
ON THE MULTIGRADED HILBERT FUNCTION OF LINES AND RATIONAL

CURVES IN MULTIPROJECTIVE SPACES

E. BALLICO

Abstract. We study the multigraded Hilbert function of general configurations of lines in mul-

tiprojective spaces. In several cases we prove that this multigraded Hilbert function is the

expected one. We make conjectures about other configurations and for small genus curves with
a prescribed multidegree.

1. Introduction

Disclaimer: In this paper we only prove results on some general unions of lines in the Segre-
Veronese embeddings of a multiprojective space Y , i.e. when we embed Y in a projective space by
a complete linear system. More general smooth rational curves (or any curve with positive genus)
appear only in the conjectures at the end of the introduction.

Take Y = Pn1 × · · · × Pnk , k ≥ 1, ni > 0, 1 ≤ i ≤ k. The Segre embedding of Y is connected to
tensors, while the Segre-Veronese embeddings of Y are connected to partially symmetric tensors
([23]). This is the main reason for the interest in multiprojective spaces in the last 20 years
([5, 6, 7, 12, 13, 14, 16, 22, 23, 26] are just a small sample, many other papers may be obtained
from their bibliographies and from papers quoting them).

Let πi : Y → Pni denote the projection of Y onto its i-th factor. For any i ∈ {1, . . . , k} set
Yi :=

∏
h 6=i Pnh with the convention that Y1 is a single point if k = 1. Let ηi : Y → Yi denote the

projection (it is the map forgetting the i-th coordinate of the points of Y ). For all (d1, . . . , dk) ∈ Zk

set OY (d1, . . . , dk) := ⊗k
i=1π

∗
i (OPni (di)). The line bundles OY (d1, . . . , dk), (d1, . . . , dk) ∈ Zk, form

a Z-basis of the abelian group Pic(Y ). The Künneth formula gives h0(OY (d1, . . . , dk)) = 0 if some

di < 0, h0(OY (d1, . . . , dk)) =
∏k

i=1

(
ni+di

ni

)
if di ≥ 0 for all i and h1(OY (d1, . . . , dk)) = 0 if di ≥ −1

for all i. For any i ∈ {1, . . . , k} let OY (εi) be the line bundle OY (a1, . . . , ak) on Y with multidegree
(a1, . . . , ak) with ai = 1 and aj = 0 for all j 6= i. We have h0(OY (εi)) = ni + 1. Let C be an
integral projective curve and let f : C → Y be a morphism. The multidegree (a1, . . . , ak) ∈ Nk of
the pair (C, f) is defined by the formula ai := deg(f∗(OY (εi))), i = 1, . . . , k. Note that ai = 0 if
and only if πi ◦ f is a constant map, while if ai 6= 0, then ai = deg(πi ◦ f) · deg(πi(f(C))), with the
convention deg(πi(f(C))) = 1 if ni = 1. An i-line of Y is a curve L ⊂ Y with multidegree εi. The
set of all i-lines is parametrized by an irreducible quasi-projective variety. If k ≥ 2 two general
i-lines are disjoint.

In this paper prove that general unions of an arbitrary number of i-lines have the “ expected
postulation ” with respect to all line bundles on Y if we assume ni 6= 2. We recall the meaning of
“ expected postulation ” also called “ maximal rank ”.

Let X be a projective scheme, L a line bundle on X and Z ⊂ X a closed subscheme of X. We
say that Z has maximal rank with respect to L if the restriction map H0(X,L)→ H0(Z,L|Z) has
maximal rank as a linear map, i.e. it is injective or surjective. When (as always in this paper)
h1(X,L) = 0, Z has maximal rank with respect to L if and only if either h0(X, IZ ⊗ L) = 0 or
h1(X, IZ ⊗ L) = 0.

We prove the following results.

Theorem 1.1. Assume n1 = 1. Fix integers k ≥ 2, t > 0, and (d1, . . . , dk) ∈ Nk. Let T ⊂ Y be a
general union of t 1-lines. Then T has maximal rank with respect to OY (d1, . . . , dk).
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Theorem 1.2. Assume n1 ≥ 3. Fix integers k ≥ 2, t > 0, and (d1, . . . , dk) ∈ Nk. Let T ⊂ Y be a
general union of t 1-lines. Then T has maximal rank with respect to OY (d1, . . . , dk).

Question 1.3. Is the case n1 = 2 true, except for finitely many cases k, ni , 2 ≤ i ≤ k, and
(d1, . . . , dk) ?

We expect a very short list of exceptional cases. See Example 2.9 for one easy case. We do not
know other cases.

Conjecture 1.4. Fix positive integers k and ni, 1 ≤ i ≤ k, such that n1 + · · · + nk ≥ 3. We
conjecture the existence of (a1, . . . , ak) ∈ Nk such that for all (b1, . . . , bk) ∈ Nk with bi ≥ ai for all
i a general union T ⊂ Y = Pn1 × · · · × Pnk of b1 + · · ·+ bk lines, exactly bi of them being i-lines,
has maximal rank with respect to all line bundles on Y .

Conjecture 1.5. Fix positive integers k and ni, 1 ≤ i ≤ k, such that n1+ · · ·+nk ≥ 3. We conjec-
ture the existence of an integer d (depending only on k, n1, . . . , nk) such that for all (b1, . . . , bk) ∈ Nk

a general union T ⊂ Y = Pn1 × · · · ×Pnk of b1 + · · ·+ bk lines, exactly bi of them being i-lines, has
maximal rank with respect to all line bundles OY (d1, . . . , dk) with di ≥ d for all i.

We are less sure about the following 3 stronger conjectures. Note that in Conjecture 1.6 (resp.
Conjecture 1.7) we require that a (resp. d) does not depend on k and ni, 1 ≤ i ≤ k.

Conjecture 1.6. We ask if there is an integer a with the following property. Fix positive integers
k and ni, 1 ≤ i ≤ k, such that n1 + · · ·+ nk ≥ 3. For all (b1, . . . , bk) ∈ Nk with bi ≥ ai for all i a
general union T ⊂ Y = Pn1 × · · · × Pnk of b1 + · · ·+ bk lines, exactly bi of them being i-lines, has
maximal rank with respect to all line bundles on Y .

Conjecture 1.7. We ask if there is an integer d with the following property. Fix positive integers
k and ni, 1 ≤ i ≤ k, such that n1 + · · · + nk ≥ 3. For all (b1, . . . , bk) ∈ Nk a general union
T ⊂ Y = Pn1 × · · · × Pnk of b1 + · · ·+ bk lines, exactly bi of them being i-lines, has maximal rank
with respect to all line bundles OY (d1, . . . , dk) with di ≥ d for all i.

Conjecture 1.8. Are Conjectures 1.4, 1.5, 1.6 or 1.7 true for smooth rational curves with pre-
scribed multidegrees and/or curves with positive genus with respect to non-special line bundles ?

The case of smooth rational curves should be easier to prove than the corresponding case for
general disjoint unions of lines.

As in [20, 21] and papers inspired by the works of R. Hartshorne and A. Hirschowitz (see [24, 25]
and references therein) the proof is inductive using a divisors D of the ambient variety Y (double
induction, on the dimension of the variety Y and the “ degree ” of the line bundle). As in [20, 21]
to prove Theorem 1.2 one defines several inductive statements (here called Assertions Am,a,z and
Bm,a,z, each of them depending on the 3 integers m, a and z such that 3 ≤ m ≤ n1, a ≥ 0
and z > 0) and the proof requires all of them to be completed, each of them being used for the
proof of the other ones in higher dimensions. However, there is no logical needs for these inductive
assumptions and different ones may be given. We think that our choice is efficient (many other
choices would give longer proofs). As in [20, 21] the main technical problems come from the integers
h0(L) for many line bundles L and the fact they are not divisible by the integer h0(C,L|C), C a
closed subscheme of Y we are intersested in, e.g. an i-line. Here we need several numerical lemmas.
As in [20] the initial case for the dimension (here the case n1 = 3 of Theorem 1.2) is a bit different.

We do it in Section 3. To prove A3,a,z and B3,a,z we use the modified Asserions Ã3,a,z and B̃3,a,z

proved at the end of Section 3.
The sundials from [20] were promoted to main actors in [8, 9, 10] and these papers (together

with [20]) gave for instance [1, 3, 4, 17, 18, 27].
We work over an algebraically closed field with characteristic 0.

2. Preliminaries

Let X be a projective scheme, Z ⊂ X a closed subscheme and D ⊂ X an effective Cartier
divisor of X. The residual scheme of Z with respect to D is the closed subscheme ResD(Z) of X
with IZ : ID as its ideal sheaf. For any line bundle L on X the following sequence of coherent
sheaves

0→ IResD(Z) ⊗ L(−D)→ IZ ⊗ L → IZ∩D ⊗ L|D → 0 (1)
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is exact and we will call it the residual exact sequence of D without mentioning L and Z.
A tangent vector (or a tangent vector of the variety W ) is a closed zero-dimensional scheme

Z ⊂ W such that deg(Z) = 2 and Z is connected. A tangent vector v ⊂ Y is said to be of type i
or a tangent i-vector (for some i ∈ {1, . . . , k}) if deg(ηi(v)) = 1. Thus v is a tangent i-vector for
some i if and only if ν(v) spans a line L contained in ν(Y ), where ν is the Segre embedding of Y ,
and the type of v describes the ruling of Y containing L.

We say that a curve C ⊂ Y is a reducible i-conic, i ∈ {1, . . . , k}, if it is a reduced and connected
curve with 2 irreducible components, both of them being i-lines. Note that a reducible i-conic has
a unique singular point. A reducible i-conic exists if and only if ni ≥ 2. The set of all reducible
i-conics is parametrized by an integral quasi-projective variety. If k ≥ 2 two general i-conics are
disjoint.

Assume ni ≥ 3. We say that a scheme Z ⊂ Y is an i-sundial if C := Zred is a reducible i-conic,
Z is the union of C and a tangent vector whose reduction is the singular point of C and, calling
ν the Segre embedding of Y , the scheme ν(Z) spans a 3-dimensional linear space contained in
Y . The latter condition is equivalent to require that ηi(Z) is scheme-theoretically a point with
its reduced structure. Note that an i-sundial exists if and only if ni ≥ 3. Let Z ⊂ Y be an
i-sundial. Then h0(OZ) = 2 and h1(OZ) = 0. The set of all i-sundials is parametrized by an
integral quasi-projective variety.

A planar i-double point of Y is a connected degree 3 zero-dimensional scheme Z ⊂ Y such that
its Zariski tangent space has dimension 2 and deg(ηi(Z)) = 1. The set of all planar i-double points
is parametrized by an integral quasi-projective variety. Classically a planar double point is a double
point of a plane (or of a smooth surface), sometimes embedded in a bigger projective variety. Our
definition agrees with the classical one, but in our statements and proofs it is important to mention
the ruling to which their plane belongs.

For any mutiprojective space W = Pm1 × · · · × Pms , any (a1, . . . , as) ∈ Ns, any linear subspace
V ⊆ H0(OW (a1, . . . , as)) and any closed subscheme Z ⊂W set V (−Z) := V ∩H0(IZ(a1, . . . , as)).

For all positive integers n and d define the integers an,d and bn,d by the relations

(d+ 1)an,d − bn,d =

(
n+ d

n

)
, 0 ≤ bn,d ≤ d (2)

Note that an,d = d
(
n+d
n

)
/(d+ 1)e.

For all positive integers n, d and z define the integers an,d,z and bn,d,z by the relations

(d+ 1)an,d,z − bn,d,z = z

(
n+ d

n

)
, 0 ≤ bn,d,z ≤ d (3)

Note that an,d,z = dz
(
n+d
n

)
/(d+ 1)e, an,d = an,d,1 and bn,d = bn,d,1.

Remark 2.1. Let X be an integral projective variety with dim(X) > 0, L a line bundle on X and
V ⊆ H0(L) any linear subspace. Take a general p ∈ Xreg and a general tangent vector A of X
at p. We have dim(H0(IA ⊗ L) ∩ V ) = max{0,dim(V ) − 2}, because (in characteristic zero) any
non-constant rational map X 99K Pr, r ≥ 1, has non-zero differential at a general p ∈ Xreg. See
[15] for a more general result.

Remark 2.2. Let T ⊂ Y be a union of t distinct 1-lines. Fix (a1, . . . , ak) ∈ Nk and integers a, b
such that a < t < b.

(a) Assume h0(IT (a1, . . . , ak)) = 0. Since h0(IZ(a1, . . . , ak)) = 0 for every scheme Z ⊃ T ,
the semicontinuity theorem for cohomology gives h0(IB(a1, . . . , ak)) = 0 for a general union of b
1-lines.

(b) Assume h1(IT (a1, . . . , ak)) = 0. Let A ⊂ T be any union of a connected components of
T . Note that h1(IA(a1, . . . , ak)) = 0.

Lemma 2.3. Fix (a1, . . . , ak) ∈ Nk and a closed subscheme Z ⊂ Y . Assume h0(IZ(a1 −
1, a2, . . . , ak)) ≤ h0(IZ(a1, . . . , ak)) − 2 and that the codimension 1 scheme-theoretic base locus B
of |IZ(a1, . . . ak)| does not contain a divisor of multidegree (a1, b2, . . . , bk) for some (b2, . . . , bk) ∈
Nk−1. Then h0(IZ∪v(a1, . . . , ak)) = h0(IZ(a1, . . . , ak))− 2 for a general tangent vector of type 1.

Proof. Since deg(v) = 2, we have h0(IZ∪v(a1, . . . , ak)) ≥ h0(IZ(a1, . . . , ak)) − 2. Since we as-
sumed h0(IZ(a1 − 1, a2, . . . , ak)) ≤ h0(IZ(a1, . . . , ak)) − 2, a1 > 0 and h0(IZ(a1, . . . , ak)) ≥
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2. Since vred is a general point of Y , h0(IZ∪v(a1, . . . , ak)) ≥ h0(IZ(a1, . . . , ak)) − 1. Assume
h0(IZ∪v(a1, . . . , ak)) = h0(IZ(a1, . . . , ak)) − 1. Fix a general D ∈ |IZ(a1, . . . , ak)|. Since we as-
sumed h0(IZ(a1, . . . , ak)) ≥ 2, there is at least one irreducible component D′ of D not contained in
B. Thus h0(IZ∪{p}(a1, . . . , ak)) = h0(IZ(a1, . . . , ak))− 1 for a general p ∈ D′. By Remark 2.1 for

a general p ∈ D′ we have h0(IZ∪E(a1, . . . , ak)) = h0(IZ∪{p}(a1, . . . , ak)), where E := η−11 (π1(p)).
Varying p we get that D′ has multidegree (0, c2, . . . , ck) for some c2, . . . , ck. Our assumption on B
gives that D /∈ |OY (a1, . . . , ak)|, a contradiction. �

Remark 2.4. Fix a reducible conic D ⊂ Pr, r ≥ 3, and a 3-dimensional linear subspace U of Pr

containing the plane M . Let o be the singular point of D. Let A be the union of D and of a degree
2 connected zero-dimensional scheme v with vred = {o}, v ⊂ U and v *M . The scheme A is called
a sundial in [10]. The scheme A is a flat limit of a family of pairs of disjoint lines contained in U
([20, Ex. 2.1] or [8, 9, 10]). The paper [20] inspired many papers (the use of unions of disjoint lines
was brilliantly shown in [2]) and, after [8, 9, 10] its revival contains [3, 4, 17, 18, 19, 27]. Let H ⊂ Pr

be a hyperplane such that H ∩U = M . We have A∩H = D (as schemes) and ResH(A) = {o}. In
the same way we see that if ni ≥ 3 an i-sundial Z ⊂ Y is a flat limit of a family of unions of two
disjoint i-lines.

Remark 2.5. Fix H ∈ |OY (εi)|. For any p ∈ H there is an i-line L ⊂ Y such that H ∩ L = {p}.
Thus for any linear subspace V ⊂ H0(OH(d1, . . . , ds)) we have dimV (−H∩L) = max{0,dimV −1}
for a general i-line L ⊂ H.

Remark 2.6. Fix i ∈ {1, . . . , k}. Any p ∈ Y is contained in an i-line and hence any subset of
cardinality t is contained in the union of at most t i-lines. Thus a general union T ⊂ Y of i-lines
has maximal rank with respect to every line bundle OY (a1, . . . , ak) with ai = 0.

Lemma 2.7. Let T ⊂ Y be a finite union of i-lines. Fix (d1, . . . , dk) such that h1(IT (d1, . . . , dk)) =
0. Then h1(IT (d1, . . . , dk)) +mεj)) = 0 for all m > 0 and all j ∈ {1, . . . , k}.

Proof. The case j 6= i is obvious, because OY (mej)|T ∼= OT if j 6= i and OY (mej) has no base
points.

Now assume j = i. It is sufficient to do the case m = 1. Since the case k = 1 is true by the
Castelnuovo-Mumford lemma, we may assume k ≥ 2. Fix h ∈ {1, . . . , k} \ {i}. Since T is a union
of i-lines, πh(T ) is finite. Thus there is H ∈ |OY (εh)| such that H ∩ T = ∅. The long cohomology
exact sequence associated to the following residual sequence of H

0→ IT (d1, . . . , dk)→ IT (d1, . . . , dk)⊗OY (εh)→ OH(d1, . . . , dk)→ 0

proves the lemma. �

Lemma 2.8. Assume n1 ≥ 3. Let T ⊂ Y be a general union of zan1,d1
1-lines. Then we have

h1(IT (d1, . . . , dk)) = 0.

Proof. By the semicontinuity theorem for cohomology it is sufficient to find a union T ⊂ Y of
zan1,d1

1-lines such that h1(IT (d1, . . . , dk)) = 0. Fix a general S ⊂ Y1 such that #S = z. Let
E ⊂ Pn1 be a general union of an1,d1 lines. For each o ∈ S let To := E ∪ {o} ⊂ Pn1 × {o} and
T := ∪o∈STo. Since S is general, T is the union of zan1,d1 disjoint 1-lines. For any connected
component L of E fix SL ⊂ L with #SL = d1 + 1. Set S1 := ∪LSL. To prove the lemma it is
sufficient to prove that h1(IS1×S(d1, . . . , dk)) = 0. Note that hi(Pn1 , IS1

(d1)) = hi(Pn1 , IE(d1)),
i = 0, 1. Hence h1(Pn1 , IS1

(d1)) = 0. Use the Künneth formula. �

Proof of Theorem 1.1: Since k ≥ 2 for any t > 0 there are t pairwise disjoint 1-lines. Thus

h0(OT (d1, . . . , dk)) = t(d1 + 1). Set z :=
∏k

i=2

(
ni+di

ni

)
. Since n1 = 1, h0(OY (d1, . . . , dk)) = (d1 +

1)z ≡ 0 (mod d1 + 1). Thus T has maximal rank if and only if h0(IT (d1, . . . , dk)) = max{0, (d1 +
1)(z − t)}. Equivalently, T has maximal rank if and only if h0(IT (d1, . . . , dk)) = max{0, (d1 +
1)(t− z)}. Thus Remark 2.2 shows that it is sufficient to prove the case t = z.

To prove the theorem we use induction on the integer d1, the case d1 = 0 being true by Remark
2.6. Assume d1 > 0 and that the theorem is true for the line bundle OY (d1 − 1, d2, . . . , dk).
Take t = z. Fix o ∈ P1 and set H := π−11 (o) ∈ |OY (ε1)|. For a general T we may assume
that no connected component of T is contained in H and that Z := T ∩ H is a general union
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of z points of H. Thus hi(H, IZ,H(d1, . . . , dk)) = 0, i = 0, 1. By the inductive assumption
hi(IT (d1 − 1, d2, . . . , dk)) = 0, i = 0, 1. Use the residual exact sequence of H. �

Example 2.9. Assume k ≥ 2 and n1 = 2. Fix an integer d1 ≥ 2 and take di = 0 for all
i ∈ {2, . . . , k}. Set L := OY (d1, . . . , dk). Note that h0(L) =

(
d1+2

2

)
. Let T ⊂ Y be a general

union of t 1-lines. Since k ≥ 2, T has t connected components and hence h0(T,L|T ) = t(d1 + 1).

Since T is general π1(T ) is a general union of t lines of P2. Thus h0(IT ⊗ L) =
(
d1−t
2

)
and

h1(IT ⊗L) = t(d1 + 1)−
(
d1−t+2

2

)
if t ≤ d1 and h0(IT ⊗L) = 0 for all t > d1. Thus T has maximal

rank if and only if either t = 1 or t > d1.

3. First steps of the proof of Theorem 1.2

Set z :=
∏k

i=2

(
ni+di

ni

)
. By Remark 2.6 we may assume d1 > 0. In this section we prove a few

lemmas used for any n1 ≥ 3 and prove Theorem 1.2 for n1 = 3.
Let Q ⊂ P3 be a smooth quadric. Set W := Q × Y1 ∈ |OP3×Y1

(2ε1)|. We have Pic(W ) ∼=
Pic(Q) × Pic(Y1) ∼= Zk+1. We take a basis (1, 0) and (0, 1) of Pic(Q) with (1, 0) and (0, 1) corre-
sponding to the two rulings of Q and write OW (e1, e2; a2, . . . , ak), (e1, e2, a2, . . . , ak) ∈ Zn+1, for
the isomorphism classes of line bundles on W .

Lemma 3.1. Assume n1 = 3. Let V ⊂ H0(OW (e1, e2; a2 . . . , ak)) be a linear subspace. Assume
e1 + e2 > 0 and that either the base locus of V contains no divisor or the union of these divisors
is an element ∆ ∈ |OW (f1, f2; b2, . . . , bk)| with e1 + e2 > f1 + f2. Then dimV (−L ∩ W ) =
max{0,dimV − 2} for a general 1-line L ⊂ Y .

Proof. If ∆ 6= ∅ we use OW (e1, e2; a2, . . . , ak)(−∆) to reduce to the case ∆ = ∅. Thus from now
on we assume that the base locus of V contains no divisor. Since a general p ∈W is contained in a
general 1-line of Y , the case dimV ≤ 1 is obvious. Assume dimV ≥ 2 and that the lemma fails for
V . Fix a general v ∈ V and set D := {v = 0} ∈ |OW (a1, . . . , ak)|. Write D =

∑s
j=1 ejDj , where ej

are positive integers, each Dj is an integral effective Cartier of the smooth variety W and Di 6= Dj

for all i 6= j. Fix j ∈ {1, . . . , s} and take a general p ∈ Dj . Since the base locus of V contains
no divisor and p is general in Dj , we may assume dimV (−p) = dimV − 1. Let A(p) be the set
of all 1-lines containing p. The set A(p) is isomorphic to a plane and exactly 2 elements of it are
contained in W , say L1, L2, while a line R ⊂ A(p) minus L1, L2 parametrizes the 1-lines tangent
to W . For any L ∈ A(p) \R write L∩W = {p, pL}. Since we assumed that V is a counterexample
to Lemma 3.1, pL is contained in the base locus Bp of V (−p). For a general L ∈ A(p) we get that
the Q-slice of W containing p is contained in Bp. Since Bp ⊆ D and p is general in Dj , we get
that for a general q ∈ Dj , Dj contains the Q-slice through p, i.e. that Dj ∈ |OW (0, b2, . . . , bk)| for
some (b2, . . . , bk) ∈ Nk−1. Since this is true for all j = 1, . . . , s, we get D ∈ |OW (0, 0; c2, . . . , ck)|
for some ci, contradicting the assumption e1 + e2 > 0. �

Lemma 3.2. Assume n1 ≥ 3. Fix (d1, . . . , dk) ∈ Nk. If bn1,d1
= 0, then Theorem 1.2 is true for

Y and OY (d1, . . . , dk).

Proof. Note that bn1,d1,z = 0. Thus an1,d1,z = zan1,d1
. By semicontinuity it is sufficient to find

a union T ⊂ Y of zan1,d1
lines such that hi(IT (d1, . . . , dk)) = 0 for i = 0, 1. Fix a general

S ⊂ Y1 such that #S = z. Let E ⊂ Pn1 be a general union of an1,d1
lines. For each o ∈ S

let To := E ∪ {o} ⊂ Pn1 × {o} and T := ∪o∈STo. Since S is general, T is the union of zan1,d1

disjoint 1-lines. Thus it is sufficient to prove that h0(IT (d1, . . . , dk)) = 0. Assume the existence of
G ∈ |IT (d1, . . . , dk). By [20] G contains Pn1 × S. Thus for each p ∈ Pn1 G vanishes on {p} × S.
Since #S = z and S is general, h0(Y1, IS(d2, . . . , dk)) = 0. Thus G vanishes on each {p} × Y1.
Since this is true for all p ∈ Pn1 , we get a contradiction. �

Remark 3.3. We recall that ad,3 = (d + 3)(d + 2)/6 and b3,d = 0 if d ≡ 0, 1 (mod 3) and that
a3,3h+2 = and b3,3h+2 = h+ 1 for all h ∈ N ([20, p. 173]). Thus Theorem 1.2 is true if n1 = 3 and
d ≡ 0, 1 (mod 3) (Lemma 3.2). Thus to prove the case n1 = 3 we may assume d1 = 3h + 2 for
some h ∈ N.

Lemma 3.4. Theorem 1.2 is true if n1 = 3 and d1 = 3h+ 2 for some h ∈ N.
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Proof. By Remark 3.3 hi(IE(d1, . . . , dk)) = 0, i = 0, 1, for a general union E ⊂ Y of (h+1)(3h+2)/2

1-lines. Set a := d
(
d1+3

3

)
z/(d1 + 1)e and b := b

(
d1+3

3

)
z/(d1 + 1)c. Let A ⊂W be a general union of

a 1-lines and B ⊂ W a general union of b 1-lines. By semicontinuity it is sufficient to prove that
h0(IE∪A(d1, . . . , dk)) = 0 and that h1(IE∪B(d1, . . . , dk)) = 0. Since E is general, E ∩W is a finite
set and hence ResW (E) = E. Thus ResW (E∪A) = ResW (E∪B) = E. Since hi(IE(d1, . . . , dk)) =
0, i = 0, 1, the residual exact sequence of W shows that to prove the lemma it is sufficient to prove
that h0(W, I(E∩W )∪A,W (d1, . . . , dk)) = 0 and h1(W, I(E∩W )∪B,W (d1, d1; d2, . . . , dk)) = 0. Since
E is a general union of 1-lines, it would be sufficient to be able to apply Lemma 3.1. Certainly
a1 = d1 > 0 by assumption. We need to exclude that at one of the steps a certain linear system
has a very big divisor in its base locus. This is obvious by induction on d1, even if the divisor has
multidegree (a1, a2; d2, . . . , dk) with a1 6= a2, since it is sufficient to use that a1 + a2 > 0. �

Proof of Theorem 1.2 for n1 = 3. Remark 3.3 and Lemma 3.4 prove the case n1 = 3 of Theorem
1.2. �

To prove the case n1 > 3 of Theorem 1.2 we also need the following Assertion Ã3,a,z:

Assertion Ã3,a,z: Assume n1 = 3. There is E ⊂ Y such that E = A∪B, where A is a union
of a3,a,z−2b3,a,z 1-lines, B is the union of b3,a,z reducible 1-conics with vertex contained in W and
hi(IE(a, d2, . . . , dk)) = 0, i = 0, 1.

Note that h0(OE(a, d2, . . . , dk)) = z
(
a+3
3

)
if and only if A ∩B = ∅.

Lemma 3.5. Ã3,a,z is true.

Proof. If b3,a,z = 0, then Ã3,a,z is true by the case n1 = 3 of Theorem 1.2 just proved. Assume
b3,a,z > 0. By Remark 3.3 and Lemma 3.2 a = 3h for some positive integer h. In particular a ≥ 3

and Ã3,a−2,z is true. Fix a solution F of Ã3,a−2,z, i.e. let F ⊂ Y be a general union of a3,a−2,z
1-lines. Thus F ∩W is general. Take a union G ⊂W of a3,a,z − a3,a−2,z 1-lines which are general
with the only restriction that b3,a,z of them contains a point of F ∩W . Set E := F ∪G. Use the
residual exact sequence of W and that, by the generality of E ∩W , F has the same multigraded
Hilbert function for W as a general union of a3,a,z − a3,a−2,z 1-lines. �

4. The end of the proof of Theorem 1.2

In this section we conclude the proof of Theorem 1.2 using the case n1 = 3 proved in Section 3.
By Section 3 we may assume n1 ≥ 4 and that Theorem 1.2 is true for all multiprojective spaces
with at least 2 factors and whose first factor has dimension m with 3 ≤ m ≤ n1 − 1.

Fix H ∈ |OY (ε1)|. By the inductive assumption Theorem 1.2 holds in H for all multidegrees.
For any m ≥ 3, a ≥ 0 and z > 0 we consider the following Assertions Am,a,z, A′′m,a,z and Bm,a,z:
Assertion Am,a,z: There is a union E = A ∪B ⊂ Y such that:

(1) A is a union of am,a,z − 2bm,a,z 1-lines;
(2) B is a union of bm,a,z reducible 1-conics, Sing(B) ⊂ H, and A ∩B = ∅;
(3) hi(IE(a, d2, . . . , sk)) = 0, i = 0, 1.

Assertion Bm,a,z: There is a union E = A ∪ Z ⊂ Y such that

(1) A is a union of am,a,z − 3 1-lines (case bm,a,z = 0) or am,a,z − 4 1-lines (case bm,a,z > 0);
(2) Z is a union of a planar double 1-points, A ∩ Z = ∅;
(3) h1(IE(a, d2, . . . , sk)) = 0.

In the set-up of Assertion Bm,a,z we write ε(m, a, z) := 3 if bm,a,z = 0 and ε(m, a, z) = a+4−bm,a,z

if bm,a,z > 0. Note that always ε(m, a, z) > 0 and that h0(OE(a, d2, . . . , dk)) = z
(
m+a
m

)
−ε(m, a, z).

Remark 4.1. Fix E = A ∪ B satisfying conditions (1) and (2) of Assertion An1,a,z. Since
h0(OE(a, d2, . . . , dk)) = h0(OY (a, d2, . . . , dk), h0(IE(a, d2, . . . , sk)) = h1(IE(a, d2, . . . , dk)). Thus
h0(IE(a, d2, . . . , dk)) = 0 if and only if h1(IE(a, d2, . . . , dk)) = 0.

The next lemma implies that Bm,a,z is well-defined.

Lemma 4.2. am,a−1,z ≥ 2a for all a > 0 and all m ≥ 3.

Proof. Assume am,a−1,z ≤ 2a− 1. We get a(2a− 1) ≥ z
(
m+a−1

n1

)
. Since z ≥ 2 and m ≥ 3, we get

a contradiction. �
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By Remark 2.6 Theorem 1.2 is true if d1 = 0. Thus we may assume d1 ≥ 1 and use induction on
the integer d1. Hence we may assume the theorem for all multidegrees (b1, . . . , bk) with b1 < d1.

Lemma 4.3. B(3, a, z) is true for all a ≥ 1 and all z ≥ 2.

Proof. Take Q and W as in Section 3.
(a) We first prove B(3, 1, z). Since b3,1 = 0, b3,1,z = 0 and a3,1,z = 2z. Since z ≥ 2, a3,1,z ≥ 3.

Since ε(3, a, z) > 0 and h1(IZ(a, d2, . . . , dk)) = 0, it is sufficient to use Lemma 3.1.

(b) Assume a ≥ 2. Take E = A ∪ B satisfying Ã3,a,z (case a ≥ 3) while for a = 2 take as E
a general union of z 1-lines. In all cases hi(IE(a − 2, d2, . . . , dk)) = 0, i = 0, 1, and the singular
points of E are contained in W .

(b1) Assume b3,a−2,z = b3,a,z = 0 and a ≥ 3. Thus B = ∅. Let Z ⊂ Y be a general
union of a planar double 1-points with the only restriction that Zred ⊂ W and that one of the
connected components of Z is contained in W . Call S the reduction of the other connected
components of Z. Since W is a smooth divisor of Y , ResW (Z) = S, i.e ResW (Z) is a general
union of a − 1 points of W , and Z ∩ W is a general union of a − 1 tangent vectors of type 1
of W and one planar double 1-point of W . Let F ⊂ Y be a union of a3,a−2,z − 1 connected
components of E. Let G ⊂ W be a general union of a3,a,z − a3,a−2 − 2 1-lines. Set K :=
F ∪ Z ∪ G. To prove this case it is sufficient to prove h1(IK(a, d2, . . . , dk)) = 0. By the case
n1 = 3 of Theorem 1.2 h1(IF (a − 2, d2, . . . , dk)) = 0 (i.e. h0(IF (a − 2, d2, . . . , dk)) = a − 1), and
h0(IF (a− 4, d2, . . . , dk)) = 0. Since h0(IF (a− 4, d2, . . . , dk)) = 0, h0(IF (a− 2, d2, . . . , dk)) = #S
and S is general, it is easy to check that hi(IF∪S(a− 2, d2, . . . , dk)) = 0. Thus the residual exact
sequence of W shows that it is sufficient to prove that h1(W, IK∩W,W (a, a; d2, . . . , dk)) = 0. Note
that h0(OK∩W (a, d2, . . . , dk)) = h0(OW (a, a; d2, . . . , dk))−3. By Lemma 2.3 it is sufficient to prove
that h1(W, IG∪J(a, a; d2, . . . , dk)), where J ⊂W is a general planar 1-double point.

Claim 1: h0(OG(a, a; d2, . . . , dk)) ≤ h0(OW (a, a− 1; d2, . . . , dk))− 1 if a ≥ 3.
Proof of Claim 1: Since h0(OResW (K)(a−2, d2, . . . , dk)) = z

(
a+1
3

)
, h0(OW (a, a; d2, . . . , dk))−

h0(OW (a, a−1; d2, . . . , dk)) = z(a+1) and h0(OK∩W (a, d2, . . . , dk)) = h0(OW (a, a; d2, . . . , dk))−3,
it is sufficient to check that #(F ∩W )+deg(Z) ≥ z(a+1)−2, i.e. 2a3,a−2,z−2+3a ≥ z(a+1)−2.
We have a3,a−2,z = z(a+ 1)a/6. Thus all cases with a ≥ 3 are covered.

We take M ∈ |OW (0, 1; 0, . . . , 0)| and we degenerate J to a planar 1-double point contained in
M and use the residual exact sequence of M in W .

(b2) Assume b3,a−2,z = 0 and b3,a,z > 0. Thus a ≡ 0 (mod 3). In the proof of step (b1) we
take as G a general union of a3,a,z − a3,a−2 − 3 1-lines.

(b3) Assume b3,a−2,z > 0 and b3,a,z = 0. Let T be a general union of 1-sundials with
Tred = B. Let Z ⊂ W be a general union of a planar 1-double points. Let F ⊂ W be a
general union of a3,a,z − a3,a−2,z − 3 1-lines. Set K := A ∪ T ∪ Z ∪ F . Since ResW (K) = E
and hi(IE(a − 2, d2, . . . , dk)) = 0, the residual exact sequence of W shows that it is sufficient to
prove h1(W, IF∪I,W (a, a; d2, . . . , dk)) = 0, where I is a general union of a+ b3,a,z planar 1-double
points. We take M ∈ |OW (0, 1; 0, . . . , 0)| and we degenerate I to a planar 1-double point contained
in M . To conclude as in step (b1) we only need to check that h0(OF (a, a − 1; d2, . . . , dk)) ≤
h0(OW (a, a − 1; d2, . . . , dk)). Since ε(3, a, z) = a + 4 − b3,a,z, it is sufficient to prove that a + 4 −
b3,a,z + 2a3,a−2,z + 3a ≥ z(a+ 1), which is always true, because b3,0,z = 0 and hence a ≥ 3.

(b4) Assume a = 2. Note that a3,0,z = z, b3,0,z = 0, a3,2,z = d10z/3e and that b3,2,z =
3d10z/3e − 10z. Thus B = ∅. Remark 2.6 gives hi(IA(0, d2, . . . , dk)) = 0, i = 0, 1. Let Z ⊂ Y
be a general union of 2 double 1-points with the only restriction that S := Zred ⊂ W . Let
A′ ⊂ Y be a union of z − 2 connected components of W . Let F ⊂ W be a general union of
d10z/3e− z− 1− c 1-lines with c = 0 if b3,2,z = 0, i.e. if z ≡ 0 (mod 3), and c = 1 if b3,2,z > 0. Set
K := A′ ∪ Z ∪ F . Since ResW (K) = A′ ∪ S, h1(IA′(0, d2, . . . , dk)) = 0, h0(IA′(0, d2, . . . , dk)) = 0,
h0(OY (−2, d2, . . . , dk)) = 0 and S is general in W , we have hi(IResW (K)(0, d2, . . . , dk)) = 0. Since
Z ∩W is a general union of 2 tangent vectors of type 1, we may use Lemma 3.1. The residual
exact sequence of W shows that it is sufficient to prove that h1(W, IF (2, d2, . . . , dk)) = 0. Since
h1(Q, IJ(2, 2)) = 0, where J is a general union of 3 elements of OQ(1, 0)|, it is sufficient to mimic
the proof of Lemma 3.2 using that F has at most 3z connected components. �

Lemma 4.4. Assume bn1,a,z ≥ bn1,a−1,z. Then an1,a,z − 2bn1,a,z ≥ an1,a−1,z − 2bn1,a−1,z for all
a ≥ 1.
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Proof. Subtracting the equation in (3) for the integer a− 1 from the same equation for the integer
a we get

an1,a−1,z + (a+ 1)(an1,a,z − an1,a−1,z)− bn1,a,z + bn1,a−1,z = z

(
n1 + a− 1

n1 − 1

)
. (4)

Assume an1,a,z−2bn1,a,z ≤ an1,a−1,z−2bn1,a−1,z−1, i.e. an1,a,z−an1,a−1,z ≤ 2bn1,a,z−2bn1,a−1,z−1.

Thus (4) gives an1,a−1,z + (2a+ 1)(bn1,a,z − bn1,a−1,z)− a− 1 ≥ z
(
n1+a−1

n1

)
. Since bn1,a,z ≤ a and

bn1,a1,z ≥ 0, we get an1,a−1,z + a(2a + 1) − a − 1 ≥ z
(
n1+a−1
n1−1

)
. Since 0 ≤ bn1,a−1,z ≤ a − 1,

aan1,a−1,z ≤ z
(
n1+a−1

n1

)
+ a− 1. Thus

z

(
n1 + a− 1

n1

)
+ 2a3 − 1 ≥ az

(
n1 + a− 1

n1 − 1

)
. (5)

Since a
(
n1+a−1
n1−1

)
= (n1+a−1)!

(a−1)!(n1−1)! , we get

2a3 − 1 ≥ z (n1 + a− 1)!

(a− 1)!(n1 − 1)!
(1− 1/n1). (6)

For a fixed a the right hand side of (6) is an increasing function of n1 and hence it is sufficient to
disprove it for n1 = 4. For n1 = 4 (6) is

2a3 − 1 ≥ za(a+ 3)(a+ 2)(a+ 1)/8, (7)

which is false for all a ≥ 1, because z ≥ 2. �

Remark 4.5. We have a4,2,2 = 10, b4,2,2 = 0, a3,3,2 = 10, a4,3,2 = 18 and b4,3,2 = 1. We
have an1,1,3 = d3(n1 + 1)/2e, bn1,1,3 = 0 if n1 is odd, bn1,1,3 = 1 if n1 is even, a4,2,3 = 15,
b4,2,3 = 0, a5,2,3 = 21 and b5,2,3 = 0. Hence b4,1,3 < b4,2,3 and a5,2,3 − a5,1,3 = 12 = a4,2,3 − 3.
We have an1,1,2 = n1 + 1, bn1,1,2 = 0, an1,2,2 = (n1 + 2)(n1 + 1)/3 and bn1,2,2 = 0 if n1 ≡ 0, 1
(mod 3) and an1,2,2 = 3h2 + 3h + 1 and bn1,2,2 = 1 if n1 = 3h for some integer h > 0. Thus
a4,2,2−a4,1,2 = a3,2,2−2, a5,2,2−a5,1,2 = a4,2,2−2, a6,2,2−a6,1,2 = a5,2,2−2, a7,2,2−a7,1,2 = a6,2,2−3,
and a8,2,2 − a8,1,2 = a7,2,2 − 3.

Lemma 4.6. Assume bn1,a,z ≥ bn1,a−1,z. Then an1,a,z − 2bn1,a,z − an1,a−1,z + 2bn1,a−1,z ≤
an1−1,a,z − 2a for all a ≥ 2, except if z = 2, a = 3, n1 = 4 or a = 2 (n1, a, z) is one of the
following triples: (4, 3, 2) and and (n1, z) ∈ {(4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (4, 3), (5, 3)}.

Proof. Assume an1,a,z−2bn1,a,z−an1,a−1,z+2bn1,a−1,z ≥ an1−1,a,z−2a+1, i.e. an1,a,z−an1,a−1,z ≥
2bn1,a,z − 2bn1,a−1,z + an1−1,a,z − 2a+ 1. From (4) we get

an1,a−1,z + (a+ 1)an1−1,a,z + (2a+ 1)(bn1,a,z − bn1,a−1,z)− (a+ 1)(2a− 1) ≤ z
(
n1 + a− 1

n1 − 1

)
. (8)

Since (a+ 1)an1−1,a,z ≥ z
(
n1+a−1
n1−1

)
and bn1,a,z ≥ bn1,a−1,z, (8) gives

an1,a−1,z ≤ (a+ 1)(2a− 1). (9)

Note that the left hand side of (9) is an increasing function of n1. Since an1,a−1,z =e
(
n1+a−1

n1

)
e, the

inequality (9) is false, unless either a = 2 and (n1, z) ∈ {(4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (4, 3), (5, 3)}
or (n1, a, z) = (4, 3, 2). These cases are discussed in Remark 4.5. �

Lemma 4.7. Assume n1 ≥ 4 and a ≥ 3. Then an1,a,z − an1,a−1,z ≤ an1−1,a,z − 4 .

Proof. Assume an1,a,z − an1,a−1,z ≥ an1−1,a,z − 3. From (4) we get

an1,a−1,z + (a+ 1)an1−1,a,z − 3(a+ 1) + bn1,a,z − bn1,a−1,z ≤ z
(
n1 + a− 1

n1 − 1

)
. (10)

Since bn1,a−1,z ≤ a−1, bn1,a,z ≥ 0 and (a+1)an1−1,a,z ≥ z
(
n1+a−1

n1

)
, (10) gives an1,a−1,z ≤ 4a−3

and hence

z

(
n1 + a− 1

n1

)
≤ 4a2 − 3a. (11)

The left hand side of (11) is an increasing function of n1. For n1 = 4 to disprove (11) it is sufficient
to prove the inequality

z(a+ 3)(a+ 2)(a+ 1) > 48(a− 3). (12)
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Obviously (12) holds if z(a+ 3)(a+ 2) ≥ 48, which is true because z ≥ 2 and a ≥ 3. �

Lemma 4.8. Am,a,z and Bm,a,z are true for all a and all m = 4, . . . , n1.

Proof. By the inductive assumption we know Am,a,z if m < n1. We will prove An1,a,z in step (b).
In step (a) we will prove Bm,a,z for all m = 4, . . . , n1 using induction on m starting the induction
with the case m = 3 proved in Lemma 4.3. We may assume that the case a = 0 of Theorem 1.2
is true by Remark 2.6. Thus for all statements we may assume that they are true for the integers
a′ < a. In step (b) we only use Bn1−1,a,z if n1 ≥ 5 and Lemma 4.3 if n1 = 4.

(a) Fix an integer m ∈ {4, . . . , n1}. We prove Bm,a,z assuming that this assertion is true for
smaller m′, starting the induction with the case m = 3 proved as Lemma 4.3. For a fixed m we
use induction on a, the case a = 0 being trivial. Set Y ′ := Pm×· · ·×Pnk and take H ′ ∈ |OY ′(ε1)|.
Remember that ε(m, a, z) = 3 if bm,a,z = 0 and ε(m, a, z) = a+ 4− bm,a,z > 3 if bm,a,z > 0.

(a1) Assume ε(m, a, z) ≥ ε(m, a − 1, z). Take a solution A ∪ Z for Bm,a−1,z with Z a gen-
eral union of a − 1 double 1-points. Hence h1(IA∪Z(a − 1, d2, . . . , dk)) = 0 and h0(IA∪Z(a −
1, d2, . . . , dk)) = ε(m, a − 1, z). Recall that ε(m, a − 1, z) ≥ 1. Let Z ′ ⊂ Y ′ be a general planar
1-double point with the restriction that {p} := (Z ′)red ⊂ H ′. Thus {p} is a general point of
H ′. Since h0(IA∪Z(a − 2, d2, . . . , dk)) = 0 by the inductive assumption and p is general in H ′,
h1(IA∪Z∪{p}(a − 1, d2, . . . , dk)) = 0. Let F ⊂ H ′ be a general union of am,a,z − am,a−1,z − c
lines, where c = 0 if either bm,a,z = 0 or bm,a−1,z > 0 and c = 1 if bm,a,z > bm−1,a,z = 0. Set
K := A ∪ Z ∪ Z ′ ∪ F . Note that ResH′(K) = A ∪ Z ∪ {p}, Z ′ ∩ H ′ is a general union of a
tangent 1-vector of H ′ and we may use Theorem 1.2 in H ′. Thus to conclude using the residual
exact sequence of H ′ it is sufficient to prove that h0(OF (a, d2, . . . , dk)) ≤ z

(
m+a−1
m−1

)
− 2. Since

a > 0 and F has at most am,a,z − am,a−1,z − c connected components, it is sufficient to use that
am−1,a,z < am,a,z − am,a−1,z (Lemma 4.7).

(a2) Assume ε(a,m, z) < ε(m, a − 1, z). Thus bm,a−1,z > 0. Let R ⊂ Y ′ be a general union
of a(m, a − 1, z) − 1 1-lines. Thus h1(IR(a − 1, d2, . . . , dk)) = 0 and h0(IR(a − 1, d2, . . . , dk)) =
a− 1− bm,a−1,z by the inductive assumption on a if m = n1 and the inductive assumption on n1
for Theorem 1.2 if m < n1. Take a general union Z ′ ⊂ Y ′ of a − 1 − bm,a−1,z planar 1-double
points with the only restriction that S′ := (Z ′)red ⊂ H ′. Let Z ′′ ⊂ H ′ be a general union of
1 + bm,a−1,z planar 1-double points. Note that 1 + bm,a−1,z ≤ a. Let T ⊂ H ′ be a general union of
am,a,z−2−c−am,a,z 1-lines with c = 1 if bm,a,z > 0 and c = 0 if bm,a,z = 0. Set K := R∪F∪Z ′∪Z ′′.
By semicontinuity to prove Bm,a,z it is sufficient to prove h1(IK(a, d2, . . . , dk)) = 0. Note that
ResH′(K) = R ∪ S′. Since h1(IE(a− 1, d2, . . . , dk)) = 0, h0(IR(a− 2, d2, . . . , dk)) = 0, h0(IR(a−
1, d2, . . . , dk)) = 0 and S′ is general in H ′, we have hi(IR∪S′(a− 1, d2 . . . , dk)) = 0, i = 0, 1. Thus
the residual exact of H ′ shows that it is sufficient to prove h1(H ′, IK∩H′,H(a, d2, . . . , dk)) = 0.

Note that K ∩ H ′ = (Z ′ ∩ H ′) ∪ Z ′′ ∪ T . Since h0(OResH′ (K)(a − 1, d2, . . . , dk)) = z
(
m+a−1

m

)
,

h0(OK∩H′(a, d2, . . . , dk)) = z
(
m+a−1
m−1

)
− ε(m − 1, a, z). Thus by Lemma 3.1 it is sufficient to

prove h1(H ′, IZ′′∪T,H′(a, d2, . . . , dk)) = 0. Since Z ′′ has at most a connected components, by the
inductive assumption on m it would be sufficient to prove that am,a,z−2−c−am,a,z ≤ am−1,a,z−c′,
where c′ = 3 if bm−1,a,z = 0 and c′ = 4 if bm−1,a,z > 0. In particular it is sufficient to have
am,a,zc− am,a,z ≤ am−1,a,z − 2. Use Lemma 4.7.

(b) By Remark 2.6 to prove An1,a,z we may assume a > 0 and that the lemma is true for
all integers a′ < a. Take E = A ∪ B satisfying An1,a−1,z. Thus hi(IE(a − 1, d2, . . . , dk)) = 0,
i = 0, 1. By semicontinuity we may assume dimH ∩ E = 0 and that E ∩H is a general union of
an1,a−1,z − 2bn1,a−1,z points and bn1,a−1,z tangent vectors of type 1.

(b1) Assume bn1,a,z ≥ bn1,a−1,z. Lemma 4.4 gives an1,a,z − 2bn1,a,z ≥ an1,a−1,z − 2bn1,a−1,z.
Let A′ ⊂ H be a general union of an1,a,z − an1,a−1,z 1-lines with the only restriction that bn1,a,z −
bn1,a−1,z of them contain a point of A∩H; we use that bn1,a,z − bn1,a−1,z ≤ an1,a−1,z − 2bn1,a−1,z.
Since E ∩ H is general in H, A′ has the Hilbert function of an1,a,z − an1,a−1,z general 1-lines of
H ′. Set F := E ∪ A′. Since ResH(F ) = E, the residual exact sequence of H shows that to prove
An1,a,z it is sufficient to prove hi(H, I(E∩H)∪A′,H(a, d2, . . . , dk)) = 0, i = 0, 1. By Lemma 2.3 it is

sufficient to prove h1(H, IA′,H(a, d2, . . . , dk)) = 0. Note that h0(OF∩H(a, d2, . . . , dk)) = z
(
n1+a−1

n1

)
.

Thus the inductive assumption on n1 for Theorem 1.2 shows that it is sufficient to prove that
an1,a,z − an1,a−1,z < an1−1,a,z, which is true by Lemma 4.6.
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(b2) Assume bn1,a,z < bn1,a−1,z. Write B = B′ ∪ B′′ with B′ union of bn1,a,z connected
components of B. Take as Z a general union of 1-sundials with Zred = B′′. Let F ⊂ H be a
general union of an1,a,z − an1,a−1,z 1-lines. Set G := A ∪ B′ ∪ Z ∪ F . Note that h0(OG(a)) =

z
(
n1+a

n

)
. By semicontinuity and Remark 2.4 it is sufficient to prove hi(IG(a, d2, . . . , dk)) = 0,

i = 0, 1. Since ResH(G) = E, the residual exact sequence of H shows that it is sufficient to prove
hi(H, IG∩H,H(a, d2, . . . , dk)) = 0, i = 0, 1. Note that h0(OG∩H(, d2, . . . , dk)) = z

(
n1+a−1
n1−1

)
and that

G ∩H is a general union of an1,a,z − an1,a−1,z 1-lines of H. Since an1,a,z − an1,a−1,z < an1−1,a,z
(Lemma 4.7), it is sufficient to use the inductive assumption on n1. �

End of the proof of Theorem 1.2. Let a be the first non-negative integer such that z
(
n1+a
n1

)
≥ t(a+

1). By Lemma 2.7 to prove that T has maximal rank with respect to OY (x, d2, . . . , dk), x ∈ N, it
is sufficient to prove that h0(IT (a− 1, d2, . . . , dk)) = 0 and h1(IT (d1, . . . , dk)) = 0.

(a) In this step we prove that h0(IT (a − 1, d2, . . . , dk)) = 0. Note that t ≥ an1,a−1,z.
Take a solution E = A ∪ B of An1,a−1,z with B a union of bn1,a−1,z reducible 1-conics. Thus
h0(IE(a − 1, d2, . . . , dk)) = 0. Take a union Z of an1,a−1,z 1-sundials such that Zred = B. Obvi-
ously h0(IA∪Z(a− 1, d2, . . . , dk)) = 0.

(b) In this step we prove that h1(IT (a, d2, . . . , dk)) = 0. By the definition of the integer a
we have t ≤ an1,a,z and t < an1,a,z if bn1,a,z > 0. If bn1,a,z = 0 it is sufficient to take as T a
solution of An1,a,z whose existence is proved in Lemma 4.8 and, if necessary, discard an1,a,z − t
of its connected components. Now assume bn1,a,z > 0. Increasing if necessary t we see that it is
sufficient to do the case t = an1,a,z−1. Fix a solution E = A∪B of An1,a−1,z with B a general union
of bn1,a−1,z reducible 1-conics with singular point contained in H. Let Z ⊇ B a general union of
bn1,a,z 1-sundials with Zred = B. Let G ⊂ H be a general union of an1,a,z−1−an1,a−1,z 1-lines. Set
F := A∪Z∪G. Since Z is a flat limit of a family of 2bn1,a−1,z 1-lines (Remark 2.4), it is sufficient to
prove that h1(IF (a, d2, . . . , dk)) = 0. Since ResH(F ) = E and hi(IE(a−1, d2, . . . , dk)) = 0, i = 0, 1,
it is sufficient H1(H, IF∩H,H(a, d2, . . . , dk)) = 0. The scheme F ∩H is a general union of G and
bn1,a−1,z planar 1-double points. Lemmas 4.6 and 4.7 imply an1,a,z − an1,a−1,z − 1 ≤ an1−1,a,z − 4.
Thus Bn1−1,a,z implies H1(H, IF∩H,H(a, d2, . . . , dk)) = 0. �
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