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Time-inverted Kuramoto Model Meets Lissajous
Curves: Multi-Robot Persistent Monitoring and

Target Detection
Manuel Boldrer1, Lorenzo Lyons1, Luigi Palopoli2, Daniele Fontanelli2, Laura Ferranti1

Abstract—This work proposes a distributed strategy to achieve
both persistent monitoring and target detection in a rectangular
and obstacle-free environment. Each robot has to repeatedly
follow a smooth trajectory and avoid collisions with other robots.
To achieve this goal, we rely on the time-inverted Kuramoto
dynamics and the use of Lissajous curves. We analyze the
resiliency of the system to perturbations or temporary failures,
and we validate our approach through both simulations and
experiments on real robotic platforms. In the latter, we adopt
Model Predictive Contouring Control as a low level controller to
minimize the tracking error while accounting for the robots’
dynamical constraints and the control inputs saturation. The
results obtained in the experiments are in accordance with the
simulations.

Index Terms—Multi-Robots, Distributed Control, Kuramoto
model, Persistent Monitoring, Target Detection

I. INTRODUCTION

AUTONOMOUS robots, such as ground robots or un-
manned aerial vehicles, are increasingly used to perform

sensitive, but repetitive tasks, such as helping human operators
monitor high-risk or contaminated areas. These tasks require
multiple robots to collaborate to efficiently cover a target re-
gion. To achieve this goal, in the last decade distributed control
strategies for robots’ coordination have emerged as an effective
and reliable solution. The use of multiple robots offers many
advantages over the use of a single robot, especially when the
task requires optimizing the spatial organization of the agents
(like in coverage). Two recognized benefits of this solution
are the performance improvement coming from the natural
exploitation of parallelism and sensors distribution, and the
increased robustness due to redundancy and/or diversity in the
system. This paper focuses on the design of a resilient coor-
dination strategy for a team of autonomous robots performing
persistent monitoring of a known mission space and target
detection.
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A. Related work

Coverage problems, like the one considered in this work, are
widely addressed in the literature. They can be classified in
two broad categories: static coverage and dynamic coverage.
The aim of static coverage is to deploy the robots in a final
configuration that minimize a coverage cost function [1], [2],
[3]. When the number of robots or the sensing range is not
sufficient to statically cover the mission space, dynamic cover-
age comes into play. Different papers in the literature address
this problem, both considering unknown environments [4], [5],
well-defined points of interest to visit or a desired path to
monitor periodically [6], [7].
A problem that is strictly related to coverage is target detec-
tion. The aim is to coordinate the robots’ motion in order to
maximize the probability to detect an event or a target in the
mission space. This is not an issue for static coverage since the
environment is completely and constantly covered after that
the equilibrium is reached. On the other hand, target detection
is not guaranteed for dynamic coverage. In a recent survey [8],
the authors classify different approaches on the basis of the
guarantees that the algorithm can provide, that is, worst-case
guarantees, probabilistic and none. In the capture problem,
the agents have to sweep a given area providing worst-case
guarantees. In other words, if the target is in the area of interest
it must be detected in finite-time. The two main approaches
in the literature rely on graph clearing [9] or geometry-based
strategies [10]. A distributed approach for the capture problem
is proposed in [11]. When resources are limited (e.g., in the
number of agents or in the available time), it is reasonable
to rely on probabilistic search, where probabilities of target
detection can be estimated [12], [13].
Target detection and persistent monitoring become signifi-
cantly more complex in presence of additional requirements
on the trajectories followed by the robot. To the best of
our knowledge, Borkar et al. [14] is the only method that
guarantees target detection, persistent monitoring for each
agent and collision avoidance, without relying on sharp turns
and additional path planners to enable repetition. The main
drawback of this solution is that, since they provide an open
loop control strategy, it is highly sensitive to uncertainties,
disturbances or failures. More recently, Borkar et al. [15]
adopted a distributed and robust tracking system to follow
reference points that are still computed in open loop and in
a centralized fashion. Yao et al. [16] propose a coordination
strategy based on guiding vector fields and consensus, however
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they have to specify the desired distance between robots, hence
they have to rely on the number of agents in the network, to
achieve the desired robot deployment.

B. Paper contribution and organization

In our previous works [17], [18], we introduced the idea of
using time-inverted Kuramoto dynamics for static and dynamic
coverage applications. By taking inspiration from [14], we
exploit the properties of the Lissajous curves to achieve
dynamic coverage and guarantee, at the same time, target
detection in a finite-time.
Our contribution is fourfold. First, we propose a novel dis-
tributed strategy for persistent monitoring and target detec-
tion in rectangular and obstacle-free spaces. In particular,
we exploit the properties of the time-inverted Kuramoto dy-
namics [17], combined with the properties of the Lissajous
curves [14] to achieve the goal. Second, we provide sufficient
conditions for resiliency to perturbation in the case of tracking
errors due to disturbances or agents’ failures. Third, we pro-
vide two possible solutions to avoid collisions between agents
during the transient. Finally, to test the effectiveness of our
method on a real robotic platform, we introduce a tailored low-
level controller based on Model Predictive Contouring Control
(MPCC) to minimize the tracking errors, while accounting
for the robots’ dynamical constraints and the control inputs
saturation.
The paper is organized as follows. Sec. II describes the prob-
lem setup and provides all the required background material.
Sec. III shows the properties that emerge by combining the
time-inverted Kuramoto dynamics with the Lissajous curve.
Sec. IV provides the analysis of the resiliency to perturbation
and collision avoidance between agents. Sec. V motivates the
use of the time-inverted Kuramoto model in comparison with
state-of-the-art methods. Sec. VI shows the details of the low-
level MPCC designed for the experiments on car-like robots.
Sec. VII describes the experimental setup and the results.
Sec. VIII concludes the paper.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

This paper addresses the persistent monitoring problem joined
with target detection. This problem can be formulated as
follows:
Problem 1. Given a convex and rectangular space of di-
mensions [−A,A] × [−B,B], and N homogeneous robotic
agents with an omnidirectional sensing range of radius rs,i,
synthesize a distributed control law that satisfies the following
requirements:

1) all the rectangular search space must be swept up
continuously and by all the robots’ sensors;

2) if a rogue element is introduced into the mission space,
its presence is detected in finite-time;

3) avoid collisions between robots;
4) the robots must follow smooth trajectories, i.e., without

discontinuities or sharp turns.

A. Graph topology constraints

Given N mobile robots V = {1, . . . , N}, we assume that the
i–th robot can communicate with the j–th robot if (i, j) ∈ E .

2A

2B

rs,i

ri

[xi, yi] = r(θi)

Figure 1: We show the problem setup. The space of interest is a
rectangular space [−A,A]× [−B,B], the N = 5 robots are depicted
as blue circles and their motion is constrained on the closed dashed
curve L. The i–th robot has a sensing radius rs,i and an encumbrance
radius ri. The edges of the ring topology are depicted as orange links.

Let us denote with V(i) the i–th entry of V . In this paper we
assume to have a constant and undirected ring-like topology,
that is, E = {(V(i), j) : j = V(i + 1),∀i = 1, . . . , N − 1} ∪
{(V(i), j) : j = V(i−1),∀i = 2, . . . , N}}∪{(V(1),V(N))}∪
{(V(N),V(1))}, where we allow to have an arbitrary order
of the V entries. We indicate this set of edges with R, and
we indicate with Ri = {j : (i, j) ∈ R}. In practice each
agent exchanges information with exactly 2 robots, and the
overall communication graph topology G(V,R) results to be
connected. This constraint is necessary to obtain the desired
equilibrium configurations (for more details see [17], [18]).

B. Motion constraints

The robots are constrained to move along a closed path
L ⊂ R2, which can be represented in parametric form as
r(γ) : R → R2, where γ ∈ [0, 2π]. The position of the i–
th robot is r(θi), where θi ∈ R identifies the i–th robot’s
state. Figure 1 depicts the problem setup. Given this setup
we want to coordinate the robots along a closed path so
that the previously mentioned requirements are satisfied. To
solve this problem, we first impose the time-inverted Kuramoto
dynamics to the robots’ states θ = [θ1, . . . , θN ]>. Second, on
the basis of the mission space [−A,A] × [−B,B], the i-th
agent’s sensing range rs,i, and the i-th agent encumbrance ri,
we properly select the number of agents N and the Lissajous
curve L on which we constrain the motion of each agent.
Remark 1. The assumption of having a robot that perfectly
moves along a desired path is quite optimistic in an experimen-
tal setup, especially due to dynamic constraints and control
inputs saturation. As discussed in our experimental section,
the problem can be effectively solved using state–of–the–art
path tracking algorithms.

C. Time-inverted Kuramoto dynamics

The time-inverted Kuramoto model was introduced in [17] for
static coverage and in [18] for persistent monitoring of pre-
defined closed paths of interest. The time-inverted Kuramoto
dynamics can be expressed as:

θ̇i = ω −
∑
j∈Ri

sin (θj − θi) , ∀i = 1, . . . , N, (1)
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where ω identifies the natural frequency, that is, the desired
velocity of the robots at the equilibrium. The main results, on
which we will rely on, read as follows:
Theorem 1 (Convergence to the equilibrium [18]). The dy-
namical system (1) converges to the equilibrium point

θ?(p) = [θ0 + 2z1π, θ0 + 2z2π +
2πp

N
, . . .

. . . , θ0 + 2zNπ +
2πp(N − 1)

N
]>,

(2)

where θ0 ∈ R can be any real number, p ∈ Pk = {y ∈ Z |
y ∈ (N/4 + kN, 3N/4 + kN),∀k ∈ Z}, and zi ∈ Z for all
i = 1 . . . N .
This important theorem tells us that a subset of the equilibrium
configurations in (2) is stable. In particular, the configuration
is stable when the value of p in (2) is an integer value and
lives in the specified intervals.
Let us recall also the following:
Definition 1 (Cluster). A group Y of robots forms a cluster if
for every i, j ∈ Y there exists a k ∈ Z such that θi−θj = 2kπ.
Lemma 1 (κ-clustered coverage [18]). Given N > 2 and the
dynamics (1), the number of agents that cluster together at the
stable equilibrium point (2) is given by the greatest common
divisor between N and p, denoted by κ =gcd(N, p).
Lemma 2 (Equilibrium manipulation [18]). Given an odd
number of agents N > 2, being in the equilibrium con-
figuration (2) with p = N−1

2 , by considering the modified
equilibrium configurations θ̃?(

N−1
2 ) = αθ?(

N−1
2 ), we can

reconstruct all the equilibria θ?(p̄) with p̄ ∈ N, by tuning the
parameter α.

III. TIME-INVERTED KURAMOTO MEETS LISSAJOUS

In the preliminaries, we discussed the time-inverted Kuramoto
dynamics; a strategy that can be used to achieve κ-clustered
coverage on an arbitrary closed path L. In this section we
show that, by directly imposing the time-inverted Kuramoto
dynamics on the Lissajous curves, interesting properties arise.
The parametric form of a non-degenerative Lissajous
curve [19] can be expressed as follows

x(γ) = A cos(aγ), y(γ) = B sin(bγ) (3)

where γ is the parameter, a, b ∈ Z and a is an odd number.
By exploiting the results in [14], it can be show that the
coordinates at the equilibrium (2) i.e.,

(xi(γ), yi(γ)) =
(
A cos(θ

?(p)
i − aγ), B sin(θ

?(p)
i + bγ)

)
,

(4)
assuming a+ b = N , satisfy the equation

yi(γ)2

B2
+
xi(γ)2

A2
−2xi(γ)yi(γ) sin((a+ b)γ)

AB
= cos2((a+b)γ),

(5)
which represents a family of ellipses centred in the origin.
First of all let us derive conditions under which the 1-clustered
coverage formation is a stable configuration.
Theorem 2 (1-clustered coverage). Let us consider N > 2
and N 6= {4, 6}, by imposing (1) there always exists a stable
configuration that corresponds to the 1-clustered coverage
configuration.

Proof. By exploiting the result of Lemma 1 and the definition
of Pk given in Theorem 1, it is sufficient to prove that there
exists at least one value for p ∈ P0 that is co-prime with
respect to N . If N is a prime number e.g., N = {3, 5}, since
P0 is a nonempty set, the condition is satisfied. For N > 6
and N 6= 8, we have that card(P0) ≥ 4, hence we have one
of the two following cases: if N is odd, N−1

2 ∈ P0, and
gcd(N, N−1

2 ) = 1; if N is even we have {N2 −1, N2 −2} ∈ P0

and, due to the Euclidean algorithm [20], N is co-prime with
respect to at least one of the two values. To conclude the
proof, we notice that for N = 8, N

2 − 1 ∈ P0 and, again,
gcd(N, N2 − 1) = 1.

By relying on the theory behind the time-inverted Kuramoto
dynamics and the results given by [14], we are able to provide
conditions for collision avoidance, complete coverage and
target detection by assuming the robots to be in the equilibrium
configuration (4).
1) Collision avoidance: Let us assume N > 2 and N 6=
{4, 6}, by assuming the i–th agent to have a circular footprint
of radius ri, the condition ri < ri,max, ∀i = 1 . . . N ,
ensures collision avoidance at every 1-clustered equilibrium
configuration (2) (notice that a stable 1-clustered equilibrium
configuration exists in view of Theorem 2), where

ri,max = sin
( π
N

) AB√
A2a2 +B2b2

. (6)

2) Complete coverage: Ability to cover all the mission space
with the sensor range rs,i in a finite-time. Let us refer to as
nodes on the Lissajous curve the points at the intersections
and at the boundaries of the rectangular space of interest. It
is shown in [14] that the maximum x coordinate difference
between two adjacent node positions is given by xmax =
A sin( π2b ), while for the y coordinate ymax = B sin( π2a ). Then
the complete coverage condition can be written the following
condition on the sensing radii,

rs,i > max
{
B sin

( π
2a

)
, A sin

( π
2b

)}
, ∀i = 1 . . . N. (7)

3) Target detection: The ability to detect a target element
in the mission space in a finite-time. This condition has to
imply complete coverage (the opposite does not apply). The
sensing radius that ensures overlapping sensing range for each
κ-clustered equilibrium configuration (2) and for any γ value
reads as

rs,i ≥ sin

(
π

N/κ

)√
A2 +B2, ∀i = 1 . . . N. (8)

Notice that the maximum time required to detect a rogue
element in the space is given by Tmax = 2π/ω

N/κ .
Figure 2 shows the time evolution of the time-inverted Ku-
ramoto dynamics (1) on the Lissajous curve (3). We select the
parameters in order to satisfy collision avoidance and target
detection (as a consequence also complete coverage). Figure 3
presents the results related to the target detection. We simulate
the presence of n = 104 moving elements in the scenario
depicted in Figure 2, where N = 15 and ω = 0.05 (rad/s). The
maximum detection time Tmax = 8.38 (s) remains satisfied;
all the elements are detected in T ≤ 4.5 (s).
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Figure 2: Evolution in time of the time-inverted Kuramoto dynam-
ics (1) on the Lissajous curve (3), where N = a + b with a odd.
We select a sensing radius rs,i that satisfies the target detection
condition (8), and ri satisfying the collision avoidance condition (6).

nD = 5947

Figure 3: Number of new detections during the evolution of the time-
inverted Kuramoto model in Figure 2. We added in the environment
n = 104 moving elements. By setting ω = 0.05 (rad/s), all the
element are detected within 4.5 (s).

The authors in [14] provide these conditions by assuming
to place the agents in the 1-clustered equilibrium config-
uration (2) and by imposing a pre-defined velocity profile
Vi(γ). However, this approach is effective in an ideal scenario,
where there are not disturbances or unexpected events. In the
following section we show how the proposed algorithm allows
us to deal with these important practical issues.

IV. RESILIENCY OF THE SYSTEM

The resiliency of a networked system measures its capability
to recover promptly from unexpected events [21]. In particular,
we analyze how the system reacts to perturbations on the
agents’ positions, and to agents’ failures.
Theorem 3 (Resiliency to perturbation). Given the robots in
the equilibrium point θ?(p), with p ∈ Pk, by perturbing the
i–th agent by δθi, if

cos(θ
?(p)
i − θ?(p)j + δθi) < 0, ∀j ∈ Ri, (9)

then the equilibrium point θ?(p) remains unaltered.

Proof. Let us derive the Jacobian matrix J (p) of (1) associated
with the equilibrium θ?(p). The entries of the matrix J (p) are
as follows

J (p) =


aii =

∑
j∈Ri

cos
(
θ
?(p)
j − θ?(p)i

)
ahi =

{
− cos

(
θ
?(p)
h − θ?(p)i

)
, h ∈ Ri

0, h /∈ Ri
By applying the Gershgorin theorem [22], it can be noticed
that the condition cos(θ

?(p)
j − θ

?(p)
i + δθi) < 0, ∀j ∈ Ri,

ensures that all the eigenvalues associated with the linearized
system are nonpositive, hence the system does not leave the
equilibrium configuration θ?(p).

Figure 4: Final equilibrium configuration for the system (1) with
N = 10. The Lissajous curve is represented by a red dotted line and
its parameters are a = 7, b = 3, A = B = 5. The agents’ positions
on the curve are depicted as blue dots and the admissible perturbation
that maintain the same equilibrium configuration (it satisfies (9)) is
depicted as a green dashed line.

This is an important sufficient condition that ensures the
system to recover the initial equilibrium configuration, despite
an unexpected perturbation in the agents’ positions along the
curve. By exploiting the results of Theorem 3 we can extend
the findings to resiliency to agents’ failures:
Theorem 4 (Resiliency to agents’ failures). Suppose that
at the stable equilibrium θ?(p) one or more robots stop
their motion, If at every instant of time, cos(θj − θi) <
0, ∀j ∈ Ri,∀i = 1, .., N , then, if the stopped robots resume
the dynamics (1), the system still converges to the initial
configuration θ?(p).

Proof. In accordance with the proof of Theorem 3, if the
condition cos(θj − θi) < 0 is always satisfied then the system
cannot jump in another equilibrium configuration.

Remark 2. Notice that proof of Theorem 4 relies on the
linear approximation of the Kuramoto model. Nevertheless,
simulations and experiments support the condition found.
In Figure 4 we report the equilibrium configuration for the
case of N = 10, a = 7, b = 3, A = 5, B = 5. The
agents are represented by blue dots, the Lissajous curve is
the red dashed line, the edges of the graph topology are
specified by the solid orange lines, while the green dashed
line denotes the set of admissible positions of, e.g., robot 1
such that the condition (9) is satisfied. As a consequence,
by perturbing the robot position inside that range, the final
equilibrium configuration is recovered, as formally stated in
Theorem 3. In section V we provide a simulation to validate
the results on resiliency to agents’ failures.

A. Preserving collision avoidance

The condition in Equation (6) ensures collision avoidance
between the agents when they are in a 1-clustered equilibrium
configuration. When the system is not at the equilibrium,
i.e., has been perturbed, even if (9) is satisfied, we cannot
ensure collision avoidance. In order to address this problem,
we observe two solutions: i) implement a lower level controller
for collision avoidance or ii) design non-intersecting Lissajous
curves (it applies only for three dimensional spaces). The
former solution can be done by implementing a lower level
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Figure 5: Variation of the maximum agents’ occupancy radius
allowed to avoid collisions, with the parameters c and C in (10).

collision avoidance strategy e.g., [23], [24], [25]. This solution
is able to guarantee safety (also in the case of generic κ-
clustered configurations) at the price of deviating from the
Lissajous path or from the desired velocity. However, it may
lead to loss of target detection guarantees and/or complete
coverage, and it asks for updated convergence proofs.
On the other hand, the design of non-intersecting Lissajous
curves is not feasible in a two dimensional space (e.g., for
Unmanned Ground Vehicles). Nevertheless, it can be applied
in a three dimensional space (e.g., for Unmanned Aerial
Vehicles). In this case we can consider the three dimensional
Lissajous curve 

x(γ) = A cos(aγ)

y(γ) = B sin(bγ)

z(γ) = C sin(cγ).

(10)

Notice that, if a, b, c ∈ N are co-prime numbers, then we
obtain a Lissajous knot [26], which by definition avoids self-
intersections. This way, by adding a space dimension, we can
tune the parameters C and c in (10) to avoid collisions even
in the transient generated after a perturbation. In Figure 5, we
show the effects of the parameters c and C, on the maximum
radius ri,max that still guarantees collision avoidance.
Notice that we do not ensure collision avoidance for random
initial configurations (overtaking maneuvers can take place
between agents on the Lissajous curve). Nevertheless, at the
equilibrium, if a perturbation (which does not induce to
overtaking maneuvers) occurs and condition (3) is satisfied,
we have both collision avoidance guarantees and Lissajous
path following.

V. COMPARISON WITH STATE OF THE ART

The choice behind the time-inverted Kuramoto model, rather
than other strategies, is motivated by multiple factors. First, by
relying on Lemma 2 we can manipulate the final equilibrium
configuration according to specific requirements (e.g., we can
rely on κ-clustered configurations to increase the redundancy
in the system in order to account for sensing failures). To
the best of our knowledge this is a unique feature that other
existing approaches do not provide. Second, our approach
is resilient to disturbances or tracking errors, according to
Theorem 3. Third, our method can be easily adapted to any
parametric curve, such as non-degenerate Lissajous curves.
Beside these motivations, the main advantage of our approach
over the strategies proposed in [15], [14] is that we do not

(a)

(b)

Figure 6: Evolution in time of the states θ. Two robots fail and stop
working at time t1 = 9.6 (s). The robots resume their functions at
time t2 = 19.5 (s). In (a) the time-inverted Kuramoto model recovers
quickly to the equilibrium configuration, in (b) the solution proposed
in [15] does not.

directly assume a reference point computed in open loop and
in a centralized manner. Our method allows each agent to
locally compute a reference point on the basis of the agent’s
distance with respect to its neighbours. It enhances flexibility,
robustness and the coordination between agents. Moreover,
the number of agents N is only needed to properly compute
the Lissajous curve. Then, the coordination strategy remains
agnostic to the number of agents, that is, the knowledge of N
is not needed for coordination purposes since the information
is encoded in the Lissajous curve.
In the following, we provide a comparison between our
approach and the one proposed in [15], where we enforce
a finite-time failure of two agents. Figure 6 shows the results
of the comparison. With our approach, the robotic network
reacts to the agents’ failure and once the agents recover, since
conditions in Theorem 4 are met, the system goes back to the
initial equilibrium configuration. With the approach proposed
in [15], the robotic network does not react to the failures and,
after the agents recover their operation, the desynchronization
in the reference point generation leads to the loss of target
detection and collision avoidance guarantees. Figure 6 depicts
the evolution in time of the states θ. The system starts in
an equilibrium configuration. At time t1 two agents remain
stuck, while at t2 they resume functioning. Figure 6-(a) shows
the results obtained by relying on the time-inverted Kuramoto
model. It can be noticed that after t2 the system returns
to the initial equilibrium configuration. In contrast, with the
baseline that relies on an open loop reference in Figure 6-(b),
the system does not re-adapt autonomously and the desired
configuration (2) is not recovered.
Yao et al. [16], which is based on linear consensus [27]
and guiding vector fields, is another noteworthy approach to
coordinate the robots motion. The main advantage of our
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strategy with respect to the one proposed in this recent work
is due to the fact that the time-inverted Kuramoto dynamics,
as we already mentioned, can rely on multiple equilibrium
configurations, and it does not have to know a priori the num-
ber of robots in the system. On the other hand, a coordination
algorithm based on linear consensus has to specify the desired
distance between neighbours; in this way it is not possible to
change the configuration without changing the control scheme.
Moreover, to define the desired distance between agents, it has
to rely on the number of robots in the scene. Finally, to build a
proper guiding vector field, assumptions on the curve to follow
have to be made.

VI. LOW LEVEL MPCC DESIGN

The time-inverted Kuramoto model considers robots as points
moving along the Lissajous curve, that is, it considers a one
dimensional problem. A lower control routine is needed to
enforce path following and velocity tracking. We rely on
Model Predictive Control (MPC). MPC allows our method to
consider the full dynamic model of the robots. Furthermore,
thanks to its constraint-handling abilities, the MPC controller
is able to account for actuator saturation. This is particularly
valuable since the turns featured in the Lissajous path can
exceed the steering angle limits of the robots. For this work,
we chose a particular formulation of MPC referred to as Model
Predictive Contouring Control (MPCC) [28]. Compared to
traditional MPC for tracking, MPCC does not require an
explicitly time-dependent reference trajectory. These features
make MPCC particularly well-suited to act as a low level
controller for our purposes. In [28] however, the controller
aims at tracking a given longitudinal speed, while in our case
we require to track a certain θ̇. We have therefore modified the
relative term in the cost function. The optimization problem
solved by the MPCC, for the i-th agent, is the following:

min
δi,τi

M∑
k=0

Jk
θ̇i

+ q1ε
k
i,lag

2
+ q2ε

k
i,lat

2
+ q3δ

k
i

2
+ q4τ

k
i

2
(11a)

s.t. Xk
i = f(Xk−1

i , δk−1
i , τk−1

i ), for k = 1, ...,M (11b)
δmin ≤ δi ≤ δmax, τmin ≤ τi ≤ τmax, (11c)

where k is the time index, M is the number of stages in
the optimization problem, Jθ̇i is the θ̇ tracking term (15) that
substitutes the velocity tracking term in [28], q1, q2, q3, q4 are
weights normalized with respect to the weight of Jθ̇i , εi,lag is
the so called lag error and is a specific term of the MPCC
formulation (refer to [28] for more details), εi,lat is the lateral
distance to the path, δi and τi are respectively the steering
angle and the throttle, δmin, δmax, τmin, τmax are the minimum
and maximum values of the respective inputs. We decided not
to include explicit collision avoidance constraints, since we
want to focus on the results provided by the time-inverted
Kuramoto model. Xi is the predicted state of the i–th robot
and f represents the robot dynamics. The state Xi is defined
as:

Xi =
[
xi yi ηi vi si

]>
,

where xi, yi, ηi, vi, si are the position of the rear axle,
orientation, longitudinal velocity, and the natural parameter

of the closest point to the i–th robot on the reference path,
respectively. The dynamics of each robot are considered as a
kinematic bicycle model [29]. The longitudinal acceleration
is v̇i = −cvi + ατi − β, where c is the damping coefficient,
and α and β are the motor force coefficients (we evaluated
them experimentally through step response tests for the target
application). The dynamic constraint (11b) also includes the
dynamics of the natural parameter si, necessary to evaluate
Jθ̇i(k). In summary, the dynamic constraint (11b) (in contin-
uous time) is given by:

Ẋi =


vi cos ηi
vi sin ηi
vi tan(δi)

l
−cvi + ατi − β

vi

 , (12)

where l is the length between the front and rear axle of each
robot.
Concerning the term Jθ̇i , the time-inverted Kuramoto
model (1) provides a desired θ̇Di , that can be tracked by
the MPCC. This, however, is expressed as a feedback law
depending on the neighboring agents’ positions. Thus, to
implement this policy directly, the MPCC should be designed
in a fully distributed way. This would imply a large amount
of network traffic and would ultimately hinder the real-time
applicability of the overall control strategy. For this reason
we opted to keep the desired θ̇Di constant during the whole
prediction horizon. In this way the θj values need to be
exchanged only once per sampling time. Our choice is further
legitimized by noticing that at equilibrium the θ̇Di remains
constant. The cost term Jθ̇i is defined as

Jθ̇i = (θ̇Di − θ̇i)2. (13)

The state of the vehicle provides s and ṡ (since ṡ = v as
described in (12)), thus we must rewrite (13) as a function
of these quantities. The expression of the arc-length s for a
certain value of γ is as follows:

s(γ(t)) =

∫ γ(t)

γ0

‖r′(γ̃)‖2dγ̃, (14)

where we set γ0 = 0 as defined in II-B, r′(γ̃) is the partial
derivative of the Lissajous curve with respect to γ̃, and the
‖ · ‖2 operator is the Euclidean norm. By computing the time
derivative of (14) we obtain ṡ = γ̇‖r′(γ)‖2. Note that the
MPCC formulation can only predict future values of s, thus
the term ‖r′(γ)‖2 needs to be expressed as a function of the
latter, that is, an expression of γ(s) is needed. This however
is not trivial since it requires the inversion of (14) that is not
possible to formalize analytically. For this reason we have
evaluated γ(s) numerically, and used a suitable polynomial
approximation of it during run-time. The velocity tracking
term in the MPCC cost function (13) can be re-written as:

Jθ̇i(s, ṡ) = (θ̇Di − ṡ/‖r′(γ(s))‖2)2. (15)

VII. EXPERIMENTAL RESULTS

Due to hardware availability reasons, we are going to consider
3 scaled-down car-like robots and 2 simulated agents. To
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control the robots a dedicated ROS network has been set up
and we rely on an OptiTrack motion capture system to receive
the positions of the robots in real-time. The ring topology R
in (1) adopted in the experiments reads as follows, R1 =
{2, 4},R2 = {1, 5},R3 = {4, 5},R4 = {1, 3},R5 = {2, 3}.
The radius of encumbrance of each vehicle is ri = 0.125 (m).
We consider the following Lissajous curve for the experiments:

L :

{
x(γ) = 1.8 cos(3γ)

y(γ) = 0.8 sin(2γ).
(16)

We satisfy collision avoidance at the equilibrium, that is, ri <
ri,max (6). At run-time each agent computes its desired θ̇Di
according to (1). Note that to perform this step the i–th agent
requires the θj values, with j ∈ Ri. Once θ̇Di is computed the
value is passed to the MPCC, which solves the optimization
problem (11), (12) and computes the control inputs τi, δi. The
video of the experiments can be found at [30].
The parameters used for the experiments are the following:
q1 = 0.01, q2 = 0.025, q3 = 0.01, q4 = 0.01, δmin =
−π9 (rad), δmax = π

9 (rad), τmin = 0.1, τmax = 0.25, M = 15
in (11), c = 0.94, α = 36.8, β = 0.94, l = 0.175 (m) in (12),
ω = 0.3 (rad/s) in (1).
The first experiment shows the importance of the feedback
term in (1). We run the experiment neglecting it and imposing
the dynamics θ̇i = ω, ∀i = 1, . . . , N. The obtained results
can be found at [30]. The initial configuration of the system
is picked around an equilibrium point (2). After few seconds
the system diverges from the equilibrium due to modelling
errors and disturbances, until a physical collision occurs.
The second experiment shows the results obtained by imposing
the time-inverted Kuramoto dynamics (1). The initial configu-
ration of the system (Figure 7-(a)) is set around an equilibrium
point (2). Thanks to the feedback action, the system is able
to remain in that equilibrium configuration, see Figures 7-
(b,c,d). At the time instant of (d), to experimentally show the
resiliency of our algorithm, we simulate a temporary failure.
In particular, we modify the dynamics of the simulated agents
in θ̇a = 0, where a = {1, 5}. The networked system converges
to another equilibrium configuration (Figure 7-(f)), where all
the agents are stationary. After few seconds we reset θ̇a as
in (1) and the system, after a brief transient, comes back
to its previous equilibrium configuration (Figures 7-(f,g,h)).
Figure 8 reports the quantitative data for the same experiment.
The obtained results are in strong agreement with the results
obtained in the simulations, see Figure 6-(a).
In the last experiment we impose the time-inverted Kuramoto
dynamics (1). We run the experiment for a sufficient amount
of time in order to investigate the effects of disturbances and
model mismatch on target detection, collision avoidance and
complete coverage. In Figure 9 we focus on the agent 3; we
report the evolution in time of the Euclidean distance between
agents 3 and 4 (d34), and between agents 3 and 5 (d35),
and the lateral error from the Lissajous path (d3l ≡ ε3,lat).
The maximum value for the tracking error d3l is the increase
in the sensing range (7), sufficient to guarantee complete
coverage. The maximum distance between two neighboring
agents (d34(t?)) is twice the sensing radius sufficient to ensure

target detection. In this experiment the minimum sensing
radius to ensure target detection (8) in the ideal case has to
be multiplied by a factor η1 = 1.2429, in order to compensate
the effects of the lateral error d3l. At the same time instant
t? = 20.8 (s) the large amount of lateral error d3l leads to
a collision between agent 3 and the simulated agent 5, since
d35(t?) = 0.192 (m).
Regarding the risk of collision an effective solution is to
include explicit constraints in the MPCC’s optimization prob-
lem (11) (see section IV-A). Considering the tracking error we
have observed how it has negative effects on the properties
of the system, yet at the price of an enlarged sensing radius
and a smaller encumbrance radius the system is able to
recover the desired features. Notice that a proper choice of
the Lissajous path can also be beneficial. The tracking error
d3l may be induced by several factors: (i) the limited values
for the steering angle δmin, δmax, with respect to the minimum
radius of curvature in the Lissajous curve; (ii) the discrepancies
between the model and the real dynamics of the robots; and
(iii) the assumption in the MPCC formulation of keeping
constant the θ̇Di values for the whole prediction horizon. To
reduce the tracking error, we should focus on these aspects.

VIII. CONCLUSIONS

We proposed a distributed control strategy to coordinate a
team of robots in order to achieve persistent monitoring and
target detection in a known environment. We combined the
time-inverted Kuramoto dynamics and the Lissajous curves
to achieve our aim, in combination with a low-level model
predictive controller tailored to the proposed application. We
characterize the resiliency of the algorithm subject to per-
turbations and we provide conditions to preserve safety. We
tested our approach on real robotic platforms. As a future
work direction, we plan to investigate its scalability with an
increasing number of robots and apply the method to different
robotics platforms, such as UAVs, to test the use of three
dimensional Lissajous paths.
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