithm . 101

5.27 Block scheme for setup when using Picoscope-based optimization al-

gorithm . 102

5.28 Block scheme for setup when using image processing-based optimiza-

tion algorithm . 102

5.29 Optimization results for Keithley for first scenario 103

5.30 Optimization results for image processing for first scenario 104

5.31 Optimization results for Keithley for second scenario 105

5.32 Optimization results for image processing for second scenario 106

1

Chapter 1

Introduction

October 23rd, 2019: Google claims to have reached quantum supremacy. Sycamore,

Google’s quantum computer (Fig. 1.1), solves in almost 200 seconds an algorithm

which would have taken the current fastest traditional supercomputer, Summit, two

days to resolve [1]. But quantum supremacy is a well yearned goal and that was not

an easy win by Google, as many scientists still do not label quantum supremacy

as “reached”. However, as computer scientists have underlined, "the first airplane

flew for no more than 12 seconds, still since then man has started flying" [2]. Since then,

not only Google and IBM, but many other companies joined this "quantum race",

as quantum computing rapidly became a promising game-breaking deal, attract-

ing the interest of the scientific community. Quantum states can be reached and

exploited with several processes like topological systems (Microsoft), superconduct-

ing circuits (Rigetti and IBM), trapped ions (IonQ), Photonic Systems (PsiQuantum)

and quantum annealing (DWave). Regarding topological systems, in [3] Microsoft

depicts a slid fault-tolerant quantum computing approach that uses semiconducting

nanowires. In [4] Rigetti illustrates the fabrication of superconducting caps focusing

on critical aspects such as vacuum, isolation and resonant elements. IBM’s work

on quasi-lumped model approaches in [5] shows the complex design of supercon-

ducting quantum circuits. IonQ presents in [6] a new optimization principle for the

power consumption of two-qubit gates, specifically focusing on trapped-ion quan-

tum computers. PsiQuantum and Mercedes-Benz R&D hint in [7] at how battery

design can benefit from fault-tolerant quantum computing exploiting silicon pho-

tonics as a technology enabler. DWave discusses in [8] many major architectural

considerations for the design of a superconducting quantum annealing processor.

Lastly, Xanadu [9] joins the debate over quantum solutions questioning about how

the scientific community should focus on ways to properly benchmark progresses

2 Chapter 1. Introduction

achieved in quantum computing and its applications such as quantum machine

learning.

FIGURE 1.1: Sycamore (Google’s quantum computer) quantum pro-
cessor.

When computational power commercial solutions are involved, D-Wave started

focusing on quantum annealing based processor also offering a commercial solu-

tion[10] based on cloud computation with a software environment to program Ad-

vantage, their 5000 Qubits quantum processor (Fig.1.2).

Chapter 1. Introduction 3

1

2

FIGURE 1.2: D-Wave quantum photonic processors. On top (1): the
latest version of their quantum annealing based quantum processor.
On bottom: the software environment that D-Wave offers for pro-
gramming on cloud their newest system, Advantage, which features

more than 5000 qubits.

As Fig.1.3 shows, during such years also IBM proved to be strongly interested

in the quantum computing field, starting in 2019 with a superconducting circuits

based quantum processor featuring 27 Qubits[11], then announcing a 65 qubits one

in 2020[12], a 127 qubits version in 2021[13] and finally a stunning 433 late version

in 2022[14].

4 Chapter 1. Introduction

1

2 3 4 5

FIGURE 1.3: IBM quantum photonic processors. On top (1): the latest
433 qubits version of their superconducting circuit quantum proces-
sor. On bottom: the evolution of the computational power in Qubits

of IBM processors, as 27 (2), 65 (3), 127 (4) and 433 (5) qubits.

In March 2022 QuiX Quantum presents the largest photonic quantum processor

based on reconfigurable interferometers and featuring a 20 input-outputs mode ar-

chitecture [15] after having presented in January 2020 and December 2020 8[16] and

12[17] mode quantum processors respectively. In Fig.1.4 the QuiX quantum photonic

processors for 8,12 and 20 reconfigurable modes are shown along with the setup for

such processors: the ribbon cables for parallel communications to the electronics

and the input and output optical fibers are clearly visible. This setup is similar to the

setup we used in this project for our PIC.

Chapter 1. Introduction 5

1

5 6 7

2

3

4

FIGURE 1.4: Quix quantum photonic processors. On top (1): the 12
mode quantum photonic processor deployed and connected; note the
ribbon cables for parallel connections to the electronics (2) and the
input (3) and output (4) optical fibers. On bottom: the 8 (5), 12 (6) and

20 (7) mode quantum photonic processors.

When considering established technologies and facilities I had access to, I strongly

consider silicon photonics as enabling technology as it is a mature technology with

several advantages over its alternatives. First of all, integrated photonics merges nat-

urally with current classical telecommunications technologies. In addition, photonic

chips for quantum technologies are more feasible, as e.g. hard cooling is not required

as instead it is for superconducting circuits. Lastly, there is a significant similarity

in fabrication techniques between photonic chips and Very Large Scale Integrated

(VLSI) circuits; allowing monolithic fabrication with relatively low overhead. There-

fore, PICs can embed in compact solutions the photonics and the electronics, heavily

involving standard electronics and applying it as a quantum technology.

Theoretically speaking, quantum photonics exploits quantum states of photons,

i.e. the elementary light particles, to implement two main quantum computing prop-

erties: entanglement and superposition. Entanglement states that as soon as after a

specific event in time a group of particles are generated, their properties cannot be

changed independently: no matter the distance between them, when some of its

properties change, the other particles immediately reflect such changes. Superposi-

tion is a property for which, in the quantum scale, two or more states co-exist over-

lapping each other. In a photonic circuit, the light path is controlled by usually use of

6 Chapter 1. Introduction

the thermo-optic properties of the material used as a waveguide, and this is usually

produced either by heaters or by electro-optic effects. The goal is to induce a change

in the speed of light in the material, thus inducing as a consequence a change in the

phase of the photons moving within the heated waveguide. By using beam-splitters

and being able to control the phase of the travelling light, it is possible to obtain any

unitary transformation of arbitrary states, achieving the universality property. Com-

monly, the output light is then sensed by a Single-Photon Avalanche Diode (SPAD),

which produce a current proportional to the intensity of the incident light. The va-

lidity and strength of quantum photonics for quantum computers has been demon-

strated by several works, where the photonics fundamental blocks and principles

were largely characterized. Annoni et al. [18] inspected a photonic switch that used

the MZI, a fundamental building block, and realized a matrix of such elements and

automatically routed these elements throughout a cascade of stages, leading to con-

current acquisition of high amount of parallel data. Zhu et al. [19] largely discussed

phase-shifters and highlighted state-of-the-art performance for MZIs thermo-optic

phase shifters by proposing Aluminum Nitride (AlN) between the waveguide and

the heaters. Gentile et al. [20] built and tested a Bayesian phase estimator based

on MZIs, proving the robustness of these basic blocks especially when supported

by these estimators against many of the common sources of noise. Still, the char-

acterization of two fundamental elements of a PIC, photodiodes and thermistors,

is lacking in literature. Moreover, even if examples of quantum photonic circuits

exist (mainly following the architectures illustrated in [18], [19] and [20]), achiev-

ing precise output measurements is not a trivial task as little has been done to fully

characterize the readout circuit of such chips. Generally speaking, a photonic circuit

implies a network of channels with tunable interaction (as in [15]).

As previously stated, however, as quantum photonics is a young and constantly

evolving technology, open issues are still present such as calibrating the network

before the quantum state measurement and embedding in the same device the de-

tectors and the photonic circuit. This thesis is based on the Q-PIXPAD project, which

aims at providing source, control circuit and single photon detector in the same de-

vice (Fig.1.5). My contributions, illustrated in this thesis, within this major project

were the design and test of an electronic control architecture and a collaboration

with Dr.Martino Bernard and his team to characterize the embedded detectors in

such device. Other than the characterization results achieved in collaboration with

Chapter 1. Introduction 7

FIGURE 1.5: A 3d rendering of the Q-PIXPAD device I used as PIC
in this thesis work. The Q-PIXPAD project aims at embedding in
the same device the photon source, the electronic control circuit and
the single photon avalanche detectors. A part from the characteriza-
tion of photodiodes, thermistors and waveguides, for which I collab-
orated with Dr.Martino Bernard and his team, the major contribution
of this thesis is the development of the electronic control circuit for

such device.

Dr.Martino Bernard and his team, this thesis illustrates an automatic tool through

image processing which focuses on two main objectives: (i) estimating the intensity

of the light field arbitrarily in any point of the photonic circuit, and (ii) achieving

optimal system configuration with no need for invasive (and bulky) on- or off-chip

detectors. The entire tool chain was tested on PICs fabricated in our facilities, prov-

ing its effectiveness, comparing the estimated output of the image processing algo-

rithm with the one retrieved by on-chip measurements from silicon photodiodes.

In addition, the theoretical output intensities and phases of a single MZI has been

computed to further validate the experimental measurements.

9

Chapter 2

Related Works

Introduction to this Chapter

In this chapter I will discuss about the state of the art for silicon photonics and, in

particular, for photonic circuit in the near-infrared. References to external works

will be provided for the main basic components used in the PIC structures I worked

with, along with the two main architectures for interferometer network topologies.

2.1 Related Works

PICs are an appealing technology as many authors has shown how they can suc-

cessfully implement essential quantum elements such as photonic switches, as de-

scribed in [18], where Annoni et al. assembled a series of MZIs to realize a pho-

tonic switch for capturing data simultaneously. PICs allow for using Silicon Nitride

(SiN) and SiON waveguides, both of which are transparent in a wide band of the

visible spectrum that spans from the the infrared to the ultraviolet region. In litera-

ture, SiN is undoubtedly considered as the state-of-the-art material for near-infrared

photonic waveguides [21], featuring low on-chip losses for PICs [21]. As it is com-

patible with CMOS technology, SiN represents an ideal solution for realizing silicon

photonic chips, keeping a considerable advantage over chips based on non Comple-

mentary Metal–Oxide–Semiconductor (CMOS)-compatible materials. In this thesis

silicon photodetectors were integrated in the substrate of a PIC made of SiN as the

guiding material. The integration of the detectors in the silicon substrate has an

edge over other quantum technologies alternatives (e.g. superconducting circuits or

trapped ions) as they require additional dedicated fabrication processes both for the

10 Chapter 2. Related Works

fabrication and for the deposition of exotic materials. Several fundamental build-

ing blocks can be embedded in the circuits and they are usually made by at least

one beam splitter. The main building block this thesis revolves around is the MZI.

Theoretically speaking, an MZI is a cascade of two beam splitters with two-phase

shifters touching two parallel branches of a waveguide. After the first beam split-

ter, theoretically the light is split in a 50-50 ratio, with their paths further modified

by a phase change caused by the thermistors. Then, after a second beam splitter

the two light beams exit the block producing interference. We have characterized

phase shifters realized by Titanium (Ti)-Titanium Nitride (TiN) thermistors in a pre-

vious work [22]. We have also characterized output photon detectors realized by

integrated Photodiode (PD)s [23], where from normal incidence we retrieved the

spectral responsivity. As a result of this work, it is possible to estimate the PD’s

detection efficiency, which is a crucial step as having available an high detection ef-

ficiency is needed to properly implement a PIC solution embedding several MZIs

and an array of photodiodes and thus requiring a precise output detection. When

considering the interferometer network topologies there are two main architectures

that grant unitary transformations: the Reck and the Clements[24] and [25]. Reck

et al. in [26] showed how a triangular configuration of phase-shifters and 2x2 beam

splitters can implement any arbitrary unitary transformation of the input channels.

In addition to that, the Reck configuration allows for an easy calibration for each el-

ement in the net, as it comes naturally from the triangular layout of the architecture.

Clements et al. proposed a more compact layout illustrated in [25] and [24] but still

using the same number of beam splitters. They achieved with such architecture a

significantly shorter optical structure depth, consequently greatly reducing both the

propagation losses and the footprint, but introducing a non-trivial calibration of the

system components. Finally, in fiber optics image processing techniques are largely

used, either as inspection methods for defects detection detect as in [27] where the

authors illustrated an architecture robust to different exposures and gains, or for

correct alignments as in [28]. There are also few works about optical inspection of

camera images for retrieving PIC performances, such as in [29], where the authors

used an Long-Wave Infrared (LWIR) camera to extract the performance through the

propagation losses per unit length of the waveguides of Mid-Infrared Germanium-

based photonic devices. Still there are no works in literature showing optical tools

to maximize, minimize or tune PIC outputs based solely on computer vision. One

2.1. Related Works 11

of the major contributions of this thesis is to show and discuss a custom solution

to estimate the configuration of a photonic chip based on computer vision by using

scattering at the waveguides surface without no need for dedicated off- or on-chip

output detectors.

13

Chapter 3

Photonic Integrated Circuits

Introduction to this Chapter

In this chapter I will introduce PICs and describe their core elements: MZIs, phase

shifters, waveguides and output detectors. I will further illustrate their tunability

through the use of thermistors. All works I contributed to and discussed in this

Chapter is a fraction of and belongs to the major Q-PIXPAD project, for which I give

all credits. The Q-PIXPAD project aims at embedding in a single device the photon

source, the electronic control circuit and the single photon avalanche detectors. We

acknowledge the support of the MNF Laboratory staff of FBK during sample fabri-

cation. We acknowledge financial support from the Autonomous Province of Trento,

under the initiative "Quantum at Trento - Q@TN", projects Q-PIXPAD and CoSiQuP.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreements No 777222, ATTRACT INPE-

QuT and No 899368, EPIQUS. My contribution within this noteworthy project was

focused on acquiring and processing measurements during the characterizations

of the silicon photodiodes, metallic thermistors and SiN waveguides, thus in this

Chapter I will discuss the results I obtained as a part of the teamwork withing the

Q-PIXPAD project.

3.1 Mach Zehnder Interferometers

Among the most impacting basic components of a quantum photonic circuit, the

beam splitter is probably the one that plays the most roles in optics. A beam split-

ter can be realized in many ways (Fig.3.1), from a cubic prism to a plate [30], to

14 Chapter 3. Photonic Integrated Circuits

split with a specific ratio the incident light; such ratio may range from a full trans-

fer (0:100 or viceversa) to any amount of in-between splitting (like a 50:50). Since

getting very accurate split ratio with real components is usually hard due to the in-

troduced imperfections and non linearities, a solution to achieve a more robust split

ratio is by using a cascade of two beam splitters in what is called a Mach Zehnder

Interferometer. Theoretically speaking, in this structure a first beam splitter divides

the incoming light beam in two separate branches, which, usually thanks to phase

shifters, implies two optical paths with different lengths, then the two paths are re-

combined by a second beam splitter [31]. For a detailed mathematical description,

please check subsection 4.2.13 in Chapter 4.

(A) Cube Beamsplitter (B) Plate Beamsplitter

FIGURE 3.1: Cube beamsplitter (a) and plate beamsplitter (b). Cour-
tesy of edmundoptics.com [30].

Three fundamental architectures are established when designing a forward net-

work of MZIs: the Reck, the Clements [24] and the Fast-transformation based [32].

Reck et al. in [26] showed that it is possible to achieve any NxN unitary input trans-

formation by deploying a triangular configuration of phase-shifters and 2x2 beam

splitters. Moreover, this configuration allows for a single calibration of the elements

in the net. Another consolidated configuration emerged through the years is the one

proposed by Clements et al [24]. In this solution, Clements et al. proved that by

using the same number of beam splitters of a Reck configuration but with a sym-

metric layout it is possible to achieve a shorter optical depth; this leads to smaller

footprints and lower propagation losses, although requiring a complex calibration

of the system. Finally, a third scheme has been proposed by Torma et al. [33] using

femtosecond laser micromachining and based on fast Fourier transform use in Coo-

ley et al. [34]. This configuration allows for a significant decrease of required optical

elements while still achieving a wide number of linear optical networks. However,

3.1. Mach Zehnder Interferometers 15

this third configuration does not allow arbitrary unitary transformation, thus it lacks

universality. The main features of each configuration (such as the capability of im-

plementing the Hadamard class of matrices) are summarized in 3.2 together with

their layouts while the CAD layout for the MZIs used in this thesis is shown in

Fig.3.3.

FIGURE 3.2: Three main MZI architectures: Reck (a), Clements (b)
and fast-Fourier transform based (c). The main unit cell is illustrated
in (d) as a MZI with an internal relative phase shift. The main fea-
tures for each configurations are summarized in table (e). Courtesy

of Flamini et al. [32]

16 Chapter 3. Photonic Integrated Circuits

1

2

3

4

5

6

8

7

FIGURE 3.3: MZI CAD layout (1) and how they appear under camera
inspection (2) for the PICs used in this thesis. The metallic connec-
tions to the thermistors are visible ((3) and (4)), as well as the beam
splitters ((5) and (6)) and the very thermistors, marked in red in the

Computer-Aided Design (CAD) layout ((7) and (8)).

3.2 Phase shifters

When dealing with beam splitters and MZIs, inducing a change in the path length

affects the chance of each injected photon to instead change its output path. To pro-

duce such change in the length of the optical path, optical switches exploit either the

plasma dispersion effect or the thermo-optic effect [35] (Fig.3.4). The plasma disper-

sion effect is described by the Drude model which states that a change in the plasma

frequency of free carriers induces a change in refractive index (∆n) and absorption

coefficient (∆α) as follows:

∆n = −(e2λ2/8π2c2ϵ0n)[∆Ne/m∗
ce + ∆Nh/m∗

ch] (3.1)

∆α = (e3λ2/4π2c3ϵ0n)[∆Ne/m∗2
ce µe + ∆Nh/m∗2

ce µh] (3.2)

3.2. Phase shifters 17

with "e is the electronic charge, ϵ0 is the permittivity in a vacuum, c is the speed

of light in vacuum, λ is the wavelength,n is the unperturbed refractive index, m∗
ce

and m∗
c h" are the conductivity effective masses for electron and hole, and µe and µh

is the mobilities for electron and hole respectively" [35]. While plasma dispersion

based optical shifters are used mainly where high-speed shifting is required, mostly

in the GHz regime, shifters based on the thermo-optic effect are used for mid and

low speed Si modulators, falling in the kHz to MHz regime depending on several

factors such as the type of stack materials for the photonic platform or the realization

of trenches in the substrate. Together with the MEMS actuators (with a speed rate of

1 MHz in air as reported in), which mechanically switch to each optical path, [36],

thermo-optic based shifters allow for low crosstalk and reduced losses w.r.t. plasma

dispersion shifters. While Micro-Electromechanical Systems (MEMS) based shifters

are relatively easy to embed in a wide switch array with low complexity, thermo-

optic shifters usually requires multi-stage interferometers but can be driven by lower

voltages w.r.t. MEMS actuators, which can require up to 60 V. Moreover, MEMS ac-

tuators are still at a premature development stage to be considered a valid solution

for phase shifters, as there are no standards for silicon photonics MEMS and effec-

tive solutions are still under inspection [36]. with "e is the electronic charge, ϵ0 is the

permittivity in a vacuum, c is the speed of light in vacuum, λ is the wavelength,n is

the unperturbed refractive index, m∗
ce and m∗

c h" are the conductivity effective masses

for electron and hole, and µe and µh is the mobilities for electron and hole respec-

tively" [35]. While plasma dispersion based optical shifters are used mainly where

high-speed shifting is required, mostly in the GHz regime, shifters based on the

thermo-optic effect are used for mid and low speed Si modulators, falling in the kHz

to MHz regime depending on several factors such as the type of stack materials for

the photonic platform or the realization of trenches in the substrate. Together with

the MEMS actuators (with a speed rate of 1 MHz in air as reported in [36]), which

mechanically switch to each optical path, [36], thermo-optic based shifters allow for

low crosstalk and reduced losses w.r.t. plasma dispersion shifters. While Micro-

Electromechanical Systems (MEMS) based shifters are relatively easy to embed in a

wide switch array with low complexity, thermo-optic shifters usually requires multi-

stage interferometers but can be driven by lower voltages w.r.t. MEMS actuators,

which can require up to 60 V. Moreover, MEMS actuators are still at a premature

development stage to be considered a valid solution for phase shifters, as there are

18 Chapter 3. Photonic Integrated Circuits

no standards for silicon photonics MEMS and effective solutions are still under in-

spection [36]. Finally, even if solutions allowing high speed rates are appealing, mid

and low speed rates such as the ones belonging to thermo-optic based shifters are

indeed a viable solution for quantum experiments as in such experiments the in-

tegration time is several orders of magnitude bigger than the reconfiguration time,

with tens of minutes for the former and milliseconds for the latter.

FIGURE 3.4: Three main architectures for phase shifters: plasma dis-
persion, thermo-optic and MEMS. Courtesy of Scholarly Community

Encyclopedia [35]

In thermo-optic shifters, the optical path nL is determined by the refractive index:

nL = (n0
e f f +

dne f f
dT × ∆T)L (3.3)

where n0
e f f is the room temperature refractive index, dne f f

dT is the thermo-optic coef-

ficient and ∆T is the variation in temperature w.r.t. room temperature. The tem-

perature gradient is usually induced by a metal heater, such as Titanium-Titanium

Nitride (TiTiN) thermistor, although the design of such elements is crucial as the dis-

tance between the heater and the waveguide significantly contributes to the optical

loss.

Our devices

A test structure (Fig.3.5) was fabricated at FBK in the cleanroom facility. This de-

vice featured embedded Ti-TiN thermistors as heat-actuators for the phase shifters.

The PIC-detector integrated circuits featured silicon wafers as the material platform.

Moreover, the photonic layer is separated from the metal with a protective silicon

oxyde. A combination of TiN, Ti and Aluminum (Al) materials for the the resistors

and the pads for wire-bonding made the metal.

3.2. Phase shifters 19

FIGURE 3.5: A sketch of the PIC prototype. Through SiN waveguides
an 850 nm laser beam is guided and, by combining beam splitters
and phase shifters, 10 Mach-Zehnder Interferometers are controlled
to induce phase shifts. The output is measured through an array of
6 silicon SPADs. To fully monitor and control the PIC, an electronic
control board has been adopted, meeting the thermistor maximum
borne power and the photodiode responde to the photovoltaic exci-

tation.

Electrical measurements for all PIC’s thermistors were conducted at the PM8

Manual Probe Station at FBK equipped with a 200mm 4x PH150 Karl-Suss manual

probe which ensured both reliability and high stability. Moreover, a LABVIEW in-

terface was developed to collect the data.

A voltage sweep from 0 to 15 V was performed during data acquisition and I-V

characterization curves were produced for all thermistors. Successively the power

consumption per unit length over resistance values and potential was computed

over dissipated power (Fig. 3.6). In Fig. 3.7 the borne power density is shown, pre-

senting a maximum value at 380 W/m, which was the highest power density that the

CPL2BA, the smallest thermistor with a length of 156 µm (all the thermistor lengths

reported in table 3.1), could bear before the breakage. This critical value has been

reached at a potential of 12.4 V. Fig. 3.8 shows the resistance values, presenting

ramp slopes nearly identical, a natural consequence of having thermistors with the

same technology and fixed cross-sections. In fact, as the slope is exactly the dR
dP ratio

and assuming a model which is thermo-static linear, this ratio also represents the dR
dT

ratio, thus increasing the power leads to a linear increase in temperature. Moreover,

from the same slope among all thermistors, which is about 11000 Ω/W, it can be

20 Chapter 3. Photonic Integrated Circuits

noticed that also the breakage load is the same.

FIGURE 3.6: I-V characterization curves for thermistors. The blue line
corresponds to the smallest thermistor, namely CPL2BA, which we
pushed to breakage to estimate the maximum power per unit length
obtainable (see next figure). The other lines correspond to longer re-

sistances as described in Table 3.1

TABLE 3.1: Thermistor lengths

Thermistor Length [µm]
CPL2BA 156
CPL2CA 230
CPL2DA 305
CPL2EA 379
CPL2FA 454
CPL2GA 529
CPL2HA 603
CPL2IA 678

These results showed our feasibility in the production and characterization of

resistive Ti-TiN thermistors as phase shifters for non-stoichiometric SiON optical

waveguides. The data collected enabled the identification of the maximum borne

power density for the thermistors, which is a critical value for the future design of a

custom electronic circuit for controlling the PIC. Moreover, the independence of the

breakage load from the length was demonstrated.

3.3. Waveguides 21

FIGURE 3.7: Power consumption per unit length for thermistors. We
detected the breakage power density at about 380 W/m, that is the
ratio between the dissipated power and the unit length immediately
before component breakage occurred for the test resistance CPL2BA,

with a length of 156µm.

3.3 Waveguides

Achieving three dimensionality in photonics, and especially in silicon photonics, is

not a trivial task as getting vias and photonic elements on multiple levels require also

the capability of shifting light beams from one plane to another one and squeeze the

propagation mode out of the waveguide. This is why inverse tapering, which allows

coupling of waveguides and detectors embedded in the substrate, is of paramount

importance for PICs. This thesis revolves around photonic circuits that can achieve

inverse tapering of SiN waveguide to Si photodiodes in the substrate, thus it is worth

explaining the work illustrated in [37] upon which this thesis is based. Normally, in-

verse tapering can be achieved by decreasing the width of the waveguide in the pat-

tern definition stage, although issues are raised when approaching the lithographic

limits. In [37] we used a chemical wet-etching process independent from the litho-

graphic constraints to solve this issue, achieving a vertical reduction of the waveg-

uide (Fig. 3.9). Successively combining this solution with the horizontal (i.e. lateral)

reduction of the waveguide, we routed the losses of the waveguide to the substrate

focusing at the location of the photodiode.

22 Chapter 3. Photonic Integrated Circuits

FIGURE 3.8: Resistance Values for thermistors. It is worth noticing
that the slopes for each ramp is the same among all thermistors. That
is because the slope represents the dR

dP ratio, which, in a linear thermo-
static model, is proportional to dR

dT meaning that an increase in power
induces a linear increase in temperature. The same slope among all
thermistors, which is 11000 Ω/W thus shows that the breakage load
is the same among all thermistors having the same technology and

cross-section.

3.3.1 Numerical simulations

Authors achieved inverse tapering by decreasing the waveguide dimensions to a

weakly guiding small-core cross section, as shown in Fig. 3.9(d). The vertical reduc-

tion is obtained by using the technique presented in [38, 39, 40], which allows for

smooth transitions between two regions with different thicknesses. As previously

stated, a complete three dimensional tapering can be then achieved by recurring to

standard lithographic techniques.

Finite elements method numerical simulations were performed in this study to

extract the modal characteristics and the geometrical parameters of the waveguide

of a sample standard device. Such device was designed as having a Silicon sub-

strate encapsulating the photodiodes and a photonic layer over the substrate made

by single-mode 300 nm height and 700 nm channel waveguides, which ensures low

loss toward the substrate (Fig. 3.10(a)). In figure 3.10(b) it can be noticed the re-

duction of the waveguide to 500 nm and to 75 nm, letting the majority of the mode

energy dropping down to the substrate (and thus the photodetector) with a loss

3.3. Waveguides 23

FIGURE 3.9: The sketch of the fabrication process to realize wedge
profiles in photonic waveguides. (a) The Si substrate, in which the
photodetector devices are already realized, is covered by a thick SiO2
cladding, (b) followed by the deposition of the waveguiding SiN film.
(c) The photoresist patterned SiN film is etched in a buffered HF solu-
tion to realize a wedge profile. The thickness h of the etched SiN film
can be controlled via the etch duration. (d) The 3D-shaped PIC layer

is covered by an SiO2 top cladding.

24 Chapter 3. Photonic Integrated Circuits

2400 dB/cm. Figure 3.10(c) shows how the electromagnetic field is distributed along

the waveguide transverse cross-section. In Fig. 3.10(d) the waveguide thickness is

reduced to zero, squeezing out the light straight into the active region of the pho-

todetector.

3.3.2 Device fabrication

After the FEM numerical simulations, the inverse tapering solution was tested on

fabricated devices made by 6-inch epitaxial Si substrates where by ion implanting

Phosphorous and Boron the photodiodes p-n junctions were realized (shown in Fig-

ure 3.11(a), with the doping regions colored in blue and red), with the diodes hav-

ing a stretched shape in the waveguide directions to maximize the collected light

field. Over this substrate, an insulation layer of SiO with a thickness of 1050 nm

was deposited. Successively, Chemical Vapour Deposition was used first to cover

the device with a 7nm SiN etch-stop layer, which allowed for zero thickness of SiN

film and prevents etching of the bottom SiO cladding, and then a 300 nm SiN to re-

alize the photonic layer (Fig. 3.9(b)). Then a hole was produced in the photoresist

in correspondence of the photodiodes and wet etching the SiN (whose procedure

is described in [41, 42]) in an Hydrofluoric acid (HF) solution produced the vertical

tapering (Fig. 3.9(c)). This way, a triangular-shaped etching is generated, leading the

transition shown in Fig. 3.9(c). Several devices were produced with either 75 nm

or zero SiN film. All the waveguides were subsequently patterned with Reactive

ion etching (RIE) and i-line stepper lithography (the purple lines in Fig. 3.11(a)),

then a 7 nm SiN was deposited on the wafer, followed by a top cladding of 1µm

Tetraethylorthosilicate (TEOS) SiO (Fig. 3.9(d)). The metal contacts in doped regions

were generated after vias in the cladding, the middle SiN layer and the bottom SiO

layer were produced via lithography and deep RIE. Non-contacting vias were also

deployed close to waveguides or diodes to shield the travelling light in the oxide

layers. The p-n junctions were contacted thanks to a 1.2µm thick layer of Al-1% Si

alloy. In figure 3.11(b) a micrograph of the realized device is shown. Finally, the

devices underwent a wire boning to PCBs for allowing electrical and optical charac-

terizations. Two devices with already bonded electronics are shown in Figure 3.11(c)

with reduced-thickness waveguide and Fig. 3.11(d) with complete inverse tapering;

note that the light is injected from top towards bottom.

3.3. Waveguides 25

3.3.3 Measurements

Several sets of measurements were conducted on the fabricated devices. First, the

normal incidence responsivity for the photodetectors were extracted (Figure 3.12)

by directly illuminating with an external source the diode surface. A spectral lamp

excited the diodes and the current at −1 V bias was measured and then normalized

on the relative power thanks to a calibrated detector. It is worth noticing that, as

Figure 3.12 clearly shows, the responsivity does not change along different devices.

Next, the devices were excited from the integrated waveguide following the setup

illustrated in Fig. 3.13(a). An 850 nm laser light was injected into the waveguide

using a laser diode through tapered lensed fiber, then travelled in the waveguide

until close the corresponding detector region, where, thanks to the tapering, the

mode is squeezed out and toward the detector, generating a photocurrent which

was measured thanks to a sourcemeter. After the detector region, the tapering is

reduced, increasing the waveguide cross-section to the original size and the residual

light coming out at the output is collected with another tapered lensed fiber and

measured through an external Silicon (Si) detector.

Following, the waveguide-coupled quantum efficiency (Q.E.) was computed at

a wavelength of 850 nm, i.e. close to where the PIC would operate, estimating the

light power in the waveguide right before the coupling with the photodiode by sub-

tracting from the 5 mW input source the optical losses occurring before the very

detector. These losses are mainly caused by input insertion loss where the fiber cou-

ples to the waveguide and propagation loss in the waveguide. Both these losses

were computed on a twin chip lying on the same wafer and right close to the chip

embedding the photodiodes. Via Beer-Lambert law the loss was estimated using 0.5

to 6cm length spiral waveguide structures and fitting the transmission data. Fig-

ure 3.13(b) shows the propagation loss for the two input polarizations: transverse-

magnetic (TM) (in red) and transverse-electric (TE) (in blue). It is worth noticing

that, even if in TE polarization the device presents lower losses, as the produced

photocurrent is larger in TM polarization due to a higher coupling to the substrate,

the best performance are expected in TM polarization. Once the propagation losses

are known, it is possible to extract the detector responsivity as shown in Fig. 3.13. A

set of increasing optical power is injected and by subtracting the insertion and prop-

agation losses from the input laser power the optical power right before the detector

26 Chapter 3. Photonic Integrated Circuits

Pin is extracted. Then, an IV-curve is produced for each different input optical power

as it can be seen in Fig. 3.14(a). The photocurrent Iph at −1 V bias over the input op-

tical power Pin is shown in Fig. 3.14(b). The responsivity R = Iph/Pin is estimated

through linear regression and resulted in 0.109 A/W. Lastly, a quantum efficiency

of about 15.9% has been computed as Q.E. = Iph/Pin × hν/e where h is the Plank

constant, ν is the frequency of the photons and e is the elementary charge. Note that

the measured efficiency followed the expected value of 16.7% derived from Finite

Element Method (FEM) simulations.

An analogous set of measurements was then produced also for complete inverse

tapering chips (Fig. 3.10(d)), where light diffuses into the SiO cladding, as shown

in Fig. 3.11(d). As the photodiode rate of absorption is slower in this scenario, the

coupling is ensured by deep trenches filled with metal and thus acting as mirrors.

A Q.E. of 15.4% has been computed, confirming a similar value w.r.t. the previous

set of measurements. The computed responsivities are almost on par with the in-

tegrated photodiodes state-of-the-art, typically of about 0.3 A/W [43, 44, 45], with

the lower values possibly due to the absorbance value of the fabricated devices being

mostly restrained by the dimensions, and in particular the thickness, of the 3 µm epi-

taxial layer. This is because the diode’s active volume strictly depends on such layer

as, even if the coupling between the light and the substrate is from a parallel waveg-

uide, Snell refraction reduces the optical path to about 3µm/sin(60◦) ≈ 3.5 µm as

the light is bent of about 60◦ with respect to the SiN/Si interface. This means that

these decreased responsivity values can be fixed by increasing the epitaxial layer

thickness, as in Ref. [45], where a a 10 µm epitaxial Si leaded to responsivities of the

order of about 0.3 A/W.

In conclusion, the inverse tapering approach that we presented in [37] realizes

an efficient solution even when compared to the alternative, i.e. grating couplers,

as, conversely to them, it is not bandwidth-limited and allows for arbitrary develop-

ment of both electronics in the epitaxial substrate and PIC architecture on top of it.

Moreover, grating couplers are highly sensitive to fabrication tolerances and hard to

realize in short-wavelength applications.

3.4. Output detectors 27

3.4 Output detectors

A test structure composed of non-stoichiometric SiN waveguides and SiON was

fabricated at FBK in the cleanroom facility, similar to what presented in 3.2 fea-

turing embedded integrated silicon photodiodes as output detectors (Fig.3.15). A

silicon wafer with an epitaxial layer for the detectors was used, covered with SiO

glass and built through ion implantation. Then, the response of the PD to external

excitation was investigated. The measurements for characterizing the photodiodes

were conducted again via a 200mm 4x PH150 Karl-Suss PM8 Manual Probe Station

as in 3.2, also using the same LABVIEW Virtual Interface (VI) for data collection.

Firstly, data were collected for dark condition I-V curve in order to extract the break-

down voltage. In Fig. 3.16 the measurements in the breakdown region for six sil-

icon photodiodes are shown, detecting a breakdown voltage close to -29 V. Then,

the forward current was sensed in dark condition, as shown in Fig. 3.17 showing a

tolerance for all of the diodes for mA current intensity with no damage. Secondly,

in order to investigate the diode response for normal incidence illumination, a set

of measurements with a light source was performed under different illumination

conditions. Figure 3.18 shows I-V curves of a diode under different illumination

conditions achieved by changing both the optical zoom and the illuminator current

of the microscope where the light passed.

As a preliminary note, the flux is quite proportional to the product of the il-

luminator intensity by the zoom factor squared. In Fig. 3.19 the photovoltaic cur-

rent, which is the current intensity for a 0V bias, against the illumination intensity is

shown. As an interesting point, as expected, the photovoltaic current is linearly re-

lated to the optical intensity. Lastly, using a spectrometer, a calibrated detector and a

spectral lamp the diodes normal-incidence spectral responsivity was quantitatively

characterized and results are shown in figure 3.20, where the spectral responsivity

(in A/W) both in the near infrared and in the visible region are plotted for three pho-

todiodes having the same width (98 µm) but different lengths (112, 177 and 242 µm).

On these devices, using the calibrated detector the optical power flux incident to the

detector was measured spectrally. The photocurrent at null voltage bias was then

acquired and normalized on the incident power, showing that, naturally, despite

the three detectors having different active areas, the normalized observed respon-

sivity is always the same. In Fig. 3.20 the responsivity values for both 700 nm and

28 Chapter 3. Photonic Integrated Circuits

850 nm are highlighted. It is worth noting that the oscillating trend of the spec-

tral features which have a period of about 50nm is a consequence of the thin film

interference present in several layers covering the detector. Such features can be

however dropped if directly coupling light from the waveguides to the detector. In

conclusion, with these experiments a set of silicon photodiodes integrated with a

SiON PIC were characterized. The results showed the effectiveness both in dark and

bright conditions of the produced silicon photodiodes. From the computed respon-

sivity it is possible to ensure that, if an adequate coupling with the PIC is deployed,

photonic signals can be easily sensed with common electronics even in the sub dBm

region. This results joined with what presented in 3.2 can be easily exploited for the

design and integration of an electronic circuit to precisely control the PIC, exploiting

feedback solutions either in linear optic, with photodiodes, or in quantum regimes,

with avalanche photodiodes.

Conclusions to this Chapter

In this chapter I presented the core elements for PICs and discussed their tunability

through the use of thermistors. The papers produced after such works were briefly

presented and their results discussed.

3.4. Output detectors 29

FIGURE 3.10: Numerical simulation of electromagnetic field intensity
in (a) the PIC region, where the waveguide is large enough to contain
the field, (b) at the detector region, where the reduced waveguide
height does delocalizes the mode and leaks into the substrate. (c) A
side-view of the waveguide. The waveguide is 300 nm thick in the
PIC (left), and is progressively thinned in the vertical taper region via
wet-etching (center). Finally, the waveguide with a reduced height of
74nm allows the mode to leak energy into the underlaying photode-
tector (right). (d) The wedge-terminated waveguide does not scatter
towards the top due to cladding confinement while it couples to the

substrate at the bottom.

30 Chapter 3. Photonic Integrated Circuits

FIGURE 3.11: (a) The CAD layout of the detector showing the active
p- (red) and n-doped (blue) regions, (purple) waveguide and (grey)
pads. The green area represents the region where the waveguides
height is reduced. (b) An optical micrograph of the fabricated device.
(c) Light coupling from the thin waveguide to the detector. (d) Light

coupling from a wedge-terminated waveguide to the detector.

FIGURE 3.12: The quantum efficiency of the diodes exposed to a
normal illumination from an external spectral source. The spectral
features with ≈ 50 nm of period are due to thin-film interference of

the cladding covering the photodiode.

3.4. Output detectors 31

FIGURE 3.13: (a) Experimental setup used to measure the responsiv-
ity of the diodes from waveguide excitation. The light of a laser diode
(Thorlabs LP850-SF80) is injected into the chip via tapered lensed
fibers. The light polarization is set by an in-fiber polarization con-
trol stage. The light travels through the waveguide and is coupled to
the integrated photodetector. The photocurrent at −1 V bias is mea-
sured by a sourcemeter (Keithley 2450), while any residual light in
the waveguide is collected with another tapered fiber and sent to an
external Si detector. (b) Experimental characterization of the samples
optical losses. The power transmission of waveguides of different
lengths is measured and fitted via a Beer-Lambert law to estimate in-

sertion and propagation losses for the chips.

32 Chapter 3. Photonic Integrated Circuits

FIGURE 3.14: (a) IV-curves with varying input optical power and (b)
the responsivity of the photodiode coupled to a thinned waveguide.

FIGURE 3.15: A close up on the designed photodetectors. (left) The
CAD mask, (right) an optical micrograph of the fabricated device.

3.4. Output detectors 33

FIGURE 3.16: Typical I-V curves near breakdown.

FIGURE 3.17: I-V curve in forward region.

34 Chapter 3. Photonic Integrated Circuits

FIGURE 3.18: I-V curve for bright current.

3.4. Output detectors 35

FIGURE 3.19: I-V curve in photovoltaic mode for different illumina-
tion conditions.

FIGURE 3.20: Measured A/W responsivity of the fabricated PDs.

37

Chapter 4

The Control Architecture

Introduction to this Chapter

In this Chapter I will discuss about my main project work: developing a control

architecture for a PIC driving multiple MZIs through the use of feedback signals.

Firstly, the system setup will be briefly presented, referring to Chapter 5.5.2 for de-

tailed discussions. Secondly, I will present the software architecture I developed to

achieve control and output optimization of a PIC structure through driving of mul-

tiple MZIs. After a general overview of the software architecture, each major section

will be presented, their main libraries and functions implemented will be discussed

and a simple code snippet for each section will be presented. First, the interface

with the Q8b driver module will be discussed, then the interfaces with the measure-

ment digital tools, like the Picoscope 4224 and the Keithley 2450, will be illustrated.

Secondly, the data logging, screenshot capture and voltage sweep routine will be

presented. Thirdly, the discussion will shift to the hand tuning of the PIC. Then, af-

ter presenting the sections for the simulation of the theoretical output of a single MZI

and a Clements architecture, the output optimization algorithm will be presented.

Finally, I will validate the output measurement of the built architecture by deriving

the theoretical formulas for the two outputs of a single MZI and comparing them

with the actual measured outputs showing great similarities between them.

A general note: to present and discuss the architecture in a more readable way, flow

diagrams will be presented at the end of this Chapter to summarize the discussed

code. To check the actual code, please refer to Appendix A.

38 Chapter 4. The Control Architecture

OPTICAL FIBER PICPOLARIZATION
CONTROLLER

PIEZO MANIPULATOR

PELTIER CELLTEMPERATURE
CONTROLLER

DRIVERS MODULES WITH
BACKPLANE & INTERPOSER

850 NM
LASER DRIVER

PYTHON INTERFACE

CAMERA DIGITAL OSCILLOSCOPE

FIGURE 4.1: Our architecture.

Digital
multimeter

Digital
oscilloscope

Temperature
Controller

Piezo-controllers

Powermeter

Laser Driver

Silicon
Detector

Polarization
controller

Piezo-manipulators

PIC

Optical table

Peltier cell

1

1

2
2

33

4

4

5

5

6

6

7

7

8

8
9

9

10

10

11

11

Camera12

12

13

13

FIGURE 4.2: Lab setup.

4.1 General Overview

Hereafter I will briefly present the general architecture of the system built for all the

experiment and measurement discussed in Chapter 5.5.2. For a complete discussion

of each section here presented, please read the Chapter 5.5.2.

The system architecture is shown in Fig4.1: a laser driver injects an 850nm near-

infrared laser beam into an input optical fiber, a portion of the optical fiber is then

4.2. Software 39

rolled around a polarization controller to inspect different polarization configuration

during experiments. Secondly, the optical fiber is kept aligned to the mounted PIC

through 3-axis piezoelectric micro-manipulators. The PIC is stabilized in tempera-

ture thanks to a Peltier cell mounted below the PIC seat, which, in turn, is controlled

by a temperature controller. The metallic thermistors which act as DoFs in the PIC

are controlled through 4 driver modules mounted on a backplane and connected

to the PIC through a custom PCB interposer. In case the active output of the PIC

is measured through an external switchable gain detector, a 4224 Picoscope digi-

tal oscilloscope is connected to such detector; conversely, if the output is measured

through silicon photodetectors embedded in the PIC substrate, either the digital os-

cilloscope or a 2450 Keithley digital multimeter is connected to the proper PIC pins.

Thirdly, a near-infrared camera is mounted over the PIC for visual inspection, and

streams the acquired images to a desktop computer. The desktop computer runs

also a Python interface I developed to retrieve such images and that, through the

use of open source Application Programming Interface (API)s, allows for both con-

trol of the PIC through acting on the thermistors through the driver modules and

communication with the measurement tools, retrieving the measured signals.

The entire lab setup used during all my experiments is shown in Fig4.2, with each

device involved in this thesis marked and listed.

4.2 Software

4.2.1 General overview

All the software was developed in Python using the 3.9.12 version. For better pro-

totyping and faster design of the entire software, the classic Jupyter Notebook [46]

was used, running locally on the lab machine. All the tests were performed under

Windows 11 Home Edition, even if the majority of the modules can be used also on

different operative systems. To test the reliability and repeatability of the system de-

veloped, we validated each section of the code onto two different Windows-based

machines: an Asus ROG Strix G513QM laptop featuring 3.30 GHz AMD Ryzen 9

5900HX processor, 16GB of DDR4 SDRAM and an NVIDIA GeForce RTX 3060 GPU,

and a desktop machine featuring 3.40 GHz Intel Xeon E3-1240 processor and 8 GB

of DDR4 SDRAM.

40 Chapter 4. The Control Architecture

4.2.2 Custom Module and Installation script

In order to realize a clean, modular and readable code, a custom function was imple-

mented each time a specific routine had to be repeated as a result of a measurement

(e.g. for interfacing and acquiring measurements through either the oscilloscope or

the multimeter) or control architecture (e.g. when acquiring screenshot or defining

custom regions within a target image). Such functions were then all encapsulated

in a custom module, which, in turn, was imported in every script that required any

of those functions. As natural, this allows for a fast code design as, when is needed

to apply some changes to a specific custom function, it is only required to modify

the custom module (exactly as a regular included library in any programming lan-

guage). Again, to have an easy replicable architecture, for all the required packages

to be installed, a batch file was created (as the system was tested and deployed on

a Windows Operative System (OS)) to automatically retrieve all packages through

either conda or pip commands.

4.2.3 Interface with the Q8b driver module

Interface with the Q8b driver module by Qontrol Ltd. is achieved using the pre-

defined functions contained in the qontrol Python module [47]. As a preliminary

step required also for some of the other external modules used, the folder where all

the external modules are is added to the system path through the sys.path.append()

method. This is done to temporarily add the directory to the system path without

interfering with the global path, i.e. where the Python interpreter commonly looks

for when importing a module. This is one of several choices made in this work to

make it better replicable over different machines, i.e. when dealing with the design-

ing and prototyping stage. In case of commercial distribution of the software, of

course such choices should be dropped in favor of more efficient ones; in this case,

adding the directory to the global path. The Q8b device is then initialised as output

device through the qontrol.QXOutput() function, specifying the COM port where

the driver is connected and a standard connection timeout of 100ms. The QXOut-

put() function returns a qontroller object which keeps the device information, such

as its ID and its number of channels. To prevent any damage to the electronics or

any affected elements of the photonic circuit (the metallic thermistors driven by the

Q8b in our case) the current and voltage compliances are specified for each channel

4.2. Software 41

by setting the maximum value for current (through the imax[<channel selected>]

attribute) and for voltage (through the vmax[<channel selected>] attribute). To per-

form a voltage drive, a discrete interval made by a finite number of steps identi-

fied by a starting value, a stopping value and a step value is computed through

the numpy.arange() function and then the channel is sequentially set to the proper

voltage value through the v[<channel selected>] attribute. Moreover, by accessing

the v[<channel selected>] and i[<channel selected>] attributes the sensed voltage in

Volt and current in mA for each channel are retrieved and then recorded on a log file

through the write() method. Finally, the voltages and currents for all channels are set

to zero by using respectively the condensed syntax v[:] and i[:] and the connection

with the Q8b device is closed by using the close() method. The flow diagram of the

discussed code is shown below in Fig.4.12.

4.2.4 Interface with the Picoscope 4224

Interface with the 4224 Picoscope digital oscilloscope is achieved through the pi-

cosdk module [48] which is distributed via PyPI. Further details on every picosdk

functions cited here can be found by consulting the PicoScope 4000 Series Program-

mer’s Guide [49].

Initialization

The Picoscope device is then initialised through the picosdk.ps4000 class, which al-

lows to change the internal settings for the oscilloscope, like the range (through the

PS4000_RANGE[<range interval>] attribute) or its time unit (through the attribute

PS4000_TIME_UNITS[<time unit>]). Then, a custom function pico_start() has been

defined which encapsulates all the required function calls to correctly initialize and

start the Picoscope, taking as input arguments the channel range, sample interval,

sample unit, size of a single buffer, maximum number of buffers to capture (as the

total samples to acquire are exactly the size of a single buffer times the number of

buffers to capture) and few useful parameters such as the maximum pre-trigger sam-

ples, a flag for enabling or disabling the auto stop feature and the downsample ra-

tio. This custom function, as well as all the following ones, has been implemented

in order to increase code readability and easily interface with the Picoscope as the

complete procedure to initialize the oscilloscope requires several lines of code that

are summarized hereafter:

42 Chapter 4. The Control Architecture

i) safely opening the communication with the Picoscope 4000 series device through

a call to the function ps4000OpenUnit().

ii) setting up channel A of the oscilloscope through the function ps4000SetChannel().

iii) optionally setting up channel B similarly to ii).

iv) creating buffers and setting its location for data collection from the channel/s cre-

ated through the function ps4000SetDataBuffers(). The above code is summarized

in Fig.4.13.

Measurement acquisition

Similarly to what has been done for the initialization, also for measurement acquisi-

tion a custom function has been implemented to encapsulate all the required func-

tion calls among the other. The function pico_ acquire_ measurement() takes as input

arguments the same taken by the initialization function (channel range, sample inter-

val, sample unit, size of a single buffer, number of buffers to capture, the maximum

pre-trigger samples, a flag for enabling or disabling the auto stop feature and the

downsample ratio) and in addition a float variable normalized to 1 which represents

the portion of measurement to be discarded. This is because in some scenarios it

may be useful to discard a heading section of measurements while the signal settles.

The steps executed by the pico_ acquire_ measurement() are summarized below:

i) starting the oscilloscope running using ps4000RunStreaming().

ii) calling ps4000GetStreamingLatestValues() to get data until all the specified num-

ber of samples have been acquired.

iii) converting Analog-to-Digital Converter (ADC) counts data to mV by using func-

tions.adc2mv().

iv) stopping the streaming with ps4000Stop().

v) returning the approximated rounded half up mean of all the measurements. The

above code is summarized in Fig.4.14.

Closing the connection

Finally, a third custom function has been implemented to properly close the connec-

tion to the oscilloscope. This function:

i) Calls once more the ps4000Stop() function to stop pending streamings.

ii) Closes the device calling the function ps4000CloseUnit(). The above code is sum-

marized in Fig.4.15.

4.2. Software 43

Short example

Below a flow diagram of a simple yet complete example for acquiring four measure-

ments with the implemented code described above is illustrated in Fig.4.16.

4.2.5 Interface with the Keithley 2450

Interface with the 2450 Keithley digital multimeter is achieved through the PyVISA

package [50] which allows to control several instrument types independently from

their interface. A part from the initialization, all communications with the Keith-

ley device made intensively use of Standard Commands for Programmable Instru-

ments (SCPI) commands. For nearly all the SCPI commands, the commands are

sent to the Keithely device through a call to the method write(), the only exception

being when one or more measurements are retrieved, which is done through the

method query_ascii_values(). All commands are detailed in the Model 2450 Interac-

tive SourceMeter Instrument Reference Manual [51].

Initialization

The Keithley device is then initialised through the Resource Manager through a call

to the open_resource() method, specifying TCP/IP as a communication protocol and

the IP of the instrument, which was previously connected to the same LAN the ma-

chine running the Python initialization code is connected to. As a consequence, an

instrument object is then created which will be used for throughout the measure-

ment stage. The instrument is then reset and its output is turned on with the SCPI

commands ’*RST’ and ’OUTPut ON’ respectively. The code discussed above is sum-

marized in Fig.4.17

Measurement acquisition

Two custom functions were implemented for acquiring measurements based on the

nature of the required measurement: one for a single measurement and one for per-

forming repeated subsequent measurements in case of a voltage sweep. Here be-

low the two functions are summarized one after the other. The single measurement

function (keithley_single_measure()) takes as input the instrument object, a flag for

sensing current or voltage, a similar flag for sourcing current or voltage, the source

value and the compliance. The function then:

44 Chapter 4. The Control Architecture

i) clears the default buffer used for storing measurements by writing the SCPI com-

mand ’TRAC:CLE’.

ii) enables autorange for the sensing quantity by writing the SCPI command ’SENS:

<sensing quantity>:RANG:AUTO ON’.

iii) sets the source quantity with the SCPI command ’SOUR:<source quantity> <source

value>’.

iv) sets the compliance by writing either the SCPI command ’SOUR:VOLT:ILIM

<compliance value>’ or ’SOUR:CURR:VLIM <compliance value>’ respectively for

compliance when sourcing voltage or current.

v) retrieve and return a single measurement by calling the method query_ascii_values()

sending the SCPI command ’MEAS:<sense quantity>? ’. The above code is summa-

rized in Fig.4.18.

The function for repeated consecutive measurements (keithley_voltage_sweep())

acquires measurement during an automatic voltage sweep, taking as input the in-

strument object, the starting and stopping values for the voltage sweep, its total

number of points (a.k.a. steps), the current compliance and the delay in ms before

the sweep start. The function then:

i) resets the instrument via the command ’*RST’.

ii) clears the default buffer with ’TRAC:CLE’.

iii) sets current as the quantity to be measured thanks to ’SENS:FUNC "CURR"’.

iv) sets the auto range for the current with ’SENS:CURR:RANG:AUTO ON’.

v) sets a 2 wires measurements with ’SENS:CURR:RSEN OFF’.

vi) sets voltage as the source with ’SOUR:FUNC VOLT’.

vii) sets the auto range for the voltage with ’SOUR:VOLT:RANG:AUTO ON’.

viii) sets the current compliance with ’SOUR:VOLT:ILIM <current compliance>’.

ix) configures the voltage sweep with ’SOUR:SWE:VOLT:LIN <voltage start>, <volt-

age stop>, <total points>, <ms delay>’.

x) turns the output on with ’OUTPut ON’.

xi) starts the sweep and the acquisition with ’:INIT’.

xii) after a small delay induced by the time.sleep() function, it retrieves the measure-

ments for both voltage and current with a call to the method query_ascii_values()

specifying as input argument ’TRAC:DATA? 1, <total points>, "defbuffer1", SOUR’

and ’TRAC:DATA? 1, <total points>, "defbuffer1", READ’ respectively.

xiii) clears the default buffer with ’TRAC:CLE’.

4.2. Software 45

xiv) returns the current and voltage measurements. The above code is summarized

in Fig.4.19.

Closing the connection

As the reset and clear of the default buffer is done at the initialization stage, the only

step required to close the connection with the Keithley device is writing the SCPI

command ’OUTPut OFF’. The code is summarized in Fig.4.20.

Short example

In Fig.4.21 it is summarized a sample of complete routine for a single reading with

the implemented code described above.

4.2.6 Data logging

All numerical data are saved into .txt files built with a preamble and the raw data

(Fig.4.3). The preamble is a set of rows which start with the % symbol to identify

them as "non-data rows" and they contains information about the configuration of

the system for the experiment or set of measurement which the data belong to (e.g.

the chip label, the laser power and controlled temperature, the driven channels etc.).

Right after the preamble, there are the raw data, which are organized in columns

as couples of voltages and currents for each driven channel. To identify what each

column represents, the last line of the preamble is the header of such table, listing

the measured quantity along with the measurement unit.

For graphical data, e.g. generated plots or acquired screenshots, they are saved

into .png files.

4.2.7 Screenshot capture

A custom function to take a screenshot of the whole screen or a specific sub-region

has been implemented (take_screenshot()). It uses the wxPython GUI toolkit and the

wx library [52]. Through the wx.ScreenDC class an object is instantiated to paint on

screen, then a bitmap object is generated using the wx.Bitmap class and the screen-

shot is drawn over it through the wx.MemoryDC memory device context and its

Blit() method. Finally, the screenshot is saved as a .png file in the specified save path

46 Chapter 4. The Control Architecture

1

2

FIGURE 4.3: A portion of a data log file: the preamble (1) is an-
nounced by the % character, listing all useful information to replicate
the experiment such as selected gain for the external detector, chip,
voltage sweep values and additional notes. Following the preamble,
the raw data (2) are organized in columns grouped in pairs of voltage

and current values.

and with the specified image name (which by default is a time stamp). The function

is summarized in Fig.4.22.

4.2.8 Voltage sweep

The voltage starting and ending values as well as the discrete step for the sweep are

specified (in V) for each channel and saved into lists. Secondly, a flag was inserted

for selecting either a triangular (i.e. from start to stop and back to start) sweep or a

ramp sweep. Triangular sweep is useful when a full period of the sinusoidal output

is inspected as in Fig. 4.8 of Section 4 while single sweep allows for faster executions

while still inspecting the full range. As a preliminary step, all the compliances are

set thanks to the Q8b module by accessing the vmax and imax attribute of the Qon-

troller object for all channels and setting them to the specified values in V and mA

respectively. Moreover, before starting the sweep, all currents are set to 0 via the i

attributes, while the voltages are set to their starting values via the v attributes. The

sweep interval is built through a numpy array via the numpy.arange() function with

the discrete step specified by the user, using the numpy.concatenate() function if the

triangular sweep is needed. Afterward, for each channel, the sweep is performed

4.2. Software 47

through a for loop for each element in the sweep interval, the voltage is set to the

proper sweep value and the voltage and current of the current channel are read, ap-

pended into a proper list and saved in a text file. Lastly, at the end of each sweep,

before moving to the next channel, each channel is set to its proper starting value.

As a preliminary investigation, multiple readings of the same channel at the same

driving voltage (i.e. at the same sweep step) were performed and the average value

was extracted to inspect whether any changes were present w.r.t. the "single-shot"

measurement scenario; as the average value was no different than the single mea-

surement, the averaging operation was discarded in favour of performance. For the

multiple channel voltage sweep, the serial approach (achieved through the for loop)

was chosen against the parallel approach (achievable with tasks and processes) as

driving one channel after the other was the optimal choice for the goal of this work.

In this work, when more than one channel, a.k.a. DoF, is driven, no other channel has

to be driven simultaneously, as it needs information retrieved from the other voltage

sweeps (e.g. when optimizing, following the optimization logic chosen, channels are

inspected one at a time to look for local minima/maxima of such DoF w.r.t. the tar-

get output configuration to be optimized; if channels were driven simultaneously

(thanks to processes, for example) this information would be missing and it would

not be possible to distinguish among the different local minima/maxima as the con-

tribution of each DoF would be mixed up. The discussed code is summarized in

Fig.4.23.

4.2.9 Hand tuning of the PIC

After the voltage sweep was successfully implemented, a preliminary step was to

perform such sweep on all channels and visually inspect by the camera mounted

over the chip to see if noticeable changes occurred or not. As changes in the light

path were induced during the sweep, the tests moved to a more controlled scenario,

where the user would have been able to specify by hand the driving voltage to ap-

ply to each channel. Thus, a simple Human Machine Interface (HMI) with sliders

and live plots was developed (Fig.4.4). The Jupyter Widgets were used, via the ipy-

widgets package [53], to create interactive widgets (like sliders and buttons) for the

simplified HMI. Jupyter widgets are interactive browser control for the Jupyter note-

book platform, thus it was possible to create sliders for each DoF which had to be

controlled along with custom buttons (to save, reset and exit).

48 Chapter 4. The Control Architecture

First, a matplotlib figure was created with grid and proper labels, together with

a list of lines to dynamically modify the plot lines later on. Then, sliders are cre-

ated for each DoF via FloatSlider objects, with a span ranging from minimum to

maximum driving voltage (usually 0 and 12 V respectively), a discrete step of 0.1

and a default value of 1. By setting the continuous_update key argument to True,

it is possible to dynamically invoke a proper callback method when the sliders are

gradually changed. Afterward, a function to interact with the figure created was

defined (plot()) specifying all the sliders as triggering input arguments. This func-

tion interacts both with the Q8b driver modules (and, in turn, with the thermistors)

by setting the driving voltage of each thermistor to the value set by the respective

slider, and with the figure by modifying the lines for current and voltage using the

set_xdata() and set_ydata() methods and refreshing the plot via the canvas.draw()

method. Then, two buttons were created: one for saving the current system config-

uration (i.e. all the driving voltages along with a preamble similar to the one used

for data logging), linking its pressure to the save_config() function through a proper

callback method (on_save_button_clicked()), and a second one for safely terminat-

ing the hand tuning procedure through the on_exit_button_clicked() method, which

set all the channel voltages and currents to zero and closes the connection to the Q8b

driver. Finally, the interactive widget environment was created with the interactive()

function and assembled with the display() function. To conclude, a final note: I have

chosen Jupyter Widgets as live plot environments (like PyQt4 [54]) seem not to work

properly with the Jupyter Notebook platform, and this is due to the interactive note-

book nature of the very software used; in case of migration to a different Interactive

Development Environment (IDE) (for example because of switching to .py files as

discussed in Chapter 6), different packages can be taken into account, with a further

possible increase in terms of performance. The discussed code is summarized in

Fig.4.24.

4.2. Software 49

1

2

3

4

FIGURE 4.4: HMI developed for hand tuning of thermistors: the HMI
displays a live plot of the thermistor voltage against thermistor cur-
rent (1) and interactive sliders for voltage driving the thermistor (2)
for all tunable thermistors. On the right, the effect produced when

tuning thermistors ((3) and (4)).

4.2.10 Simulation of the theoretical output of a single MZI

To compare the theoretical expected output from a single MZI to the actual data

retrieved through the measurements illustrated in Chapter 5, the formula for the

output intensities of a single MZI was derived (for the expanded formulas please

refer to subsection 4.2.13 in this Chapter). Thanks to this formula, it was possible to

develop an algorithm to simulate the theoretical outputs by live-plotting them and

being able to act on the MZI DoFs.

First of all, custom functions were defined to compute the characteristic param-

eter of the MZI, the outputs and output intensities (i.e. the squared of absolute

values) and their phases with compute_t(), compute_outputs(), compute_intensity()

and compute_phase() respectively. Then, similarly to what done for the hand tun-

ing of the PIC, the ipywidgets package was used to create sliders and a matplotlib

figure realizes a live plot which changes as the user interacts with the sliders, with

50 Chapter 4. The Control Architecture

line variables to change the plot data. Three sliders were made for the k, θ0 and α pa-

rameters and a callback function (plot()) was defined for when sliders are changed.

Finally, a reset button to restore each sliders to its default value was made.

To being able to compare the theoretical output simulated via the algorithm dis-

cussed above and the measurements performed in the optical laboratory, the exper-

imental data were loaded for output voltage sensed by the silicon photodiode and

the dissipated power for each thermistor. Such data were collected for both out-

puts of a single MZI when injecting the laser beam first into one input and then

into the other one, thus exploring each combination of input/output. In order to

successfully retrieve the data collected with the algorithm described in Section 4.2.8,

the "read_data()" custom function was implemented which opens the .txt data file,

extracts all raw data and returns a dictionary structure featuring lists for the cur-

rents and voltages sensed by the photodiode and the currents and voltages for each

thermistor during the voltage sweep. Thus, by using this function, the photodiode

voltages and the thermistor power values were loaded into lists, the normalized

photodiode voltage was plotted against the thermistor power and live displayed

through a set of matplotlib lines similarly to the data produced for the theoretical

simulated output. The discussed code is summarized in Fig.4.25 and Fig.4.26.

4.2.11 Simulation of the theoretical output of a Clements architecture

Similarly to what have been done for the simulation of the outputs of a single MZI,

code was developed to simulate also the output of a more complex Clements archi-

tecture. In such case, the transformation matrices for each line at each stage had

to be found in an explicit form (for a detailed mathematical description, please

check subsection 4.2.13 in this Chapter). A two stages Clements architecture is

shown in Fig.4.5, with 6 inputs/outputs and 12 thermistors acting as DoFs (labelled

as ϕ and θ). The first index refers to the branch, while the second refers to the

stage, thus, for example, ϕ2,1 refers to the phase shifter on the second branch of

the first stage. The first stage is composed by two MZIs (identified by the two red

boxes in the middle section) and two additional phase shifters to adjust the phase

of the incoming injected light (identified by the green boxes). The second stage is

composed by three MZIs (the three red boxes). The transformation matrices for

the first stage and for each corresponding "box" were computed and are presented

in Fig.4.6, while the ones for the second stage are presented along with the ones

4.2. Software 51

for the first stage in Fig.4.7. Once the matrices were all found, a custom function

(find_output_sestuplet()) to find the output sestuplet of a two stage Clements archi-

tecture has been defined. For better readability, all θ and ϕ parameters were saved

into dictionaries and the inputs are saved into a list. Then, the input for stage I are

built as a transposed vector. Secondly, the transformation matrices for all the θ and

ϕ of stage I are assembled ("T" and "P" respectively) and, consequently, the transfor-

mation matrices of their product (called "TP"). Successively, the output of stage I are

computed as the matrix product between TP and the transposed input vector.

The stage II inputs are identified as the stage I outputs, and similarly, the T,P and

TP transformation matrices are built also for stage II. Finally, the outputs for stage

II are computed, again by matrix multiplication and are returned as output of the

custom function.

Note that, even if the simulated theoretical output of a two stages Clements archi-

tecture has been found, this work focused on a tuning and optimization technique

based solely on the output feedback (coming it from a silicon photodiode or from

an image processing tool) and dropping the information available by this theoretical

study, as characterizing each inner parameter (all θ and ϕ) of this large system is a

complex task. The discussed code is summarized in Fig.4.27.

52 Chapter 4. The Control Architecture

𝜗ଷ,ଵ

𝜗ହ,ଵ

ଵ

𝜑ଵ,ଵ

𝜑ଶ,ଵ

𝜑ସ,ଵ

𝜑,ଵ

𝜗ଶ,ଶ

𝜗ସ,ଶ

𝜗,ଶ

𝜑ଵ,ଶ

𝜑ଷ,ଶ

𝜑ହ,ଶ

FIGURE 4.5: Two stages Clements architecture. First stage is com-
posed of two MZIs and two additional phase shifters to adjust phase
of input light. Second stage is composed of three MZIs. Different

stages are identified by the second index after the comma.

4.2. Software 53

FIGURE 4.6: Transformation matrices for the first stage of a two stages
Clements architecture as presented in Fig. 4.5. Matrices in the red
boxes are for the two MZIs, while matrices in the top and bottom
rows are for the additional phase shifters. Please note that φ and ϕ
are different variables: φ refers to the accumulated phase during the
propagation tract of a whole MZI while ϕ is the added phase on one

of the branches through the second thermistor.

54 Chapter 4. The Control Architecture

𝜗 = 𝜗, | 𝑖 = 𝑟𝑜𝑤, 𝑗 = 𝑐𝑜𝑙

1

2
e୧ மଵ +(1 −e୧ ణ) i(1 + e୧ ణ)

i (1 + e୧ ణ) −(1 −e୧ణ)

1

2
e୧ மଵ +(1 −e୧ ణ) i(1 + e୧ ణ)

i (1 + e୧ ణ) −(1 −e୧ణ)

𝐼ଶ,ଵ

𝐼ଷ,ଵ

𝐼ସ,ଵ

𝐼ହ,ଵ

(𝐼)

(𝐼ଵ,ଵ)
1

2
e୧ மଵ

1

2
e୧ மଵ

𝑒ఝమ,భ 0
0 1

𝑒ఝర,భ 0
0 1

(𝑒ఝభ,భ)

(𝑒ఝల,భ)

1

2
e୧ மଵ +(1 −e୧ ణ) i(1 + e୧ ణ)

i (1 + e୧ ణ) −(1 −e୧ణ)

1

2
e୧ மଵ +(1 −e୧ ణ) i(1 + e୧ ణ)

i (1 + e୧ ణ) −(1 −e୧ణ)

1

2
e୧ மଵ +(1 −e୧ ణ) i(1 + e୧ ణ)

i (1 + e୧ ణ) −(1 −e୧ణ)

𝜗 = 𝜗, | 𝑖 = 𝑟𝑜𝑤, 𝑗 = 𝑐𝑜𝑙

𝑒ఝభ,మ 0
0 1

𝑒ఝయ,మ 0
0 1

𝑒ఝర,మ 0
0 1

…

(𝑂,ଵ = 𝐼,ଶ)

FIGURE 4.7: All the transformation matrices for the two stages
Clements architecture as presented in Fig. 4.5. Please note that φ
and ϕ are different variables: φ refers to the accumulated phase dur-
ing the propagation tract of a whole MZI while ϕ is the added phase

on one of the branches through the second thermistor.

4.2.12 Output optimization algorithm

First, an optical tool to retrieve the scattered intensities in specific regions of the

PIC through live camera images was developed. Then, an optimization algorithm to

maximize (or minimize) an output configuration has been developed; this algorithm

is able to either maximize/minimize a single output intensity (maximizing/min-

imizing the induced photocurrent of the integrated silicon photodiode measured

with a Keithley source-meter or a Picoscope oscilloscope) or multiple output inten-

sities (exploiting the optical tool developed). As explained at the beginning of this

Chapter, to interface with the Q8b driver modules which control the thermistors, the

Qontrol library was used to interface. Four Q8b drivers were configured and set in

an interposer board for a 32-channel connection, interfacing with Ti-TiN thermistors,

heating locally the corresponding PIC regions and thus changing locally the refrac-

tive index. The 2450 Keithley digital multimeter is used to sense the photocurrent

4.2. Software 55

of one of the output lines of the PIC, using the PyVisa module to perform the in-

strument interfacing, connection and measurement. An image processing algorithm

was coded, starting with custom screenshot images taken from the live stream of the

Thorlabs camera [55].

The wx package [52] was used to generate the screenshots, then the Opencv cv2

computer vision library [56] was used for all the image processing tasks. After the

first image of the starting configuration of the optical circuit lines is taken, it is dis-

played and, through events and the HighGUI callback function (i.e. setMouseCall-

back(), which is used when a mouse event occurs), the user selects an arbitrary num-

ber of rectangle regions where the sums of all the inner pixel values are computed.

To catch the rectangle regions the user defines, two custom functions were defined:

catch_rectangle() and draw_rectangle(). The former takes as input the image the

rectangle has to be catched on (a grayscale image) and catches two mouse clicks of

the user: the first click defines the center and the second click defines the opposite

vertex. The image upon which the region has to be drawn is displayed on screen

thanks to the cv2.imshow() function and thanks to the cv2.setMouseCallback() func-

tion, the highgui custom function draw_rectangle() is called when a mouse event

occurs and the algorithm registers the first click as the center of the region and the

second click as one of its vertex. Note that, independently from the position of the

vertex, the algorithm successfully identifies the specified region (i.e. is able to de-

termine and draw the region no matter what vertex was specified.). The function

than returns a dictionary structure with all the information about the drawn region

(top left and bottom right corner, width and height in pixels). For consistency, af-

ter the first rectangle is drawn, each consecutive one is built having the same size,

thus avoiding normalization issues as the extracted inner pixel sum is derived from

the same number of pixels for all regions. Moving forward, also an "offset" back-

ground region is selected in order to compensate for image noises and changing

light conditions among consecutive screenshots; this "dark" region is selected where

no waveguides, active elements or, more generally, scatter is present. The inner pixel

values are computed for all the specified regions, both "dark" and regular ones, with

the former subtracted to the latter ones. As a preliminary hypothesis, the algorithm

would have been valid for all straight waveguides, as this simple scenario reduces

algorithm complexity due to almost the same amount of scattering in the integra-

tion region. An unitary vector of size equals to the number of outputs realizes the

56 Chapter 4. The Control Architecture

output vector, specifying 1 if such output had to be maximized, 0 if it had to be min-

imized. For testing purposes, only one output was set as to be maximized, while

all the others were minimized. A second vector containing the computed scattered

intensities (i.e. the normalized sums of inner pixels inside each specified regions) is

then built and constrained to a unitary norm by a global normalization, in order to

have it comparable with the target vector. Secondly, an optimization algorithm was

developed to optimize the output retrieved either by the digital multimeter or the

image processing algorithm. The main logic is listed below:

i) each channel undergoes a voltage sweep from a start value to a stop value with a

custom step (usually 0 V, 12 V, and 0.5 V respectively);

ii) on each sweep (i.e. each DoF), the evolution of the system state is then registered,

being it with the multimeter, sensing the photocurrent of a single output, or with

image processing through the scattering intensity in all specified rectangle regions;

iii) for each sweep, the driving voltages and current of each TiTiN thermistor and

the minimum of the cost function are stored in a proper structure;

iv) after each sweep, the system is set to the last analyzed DoF, holding the minimum

of the cost function for the current sweep, and then the algorithm moves forward to

the next DoF. As a solution against local minima for the cost function and for in-

creased robustness of the algorithm, the order of inspection for the DoFs (i.e. the

channels) is randomized, with the optimization search repeated for a custom num-

ber of tries. Moreover, for better modularity of the code, each step of the system

state is saved in an ASCII file and its relative Thorlabs camera image during each

sweep of the optimization routine are stored and linked to the relative optimization

step through the generation of a univocal progressive ID number; in this way all re-

trieved data are completely available for future use. Successively, the time evolution

of light intensity for each region is computed and displayed. When image process-

ing is used as the output sensing method, the optimization criterion is set as the

minimization of a cost function output defined as the sum of the squared differences

(i.e. the norm) between the measured and the expected output vector. Conversely,

when the digital multimeter is used, the optimization criterion is maximizing the

photocurrent readings for the target output. For the sake of clearness, the optimiza-

tion algorithm when image processing is used (that is, when using live images from

the Thorlabs camera) is presented more in details here below. First, for every spec-

ified rectangle region (in this case, matching the outputs), the sum of all the inner

4.2. Software 57

pixel intensities si(x, y) is computed and normalized by the region’s area ARn , and

then the "dark" background offset B is subtracted:

Sn = ∑i∈Rn si(x,y)
ARn

− B

where B is computed as the sum of all the inner pixel intensities si(x, y) in the

"dark" offset region normalized by its area AB

B = ∑i∈B si(x,y)
AB

Then, the region vector S is assembled as

S = (S1, S2, · · · , Sn)

and then it is normalized to a unitary norm

Sinormalized = Si

∑i∈B(
√

S2
i)

∀Si

Lastly, the output ∆S of the cost function is computed as

∆S =
n

∑
i=1

(
√︂
(Sinormalized − Ti)2)

with

T = (T1, T2, · · · , Tn), ∑
i

T2
i = 1

as the vector of the target outputs. When minimizing all but one output (the k-th

one, which has to be maximized), the elements Ti of such vector are

⎧⎪⎨⎪⎩
Ti = 1 for i = k

Ti = 0 for i ̸= k

Consequently, the optimization is reached when ∆S is minimized, and the op-

timal thermistor drive voltages are the ones which allows such minimization. The

discussed optimization algorithms are summarized in Fig.4.28, Fig.4.29 and Fig.4.30.

58 Chapter 4. The Control Architecture

4.2.13 Theoretical MZI output formulas

To better characterize the MZIs and have a comparison between the theoretical ex-

pected output and the measured ones coming from the conducted set of experi-

ments, I retrieved a compact formula for the outputs of a single MZI; this way it

would have been possible to simulate the theoretical output and directly compare

it to the actual one. As also stated in Chapter 3, the tuning in a MZI is achieved

through thermo-optic effect following the formula below:

nL = (neff
0 +

dneff
dT · ∆T)L (4.1)

where the optical path is the product nL of the refractive index n and the geo-

metrical path L. In the stated formula the optical path is thus proportional to the

refractive index at room temperature neff
0, to the thermo-optic coefficient dneff

dT and

to the temperature variation ∆T with respect to the room temperature. To control

the interference pattern it is possible to act on the phase-shifters in order to induce

a phase-change of photons in the heated region between two coupling regions. The

output for a single beam splitter can be expressed in matrix form as:

⎛⎝O1

O2

⎞⎠ =

⎛⎝I1

I2

⎞⎠⎡⎣ t ik

ik t

⎤⎦ (4.2)

with k the beam splitter coupling coefficient and t =
√︁

1 − |k|2 the transmission

coefficient. From the equation of the output of a single beam splitter the equations

of the output of an MZI (which is essentially a series of two beam-splitters separated

by a free-propagation tract) is derived as:

⎛⎝O1

O2

⎞⎠ =

⎛⎝I1

I2

⎞⎠[︂
M1

]︂ [︂
M2

]︂ [︂
M3

]︂
(4.3)

where

M1 =

⎡⎣√︁(1 − |k1|2) ik1

ik1
√︁
(1 − |k1|2)

⎤⎦
M2 =

⎡⎣eiϕ1 0

0 eiϕ2

⎤⎦ M3 =

⎡⎣√︁(1 − |k2|2) ik2

ik2
√︁
(1 − |k2|2)

⎤⎦

4.2. Software 59

With M1, M2 and M3 respectively the transformation matrices associated with

the first beam splitter, the free-propagation tract and the second beam splitter.

In case of identical beam splitters (i.e. k1 = k2), the previous output expression can

be rewritten as:

⎛⎝O1

O2

⎞⎠ =

⎡⎣−eiϕ2 k2 + eiϕ1 t2 ieiϕ1 kt + ieiϕ2 kt

ieiϕ1 kt + ieiϕ2 kt −eiϕ1 k2 + eiϕ2 t2

⎤⎦⎛⎝I1

I2

⎞⎠ (4.4)

with ϕ1, ϕ2 as the phases of the beam splitter arms and k and t as phase shifters

inner parameters. By expressing ϕ2 as a function of ϕ1 and the relative phase-shift

between the two phases θ and, in turn, ϕ1 as a function of the refractive index neff,

the following system of equations can be stated:

⎧⎪⎨⎪⎩
ϕ2 = ϕ1 + θ

ϕ1 = 2πneff
L
λ

. (4.5)

Now, the two outputs can be rewritten as:

⎛⎝O1

O2

⎞⎠ =
1
2

⎛⎝ eiϕ1(1 − eiθ)

ieiϕ1(1 + eiθ)

⎞⎠ (4.6)

This compact formula is of particular interest as, with similar steps, the expres-

sion for a combination of multiple MZIs, such as in Reck or Clements architectures,

can be obtained. The plot of the theoretical outputs produced by the Python script

illustrated in Chapter 4.2 is shown in Fig. 4.8. In this figure are plotted the output

intensities of a single MZI computed through the matrices illustrated above, show-

ing the two normalized outputs (output 1 in blue and output 2 in orange) as they

gradually increase and decrease with a change of θ and, in turn, the split ratio. The

measured outputs which matches the theoretical scenario illustrated in Fig. 4.8 are

illustrated in Fig. 4.9. On top, the I-V curves for a single voltage sweep ranging from

0 to 12V and back of the phase shifters are illustrated, showing an almost linear

trend, with an under-linear behaviour corresponding to regions near the maximum

voltages, where it is impacting the thermoresistive effect. On the bottom, the volt-

age readings associated to the voltage sweep are presented, showing similar curves

to the ones presented in the theoretical scenario of Fig. 4.8. Note that all curves do

not embrace a full sinusoidal; the fact that a full period is not reached is due to the

60 Chapter 4. The Control Architecture

FIGURE 4.8: Theoretical output of a single MZI computed through
the transformation matrices described in this section.

constraints both on the maximum voltage value, i.e. 12V, and on the maximum cur-

rent (10 mA). These compliances were imposed to restrain the dissipated power over

the thermistors and prevent breakage as already discussed in [22]. Regarding this

limit, thermistors with higher current tolerances and better thermo-optic responsiv-

ity have already been produced as presented in [57]. Lastly, the actual effects on chip

of controlling a single MZI are shown in Fig. 4.10 where it can be noticed that from a

starting configuration of a 50:50 split ratio the MZI was set to shift to a full transfer

toward the lower output, as shown in Fig. 4.9. For the sake of completeness, the

effects of controlling a Clements architecture, thus multiple MZIs, are illustrated in

Fig. 4.11, where from an equal distribution of light throughout all the architecture

(top) the configuration moves toward the selection of a single branch (bottom).

Conclusions to this Chapter

In this Chapter I discussed one of the major contribution of my work: the control

architecture. Firstly, the overall system setup was presented for several measure-

ment configurations. Secondly, the software implementation was deeply discussed.

All the sections implemented for interfacing with the Q8b driver module, the in-

strumentation tools and the camera have been illustrated along with code snippets.

Thirdly, the simulations of theoretical outputs for a single MZI and a Clements ar-

chitecture were presented and the output optimization algorithm was discussed. Fi-

nally, a theoretical assertion was drawn presenting the formulas for the outputs of a

4.2. Software 61

FIGURE 4.9: Experimental outputs of a single MZI for input 2 (left)
and input 1 (right). I-V curves for controlled TiTiN thermistors (top)
and voltage readings in mV for the two outputs (bottom). It is worth

noting the similarities with Fig. 4.8

single MZI and then validating the measurements performed for the same scenario.

62 Chapter 4. The Control Architecture

FIGURE 4.10: Single MZI actuation. The rest state (top) has the out-
put intensities about equally distributed. By actuating the thermistor
on one of the two arms of the MZI it is possible to change the phase
and reach an interference condition where all of the light intensity is

directed towards output 2 (bottom).

4.2. Software 63

FIGURE 4.11: Effect of controlling multiple MZIs in a Clements ar-
chitecture: the system starts in the rest configuration (top) where the
light distributes among the channels. With the optimization algo-
rithm the phase in each MZI is changed until almost all light is driven

in the target output (bottom).

64 Chapter 4. The Control Architecture

Close connection to
Qontrol module

Voltage drive target channel

Acquire voltage and current
measurements

Connect to Qontrol
module

Set current and voltage compliances
and voltage value

FIGURE 4.12: Interfacing with the Q8b driver module and voltage
driving a single channel

Enable streaming
mode

Create buffers for data storing

Connect to Picoscope

Set up channel A and B

FIGURE 4.13: Interfacing with the 4224 Picoscope digital oscilloscope

4.2. Software 65

Compute the mean of
all measurements

Convert from counts to mV

Start streaming mode

Acquire single measurement sample

Number of
total samples to be

acquired
is reached?

No

Yes

Stop streaming mode

FIGURE 4.14: Acquiring and retrieving a measurement from the 4224
Picoscope digital oscilloscope

Close connection to
the Picoscope

Stop pending
streamings

FIGURE 4.15: Stopping and disconnecting the 4224 Picoscope digital
oscilloscope

66 Chapter 4. The Control Architecture

Convert from counts to mV

Acquire single measurement sample

Number of
total samples to be

acquired
is reached?

No

Yes

Stop streaming mode

Start streaming mode

Create buffers for data storing

Connect to Picoscope

Set up channel A and B

Enable streaming mode

Close connection to
the Picoscope

Compute the mean of all
measurements

Stop pending streamings

FIGURE 4.16: A sample of complete measurement routine for the 4224
Picoscope digital oscilloscope

4.2. Software 67

Connect to Keithley

Reset the instrument

Clear the default
buffer

FIGURE 4.17: Connecting and initializing the 2450 Keithley digital
multimeter

Set compliance

Enable autorange

Set source (current or voltage)

Retrieve a single
measurement

FIGURE 4.18: Acquiring a single measurement from the 2450 Keithley
digital multimeter

68 Chapter 4. The Control Architecture

Turn the output on

Set voltage sweep

Set 2-wires measurement

Set current measurement

Reset instrument

Clear the default buffer

Set current range

Retrieve the current
readings

Retrieve the voltage readings

Set voltage source

Set voltage range

Set current compliance

Run sweep

FIGURE 4.19: Performing a voltage sweep with the 2450 Keithley dig-
ital multimeter

4.2. Software 69

Turns the Keithley
output off

Close connection to
the Keithley

FIGURE 4.20: Stopping and disconnecting the 2450 Keithley digital
multimeter

Connect to Keithley

Reset the instrument

Set compliance

Set source (current or voltage)

Clear the default buffer

Enable autorange

Retrieve a single measurement

Close connection to
the Keithley

Turns the Keithley output off

FIGURE 4.21: A sample of a complete routine for connecting, ini-
tializing, acquiring a single measurement and disconnecting the 2450

Keithley digital multimeter

70 Chapter 4. The Control Architecture

Create device context

Write custom region of the screen
onto bitmap object

Save screenshot as
.png file

FIGURE 4.22: The custom function to take a screenshot of a region of
the screen

Connect to Qontrol
module

Set current and voltage compliances
and voltage sweep range

Start voltage sweep

Retrieve voltage and current
readings for all channels

Close connection to
Qontrol module

End of sweep reached?

Yes

No

FIGURE 4.23: Interfacing with a single Q8b driver module and per-
forming a single channel voltage sweep

4.2. Software 71

Create figure

Create a slider for each DoF

Link sliders with figure and the
Qontrol module

Display on canvas the figure and all
sliders, along with the save and exit

buttons

Close connection to
Qontrol module

No

Yes

Act on the respective DoF through
the Qontrol module

Redraw on canvas the figure

Save button is pressed

Save current configuration on file

Yes

Exit button is pressed

A slider is changed

No

Yes

No

FIGURE 4.24: Hand tuning the PIC by controlling each DoF via slid-
ers and displaying them via a dynamic plot

72 Chapter 4. The Control Architecture

Create figure

Create a slider for each DoF

Link sliders with figure

Display on canvas the figure and all
sliders, along with the reset and exit

buttons

End of simulation

No

Yes

Compute the new simulated outputs

Redraw on canvas the figure

Reset button is pressed

Reset configuration to the initial one

Yes

Exit button is pressed

A slider is changed

No

Yes

No

FIGURE 4.25: Creating dynamic sliders and plot for MZI output sim-
ulation

4.2. Software 73

Load data from file

Parse data to extract voltage sweep
data

Re-build original structures for
measured voltages and currents

Return original
structures

FIGURE 4.26: The custom function for reading the stored data

Acquire number of inputs and
input stages

Build structures for Phi and Theta

Build transformation matrices for all
inputs

Compute the output of current stage

Return computed
output

Yes

NoCurrent stage is
last stage

Current outputs become inputs for
next stage

FIGURE 4.27: The custom function for computing the outputs for an
arbitrary Clements architecture with any number of inputs and stages

of MZIs

74 Chapter 4. The Control Architecture

Catch rectangle corners for
background box

Compute sum of inner pixel
intensities for background box and

normalize by its area

Catch rectangle corners for output
box

Compute the sum of inner pixel
intensities for output box, normalize
by its area and subtract background

offset

Close connection to
Qontrol module

Yes

NoHave all output boxes
been catched?

Catch target output vector

Yes

Connect to Qontrol module and set
each channel voltage to its starting

value

Run voltage sweep

Drive current channel and acquire its
voltage

Take a screenshot of camera
livestream

Compute new inner pixel intensities
values for background box and

output boxes

Compute output of cost function

New optimal
value found

Store the system configuration as a
candidate for the optimal

configuration

Any channel left
to inspect?

Set current channel voltage to the
optimal value found and move to

next channel

Save optimal configuration found

No

Yes

Yes

No

FIGURE 4.28: The optimization algorithm based on image processing

4.2. Software 75

Connect to Qontrol module and
set each channel voltage to its

starting value

Connect to Keithley and set source
and compliances

Close connection to
Keithley

Yes

Catch target output

Run voltage sweep

Drive current channel and acquire its
voltage

Compute output of cost function

New optimal
value found

Store the system configuration as a
candidate for the optimal

configuration

Any channel left
to inspect?

Set current channel voltage to the
optimal value found and move to

next channel

Save optimal configuration found

No

Yes

Yes

No

FIGURE 4.29: The optimization algorithm based on the 2450 Keithley
digital multimeter

76 Chapter 4. The Control Architecture

Connect to Qontrol module and
set each channel voltage to its

starting value

Connect to Picoscope and set
channels and buffers

Close connection to
Picoscope

Yes

Catch target output

Run voltage sweep

Drive current channel and acquire its
voltage

Compute output of cost function

New optimal
value found

Store the system configuration as a
candidate for the optimal

configuration

Any channel left
to inspect?

Set current channel voltage to the
optimal value found and move to

next channel

Save optimal configuration found

No

Yes

Yes

No

FIGURE 4.30: The optimization algorithm based on the 4224 Pico-
scope digital oscilloscope

77

Chapter 5

Measurements

Introduction to this Chapter

In this Chapter I will present the results for all the measurement sets performed as

entirely due to my original contribution to this work. As a preliminary note: all

results derived from teamwork activities from within the Q-PIXPAD project have

already been presented in Chapter 3. First, all the operations composing the mea-

surement routine will be presented: the laser driver setup, the configuration of the

Peltier cell and the fiber alignment, along with the maximization of the output sig-

nal. The discussion continues with the output power calibration and the check for

fiber deterioration. Secondly, the single channel section will be introduced with the

voltage sweep and thermistor integrity check. The discussion will then move to

the multiple channel section, illustrating the mapping of the interposer to the PIC.

Finally, the results for the output optimization algorithm will be presented for all

possible feedback signal configurations (Picoscope, Keithley and Thorcam).

5.1 Measurement Routine

The setup preceding the measurement routine comprehended several steps apart

from the usual powering up of all the instrumentation tools required (Q8b driver

modules, Thorlabs camera, digital oscilloscope and multimeter, output gain ampli-

fier, micromanipulator and Thorlabs laser driver): setting up properly the laser, con-

figuring the Peltier cell, aligning the fiber to the chip and maximizing the output

signal. The lab setup is shown in Fig.5.1.

78 Chapter 5. Measurements

Digital
multimeter

Digital
oscilloscope

Temperature
Controller

Piezo-controllers

Powermeter

Laser Driver

Silicon
Detector

Polarization
controller

Piezo-manipulators

PIC

Optical table

Peltier cell

1

1

2
2

33

4

4

5

5

6

6

7

7

8

8
9

9

10

10

11

11

Camera12

12

13

13

FIGURE 5.1: Lab setup.

3 2

1

FIGURE 5.2: Close up of lab setup. Note the PIC with the custom PCB
on 1, the single Q8b driver module with its backplane on 2 and the
mounted PIC with the input and output optical fibers already aligned
to it on 3. In particular, this setup was used in the early stages of my
project, for single channel control operations (e.g. when checking for

thermistor integrity).

Setting up the laser

The laser driver used was a CLD1011LP [58] which mounted an LP850-SF80 diode

[59]. The absolute maximum ratings and specifications are shown in Fig.5.3 and

5.1. Measurement Routine 79

Fig.5.4 respectively. The laser driver was set to generate an 850 nm wavelength laser

beam at an output power of 5 mW and stabilized in temperature through the temper-

ature controller to 25 ◦ C. The laser beam is guided through a TSMJ-3A-1550-9/125-

0.25-7-2.5-14-1 tapered singlemode lensed fiber [60] aligned to the PIC. The polar-

ization of the beam is controlled through a Thorlabs FPC023 manual fiber polariza-

tion controller [61], which, thanks to two paddles allows for creating two fractional

wave plates as the optical fiber is looped around two independent spools which are

rotated, leading to a manual change in the propagation mode in a combination of

TE and TM. When requiring a measurement of the output laser beam through one

of the output of the PIC, a second optical fiber aligned to the target output of the

PIC collects the output beam and sends it to a Thorlabs PDA100A2 Silicon amplified

switchable gain detector [62] connected to the Picoscope 4224 digital oscilloscope

[63]. To reduce vibrations an MCIAir optical table is used, featuring a pneumatic

system to greatly dampen external vibrations. A closeup of the setup is shown in

Fig.5.2.

FIGURE 5.3: The absolute maximum ratings for the LP850 laser
diode.

Configuring the Peltier cell

As controlling the DoFs of the PIC means inducing a local temperature gradient in

the neighborhood of each metallic thermistor, it is crucial to maintain the PIC to a

80 Chapter 5. Measurements

FIGURE 5.4: The specifications for the LP850 laser diode.

fixed room temperature, thus the temperature is stabilized via a Peltier cell (a Thor-

labs TEC2FS single stage Thermo-Electric Cooler (TEC) element [64]). A Copper

block is placed between the PIC and the cell, which in turns lays on an Aluminum

base. The cell is then controlled via a Thorlabs MTD415LE Temperature Controller

[65], for which the Proportional Integral Derivative (PID) control parameters were

calibrated. In Fig.5.6 a closeup of the Peltier cell and the temperature controller is

shown. The PID control loop is crucial in a TEC system as temperature controls

demand fast settling time both for power-up and after a change in the set-point tem-

perature (defined mainly by the proportional P parameter), reduced if no overshoot

(impacted mainly by the D derivative parameter) and minimum residual tempera-

ture error (managed mainly by the I integral parameter). The PID parameters were

calculated automatically by the MTD415LE firmware by entering the results of a

loop oscillation test. The oscillation test was performed with the following steps:

i) configuring the PID loop with a set temperature of 25 ◦ C, 30 ms as the loop os-

cillation cycle time, the proportional parameter as 1000 mA/K and null values for

both the integral and the derivative parameters

ii) enabling the TEC

iii) finding the critical gain, i.e. the value of the proportional gain for which the sys-

tem started to oscillate for a minimum of 20 cycles with no amplitude drops

iv) programming the MTD415L with the values found.

5.1. Measurement Routine 81

After the oscillation test, the firmware automatically computed the gains for the

digital PID loop and applied them. The HMI for the MTD415L software is shown in

Fig.5.7, where both the tunable parameters (like the P, I and D values found after the

oscillation test) and the temperature deviation are displayed.

OPTICAL FIBER PICPOLARIZATION
CONTROLLER

PIEZO MANIPULATOR

PELTIER CELLTEMPERATURE
CONTROLLER

850 NM
LASER DRIVER

PYTHON INTERFACE

DRIVER MODULE

CAMERA DIGITAL MULTIMETER

FIGURE 5.5: Block scheme of the setup with the Peltier cell and the
temperature controller.

Aligning the fiber and maximizing the output signal

The block scheme of the system configuration when aligning the fiber and maximiz-

ing the output signal is shown in Fig.5.8. To correctly align the PIC (Fig.5.9) with the

optical fibers, two stages were required:

i) raw visual alignment

ii) maximizing the output signal.

During the raw visual alignment, the optical fiber (or fibers, if the output signal

is measured externally through the PDA100A2 detector) is aligned to the required

input line of the PIC by raw visual inspection thanks to the livestream of the Thor-

labs camera. Different ranges of sensitivity in the spatial movement of the fiber were

granted by the Thorlabs NanoMax 3-Axis Flexure Stage piezo-electric manipulator

[66], controlled by the Thorlabs MTD693B Open-loop piezo controllers [67]. The

manipulators featured 4 mm of coarse travel and 300 µm of fine travel in X,Y and

Z directions. The physical knob featured 10 µm graduations and 1 µm graduations

82 Chapter 5. Measurements

1

2

3

3

4

4

FIGURE 5.6: Close up of the Peltier cell (1) and the MD415L temper-
ature controller (2). They are also appreciable both the two optical
fibers mounted on their guides (3) and the piezo-electric manipula-

tors (4).

1

2

FIGURE 5.7: The HMI for the MD415L temperature controller, fea-
turing all the tunable parameters (1) like the P, I, and D values as well

as the live tracking of temperature and temperature deviation (2).

for the coarse travel and the fine travel respectively. Moreover, the manipulators

embedded open-loop piezoelectric actuators with 20 µm of travel and a resolution

of 20 nm. Such resolutions and travel range were crucial for coupling efficiency and

5.1. Measurement Routine 83

also for the subsequent stage of maximizing the output signal. In Fig.5.10 a closeup

of the alignment between the input fiber and the PIC is shown: the tip of the fiber

edge is being aligned to a test waveguide and on the left the Picoscope software

interface will display the voltage signal collected from the output fiber aligned to

the same waveguide. Fig.5.11 then shows the laser injection once the optical fiber is

correctly aligned to a PIC waveguide: the laser exits the fiber and is collected and

confined inside a waveguide. In Fig.5.12 a portion of the laser beam being collected

by the photodetector embedded in the substrate is shown. The waveguide is in-

verse tapered to allow a portion of the beam to exit the guide and being collected

by the photodiode; a portion of the laser beam then continues its travel through the

waveguide, reaching the output and being collected by the aligned output fiber.

After the first stage of the raw visual alignment, the second stage aims at max-

imizing the output signal through the feedback signal from a target output line

sensed by the external detector and thus through routed through a second optical

fiber aligned with the corresponding output. The output signal, after being ampli-

fied by the external detector, is acquired via the digital oscilloscope. Then, the fine

alignment was done by acting on the piezo-manipulators at the different travels.

Fig.5.13 shows the output fiber aligned to one of the active outputs and the Pico-

scope software interface displaying the output signal voltage collected by the exter-

nal switchable gain detector. Due to the presence of local maxima, the maximization

stage was composed of different steps:

i) inspecting one spatial direction (i.e. DoF) in search for the local maxima, keeping

the other two DoFs fixed, looking for the maximum of the acquired output signal

ii) repeating step i) for the second DoF, still keeping the other DoFs fixed

iii) repeating step i) for the third DoF, again without changing the other two DoFs

iv) iterating step i), ii) and iii) until the local maxima becomes the absolute maxima.

For all these three steps discussed, acting on the manual fiber polarization con-

troller to change the TE/TM polarization helped increase a priori the total amount

of output signal, as, of course, it is strictly related to the polarization of the travel-

ling laser beam. Moreover, a phenomenon which had to be taken into account when

performing the experiments discussed in this chapter is the relaxation of the axis of

the piezo-manipulator, which, in turn, caused the misalignment between the optical

fibers and the PIC and thus a significant loss in the output signal. To reduce the

impact of such phenomenon, a re-alignment (that is another stage of maximizing

84 Chapter 5. Measurements

the output signal) was performed between each measurement, which, in turn, was

designed not to be too long to be meaningfully impacted by the axis relaxation. In

order to achieve better results, few other precautions were adopted: first of all, the

adjusters of the piezo-manipulators were not pushed to their end points during the

fine-alignment routine, secondly the external detector was switched to a gain that

would let the sensed signal be in the range 2.5 to 7V, thus having it work in the best

operative range. A sample of PIC is reported in Fig.5.9, where the two sides of the

PIC are marked (1 and 2): the input optical fiber has to be aligned to one of them and,

in case the output measurement is not performed by the embedded silicon photode-

tector but rather by the external switchable gain amplifier detector, the output fiber

has to be aligned to the opposite side. The PIC contacts are connected to external pin

sockets to aid external connections.

OPTICAL FIBER PICPOLARIZATION
CONTROLLER

PIEZO MANIPULATOR

PELTIER CELLTEMPERATURE
CONTROLLER

DRIVERS MODULES WITH
BACKPLANE & INTERPOSER

850 NM
LASER DRIVER

PYTHON INTERFACE

CAMERA DIGITAL OSCILLOSCOPE

FIGURE 5.8: Block scheme of the setup when aligning the fiber and
maximizing the output signal acquired through the Picoscope 4224

digital oscilloscope.

5.2 Calibrating the output power and checking optical fiber

deterioration

5.2. Calibrating the output power and checking optical fiber deterioration 85

1

2

3
3

FIGURE 5.9: A sample of PIC wire-bonded to the PCB. The two sides
of the PIC where the optical fibers have to align with are marked as
1 and 2. The contacts are connected to external pin sockets (3) to ease

the external connections.

1

2

3

4

FIGURE 5.10: Closeup of the alignment between the input fiber (1)
and the PIC. The fiber is being aligned to a test waveguide (2) as can
be noticed by the label (3). On the left (4), the Picoscope software to

monitor the output signal voltage.

Using the PM100D Powermeter to get precise output power

When performing quantitative measurements on the PIC (such as characterizing the

propagation losses), calibrating the laser output power injected in the optical fiber

86 Chapter 5. Measurements

1

2

3

FIGURE 5.11: Closeup of the laser injection from the input fiber (1)
to the PIC through a PIC waveguide (2). Other waveguides are also

visible (3).

1 2
3

3
4 5

FIGURE 5.12: The laser beam (1) passing through a silicon photo-
diode (2): the waveguide is inverse tapered in the proximity of the
photodiode, allowing the laser beam to partially exit the waveguide
and reach the photodiode on the lower substrate. The contact pads
wire-bonded are visible (3). A portion of the laser beam then contin-
ues its path through the waveguide to (4) the output, being collected

by the aligned output fiber (5).

was of paramount importance. This operation was achieved thanks to a Thorlabs

5.2. Calibrating the output power and checking optical fiber deterioration 87

12

3

4

FIGURE 5.13: Closeup of the output fiber alignment: the output fiber
(1) is aligned to one of the active outputs (2). Other active outputs are
also visible (3). On the left (4), the Picoscope software displays the

output signal voltage collected by the switchable gain detector.

PM100D Powermeter [68] and a splitter connected to the output fiber coming from

the laser driver. The splitter divided the input power in a 9:1 ratio in two optical

fibers. These two fibers were connected to the PIC and to the Powermeter inspecting

each power combination (90% to the PIC and 10% and 10% to the PIC and 90% to

the Powermeter) to precisely calibrate the output power the laser driver had to be

configured with in order for the PIC to be injected with the desired input power

(which was usually 5 mW). Once the ratio was extracted, each measurement input

power was scaled with such ratio.

Analyzing fiber deterioration: fiber to fiber alignment

In addition to precisely calibrating the input power, a further step required during

quantitative measurements was to check fiber integrity after each set of measure-

ments. This was achieved by performing at the beginning of the measurement set

a fiber to fiber alignment with no PIC between the optical fibers and registering the

sensed voltage signal through the PDA100A2 switchable gain detector (Fig.5.15).

Naturally, this operation had to be done only after the output signal was maximized

following the routine illustrated in this Chapter. Secondly, at the end of each mea-

surement set, after again maximizing the output signal, the same measurement was

88 Chapter 5. Measurements

OPTICAL FIBER PICPOLARIZATION
CONTROLLER

PIEZO MANIPULATOR

PELTIER CELLTEMPERATURE
CONTROLLER

POWER METER

850 NM
LASER DRIVER

PYTHON INTERFACE

DRIVER MODULE

CAMERA DIGITAL MULTIMETER

FIGURE 5.14: Block scheme of the setup with the Power meter.

repeated: in case of fiber deterioration happened during the measurement set, a mis-

match between the beginning and the end values would have been present. When

such scenario happened, both optical fibers were cleaned with ethanol, or replaced

if that did not solve the problem, and a the measurement set was repeated. Fig.5.15

shows the fiber to fiber alignment with the laser beam exiting the input fiber (on

the left) and being collected by the output fiber (on the right); the output fiber is

then connected to the switchable gain detector and, in turn, to the Picoscope, which,

thanks to the software interface displays the measured output voltage value.

Analyzing fiber deterioration: test waveguides

An additional method to check for fiber integrity was recurring to test waveguides

inside each PIC. In fact, each PIC used during measurements featured inside its op-

tical circuit also several test waveguides: straight waveguides with no elements on

them (MZIs, beam splitters etc.) and no detectors below them (thus no inverse ta-

pering). These waveguides were used to have reference values between waveguides

and check for fiber deterioration. Moreover, they were useful to check if the signal

had to be maximized again, an occurrence which happened due to the relaxation

of the piezo-manipulators that leaded to a partial misalignment between the opti-

cal fibers and the PIC. Fig.5.10 show the alignment to a test waveguide: once the

alignment is correctly performed, the output signal voltage collected by the output

5.3. Voltage Sweep and checking thermistor integrity 89

1 2

3

FIGURE 5.15: Fiber to fiber alignment: the input fiber (1) on the left
is aligned to the output fiber (2) on the right. The Picoscope software
interface shows the collected output signal voltage. This value, in
absence of fiber deterioration during the experiment run, stays equal

between the start and the end of the experiment.

fiber is registered and compared to the value of other test waveguides (to validate

consistency between the same experiment run) and to the same waveguide for past

experiments (to validate consistency between different experiment run).

Single channel control

In this section, the voltage sweep routine will be discussed, along with the thermistor

integrity check.

5.3 Voltage Sweep and checking thermistor integrity

Other than as a control strategy, the voltage sweep routine was also adopted when

performing a fast check on the thermistors to visually inspect the most impact-

ing ones for specific output and also to check for the integrity of the resistance.

Thanks to a live plot realized by using the matplotlib.axes.Axes.plot.set_xdata(),

matplotlib.axes.Axes.plot.set_ydata() e matplotlib.axes.Axes.plot.set_text() methods,

the I-V curve is displayed and updated at each point of the sweep, showing the

ramp in real time together with their numerical values of voltage, current and the

90 Chapter 5. Measurements

computed dissipated power, in V, mA and mW respectively. This tool was useful

and used during the characterization of the TiTiN thermistors discussed in Chap-

ter 3 and, for readability, the results are reported also here, in Fig. 5.17. As it can

be noticed, one of the thermistors, the one labeled as "CPL2BA" was pushed to the

breakage limit, exhibiting an I-V ramp trend common of regular resistors up to the

breakage, were the current values dropped to almost zero. A close up of the lab

setup when performing a single channel voltage sweep or checking thermistor in-

tegrity is presented in Fig.5.2, where the PIC with its custom PCB (1), the single Q8b

driver module with its backplane (2) and the mounted PIC under inspection (3) are

marked. In addition, in Fig.5.18 it is possible to notice the interface when perform-

ing a thermistor integrity check. The channel voltage against channel current is live

plotted and visible on the left in the Python interface. The integrity of the thermistor

under inspection is ensured by the ramp drawn on the plot as a consequence of all

the past points.

850 NM
LASER DRIVER

OPTICAL FIBER PIC PYTHON INTERFACE

DRIVER MODULE

CAMERA

POLARIZATION
CONTROLLER

PIEZO MANIPULATOR

DIGITAL MULTIMETER

FIGURE 5.16: Block scheme of the setup when checking for thermis-
tor integrity and performing a single channel voltage sweep.

Multiple channel control

In this section, the mapping of the custom interposer to the selected PIC will be

illustrated, as well as the results for the output optimization algorithm for different

setup configurations.

5.4. Mapping the interposer to the current PIC 91

FIGURE 5.17: I-V characterization curves for thermistors. The I-V
curves can also be used as thermistor integrity check: in this case, the
thermistor corresponding to the blue line was pushed to the breakage
limit, exhibiting no more the regular ramp pattern between current

and voltage.

5.4 Mapping the interposer to the current PIC

During the first tests conducted, e.g. the single thermistor voltage drive, one Q8b

driver module was more than enough for the task required, thus a straight connec-

tion between the Q8b and the PIC socket did the job. As the system architecture ex-

panded and more DoFs were to be controlled, one Q8b driver was not sufficient any-

more, demanding for multiple drivers to be connected simultaneously. To achieve

at best this goal, two changes were done: adding a backplane and adding a custom

PCB interposer.

Adding a backplane

The Qontrol Ltd. BP12 [69] was chosen as a backplane for simultaneously connecting

multiple Q8b driver modules. Such backplane allows to host up to 12 modules, thus

there was enough room for our 4 Q8b driver modules (which meant up to 32 DoFs).

As for a single Q8b driver module, it features USB connection and an analog input

power, the latter used with the Qontrol Ltd. PS15 15V analog power supply [70].

92 Chapter 5. Measurements

1

2

3
4

FIGURE 5.18: Thermistor integrity check: a voltage sweep is per-
formed from 0V to a maximum voltage value (usually 12V) and back
to 0V. The channel voltage against channel current is live plotted in
the Python interface (1) and voltage, current and power are printed
(in V, mA and mW respectively). The ramp drawn on the plot as a
consequence of all the past points ensure that the thermistor under
inspection is integer. On the right, through the camera inspection (2)
it is possible to catch during the evolution of the experiment the in-
duced path change (3) as a consequence of the voltage sweep and the

change in output distribution (4).

Adding a custom PCB interposer

The BP12 backplane was then connected to a custom PCB interposer through a

CAB12 shielded cable [71] for 100-way parallel communication. The custom inter-

poser featured two 75-pins (50 lines and 25 ground) female socket board-to-wire

connectors and two 50-pins female socket wire-to-board connectors to match the

lines in the board-to-wire connectors (Fig.5.21). The 50-pins female socket wire-to-

board connectors were routed in the PCB to two 50-pins male socket wire-to-board

connectors, which acted as an output socket, to interface with the PIC through a rib-

bon cable connecting directly to the custom PCB board hosting the PIC (Fig.5.22). As

the pin association between the interposer output socket and the PIC may vary, for

each PIC it was necessary to map such association and test its correctness before per-

forming any measurement. The pin mapping was done by comparing the PIC and

the interposer CADs (Fig.5.25). A close up of the connection between the mounted

5.4. Mapping the interposer to the current PIC 93

1

2

3

FIGURE 5.19: Close up of the lab setup used in the final stages
of my project, for multiple channel control operations (e.g. when
testing the output optimization algorithm). The mounted PIC (1) is
connected through parallel ribbon cables to the custom PCB inter-
poser (2), which is connected through the CAB12 shielded cable to
the backplane for multiple Q8b driver modules. It is also visible the
MTD415LE Temperature Controller (3) which drives and controls the
Peltier cell. Note that in the interposer the connection is performed
for just a single-channel, but the final set-up was composed of several

of such connections to enable multiple channel control.

PIC and the custom PCB interposer is shown in Fig.5.19, where the parallel commu-

nication ribbon cable connecting the PIC to the interposer is clearly visible, as well

as the CAB12 shielded cable which, in turns, connect the interposer to the backplane

where 4 Q8b driver modules are mounted. Lastly, the connections between the PCB

the PIC is mounted and the very PIC were examined (Fig.5.23) to complete the map-

ping; each of those connections on the PIC is, in fact, connected to a metallic pad of a

different thermistor, which acts as DoF for the system. In Fig.5.24 a zoomed view of

the actual connections between the PIC’s PCB and the very PIC can be seen, as well

as their wire-bondings, the photodiode contact pads, the Clements structure and the

outputs (marked as (2), (3), (4) and (5) respectively in the image).

Once the mapping was completed, I moved to the test of each thermistor to check

its integrity. After being sure that no thermistor was broken, I mapped each thermis-

tor to its corresponding DoF by validating the logic behind it (each thermistor can

affect the split ratio of the laser beam in the branch immediately after itself) with a

direct comparison with a visual inspection, as shown in Fig.5.25.

94 Chapter 5. Measurements

OPTICAL FIBER PIC

DRIVERS MODULES WITH
BACKPLANE & INTERPOSER

POLARIZATION
CONTROLLER

PIEZO MANIPULATOR

PELTIER CELLTEMPERATURE
CONTROLLER

850 NM
LASER DRIVER

PYTHON INTERFACE

CAMERA DIGITAL MULTIMETER

FIGURE 5.20: Block scheme of the setup with the backplane and cus-
tom PCB interposer.

5.5 Testing the output optimization algorithm

5.5.1 Measurements conditions

All the measurements were made on devices with the same structure as the one dis-

cussed in Chapter 3, i.e. a Silicon Nitride PIC wire bonded to a custom PCB board;

this way all the six output lines of the Clements architecture were connected each

one to a silicon photodiode, and the system featured 27 DoFs thanks to the wire-

bonding to 27 TiTiN phase-shifter thermistors. In Fig. 5.26,5.27 and 5.28 the three

measurement setups can be noticed when using the Keithley, Picoscope or camera

image processing respectively. An 850 nm infrared-laser beam is injected through an

optical fiber aligned with the PIC into one target among the six input waveguides.

A Thorlabs camera mounted above the chip live streams the captured images to the

Python interface running on a desktop computer. The TiTiN thermistors are voltage

driven through 4 Q8b driver modules connected to the PIC through a custom inter-

poser board and both their current and voltage readings are retrieved by the Python

interface. Finally, either a 2450 Keithley digital multimeter or a 4224 Picoscope dig-

ital oscilloscope are connected to one among the six possible output lines, sensing

the photocurrent produced by the respective photodetector and the reading is again

retrieved by the Python interface. Two sets of measurements were produced: one

5.5. Testing the output optimization algorithm 95

1

2

3

4

FIGURE 5.21: Interposer CAD view: on the top the socket pinout
for the CAB12 shielded cable is visible (1), the connections are routed
to the two three-pins sockets (two signal lines and a ground line) in
the top-half section (2), then the two signal lines of each column of
the two sockets are routed to the two-pins sockets in the bottom-half
section (3), which, in turn, are routed to the pinouts for the external

connections (4).

following the classical on-chip sensing approach and one using the live-streamed

images. The optimization algorithm was run with as optimization goal one output

to be maximized (and all the other to be minimized, in case of the image processing

tool). The two measurement sets were made as follows:

i) Set I was produced retrieving the photocurrent from the silicon photodetector con-

nected to the output to be maximized using a 2450 Keithley digital multimeter

ii) Set II was produced retrieving the scattered light intensities from all the six out-

put lines using the image processing algorithm discussed in Chapter 4.2. For Set I,

measurements were retrieved in the reverse polarization region, polarizing the pho-

todetectors at -3V, as in [23]. The thermistors were controlled with a voltage sweep

ranging from 0 to 12V with a discrete step of 0.5V, driving them one after the other.

This procedure was iterated for different input-output configurations. As by de-

sign not all DoFs contribute to each input/output combination, before running the

96 Chapter 5. Measurements

1

2

FIGURE 5.22: Interposer and PIC’s PCB mapping: a portion of the
interposer pinouts for the parallel communication to the PIC’s PCB is
shown in (1), while on the lower part a portion of the pinout of the

corresponding external connection of the PIC’s PCB is presented.

optimization algorithm only the impacting set of DoFs for the configuration under

test was selected; this also helped reducing significantly the required computational

time. To be consistent, Set II was built using the same input/output configurations

used in Set I, with the optimization algorithm that relied on the image processing

to estimate the system state by extracting the scattered intensities on each output

line. Note that, using the approach upon which Set II was built means being not

limited to wire-bonded photodiodes, i.e. detectors in fixed positions, this allowed

for a complete arbitrary-length output vector as optimization target, being able to

simultaneously maximize one output and minimize all the remaining ones. As a

final remark, gain on the captured images was adjusted between each measurement

to prevent loss of resolution and saturation.

5.5. Testing the output optimization algorithm 97

1

2

3

4

FIGURE 5.23: PIC’s PCB and PIC interconnections mapping: the
socket to which the interposer connects to is displayed on the lower
section (1), while on the upper section the PIC connections are visi-
ble (2). A large portion of those connections are wire-bonded (3) to a

metallic pad of a thermistor (4), which acts as a DoF for the circuit.

5.5.2 Results

As previously stated, we produced two sets of measurements to test the optimiza-

tion algorithm: i) Set I using the 2450 Keithley digital multimeter and retrieving

the photocurrent of the silicon detector referred to the output line to be maximized

(Figures 5.29 and 5.31) and ii) Set II using image processing and retrieving simulta-

neously all the scattered intensities of all outputs (Figures 5.30 and 5.32). Note that

the plot referred to the sensed photocurrent is intended for a minimization value,

as the photodiode is polarized in reverse bias; still, of course, this leads to a maxi-

mization of such output signal. The first input/output configuration analyzed was

input 3 (i.e. where the laser beam was injected into) and output 2 (i.e. the output

to be maximized). Fig. 5.29 refers exactly to this scenario, leading to six DoFs (the

thermistors acting as phase-shifters) to be controlled and investigated to have the

maximum amount of light pushed into the target output waveguide. In the third

98 Chapter 5. Measurements

1

2

3

4

5

FIGURE 5.24: Closeup of the PIC’s PCB and PIC: the PCB connections
are visible in the lower section (1): as also stated in the CAD view of
Fig.5.23, a large portion of them is wire-bonded (2) to metallic pads,
in this image also the bondings to the silicon photodiodes are visible
(3). On the left, the Clements structure is clearly visible (4) as well as

the outputs on the right (5).

panel of the figure the sensed photocurrent against the sweep-step exploration is

shown. As discussed in Chapter 4.2, after each DoF full range was explored, the

driving each explored DoF with voltages corresponding to their respective optimal

current reached at the minimum value during each sweep; this is clearly visible in

the plot as each V-shaped curve represents a voltage sweep and it can be seen that

after each curve the value was set as the minimum value reached by such curve.

Moreover, when comparing the starting point (corresponding to the initial random

configuration) with the ending point (corresponding to the final optimized config-

uration), it is clear that the absolute value of the current increased five-fold. When

optically inspecting the PIC for such optimization, the results are the ones shown in

the top-left (start) and top-right (end) images. To be consistent, the same input/out-

put configuration scenario was repeated using the image processing, i.e. using the

scattering intensities as feedback for the optimization algorithm. In Fig. 5.30 the

results for such experiment are illustrated, showing similar results to the Keithley-

based experiment in terms of light-routing, as the captured images on top proves

when compared with the images from Fig. 5.29. In the plot showing the averaged

computed pixel intensities, the optimization is appreciable through several steps:

5.5. Testing the output optimization algorithm 99

B27

B26

B25

B21

B22

B23

B19

B17

1

2

3 4

FIGURE 5.25: Partial mapping of the PIC DoFs: the wire-bondings
between the external connections (1) and the metallic contact pad of
each thermistor are visible (2). Some thermistors (3) are already tested
out and their degrees of freedom in the laser path change are marked

with arrows (4).

the output to be maximized, i.e. the output 2 (represented by the orange line), is

gradually enhanced up to the final value, that is the maximum, which is about three

times the starting value; conversely, the other outputs decreased up to almost zero,

which is again correct as they all have to be minimized. Note that negative values are

correct and predictable as the values shown in the plot are the computed pixel sums

after the background subtraction. Anyway, modifying the background subtraction

by also taking into account the very local nature of the background can improve the

algorithm and be an interesting future improvement. In addition, it is also worth

noting the correlation between different output signals: there is either a negative or

a positive correlation among several outputs due to their dependence to a specific

DoF, especially when considering degrees of freedom closer to the input. This is

clearly visible, for example, taking in consideration output 1 and 2 (blue and orange

lines respectively) in the image numbers range between 0 and 50, corresponding to

the DoF of the very last beam splitter, which theoretically can lead to an arbitrary

100 Chapter 5. Measurements

split ratio between them. Secondly, for both Set I and Set II, another input-output

combination was investigated; the results are illustrated in Fig. 5.31 for the Keith-

ley algorithm and Fig. 5.32 for the image processing algorithm. Fig. 5.31 shows

how the Keithley optimization algorithm performs when injecting the laser beam

into input 4 and the target output for the optimization is output 6. As for Fig. 5.29,

the optimization (i.e. minimization in case of photocurrent signal) trend is clearly

visible, with all but two DoFs contributing significantly to the minimization search,

highly impacting the output signal. Again, the optimization routine proves to be

effective as, like in Fig. 5.29, after each voltage sweep (i.e. the V-curves) the value

is set as the lowest value reached during the sweep. Lastly, the same scenario was

repeated for Set II, having the optimization algorithm based on image processing,

and the results are presented in Fig. 5.32: again the output 6 (brown line) had to be

optimized (that means a maximization this time) and the input is always the fourth,

having 9 DoFs as controls to reach the optimization goal. Again, the optimization

goal has been reached, with the output 6 correctly maximized. In fact, its averaged

pixel intensity has been increased by roughly 100% while the intensities of all other

output were correctly minimized. Note the correlation between output 5 and 6 (pur-

ple and brown lines respectively): as they both lie after the same last beam splitter,

they presents a similar trend until the DoF related to their common beam splitter is

inspected (i.e. in the image number range from 100 to 150); from that point on, they

exhibit opposite trends, further confirming that the last beam splitter was success-

fully investigated and the splitting ratio properly changed. In conclusion, the image

processing has been proven to be an effective solution for optimizing a target output

configuration, further validated by the Keithley-based method. Moreover, achiev-

ing optimization performances comparable (if not better) to the ones of classical ap-

proaches that are based on invasive on-chip sensing (i.e. with silicon photodiodes)

paves the way for drastically decreasing the number of detectors embedded in the

PIC, thus allowing more and more available space for circuit design while also re-

ducing the complexity of routing. This is particularly critical in case the detectors at

the end of the PIC operate at single photon regime as they would not be suited for

a use during calibration. In addition to this, another strong advantage of using the

proposed image processing-based optimization algorithm is that the investigation

and optimization routine is not limited to the very end of the circuit, but it can be

deployed to analyze an arbitrary number of custom regions inside the whole PIC,

5.5. Testing the output optimization algorithm 101

inspecting and tuning arbitrary points even where usually monitor photodetectors

cannot access, as for the in inner sections. Finally, the scalability and modularity

of the proposed algorithm together with the fact that it does not require either inner

logic or formulas typical of specific architectures makes it easily suitable for any type

of systems and not only to the Clements layout examined in this work.

OPTICAL FIBER PIC

DRIVERS MODULES WITH
BACKPLANE & INTERPOSER

POLARIZATION
CONTROLLER

PIEZO MANIPULATOR

PELTIER CELLTEMPERATURE
CONTROLLER

850 NM
LASER DRIVER

PYTHON INTERFACE

CAMERA DIGITAL MULTIMETER

FIGURE 5.26: Block scheme of the setup when running the optimiza-
tion algorithm based on measurements acquired through the Keithley

2450 digital multimeter.

Conclusions to this Chapter

In this Chapter I discussed the results achieved for all measurement conducted.

Three macro sections were presented. The first macro section featured all prelim-

inary tasks and operations required for a measurement routine. The second one in-

cluded any operation done within the single channel scenario, i.e. the voltage sweep

and thermistor integrity check. The discussion then continued with the macro sec-

tion related to the multiple channel scenario, from the interposer mappings to the

results for the different applications of the optimization algorithm.

102 Chapter 5. Measurements

OPTICAL FIBER PICPOLARIZATION
CONTROLLER

PIEZO MANIPULATOR

PELTIER CELLTEMPERATURE
CONTROLLER

DRIVERS MODULES WITH
BACKPLANE & INTERPOSER

850 NM
LASER DRIVER

PYTHON INTERFACE

CAMERA DIGITAL OSCILLOSCOPE

FIGURE 5.27: Block scheme of the setup when running the optimiza-
tion algorithm based on measurements acquired through the Pico-

scope 4224 digital oscilloscope.

OPTICAL FIBER PICPOLARIZATION
CONTROLLER

PIEZO MANIPULATOR

PELTIER CELLTEMPERATURE
CONTROLLER

DRIVERS MODULES WITH
BACKPLANE & INTERPOSER

850 NM
LASER DRIVER

PYTHON INTERFACE

CAMERA

FIGURE 5.28: Block scheme of the setup when running the optimiza-
tion algorithm based on measurements acquired through the image

processing algorithm.

5.5. Testing the output optimization algorithm 103

FIGURE 5.29: Optimization results with Keithley algorithm with in-
put 3 and output 2. Captured images before (top-left) and after (top-
right). Sensed current trend in reverse bias during optimization (bot-

tom).

104 Chapter 5. Measurements

FIGURE 5.30: Optimization results with Image Processing algorithm
with input 3 and output 2. Captured images before (top-left) and after

(top-right). Detected pixel intensity during optimization (bottom).

5.5. Testing the output optimization algorithm 105

FIGURE 5.31: Optimization results with Keithley algorithm with in-
put 4 and output 6. Captured images before (top-left) and after (top-
right). Sensed current trend in reverse bias during optimization (bot-

tom).

106 Chapter 5. Measurements

FIGURE 5.32: Optimization results with Image Processing algorithm
with input 4 and output 6. Captured images before (top-left) and after

(top-right). Detected pixel intensity during optimization (bottom).

107

Chapter 6

Future Improvements

Introduction to this Chapter

In this Chapter I will discuss about the suggested future improvements of the project

based on the current state of the architecture. Firstly, a code optimization is sug-

gested, shifting from a validation oriented project to a more performing application.

Secondly, a collective lab state routine is suggested, in order to catch the overall state

of the setup before each measurement. Thirdly, a global automatization of the fine

tuning done with piezoelectric micro manipulators is suggested to increment stan-

dardization and replicability of each measurement. For similar reasons, accessing

directly the camera APIs is suggested as another possible development. Finally, the

Chapter ends with two significant algorithm related suggested improvements: de-

veloping an automatic election of the best DoFs for a specific I/O combination and

inspecting the potential impact of machine learning, and in particular deep learning,

in the output optimization algorithm.

6.1 Performance oriented software

As stated in Chapter 4.2, all the software was organized to be better replicable and

to allow fast designing and testing; for this reasons many choices were done sacri-

ficing performances in favor of easy prototyping. We have chosen Jupyter notebook

as our development environment for it allows very readable code sections thanks to

interactive python notebooks (.ipynb), but for better performance all the code can

be effortlessly migrated to standard python files (.py). Similarly, all debugging sec-

tions, test delays and unneeded graphical elements can be easily dropped to further

increase the execution speed of the code.

108 Chapter 6. Future Improvements

6.2 Lab state retrieving routine

To increase the information available to the user about the conditions under which

each experiment will undergo, a useful addition is a routine to communicate with

the Thorlabs CLP laser driver to retrieve all of its settings parameters, such as the

set point for the temperature control and the power. Similarly, the state for the Pico-

scope oscilloscope and the Peltier cell controller can be retrieved and assembled in

the same code. This would replace an activity made by the user and the information

can be used effortlessly in the code with no human intervention.

6.3 Automatic fine optimization of micro manipulators

To compensate for axis relaxation during experiments, a good practice is the re-

aligning of the fibers through the micro-manipulators; this is because over time the

fibers lose the optimal alignment with the waveguide of the chip due to the relax-

ation of the three axis of the manipulators, especially the vertical axis. Usually, the

fine-alignment is done by hand by the user and this routine is strongly dependent

also on the proficiency and experience of the human operator. To reduce this unin-

tentional behavior an automatic routine can be implemented to which periodically

performs a self-alignment of the fibers in order to level out different conditions of

the input and output signal through different experiments.

6.4 Straight interface with the camera

For an immediate and easy to use image processing, up to now the image is taken

from a screenshot of the live stream of the camera on the PC screen by using the wx

Python module as detailed in chapter 4.2. This allowed to easily prove the goodness

and efficiency of the optical tool developed when dealing with automatic optimiza-

tion of the output of a PIC based solely on information retrieved by captured images

of a black and white camera. Lastly, it can be possible to also migrate from acquiring

images to a screenshot to a straight access to the live stream of the camera, using

Python and the API of the very camera.

6.5. Automatic election of the best DoFs for a specific I/O combination 109

6.5 Automatic election of the best DoFs for a specific I/O com-

bination

When dealing with the selection of the best candidate for the degrees of freedom

for a specific input/output combination, the task of what thermistors (i.e. DoFs) to

leave out and what to drive is left to the user. This is because deciding which phase-

shifters contribute to the routing of the input light toward the target output is not a

trivial task, with shifters affecting mainly the neighbour possible paths. In addition,

also the order in which such DoFs are inspected during the search for the maxima

and minima is relevant, possibly leading to different optimizations even for the same

I/O combination. By developing an automatic routine which autonomously chooses

the best candidates and takes into account also their order of inspection, the fine

optimization and tuning can greatly increase its performance.

6.6 Inspect the impact of AI in the output optimization algo-

rithm

In this thesis an algorithm for automatic optimization of target input/output com-

binations were presented, based on optical tool (image processing of live stream

images from a mounted B&W camera) or classical tool (invasive measurements re-

trieved by on-chip silicon sensors either using a 4224 Picoscope oscilloscope or a

2450 Keithley digital multimeter). An interesting development surely is the inspec-

tion of the introduction of machine learning strategies in conjunction with the pre-

viously stated algorithm, investigating both a possible reduction in the time to com-

pute the optimal solution (maxima/minima) and an improvement on the goodness

of such solution.

Conclusions to this Chapter

In this Chapter several possible future improvements were suggested, either involv-

ing the physical tools used during this project (by suggesting the straight camera

interface, the lab state routine and the automatic fine optimization of micro manipu-

lators) or improving the software architecture (by suggesting the automatic election

of the best DoFs or the investigation of the impact of AI in the output optimization

algorithm).

111

Chapter 7

Conclusions

In this thesis an electronic control architecture for a Photonic Integrated Circuit has

been developed.

First we illustrated our references and state of the art PICs.

Then we gave an introduction to the basic elements of PICs, discussing the Mach

Zehnder interferometers, the waveguides and the output detectors. We discussed in

details our PICs choice for all these elements. Later on we presented in details our

architecture.

We continued with the core of this thesis: the software. We presented the inter-

faces with the driver module, with the oscilloscope and with the digital multimeter.

We moved to the image processing, tune and control and output optimization algo-

rithm. We discussed all the high level functions used and provided code snippets

for better readability.

Then, we provided results for the characterizations and optimization tests conducted

on several PICs.

Finally, we provided directions for some future improvements of this work.

To conclude, in our opinion this architecture succeeded to create an electronic control

architecture able to tune and optimize the output of different layouts of PICs both

through invasive on-chip sensors (silicon photodiodes) and through non invasive

off-chip sensing techniques (image processing).

113

Appendix A

Help in replicating this work

LISTING A.1: Code snippet for interfacing with the Q8b driver mod-

ule and voltage driving a single channel

R e q u i r e d i m p o r t s

import sys

username = ’ admin ’

sys . path . append (’ c :/ users/ ’+ username + ’/miniconda3/ l i b / s i t e −packages ’)

import qontro l

import numpy as np

V a r i a b l e d e c l a r a t i o n s

vol tage = 8 . 0

channel = 2 # t h e c h a n n e l c o n n e c t e d t o t h e d e v i c e

max_current = 50 # c u r r e n t c o m p l i a n c e

max_voltage = 12 # v o l t a g e c o m p l i a n c e

Setup Q o n t r o l l e r

ser ia l_port_name = "COM3" # name o f t h e USB S e r i a l Por t

q = qontro l . QXOutput (ser ia l_port_name=serial_port_name , response_timeout = 0 . 1)

S e t t h e c o m p l i a n c e s

for channel in range (q . n_chs) :

q . imax [channel] = max_current

q . vmax[channel] = max_voltage

Video Debugging

print (" Qontro l l e r ’ { : } ’ i n i t i a l i s e d with firmware { : } and { : } channels " .\

format (q . device_id , q . firmware , q . n_chs))

V o l t a g e d r i v i n g a s i n g l e c h a n n e l

q . v [channel] = f l o a t (vol tage)

114 Appendix A. Help in replicating this work

Acqu i r ing t h e v o l t a g e and c u r r e n t measurements f o r such c h a n n e l

temp_voltage = q . v [channel]

temp_current = −q . i [channel]

P r i n t i n g them on s c r e e n

print (" Channel [ch { : }] : Voltage −> { : } V, Current −> { : } mA" \

. format (channel , temp_voltage , temp_current))

LISTING A.2: Code snippet for interfacing and initialize the 4224 Pi-

coscope digital oscilloscope

R e q u i r e d i mp or t

import ctypes

Custom f u n c t i o n d e f i n i t i o n

def p i c o _ s t a r t (channel_range , sampleInterval = ctypes . c _ i n t 3 2 (2 5 0) , \

sampleUnits = ps . PS4000_TIME_UNITS [’ PS4000_US ’] ,\

sizeOfOneBuffer = 500 , numBuffersToCapture = 10 , \

maxPreTriggerSamples = 0 , autoStopOn = 1 , \

downsampleRatio = 1) :

S i z e o f c a p t u r e

to ta lSamples = sizeOfOneBuffer * numBuffersToCapture

C r e a t e s t a t u s r e a d y f o r use

global s t a t u s

s t a t u s = { }

Open P i c o S c o p e 4000 S e r i e s d e v i c e

Returns h a n d l e t o c h a n d l e f o r use in f u t u r e API f u n c t i o n s

s t a t u s [" openunit "] = ps . ps4000OpenUnit (c types . byref (chandle))

asser t_p ico_ok (s t a t u s [" openunit "])

enabled = 1

disabled = 0

ana l ogue_of f se t = 0 . 0

nextSample = 0

autoStopOuter = Fa l se

wasCalledBack = Fa lse

S e t up c h a n n e l A

chandle = ctypes . c _ i n t 1 6 ()

Appendix A. Help in replicating this work 115

s t a t u s [" setChA "] = ps . ps4000SetChannel (chandle , \

ps . PS4000_CHANNEL[’PS4000_CHANNEL_A ’] ,\

enabled , 1 , channel_range)

asser t_p ico_ok (s t a t u s [" setChA "])

S e t up c h a n n e l B

s t a t u s [" setChB "] = ps . ps4000SetChannel (chandle , \

ps . PS4000_CHANNEL[’PS4000_CHANNEL_B ’] ,\

enabled , 1 , channel_range)

asser t_p ico_ok (s t a t u s [" setChB "])

C r e a t e b u f f e r s r e a d y f o r a s s i g n i n g p o i n t e r s f o r d a t a c o l l e c t i o n

global bufferAMax

bufferAMax = np . zeros (shape=sizeOfOneBuffer , dtype=np . i n t 1 6)

global bufferBMax

bufferBMax = np . zeros (shape=sizeOfOneBuffer , dtype=np . i n t 1 6)

We need a b i g b u f f e r , no t r e g i s t e r e d with t h e d r i v e r ,

t o k e e p our c o m p l e t e c a p t u r e in .

global bufferCompleteA

bufferCompleteA = np . zeros (shape=totalSamples , dtype=np . i n t 1 6)

global bufferCompleteB

bufferCompleteB = np . zeros (shape=totalSamples , dtype=np . i n t 1 6)

memory_segment = 0

S e t d a t a b u f f e r l o c a t i o n f o r d a t a c o l l e c t i o n from c h a n n e l A

s t a t u s [" setDataBuffersA "] = ps . ps4000SetDataBuffers (chandle ,\

ps . PS4000_CHANNEL[’PS4000_CHANNEL_A ’ ,\

bufferAMax . ctypes . data_as (ctypes . POINTER(ctypes . c _ i n t 1 6)) , \

None , sizeOfOneBuffer)

asser t_p ico_ok (s t a t u s [" setDataBuffersA "])

S e t d a t a b u f f e r l o c a t i o n f o r d a t a c o l l e c t i o n from c h a n n e l B

s t a t u s [" se tDataBuf fersB "] = ps . ps4000SetDataBuffers (chandle ,

ps . PS4000_CHANNEL[’PS4000_CHANNEL_B ’] ,\

bufferBMax . ctypes . data_as (ctypes . POINTER(ctypes . c _ i n t 1 6)) ,

None , sizeOfOneBuffer)

asser t_p ico_ok (s t a t u s [" se tDataBuffersB "])

Begin s t r e a m i n g mode :

We a r e not t r i g g e r i n g :

maxPreTriggerSamples = 0

116 Appendix A. Help in replicating this work

autoStopOn = 1

No downsampling :

downsampleRatio = 1

ac tua lSample In terva l = sampleInterval . value

actualSampleIntervalNs = ac tua lSample In terva l * 1000

totalSamplingTime = tota lSamples * actualSampleIntervalNs

LISTING A.3: Code snippet for acquiring and retrieving a measure-

ment from the 4224 Picoscope digital oscilloscope

def pico_acquire_measurement (channel_range , \

sampleInterval = ctypes . c _ i n t 3 2 (2 5 0) , \

sampleUnits = ps . PS4000_TIME_UNITS [’ PS4000_US ’] ,\

sizeOfOneBuffer = 500 , numBuffersToCapture = 10 ,\

maxPreTriggerSamples = 0 , autoStopOn = 1 , \

downsampleRatio = 1 , discarded_port ion = 0 . 0 , \

p l o t = Fa l se) :

global s t a t u s

tota lSamples = sizeOfOneBuffer * numBuffersToCapture

ac tua lSample In terva l = sampleInterval . value

actualSampleIntervalNs = ac tua lSample In terva l * 1000

s t a t u s [" runStreaming "] = ps . ps4000RunStreaming (chandle ,

c types . byref (sampleInterval) ,

sampleUnits ,

maxPreTriggerSamples ,

totalSamples ,

autoStopOn ,

downsampleRatio ,

sizeOfOneBuffer)

asser t_p ico_ok (s t a t u s [" runStreaming "])

We need a b i g b u f f e r , no t r e g i s t e r e d with t h e d r i v e r ,

t o k e e p our c o m p l e t e c a p t u r e in .

global bufferCompleteA

global bufferCompleteB

global nextSample

global autoStopOuter

global wasCalledBack

global cFuncPtr

Appendix A. Help in replicating this work 117

bufferCompleteA = np . zeros (shape=totalSamples , dtype=np . i n t 1 6)

bufferCompleteB = np . zeros (shape=totalSamples , dtype=np . i n t 1 6)

nextSample = 0

autoStopOuter = Fa l se

wasCalledBack = Fa lse

cFuncPtr = ps . StreamingReadyType (s t reaming_ca l lback)

while nextSample < tota lSamples and not autoStopOuter :

wasCalledBack = Fa lse

s t a t u s [" getStreamingLastes tValues "] = \

ps . ps4000GetStreamingLatestValues (chandle , \

cFuncPtr , None)

i f not wasCalledBack :

I f we weren ’ t c a l l e d b a c k by t h e d r i v e r , t h i s means

no d a t a i s r e a d y .

S l e e p f o r a s h o r t w h i l e b e f o r e t r y i n g a g a i n .

time . s leep (0 . 0 1)

Find maximum ADC count v a l u e

maxADC = ctypes . c _ i n t 1 6 (3 2 7 6 7)

Conver t ADC c o u n t s d a t a t o mV

adc2mVChAMax = adc2mV(bufferCompleteA , channel_range , maxADC)

Stop t h e s c o p e

s t a t u s [" stop "] = ps . ps4000Stop (chandle)

asser t_p ico_ok (s t a t u s [" stop "])

i f p l o t :

P l o t d a t a from c h a n n e l A

C r e a t e t ime d a t a

t ime_axis = np . l i n s p a c e (0 , (to ta lSamples) * actualSampleIntervalNs ,\

tota lSamples)

p l t . p l o t (t ime_axis , adc2mVChAMax [:])

p l t . x l a b e l (’ Time (ns) ’)

p l t . y l a b e l (’ Voltage (mV) ’)

p l t . show ()

return round_half_up (mean(adc2mVChAMax[math . f l o o r ((len (adc2mVChAMax) −1)\

* discarded_port ion) :]) , 3) ; # r o u n d _ h a l f _ u p (mean (adc2mVChAMax) , 3) ;

LISTING A.4: Code snippet for stopping and disconnecting the 4224

Picoscope digital oscilloscope

118 Appendix A. Help in replicating this work

def pico_stop () :

global s t a t u s

Stop t h e s c o p e

h a n d l e = c h a n d l e

s t a t u s [" stop "] = ps . ps4000Stop (chandle)

asser t_p ico_ok (s t a t u s [" stop "])

D i s c o n n e c t t h e s c o p e

h a n d l e = c h a n d l e

s t a t u s [" c l o s e "] = ps . ps4000CloseUnit (chandle)

asser t_p ico_ok (s t a t u s [" c l o s e "])

return ;

LISTING A.5: Code snippet for a complete 4224 Picoscope digital os-

cilloscope measurement routine

R e q u i r e d i m p o r t s

import sys

username = ’ admin ’

sys . path . append (’ c :/ users/ ’ + username + ’/picosdk −python−wrappers ’)

path_to_MyCustomPackage = ’ . . / ’ # r e l a t i v e pa th

t o t h e MyCustomPackage f o l d e r

sys . path . append (path_to_MyCustomPackage)

from MyCustomPackage import mycustommodule

import time

S t a r t i n g P i c o with range o f 2V,

sample i n t e r v a l o f 250 m i c r o s e c o n d s and 5000 t o t a l s a m p l e s

ps = mycustommodule . ps

ctypes = mycustommodule . c types

channel_range = ps . PS4000_RANGE [’ PS4000_5V ’]

sampleInterval = ctypes . c _ i n t 3 2 (2 5 0) # in sample u n i t s

s p e c i f i e d by sampl eUni t s

sampleUnits = ps . PS4000_TIME_UNITS [’ PS4000_US ’]

sizeOfOneBuffer = 500 # s i z e o f a s i n g l e b u f f e r

numBuffersToCapture = 10 # t o t a l S a m p l e s =

s i z e O f O n e B u f f e r * numBuf f e rsToCapture

s t a r t i n g t h e p i c o s c o p e

mycustommodule . p i c o _ s t a r t (channel_range , sampleInterval = \

sampleInterval , sampleUnits = sampleUnits , sizeOfOneBuffer = \

Appendix A. Help in replicating this work 119

sizeOfOneBuffer , numBuffersToCapture = numBuffersToCapture)

a c q u i r i n g and p r i n t i n g on s c r e e n f o u r measurements

for i in range (4) :

print (mycustommodule . pico_acquire_measurement (channel_range ,\

sampleInterval = sampleInterval , sampleUnits = sampleUnits ,\

sizeOfOneBuffer = sizeOfOneBuffer , numBuffersToCapture = \

numBuffersToCapture)) ;

time . s leep (0 . 1)

s t o p p i n g and d i s c o n n e c t i n g t h e P i c o s c o p e

mycustommodule . pico_stop ()

LISTING A.6: Code snippet for connecting and initializing the 2450

Keithley digital multimeter

R e q u i r e d i m p o r t s

import pyvisa

rm = pyvisa . ResourceManager ()

rm . l i s t _ r e s o u r c e s ()

event_type=pyvisa . cons tants . EventType . s e r v i c e _ r e q u e s t

event_mech=pyvisa . cons tants . EventMechanism . queue

FROM THE INSTRUMENT WEB−INTERFACE THE NAME IS

TCPIP : : 1 6 9 . 2 5 4 . 2 0 7 . 1 2 4 : : i n s t 0 : : INSTR

k e i t h l e y _ a d d r e s s _ s t r i n g = ’ TCPIP : : 1 6 9 . 2 5 4 . 5 0 . 5 3 : : i n s t 0 : : INSTR ’

i n s t = rm . open_resource (k e i t h l e y _ a d d r e s s _ s t r i n g)

D i s p l a y i n g K e i t h l e y d e v i c e i n f o r m a t i o n

print (’ Resource name : ’ , i n s t . resource_name)

print (’ Resource i n f o : ’ , i n s t . r e s o u r c e _ i n f o)

print (’ Resource c l a s s : ’ , i n s t . r e s o u r c e _ c l a s s)

print (’ Resource manuf . : ’ , i n s t . resource_manufacturer_name)

i n s t . wri te (’ *RST ’) # r e s e t

i n s t . wri te (’TRAC: CLE ’) # c l e a r t h e d e f a u l t b u f f e r

print (i n s t . query (’ *IDN? ’))

LISTING A.7: Code snippet for acquiring a single measurement from

the 2450 Keithley digital multimeter

def kei th ley_s ingle_measure (i n s t , sense = ’CURR ’ , source = ’VOLT ’ , \

sourcevalue = 1e −2 , compliance = 1e − 2) :

120 Appendix A. Help in replicating this work

by d e f a u l t i t measures c u r r e n t . To measure v o l t a g e , i n s e r t ’VOLT ’

i n s t . wri te (’TRAC: CLE ’) # c l e a r t h e d e f a u l t b u f f e r " d e f b u f f e r 1 "

i n s t . wri te (’SENS : ’+ sense + ’ :RANG:AUTO ON’) # e n a b l e a u t o r a n g e

i n s t . wri te (’SOUR:FUNC ’+ s t r (source)) # S e t s o u r c e

i n s t . wri te (’SOUR: ’ + s t r (source) + ’ ’ + s t r (sourcevalue))

i f source == ’VOLT ’ : # S e t p r o p e r c o m p l i a n c e

i n s t . wri te (’SOUR:VOLT: ILIM ’ + s t r (compliance))

e lse :

i n s t . wri te (’SOUR:CURR: VLIM ’ + s t r (compliance))

R e t r i e v e one measurement o f t h e s p e c i f i e d t y p e

measurement = i n s t . q u e r y _ a s c i i _ v a l u e s (’MEAS: ’+ sense + ’ ? ’)

return measurement

LISTING A.8: Code snippet for performing a voltage sweep with the

2450 Keithley digital multimeter

def kei thley_vol tage_sweep (i n s t , V_start , V_stop , points , \

current_compliance = ’ 3e −02 ’ , ms_delay = 0 . 0 1) :

Make a v o l t a g e sweep and measure c u r r e n t b o t h with a u t o r a n g e .

V o l t a g e g o e s from V _ s t a r t t o V_stop with p o i n t s number o f p o i n t s and

s t a r t i n g a f t e r ms_de lay ms

i n s t . wri te (’ *RST ’) # R e s e t

i n s t . wri te (’TRAC: CLE ’) # C l e a r t h e d e f a u l t b u f f e r

i n s t . wri te (’SENS :FUNC "CURR" ’) # S e t c u r r e n t measurements

i n s t . wri te (’SENS :CURR:RANG:AUTO ON’) # S e t c u r r e n t range

i n s t . wri te (’SENS :CURR: RSEN OFF ’) # S e t 2 w i r e s (4 w i r e s o f f)

i n s t . wri te (’SOUR:FUNC VOLT ’) # S e t v o l t a g e s o u r c e

i n s t . wri te (’SOUR:VOLT:RANG:AUTO ON’) # S e t v o l t a g e range : au to

i n s t . wri te (’SOUR:VOLT: ILIM ’+ current_compliance) # S e t c u r r e n t c o m p l i a n c e

i n s t . wri te (’SOUR:SWE:VOLT: LIN ’+ s t r (V _ s t a r t) + ’ , ’+ s t r (V_stop) + ’ , \

’+ s t r (points) + ’ , ’+ s t r (ms_delay))

i n s t . wri te (’OUTPut ON’) # t u r n s t h e ou t pu t on

i n s t . wri te (’ : INIT ’) # S t a r t

time . s leep (3 5)

x=np . array (i n s t . q u e r y _ a s c i i _ v a l u e s (’TRAC:DATA? 1 , ’+ s t r (points) + ’ , \

" d e f bu f f e r 1 " , SOUR ’)) # r e t r i e v e t h e v o l t a g e r e a d i n g s

y=np . array (i n s t . q u e r y _ a s c i i _ v a l u e s (’TRAC:DATA? 1 , ’+ s t r (points) + ’ , \

" d e f bu f f e r 1 " , READ ’)) # r e t r i e v e t h e c u r r e n t r e a d i n g s

i n s t . wri te (’TRAC: CLE ’) # c l e a r t h e d a f a u l t b u f f e r " d e f b u f f e r 1 "

Appendix A. Help in replicating this work 121

return [x , y]

LISTING A.9: Code snippet for stopping and disconnecting the 2450

Keithley digital multimeter

Turns t h e K e i t h l e y ou t pu t o f f

i n s t . wri te (’OUTPut OFF ’)

LISTING A.10: Code snippet for connecting, initializing and acquir-

ing a single measurement and disconnectin the 2450 Keithley digital

multimeter

R e q u i r e d i m p o r t s

import pyvisa

rm = pyvisa . ResourceManager ()

rm . l i s t _ r e s o u r c e s ()

event_type=pyvisa . cons tants . EventType . s e r v i c e _ r e q u e s t

event_mech=pyvisa . cons tants . EventMechanism . queue

FROM THE INSTRUMENT WEB−INTERFACE THE NAME IS

TCPIP : : 1 6 9 . 2 5 4 . 2 0 7 . 1 2 4 : : i n s t 0 : : INSTR

k e i t h l e y _ a d d r e s s _ s t r i n g = ’ TCPIP : : 1 6 9 . 2 5 4 . 5 0 . 5 3 : : i n s t 0 : : INSTR ’

i n s t = rm . open_resource (k e i t h l e y _ a d d r e s s _ s t r i n g)

D i s p l a y i n g K e i t h l e y d e v i c e i n f o r m a t i o n

print (’ Resource name : ’ , i n s t . resource_name)

print (’ Resource i n f o : ’ , i n s t . r e s o u r c e _ i n f o)

print (’ Resource c l a s s : ’ , i n s t . r e s o u r c e _ c l a s s)

print (’ Resource manuf . : ’ , i n s t . resource_manufacturer_name)

i n s t . wri te (’ *RST ’) # r e s e t

i n s t . wri te (’TRAC: CLE ’) # c l e a r t h e d e f a u l t b u f f e r

print (i n s t . query (’ *IDN? ’))

Turns t h e K e i t h l e y ou t pu t on

i n s t . wri te (’OUTPut ON’)

Acqu i r e a s i n g l e measurement

va lore_output_ke i th ley = kei th ley_s ingle_measure (i n s t , sense = ’CURR ’ , \

source = ’VOLT ’ , sourcevalue = −3) [0]

122 Appendix A. Help in replicating this work

Turns t h e K e i t h l e y ou t pu t o f f

i n s t . wri te (’OUTPut OFF ’)

LISTING A.11: The definition of the custom function to take a screen-

shot of a region of the screen

Requ i rd i m p o r t s

import os

import datetime

import wx

Func t i on d e f i n i t i o n

def take_screenshot (xdest = 0 , ydest= 0 , xsrc = 0 , ysrc = 0 , \

image_name=datetime . datetime . now () . s t r f t i m e ("%Y_%m_%d_%H_%M_%S ") , \

save_path=os . getcwd () , s c r e e n _ r e s o l u t i o n = [1 9 2 0 , 1 0 8 0]) :

"""

Take a s c r e e n s h o t o f a r e s o l u t i o n o f s c r e e n _ r e s o l u t i o n and c u t t i n g

e v e r y t h i n g t h a t i s on t h e l e f t o f x s r c (in p i x e l s) and a b o v e y s r c

and s a v e i t in t h e s a v e _ p a t h d i r e c t o r y with t h e t imes tamp as i t s name

"""

Take a b i tmap

screen = wx. ScreenDC ()

bmp = wx. Bitmap (s c r e e n _ r e s o l u t i o n [0] , s c r e e n _ r e s o l u t i o n [1])

mem = wx.MemoryDC(bmp)

mem. B l i t (xdest , ydest , s c r e e n _ r e s o l u t i o n [0] , s c r e e n _ r e s o l u t i o n [1] , \

screen , xsrc , ysrc)

del mem # R e l e a s e b i tmap

Save t h e s c r e e n s h o t in a png f i l e

bmp. SaveF i le (save_path + ’/ ’ + image_name + ’ . png ’ , wx . BITMAP_TYPE_PNG)

LISTING A.12: A simple code to interface with a single Q8b driver

module and perform a single or multiple channel voltage sweep

R e q u i r e d i m p o r t s

import sys

username = ’ admin ’

sys . path . append (’ c :/ users/ ’+ username + ’/miniconda3/ l i b / s i t e −packages ’)

import qontro l

import numpy as np

V a r i a b l e d e c l a r a t i o n s

Appendix A. Help in replicating this work 123

vol tage = 8 . 0

channels = [2 , 4 , 1 2 , 1 5] # t h e c h a n n e l c o n n e c t e d t o t h e d e v i c e

channel_PD = 3 # t h e c h a n n e l c o n n e c t e d t o t h e p h o t o d i o d e

voltage_PD = 0 # t h e v o l t a g e t o be s e t t o t h e p h o t o d i o d e

v o l t a g e _ s t a r t = [0 . 0 for j in range (len (channels))] # s t a r t i n g v o l t a g e v a l u e s

f o r e a c h c h a n n e l

vol tage_s top = [vol tage for j in range (len (channels))] # s t o p p i n g v o l t a g e v a l u e s

f o r e a c h c h a n n e l

vol tage_s tep = [0 . 2 for j in range (len (channels))] # v o l t a g e s t e p s f o r e a c h c h a n n e l

max_current = 50 # c u r r e n t c o m p l i a n c e

max_voltage = 12 # v o l t a g e c o m p l i a n c e

F _ t r i a n g u l a r = 1 # FLAG : 0 f o r ramp sweep , 1 f o r t r i a n g u l a r sweep

Setup Q o n t r o l l e r

ser ia l_port_name = "COM3" # name o f t h e USB S e r i a l Por t

q = qontro l . QXOutput (ser ia l_port_name = serial_port_name , response_timeout = 0 . 1)

S e t t h e c o m p l i a n c e s

for channel in range (q . n_chs) :

q . imax [channel] = max_current

q . vmax[channel] = max_voltage

Video Debugging

print (" Qontro l l e r ’ { : } ’ i n i t i a l i s e d with firmware { : } and { : } channels " .\

format (q . device_id , q . firmware , q . n_chs))

Check i f we want t o g e n e r a t e a t r i a n g u l a r sweep or not

i f F _ t r i a n g u l a r == 1 :

sweep_range = np . concatenate ((np . arange (v o l t a g e _ s t a r t [channel_n] , \

vol tage_s top [channel_n] , vo l tage_s tep [channel_n]) , \

np . arange (vol tage_s top [channel_n] , v o l t a g e _ s t a r t [channel_n] , \

−vol tage_s tep [channel_n])))

e l i f F _ t r i a n g u l a r == 0 :

sweep_range = np . arange (v o l t a g e _ s t a r t [0] , \

vol tage_s top [0] + vol tage_s tep [0] , vo l tage_s tep [0])

V o l t a g e sweep w h i l e l o o p

for voltage_sweep in sweep_range :

q . v [channels [channel_n]] = f l o a t (voltage_sweep)

temp_voltage = q . v [channel_PD]

temp_current = −q . i [channel_PD]

124 Appendix A. Help in replicating this work

print ("PD [ch { : }] : Voltage −> { : } V, Current −> { : } mA" \

. format (channel_PD , temp_voltage , temp_current))

Acqu i r e v o l t a g e and c u r r e n t f o r a l l c h a n n e l s .

Then p r i n t them on s c r e e n and s a v e them on f i l e

for j in range (len (channels)) :

temp_voltage = q . v [channels [j]]

temp_current = q . i [channels [j]]

print (" Channel { : } : Voltage −> { : } V, Current −> { : } mA" \

. format (channels [j] , temp_voltage , temp_current))

LISTING A.13: A simple code for hand tuning the PIC by controlling

each DoF via sliders and displaying them via a dynamic plot

%m a t p l o t l i b widget

a x i s _ c o l o r = ’ l ightgoldenrodyel low ’

hf_genera l = p l t . f i g u r e ()

hf_genera l . s e t _ s i z e _ i n c h e s (1 5 , 8 , forward=True)

ha_general = hf_genera l . add_subplot (1 2 1)

Adjus t t h e s u b p l o t s r e g i o n t o l e a v e some s p a c e f o r t h e s l i d e r s and b u t t o n s

hf_genera l . s u b p l o t s _ a d j u s t (bottom = 0 . 3 0)

ha_general . s e t _ t i t l e (’ Channel Voltage vs Channel Current ’)

ha_general . s e t _ x l a b e l (’ Voltage [V] ’)

ha_general . s e t _ y l a b e l (’ Current [mA] ’)

ha_general . se t_x l im ([− 0 . 1 , max (vo l tage_s top)])

ha_general . se t_yl im ([− 0 . 1 , 2 0])

ha_general . gr id ()

p l t . r c (’ axes ’ , prop_cycle =(c y c l e r (’ c o l o r ’ , [’ r ’ , ’ g ’ , ’ b ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’])))

Draw t h e i n i t i a l p l o t (s) and t e x t (s)

The ’ l i n e ’ v a r i a b l e i s used f o r m o d i f y i n g t h e l i n e l a t e r

l i n e s = []

z = 0

P l o t t h e 7 most r e l e v a n t DoFs

for x in range (7) :

i f x == 4 :

z = 1

[l i n e] = ha_general . p l o t (0 , 0 , marker= ’ o ’ , l a b e l = ’T ’ + s t r (20 −x−z) +\

’ T16 − CH’ + s t r (3+ x))

l i n e s . append (l i n e)

Appendix A. Help in replicating this work 125

ha_general . legend ()

l o c a t o r = MaxNLocator (nbins =6)

F_over lapping_plots = 1

C r e a t e s l i d e r s f o r e a c h DoF with spans 0− v o l t a g e

B 0 1 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B01 ’ ,

continuous_update=True)

B 0 4 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B04 ’ ,

continuous_update=True)

B 0 6 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B06 ’ ,

continuous_update=True)

B 0 8 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B08 ’ ,

continuous_update=True)

B 0 9 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B09 ’ ,

continuous_update=True)

B 1 0 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B10 ’ ,

126 Appendix A. Help in replicating this work

continuous_update=True)

B 1 1 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B11 ’ ,

continuous_update=True)

B 1 2 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B12 ’ ,

continuous_update=True)

B 1 3 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B13 ’ ,

continuous_update=True)

B 1 5 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B15 ’ ,

continuous_update=True)

B 1 6 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B16 ’ ,

continuous_update=True)

B 1 7 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B17 ’ ,

continuous_update=True)

B 1 8 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B18 ’ ,

Appendix A. Help in replicating this work 127

continuous_update=True)

B 1 9 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B19 ’ ,

continuous_update=True)

B 2 0 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B20 ’ ,

continuous_update=True)

B 2 1 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B21 ’ ,

continuous_update=True)

B 2 2 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B22 ’ ,

continuous_update=True)

B 2 3 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B23 ’ ,

continuous_update=True)

B 2 5 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B25 ’ ,

continuous_update=True)

B 2 6 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B26 ’ ,

128 Appendix A. Help in replicating this work

continuous_update=True)

B 2 7 _ s l i d e r = widgets . F l o a t S l i d e r (

value =1 ,

min=0 , max=voltage , s tep = 0 . 1 ,

d e s c r i p t i o n = ’ B27 ’ ,

continuous_update=True)

D e f i n e t h e f u n c t i o n f o r i n t e r a c t i n g with t h e p l o t

def p l o t (B01_s l ider , B04_s l ider , B06_s l ider , B08_s l ider , B09_s l ider ,\

B10_s l ider , B11_s l ider , B12_s l ider , B13_s l ider , B15_s l ider ,\

B16_s l ider , B17_s l ider , B18_s l ider , B19_s l ider , B20_s l ider ,\

B21_s l ider , B22_s l ider , B23_s l ider , B25_s l ider , B26_s l ider ,\

B 2 7 _ s l i d e r) :

q . v [1] = f l o a t (B 0 1 _ s l i d e r)

q . v [4] = f l o a t (B 0 4 _ s l i d e r)

q . v [6] = f l o a t (B 0 6 _ s l i d e r)

q . v [8] = f l o a t (B 0 8 _ s l i d e r)

q . v [9] = f l o a t (B 0 9 _ s l i d e r)

q . v [1 0] = f l o a t (B 1 0 _ s l i d e r)

q . v [1 1] = f l o a t (B 1 1 _ s l i d e r)

q . v [1 2] = f l o a t (B 1 2 _ s l i d e r)

q . v [1 3] = f l o a t (B 1 3 _ s l i d e r)

q . v [1 5] = f l o a t (B 1 5 _ s l i d e r)

q . v [1 6] = f l o a t (B 1 6 _ s l i d e r)

q . v [1 7] = f l o a t (B 1 7 _ s l i d e r)

q . v [1 8] = f l o a t (B 1 8 _ s l i d e r)

q . v [1 9] = f l o a t (B 1 9 _ s l i d e r)

q . v [2 0] = f l o a t (B 2 0 _ s l i d e r)

q . v [2 1] = f l o a t (B 2 1 _ s l i d e r)

q . v [2 2] = f l o a t (B 2 2 _ s l i d e r)

q . v [2 3] = f l o a t (B 2 3 _ s l i d e r)

q . v [2 5] = f l o a t (B 2 5 _ s l i d e r)

q . v [2 6] = f l o a t (B 2 6 _ s l i d e r)

q . v [2 7] = f l o a t (B 2 7 _ s l i d e r)

Update t h e v a l u e s f o r t h e p l o t t e d DoFs

for x in range (7) :

temp_voltage = q . v [x +3]

temp_current = q . i [x +3]

l i n e s [x] . se t_xdata (temp_voltage)

Appendix A. Help in replicating this work 129

l i n e s [x] . se t_ydata (temp_current)

hf_genera l . canvas . draw ()

output = widgets . Output ()

C r e a t e an e x i t b u t t o n f o r c l o s i n g c o n n e c t i o n

e x i t _ b u t t o n = widgets . Button (d e s c r i p t i o n =" E x i t ")

@output . capture ()

def o n _ e x i t _ b u t t o n _ c l i c k e d (b) :

q . v [:] = 0

q . i [:] = 0

C l o s e t h e communicat ion with t h e d r i v e r

q . c l o s e ()

print (" E x i t s u c c e s s f u l l y . ")

e x i t _ b u t t o n . o n _ c l i c k (o n _ e x i t _ b u t t o n _ c l i c k e d)

C r e a t e a s a v e b u t t o n f o r s a v i n g t h e sys t em c o n f i g u r a t i o n

save_button = widgets . Button (d e s c r i p t i o n =" Save Configurat ion ")

@output . capture ()

def on_save_button_cl icked (b) :

p r i n t (t y p e (b))

save_conf ig ()

print (" Configurat ion Saved . ")

b . icon=" warning "

save_button . o n _ c l i c k (on_save_button_cl icked)

D e f i n e t h e f u n c t i o n c a l l e d when t h e s a v e b u t t o n i s p r e s s e d

def save_conf ig () :

S e t t h e r i g h t pa th and f i l e

save_path = path

fi le_name = " Algoritmo_di_ricerca_output_massimo_ " + \

now . s t r f t i m e ("%d_%m_%Y_%H_%M_%S ")+ device

completeName = os . path . j o i n (save_path , f i le_name)

B u i l d t h e h e a d e r o f t h e f i l e a s t imes tamp+ c o n f i g u r a t i o n + a n n o t a t i o n \

+voltage_parameters+ d e s c r i p t i o n

timestamp = now . s t r f t i m e ("%d/%m/%Y %H:%M:%S ")

c o n f i g u r a t i o n = ’\n%Laser Wavelength : ’ + s t r (laser_wavelength) + \

’ [nm]\n%Laser Power : ’ + s t r (laser_power) + \

’ [mW]\n%Amplif ier Gain : ’ \

+ s t r (a m p l i f i e r _ g a i n) + ’ [dB] ’

130 Appendix A. Help in replicating this work

annotat ion = "\n%RIPRODOTTA CONFIGURAZIONE A SINGOLO OUTPUT DEL" +\

timestamp + " . CONFIGURAZIONE SALVATA PER I TERMISTORI:\n"

t e r m i s t o r i = "%" + s t r (channels) + "\n"

header = ’%’+timestamp+ c o n f i g u r a t i o n +annotat ion+ t e r m i s t o r i

Write t h e h e a d e r and t h e column h e a d e r s t o t h e f i l e

c o n f i g _ f i l e = open (completeName , " a ")

c o n f i g _ f i l e . wri te (header)

c o n f i g _ f i l e . c l o s e ()

c o n f i g _ f i l e = open (completeName + ’ . t x t ’ , " a ")

parameters = s t r (B 0 1 _ s l i d e r . value) + ’\n ’ + s t r (B 0 4 _ s l i d e r . value) +\

’\n ’ + s t r (B 0 6 _ s l i d e r . value) + ’\n ’ + \

s t r (B 0 8 _ s l i d e r . value) + ’\n ’ + s t r (B 0 9 _ s l i d e r . value) +\

’\n ’ + s t r (B 1 0 _ s l i d e r . value) + ’\n ’ + \

s t r (B 1 1 _ s l i d e r . value) + ’\n ’ + s t r (B 1 2 _ s l i d e r . value) +\

’\n ’ + s t r (B 1 3 _ s l i d e r . value) + ’\n ’ + \

s t r (B 1 5 _ s l i d e r . value) + ’\n ’ + s t r (B 1 6 _ s l i d e r . value) +\

’\n ’ + s t r (B 1 7 _ s l i d e r . value) + ’\n ’ + \

s t r (B 1 8 _ s l i d e r . value) + ’\n ’ + s t r (B 1 9 _ s l i d e r . value) +\

’\n ’ + s t r (B 2 0 _ s l i d e r . value) + ’\n ’ + \

s t r (B 2 1 _ s l i d e r . value) + ’\n ’ + s t r (B 2 2 _ s l i d e r . value) +\

’\n ’ + s t r (B 2 3 _ s l i d e r . value) + ’\n ’ + \

s t r (B 2 5 _ s l i d e r . value) + ’\n ’ + s t r (B 2 6 _ s l i d e r . value) +\

’\n ’ + s t r (B 2 7 _ s l i d e r . value) + ’\n ’

Write t h e a c t u a l c o n f i g u r a t i o n f o r e a c h DoF

c o n f i g _ f i l e . wri te (parameters)

Take a s c r e e n s h o t

mycustommodule . take_screenshot (image_name = file_name , \

save_path = path)

c o n f i g _ f i l e . c l o s e ()

S e t an i n t e r a c t i v e env i ronment f o r p l o t and a l l s l i d e r s

z = i n t e r a c t i v e (plot , B 0 1 _ s l i d e r=B01_s l ider , B 0 4 _ s l i d e r=B04_s l ider ,\

B 0 6 _ s l i d e r=B06_s l ider , B 0 8 _ s l i d e r=B08_s l ider , \

B 0 9 _ s l i d e r=B09_s l ider , B 1 0 _ s l i d e r=B10_s l ider , \

B 1 1 _ s l i d e r=B11_s l ider , B 1 2 _ s l i d e r=B12_s l ider , \

B 1 3 _ s l i d e r=B13_s l ider , B 1 5 _ s l i d e r=B15_s l ider , \

B 1 6 _ s l i d e r=B16_s l ider , B 1 7 _ s l i d e r=B17_s l ider , \

Appendix A. Help in replicating this work 131

B 1 8 _ s l i d e r=B18_s l ider , B 1 9 _ s l i d e r=B19_s l ider , \

B 2 0 _ s l i d e r=B20_s l ider , B 2 1 _ s l i d e r=B21_s l ider , \

B 2 2 _ s l i d e r=B22_s l ider , B 2 3 _ s l i d e r=B23_s l ider , \

B 2 5 _ s l i d e r=B25_s l ider , B 2 6 _ s l i d e r=B26_s l ider , \

B 2 7 _ s l i d e r=B 2 7 _ s l i d e r)

display (z , save_button , ex i t_but ton , output)

Show t h e dynamic p l o t

p l t . show ()

LISTING A.14: The custom function implemented for computing the

k parameters, outputs, output intensities and output phases

R e q u i r e d i m p o r t s

import math , cmath

Func t i on d e f i n i t i o n s

def compute_t (k) :

""" Computes t h e t p a r a m e t e r

k : FLOAT . t h e k p a r a m e t e r

"""

return math . s q r t (1 − abs (k) * * 2)

def compute_outputs (phi1 , theta_array , t , k) :

""" Computes two o u t p u t s o f a s i n g l e MZI .

ph i1 : FLOAT . i n i t i a l p a h s e s h i f t o f b ranch 1

t h e t a _ a r r a y : LIST . l i s t s t o r i n g a l l t h e t h e t a v a l u e s

t , k : FLOAT . t h e t and k p a r a m e t e r s

"""

global outputs # g l o b a l s o t h a t t h e f u n c t i o n d o e s not have t o d e f i n e

two l i s t s on e a c h c a l l , t h i s way i t i s f a s t e r

outputs [0] = [cmath . exp (i i * phi1) * (t **2 − \

(k * * 2) * cmath . exp (i i * the ta_angle))

\for the ta_angle in t h e t a _ a r r a y]

outputs [1] = [i i * k * t * cmath . exp (i i * phi1) * \

(1+ cmath . exp (i i * the ta_angle)) \

for the ta_angle in t h e t a _ a r r a y]

return ;

def compute_intensi ty (i n p u t _ l i s t) :

""" Computes t h e s q u a r e d o f a b s o l u t e o f t h e two ou tpu t i n t e n s i t i e s

g o t t e n from compute_output s ()

132 Appendix A. Help in replicating this work

i n p u t _ l i s t : LIST . a l i s t o f two l i s t s , e a c h one s t o r i n g t h e

l i s t o f o u t p u t s v a l u e s computed from compute_output s ()

"""

global o u t p u t s _ i n t e n s i t i e s

o u t p u t s _ i n t e n s i t i e s [0] = [abs (inputs) * * 2 for inputs in i n p u t _ l i s t [0]]

o u t p u t s _ i n t e n s i t i e s [1] = [abs (inputs) * * 2 for inputs in i n p u t _ l i s t [1]]

return ;

def compute_phase (i n p u t _ l i s t) :

""" Computes t h e p h a s e s o f t h e two out pu t i n t e n s i t i e s g o t t e n from

compute_output s ()

i n p u t _ l i s t : LIST . a l i s t o f two l i s t s , e a c h one s t o r i n g t h e

l i s t o f o u t p u t s v a l u e s computed from compute_output s ()

"""

global output_phases

outputs_phases [0] = [cmath . phase (inputs) for inputs in i n p u t _ l i s t [0]]

outputs_phases [1] = [cmath . phase (inputs) for inputs in i n p u t _ l i s t [1]]

LISTING A.15: The code for creating dynamic sliders and plot for

simulating the output of a single MZI

k_0 = 0 . 0

i n i t i a l _ t e x t = " S t a r t i n g s imulat ion "

a x i s _ c o l o r = ’ l ightgoldenrodyel low ’

hf_genera l = p l t . f i g u r e ()

hf_genera l . s e t _ s i z e _ i n c h e s (1 0 , 4 , forward=True)

ha_general = hf_genera l . add_subplot (1 2 1)

ha_general2 = hf_genera l . add_subplot (1 2 2)

Adjus t t h e s u b p l o t s r e g i o n t o l e a v e some s p a c e f o r t h e s l i d e r s

and b u t t o n s

hf_genera l . s u b p l o t s _ a d j u s t (bottom = 0 . 3 0)

D e f i n i t i o n o f x− v a r i a b l e

x = np . arange (0 . 0 , pi /2 , 0 . 0 0 1)

I n i t i a l i z a t i o n o f p a r a m e t e r s

n1_0 : f l o a t = 1 . 8

n2_0 : f l o a t = 3 .650

Par1Name = ’ k ’

Par1_0 = n1_0

Appendix A. Help in replicating this work 133

Par1Min = 0

Par1Max = 1

Par2Name = ’ t ’

Par2_0 = n2_0

Par2Min = 0

Par2Max = 1

k_0 = 1/(math . s q r t (2))

t_0 = compute_t (k_0)

phi1_0 = pi /6

t h e t a _ a r r a y = np . arange (0 , 2 * pi , 0 . 2)

outputs = [[0 for x in range (len (t h e t a _ a r r a y))] , \

[0 for x in range (len (t h e t a _ a r r a y))]]

o u t p u t s _ i n t e n s i t i e s = [[0 for x in range (len (t h e t a _ a r r a y))] , \

[0 for x in range (len (t h e t a _ a r r a y))]]

compute_outputs (phi1_0 , theta_array , t_0 , k_0)

compute_intensi ty (outputs)

Draw t h e i n i t i a l p l o t (s) and t e x t (s)

The ’ l i n e ’ v a r i a b l e i s used f o r m o d i f y i n g t h e l i n e l a t e r

[o 1 i n t e n s i t y _ l i n e] = ha_general . p l o t (theta_array , \

o u t p u t s _ i n t e n s i t i e s [0] , l a b e l = ’O1 ’) # output1 i n t e n s i t y

[o 2 i n t e n s i t y _ l i n e] = ha_general . p l o t (theta_array , \

o u t p u t s _ i n t e n s i t i e s [1] , l a b e l = ’O2 ’) # output2 i n t e n s i t y

D e f i n e v a r i o u s s e t t i n g s f o r t h e f i r s t p l o t

hf_genera l . s e t _ l a b e l (’ Output f o r MZI ’)

ha_general . s e t _ t i t l e (’ Output i n t e n s i t i e s (abs ^2) ’)

ha_general . s e t _ x l a b e l (’ Theta [rad] ’)

ha_general . s e t _ y l a b e l (’ Output I n t e n s i t y ’)

ha_general . se t_x l im (0 , 2* pi)

ha_general . legend ()

ha_general . gr id ()

ha_general2 . s e t _ l a b e l (’ Output f o r MZI ’)

ha_general2 . s e t _ t i t l e (’ Outputs ’)

ha_general2 . s e t _ x l a b e l (’ Theta [rad] ’)

ha_general2 . s e t _ y l a b e l (’ Output Values ’)

ha_general2 . se t_x l im (0 , 2* pi)

ha_general2 . se t_yl im (− 0 . 0 5 , 2)

134 Appendix A. Help in replicating this work

Add two s l i d e r s f o r t w e a k i n g t h e p a r a m e t e r s

D e f i n e an a x e s a r e a and draw a s l i d e r in i t

p a r 1 _ s l i d e r _ a x = hf_genera l . add_axes ([0 . 1 0 , 0 . 1 5 , 0 . 8 0 , 0 . 0 3] ,

f a c e c o l o r = a x i s _ c o l o r)

p a r 1 _ s l i d e r = S l i d e r (par1_s l ider_ax , Par1Name , Par1Min , Par1Max ,

v a l i n i t =k_0 , f a c e c o l o r = ’ green ’)

p a r 2 _ s l i d e r _ a x = hf_genera l . add_axes ([0 . 1 0 , 0 . 1 0 , 0 . 8 0 , 0 . 0 3] ,

f a c e c o l o r = a x i s _ c o l o r)

p a r 2 _ s l i d e r = S l i d e r (par2_s l ider_ax , Par2Name , Par2Min , Par2Max ,

v a l i n i t =t_0 , f a c e c o l o r = ’ blue ’)

D e f i n e an a c t i o n f o r m o d i f y i n g t h e l i n e (s)

when any s l i d e r ’ s v a l u e c h a n g e s

def sl ider1_on_changed (val) :

k = p a r 1 _ s l i d e r . val

t = compute_t (k)

p a r 2 _ s l i d e r . eventson = Fa lse

p a r 2 _ s l i d e r . s e t _ v a l (t)

p a r 2 _ s l i d e r . eventson = True

compute_outputs (phi1_0 , theta_array , t , k)

compute_intensi ty (outputs)

o 1 i n t e n s i t y _ l i n e . se t_ydata (o u t p u t s _ i n t e n s i t i e s [0])

o 2 i n t e n s i t y _ l i n e . se t_ydata (o u t p u t s _ i n t e n s i t i e s [1])

hf_genera l . canvas . draw_idle ()

p a r 1 _ s l i d e r . on_changed (sl ider1_on_changed)

p a r 2 _ s l i d e r . on_changed (sl ider1_on_changed)

Add a b u t t o n f o r r e s e t t i n g t h e p a r a m e t e r s

reset_but ton_ax_g = hf_genera l . add_axes ([0 . 8 , 0 . 2 0 , 0 . 1 , 0 . 0 4])

rese t_but ton_g = Button (reset_button_ax_g , ’ Reset ’ ,

c o l o r = a x i s _ c o l o r , hovercolor= ’ 0 .975 ’)

def rese t_but ton_on_c l i cked_g (mouse_event) :

p a r 1 _ s l i d e r . r e s e t ()

rese t_but ton_g . on_cl icked (rese t_but ton_on_c l i cked_g)

D i s p l a y t h e p l o t

p l t . show ()

Appendix A. Help in replicating this work 135

LISTING A.16: The custom function for reading the stored data

def read_data (data_fi lename , FILE_PV = False) :

V a r i a b l e re − i n i t i a l i z a t i o n

l i n e s = []

v o l t a g e _ s t a r t = []

vol tage_s top = []

vo l tage_s tep = []

f i l e 1 = open (data_fi lename , " r ")

f i lename = f i l e 1 . name . s t r i p (" . t x t ")

e x t r a c t t h e v o l t a g e _ s t a r t , v o l t a g e _ s t o p , v o l t a g e _ s t e p and

t r i a n g u l a r from t h e f i l e

for i in range (9) :

l i n e = f i l e 1 . r e a d l i n e ()

i f i == 5 :

s p l i t i n t o i n d i v i d u a l v a l u e s and s t r i p p i n g t h e % and t h e \n

v o l t a g e _ s t a r t = [f l o a t (s . s t r i p (’%’)) \

for s in l i n e . r s t r i p (’\n ’) . s p l i t (’\ t ’)]

e l i f i == 6 :

vol tage_s top = [f l o a t (s . s t r i p (’%’)) \

for s in l i n e . r s t r i p (’\n ’) . s p l i t (’\ t ’)]

e l i f i == 7 :

vo l tage_s tep = [f l o a t (s . s t r i p (’%’)) \

for s in l i n e . r s t r i p (’\n ’) . s p l i t (’\ t ’)]

e l i f i == 8 :

F _ t r i a n g u l a r = i n t (l i n e . r s t r i p (’\n ’) . s t r i p (’%’)) # FLAG : 0

f o r ramp sweep , 1 f o r t r i a n g u l a r sweep

e lse :

pass

s a v e e a c h l i n e a s a l i s t in t h e ’ l i n e s ’ l i s t

for l i n e in f i l e 1 :

i f l i n e [0] != ’%’ :

l i n e s . append (l i n e . r s t r i p (’\n ’) . s p l i t (’\ t ’))

compute t h e number o f c h a n n e l s / t r i e s

channels = i n t (len (l i n e s [0])/2 −1) # / 2 b e c a u s e t h e y a r e grouped

in c o u p l e s (c u r r e n t − v o l t a g e s) ,

−1 b e c a u s e f i r s t two columns a r e

f o r PD

136 Appendix A. Help in replicating this work

compute t h e t o t a l s t e p s f o r e a c h c h a n n e l / t r y

channel_steps = [i n t ((F _ t r i a n g u l a r + 1) * (vol tage_s top [j] − \

v o l t a g e _ s t a r t [j]) / vol tage_s tep [j]) \

for j in range (channels)]

re − b u i l d t h e o r i g i n a l m e a s u r e d _ v o l t a g e , measur ed_cur r en t ,

PD_vol tage and PD_current

m e a s u r e d _ v o l t a g e [c h a n n e l s] [channe l_under_sweep] [measurement]

measured_voltage = [[[] for i in range (channels)] \

for j in range (channels)]

measured_current = [[[] for i in range (channels)] \

for j in range (channels)]

PD_voltage = [[] for i in range (channels)]

PD_current = [[] for i in range (channels)]

P_heater = [[[] for i in range (channels)] for j in range (channels)]

p o p u l a t e e a c h l i s t

for i in range (len (l i n e s)) :

for channel in range (0 , len (l i n e s [0]) , 2) :

i f channel == 0 : # f i r s t two columns o f t h e f i l e

a r e f o r t h e PD v o l t a g e and c u r r e n t

PD_voltage [from_linenumb_to_active_channel (i ,\

channel_steps)] . append (f l o a t (l i n e s [i] [channel]))

PD_current [from_linenumb_to_active_channel (i ,\

channel_steps)] . append (f l o a t (l i n e s [i] [channel + 1]))

e lse : # rema in ing columns a r e f o r t h e a c t u a l c h a n n e l s

measured_voltage [i n t ((channel /2) −1)]\

[from_linenumb_to_active_channel (i ,\

channel_steps)] . append (f l o a t (l i n e s [i]\

[channel]))

measured_current [i n t ((channel /2) −1)]\

[from_linenumb_to_active_channel (i ,\

channel_steps)] . append (f l o a t (l i n e s [i]\

[channel + 1]))

i f FILE_PV :

P_heater [i n t ((channel /2) −1)]\

[from_linenumb_to_active_channel (i ,\

channel_steps)] . append (f l o a t (l i n e s [i]\

[channel]) * f l o a t (l i n e s [i] [channel + 1]))

Appendix A. Help in replicating this work 137

C l o s e t h e l o g f i l e

f i l e 1 . c l o s e ()

i f FILE_PV :

Write t h e f i t f i l e

w r i t e _ f i t _ f i l e (f i lename , P_heater , PD_voltage)

i f FILE_PV :

return { ’ measured vol tage ’ : measured_voltage , \

’ measured current ’ : measured_current , \

’PD vol tage ’ : PD_voltage , \

’PD current ’ : PD_current , \

’P heater ’ : P_heater , ’ channels ’ : channels }

e lse :

return { ’ measured vol tage ’ : measured_voltage , \

’ measured current ’ : measured_current , \

’PD vol tage ’ : PD_voltage , \

’PD current ’ : PD_current , ’ channels ’ : channels }

LISTING A.17: The custom function for computing the outputs for an

arbitrary Clements architecture with any number of inputs and stages

of MZIs

def f i n d _ o u t p u t _ s e s t u p l e t (phi1_values) :

""" computes t h e ou t pu t s e s t u p l e t s o f a two s t a g e o f c a s c a d e MZIs .

p h i _ v a l u e s : FLOAT, t h e i n i t i a l p h a s e s h i f t """

P a r a m e t e r s s e t t i n g . g l o b a l f o r t e s t i n g

global phi11 , phi12 , phi21 , phi32 , phi41 , phi61 , phi52

global theta31 , theta51 , theta22 , theta42 , the ta62

global I1 , I2 , I3 , I4 , I5 , I6

S c a l a b l e a p p r o a c h :

works f o r any number o f i n p u t s and s t a g e s o f MZIs

p h i _ d i c t = { ’ phi11 ’ : phi11 , ’ phi21 ’ : phi21 , ’ phi41 ’ : phi41 ,\

’ phi61 ’ : phi61 , ’ phi12 ’ : phi12 , ’ phi32 ’ : phi32 , \

’ phi52 ’ : phi52 }

t h e t a _ d i c t = { ’ the ta31 ’ : theta31 , ’ the ta51 ’ : theta51 , \

’ the ta22 ’ : theta22 , ’ the ta42 ’ : theta42 , \

’ the ta62 ’ : the ta62 }

i n p u t _ l i s t = [I1 , I2 , I3 , I4 , I5 , I6]

s tage = 2

T_dic t = { }

138 Appendix A. Help in replicating this work

P_dic t = { }

TP_dict = { }

input_array = [[] for x in range (s tage)]

output_array = [[] for x in range (s tage)]

t e s t i n g f o r O1 = I1 , O2 = I2 , O3 = I3 . P a r a m e t e r s s h o u l d be :

phi11 , phi12 , phi21 , ph i32 = 0 , 0 , 0 , 0

t h e t a 3 1 , t h e t a 2 2 , t h e t a 4 2 = pi , p i , p i

i n p u t s : −−> IN THE FINAL VERSION, THEY WILL BE PASSED AS ARGUMENTS

I1 , I2 , I3 , I4 , I5 , I6 = 1 , 0 , 1 , 0 , 0 , 0

s t o r i n g p a r a m e t e r s in a d i c t i o n a r y s t y l e :

p h i _ d i c t = { ’ phi <x>< s t a g e > ’ : . . , } −−> { ’ ph i11 ’ : phi11 ,\

’ ph i21 ’ : phi21 , . . }

NOMENCLATURE: <x>< s t a g e > => p h i _ d i c t [’ p h i ’+ s t r (x)+ s t r (s t a g e)]

With : " s t a g e " a s i n g l e s t a g e o f MZIs and p h a s e s h i f t e r s .

n t h e t o t a l number o f s t a g e s (i t must be even)

" s t a g e " t h e odd number = 1 , 3 , 5 , 7 . . . , n−1

x t h e i n p u t number , x = 0 , 1 , 2 , . . . , m

(m odd . The t o t a l i n p u t s a r e even)

#

The i n p u t f o r t h e s t a g e " s t a g e " i s t h e ou tpu t

o f t h e s t a g e x−1 as f o l l o w i n g :

Input 0 <− o u t p u t _ a r r a y [s t a g e − 2] [1] [0] [0]

Input m <− o u t p u t _ a r r a y [s t a g e − 2] []

#

i f x == 0 :

i n p u t _ a r r a y [s t a g e −1] = [np . a r r a y ([[o u t p u t _ a r r a y [s t a g e −2]\

[x] , o u t p u t _ a r r a y [s t a g e − 2] [x +1] [0]\

[0]]]) . r e s h a p e (− 1 , 1)]

e l i f s e x == l e n (o u t p u t _ a r r a y [s t a g e −2]) −2 :

i n p u t _ a r r a y [s t a g e −1] = [np . a r r a y ([[o u t p u t _ a r r a y [s t a g e −2]\

[x] , o u t p u t _ a r r a y [s t a g e − 2] [x +1] [0]\

[0]]]) . r e s h a p e (− 1 , 1)]

e l s e :

i n p u t _ a r r a y [s t a g e − 1] . append (np . a r r a y ([[o u t p u t _ a r r a y \

[s t a g e −2] [x] [1] [0] , o u t p u t _ a r r a y [s t a g e − 2] [x +1] [0]\

[0]]]) . r e s h a p e (− 1 , 1))

input_dimension = len (i n p u t _ l i s t)

Appendix A. Help in replicating this work 139

STAGE 1

s tage = 1

B u i l d t h e i n p u t s o f s t a g e 1 :

input_array [stage −1] = [i n p u t _ l i s t [0]]

for x in range (1 , input_dimension − 1 , 2) :

input_array [stage − 1] . append (np . array ([[i n p u t _ l i s t [x] ,\

i n p u t _ l i s t [x + 1]]]) . reshape (− 1 , 1)) # t r a n s p o s i n g t h e

v e c t o r , p r e p a r i n g

i t f o r t h e m at r i x

p r o d u c t

input_array [stage − 1] . append (i n p u t _ l i s t [− 1])

B u i l d T , P and TP t r a n s f o r m a t i o n m a t r i c e s

for z in range (1 , input_dimension − 1 , 2) :

x = z+1

T_dic t [’ T_ ’+ s t r (x)+ s t r (s tage)+ ’ _ ’+ s t r (x+1)+ s t r (s tage)] = \

(1 / 2) * cmath . exp (i i * phi1) * np . array ([[(1 − \

cmath . exp (i i * t h e t a _ d i c t [’ t h e t a ’+ s t r (x+1)+ s t r (s tage)])) , \

i i * (1+ cmath . exp (i i * t h e t a _ d i c t [’ t h e t a ’+ s t r (x+1)+ s t r (s tage)]))] , \

[i i * (1+ cmath . exp (i i * t h e t a _ d i c t [’ t h e t a ’+ s t r (x+1)+ s t r (s tage)])) , \

−1*(1 −cmath . exp (i i * t h e t a _ d i c t [’ t h e t a ’+ s t r (x+1)+ s t r (s tage)]))]])

P_dic t [’ P_ ’+ s t r (x)+ s t r (s tage)+ ’ _ ’+ s t r (x+1)+ s t r (s tage)] = \

np . array ([[cmath . exp (i i * p h i _ d i c t [’ phi ’+ s t r (x)+ s t r (s tage)]) , \

0] , [0 , 1]])

TP_dict [’ TP_ ’+ s t r (x)+ s t r (s tage)+ ’ _ ’+ s t r (x+1)+ s t r (s tage)] = \

np . matmul (T_dic t [’ T_ ’+ s t r (x)+ s t r (s tage)+ ’ _ ’+ s t r (x+1)+

s t r (s tage)] , \

P_dic t [’ P_ ’+ s t r (x)+ s t r (s tage)+ ’ _ ’+ s t r (x+1)+ s t r (s tage)])

B u i l d t h e o u t p u t s f o r s t a g e 1 :

output_array [stage −1] = [(1 / 2) * cmath . exp (i i * phi1) * cmath . exp (i i *\

p h i _ d i c t [’ phi ’+ s t r (1) + s t r (s tage)]) * \

input_array [stage − 1] [0]]

for x in range (1 , input_dimension − 2 , 2) :

output_array [stage − 1] . append (np . matmul (TP_dict [’ TP_ ’+\

s t r (x+1)+ s t r (s tage)+ ’ _ ’+ s t r (x+2)+ s t r (s tage)] , \

input_array [stage − 1] [i n t ((x + 1) / 2)])) # O<x>_O<x+1>

output_array [stage − 1] . append ((1 / 2) * cmath . exp (i i * phi1) *\

cmath . exp (i i * p h i _ d i c t [’ phi ’+ s t r (input_dimension)+\

s t r (s tage)]) * input_array [stage − 1] [− 1])

OTHER STAGES

140 Appendix A. Help in replicating this work

B u i l d t h e i n p u t s o f t h e f o l l o w i n g s t a g e s :

for x in range (len (output_array [stage − 1]) − 1) :

i f x == 0 :

input_array [s tage] = [np . array ([[output_array [stage −1]\

[x] , output_array [stage − 1] [x + 1] [0] [0]]]) . reshape (− 1 , 1)]

e l i f (x == len (output_array [stage − 1]) − 2) :

input_array [s tage] . append (np . array ([[output_array [stage −1]\

[x] [1] [0] , output_array [stage − 1] [x + 1]]]) . reshape (− 1 , 1))

e lse :

input_array [s tage] . append (np . array ([[output_array [stage −1]

[x] [1] [0] , output_array [stage − 1] [x +1] [0]\

[0]]]) . reshape (− 1 , 1)) # t r a n s p o s i n g t h e v e c t o r

s tage = 2

B u i l d t h e T , P and TP t r a n s f o r m a t i o n m a t r i c e s :

for z in range (1 , input_dimension , 2) :

x = z+1

T_dic t [’ T_ ’+ s t r (z)+ s t r (s tage)+ ’ _ ’+ s t r (z+1)+ s t r (s tage)] = \

(1 / 2) * cmath . exp (i i * phi1) * np . array ([[(1 −cmath . exp\

(i i * t h e t a _ d i c t [’ t h e t a ’+ s t r (x)+ s t r (s tage)])) , i i *\

(1+ cmath . exp (i i * t h e t a _ d i c t [’ t h e t a ’+ s t r (x)+\

s t r (s tage)]))] , [i i * (1+ cmath . exp (i i *\

t h e t a _ d i c t [’ t h e t a ’+ s t r (x)+ s t r (s tage)])) , \

−1*(1 −cmath . exp (i i * t h e t a _ d i c t \

[’ t h e t a ’+ s t r (x)+ s t r (s tage)]))]])

P_dic t [’ P_ ’+ s t r (z)+ s t r (s tage)+ ’ _ ’+ s t r (z+1)+ s t r (s tage)] = \

np . array ([[cmath . exp (i i * p h i _ d i c t\

[’ phi ’+ s t r (z)+ s t r (s tage)]) , 0] , [0 , 1]])

TP_dict [’ TP_ ’+ s t r (z)+ s t r (s tage)+ ’ _ ’+ s t r (z+1)+ s t r (s tage)] = \

np . matmul (T_dic t [’ T_ ’+ s t r (z)+ s t r (s tage)+ ’ _ ’\

+ s t r (z+1)+ s t r (s tage)] , P_dic t [’ P_ ’+ s t r (z)+\

s t r (s tage)+ ’ _ ’+ s t r (z+1)+ s t r (s tage)])

B u i l d t h e o u t p u t s :

output_array [stage −1] = [np . matmul (TP_dict [’ TP_12_22 ’] ,\

input_array [stage − 1] [0])]

for z in range (2 , input_dimension , 2) :

x = z+1

output_array [stage − 1] . append (np . matmul (TP_dict\

[’ TP_ ’+ s t r (x)+ s t r (s tage)+ ’ _ ’+ s t r (x+1)+\

s t r (s tage)] , input_array [stage − 1] [i n t (z / 2)]))

Appendix A. Help in replicating this work 141

Return t h e ou t pu t o f t h e l a s t s t a g e :

return output_array [− 1] ;

LISTING A.18: The custom functions used in the image processing

algorithm for catching the corner of the specified rectangle and draw-

ing it on screen

def mousePoints (event , x , y , f l a g s , params) :

i f event == cv2 .EVENT_LBUTTONDOWN:

print (x , y)

def drawRectangle (act ion , x , y , f l a g s , * userdata) :

R e f e r e n c i n g g l o b a l v a r i a b l e s

global t o p _ l e f t _ c o r n e r , bottom_right_corner , center , \

corner , c l i c k , del tax , de l tay

Mark t h e t o p l e f t c o r n e r when l e f t mouse b u t t o n i s p r e s s e d

i f a c t i o n == cv2 .EVENT_LBUTTONDOWN and c l i c k == 0 :

c e n t e r = [x , y]

c l i c k = 1

When l e f t mouse b u t t o n i s r e l e a s e d , mark bot tom r i g h t c o r n e r

e l i f a c t i o n == cv2 .EVENT_LBUTTONDOWN and c l i c k == 1 :

corner = [x , y]

c l i c k = 0

de l tax = abs (c e n t e r [0] − corner [0])

de l tay = abs (c e n t e r [1] − corner [1])

t o p _ l e f t _ c o r n e r = (c e n t e r [0] − del tax , c e n t e r [1] − del tay)

bottom_right_corner = (c e n t e r [0]+ deltax , c e n t e r [1]+ del tay)

cv2 . r e c t a n g l e (gray , t o p _ l e f t _ c o r n e r , bottom_right_corner , \

(2 5 5 , 2 5 5 , 2 5 5) , 2 , 8)

cv2 . imshow (wName, gray)

def c a t c h _ r e c t a n g l e (gray ,wName) :

"""

The f u n c t i o n t a k e a s i n p u t t h e image t h e r e c t a n g l e

has t o be c a t c h e d on .

The F i r s t d e f i n e s t h e c e n t e r , t h e s e c o n d c l i c k d e f i n e s

t h e o p p o s i t e v e r t e x .

142 Appendix A. Help in replicating this work

The image i s c l o s e d when t h e u s e r p r e s s e s t h e "q" key

"""

cv2 . imshow (wName, gray)

c l i c k =0

h i g h g u i f u n c t i o n c a l l e d when mouse e v e n t s o c c u r s

cv2 . setMouseCallback (wName, drawRectangle)

k=0

C l o s e t h e window when key q i s p r e s s e d

while k ! = 1 1 3 :

D i s p l a y t h e image

cv2 . imshow (wName , gray)

k = cv2 . waitKey (0)

cv2 . destroyAllWindows ()

r e c t a n g l e = { " top l e f t corner " : t o p _ l e f t _ c o r n e r , " bottom r i g h t \

corner " : bottom_right_corner , " width " : 2 * del tax , \

" height " : 2 * de l tay }

c l i c k = 0

return r e c t a n g l e

LISTING A.19: The custom functions for computing the cost function

to optimize in the optimization algorithm

def c o s t _ f u n c t i o n (measured_output_vector , expected_output_vector) :

t h e norm o f t h e v e c t o r d i f f e r e n c e

norm = 0

f o r e a c h r e g i o n , compute t h e norm o f t h e d i f f e r e n c e

be tween e x p e c t e d and measured

for index in range (len (measured_output_vector)) :

norm += pow(expected_output_vector [index] − \

measured_output_vector [index] , 2)

norm = math . s q r t (abs (norm))

return norm

def norm (vec tor) :

norm = 0

for index in range (len (vec tor)) :

norm += pow(vec tor [index] , 2)

Appendix A. Help in replicating this work 143

norm = math . s q r t (abs (norm))

return norm

LISTING A.20: The code for optimization algorithm based on image

processing

print (" S e l e c t the background box ")

background_box = c a t c h _ r e c t a n g l e (gray , " s e l e c t background box ")

background_offset = np . sum(gray [background_box [" top l e f t corner "] [1] : \

background_box [" bottom r i g h t corner "] [1] , \

background_box [" top l e f t corner "] [0] : \

background_box [" bottom r i g h t corner "] [0]]) \

/(background_box [" width "] * background_box [" height "])

fixed_number = input (" I s the number of r e c t a n g l e s to be catched f i x e d ? \

y −> yes any other key −> No\n")

fixed_number = " y "

i f fixed_number == " y " :

number_of_rectangles = i n t (input (" I n s e r t the number of r e c t a n g l e s \

to be catched : "))

r e c t a n g l e s . append (c a t c h _ r e c t a n g l e (gray , s t r (0)))

CALL THAT MANY TIMES THE CATCH_RECTANGLE FUNCTION

for i in range (number_of_rectangles − 1) :

r e c t a n g l e s . append (c a t c h _ r e c t a n g l e 2 (gray , s t r (i)))

e lse : # START CALLING THE CATCH_RECTANGLE FUNCTION UNTIL THE USER STOP IT

repeat = " y "

r e c t a n g l e s . append (c a t c h _ r e c t a n g l e (gray , s t r (0)))

while repeat == " y " :

CALL THE CATCH_RECTANGLE FUNCTION

r e c t a n g l e s . append (c a t c h _ r e c t a n g l e 2 (gray , s t r (i)))

repeat = input ("Do you want to i n s e r t ca tch another r e c t a n g l e ? \

y −> yes any other key −> No\n")

i n t e g r a l = [[] for i in range (len (r e c t a n g l e s))] # i n t e g r a l i s a l i s t

o f e l e m e n t s (l i s t) ,

e a c h e l e m e n t c o n t a i n s

144 Appendix A. Help in replicating this work

a l i s t o f t h e

i n t e g r a l s f o r e a c h

r e c t a n g l e

background_array = [] # Th i s w i l l c o n t a i n t h e a r r a y o f b ac k gr o un d s

data = []

measured_output_vector = [None for _ in range (len (r e c t a n g l e s))]

C r e a t i n g t h e e x p e c t e d ou t pu t v e c t o r o f t h e same l e n g t h

o f t h e number o f r e c t a n g l e s t o be drawn

expected_output_vector = []

print (" INSERT THE EXPECTED OUTPUT VECTOR PATTERN \

[1 or 0 f o r each output] : ")

for i in range (len (r e c t a n g l e s)) :

expected_output_vector . append (i n t (input (" Output " + \

s t r (i +1) + " : ")))

i f len (expected_output_vector) != len (r e c t a n g l e s) :

print ("ERROR: OUTPUT VECTOR LENGTH DOES NOT \

MATCH THE NUMBER OF RECTANGLES. ")

l i s t o f s u b l i s t o f two e l e m e n t s . F i r s t e l e m e n t i s ou tpu t v o l t a g e ,

s e c o n d e l e m e n t i s a l i s t o f a l l d r i v i n g v o l t a g e s f o r e a c h c h a n n e l

t a r g e t _ c o n f i g u r a t i o n = [[0 , 0 . 0 , [0 . 0 for j in range (len (channels))]] \

for i in range (len (channels))]

voltage_max = 0 . 0

max_attuale = 10000 .0

c u r r e n t _ s t e p = 0

time . s leep (3) # Give t h e u s e r t ime t o r e d u c e t h e image t o i c o n

s e t a l l c h a n n e l s t o t h e i r v o l t a g e _ s t a r t v a l u e s

for k in range (len (channels)) :

q . v [channels [k]] = f l o a t (v o l t a g e _ s t a r t [k])

R ep ea t m a x _ t r i e s t i m e s and g i v e t h e b e s t r e s u l t

for i in range (max_tr ies) :

print ("\nPERFORMING TRY N . { : } NOW \n" . format (i + 1))

V o l t a g e sweep on e a c h c h a n n e l (i . e . t h e DoFs)

for channel_n in range (len (channels)) :

x = channel_n

Appendix A. Help in replicating this work 145

print ("\nDRIVING CHANNEL { : } NOW \n"\

. format (channels [channel_n]))

c h e c k i f we want t o g e n e r a t e a t r i a n g u l a r sweep or not

i f F _ t r i a n g u l a r == 1 :

sweep_range = np . concatenate ((np . arange (\

v o l t a g e _ s t a r t [channel_n] , vol tage_s top [channel_n] ,\

vol tage_s tep [channel_n]) , np . arange (\

vol tage_s top [channel_n] , v o l t a g e _ s t a r t [channel_n] , \

−vol tage_s tep [channel_n])))

e l i f F _ t r i a n g u l a r == 0 :

sweep_range = np . arange (v o l t a g e _ s t a r t [0] , \

vol tage_s top [0] + vol tage_s tep [0] , vo l tage_s tep [0])

e lse :

print (’ i n v a l i d value f o r t r i a n g u l a r ’)

for voltage_sweep in sweep_range :

q . v [channels [channel_n]] = f l o a t (voltage_sweep)

temp_voltage = q . v [channels [channel_n]]

COMPUTE THE MEASURED OUTPUT WITH IMAGE PROCESSING

Take a s c r e e n s h o t and open t h e image

mycustommodule . take_screenshot (xdest= 0 , ydest = 0 , \

xsrc = 960 , ysrc = 0 , image_name = s t r (ID) ,\

save_path = save_path , s c r e e n _ r e s o l u t i o n = \

[9 6 0 , 1 0 8 0])

image = cv2 . imread (save_path + ’/ ’ + s t r (ID) + ’ . png ’)

gray = cv2 . cvtColor (image , cv2 .COLOR_BGR2GRAY)

R e s i z i n g t h e image

gray = i m u t i l s . r e s i z e (gray , width =1080)

output = gray . copy ()

background_offset = np . sum(gray [background_box\

[" top l e f t corner "] [1] : background_box\

[" bottom r i g h t corner "] [1] , background_box\

[" top l e f t corner "] [0] : background_box\

[" bottom r i g h t corner "] [0]]) \

/(background_box [" width "] *\

background_box [" height "])

background_array . append (background_offset)

146 Appendix A. Help in replicating this work

C r e a t i n g a f i x e d l e n g t h l i s t f o r f i r s t row

new_row = [None for _ in range (len (r e c t a n g l e s) + 2)]

P o p u l a t e f i r s t p a r t o f t h e new row with :

ID , background o f f s e t

new_row [0] = ID

new_row [1] = background_offset

for k in range (len (r e c t a n g l e s)) :

Computing t h e sum o f p i x e l v a l u e s i n s i d e t h e s e l e c t e d

r e c t a n g l e and n o r m a l i z i n g i t by t h e r e c t a n g l e a r e a and

s u b t r a c t i n g t h e background

r e c t a n g l e _ i n t e g r a l = np . sum(gray [r e c t a n g l e s [k]\

[" top l e f t corner "] [1] : r e c t a n g l e s [k] [" bottom r i g h t \

corner "] [1] , r e c t a n g l e s [k] [" top l e f t corner "]\

[0] : r e c t a n g l e s [k] [" bottom r i g h t corner "] [0]] \

) / (r e c t a n g l e s [k] [" width "] * r e c t a n g l e s [k] [" height "]) \

−background_offset

i n t e g r a l [k] . append (r e c t a n g l e _ i n t e g r a l)

P o p u l a t e r ema in ing p a r t o f t h e new row with :

r e c t a n g l e 1 , . . . , r e c t a n g l e n

new_row [k+2] = r e c t a n g l e _ i n t e g r a l

measured_output_vector [k] = r e c t a n g l e _ i n t e g r a l

cv2 . r e c t a n g l e (output , r e c t a n g l e s [k] [" top l e f t corner "] ,\

r e c t a n g l e s [k] [" bottom r i g h t corner "] , (2 5 5 , 255 , \

2 5 5) , 2) # (sourc e_ image , t o p l e f t c o r n e r , bo t tom \

r i g h t corner , color , t h i c k n e s s)

measured_output_vector_norm = norm (measured_output_vector)

making m e a s u r e d _ o u t p u t _ v e c t o r hav ing a norm o f 1

for index in range (len (measured_output_vector)) :

measured_output_vector [index] = measured_output_vector\

[index]/ measured_output_vector_norm

new_row [index +2] = measured_output_vector [index]

i n t e g r a l [index] [− 1] = measured_output_vector [index]

data . append (new_row) # d a t a [c u r r e n t _ s t e p] = new_row

Appendix A. Help in replicating this work 147

cv2 . imshow (" Rectangle " , output)

cv2 . waitKey (1 0 0)

valore_output_imageprocessing = c o s t _ f u n c t i o n \

(measured_output_vector , expected_output_vector)

I f a new maximum i s found ,

r e p l a c e t h e c u r r e n t maximum with i t

i f valore_output_imageprocessing < max_attuale :

voltage_max = q . v [channels [channel_n]]

max_attuale = valore_output_imageprocessing

Updating t h e c o n f i g u r a t i o n sys t em l i s t

C r e a t i n g a f i x e d l e n g t h l i s t f o r f i r s t row

new_row = [−1 for _ in range ((len (channels) * 2) + 4)]

P o p u l a t e f i r s t p a r t o f t h e new row with :

ID , f l a g f o r t r i a n g u l a r sweep , v o l t a g e v a l u e from p i c o ,

a c t i v e c h a n n e l

new_row [0] = i n t (ID)

new_row [1] = F _ t r i a n g u l a r

new_row [2] = valore_output_imageprocessing

new_row [3] = channels [channel_n]

P o p u l a t e r ema in ing p a r t o f t h e new row with :

I1 , V1 , . . . , In , Vn

for j in range (len (channels)) : # a c q u i r e v o l t a g e and c u r r e n t

f o r a l l c h a n n e l s . Then

p r i n t them on s c r e e n and

s a v e them on f i l e

temp_voltage = q . v [channels [j]]

temp_current = q . i [channels [j]]

new_row [2 * j +4] = temp_current

new_row [2 * j +5] = temp_voltage

system_conf igurat ion [c u r r e n t _ s t e p] = new_row

c u r r e n t _ s t e p += 1

ID = i n t (ID) + 1

S e t t h e c u r r e n t c h a n n e l t o t h e v o l t a g e c o r r e s p o n d i n g

t o t h e v o l t a g e o f i t s maximum

148 Appendix A. Help in replicating this work

q . v [channels [channel_n]] = voltage_max

print ("\nVoltage maximum f o r channel { : } found : { : } V"\

. format (channels [channel_n] , voltage_max))

t a r g e t _ c o n f i g u r a t i o n [channel_n] [0] = i n t (ID)

Save t h e o u t pu t v a l u e f o r t h e c u r r e n t c h a n n e l maximum

t a r g e t _ c o n f i g u r a t i o n [channel_n] [1] = max_attuale

print ("\nCorresponding output from Image Process ing : { : } \

p i x e l average value " . format (max_attuale))

s t o r i n g in t a r g e t _ c o n f i g u r a t i o n t h e e n t i r e c u r r e n t

c o n f i g u r a t i o n (c o r r e s p o n d i n g t o t h e c u r r e n t found maximum)

for k in range (len (channels)) :

Save e a c h d r i v i n g v o l t a g e f o r t h e c u r r e n t c h a n n e l

t a r g e t _ c o n f i g u r a t i o n [channel_n] [2] [k] = q . v [channels [k]]

print (t a r g e t _ c o n f i g u r a t i o n)

c l o s e a l l open windows

cv2 . destroyAllWindows ()

print ("\nALL DONE")

LISTING A.21: The code for optimization algorithm based on the 2450

Keithley digital multimeter

l i s t o f s u b l i s t o f two e l e m e n t s . F i r s t e l e m e n t i s ou tpu t v o l t a g e ,

s e c o n d e l e m e n t i s a l i s t o f a l l d r i v i n g v o l t a g e s f o r e a c h c h a n n e l

t a r g e t _ c o n f i g u r a t i o n = [[0 , 0 . 0 , [0 . 0 for j in range (len (channels))]] \

for i in range (len (channels))]

voltage_max = 0 . 0

max_attuale = 0 . 0 # As we i n v e r s e p o l a r i z e ,

t h e maximum h e r e i t i s i n s t e a d a minimum

c u r r e n t _ s t e p = 0

s e t a l l c h a n n e l s t o t h e i r v o l t a g e _ s t a r t v a l u e s

for k in range (len (channels)) :

q . v [channels [k]] = f l o a t (v o l t a g e _ s t a r t [k])

Turns t h e K e i t h l e y ou t pu t on

i n s t . wri te (’OUTPut ON’)

Appendix A. Help in replicating this work 149

for i in range (max_tr ies) :

print ("\nPERFORMING TRY N . { : } NOW \n" . format (i + 1))

sweep d i t e n s i o n e su ogn i c a n a l e

for channel_n in range (len (channels)) :

x = channel_n

print ("\nDRIVING CHANNEL { : } NOW \n" \

. format (channels [channel_n]))

c h e c k i f we want t o g e n e r a t e a t r i a n g u l a r sweep or not

i f F _ t r i a n g u l a r == 1 :

sweep_range = np . concatenate ((np . arange\

(v o l t a g e _ s t a r t [channel_n] , vol tage_s top [channel_n] ,\

vol tage_s tep [channel_n]) , np . arange (vol tage_s top\

[channel_n] , v o l t a g e _ s t a r t [channel_n] , − \

vol tage_s tep [channel_n])))

e l i f F _ t r i a n g u l a r == 0 :

sweep_range = np . arange (v o l t a g e _ s t a r t [0] , \

vol tage_s top [0] + vol tage_s tep [0] , vo l tage_s tep [0])

e lse :

print (’ i n v a l i d value f o r t r i a n g u l a r ’)

for voltage_sweep in sweep_range :

q . v [channels [channel_n]] = f l o a t (voltage_sweep)

temp_voltage = q . v [channels [channel_n]]

va lore_output_ke i th ley = kei th ley_s ingle_measure\

(i n s t , sense = ’CURR ’ , source = ’VOLT ’ ,

sourcevalue = −3) [0]

I f a new minimum i s found , r e p l a c e

t h e c u r r e n t minimum with i t

i f va lore_output_ke i th ley < max_attuale :

voltage_max = q . v [channels [channel_n]]

max_attuale = va lore_output_ke i th ley

Updating t h e c o n f i g u r a t i o n sys t em l i s t

C r e a t i n g a f i x e d l e n g t h l i s t f o r f i r s t row

new_row = [−1 for _ in range ((len (channels) * 2) + 4)]

P o p u l a t e f i r s t p a r t o f t h e new row with :

ID , f l a g f o r t r i a n g u l a r sweep ,

v o l t a g e v a l u e from p i c o , a c t i v e c h a n n e l

150 Appendix A. Help in replicating this work

new_row [0] = i n t (ID)

new_row [1] = F _ t r i a n g u l a r

new_row [2] = va lore_output_ke i th ley

new_row [3] = channels [channel_n]

P o p u l a t e r ema in ing p a r t o f t h e new row with :

I1 , V1 , . . . , In , Vn

a c q u i r e v o l t a g e and c u r r e n t f o r a l l c h a n n e l s .

Then p r i n t them on s c r e e n and s a v e them on f i l e

for j in range (len (channels)) :

temp_voltage = q . v [channels [j]]

temp_current = q . i [channels [j]]

new_row [2 * j +4] = temp_current

new_row [2 * j +5] = temp_voltage

system_conf igurat ion [c u r r e n t _ s t e p] = new_row

c u r r e n t _ s t e p += 1

Take a s c r e e n s h o t o f a r e s o l u t i o n o f s c r e e n _ r e s o l u t i o n

and c u t t i n g e v e r y t h i n g t h a t i s on t h e l e f t o f x s r c

(in p i x e l s) and a b o v e y s r c

mycustommodule . take_screenshot (xdest= 0 , ydest = 0 , \

xsrc = 960 , ysrc = 0 , image_name = s t r (ID) , \

save_path = save_path , s c r e e n _ r e s o l u t i o n = [9 6 0 , 1 0 8 0])

ID = i n t (ID) + 1

q . v [channels [channel_n]] = voltage_max

print ("\nVoltage maximum f o r channel { : } found : { : } V" \

. format (channels [channel_n] , voltage_max))

t a r g e t _ c o n f i g u r a t i o n [channel_n] [0] = i n t (ID)

t a r g e t _ c o n f i g u r a t i o n [channel_n] [1] = max_attuale

print ("\nCorresponding output from Kei th ley : { : } A"\

. format (max_attuale))

s t o r i n g in t a r g e t _ c o n f i g u r a t i o n t h e e n t i r e c u r r e n t

c o n f i g u r a t i o n (c o r r e s p o n d i n g t o t h e c u r r e n t found maximum)

for k in range (len (channels)) :

t a r g e t _ c o n f i g u r a t i o n [channel_n] [2] [k] = q . v [channels [k]]

Turns t h e K e i t h l e y ou t pu t o f f

Appendix A. Help in replicating this work 151

i n s t . wri te (’OUTPut OFF ’)

print ("\nSystem c o n f i g u r a t i o n i s : \n")

print (system_conf igurat ion)

print ("\nALL DONE")

LISTING A.22: The code for optimization algorithm based on the 2450

Keithley digital multimeter

S t a r t i n g P i c o with range o f 2V, sample i n t e r v a l o f 250 m i c r o s e c o n d s

and 5000 t o t a l s a m p l e s

ps = mycustommodule . ps

ctypes = mycustommodule . c types

channel_range = ps . PS4000_RANGE [’ PS4000_5V ’]

sampleInterval = ctypes . c _ i n t 3 2 (2 5 0)

sampleUnits = ps . PS4000_TIME_UNITS [’ PS4000_US ’]

sizeOfOneBuffer = 10 # s i z e o f a s i n g l e b u f f e r

numBuffersToCapture = 1 # t o t a l S a m p l e s =

s i z e O f O n e B u f f e r * numBuf f e rsToCapture

mycustommodule . p i c o _ s t a r t (channel_range , sampleInterval = \

sampleInterval , sampleUnits = sampleUnits , \

sizeOfOneBuffer = sizeOfOneBuffer , \

numBuffersToCapture = numBuffersToCapture)

t a r g e t _ c o n f i g u r a t i o n = [[0 , 0 . 0 , [0 . 0 for j in range (len (channels))]] \

for i in range (len (channels))]

voltage_max = 0 . 0

max_attuale = 0 . 0

c u r r e n t _ s t e p = 0

s e t a l l c h a n n e l s t o t h e i r v o l t a g e _ s t a r t v a l u e s

for k in range (len (channels)) :

q . v [channels [k]] = f l o a t (v o l t a g e _ s t a r t [k])

for i in range (max_tr ies) :

print ("\nPERFORMING TRY N . { : } NOW \n" . format (i + 1))

for channel_n in range (len (channels)) :

x = channel_n

print ("\nDRIVING CHANNEL { : } NOW \n" \

. format (channels [channel_n]))

152 Appendix A. Help in replicating this work

c h e c k i f we want t o g e n e r a t e a t r i a n g u l a r sweep or not

i f F _ t r i a n g u l a r == 1 :

sweep_range = np . concatenate ((np . arange (v o l t a g e _ s t a r t \

[channel_n] , vo l tage_s top [channel_n] ,\

vol tage_s tep [channel_n]) , np . arange (vol tage_s top\

[channel_n] , v o l t a g e _ s t a r t [channel_n] , \

−vol tage_s tep [channel_n])))

e l i f F _ t r i a n g u l a r == 0 :

sweep_range = np . arange (v o l t a g e _ s t a r t [0] , \

vol tage_s top [0] + vol tage_s tep [0] , vo l tage_s tep [0])

e lse :

print (’ i n v a l i d value f o r t r i a n g u l a r ’)

for voltage_sweep in sweep_range :

q . v [channels [channel_n]] = f l o a t (voltage_sweep)

temp_voltage = q . v [channels [channel_n]]

valore_output_pico = mycustommodule . pico_acquire_measurement\

(channel_range , sampleInterval = sampleInterval , \

sampleUnits = sampleUnits , sizeOfOneBuffer = \

sizeOfOneBuffer , numBuffersToCapture = \

numBuffersToCapture) ;

I f a new maximum i s found , r e p l a c e t h e c u r r e n t maximum

with i t

i f valore_output_pico > max_attuale :

voltage_max = q . v [channels [channel_n]]

max_attuale = valore_output_pico

C r e a t i n g a f i x e d l e n g t h l i s t f o r f i r s t row

(f o r h i g h e r p e r f o r m a n c e)

new_row = [−1 for _ in range ((len (channels) * 2) + 4)]

P o p u l a t e f i r s t p a r t o f t h e new row with :

ID , f l a g f o r t r i a n g u l a r sweep ,

v o l t a g e v a l u e from p i c o , a c t i v e c h a n n e l

new_row [0] = i n t (ID)

new_row [1] = F _ t r i a n g u l a r

new_row [2] = valore_output_pico

new_row [3] = channels [channel_n]

Appendix A. Help in replicating this work 153

P o p u l a t e r ema in ing p a r t o f t h e new row with :

I1 , V1 , . . . , In , Vn

for j in range (len (channels)) :

temp_voltage = q . v [channels [j]]

temp_current = q . i [channels [j]]

new_row [2 * j +4] = temp_current

new_row [2 * j +5] = temp_voltage

system_conf igurat ion [c u r r e n t _ s t e p] = new_row

c u r r e n t _ s t e p += 1

ID = i n t (ID) + 1

q . v [channels [channel_n]] = voltage_max

print ("\nVoltage maximum f o r channel { : } found : { : } V"\

. format (channels [channel_n] , voltage_max))

t a r g e t _ c o n f i g u r a t i o n [channel_n] [0] = i n t (ID)

t a r g e t _ c o n f i g u r a t i o n [channel_n] [1] = max_attuale #

print ("\nCorresponding output from Picoscope : { : } mV" \

. format (max_attuale))

Take a s c r e e n s h o t o f a r e s o l u t i o n o f s c r e e n _ r e s o l u t i o n and

c u t t i n g e v e r y t h i n g t h a t i s on t h e l e f t o f x s r c (in p i x e l s)

and a b o v e y s r c

mycustommodule . take_screenshot (xdest= 0 , ydest = 0 , \

xsrc = 960 , ysrc = 0 , image_name = s t r (ID) , \

save_path = save_path , s c r e e n _ r e s o l u t i o n = \

[9 6 0 , 1 0 8 0])

s t o r i n g in t a r g e t _ c o n f i g u r a t i o n t h e e n t i r e c u r r e n t

c o n f i g u r a t i o n (corresponding to the current found maximum)

for k in range (len (channels)) :

t a r g e t _ c o n f i g u r a t i o n [channel_n] [2] [k] = q . v [channels [k]]

C l o s e t h e P i c o s c o p e

mycustommodule . pico_stop ()

print (t a r g e t _ c o n f i g u r a t i o n)

print ("\nALL DONE")

155

Bibliography

[1] The Verge. Google confirms ‘quantum supremacy’ breakthrough. 2019. URL: https:

//www.theverge.com/2019/10/23/20928294/google-quantum-supremacy-

sycamore-computer-qubit-milestone (visited on 02/06/2020).

[2] The New York Times. Google Claims a Quantum Breakthrough That Could Change

Computing. 2019. URL: https://www.nytimes.com/2019/10/23/technology/

quantum-computing-google.html (visited on 02/06/2020).

[3] S. Vaitiekėnas et al. “Flux-induced topological superconductivity in full-shell

nanowires”. In: Science 367.6485 (2020), eaav3392. DOI: 10 . 1126 / science .

aav3392. eprint: https://www.science.org/doi/pdf/10.1126/science.

aav3392. URL: https://www.science.org/doi/abs/10.1126/science.

aav3392.

[4] William O’Brien et al. Superconducting Caps for Quantum Integrated Circuits.

2017. DOI: 10.48550/ARXIV.1708.02219. URL: https://arxiv.org/abs/

1708.02219.

[5] Yehan Liu et al. “Design of interacting superconducting quantum circuits with

quasi-lumped models”. In: Bulletin of the American Physical Society (2022).

[6] Reinhold Blümel et al. “Efficient Stabilized Two-Qubit Gates on a Trapped-

Ion Quantum Computer”. In: Physical Review Letters 126.22 (June 2021). DOI:

10.1103/physrevlett.126.220503.

[7] Isaac H Kim et al. “Fault-tolerant resource estimate for quantum chemical sim-

ulations: Case study on Li-ion battery electrolyte molecules”. In: Physical Re-

view Research 4.2 (2022), p. 023019.

[8] Kelly Boothby et al. Architectural considerations in the design of a third-generation

superconducting quantum annealing processor. 2021. DOI: 10.48550/ARXIV.2108.

02322. URL: https://arxiv.org/abs/2108.02322.

https://www.theverge.com/2019/10/23/20928294/google-quantum-supremacy-sycamore-computer-qubit-milestone
https://www.theverge.com/2019/10/23/20928294/google-quantum-supremacy-sycamore-computer-qubit-milestone
https://www.theverge.com/2019/10/23/20928294/google-quantum-supremacy-sycamore-computer-qubit-milestone
https://www.nytimes.com/2019/10/23/technology/quantum-computing-google.html
https://www.nytimes.com/2019/10/23/technology/quantum-computing-google.html
https://doi.org/10.1126/science.aav3392
https://doi.org/10.1126/science.aav3392
https://www.science.org/doi/pdf/10.1126/science.aav3392
https://www.science.org/doi/pdf/10.1126/science.aav3392
https://www.science.org/doi/abs/10.1126/science.aav3392
https://www.science.org/doi/abs/10.1126/science.aav3392
https://doi.org/10.48550/ARXIV.1708.02219
https://arxiv.org/abs/1708.02219
https://arxiv.org/abs/1708.02219
https://doi.org/10.1103/physrevlett.126.220503
https://doi.org/10.48550/ARXIV.2108.02322
https://doi.org/10.48550/ARXIV.2108.02322
https://arxiv.org/abs/2108.02322

156 Bibliography

[9] Maria Schuld and Nathan Killoran. Is quantum advantage the right goal for quan-

tum machine learning? 2022. DOI: 10.48550/ARXIV.2203.01340. URL: https:

//arxiv.org/abs/2203.01340.

[10] DWave. Getting Started with D-Wave Solvers. URL: https://docs.dwavesys.

com/docs/latest/c_gs_1.html (visited on 12/01/2022).

[11] Gary J Mooney et al. “Generation and verification of 27-qubit Greenberger-

Horne-Zeilinger states in a superconducting quantum computer”. In: Journal

of Physics Communications 5.9 (2021), p. 095004.

[12] Gary J Mooney et al. “Whole-Device Entanglement in a 65-Qubit Supercon-

ducting Quantum Computer”. In: Advanced Quantum Technologies 4.10 (2021),

p. 2100061.

[13] IBM. IBM Unveils Breakthrough 127-Qubit Quantum Processor. URL: https://

newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-

Quantum-Processor (visited on 12/01/2022).

[14] IBM. IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM

Quantum System Two. URL: https://newsroom.ibm.com/2022-11-09-IBM-

Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-

Quantum-System-Two (visited on 12/01/2022).

[15] Caterina Taballione et al. 20-Mode Universal Quantum Photonic Processor. 2022.

DOI: 10.48550/ARXIV.2203.01801. URL: https://arxiv.org/abs/2203.

01801.

[16] Caterina Taballione et al. “8x8 reconfigurable quantum photonic processor

based on silicon nitride waveguides”. In: Opt. Express 27.19 (Sept. 2019), pp. 26842–

26857. DOI: 10.1364/OE.27.026842. URL: https://opg.optica.org/oe/

abstract.cfm?URI=oe-27-19-26842.

[17] Caterina Taballione et al. “A 12-mode universal photonic processor for quan-

tum information processing”. In: arXiv preprint arXiv:2012.05673 (2020).

[18] A. Annoni et al. “Automated Routing and Control of Silicon Photonic Switch

Fabrics”. In: IEEE Journal of Selected Topics in Quantum Electronics 22.6 (Nov.

2016), pp. 169–176. ISSN: 1558-4542. DOI: 10.1109/JSTQE.2016.2551943.

https://doi.org/10.48550/ARXIV.2203.01340
https://arxiv.org/abs/2203.01340
https://arxiv.org/abs/2203.01340
https://docs.dwavesys.com/docs/latest/c_gs_1.html
https://docs.dwavesys.com/docs/latest/c_gs_1.html
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://doi.org/10.48550/ARXIV.2203.01801
https://arxiv.org/abs/2203.01801
https://arxiv.org/abs/2203.01801
https://doi.org/10.1364/OE.27.026842
https://opg.optica.org/oe/abstract.cfm?URI=oe-27-19-26842
https://opg.optica.org/oe/abstract.cfm?URI=oe-27-19-26842
https://doi.org/10.1109/JSTQE.2016.2551943

Bibliography 157

[19] S. Zhu et al. “An Improved Thermo-Optic Phase Shifter with AlN Block for Sil-

icon Photonics”. In: 2019 Optical Fiber Communications Conference and Exhibition

(OFC). Mar. 2019, pp. 1–3.

[20] A. A. Gentile et al. “Noise resilience of Bayesian quantum phase estimation

tested on a Si quantum photonic chip”. In: 2017 Conference on Lasers and Electro-

Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC).

June 2017, pp. 1–1. DOI: 10.1109/CLEOE-EQEC.2017.8087408.

[21] C. G. H. Roeloffzen et al. “Low-Loss Si3N4 TriPleX Optical Waveguides: Tech-

nology and Applications Overview”. In: IEEE Journal of Selected Topics in Quan-

tum Electronics 24.4 (July 2018), pp. 1–21. ISSN: 1558-4542. DOI: 10.1109/JSTQE.

2018.2793945.

[22] Luca Gemma et al. “Analysis of Control and Sensing Interfaces in a Pho-

tonic Integrated Chip Solution for Quantum Computing”. In: Proceedings of

the 17th ACM International Conference on Computing Frontiers. CF ’20. Cata-

nia, Sicily, Italy: Association for Computing Machinery, 2020, 245–248. ISBN:

9781450379564. DOI: 10.1145/3387902.3394034. URL: https://doi.org/10.

1145/3387902.3394034.

[23] Luca Gemma et al. “Analysis of Photodiode Sensing Devices in a Photonic

Integrated Chip solution for Quantum Computing”. In: 2020 IEEE SENSORS.

IEEE. 2020, pp. 1–4.

[24] Daniel Perez et al. “Principles, fundamentals, and applications of programmable

integrated photonics”. In: Adv. Opt. Photon. 12.3 (Sept. 2020), pp. 709–786. DOI:

10.1364/AOP.387155. URL: http://opg.optica.org/aop/abstract.cfm?

URI=aop-12-3-709.

[25] William R Clements et al. “Optimal design for universal multiport interferom-

eters”. In: Optica 3.12 (2016), pp. 1460–1465.

[26] Michael Reck et al. “Experimental realization of any discrete unitary opera-

tor”. In: Phys. Rev. Lett. 73 (1 July 1994), pp. 58–61. DOI: 10.1103/PhysRevLett.

73.58. URL: https://link.aps.org/doi/10.1103/PhysRevLett.73.58.

[27] Nafiseh Vahabi, Dongye Yang, and David R. Selviah. “Improving Data Trans-

mission in Fiber Optics by Detecting Scratches on the Fiber End Face”. In: 2018

IEEE British and Irish Conference on Optics and Photonics (BICOP). 2018, pp. 1–4.

DOI: 10.1109/BICOP.2018.8658280.

https://doi.org/10.1109/CLEOE-EQEC.2017.8087408
https://doi.org/10.1109/JSTQE.2018.2793945
https://doi.org/10.1109/JSTQE.2018.2793945
https://doi.org/10.1145/3387902.3394034
https://doi.org/10.1145/3387902.3394034
https://doi.org/10.1145/3387902.3394034
https://doi.org/10.1364/AOP.387155
http://opg.optica.org/aop/abstract.cfm?URI=aop-12-3-709
http://opg.optica.org/aop/abstract.cfm?URI=aop-12-3-709
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://link.aps.org/doi/10.1103/PhysRevLett.73.58
https://doi.org/10.1109/BICOP.2018.8658280

158 Bibliography

[28] Ashiq A Samad and C Unni. “Image Processing Based End-View Alignment

for Symmetric Specialty Optical Fibers”. In: 2018 Second International Confer-

ence on Inventive Communication and Computational Technologies (ICICCT). 2018,

pp. 1080–1082. DOI: 10.1109/ICICCT.2018.8473299.

[29] Goran Mashanovich et al. “Germanium Mid-Infrared Photonic Devices”. In:

Journal of Lightwave Technology PP (Nov. 2016), pp. 1–1. DOI: 10.1109/JLT.

2016.2632301.

[30] Edmund Optics. What are Beamsplitters? URL: https://www.edmundoptics.

com/knowledge-center/application-notes/optics/what-are-beamsplitters/

(visited on 07/07/2022).

[31] KP Zetie, SF Adams, and RM Tocknell. “How does a Mach-Zehnder interfer-

ometer work?” In: Physics Education 35.1 (2000), p. 46.

[32] Fulvio Flamini et al. “Benchmarking integrated linear-optical architectures for

quantum information processing”. In: Scientific Reports 7 (Nov. 2017). DOI: 10.

1038/s41598-017-15174-2.

[33] P Torma, I Jex, and S Stenholm. “Beam splitter realizations of totally symmetric

mode couplers”. In: journal of modern optics 43.2 (1996), pp. 245–251.

[34] James W Cooley and John W Tukey. “An algorithm for the machine calculation

of complex Fourier series”. In: Mathematics of computation 19.90 (1965), pp. 297–

301.

[35] Scholarly Community Encyclopedia. Optical Phase Shifters. URL: https : / /

encyclopedia.pub/entry/10567 (visited on 07/15/2022).

[36] Pierre Edinger et al. “Silicon photonic microelectromechanical phase shifters

for scalable programmable photonics”. In: Opt. Lett. 46.22 (Nov. 2021), pp. 5671–

5674. DOI: 10.1364/OL.436288. URL: http://opg.optica.org/ol/abstract.

cfm?URI=ol-46-22-5671.

[37] Martino Bernard et al. “Coupling of photonic waveguides to integrated detec-

tors using 3D inverse tapering”. In: Journal of Lightwave Technology 40.18 (2022),

pp. 6201–6206.

[38] Fernando Ramiro-Manzano et al. “A fully integrated high-Q whispering-gallery

wedge resonator”. In: Optics express 20.20 (2012), pp. 22934–22942.

https://doi.org/10.1109/ICICCT.2018.8473299
https://doi.org/10.1109/JLT.2016.2632301
https://doi.org/10.1109/JLT.2016.2632301
https://www.edmundoptics.com/knowledge-center/application-notes/optics/what-are-beamsplitters/
https://www.edmundoptics.com/knowledge-center/application-notes/optics/what-are-beamsplitters/
https://doi.org/10.1038/s41598-017-15174-2
https://doi.org/10.1038/s41598-017-15174-2
https://encyclopedia.pub/entry/10567
https://encyclopedia.pub/entry/10567
https://doi.org/10.1364/OL.436288
http://opg.optica.org/ol/abstract.cfm?URI=ol-46-22-5671
http://opg.optica.org/ol/abstract.cfm?URI=ol-46-22-5671

Bibliography 159

[39] Hansuek Lee et al. “Chemically etched ultrahigh-Q wedge-resonator on a sili-

con chip”. In: Nature Photonics 6.6 (2012), pp. 369–373.

[40] Xiaomin Zhang et al. “Serpentine low loss trapezoidal silica waveguides on

silicon”. In: Optics express 20.20 (2012), pp. 22298–22307.

[41] GI Parisi, SE Haszko, and GA Rozgonyi. “Tapered Windows in SiO2: The Ef-

fect of NH 4 F: HF Dilution and Etching Temperature”. In: Journal of the Elec-

trochemical Society 124.6 (1977), p. 917.

[42] Mher Ghulinyan et al. “Formation of mach angle profiles during wet etching

of silica and silicon nitride materials”. In: Applied Surface Science 359 (2015),

pp. 679–686.

[43] A Samusenko et al. “Integrated silicon photodetector for lab-on-chip sensor

platform”. In: 2015 XVIII AISEM Annual Conference. IEEE. 2015, pp. 1–4.

[44] Avijit Chatterjee, Sujit Kumar Sikdar, Shankar Kumar Selvaraja, et al. “High-

speed waveguide integrated silicon photodetector on a SiN-SOI platform for

short reach datacom”. In: Optics letters 44.7 (2019), pp. 1682–1685.

[45] Martino Bernard et al. “Top-down convergence of near-infrared photonics with

silicon substrate-integrated electronics”. In: Optica 8.11 (2021), pp. 1363–1364.

[46] Jupyter. Installing Jupyter. URL: https://jupyter.org/install (visited on

07/25/2022).

[47] Qontrol Ltd. Getting started with the Python module. URL: https://qontrol.co.

uk/getting-started-with-the-python-api/ (visited on 07/25/2022).

[48] PyPi. picosdk 1.0. URL: https : / / pypi . org / project / picosdk/ (visited on

07/28/2022).

[49] Pico Technology. PicoScope 4000 Series Programmer’s Guide. URL: https : / /

www.picotech.com/download/manuals/picoscope-4000-series-a-api-

programmers-guide.pdf (visited on 07/28/2022).

[50] PyVISA. PyVISA: Control your instruments with Python. URL: https://pyvisa.

readthedocs.io/en/latest/ (visited on 07/28/2022).

[51] Keithley. Model 2450 Interactive SourceMeter Instrument Reference Manual. URL:

https://download.tek.com/manual/2450-901-01_D_May_2015_Ref.pdf

(visited on 07/28/2022).

https://jupyter.org/install
https://qontrol.co.uk/getting-started-with-the-python-api/
https://qontrol.co.uk/getting-started-with-the-python-api/
https://pypi.org/project/picosdk/
https://www.picotech.com/download/manuals/picoscope-4000-series-a-api-programmers-guide.pdf
https://www.picotech.com/download/manuals/picoscope-4000-series-a-api-programmers-guide.pdf
https://www.picotech.com/download/manuals/picoscope-4000-series-a-api-programmers-guide.pdf
https://pyvisa.readthedocs.io/en/latest/
https://pyvisa.readthedocs.io/en/latest/
https://download.tek.com/manual/2450-901-01_D_May_2015_Ref.pdf

160 Bibliography

[52] wxPython Team. wxPython Downloads. URL: https://wxpython.org/pages/

downloads/index.html (visited on 07/30/2022).

[53] Jupyter Widgets. Jupyter Widgets. URL: https://ipywidgets.readthedocs.

io/en/stable/ (visited on 10/24/2022).

[54] PyPI. PyQT4. URL: https://pypi.org/project/PyQt4/ (visited on 10/24/2022).

[55] Thorlabs. Thorlabs CS165CU digital camera. URL: https://www.thorlabs.com/

thorproduct.cfm?partnumber=CS165CU (visited on 12/01/2022).

[56] OpenCV.org. OpenCV landing wepage. URL: https://docs.opencv.org/4.x/

(visited on 12/01/2022).

[57] Gioele Piccoli. “A silicon oxynitride platform for linear and nonlinear NIR

photonics”. In: SPIE Photonics Europe 2022. Vol. Conference 12148: Integrated

Photonics Platforms II. Strasbourg, France: SPIE, Paper 12148–13.

[58] Thorlabs. Compact Laser Diode Drivers with TECs and Mounts for TO Can Pig-

tailed LDs. URL: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_

id=7752 (visited on 10/27/2022).

[59] Thorlabs. LP850-SF80 Specification sheet. URL: https://www.thorlabs.com/

catalogpages/obsolete/2022/LP850-SF80.pdf (visited on 11/02/2022).

[60] OZ Optics. Tapered Lensed Fibers OZ Optics Datasheet. URL: https : / / www .

amstechnologies-webshop.com/media/pdf/c8/d3/56/TSMJ_TMMJ_TPMJ-

Tapered-Lensed-Fibers-OZ-Optics-Datasheet.pdf (visited on 11/02/2022).

[61] Thorlabs. Manual Fiber Polarization Controllers. URL: https://www.thorlabs.

com/newgrouppage9.cfm?objectgroup_id=343 (visited on 11/02/2022).

[62] Thorlabs. PDA100A2 Si switchable gain detector. URL: https://www.thorlabs.

com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/

PDA100A2-Manual.pdf (visited on 11/02/2022).

[63] Picotech. Picoscope 4000 Series. URL: https://www.picotech.com/download/

manuals/ps4000-en-6.pdf (visited on 11/02/2022).

[64] Thorlabs. TECF2S. URL: https://www.thorlabs.com/thorproduct.cfm?

partnumber=TECF2S (visited on 11/03/2022).

[65] Thorlabs. MTD415LE Temperature Controller. URL: https://www.thorlabs.

com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/

MTD415LE-DataSheet.pdf (visited on 11/17/2022).

https://wxpython.org/pages/downloads/index.html
https://wxpython.org/pages/downloads/index.html
https://ipywidgets.readthedocs.io/en/stable/
https://ipywidgets.readthedocs.io/en/stable/
https://pypi.org/project/PyQt4/
https://www.thorlabs.com/thorproduct.cfm?partnumber=CS165CU
https://www.thorlabs.com/thorproduct.cfm?partnumber=CS165CU
https://docs.opencv.org/4.x/
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7752
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7752
https://www.thorlabs.com/catalogpages/obsolete/2022/LP850-SF80.pdf
https://www.thorlabs.com/catalogpages/obsolete/2022/LP850-SF80.pdf
https://www.amstechnologies-webshop.com/media/pdf/c8/d3/56/TSMJ_TMMJ_TPMJ-Tapered-Lensed-Fibers-OZ-Optics-Datasheet.pdf
https://www.amstechnologies-webshop.com/media/pdf/c8/d3/56/TSMJ_TMMJ_TPMJ-Tapered-Lensed-Fibers-OZ-Optics-Datasheet.pdf
https://www.amstechnologies-webshop.com/media/pdf/c8/d3/56/TSMJ_TMMJ_TPMJ-Tapered-Lensed-Fibers-OZ-Optics-Datasheet.pdf
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=343
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=343
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/PDA100A2-Manual.pdf
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/PDA100A2-Manual.pdf
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/PDA100A2-Manual.pdf
https://www.picotech.com/download/manuals/ps4000-en-6.pdf
https://www.picotech.com/download/manuals/ps4000-en-6.pdf
https://www.thorlabs.com/thorproduct.cfm?partnumber=TECF2S
https://www.thorlabs.com/thorproduct.cfm?partnumber=TECF2S
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/MTD415LE-DataSheet.pdf
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/MTD415LE-DataSheet.pdf
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/MTD415LE-DataSheet.pdf

Bibliography 161

[66] Thorlabs. NanoMax 3-Axis Flexure Stage User Guide. URL: https://www.thorlabs.

com/newgrouppage9.cfm?objectgroup_id=2386 (visited on 11/04/2022).

[67] Thorlabs. MTD693B and MTD694B Open-Loop Piezo Controllers User Guide. URL:

https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-

4665-333AFC3D6BC3C0F2/MDT693B-Manual.pdf (visited on 11/04/2022).

[68] Thorlabs. PM100D Operation Manual. URL: https : / / www . thorlabs . com /

drawings / b3f4a8e785c9a1e1 - 6B018EB7 - 9F49 - 4665 - 333AFC3D6BC3C0F2 /

PM100D-Manual.pdf (visited on 11/17/2022).

[69] Qontrol Ltd. BP12 Qontrol Ltd. Backplane for Q8b driver modules. URL: https:

//qontrol.co.uk/product/bp12/ (visited on 11/10/2022).

[70] Qontrol Ltd. PS15 Qontrol Ltd. Power Supply for Q8b driver modules. URL: https:

//qontrol.co.uk/product/ps15/ (visited on 11/10/2022).

[71] Qontrol Ltd. CAB12 Qontrol Ltd. Shielded cable for Backplane. URL: https://

qontrol.co.uk/product/cab12/ (visited on 11/10/2022).

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2386
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2386
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/MDT693B-Manual.pdf
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/MDT693B-Manual.pdf
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/PM100D-Manual.pdf
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/PM100D-Manual.pdf
https://www.thorlabs.com/drawings/b3f4a8e785c9a1e1-6B018EB7-9F49-4665-333AFC3D6BC3C0F2/PM100D-Manual.pdf
https://qontrol.co.uk/product/bp12/
https://qontrol.co.uk/product/bp12/
https://qontrol.co.uk/product/ps15/
https://qontrol.co.uk/product/ps15/
https://qontrol.co.uk/product/cab12/
https://qontrol.co.uk/product/cab12/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related Works
	Introduction to this Chapter
	Related Works

	Photonic Integrated Circuits
	Introduction to this Chapter
	Mach Zehnder Interferometers
	Phase shifters
	Our devices

	Waveguides
	Numerical simulations
	Device fabrication
	Measurements

	Output detectors
	Conclusions to this Chapter

	The Control Architecture
	Introduction to this Chapter
	General Overview
	Software
	General overview
	Custom Module and Installation script
	Interface with the Q8b driver module
	Interface with the Picoscope 4224
	Initialization
	Measurement acquisition
	Closing the connection
	Short example

	Interface with the Keithley 2450
	Initialization
	Measurement acquisition
	Closing the connection
	Short example

	Data logging
	Screenshot capture
	Voltage sweep
	Hand tuning of the PIC
	Simulation of the theoretical output of a single MZI
	Simulation of the theoretical output of a Clements architecture
	Output optimization algorithm
	Theoretical MZI output formulas
	Conclusions to this Chapter

	Measurements
	Introduction to this Chapter
	Measurement Routine
	Setting up the laser
	Configuring the Peltier cell
	Aligning the fiber and maximizing the output signal

	Calibrating the output power and checking optical fiber deterioration
	Using the PM100D Powermeter to get precise output power
	Analyzing fiber deterioration: fiber to fiber alignment
	Analyzing fiber deterioration: test waveguides

	Voltage Sweep and checking thermistor integrity
	Mapping the interposer to the current PIC
	Adding a backplane
	Adding a custom PCB interposer

	Testing the output optimization algorithm
	Measurements conditions
	Results
	Conclusions to this Chapter

	Future Improvements
	Introduction to this Chapter
	Performance oriented software
	Lab state retrieving routine
	Automatic fine optimization of micro manipulators
	Straight interface with the camera
	Automatic election of the best DoFs for a specific I/O combination
	Inspect the impact of AI in the output optimization algorithm
	Conclusions to this Chapter

	Conclusions
	Help in replicating this work
	Bibliography

