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Abstract — Protection-oriented (P Class) Phasor Measurement 
Units (PMUs) are required to reconcile high measurement 
accuracy and low latency in order to promptly detect possible 
anomalous operating conditions in power systems. Most of the 
existing estimators of synchrophasor magnitude, phase, frequency 
and Rate of Change of Frequency (ROCOF) of voltage or current 
AC waveforms need to acquire the samples of at least two power 
line cycles to meet the P Class requirements specified in the 
IEEE/IEC Standard 60255-118-1:2018. In this paper instead, a 
multistep technique based on the combination of Multiple Signal 
Classification (MUSIC), narrowband disturbance whitening and 
Taylor-Kalman Filtering (TKF) is proposed to maximize accuracy 
even over one-cycle-long observation intervals. Both MUSIC and 
disturbance whitening rely on a common theoretical framework 
(i.e., signal and noise vector subspace decomposition) and they are 
applied to compensate for the detrimental effect of off-nominal 
frequency deviations and harmonic distortion, respectively. The 
use of a cascaded dynamic estimators such as the TKF is motivated 
by the need to track possible in-band amplitude and phase 
oscillations or step-like changes with low latency. While the basic 
TKF is very sensitive to possible narrowband disturbances, the 
Tuned Whitening-based Taylor-Kalman filter (TW-TKF) 
described in this paper ensures superior accuracy under the 
influence of harmonics and amplitude or phase step changes, with 
just a minor performance degradation in the other P Class testing 
conditions reported in the IEEE/IEC Standard 60255-118-1:2018. 

Keywords — phasor measurement units (PMUs), power system 
monitoring, Signal processing, Kalman filtering. smart grid 
measurements. 

I.  INTRODUCTION 
The growing penetration of distributed generators and 

dynamic loads poses new challenges for low-voltage (LV) and 
medium-voltage (MV) network operation [1]. To handle 
possible critical time-varying operating conditions such as, for 
instance, supply-demand fluctuations, supply volatility or 
topology changes, the state of the grid should be estimated in 
real-time [2]. To this end, the so-called Wide Area Monitoring 
Systems (WAMS) are equipped with an adequate number of 
properly placed Phasor Measurement Units (PMUs) [3]–[5]. 
PMUs are particularly useful to support system state estimation 
as well as to detect possible impending faults, since they are able 
to estimate the phasors of voltage and current AC signals at a 
high rate and over a time scale synchronized with the 
Coordinated Universal Time (UTC). Unfortunately, the 
measurement of magnitude, phase, frequency, and the Rate of 
Change of Frequency (ROCOF) of AC waveforms is affected 
by a variety of uncertainty contributions, especially when short 
observation intervals are considered. For this reason, several 
estimation algorithms for PMUs have been recently proposed in 
the scientific literature [6]-[7]. 

The IEEE/IEC Standard 60255-118-1:2018 (briefly referred 
to as “the IEEE/IEC Standard” in the rest of this paper) specifies 
two classes of PMUs depending on the purpose for which they 
are used [8]. For applications requiring superior accuracy, the 
so-called Measurement-class (or M Class) PMUs are needed. 
However, for protection purposes a lower accuracy is 
acceptable provided that the estimation latencies are as short as 
possible. For this kind of applications, the so-called P Class 
requirements are specified in the IEEE/IEC Standard. Either 
PMU class must comply with its own set of performance limits 
expressed in terms of Total Vector Errors (TVE), Frequency 
Errors (FE), Rate of change of Frequency Errors (RFE). 
Moreover, in the case of amplitude or phase abrupt changes, 
also response and delay times have to be evaluated. Even though 
the limits reported in the IEEE/IEC Standard were established 
mainly for transmission systems monitoring, at the moment they 
are usually a reference also for distribution-level PMUs. 
However, the inherent characteristics of distribution systems 
(e.g., the use of shorter lines with a lower X/R ratio than in 
transmission systems [9]) as well the presence of stronger 
harmonic and inter-harmonic interferers caused by a variety of 
sources pose two further crucial and contrasting problems [10]. 
On one hand, the phase angle differences between bus voltage 
phasors are very small (in the order of a few mrad) [11], which 
requires higher accuracy than traditional PMUs. On the other 
hand, the presence of larger disturbances makes this task 
extremely challenging especially when short data records are 
considered.  

This paper provides a partial response to the problems above 
by proposing a multistep estimator, called Tuned Whitening-
based Taylor-Kalman Filter (TW-TKF), that is able to greatly 
mitigate the uncertainty contributions due to both off-nominal 
system frequency deviations and large harmonic distortion even 
over one-cycle-long observation intervals. The TW-TKF results 
from an extension of the Whitening-based Taylor-Kalman Filter 
(W-TKF) presented in [12], and it outperforms both the W-TKF 
and the basic TKF in the most critical testing conditions 
reported in the IEEE/IEC Standard. Since the whitening 
technique used to decorrelate possible narrowband interferers 
tends to desensitize the TKF ability to track dynamic magnitude 
and/or angle phasor oscillations as the observation intervals 
length grows, the proposed technique is particularly effective 
over short intervals and, consequently, for P Class PMUs. 

The rest of the paper is structured as follows. In Section II, 
a presentation of the related work is reported to highlight the 
key advantages and the differences of the proposed algorithm 
compared with other techniques. In Section III, the steps of the 
TW-TKF method are described in detail. In Section IV the 
results of multiple simulations in a variety of testing conditions 
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(most of which are reported in the IEEE/IEC Standard) are 
reported and compared with those obtained with both the basic 
TKF and the W-TKF presented in [12]. In Section V some 
experimental results in different steady-state and transient 
conditions are shown. Finally, in Section VI the main 
conclusions are summarized. 

II.  RELATED WORK AND MOTIVATIONS  
The tight accuracy requirements of next–generation PMUs 

are not the only reason why the related measurement problem is 
so challenging. A further, subtler reason is that two contrasting 
goals have to be pursued at the same time. On one hand, the 
impact of off-nominal frequency deviations and steady-state 
harmonic and inter-harmonic disturbances on the estimation of 
the parameter of the fundamental component has to be made 
negligible. On the other hand, possible time-varying changes of 
these parameters should be tracked quickly and accurately. In 
addition, the wideband noise (which, although always present, 
is basically disregarded in the IEEE/IEC Standard) may have 
unpleasant consequences on performances, especially on 
ROCOF estimation accuracy [13].  

The steady-state uncertainty contributions can be effectively 
mitigated with a low computational burden by using the signal 
quadrature demodulation approach followed by low-pass 
filtering suggested in the Annex D of the IEEE/IEC Standard 
[8]. This technique was implemented by using a variety of filters 
[14]–[16]. Alternatively, several frequency-domain estimators 
based on the Discrete Fourier Transform (DFT) can be used 
[17]–[19]. In order to provide adequate accuracy, both kinds of 
estimators require to sample and to process the input AC 
waveform over multiple power line cycles. In the former case, 
linear-phase digital filters with a finite impulse response in the 
order of a few cycles are needed to ensure a narrow transition 
bandwidth and a high out-of-band attenuation. In the latter case, 
a quite broad variety of DFT-based algorithms designed to 
counteract the detrimental impact of different disturbances is 
reported in the scientific literature. For instance, in [18], [20] 
auxiliary down-sampling or filtering techniques are used to 
mitigate the influence of possible DC decaying offsets. The 
interpolated DFT (IpDFT) is very accurate in estimating static 
off-nominal frequency deviations and to correct synchrophasor 
magnitude and phase accordingly [21]. Similar results can be 
obtained if the fundamental frequency is estimated with an ad-
hoc transducer prior to computing the discrete-time Fourier 
transform of the acquired signal [22]. Enhanced two-step 
versions of the basic IpDFT can be used to correct the 
estimation errors caused by the spectral infiltration of the 
fundamental image component and/or the second-order 
harmonic [17], [19]. A similar idea can be extended to remove 
iteratively all harmful narrowband components (including the 
inter-harmonic tones) from the signal spectrum [23]. However, 
all the aforementioned techniques suffer from common 
problems. In particular, they return accurate results only when 
steady-state disturbances affect the fundamental tone and 
multiple power line cycles are acquired. In fact, their accuracy 
and responsiveness tend to degrade when dynamic disturbances 

(e.g., amplitude and/or phase oscillations or steps) occur. On the 
contrary, under time-varying operating conditions, 
measurements over short observation intervals are preferable to 
better track AC voltage or current parameters variations. 
Unfortunately, when data records no longer than two power line 
cycles are processed, the performance of DFT-based techniques 
in some testing conditions may become unacceptable. To 
address this problem, several algorithms based on the Taylor’s 
series expansion of the function describing the synchrophasor 
time evolution exist [24]. One of the most effective solutions is 
the so-called Taylor’s series-based Weighted Least Squares 
(TWLS) estimator, also known as Taylor-Fourier Filter [25]. 
However, it is sensitive to possible off-nominal static frequency 
deviations unless their value is first estimated (e.g., through a 
preliminary IpDFT) and then used to correct the coefficients of 
the system of equations returning the WLS estimate of Taylor’s 
series coefficients [26], [27]. In addition, when low-order 
harmonics or inter-harmonics affect the signal, the TWLS 
estimation accuracy can decrease considerably. Relevant 
improvements can be obtained, although at the expense of a 
higher computational burden, if the parameters of the 
narrowband disturbances are included in the set of variables to 
be estimated. This approach is adopted for instance in the so-
called Taylor-Fourier Transform (which includes the harmonics 
phasors) [28], or in the algorithms based on the compressed 
sensing Taylor-Fourier multifrequency model [29]. However, 
also in this case achieving high accuracy requires the acquisition 
of signal samples over multiple cycles.  

In such conditions, the techniques based on signal and noise 
subspace decomposition, particularly the Multiple Signal 
Classification (MUSIC) or the Estimation of Signal Parameters 
via Rotational Invariant Techniques (ESPRIT) are particularly 
effective for frequency estimation even in the presence of multi-
tone disturbances [30]-[31]. For this reason, various subspace-
based techniques were also developed for PMU applications 
[32]-[33]. The main drawback of such solutions is that if the 
number of sinusoidal components is unknown a priori, it must 
be estimated heuristically from the available data. However, 
most of the criteria proposed in the literature to distinguish the 
eigenvalues associated with the sinusoidal components from 
those of the noise subspace are affected by severe robustness 
problems, especially in time-varying operating conditions.  

The technique proposed in this paper also relies on the idea 
of estimating the signal fundamental frequency through a 
subspace-based approach (i.e., a lightweight MUSIC version) 
prior to performing synchrophasor estimation. However, the 
proposed method reverses the perspective of other research 
works because, instead of using the signal subspace 
decomposition to estimate the narrowband disturbances, it 
makes use of the same theoretical background to transform them 
into wideband noise. In this way, the delicate problem of 
estimating the number of sinusoidal components of the signal 
disappears. The idea of harmonics whitening through a 
subspace-based decorrelation is not totally new, as it was for the 
first time introduced in [34]. However, that paper presents just 
a preliminary study on the feasibility of disturbance whitening 
using the classic TWLS estimator as a benchmark.  
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Fig. 1. Block diagram of the proposed TW-TKF algorithm. 

In this paper instead the whitening performances are improved 
in two ways, i.e. i) by adjusting the observation interval length 
in order to use only the samples that belong to one or two full 
power line cycles, regardless of possible off-nominal frequency 
deviations and ii) by replacing the noise subspace eigenvalues 
with much lower values to improve signal spectral purity. Both 
such solutions improve the accuracy of the original W-TKF 
algorithm [12].  

Once the input signal is cleaned up from steady-state 
disturbances, synchrophasor magnitude, phase, frequency and 
ROCOF are estimated through a TKF, namely a Kalman a filter 
in which the vector of state variables includes the Taylor’s series 
coefficients of the fundamental synchrophasor. The rationale 
for this choice is that Kalman filters are natively conceived to 
track possible time-varying changes of the state variables. 
Indeed, various single-phase or three-phase Kalman filters or 
extended Kalman filters for PMUs have been proposed over the 
last few years [35]–[39]. Unfortunately, the estimates returned 
by Kalman filters can be strongly sensitive to harmonics if they 
are not included in the signal model [35]. Since in the proposed 
approach all sinusoidal disturbances are strongly mitigated by 
the preliminary whitening step, and recalling that Kalman filters 
are formally optimal in rejecting the input white noise, the use 
of a TKF after whitening looks a promising approach to achieve 
an excellent trade-off between estimation accuracy and 
responsiveness for P Class PMUs. 

III.  SIGNAL MODEL AND TW-TKF ALGORITHM DESCRIPTION 
A generic AC voltage or current waveform can be modelled 

as follows, i.e. 

[ ]0( ) ( ) ( ) ( ) ( ) cos 2 ( ) ( ) ( )s t x t d t t a t f t t d t tε π ϕ ε= + + = + + +    (1) 

where: 
• a(t) and φ(t) are the time-varying amplitude and phase, 

respectively, of the ideal fundamental sinewave x(t);  
• f0 = fnom·(1 + 𝛿𝛿) is the fundamental power system 

frequency, which may deviate from the nominal value fnom 

(i.e., 50 Hz or 60 Hz) by a relative offset 𝛿𝛿, e.g., due to a 
mismatch between power demand and supply;  

• d(t) includes the sum of all sinusoidal disturbances; 
• ε(t) is a white and normally distributed noise floor with 

zero-mean and variance 2
εσ . 

The synchrophasor ( ) ( ) ( )rr tφjta
r etp

2
= , the instantaneous 

frequency ( ) ( )
rt

dt
tφd

πr ftf 2
1+=  and the ROCOF 

2

2

1 ( )
2 tt rr

d f d t
dt dt

ϕ
π

=  values of x(t) have to be estimated at the 

UTC reference time tr. Assuming that:  
• M = [fs/fnom] represents the integer number of samples per 

nominal power line cycle, where fs is the PMU sampling 
rate and [·] the “rounding to the nearest integer” operator; 

• C is the integer number of nominal cycles that are acquired 
in each observation interval; 

then the size of the data record used to estimate the 
synchrophasor magnitude, phase, frequency and ROCOF is 
N = M·C or N = M·C+1 depending on whether M·C is odd or 
even, respectively. In this way, if tr lies in the center of each 
observation interval, the reference time coincides with the time 
of the central sample and the sequence of acquired samples can 
be simply expressed as 

[ ]0( ) ( ) cos ( ) ( ) ( )r r r r r rs n a n n n d n nω ϕ ε= + + +  (2) 

where nom 2
nom 2

s

f
f M

πω π= ≈ , 1 1
2 2

N N
rr n r− −− ≤ ≤ +  and 

r sr t f= ⋅ . The block diagram of the TW-TKF algorithm 
processing the samples of data record (2) is shown in Fig. 1. In 
the following subsections, the steps of the algorithm are 
described in detail. 

A.  Fundamental frequency estimation real-valued MUSIC  
Let us assume that d(t) in (1) and (2) consists of D significant 

sinusoidal disturbances emerging from the noise floor with 
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N > 2D+2 (which is a condition easily met in the application 
considered) [40]. If sr(m) is the column vector consisting of the 
values of (2) included within the interval 

1 1
2 2,N Nm r m r− − + − + +   for 1,...,0m N= − + , the columns of 

the matrix ( ) ( ) ( )1 2 0r r r rS N N= − + − +  s s s  
consist of N data each and they are shifted by one sample at a 
time till covering two subsequent observation intervals of size 
N. If ( ) ( ){ }T

r rQ E= ⋅ ⋅s s  is the autocorrelation matrix of sr(·), 

in stationary conditions Q is independent of m. Moreover, if the 
eigenvalues resulting from the Singular Value Decomposition 
(SVD) of Q are arranged in a descending order and the 
corresponding eigenvectors are reordered accordingly, then Q 
can be expressed as [31] 

( ) ( )

T
0 0T

0 0 T
0 0

2 T 2

0

0
0

    =
D

d d N d N
d

U
Q U U U U

U

F I F Iε εω σ ω σ
=

 Λ 
 = Λ = =    Λ     

 Λ − + ∑
 (3) 

where: 
• T is the transpose operator; 
• U is an N × N orthogonal matrix whose columns are the 

eigenvectors of Q (hence U-1=UT); 
• Λ is the diagonal matrix of the eigenvalues of Q; 
• Λ0 is 2 × 2 diagonal submatrix including the eigenvalues 

related to the fundamental tone, which are proportional to 
its power [30]-[31], and U0 is the N × 2 submatrix of the 
corresponding eigenvectors; 

• 0Λ  and 0U  are the submatrices including the eigenvalues 
and eigenvectors, respectively, associated with all the 
other components of signal (2). In particular, recalling that 
D sinusoidal disturbances affect (2), the (N-2) × (N-2) 
diagonal matrix 0Λ  can be rewritten as [31],   

0 2
2 2

0

0
s

N DIεσ − −

Λ 
Λ =  

  
 (4) 

where Λs=diag(Λ1,…, ΛD) is a block diagonal matrix 
consisting of 2 × 2 diagonal submatrices whose elements 
are the eigenvalues proportional to the power of the related 
sinusoidal disturbance, and I is the identity matrix of size 
N-2D-2, as specified in the subscript. 

• Finally, 

( )

( )( ) ( )( )
( )( ) ( )( )

cos 1 sin 1

cos 2 sin 22

1 0

d d

d d
d

N N

N NF
N

ω ω

ω ω
ω

 − − − − −
 

− − − − − =  
 
  

 

, (5) 

and ωd for d=0, …, D, is the (usually unknown) normalized 
frequency of the d-th sinusoidal component in (2), 
including the fundamental one (for d=0).  

In practice Q has to be estimated from the limited amount of 
data of two consecutive observation intervals, i.e. 

T
0 0T T

0 0 T
0 0

ˆ ˆ01 ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ0

r r
U

Q S S U U U U
N U

  Λ    = ⋅ = Λ =      Λ   
 (6) 

where symbol “ ⋅̂ ” denotes an estimated quantity. Therefore, the 
estimation uncertainty associated with Q̂  propagates to 
eigenvalues and eigenvectors returned by the SVD. 

In general, the MUSIC algorithm for real-valued sinewaves 
was conceived to estimate the frequency of all sinusoidal 
components in (2) assuming that the value of D is known a priori 
[31]. However, such a strong assumption is not needed in the 
specific case at hand because of two reasons. Firstly, we are 
interested in estimating just the frequency of the fundamental 
tone both for observation interval adjustment and to tune the 
elements of the TKF output matrix in the update step (see 
Sections III.B and III.C). Secondly, all the narrowband 
disturbances are supposed to be cancelled or at least strongly 
mitigated by the following whitening step.  

To determine the unknown frequencies through MUSIC, just 
the noise eigenvectors must be known [31]. However, the 
whitening transformation (see Appendix A) is designed to 
change only the eigenvalues, while preserving the eigenvectors 
of the signal and noise subspaces. Therefore, the elements of the 
matrix U in principle do not change after disturbance whitening. 
As a consequence, even if the value of D is unknown and the 
actual size of the noise subspace before disturbance whitening 
is lower than 0U , the real-valued matrix equation 

( ) ( )T
0 0 0 0 0TF U U Fω ω =  (that has to be solved to determine 

the spectral peak at frequency ω0) certainly converges to a 
solution. Unfortunately, considering that in practice matrix 0U  
is estimated through (6), a zero of the matrix function 

( ) ( )T
0 0 0 0

TF U U Fω ω  can be hardly found.  
Therefore, the real-valued MUSIC estimator of the 

fundamental normalized frequency is [31] 

( ) ( ){ }T
0 0 0 0 0

ˆ ˆˆ arg min tr[ ]T
BW

F U U F
ω

ω ω ω
∈

=   (7) 

where the operator tr[∙] returns the trace of the argument matrix,  
max max

nom nom,M MBW δ δω ω = − + 
 is the interval where the 

normalized frequency is supposed to lie, and δmax is the 
maximum allowed off-nominal frequency deviation. It is 
important to emphasize that the computational burden of 
MUSIC is generally demanding (see Section III.D). Moreover, 
it depends on both the number of frequency components to be 
estimated and on the width of the frequency range to explore. 
However, in the case at hand the computation of (7) is 
lightweight because just the fundamental frequency has to be 
estimated and the interval BW  is very narrow. Therefore, any 
solver of (7) properly initialized to nomω  shall quickly converge 
to the desired solution. The corresponding estimated static off-
nominal frequency deviation is then given by ( )0

ˆ ˆMδ ω ω= ⋅ − . 

B.  Observation interval adjustment and disturbance whitening 

The value of δ̂  can be used to adjust the length of the 
intervals over which both disturbance whitening and 
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synchrophasor estimation are performed. The purpose of this 
step is to select just the samples of an integer number of actual 
fundamental power line cycles, thus ensuring a quasi-coherent 
sampling of the input signal. In particular, the length of vectors 
sr(∙) and the size of the matrix rS become equal to ˆ1

ˆ NN
δ+

 =    

or ˆ1
ˆ 1NN

δ+
 = +  , depending on whether ˆ1

N
δ+

 
   is odd or even, 

respectively. If ( )'r ⋅s  and 'rS  denote the array of data over the 
adjusted observation intervals, similarly to (3), the SVD of the 
autocorrelation matrix ( ) ( ){ }' ' 'Tr rQ E= ⋅ ⋅s s  can be expressed 

as  
'T

0 0' '
0 0 ' 'T

0 0

0
' ' ' '

0
T U

Q U U U U
U

   Λ = Λ =      Λ      
 (8) 

where  

'
0 2

ˆ 2 2

0

0
s

N DIεσ − −

Λ 
Λ =  

  
. (9) 

Observe that the elements of '
0U , '

0U  and '
0Λ  almost coincide 

with those of 0U , 0U  and 0Λ , respectively, the only difference 
being their size. However, submatrices 0Λ and sΛ  are exactly 
the same as those in (3) and (4). In particular, the two 
eigenvalues in 0Λ  can be easily identified since they are 
undoubtedly the greatest ones. The elements of sΛ  can instead 
be replaced by those of an artificial noise subspace, while 
preserving the respective eigenvectors. In this way, all the 
sinusoidal components different from the fundamental one 
(regardless of their number) are transformed into white noise 
instead of being estimated, which is the opposite of the goal of 
most common subspace-based techniques.  

As explained in details in [34] and recalled briefly in 
Appendix A, both disturbance whitening and wideband noise 
reduction can be achieved by applying the linear transformation  

ˆˆ 'r rW=y s  (10) 
where 'rs  represents, for the sake of brevity, the most recent 

vector of samples, i.e. ( )' 0rs , and 

1
2

2
T

'
0

0
ˆ ˆ ˆ' '

ˆ0 '

I
W U U

εσ
−

 
 =
 Λ 

 (11) 

is the estimated whitening matrix, in which 'εσ  is the standard 
deviation of the zero-mean artificial wideband noise that is used 
to replace both the eigenvalues of the sinusoidal disturbances 
and those of the original noise subspace after the PMU 
acquisition stage and before synchrophasor estimation. Quite 

importantly, matrices ˆ 'U and '
0Λ̂  in (11) result from the SVD 

of estimator
T1

ˆ
ˆ ' ' 'r rN

Q S S= ⋅ . Therefore, the uncertainty 

associated with ˆ 'U and '
0Λ̂  limit the effectiveness of the 

whitening transformation compared with the ideal case in which 
the autocorrelation matrix of 'rs  is perfectly known. For the 

same reason, even if 'εσ  can be chosen arbitrarily small, in 
practice it is pointless to choose a value lower than the largest 

uncertainty affecting the elements of '
0Λ̂ . In any case, if 

2 2'ε εσ σ< , then the signal noise floor after disturbance 
whitening is certainly lower than before applying (10). 

C.  Taylor Kalman Filter (TKF) description 

To derive the TKF, the Taylor’s series of the phasor p(t) 
around the reference time tr is considered. In practice, the series 
is truncated to the second order since using higher-order terms 
does not lead to significant accuracy improvements [35]. Thus,  

2
0, 1, 2,( ) ( )r r r rP n P r n p p n p n= + ≈ + +  (12) 

where ˆ ˆ1 1
2 2,...,N Nn − −= −  and 1 1

, ! k
s

r

k

k r k kf
t

d pp
dt

=  for k = 0,1,2 

are the coefficient of the phasor Taylor’s series computed at 
time tr. Assuming to a first approximation that all disturbances 
are made negligible by the whitening step, then each element of 
vector ˆry  be expressed as a function of (12) as follows, i.e.  

0 02 * * * 2
0, 1, 2, 0, 1, 2,( ) ( )

ˆ ( ) 2
2

j n j n
r r r r r r

r
p p n p n e p p n p n e

y n
ω ω−+ + + + +

≈   (13) 

where “*” denotes the complex conjugate operator. Thus, if the 
phasor Taylor’s series coefficients are included into the column 

vector pr= �p2,r, p1,r, p0,r ,p0,r
* , p1,r

* ,p2,r
*  �

T
 and the observation 

intervals shift by one sample at a time, the phasor dynamic can 
be expressed by [35] 

1r rA+ =p p  (14) 
where the system matrix is 

1 0 0 0 0 0
2 1 0 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 2
0 0 0 0 0 1

A

 
 
 
 

=  
 
 
 
  

.   (15) 

Moreover, by exploiting the fundamental frequency estimated 
through (10), expression (13) can be rearranged into a matrix 
form as follows, i.e.  

( )0ˆ ˆr rB ω=y p  (16) 

where ( ) ( ) ( )0 1 0 2 0ˆ ˆ ˆB B Bω ω ω =    is a N̂  × 6 matrix 
consisting of the following blocks, i.e., 

( )

( ) ( )

( ) ( )

0 0 0

0 0 0

ˆ ˆ ˆ1 1 1ˆ ˆ ˆ2ˆ ˆ2 2 21 1
2 2

1 0

ˆ ˆ ˆ1 1 1ˆ ˆ ˆ2ˆ ˆ2 2 21 1
2 2

2ˆ 0 0 1
2

N N Nj j j
N N

N N Nj j j
N N

e e e

B

e e e

ω ω ω

ω ω ω

ω

     − − −
          − + − +     

     − − −
− − −          − −     

 
 
 
 
 
 =
 
 
 
 
  

  

  

 (17) 

and 
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( )

( ) ( )

( ) ( )

0 0 0

0 0 0

ˆ ˆ ˆ1 1 1ˆ ˆ ˆ2ˆ ˆ2 2 21 1
2 2

2 0

ˆ ˆ ˆ1 1 1ˆ ˆ ˆ2ˆ ˆ2 2 21 1
2 2

2ˆ 1 0 0
2

N N Nj j j
N N

N N Nj j j
N N

e e e

B

e e e

ω ω ω

ω ω ω

ω

     − − −
− − −          − + − +     

     − − −
          − −     

 
 
 
 
 
 =
 
 
 
 
  

  

  

 (18) 

If the data within each adjusted interval are weighted by a 
window function whose coefficients are arranged into a 
N̂  × N̂  diagonal matrix Ω (with N̂IΩ =  if the rectangular 
window is used), then the weighted vector of whitened 
measurement data is ˆr r= Ωz y , and the whole dynamic system 
that is used to build the TKF is 

( )
1

0ˆ
r r r

r r r

A
H ω

+ = +
 = +

p p η
z p w

 (19) 

where ηr is the column vector including the synchrophasor 
model errors (e.g., due to both Taylor’s series truncation and 
possible signal components that are not included in the signal 
model), ( ) ( )0 0ˆ ˆH Bω ω= Ω  and wr is the vector composed by 
the weighted samples of noise that affect the signal after 
disturbance whitening. Of course, the elements of ηr and wr can 
be reasonably assumed to be uncorrelated and white. Quite 
importantly, the correlation in time of the elements of wr is  
negligible because, even if the observation intervals are shifted 
by one sample at a time, the whitening transformation (10), 
which is performed at every iteration of the filter, refreshes the 
uncertainty contributions associated with ˆry  at each time step. 
 From the Kalman filter definition applied to (19), it follows 
that the equations of the prediction step are [41]  

1

1

ˆ ˆr r

r r

A

A A E

+
+

+
+

 =

Γ = Γ +

p p
 (20) 

where superscript “+” represents the one-step-ahead predicted 
quantities, Γr is the state estimation covariance matrix and E is 
the covariance matrix of ηr. This matrix is constant, since the 
Taylor’s series model errors can be assumed to be stationary and 
white. 

In the update step the equations of the TKF are  

1 1 1 1

1 6 1 1

ˆ ˆ ˆ( )

( )
r r r r r

r r r

G H

I G H

+ +
+ + + +

+
+ + +

 = + −

Γ = − Γ

p p z p
 (21) 

where 
1

1 1 1( )T T
r r rG H H H R+ + −
+ + += Γ Γ +  (22) 

is the so-called Kalman gain matrix and R in (22) is the 
covariance matrix of wr.  
 By using the elements of ˆ rp , it finally results that the values 
of synchrophasor magnitude and phase, as well as fundamental 

frequency and ROCOF at reference time tr are given 
respectively by [26]: 

( ) 0,ˆ ˆ2r ra t p=       ( ) 0,ˆ ˆr rt pϕ = ∠   (23) 

( ) ( )*
nom 1, 0,2

0,

ˆ ˆ ˆIm
ˆ2
s

r r r
r

f
f t f p p

pπ
= +   (24) 

 ( )
( ) ( ) ( )* * *2 2, 0, 1, 0, 1, 0,

2 4
0, 0,

ˆ ˆ ˆ ˆ ˆ ˆIm Re Im

ˆ ˆ

r r r r r rs
r

r r

p p p p p pf
ROCOF t

p pπ

 
 = − 
  

  (25) 

where functions Re(∙) and Im(∙) return the real and imaginary 
parts of their argument, respectively. It is worth reminding that 
estimators (24)-(25) are quite sensitive to noise [13]. However, 
since the PMU reporting rate is much lower than the sampling 
frequency, the streams of estimated data have to be decimated 
accordingly. Thus, as far as the frequency and ROCOF 
estimates are concerned, they can be averaged over a reporting 
period (e.g., over about M samples if the reporting rate is equal 
to fnom) to further reduce the random uncertainty contributions 
affecting (24)-(25). 

D.  Computational complexity 
The total computational complexity of the TW-TKF is given 

by the sum of the computational complexity of the three main 
stages of the algorithm shown in Fig. 1.  

• The computational complexity of the MUSIC algorithm 
is ( )3O N  [42]. In the case at hand, it is dominated by 

the estimation of the autocorrelation matrix and the 
following SVD computation, since the estimation of the 
normalized fundamental frequency requires just a few 
iterations for the reasons explained in Section III.A. 

• The disturbance whitening step requires the estimation 
of the autocorrelation matrix ˆ 'Q  over the adjusted 

interval, the SVD of ˆ 'Q , the computation of matrix Ŵ  
through (11) and the linear transformation (10). The 
computational complexity of the former three sub-steps 
is ( )3ˆO N , and it is mainly due to matrix multiplications. 

Thus, the computational burden of (10), whose 
complexity is ( )2ˆO N , is negligible. 

• Finally, recalling that the computational complexity of a 
Kalman filter grows cubically both with the number of 
state variables in the prediction step (i.e., 6 variables in  
the case at hand) and with the amount of data processed 
in the update step [43], it follows that the computational 
complexity of the proposed TKF is dominated by the 
update step. Hence, the complexity of the last step is 

( )3ˆO N . 

Ultimately, putting all together and recalling that N̂ N≈ , the 
asymptotic computational complexity of the TW-TKF 
algorithm is ( )3O N . Nevertheless, the overall processing 

burden is kept within reasonable limits because the TW-TKF is 
conceived to be applied over one-cycle-long or two-cycle-long 
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observation intervals and, consequently, over data records of 
limited size. For example, assuming a sampling frequency fs of 
some kHz (i.e., large enough to avoid harmonics aliasing), the 
number of samples N to be processed in each observation 
intervals is just in the order of a few hundreds. 

IV.  SIMULATION RESULTS 
In this Section, at first the harmonics rejection capability of 

the TW-TKF and the W-TKF is analyzed under realistic, 
borderline operating conditions compliant with the Standard EN 
50160:2010 for MV distribution systems [44]. Two different 
window functions are adopted for this study, i.e. rectangular and 
Hann. Then, the accuracy and the responsiveness of the basic 
TKF (namely without applying disturbance whitening), the W-
TKF, and the TW-TKF algorithms are evaluated in greater 
detail considering the P Class testing conditions specified in the 
IEEE/IEC Standard [8]. In all cases, the AC waveform nominal 
amplitude is normalized to 1 p.u., the system frequency fnom is 
50 Hz, the PMU sampling frequency fs is 5 kHz (so that M=100) 
with results decimated over one cycle (i.e., assuming that the 
reporting rate is 50 frame/s) and the SNR of the acquired signal 
is 66 dB (i.e., about 11 effective bits). Also, the value of 'εσ  
used to compute the whitening matrix is chosen in such a way 
that the SNR after the whitening step can potentially be so high 
as 96 dB. However, due to the uncertainty affecting ˆ 'Q , this 
value tends to degrade as the number and/or the severity of the 
disturbances to be removed grow.  

In the TKF implementation, the state estimation covariance 
matrix Γ0 is initialized to large diagonal dummy values (i.e., 10). 
The elements of the covariance matrix E in (20) result from the 
variations of the truncation errors of the Taylor’s series 
coefficients between reference times tr and tr+1, assuming that 
the phasor is affected by low-frequency amplitude and phase 
oscillations equal to 10% of the fundamental amplitude and 0.1 
rad, respectively. As a result, the diagonal elements of E range 
from about 2×10-5 for p2,r and p*

2,r to 4×10-3 for p0,r and p*
0,r, 

respectively. The elements of matrix R in (22) depend on both 
the expected noise floor after the whitening transformation and 
the window functions. For this reason, while in the rectangular 
window case the elements of the diagonal matrix R are all set 
equal to 2'εσ , when a different window is used, the diagonal 
elements are shaped by the squares of the window function 
coefficients.  

As far as the first kind of tests is concerned, the TVE, |FE| 
and |RFE| values are computed assuming that the absolute 
fractional off-nominal frequency deviation |δ| changes linearly 
between -4% and 4%, and all harmonics from the 2nd to the 25th 
affect the input voltage waveform. The amplitude of each 
harmonic is about 70% of the corresponding limit reported in 
the Standard EN 50160 [44], so that the overall Total Harmonic 
Distortion (THD) reaches the upper bound specified in the same 
Standard, i.e. 8%. The maximum TVE, |FE| and |RFE| values 
obtained with the proposed TW-TKF algorithm (solid lines) and 
the W-TKF one (dashed lines) resulting from 30 repeated tests 
over 2500 one-cycle-long (C = 1) or two-cycle-long (C = 2) 
observation intervals are plotted in Figs. 2 and 3 as a function 
of the off-nominal frequency deviation when the rectangular 
and the Hann window function, respectively, are considered. In 

every test the initial phase of the fundamental is increased 
linearly from –π and π, while the initial phase values of the 
harmonics are changed randomly in the same interval with a 
uniform distribution.  

The large sensitivity of the W-TKF technique to the off-
nominal frequency deviations is visible in all cases (especially 
for frequency estimation), whereas this problem completely 
disappears with the new TW-TKF approach thanks to both 
observation interval adjustment and matrix coefficient tuning in 
(17)-(18). In fact, in the latter case all TVE, |FE| and |RFE| 
values are approximately constant and almost always they are 
much lower than those obtained with the W-TKF when the same 
number of cycles is observed. In addition, while in the W-TKF 
case the gap between the TVE, |FE| and |RFE| values may 
depend on the observation intervals length, the TW-TKF 
accuracy over two-cycle-long intervals is just slightly better 
than over one-cycle-long intervals regardless of the window 
function considered. It is worth noticing that most of the TW-
TKF results obtained with the Hann and the rectangular window 
are generally comparable. Therefore, for the sake of brevity and 
considering the higher computational burden of Hann 
windowing, just the rectangular window with C = 1 or C = 2 
will be used in the following to run the Monte Carlo simulations 
in the P Class testing conditions reported in the IEEE/IEC 
Standard. Such conditions are listed below, i.e.  
• off-nominal frequency deviation within ±2 Hz; 
• off-nominal frequency deviations within ±2 Hz and one 

harmonic at a time (from the 2nd to 50th) with amplitude equal 
to 1% of the fundamental; 

• sinusoidal Amplitude Modulation (AM) with a modulation 
index equal to 0.1 and frequency equal to 2 Hz;  

• sinusoidal Phase Modulation (PM) of amplitude equal to 0.1 
rad and frequency equal to 2 Hz; 

• larger input wideband noise such that SNR=54 dB (this 
condition is not included in the IEEE/IEC Standard but it 
allows to analyze the estimator robustness to noise); 

• linear frequency ramps at a rate of ±1 Hz/s within the interval 
[fnom - 2  Hz, fnom + 2  Hz]. 

• ± 10% amplitude step changes and ±π/18 phase step changes. 
 Again, the initial phase of the fundamental is increased 
linearly between –π and π, while the initial phase values of both 
harmonics and modulating tones are chosen randomly within      
[-π, π], with a uniform distribution. Every test is repeated 100 
times.  Tables I and II show the maximum TVE, |FE|, and |RFE| 
values obtained with the basic TKF, the W-TKF and the TW-
TKF algorithms using the rectangular window over one-cycle-
long and two-cycle-long observation intervals, respectively. It 
should be noted that all the reported values are decimated over 
one-cycle observation intervals, as explained at the end of 
Section III.C. The main remarks resulting from the analysis of 
the data shown in Tables I and II are summarized below. 
• When just the off-nominal frequency deviation is 

considered, the TW-TKF is the only method that meet all the 
IEEE/IEC Standard limits, and particularly the |FE| and the 
|RFE| ones over both one-cycle-long and two-cycle-long 
intervals. This is mainly due to the tuning of the TKF output 
matrix consisting of submatrices (17)-(18), since in this case 
no sinusoidal disturbances affect the acquired signal. The 
W-TKF results shown in Tables I and II are better than those 
reported in [12] since in this paper the noise floor is lowered 
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by the whitening transformation, as explained in Section 
III.B. 

• The excellent harmonics rejection capability of the 
whitening-based methods shown in Fig. 2 is confirmed also 
by the results reported in Tables I and II. Observe that, while 
the TKF is sensitive to harmonics, particularly the low-order 
ones (as expected [12]), the W-TKF estimator greatly 
reduces their impact. Quite importantly, the relative impact 
of harmonics whitening on TKF decreases and becomes 
negligible as the harmonic order grows. For this reason, the 
results obtained with the harmonics ranging from the 4th to 
the 49th are omitted for the sake of brevity since they take 
values between those shown in the Tables for the 3rd and the 
50th harmonic. The proposed TW-TKF algorithm further 
improves the effectiveness of disturbance whitening and 
synchrophasor, frequency and ROCOF estimation accuracy 
under the joint effect of harmonic distortion and frequency 
deviations. As a result, the maximum TVE, |FE| and |RFE| 
values are compliant with the limits specified in IEEE/IEC 
Standard even when one-cycle-long intervals are 
considered. Moreover, the results obtained when C=2 are 
just slightly lower.  

• When AM or PM modulations are considered, the W-TKF 
and the TW-TKF algorithms still meet the IEEE/IEC 
standard limits in both testing conditions. However, while 
the maximum TVE and |RFE| values achieved with the 
whitening-based algorithms are generally comparable with 
those of the basic TKF over one-cycle-long intervals, the 
maximum |FE| values are considerably worse, especially in 
the PM case. Moreover, over two-cycle-long intervals the 
accuracy of both whitening-based algorithms degrades, as 
already reported in [34]. This behavior is due to the fact that, 
by prolonging the observation intervals, the whitening 
transformation tends to decorrelate not only the 
disturbances, but also the fundamental amplitude or phase 

modulating tones, thus decreasing the TKF capability to 
track amplitude and phase variations. For this reason and 
recalling that the computational complexity of the algorithm 
grows cubically with the number of samples within each 
interval, the proposed approach is not suitable to estimate 
the waveform parameters over observation intervals 
consisting of several cycles. 

• Not surprisingly, the simulations performed without 
narrowband disturbances with f0=fnom and SNR=54 dB show 
that the maximum TVE, |FE| and |RFE| values are visibly 
larger than those in the nominal case when SNR=66 dB. 
Indeed, even if the whitening transformation in principle 
replaces the noise eigenvalues with lower ones, the input 
wideband noise unavoidably affects the variance of 
estimator ˆ 'Q  and consequently the uncertainty associated 
with the estimation of its eigenvectors and eigenvalues. 

• In the linear frequency ramp tests, the influence of the 
whitening transformation is almost negligible since no 
narrowband disturbances are present. However, the results 
obtained with the TW-TKF are globally slightly better than 
those achieved with the other techniques due to the joint 
effect of observation interval adjustment and TKF matrix 
elements tuning. 

• Finally, the results of amplitude and phase step tests reported 
in Tables I and II show in most cases a significant decrease 
of the maximum TVE, |FE| and |RFE| values obtained with 
the W-TKF and TW-TKF algorithms, compared with those 
returned by the basic TKF. The only exceptions are the TVE 
values computed over two-cycle-long observation intervals. 
These results are unexpected because the whitening 
transformation is not conceived to improve estimation 
accuracy under transient conditions. 
 

 

Fig. 2. Maximum TVE, |FE| and |RFE| values obtained with the W-TKF 
(dashed lines) and the TW-TKF (solid lines) using the rectangular 

window over one-cycle-long and two-cycle-long observation intervals 
under the joint effect of off-nominal deviations up to ±4% and 25 

harmonics compliant with the EN Standard 50160:2010 with THD=8%. 
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Fig. 3. Maximum TVE, |FE| and |RFE| values obtained with the W-TKF 
(dashed lines) and the TW-TKF (solid lines) using the Hann window 

over one-cycle-long and two-cycle-long observation intervals under the 
joint effect of off-nominal deviations up to ±4% and 25 harmonics 

compliant with the EN Standard 50160:2010 with THD=8%. 
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TABLE I 
MAXIMUM TVE, |FE| AND |RFE| VALUES OBTAINED WITH THE BASIC TKF, THE W-TKF TECHNIQUE AND THE TW-TKF 

ALGORITHM OVER ONE-CYCLE-LONG OBSERVATION INTERVALS USING THE RECTANGULAR WINDOW IN MULTIPLE TESTING 
CONDITIONS. THE P CLASS LIMITS REPORTED IN THE IEEE/IEC STANDARD 60255-118-1:2018 (WHEN SPECIFIED) ARE SHOWN. 

 
Test Condition 

 

TVEaax [%] |FE|max [mHz] |RFE|max [Hz/s] 

Lim. 
C = 1 

Lim. 
C = 1 

Lim. 
C = 1 

TW-TKF W-TKF TKF TW-TKF W-TKF TKF TW-TKF W-TKF TKF 
Freq. Dev. only (±2 Hz) 1 0.04 0.04 0.08 5 2 6 6 0.4 0.4 0.5 0.9 
Freq. Dev (±2Hz) + 1% 

2nd Harmonic 
1 0.04 0.17 1.85 5 2 6 15 0.4 0.4 1.0 8.8 

Freq. Dev (±2Hz) + 1% 
3rd Harmonic 

1 0.04 0.12 0.81 5 2 6 13 0.4 0.4 0.6 5.3 

Freq. Dev (±2Hz) + 1% 
50th Harmonic 

1 0.04 0.04 0.19 5 2 6 6 0.4 0.4 0.5 0.7 

AM (2 Hz 10% 
modulating tone) 3 0.05 0.06 0.07 60 6 6 2 2.3 0.4 0.4 0.6 

PM (2 Hz 0.1 rad 
modulating tone) 3 0.05 0.05 0.07 60 26 26 3 2.3 0.6 0.6 0.6 

AWGN (SNR=54) - 0.12 0.12 0.26 - 7 7 9 - 1.0 1.0 2.6 
Linear freq. ramp (within 

±2 Hz @±1 Hz/s) 1 0.04 0.04 0.07 10 3 11 7 0.4 0.4 0.6 0.9 

±10% amplitude step 
change - 6.07 6.05 8.35 - 220 210 710 - 83.0 86.4 443 

±π/18 phase step  
change - 10.70 10.66 14.61 - 1386 1387 2750 - 217 219 838 

TABLE II 
MAXIMUM TVE, |FE| AND |RFE| VALUES OBTAINED WITH THE BASIC TKF, THE W-TKF TECHNIQUE AND THE TW-TKF 

ALGORITHM OVER TWO-CYCLE-LONG OBSERVATION INTERVALS USING THE RECTANGULAR WINDOW IN MULTIPLE TESTING 
CONDITIONS. THE P CLASS LIMITS REPORTED IN THE IEEE/IEC STANDARD 60255-118-1:2018 (WHEN SPECIFIED) ARE SHOWN. 

 
Test Condition 

 

TVEaax [%] |FE|max [mHz] |RFE|max [Hz/s] 

Lim. 
C = 2 

Lim. 
C = 2 

Lim. 
C = 2 

TW-TKF W-TKF TKF TW-TKF W-TKF TKF TW-TKF W-TKF TKF 
Freq. Dev. only (±2 Hz) 1 0.02 0.03 0.04 5 0.8 12 13 0.4 0.05 0.07 0.3 
Freq. Dev (±2Hz) + 1% 

2nd Harmonic 
1 0.02 0.10 0.32 5 0.8 13 15 0.4 0.06 0.07 0.4 

Freq. Dev (±2Hz) + 1% 
3rd Harmonic 

1 0.02 0.10 0.17 5 0.8 13 14 0.4 0.06 0.07 0.4 

Freq. Dev (±2Hz) + 1% 
50th Harmonic 

1 0.02 0.03 0.04 5 0.8 13 13 0.4 0.05 0.07 0.3 

AM (2 Hz 10% 
modulating tone) 3 0.07 0.07 0.04 60 6 6 1 2.3 0.6 0.6 0.2 

PM (2 Hz 0.1 rad 
modulating tone) 3 0.07 0.07 0.04 60 49 50 3 2.3 0.7 0.8 0.2 

AWGN (SNR=54) - 0.08 0.08 0.12 - 3 3 5 - 0.2 0.2 0.6 
Linear freq. ramp (within 

±2 Hz @±1 Hz/s) 1 0.03 0.04 0.03 10 2 25 12 0.4 0.1 0.1 0.3 

±10% amplitude step 
change - 5.94 5.92 5.61 - 53 63 140 - 5.4 5.2 25.2 

±π/18 phase step  
change - 10.42 10.40 9.86 - 687 680 1120 - 33.9 33.7 137 

 
 
The reasons of this behavior are not fully clear. The plots 
showing the TVE, |FE| and |RFE| envelopes as a function of 
time (not reported for the space constraints) confirm not only 
that the maximum errors occur a few samples after the instant 
when the amplitude or phase step occurs, but also that the TVE, 
|FE| and |RFE| ripples resulting from the applications of the 
whitening-based techniques are usually smoother and spread 
over a longer time interval than those obtained with the basic 
TKF. For this reason, the W-TKF and TW-TKF response times 
associated with synchrophasor, frequency and ROCOF 
estimation and shown in Table III for both C=1 and C=2 cycles 

are approximately the same and they are roughly twice as long 
as those of the basic TKF. It is worth recalling that in the case 
of P Class PMUs, the response times to an input step change are 
defined as the time intervals elapsed between the instant when 
the TVE, |FE| or |RFE| values exceed a specified threshold (i.e., 
1%, 5 mHz or 0.4 Hz/s, respectively) and the instant after which 
a new steady state is reached and such limits are no longer 
violated. All the response time values reported in Table III are 
expressed in nominal power line cycles. 
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TABLE III 
MAXIMUM SYNCHROPHASOR, FREQUENCY AND ROCOF RESPONSE TIMES OBTAINED WITH THE BASIC TKF, THE W-TKF 
TECHNIQUE AND THE TW-TKF ALGORITHM OVER ONE-CYCLE-LONG AND TWO-CYCLE-LONG INTERVALS USING THE 
RECTANGULAR WINDOW WHEN AMPLITUDE OR PHASE STEPS OCCUR. THE P CLASS LIMITS SPECIFIED IN THE IEEE/IEC 

STANDARD 60255-118-1:2018 ARE ALSO SHOWN FOR THE SAKE OF COMPARISON. 

 
Test Condition 

 

Window 
Length 
[cycles] 

Synchrophasor response time 
[cycles] 

Frequency response time 
[cycles] 

ROCOF response time 
[cycles] 

Lim. TW-TKF W-TKF TKF Lim. TW-TKF W-TKF TKF Lim. TW-TKF W-TKF TKF 

±10% amplitude step 
change 

1 2 1.55 1.60 0.96 4.5 1.90 1.92 0.98 6 1.97 2.00 - 
2 2 2.83 2.84 0.86 4.5 3.82 3.82 1.96 6 3.87 3.87 1.98 

±π/18 phase step  
change 

1 2 1.81 1.81 0.98 4.5 1.95 1.96 0.98 6 2.29 2.31 - 
2 2 3.37 3.37 1.86 4.5 3.88 3.88 1.98 6 3.93 3.93 1.98 

 
 
The longer transient of the whitening-based TKFs is certainly 
due to the fact that, even if the parameters of the fundamental 
component are estimated over each observation interval, two 
disjoint intervals are used to estimate the autocorrelation 
matrices needed for frequency estimation and disturbance 
whitening. As a result, the P Class response time limits 
specified in the IEEE/IEC Standard are fully met by the W-TKF 
and TW-TKF algorithm only over one-cycle-long intervals. On 
the other hand, even if the basic TKF exhibits a shorter latency 
in all step tests, its ROCOF response times over one-cycle-long 
intervals are undefined because the maximum |RFE| values are 
never steadily below the specified P Class limit, i.e. 0.4 Hz/s. 

V.  EXPERIMENTAL RESULTS IN REAL TRANSIENT CONDITIONS 
The performance of the TW-TKF, the W-TKF and the basic 

TKF algorithm were finally analyzed and compared using some 
IEEE Project Group 1159.2 experimental data records. Such 
data records consist of several 60-Hz three-phase waveforms 
acquired with a sampling rate fs = 15.360 kHz, so that M=256 
samples per nominal cycle are collected. The signals are 
affected by a variety of anomalous transient events. Figs. 4(a) 
and 5(a) show two of such waveforms, which exhibit short 
voltage dips and a sudden THD increment, respectively. Figs. 
4(b) and 5(b) display instead the corresponding sample-by-
sample estimates of amplitude, frequency, phase, frequency and 
ROCOF returned by the original TKF (dotted lines), the W-TKF 
(dashed lines) and the TW-TKF algorithm (thick solid lines) 
over one-cycle-long observation intervals. The results obtained 
over two-cycle-long intervals are not reported because the data 
records and the transient events have a very short duration. 
Therefore, to visualize more clearly the tracking capability of 
the algorithms under test, the results obtained with C = 1 are 
preferable even if the estimation accuracy is certainly worse 
than over two-cycle-long intervals. Quite importantly, the TVE, 
|FE| and |RFE| patterns are not reported in this case because the 
actual reference values of amplitude, phase, frequency and 
ROCOF are unknown and cannot be estimated with controlled 
uncertainty. Hence, the results shown in Figs. 4(b) and 5(b) 
provide just a qualitative, but significant comparison between 
the three algorithms under test. In this regard, it is evident that 
the TW-TKF algorithm ensures a very good responsiveness as 
well as a better accuracy and a much higher disturbance 
rejection capability than that of both the basic TKF and the W-
TKF estimator. The performance gap is boosted by the fact that 
no output decimation and averaging is applied to the output 
streams of estimates. In fact, due to the very high sampling 

frequency of the original data records, the effect of noise on 
sample-by-sample estimates (particularly those of frequency 
and ROCOF) is particularly high, in accordance with the 
theoretical analysis reported in [13]. The fluctuations of all the 
estimates returned by the TW-TKF are indeed several order of 
magnitude smaller than those of the original TKF. Also, the 
TW-TKF algorithm is clearly less sensitive than the W-TKF 
estimator to both possible overshoots during amplitude changes 
(see results in Fig. 4(b)) and harmonic distortion (see amplitude 
estimation in Fig. 5(b)).  

VI.  CONCLUSIONS 
In this paper, a Tuned Whitening-based Taylor-Kalman Filter 

(TW-TKF) for synchrophasor magnitude, phase, frequency and 
ROCOF estimation is presented. The proposed algorithm 
improves the performance of a basic TKF in two ways, i.e.  

• through a preliminary estimation of the fundamental 
frequency, which allows both to process the samples of 
an almost integer number of actual power line cycles and 
to tune the coefficients of the output matrix used in the 
update step of the TKF; 

• through a linear whitening transformation conceived to 
decorrelate possible narrowband disturbances.  

The results obtained in the P Class testing conditions specified 
in the IEEE/IEC Standard 60255-118-1-2018 show an 
impressive accuracy improvement in steady-state conditions, 
namely under the joint effect of off-nominal frequency 
deviation and noise even over one-cycle-long intervals. Quite 
unexpectedly, tangible benefits were observed even when 
amplitude or phase steps occur. In such conditions the peak 
TVE, |FE| and |RFE| values obtained with the TW-TKF 
approach are lower than those returned by a basic TKF, but the 
response times are roughly double. Nevertheless, the TW-TKF 
ensures full compliance with both the accuracy and response 
time limits specified in the IEEE/IEC Standard for P Class PMUs 
over one-cycle-long observations at a reasonable computational 
cost. The benefits of the TW-TKF algorithm compared with the 
other estimators under transient conditions are also well visible 
when experimental data records are used.  

APPENDIX A 
DISTURBANCE WHITENING TRANSFORMATION PROOF 

Given the autocorrelation matrix 'Q  of an input data vector
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'rs  decomposed into signal and noise subspaces as expressed 
in (8), the purpose of disturbance whitening is to find the matrix 
W such that the autocorrelation matrix of vector 'r rW= ⋅y s  
has the same eigenvectors of 'Q , but it contains only the 
eigenvalues of the fundamental component and those of a white 
noise floor with power, i.e. 

{ } 0' T
2

ˆ 2

0
' '

0 '
T

W r r
N

Q E U U
Iεσ −

Λ 
= =  

  
y y  (A.1) 

Since ' T'WQ WQ W=  and recalling that 'Q  is a positive 
semidefinite (and therefore symmetric) matrix, (A.1) can be 
rewritten as  

1 1
2 2

1 1
2 2

1 1
2 2

0 0 T
' '
0 0

T0 0

ˆ ˆ2 2

0 0
' '

0 0

0 0   ' '
0 ' 0 '

T

N N

WU U W

U U
I Iε εσ σ− −

   Λ Λ    =   
Λ Λ      

   Λ Λ   
   
   

 (A.2) 

 Therefore, considering just the right half of both sides of 
equation (A.2) and recalling that 1 T' 'U U− =  because it is 

orthogonal, it finally results that  

1
2

2 T
'
0

0
' '

0 '

I
W U U

εσ
−

 
 =
 Λ 

. (A.3) 
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