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“Non esiste una dignità della ricerca, perché nessuno può dire con sicurezza che una data

ricerca non serve nè servirà mai a nulla. [...] Possiamo solo fabbricare mattoni, mattoni

universali, con cui sia possibile fare qualsiasi cosa. Possiamo farci case, torri, ospedali, e

persino fabbriche di mattoni. Ed è nostro dovere farli solidi, più solidi possibile, affinché

le torri che edificheremo con quei mattoni possano arrivare più in alto possibile, e durare

oltre le nostre vite.”

“It is impossible to set a worthiness upon a scientific research, because of the lack of

certainty that a given research is definitely needed and useful. [...] What we can do is

just to make bricks, universal bricks, with which it would be possible to do anything.

We can build houses, towers, hospitals, and even brick factories. And our duty is to

make them strong, the stronger the better, so that the towers which we are going to

build with those bricks could reach the maximum heights and last beyond our lives.”

Marco Malvaldi

”Argento vivo”





Summary

A Dielectric Elastomer Generator (DEG) is an electromechanical transducer, basically

a highly deformable parallel-plate capacitor, made up of a soft DE membrane coated

with two compliant electrodes on its opposite surfaces. This device is able to convert

mechanical work, emanating from its interaction with the environment, into electrical

energy. The capacitance depends on the deformation undergone by the membrane, and

its variability can be exploited to extract electric energy by (i) initially stretching, (ii)

then charging the capacitor, (iii) subsequently releasing the stretch and finally (iv)

harvesting the charge at a higher electric potential.

The optimisation procedure for a load-driven soft planar DEG is presented, assuming

hyperelastic and ideal dielectric behaviour. The DEG undergoes the ideal four-stroke

electromechanical cycle previously described and its performance is evaluated on the

basis of the energy extracted during a cycle and of the efficiency, defined as the ratio

of the harvested energy on the total invested energy. The amount of extracted energy

is limited due to possible failures of the device, which are, in the most general case,

electric breakdown, material rupture, buckling-like instabilities due to loss of the tensile

stress state and electromechanical instability. These failure mechanisms determine the

allowable state region for the generator. Hence, in order to identify the best cycle that

complies with these limits, a constrained optimisation problem is formulated and the

generator performance is estimated. For the different loading cases examined, namely

equibiaxial stress state and plane strain, numerical results show, as expected, a critical

dependence of the harvested energy on the ultimate stretch ratio and, against expecta-

tions, a universal limit on the dielectric strength of the DE membrane beyond which the

optimal cycle is independent of this parameter. Thus, there is an upper bound on the

harvested energy, which depends only on the ultimate stretch ratio.

In addition to the simple parallel-plate configuration, an annular DEG deforming out-

of-plane has been analysed. In this configuration the generator is made up of an annular

membrane constrained at the boundary by a rigid ring and at the centre by a rigid plate,

on which an external force is applied. Due to the loading, the membrane deforms non-

homogeneously out-of-plane. In order to avoid loss of the tensile stress state, electric

breakdown and electromechanical instability, the applied voltage is controlled, thereby

limiting the maximum voltage and keeping the maximum stretch in an admissible range.

Numerical results show that the prestretch of the membrane is crucial for an effective

behaviour of the device. In fact, the unprestretched generator performs poorly with

regard to both energy and efficiency. A small prestretch, of approximately 5%, ensure

a sixfold improvement in the gained energy and a fivefold increment in efficiency. The

performance of the generator is evaluated for different values of the applied load and
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of the prestretch. This analysis shows that increasing the applied force the harvested

energy increases monotonically, while the efficiency increases until a peak value and then

decreases. Hence, for an out-of-plane DEG, the choice of the applied force is decisive to

ensure a good trade-off among energy and efficiency. Moreover, a comparison of different

DEG layouts demonstrates that the annular DEG can compete with the equibiaxial

planar generator, in terms not only of efficiency, but also of harvested energy.

What has been so far pointed out is valid under the hypothesis of ideal, lossless ma-

terial. Since polymers are affected by time-dependent effects, this hypothesis appears

to be not completely realistic. Indeed, a predicting model for soft dielectric elastomer

generators must include a realistic model of the electro-mechanical behaviour of the

elastomer filling, the variable capacitor and of the electrical circuit connecting all the

device components. To this end, the ideality assumption of the material and of the cycle

has to be removed. Hence, a complete framework for a reliable simulation of soft energy

harvesters is proposed for a soft viscous dielectric elastomer generator, operating in an

electrical circuit for energy harvesting and subjected to a periodic mechanical stretch.

The electrical model of the generator takes into account the effects of the electrodes and

of the conductivity current through the dielectric material. A phenomenological electro-

viscoelastic model at large strain is proposed and calibrated on the basis of experimental

data available in literature for a polyacrylate elastomer (VHB-4910). The effects of

viscoelasticity and of possible changes of the permittivity with strains on the gener-

ator performance are hence investigated. Numerical results underline the importance

of time-dependent effects on the evaluation of the generator performance. The main

outcome of this analysis is that, compared with a hyperelastic model, the efficiency is

reduced by viscoelasticity for high values of the mean stretch and of the amplitude of

stretch oscillation. The reduction is almost insensitive of the mechanical frequency while

the efficiency is further reduced by the variation of the permittivity with strain. More-

over, viscoelastic effects modify the allowable state region of the generator. At regime

condition, the failure curves relative to electromechanical instability and to loss of the

tensile stress state are strongly modified by the viscous effects. This fact results in the

alteration of the allowable state region of the generator. Furthermore, due to the change

in shape and size of the admissible region under this condition, a more surprising result

is the fact that the natural configuration (λ = 1) is a not-allowed state. As a conse-

quence, there is an upper bound on the maximal stretch oscillation amplitude. Focusing

on the main features of the electrical circuit, an important outcome of the analysis is

the identification of a value range of the external electric load for which the efficiency

is maximal. Furthermore, the viscous dissipation of the material dominates the energy

loss arising from the leakage current across the dielectric membrane.



Acknowledgements

This dissertation collects the researches I carried out during the last three years as a

Ph.D. student at the Dept. of Civil, Environmental and Mechanical Engineering of the

University of Trento. I would like to take this opportunity to thank the people who have

supported me during this work.

First of all, I would like to express my sincere gratitude to my advisor, Prof. Massimiliano

Gei, for his patience, remarks, suggestions and encouragement throughout these years.

I am deeply grateful to him for believing in me, working with him sincerely contributes

to my scientific and personal growth.

I would like also to thank Dr. Roberta Springhetti, who provided me the opportunity

to join the research on EAPs, for her unfailing presence.

I am deeply thankful to all members of the group of Solid and Structural Mechan-

ics at the University of Trento: Prof. Davide Bigoni, Prof. Luca Deseri, Prof. Nicola

Pugno, Prof. Andrea Piccolroaz, Dr. Francesco Dal Corso and Dr. Fiorella Pantano. I

would like to thank all my current and former colleagues, in particular Dr. Luca Ar-

gani, Dr. Federico Bosi, Dr. Aldo Madaschi, Dr. Diego Misseroni, Dr. Lorenzo Morini,

Stefano Signetti, Pietro Pollaci, Summer Shazad, Costanza Armanini, Nicola Bordigon

and Mirko Tommasini.

I am deeply indebted to Prof. Gal deBotton for his cooperation during these three years.

His valuable suggestions and his friendly words of advice guided me through this research

path since the beginning.

I would like to express my deepest gratitude to Prof. Andreas Menzel for his strong

support, encouragement and his confidence in my work. I am also deeply grateful to

the whole group of the Institute of Mechanics at TU Dortmund for their friendly and

warm hospitality during my four-month stay in 2013 and for making me feel part of

the ”family” even after: Prof. Jörn Mosler, Prof. Björn Kiefer, Dr. Thorsten Bartel,

Dr. Guillermo Dı̀az Ort̀ız, Dr. Krishnendu Haldar, Dr. Richard Ostwald, Dr. Tobias

Waffenschmidt, Alexander Bartels, Rolf Berthelsen, Karsten Buckmann, Cèsar Polin-

dara, Raphael Holtermann, Dinesh Kumar Dusthakar, Maniprakash Subramanian and

the wonderful secretaries Tina McDonagh and Kerstin Walter.

Special thanks go to Prof. Ralf Denzer, former member of the Institute of Mechanics at

TU Dortmund and now working at Lund University, for his constant support, for the

scientific discussions and the friendly chats. His precious teachings and help have been

decisive to the success of this work.

vii



Last but not the least, I have to thank my family: my dad Fabio, my mom Francesca,

my aunt Maristella and my grandmother Angela. Without their everlasting support,

their patience, understanding and love this work would not have been possible.

Trento, December 2015

Eliana Bortot



List of publications

The main results presented in this thesis have been published in the following publica-

tions:

• Bortot, E., Springhetti, R., Gei, M. (2014) Enhanced soft dielectric composite

generators: The role of ceramic fillers. Journal of the European Ceramic Society,

34 (11), 2623-2632. doi:10.1016/j.jeurceramsoc.2013.12.014

• Springhetti, R., Bortot, E., DeBotton, G., Gei, M. (2014) Optimal energy-harvesting

cycles for load-driven dielectric generators in plane strain. IMA Journal of Applied

Mathematics, 79 (5), 929-946. doi:10.1093/imamat/hxu025

• Bortot, E., Denzer, R., Menzel, A., Gei, M. (2014) Analysis of a viscous soft dielec-

tric elastomer generator operating in an electrical circuit. Proceedings in Applied

Mathematics and Mechanics, 14 (1), 511-512. doi:10.1002/pamm.201410243

• Bortot, E., Springhetti, R., DeBotton, G., Gei, M. (2015) Optimization of load-

driven soft dielectric elastomer generators. Procedia IUTAM, 22, 42–51.

doi:10.1016/j.piutam.2014.12.006

• Bortot, E., Gei, M., DeBotton, G. (2015) Optimal energy harvesting cycles for

load-driven dielectric elastomer generators under equibiaxial deformation. Mecca-

nica, 50 (11), 2751-2766. doi:10.1007/s11012-015-0213-1

• Bortot, E., Denzer, R., Menzel, A., Gei, M. (2015) Analysis of a viscous soft dielec-

tric elastomer generator operating in an electrical circuit. International Journal

of Solids and Structures. In press. doi:10.1016/j.ijsolstr.2015.06.004

• Bortot, E., Gei, M. (2015) Harvesting energy with an out-of-plane dielectric elas-

tomer generator. Proceedings in Applied Mathematics and Mechanics, 15 (1),

379–380. doi:10.1002/pamm.201510180.

• Bortot, E., Gei, M. (2015) Harvesting energy with load-driven dielectric elastomer

annular membranes deforming out-of-plane. Extreme Mechanics Letters, 5, 62-73.

doi:10.1016/j.eml.2015.09.009

Other results obtained during the Ph.D. course are reported in the following publications:

• Gei, M., Springhetti, R., Bortot, E. (2013) Performance of soft dielectric laminated

composites. Smart Materials and Structures, 22 (10), 104014.

doi:10.1088/0964-1726/22/10/104014

ix

http://dx.doi.org/ 10.1016/j.jeurceramsoc.2013.12.014
http://dx.doi.org/ 10.1093/imamat/hxu025
http://dx.doi.org/ 10.1002/pamm.201410243
http://dx.doi.org/10.1016/j.piutam.2014.12.006
http://dx.doi.org/10.1007/s11012-015-0213-1
http://dx.doi.org/10.1016/j.ijsolstr.2015.06.004
http://dx.doi.org/10.1002/pamm.201510180
http://dx.doi.org/10.1016/j.eml.2015.09.009
http://dx.doi.org/10.1088/0964-1726/22/10/104014


• Schlaak, H.F., Gei, M., Bortot, E., Haus, H., Mössinger, H. (2015) Dielectric
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Chapter 1

Introduction

In recent years, the urgency of energy from renewable resource has become increasingly

crucial, thereby giving new impulse to the development of new concepts and modern

techniques. Among the various energy harvesting technologies, a particularly promis-

ing one is based on soft dielectric elastomers (DEs) [1, 9, 10, 38, 44]. Being reliable,

quick responsive, light, cheap and involving a few moving parts, such electro-mechanical

transducers are suitable for different applications, allowing energy extraction from sea

waves, wind gusts, human gait and other natural sources of mechanical work, see for

example Figs. 1.1a and 1.1b.

A Dielectric Elastomer Generator (DEG) is basically conceived as a highly stretchable

parallel-plate capacitor with variable capacitance, able to produce electrical energy con-

verting the mechanical work done by an external oscillating load. This device is simply

made up of a soft DE membrane, whose upper and lower surfaces are treated so as to

act like compliant electrodes. The capacitance depends on the current geometry of the

dielectric film, therefore it changes as a consequence of the stretch and release of the

membrane induced by its interaction with the external environment. This significant ca-

pacitance variability can be exploited to extract electrical energy through a four-stroke

cycle where (i) an initial, relatively slow, stretching of the elastomeric film induced by

the rising force is followed by (ii) a fast charging phase. Then, (iii) the capacitor is

relaxed due to the slow release of the load and (iv), finally, the charge is harvested at

high electric potential and at low force.

Different configurations and harvesting cycles have been proposed in the literature es-

sentially involving three charging–discharging strategies, distinguished by the electrical

variable - among electric field, charge and voltage - to be kept constant along both the

stretching and the contracting phases induced by the mechanical force [39]. In this work,

differently from others [25, 30, 36], we assume that the mechanical load and the electric

1
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a)

b)

Figure 1.1: Examples of DE energy harvesters: a) heel-strike generator tested by SRI
international [10] and b) polymeric oscillating water column developed in the PolyWEC

project [61].

charge are alternately held constant during the cycle. This means that the stretching

and contracting phases occur at constant charge, for example when the system is electri-

cally isolated (open-circuit condition), while charging and harvesting phases take place

at stationarity points of the loading function.

The amount of extracted energy is limited due to possible failures of the dielectric

membrane, which are, in the most general circumstances, electric breakdown, material

rupture, buckling-like instabilities, due to loss of the tensile stress state, and electrome-

chanical instability [5, 49]. These failure mechanisms determine the allowable state

region for the generator [37].

A few recent papers are dedicated to the analysis of the performance of DEGs and to

the identification of the more profitable electromechanical loading strategies allowing the

maximisation of the energy gain. Kaltseis et al. [30] introduced a method to measure

the produced energy and the efficiency of a balloon-like generator. Huang et al. [25, 26]



Chapter 1. Introduction 3

showed that significant improvements in the generated energy density can be achieved

using an equibiaxial mechanical loading configuration accounting also for viscoelasticity.

Vertechy et al. [61] proposed a polymer-based oscillating-water-column energy converter

(Fig. 1.1b).

This monograph is dedicated to a systematic investigation of the performance optimi-

sation of DEGs in the framework of the nonlinear theory of electro-elasticity. The main

goal of this research is the identification, by means of a numerical analysis, of those

cycles able to produce the maximum energy fulfilling the constraints associated with the

various failure modes.

After recalling, in Chap. 2, the basic elements of continuum electro-mechanics and the

working principles of DEGs, the optimisation procedure for a planar load-driven soft

DEG is presented, assuming isotropic hyperelasticity and ideal dielectric behaviour, for

plane-strain (Chap. 3) and equibiaxial (Chap. 4) loading modes. In order to identify the

best cycle that complies with the limits dictated by the failure envelope, a constrained

optimisation problem is formulated and the generator performance is estimated on the

basis of both the energy extracted during a cycle and the efficiency, i.e. the ratio of

the harvested energy on the total invested energy. For the two loading cases exam-

ined, in Chaps. 3 and 4, numerical results for different stretch regimes and performance

comparisons for various soft DEs commercially available are presented.

The chosen loading modes are justified on the grounds that plane-strain condition simu-

lates the effect of transverse constraint due to stiff fibres [40] or a supporting frame, while

equibiaxial condition can be produced by an external agent in a mechanism involving

the expansion of a dielectric balloon due to internal pressure [12, 48, 53].

In addition to the simple parallel-plate configuration, an annular layout has been taken

into consideration in Chap. 5. In this case, the generator is made up of a circular mem-

brane constrained at the boundary by a rigid ring and at the centre by a rigid plate,

on which an external force is applied. Due to the loading, the membrane deforms non-

homogeneously out-of-plane. The deformation undergone by the annular membrane has

been already exploited for the realisation of actuators [4, 24], but it is also particu-

larly interesting for sea-wave energy harvesting. Actually, the annular membrane can

constitute the basic power take-off element of a floating harvesting device, constituted

by a Stewart platform. Moreover, along a complete oscillation of the mechanical load,

the annular generator can perform a double electromechanical cycle, as deformation can

take place on both sides of the membrane. In the first part of Chap. 5, the influence of

the prestretch and of the radius ratio on the DEG performance is investigated. Then,

in the final part, performance comparisons are provided. Here, annular DE membranes
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with different electromechanical properties are investigated and various DEG geometries,

under similar stress/stretch conditions, are compared.

Dielectric elastomers, as all polymers, are affected by time-dependent effects, hence

the conservative hypothesis appears to be not completely realistic. Indeed, a predicting

model for soft DEGs must include an accurate model of the electro-mechanical behaviour

of the elastomer filling, the variable capacitor and of the electrical circuit connecting all

the device components. To this end, the ideality assumption of the material and of

the cycle has to be removed. Hence, in Chap. 6, a complete framework for a reliable

simulation of soft energy harvesters is presented for a soft electro-viscoelastic DEG,

mechanically excited by a periodic stretch and integrated in an electrical circuit for

energy harvesting.

Conclusions are finally drawn in Chap. 7.



Chapter 2

Dielectric elastomer generators:

theory

A dielectric elastomer generator is an electro-mechanical transducer able to convert

mechanical to electric energy. The basic idea behind its operating principle consists in

varying its capacitance with the deformation, hence this device can be regarded as a

highly deformable soft capacitor.

In the simplest framework, a three-dimensional soft dielectric elastomer generator is

made up of a dielectric elastomer membrane whose surfaces are treated so as to act

like compliant electrodes and whose initial volume is V0 = l0 × l0 × h0 in the reference

undeformed configuration. Essentially, this DEG is a parallel-plate soft capacitor.

_

_

_   _    _    _    _    _    _    _    _    _

+ + +    +    +    +    +    +    +

_

+ + +    +    +    +    +    +    +

+ + +    +    +    +    +    +    +

+ + +    +    +    +    +    +    +

+ + +    +    +    +    +    +    +

_

_
_

_

Figure 2.1: Reference and deformed configurations of a soft planar DE generator
with undeformed dimensions (l0 × l0 × h0): as a result of the deformation, the current

dimensions are l1 = l0λ1, l2 = l0λ2 and h = h0λ3.

We assume that the dielectric membrane is homogeneous, isotropic and incompressible.

The membrane is stretched from the undeformed to the current configuration by a com-

bination of (i) a mechanical in-plane force F induced by the environment, which is the

primary source of energy invested into the system, and (ii) an electric field generated by

5



6 Chapter 2. Dielectric elastomer generators: theory

a voltage φ applied between the stretchable electrodes. We note that an alternative way

to electrically excite the deformation is by depositing electrical charge on the opposite

surfaces of the specimen [33]. However, in this work we do not consider this alternative,

since, from a practical viewpoint, it is more convenient to impose the required electric

potential between the electrodes.

Neglecting fringing effects and assuming isotropy, the electromechanical deformation

undergone by the membrane is homogeneous and can be represented by the deformation

gradient F = diag(λ1, λ2, λ3), where λ1, λ2 and λ3 are the principal stretch ratios along

the directions (e1, e2, e3), see the coordinate systems in Fig. 2.1. Outside the capacitor

the electric field vanishes, and the uniform electric field induced by the applied electric

potential inside the membrane has only a component along e3, namely E = [0, 0, E]T .

2.1 Theoretical background: kinematics and governing equa-

tions

For the motion of the material body considered, we assume the existence of a sufficiently

smooth mapping ϕ(X , t) transforming the position vector X of a material particle in

the undeformed configuration B0 to its spatial position x = ϕ(X , t) in the current

configuration Bt at time t (see e.g. Fig. 2.1). Hence, the deformation gradient tensor

is given by F = Gradϕ, where the gradient is taken with respect to the reference

configuration B0. The local volume ratio is the Jacobian of the deformation gradient

tensor J = det F with J = 1 for incompressible materials. The right Cauchy-Green

tensor is defined by C = FTF and, thus, we formally introduce here the stretches λ1,

λ2, λ3, as the square roots of the eigenvalues of C such that J = λ1 λ2 λ3.

The quantities of interest to define the current electrostatic state of the dielectric are

the electric field E , the electric displacements D and the polarisation P in Bt, linked

by the relation

D = εo E + P ,

where ε0 is the dielectric permittivity of vacuum (ε0 = 8.854 pF/m).

Electromagnetic interactions are governed by Maxwell’s equations. We assume through-

out this work that (i) the hypotheses of electrostatics hold true and that (ii) free currents

and free charges are absent. Therefore, Maxwell’s equations in local form with respect

to the current configuration Bt reduce to

curlE = 0 , divD = 0 , (2.1)
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or with respect to the reference configuration B0 to

CurlE0 = 0 , DivD0 = 0 , (2.2)

where the following nominal fields

E0 = FTE , D0 = JF−1D , (2.3)

are naturally introduced. See [5] for the exact derivation.

The notation used in Eqs. (2.1) and (2.2) is such that the uppercase letters indicate

operators acting on B0, e.g. Grad, Div, Curl, whereas lowercase letters refer to operators

defined in the configuration Bt, e.g. grad, div, curl. Eq. (2.2)1 implies that the electric

field is conservative, i.e.

E0(X ) = −GradΦ(X ) , (2.4)

where Φ(X ) is the electrostatic potential. At the boundary ∂B0, the electric field and

the electric displacement must fulfil the jump conditions

N 0 × [[E0]] = 0 , [[D0]] ·N 0 = −ω0 , (2.5)

where ω0 is the charge density per unit reference electrode surface, [[f ]] = fa − f b is

the jump operator and where N 0 denotes the outward referential unit normal vector,

pointing from a towards b.

Considering the electric field uniform, as for the parallel-plate DEG sketched in Fig. 2.1,

the nominal electric field can be expressed as E0 = φ/h0 with φ = |∆Φ| representing

the voltage between the electrodes and h0 being the reference thickness of the film. The

electric field is similarly defined as E = φ/h, where the current thickness h is given by

h = h0λ3. The nominal charge density ω0 can analogously be referred to its current

counterpart ω given the charge Q = ωA = ω0A0, where the current area of the film

surfaces A is related to the area in the reference configuration A0 as A = A0λ1λ2,

therefore, ω = ω0λ1λ2. For the planar capacitor, Eq. (2.5)2 and Eq. (2.3)2 show that ω

and ω0 correspond to the absolute values of the current electric displacement D and of

the nominal electric displacement D0, respectively.

In the quasi-static case, the local form of the balance of linear momentum in Bt corre-

sponds to

divσ + fe + ρ f = 0 , (2.6)

where σ is the Cauchy stress tensor, ρ is the current mass density of the body, f is the

mechanical body force and fe is the electric body force per unit volume [7, 15]. The
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inertia term is neglected in both rate-independent and rate-dependent quasi-static cases,

since its contribution is negligible for the frequency range investigated in this work, as

will be explained later in Chap. 6. For the problem at hand, the electric body force can

be specified as follows

fe = gradEP .

Moreover, the Cauchy stress tensor σ is generally non-symmetric, whereas the total

stress tensor

τ = σ + E ⊗D − 1

2
ε0[E ·E ]I ,

as introduced in e.g. [15, 27, 43, 45], turns out to be symmetric. The second-order

identity tensor is denoted by I . In this way, it is possible to rewrite the balance of linear

momentum as

divτ + ρf = 0 .

Note that the form of the electric body force f e is not the only possible one, since the

choice of other sets of the electrical and mechanical variables can fit the general theory

based on the total stress, see e.g. [8].

The total Piola-type stress tensor S is defined as S = J τF−T , so that the local refer-

ential form of the balance of linear momentum can be written as

DivS + ρ0 f = 0 ,

where ρ0 = Jρ is the referential mass density. At the boundary ∂B0, the nominal total

stress tensor S must satisfy the boundary condition

[[S ]]N 0 = t0, (2.7)

where t0 is the nominal vector of the mechanical tractions. For the planar DEG ex-

amined, since the electrode surfaces orthogonal to e3-direction are traction-free, the

boundary condition (2.7) reduces to S33 = 0.

2.2 Energy-density functions for isotropic dielectric elas-

tomers

The energy-density function is generally defined by considering as free electrical variable

the nominal electric field E0, i.e. W = W (F ,E0). Thus, for an isotropic material, the

energy can be expressed as a function of the deformation gradient and of the nominal

electric field through six invariants W (F ,E0) = W (I1, I2, I3, I4, I5, I6) [15]. The first
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three invariants are the standard mechanical invariants of C , defined as

I1 = trC , I2 = 1/2[(trC )2 − tr(C 2)], I3 = detC , (2.8)

while the last three are electro-mechanical invariants based on the nominal electric field

E0 and defined as

I4 = E0 ·E0, I5 = E0 ·C−1E0 = E ·E , I6 = E0 ·C−2E0. (2.9)

The choice of the invariants in Eq. (2.10) is clearly not unique and, for example, C−1

could be replaced by C in I5 and I6 [16].

In some circumstances, it may be convenient to select the nominal electric displacement

D0 as the independent electrical variable. This can be done by defining an energy-density

functionW =W(F ,D0), complementary to W , via the partial Legendre transformation

[15]

W(F ,D0) = W (F ,E0) + D0 ·E0. (2.10)

For an isotropic material, W depends on the three mechanical invariants I1, I2 and I3,

defined in Eq. (2.8), and on three additional invariants based on D0 and defined as

K4 = D0 ·D0, K5 = D0 ·CD0, K6 = D0 ·CD0. (2.11)

2.3 Electro-hyperelastic model

The material is assumed to be incompressible, lossless and governed by an isotropic

energy-density function W (F ,E0). The principle of energy conservation leads us to the

equality [
S − ∂W

∂F
+ pF−T

]
· Ḟ −

[
D0 +

∂W

∂E0

]
· Ė0

= 0 , (2.12)

where the notation •̇ denotes the material time derivative. Eq. (2.12) involves that the

dissipation is equal to zero, i.e. D = 0.

The scalar p introduced in Eq. (2.12) operates as an indeterminate Lagrange multiplier,

which can be identified as a hydrostatic pressure. This scalar can only be determined

from the equilibrium equations and the boundary conditions. The undetermined pres-

sure p represents a workless reaction to the kinematic constraint on the deformation

field, i.e. the incompressibility constraint J = 1.
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The energy conservation must be valid for all admissible processes. Hence, a sufficient

condition for (2.12) to be fulfilled is that

S =
∂W

∂F
− pF−T , D0 = − ∂W

∂E0 . (2.13)

For an ideal incompressible elastomer, we can state a constitutive relation of neo-

Hookean type under isothermal conditions [7, 15], namely

W (F ,E0) =
µ

2
[I1 − 3]− ε

2
I5 , (2.14)

where I1 is defined by Eq. (2.8)1 and I5 by Eq. (2.10)2. Here, µ is the shear modulus and

ε is the dielectric permittivity of the material, remaining constant along the deformation.

Note that the use of the form (2.14) in Eq. (2.13)2 provides the ideal dielectric behaviour

D = εE .

In fact, if the dielectric is ideal, the permittivity ε is independent of the deformation

and we can represent it as ε = ε0 εr, where εr is the relative permittivity of the material.

Generally, εr is referred to the undeformed configuration, i.e. εr = ε0r . Otherwise, if the

dielectric has electrostrictive behaviour, the permittivity is stretch dependent and takes

the form ε(λ1, λ2, λ3) = ε0 εr(λ1, λ2, λ3).

2.3.1 Plane-strain loading

For a parallel plate generator deformed in plane-strain by a force F1 applied along

direction x1, the principal stretches are λ1 = λ, λ2 = 1 and λ3 = λ−1. Therefore,

the homogeneous electromechanical deformation undergone by the membrane can be

represented by the deformation gradient F = diag(λ, 1, λ−1). Thus, along the prescribed

loading path, the Piola-type total stress tensor assumes the form S = diag(S11, S22, S33),

where S11 = F1/(h0l0), S33 = 0 and S22 is the reaction to the kinematic plane-strain

constraint.

From the constitutive equations (2.13)1,2, employing the strain-energy function (2.14),

the hydrostatic pressure p can be computed imposing the vanishing of the stress along

direction e3

p = µ
1

λ2
− εE0

3
2
λ2 , (2.15)

so that we can derive the following relations

S11 = µ

(
λ− 1

λ3

)
− εE0

3
2
λ, S22 = µ

(
1− 1

λ2

)
− εE0

3
2
λ2, D0

3 = εE0
3λ

2. (2.16)
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Since D0
3 and E0

3 correspond to the charge density per unit reference electrode surface

ω0 and to the ratio between the current voltage φ and the reference thickness h0, respec-

tively, in the sequel we find it advantageous to rephrase the equations (2.16) in terms of

the dimensionless variables

S̄ =
S

µ
, φ̄ =

φ

h0

√
ε

µ
, ω̄0 =

ω0√
εµ
. (2.17)

Accordingly, during the harvesting cycle the relations between the applied stress, the

applied electric potential, the resulting stretch ratio and the charge accumulated on the

electrodes are

S̄11 = λ− 1

λ3
− φ̄2λ, S̄22 = 1− 1

λ2
− φ̄2λ2, ω̄0 = φ̄λ2. (2.18)

2.3.2 Equibiaxial loading

An equibiaxial stress state of the generator, induced by an in-plane force F = [F ,F , 0],

corresponds to a uniform in-plane stretch (λ1 = λ2 = λ). Assuming again incom-

pressibility, the deformation gradient assumes the representation F = diag(λ, λ, λ−2).

Therefore, along the prescribed loading path, the total nominal stress tensor takes this

form S = diag(S11, S22, S33), where S11 = S22 = S = F/(h0l0) and S33 = 0.

As in the previous case, from the constitutive equations (2.13)1,2, employing Eq. (2.14),

we can obtain the following expressions for the stress and the electric displacement

S11 = S22 = S = µ

(
λ− 1

λ5

)
− εE0

3
2
λ3, D3

0 = εE0
3λ

4, (2.19)

having determined the hydrostatic pressure p by imposing S33 = 0

p = µ
1

λ4
− εE0

3
2
λ4. (2.20)

As in the previous case, since D0
3 and E0

3 correspond to the charge density per unit refer-

ence surface ω0 and to the current voltage per unit reference thickness φ/h0, respectively,

we find it advantageous to rephrase equations (2.19) in terms of the dimensionless vari-

ables (2.17)

S̄ = λ− 1

λ5
− φ̄2λ3, ω̄0 = φ̄λ4. (2.21)
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2.4 Electro-viscoelastic model

Typical DEs (acrylic elastomers, silicones, rubber) display time-dependent properties.

Hence, it is relevant to extend the electro-elastic framework in order to include vis-

coelastic effects and to thereby model the rate-dependence mechanical behaviour of the

material. We assume that the viscosity is related to mechanical contributions only. This

means that, even though the material deforms in response of an applied electric voltage,

the viscosity is related to the induced deformation only, and not directly to the electrical

quantities. In the present work, we will refer to the viscoelastic model proposed by Ask

et al. [2, 3], and to the one by Gei and collaborators [5, 22] for the electromechanical

behaviour. The main hypotheses at the basis of the electro-viscoelastic model lie in the

assumption that the electric fields are static whereas the mechanical response, though

quasi-static, is rate-dependent.

A common approach to model viscoelasticity, see e.g. [34, 41, 50], in the finite-strain

framework is based on the introduction of a multiplicative split of the deformation

gradient into elastic and viscous contributions

F = F eαF vα , (2.22)

where subscript α indicates the possibility of multiple viscosity elements. The multi-

plicative decomposition (2.22) can be considered as a three-dimensional generalisation of

the splitting occurring in a one-dimensional Maxwell rheological element, where a spring

and a dashpot are connected in series. In a generalised Maxwell rheological model, an

arbitrary number of Maxwell elements is connected in parallel. For later reference, it is

convenient to introduce a Cauchy-Green-type deformation tensor defined as

C vα = FT
vαF vα , (2.23)

for each Maxwell element α. This tensor will be taken as the internal variable and shall

satisfy det C vα = 1.

Taking into account the viscoelastic effects, the second law of thermodynamics leads us

to the dissipation inequality, which is the basis to formulate constitutive equations. In

local form, the Clausius–Duhem inequality is

D =

[
S − ∂W

∂F
+ pF−T

]
· Ḟ −

[
D0 +

∂W

∂E0

]
· Ė0 −

∑
α

∂W

∂C vα
· Ċ vα ≥ 0 , (2.24)

where the last term represent the contribution of viscoelasticity. We remind that the

notation •̇ denotes the material time derivative.
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In order to fully characterise the material behaviour, it is necessary to formulate evo-

lution equations for the internal variables, which describe the rate-dependence of the

mechanical quantities.

As we have said, it is assumed that the elastomer is an incompressible material (J = 1)

complying with a constitutive relation of neo-Hookean type under isothermal conditions.

Assuming the nominal electrical field E0 as the independent electrical variable and

including viscoelastic effects, the strain-energy function is now considered to take the

representation

W (F ,E0,C vα) =
µ

2
[I1 − 3] +

1

2

∑
α

βα µ [I1vα − 3]− ε

2
I5 , (2.25)

with I1 defined by Eq. (2.8)1, I1vα = tr(CC−1
vα ) and I5 defined by Eq. (2.10)2. Here,

µ is the long-term shear modulus of the material and βα are positive dimensionless

proportionality factors, which relate the shear modulus of the viscous element α to the

long-term shear modulus µ.

Based on equation (2.25), a necessary condition for the evolution equations of the internal

variables to satisfy is

Dv = −
∑
α

∂W

∂C vα
· Ċ vα ≥ 0 . (2.26)

The definition of a Mandel-type referential stress tensor as

M vα = −C vα
∂W

∂C vα
(2.27)

allows to restate the dissipation inequality in the following form

Dv =
∑
α

M vα · [C−1
vα Ċ vα] ≥ 0 . (2.28)

A possible format of the evolution equations, which fulfills the dissipation inequality and

ensures the symmetry of C vα, see [2, 3], is given by

Ċ vα = Γ̇α C vαM dev
vα

T
, (2.29)

where Γ̇α are material parameters, related to the inverse of the viscosity of each α

Maxwell element.



14 Chapter 2. Dielectric elastomer generators: theory

2.5 Load-driven harvesting cycle

In the optimisation of the ideal hyperelastic planar DEG (Chapters 3 and 4), we analyse

the four-stroke cycle shown schematically in Fig. 2.2c, in which the load and the charge

are alternately held constant. Specifically, the four-strokes are

1. stroke A-B: the membrane is stretched by increasing the applied load from SA =

Smin to SB = Smax under open circuit condition. During this stage the charge on

the electrodes is fixed, so that ωA0 = ωB0 ;

2. stroke B-C: at the stretched configuration the charge on the electrodes increases

from ωB0 to ωC0 by applying a potential jump ∆φ. During this stroke the load is

held fixed, so that SB = SC = Smax;

3. stroke C-D: the elastomer is released by decreasing the load from SC to SD =

SA = Smin, under open circuit condition. In this way the charge is kept constant,

so that ωC0 = ωD0 . Note that, during this phase, both the potential between the

two electrodes and the electric field increase, attaining their maximal values at the

end of the stroke (point D);

4. stroke D-A: the surplus charge ωC0 − ωA0 is harvested at the high potential to the

storage battery while the load is held constant, so that SD = SA = Smin.

The cycle is represented on the thermodynamical planes, as shown in Fig. 2.2. Specifi-

cally, Fig. 2.2a corresponds to the mechanical S–λ plane and Fig. 2.2b to the electrical

φ–ω0 plane. We note that, practically, strokes B–C and D–A are substantially shorter

than the mechanical loading and unloading phases. Thus, the applied external force

should be thought of as a continuously oscillating force such that, when it attains its

maximal and minimal values, appropriate electrical circuits are temporarily connected

to the electrodes. In a real harvesting circuit, instead, the generator is permanently

connected to an electric load and to a battery composing a single circuit, as explained

later in Chapter 6, and the cycle differs from the one presented here.

The four-stroke harvesting cycle described above is characterised by the four equalities

listed in Fig. 2.2c, namely

ω̄A0 = ω̄B0 , S̄B = S̄C , ω̄C0 = ω̄C0 , S̄D = S̄A. (2.30)

For an ideal lossless dielectric, depending on the loading conditions, equalities (2.30)

induce the following relations among the eight values attained at each state of the
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Figure 2.2: The load-driven harvesting cycle plotted on the a) mechanical and b)
electrical planes and c) illustration of the four strokes with a service battery at the
right and a storage battery at the left; the illustrations in c) are referred to the initial

states of each individual stroke.

generator by the two independent variables, namely the stretch λ and the dimensionless

voltage φ̄,

• plane-strain loading:

φ̄Aλ
2
A = φ̄Bλ

2
B, λB −

1

λ3
B

− φ̄2
BλB = λC −

1

λ3
C

− φ̄2
CλC ,

φ̄Cλ
2
C = φ̄Dλ

2
D, λD −

1

λ3
D

− φ̄2
DλD = λA −

1

λ3
A

− φ̄2
AλA;

(2.31)

• equibiaxial loading:

φ̄Aλ
4
A = φ̄Bλ

4
B, λB −

1

λ5
B

− φ̄2
Bλ

3
B = λC −

1

λ5
C

− φ̄2
Cλ

3
C ,

φ̄Cλ
4
C = φ̄Dλ

4
D, λD −

1

λ5
D

− φ̄2
Dλ

3
D = λA −

1

λ5
A

− φ̄2
Aλ

3
A.

(2.32)
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2.6 Modes of failure and failure envelope

From an engineering viewpoint, to ensure proper operational conditions of the device,

all feasible cycles must lie inside the domain of admissible states for the generator [36,

49, 62]. The contour line that envelops this region is defined by the following possible

failure modes of the DEG:

• electric breakdown EB: this failure, which depends on the properties of the

dielectric elastomer membrane, occurs when the current electric field E reaches

the dielectric strength of the material Eeb;

• electromechanical instability EMI: as the electric potential between the elec-

trodes increases the force attracting the electrodes increases too, resulting in thin-

ning of the elastomeric membrane. This, in turn, further increases the force be-

tween the electrodes even without any additional increase in the electric potential.

At some critical combination of the electric field and the mechanical loading the

membrane cannot withstand the attraction force between the electrodes and may

collapse [5, 52]. The concept of electromechanical instability is theoretically a loss

of positive definiteness of the tangent electro–elastic constitutive operator and is an

admissible instability for dead-load tractions/charges on the boundary [5, 21, 52].

When the dielectric is constrained, electromechanical instability may lead the soft

film to the typical two-phase pattern, where wrinkled areas and homogeneous zones

coexist [49];

• ultimate stretch λU : this failure also depends on the properties of the film

material and takes place when the magnitude of the stretch attains a critical value

λU at which mechanical failure initiates. In a single loading cycle the ultimate

stretch ratio of the VHB-4910 membrane is fairly large and may reach values

larger than 5. Nevertheless, it is anticipated that under cyclic loading conditions

this value is more restrictive. Accordingly, in the subsequent analysis the ultimate

stretch has been limited to value smaller than 3.5;

• loss of the tensile state (S=0): to avoid failure due to buckling and wrinkling

in compression it is required that the two in-plane stresses be positive. In con-

trast with the previous failure modes, this one is associated with the geometrical

configuration of the device and is related to the small thickness of the film.

We finally add a fourth formal condition, which does not correspond to a failure mode,

requiring that the direction of the electric field is not reversed during the cycle, i.e. the

irreversibility of the electric field E ≥ 0.
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2.6.1 Ideal hyperelastic DEG under plane-strain loading conditions

In the case of an ideal lossless DEG under plane-strain loading conditions, the parts of

the failure envelops corresponding to the failure modes defining the region of admissible

states in the two work-conjugated planes, can be expressed explicitly in terms of the

dimensionless quantities (2.17).

The current electric breakdown strength in the dimensionless form is

Ēeb = Eeb

√
ε

µ
, (2.33)

while the dimensionless nominal electrical field is bounded by Ē0
eb = Ēebλ3. Hence, for

the plane-strain loading mode, the electric breakdown corresponds to this condition

φ̄ = Ē0
eb =

Ēeb
λ
. (2.34)

Inverting the relation (2.18)3 and imposing the failure constraint (2.34), we can obtain

the stretch in function of the dimensionless nominal charge density

λ =
ω̄0

Ēeb
. (2.35)

Thus, substituting Eq. (2.34) in Eq. (2.18)1 and Eq. (2.35) in Eq. (2.18)3, we can define

the curves corresponding to the electric breakdown failure EB, which surround the region

of admissible states respectively in the mechanical and electric planes, as

S̄11 = λ− 1

λ3
−
Ē2
eb

λ
, φ̄ =

Ē2
eb

ω̄0
. (2.36)

The ultimate stretch failure is characterised by the condition λ = λU for any value

of the stress, hence this failure constraint corresponds to a vertical straight line on the

mechanical S̄–λ plane. The equivalent curve on the electrical plane can be easily obtained

substituting the failure constraint in Eq. (2.18)3. Therefore, the curves corresponding

to the ultimate stretch in the mechanical and the electric planes are, respectively,

λ = λU , φ̄ =
ω̄0

λ2
U

. (2.37)

As far as the planar DEG is concerned, under plane-strain conditions, since the DE

membrane is constrained in one direction, the electromechanical instability is not a

possible failure [5]. Therefore, in the following, only loss of tension is accounted

for. A comparison between Eqs. (2.18)1 and (2.18)2 for the two stresses reveals that

the inequality S22 ≥ 0 is more restrictive than S11 ≥ 0. Therefore, by imposing the
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vanishing of the right-hand side of Eq. (2.18)2, we can obtain the dimensionless voltage

as a function of the stretch

φ̄ =

√
1

λ2
− 1. (2.38)

At the same way, inverting Eq. (2.18)3 and substituting it in Eq. (2.18)2, we can obtain

the stretch as a function of the nominal charge density by requiring Eq. (2.18)2 to be

zero (i.e. S22 = 0)

λ =
√

1 + ω̄2
0. (2.39)

Hence, after substitution of the failure constraint (2.38) in Eq. (2.18)1 and of relation

(2.39) in Eq. (2.18)3, we can characterise, in the two pertinent planes, the portions of

the failure envelops corresponding to loss of tension by the curves

S̄22 = 0, S̄11 = λ− 1

λ
, φ̄ =

ω̄0

(1 + ω̄2
0)
. (2.40)

In the mechanical plane the curve corresponding to the last formal condition, i.e. the

irreversibility of the electric field E ≥ 0, is characterised by the relation

S̄11 = λ− 1

λ3
, (2.41)

resulting from imposing φ̄ = 0 in Eq. (2.18)1.

The plot of these curves on the dimensionless electrical φ̄–ω̄0 plane is shown in Fig. 2.3

for different values of the electric breakdown threshold Ēeb and of the ultimate stretch

λU .

Figure 2.3: Failure envelopes for a plane-strain loaded DEG on the electrical φ̄–ω̄0

plane for increasing values of the electric breakdown strength (Ēeb = 0.4, 0.6, 0.8, 1) and
of the ultimate stretch (λU = 1.5, 2, 2.5, 3, 3.5).
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At fixed electromechanical properties of the material, for example Ēeb = 0.8 and λU =

3, the failure curves for the plane-strain loaded generator can be plotted on the two

dimensionless work-conjugated planes, as depicted in Figs. 2.4a and 2.4b.

a) b)

Figure 2.4: Failure envelopes at Ēeb = 0.8 and λU = 3 on the a) mechanical S̄11–λ
and b) electrical φ̄–ω̄0 planes for a plane-strain loaded DEG.

The area enclosed by the failure envelope is the allowable state region and its measure

corresponds to the theoretically achievable energy-density per unit shear modulus Hmax.

2.6.2 Ideal hyperelastic DEG under equibiaxial loading conditions

In the case of equibiaxial loading conditions, the failure curves, delimiting the admissible

state region in the work-conjugated planes, can be expressed explicitly in terms of the

dimensionless quantities (2.17), as illustrated in the previous Subsection for the plane-

strain case.

For the equibiaxial loading mode, the electric breakdown corresponds to

φ̄ = Ē0
eb = Ēebλ3 =

Ēeb
λ2

. (2.42)

Inverting Eq. (2.21)2 and imposing the failure constraint (2.42), we can obtain the stretch

as a function of the dimensionless nominal charge density

λ =

√
ω̄0

Ēeb
. (2.43)

Thus, substituting relation (2.43) in Eq. (2.21)2, the curves in the mechanical and in the

electric planes corresponding to the electric breakdown failure are respectively prescribed

as

S̄ = λ− 1

λ5
−
Ē2
eb

λ
, φ̄ =

Ē2
eb

ω̄0
. (2.44)
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Since we assume that the deformation is homogeneous and the film thickness uniform, the

critical condition characterising the electromechanical instability can be identified

inverting relation (2.21)2 and expressing the voltage as a function of the stress and of

the stretch

φ̄ = φ̄(S̄, λ) =

√
−S̄ 1

λ3
+

1

λ2
− 1

λ8
. (2.45)

By maximising Eq. (2.45) at constant S̄ and combining Eqs. (2.21)1,2, we can find the

analytical expression of the curves corresponding to the electromechanical instability in

the two thermodynamic planes

S̄ =
2

3

(
λ− 4

1

λ5

)
, φ̄ =

ω̄0

(3ω̄2
0 − 5)2/3

. (2.46)

In general, methods to investigate instabilities in electromechanically loaded films trig-

gered by imperfections or inhomogeneities were presented in [13, 17, 22, 53].

As for the plane-strain loading mode, the ultimate stretch failure is characterised by

the condition λ = λU for any value of the stress, hence this failure constraint individuates

a vertical line on the mechanical plane. The equivalent curve on the electrical plane can

be easily obtained substituting the failure constraint in Eq. (2.21)2. Therefore, in the

mechanical and the electric planes the ultimate stretch limits are

λ = λU , φ̄ =
ω̄0

λ4
U

; (2.47)

The condition characterising the loss of tension can be simply identified by imposing

the vanishing of the right-hand side of Eq. (2.21)1. Inverting Eq. (2.21)2 and substituting

it in Eq. (2.21)1, we can obtain the nominal charge density as a function of the stretch

λ = (1 + ω̄2
0)1/6. (2.48)

Hence, after substitution of Eq. (2.48) in Eq. (2.21)2, we obtain two curves which char-

acterise the portions of the failure envelops corresponding to loss of tension in the work-

conjugated planes, i.e.

S̄ = 0, φ̄ =
ω̄0

(1 + ω̄2
0)2/3

. (2.49)

Finally, in the mechanical plane the curve corresponding to the condition on the irre-

versibility of the electric field is characterised by the relation

S̄ = λ− 1

λ5
, (2.50)

obtained by imposing φ̄ = 0 in Eq. (2.21)1.
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The plot of these curves on the dimensionless electrical φ̄–ω̄0 plane is shown in Fig. 2.5

for increasing values of the electric breakdown threshold Ēeb and of the ultimate stretch

λU .

Figure 2.5: Failure envelopes for an equibiaxially loaded DEG on the electri-
cal φ̄–ω̄0 plane for increasing values of the electric breakdown strength (Ēeb =

1.09, 1.2, 1.3, 1.5, 1.7) and of the ultimate stretch (λU = 1.5, 2, 2.5, 3, 3.5).

Once the electromechanical properties (Ēeb, λU ) of the dielectric membrane are defined,

it is possible to determine the allowable state region. The plots of the failure envelope

for a equibiaxially loaded DEG on the two dimensionless work-conjugated S̄–λ and φ̄–ω̄0

planes are depicted respectively in Figs. 2.6a and 2.6b for Ēeb = 0.8 and λU = 3.

a) b)

Figure 2.6: Failure envelopes at Ēeb = 0.8 and λU = 3 on the a) mechanical S̄–λ and
b) electrical φ̄–ω̄0 planes for an equibiaxially loaded DEG.
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2.7 Performance of a dielectric elastomer generator: gained

and invested energies, effectiveness and efficiency

Assuming no body forces and no charge distribution within the dielectric, during a finite

time interval ∆t from a generic state (1) to a generic state (2) of the electromechanical

cycle illustrated in Sect. 2.5, the energy variation is [45]

U(2) − U(1) +
ε0
2

(
E2

(2) − E
2
(1)

)
=

∫ t2

t1

S · Ḟdt+

∫ t2

t1

E0 · Ḋ0
dt = W(2) −W(1), (2.51)

where U is the internal energy-density stored in the material, E = |E | is the modulus of

the current electric field and W = W (F ,E0) is the strain energy function, see Sect. 2.2.

Noting that during the cycle, described in Fig. 2.2c of Sect. 2.5, the system is electrically

isolated during strokes A–B and C–D, by using Eq. (2.51), the total flux of electrical

energy per unit referential volume is

H̃g =

∫ tC

tB

E0 · Ḋ0
dt+

∫ tA

tD

E0 · Ḋ0
dt

= WC −WB − SB · (FC − FB) +WA −WD − SA · (FA − FD).

(2.52)

For later reference, we recall that H̃g is the energy extracted from the system and its

sign is negative.

Mechanical and electrical works are invested into the system during strokes A–B and B–

C. By employing once again Eq. (2.51), the total invested work per unit reference

volume is simply

H̃i = WC −WA. (2.53)

An alternative way to estimate the energy harvested during the cycle is to evaluate

the area enclosed by the cycle on the dimensionless electrical plane φ̄ – ω̄0. In fact, in

the static and quasi-static cases according to the four-stroke cycle described in Sect. 2.5

the energy harvested by the soft capacitor is

H̃g =

∫ C

B
φ dQ+

∫ A

D
φ dQ. (2.54)

Since the deformation is homogeneous and the measure of the area delimited by the

cycle in the dimensionless electrical plane is equal to the energy-density generated per

unit shear modulus Hg = H̃g/(µV0), it is convenient to express the energy in terms of
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the dimensionless variables φ̄ and ω̄0,

Hg =

∫ C

B
φ̄ dω̄0 +

∫ A

D
φ̄ dω̄0. (2.55)

Sine the total invested energy is the sum of the mechanical and electrical energies

provided to the generator during strokes A–B and B–C respectively, Hi can be computed

through integrations along those paths on the electrical and mechanical dimensionless

planes

Hi =
H̃i

µV0
=

∫ C

B
φ̄ dω̄0 + κ

∫ C

A
S̄ dλ, (2.56)

where the factor κ multiplying the second integral depends on the loading conditions

of the membrane, e.g. κ is equal to two for equibiaxial load, whereas it is unitary for

plane-strain and uniaxial loads. Since S̄ is constant along the path B–C, while it is

variable along the path A–B (S̄ = S̄(λ)), the second integral in Eq. (2.56) has to be split

into two contributes, so that Eq. (2.56) turns out to be

Hi =
H̃i

µV0
=

∫ C

B
φ̄ dω̄0 + κ

∫ B

A
S̄(λ) dλ+ κ

∫ C

B
S̄const dλ. (2.57)

Thus, as a measure for the generator performance, we define the efficiency of the

generator

η =

∣∣∣∣Hg

Hi

∣∣∣∣ . (2.58)

Once the dielectric strength and the ultimate stretch are determined, we can compute

the theoretically achievable energy, that is the area bounded by the failure curves

on the electrical φ–Q plane

H̃max =

∣∣∣∣∮ φfailure dQ

∣∣∣∣ , (2.59)

irrespective of the integration path direction. Here, φfailure is the piecewise function

defining the close failure envelope.

Since the measure of the area enclosed by the failure envelope in the dimensionless

electrical plane is equal to the energy-density theoretically achievable per unit shear

modulus Hmax = H̃max/(µV0), it is convenient to express the energy in terms of the

dimensionless variables φ̄ and ω̄0,

Hmax =

∣∣∣∣∮ φ̄failure dω̄0

∣∣∣∣ . (2.60)
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Therefore, an alternative way to estimate the performance of a generator is to compute

the effectiveness

ζ =
|Hg|
Hmax

, (2.61)

that is the ratio of the optimal dimensionless gained energy Hg to the dimensionless

theoretically achievable energy Hmax.

The computation of both the efficiency and the effectiveness allows the comparison of

the various optimal cycles for materials with different electromechanical characteristics.

Moreover, in order to compare the performance of generators made up of different ma-

terials, it is convenient to define the energies per unit mass

Ĥg =
µHg

ρ
, Ĥi =

µHi

ρ
, Ĥmax =

µHmax

ρ
, (2.62)

with ρ = ρ0 due to incompressibility.



Chapter 3

Optimisation of an ideal DEG in

plane-strain loading mode

This Chapter focuses on the performance optimisation of the ideal hyperelastic pla-

nar generator deforming in plane-strain presented in Subsect. 2.3.1. The membrane is

constrained along direction x2 and deformed by a force applied along direction x1, as

sketched in Fig. 3.1.

_   _    _    _    _    _    _

+ + +    +    +    +

+ + +    +    +    +

+ + +    +    +    +

+ + +    +    +    +

+ + +    +    +    +

+ + +    +    +    +

+ + +    +    +    +

Figure 3.1: Reference and deformed configurations of a soft planar DE generator with
undeformed dimensions (l0× l0×h0) subjected to a plane-strain loading: as a result of

the deformation, the current dimensions are l1 = l0λ, l2 = l0 and h = h0λ
−1.

In the following, we optimise the performance of this ideal generator by determining the

optimal cycle, within the admissible state region, out of which the maximal energy can

be harvested. Details about the failure envelope have been introduced in Subsect. 2.6.1.

25
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3.1 Constrained optimisation problem for plane-strain load-

ing mode

In the following, we specialise expressions (2.55) of the generated energy and (2.56)

of the invested energy for the plane-strain loading mode. The possible failures of the

generator will be taken into account as constraints to the cycle optimisation. Particular

attention will be paid to the electric breakdown and its influence on both the allowable

state region and the failure characterising the optimal cycle.

3.1.1 The harvested energy Hg

With reference to the load-driven harvesting cycle illustrated in Sect. 2.5, noting that

S11 is constant along both paths B–C and A–D, letting S̄const11 = S̄B11 along the former

and S̄const11 = S̄A11 along the latter, it is convenient to express the dimensionless electric

voltage φ̄ as a function of the stretch λ and the constant stress S̄const11 . Thus, employing

(2.18)1, along the two paths

φ̄(λ) =
√

1− λ−4 − S̄const11 λ−1. (3.1)

Moreover, Eq. (2.18)3 allows us to evaluate the differential dω̄0 in terms of the same pair

dω̄0 = d[φ̄(λ)λ2] =
4λ− 3S̄const11

2
√

1− λ−4 − S̄const11 λ−1
dλ. (3.2)

Hence, the first integral in Eq. (2.55) can be evaluated explicitly

∫ C

B
φ̄ dω̄0 =

∫ λC

λB

(
2λ− 3

2
S̄const11

)
dλ =

∣∣∣∣λ(λ− 3

2
S̄const11

)∣∣∣∣λC
λB

. (3.3)

The second integral can be analogously determined. Summation of the two integrals

leads to the explicit expression for the dimensionless gained energy, namely

Hg =
1

2

[
2(λ2

C − λ2
B)− 3S̄B11(λC − λB) + 2(λ2

A − λ2
D)− 3S̄A11(λA − λD)

]
. (3.4)

Since λS̄const11 = − 1
λ2
λ2 − λ2φ̄2, Eq. (3.4) can be written as

Hg =
1

2

(
1

λ2
A

+ λ2
A + λAφ̄

2
A

)
− 1

2

(
1

λ2
D

+ λ2
D + λDφ̄

2
D

)
− S̄A11(λA − λD)

+
1

2

(
1

λ2
C

+ λ2
C + λC φ̄

2
C

)
− 1

2

(
1

λ2
B

+ λ2
B + λBφ̄

2
B

)
− S̄B11(λC − λB).

(3.5)
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In addition, according to Eq. (2.18), we can impose the equalities

λC = λU , φ̄D = ĒUλ
−1
D , ∆φ̄ = φ̄C − φ̄B, (3.6)

through relations (2.31). Here, ĒU is the dimensionless ultimate electric field and ∆φ̄ is

the dimensionless applied voltage jump. The first equality in Eq. (3.6) guarantees that

indeed at point C the device attains the maximal allowable stretch for the elastomeric

membrane. The second equality ensures that at point D, when the maximal electrical

field is induced through the membrane, its value equals the membrane electric breakdown

field. These two conditions are required in order to maximise the harvested energy within

the failure envelope. The last equality in Eq. (3.6) simply relates the electric potentials

at points B and C in terms of the initial controllable quantity ∆φ̄.

Upon substitution of relations (3.6) into expression (3.5), we end up with the following

expression for harvested energy as a function of the parameters set {λA, λB, λD,∆φ̄, ĒU},

Hg(λA, λB, λD,∆φ̄, ĒU ) =
1

2

{
1

λ2
A

− 1

λ2
D

+
1

λ2
U

− 1

λ2
B

+ λ2
A − λ2

D + λ2
U − λ2

B

+ ĒU

(
λ2
D

λ2
U

− 1

)
+ λ2

B

(
λ2
B

λ2
A

− 1

)(
∆φ̄− ĒUλD

λ2
U

)2

− 2(λA − λD)

[
λA −

1

λ3
A

(
1 + λ4

B

(
∆φ̄− ĒUλD

λ2
U

)2
)]

− 2(λU − λB)

[
λB −

1

λ3
B

(
1 + λ4

B

(
∆φ̄− ĒUλD

λ2
U

)2
)]}

.

(3.7)

In order to identify the optimal cycle through which the maximal energy can be har-

vested, we optimise the expression forHg with respect to the variables {λA, λB, λD,∆φ̄, ĒU}.
Practically, since Hg is a negative quantity, we minimise expression (3.7). To ensure that

the optimisation is performed over the set of admissible values within the failure enve-

lope, we perform a constraint minimisation where the constraints are

S̄A22 ≥ 0, S̄D11 ≥ λD −
1

λ3
D

−
Ē2
eb

λD
, S̄D11 ≥

(
λD −

1

λD

)
,

∆S̄D−A11 = 0, ∆S̄B−C11 = 0,

0 < ĒU ≤ Ēeb,

1 ≤ λA ≤ λU , 1 ≤ λB ≤ λU , 1 ≤ λD ≤ λU .

(3.8)

The constraint minimisation is carried out numerically by application of the Nelder-

Mead method (for details on this non-linear optimisation procedure see Appendix A).
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An alternative strategy for the constraint optimisation of the gained energy is the method

of Lagrange multipliers. As explained in Appendix B, it is possible to formulate the

generalized Lagrangian function and the Karush-Kuhn-Tucker (KTT) conditions for

the problem by expressing the harvested energy and the constraints defining the failure

envelopes in terms of the four characteristic stretches λA, λB, λC and λD. Imposing then

the stationarity condition for the generalized Lagrangian function, we can determine the

optimal configuration of the generator in terms of the stretches.

3.1.2 The invested energy Hi

As for the load-driven cycle depicted in Fig. 2.2, noting that along the path A–B, at

constant charge, S̄11 is variable according to S̄11(λ) = λ− 1
λ3

(1+ ω̄2
0const) and integrating

Eq. (2.56) with κ = 1, the explicit expression of the specific invested energy for a plane-

strain loaded DEG is

Hi =
1

2

[
2(λ2

C − λ2
A)− (S̄B11λC − S̄A11λA)

]
. (3.9)

Reminding that λS̄const11 = − 1
λ2

+ λ2 − λ2φ̄2, the invested energy can be written as

Hi =
1

2

(
1

λ2
C

+ λ2
C + λ2

C φ̄
2
C

)
− 1

2

(
1

λ2
A

+ λ2
A + λ2

Aφ̄
2
A

)
. (3.10)

Once again, this quantity is written in terms of the parameter set {λA, λB, λD,∆φ̄, ĒU}.
The resulting expression is

Hi[λA, λB, λD,∆φ̄, ĒU ] =
1

2

{
− λ2

A +
1

λ2
U

(
1 + ĒUλ

2
D + 2λ4

U

)
− 1

λ2
A

(
1 +

λ4
B

λ4
U

(ĒUλD −∆φ̄λ2
U )2

)}
.

(3.11)

Eq. (3.11) enables to maximise the cycle efficiency η (2.58) within the admissible state

region via a numerical constrained maximisation. In the following, numerical analyses

are executed in order to detect those cycles that leads to the maximal gained energy

and to the highest efficiency.

3.1.3 Influence of the electric breakdown

The electric breakdown is extremely important; first of all, it may or may not influence

the definition of the allowable state region. Secondly, even if the electric breakdown
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contributes to the determination of the failure envelope, it may or may not be a failure

involved in the optimal cycle.

Focusing on the influence of the electric breakdown on the allowable state region, a

comparison between expressions (2.36)1 and (2.40)1 for the stress according to the failure

modes EB and (S22 = 0) reveals the possible existence of an intersection point at which

simultaneous failures may take place. This is possible only if Ēeb ≤ 1, and the combined

failure occurs at stretch ratio λ∗ ≡ 1/
√

1− Ē2
eb (see Fig. 3.2a), while if Ēeb > 1 the

electric breakdown will not affect the failure envelope.

On this basis, by imposing the equality of expressions (2.37)2 and (2.40)2 for the voltage

relative to the failure modes λU and (S22 = 0), we can compute the value of ω̄0 at which

the two failure take place at the same time, that is ω̂0 =
√
λ2
U − 1 (see Fig. 3.2b). Then,

imposing the equality of equations (2.36)2 and (2.40)2 for the voltage corresponding to

the failure modes EB and (S22 = 0), substituting ω̂0 and solving with respect to the

electric breakdown we find

Êeb(λU ) =

√
λ2
U − 1

λ2
U

. (3.12)

a) b)

Figure 3.2: Region of admissible state for a plane-strain loaded DEG with Ēeb = 0.8,
λ∗ = 1.667 and ω̂0 = 2.828 on the a) mechanical and b) electrical planes.

Hence, for a given ultimate stretch λU , we can distinguish among two cases, to which

we will refer in the next Sections:

Case a) if Ēeb ≤ Êeb, the failure mode EB must be accounted for in order to define the

region of admissible states;

Case b) if Ēeb > Êeb, the optimal cycle lies in the envelope dictated by (S33=0) and

λU where the EB failure is unattainable.

With respect to Case a, focusing on the influence of the electric breakdown on the

optimal cycle, at point D of the cycle one of two independent failure modes may take
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place, i.e. electric breakdown EB or loss of tensile state (S22 = 0). The former mode,

EB, is trivially associated with the fact that at point D the electric field attains its largest

value throughout the cycle. The mode (S22 = 0) is related to the fact that during the step

C–D the membrane is mechanically released (see e.g. Fig. 2.2) and the minimal value of

the allowable load is zero. On this basis, we can identify a threshold beyond which the

electric breakdown is not attained during the optimal cycle. In fact, this competition

between the failure modes leads us to the conclusion that if the electric breakdown limit

Eeb is smaller than a threshold, then it is the dominant failure mode at D. However, if

Eeb is larger than this threshold value, then its precise value is irrelevant since only the

failure mode (S22 = 0) will be excited at D. For the sake of the following analysis, in

Case a, we distinguish between those optimal cycles in which Eeb is attained at point

D (failure (i)) and those along which Eeb is irrelevant (failure (ii)), as summarised in

Tab. 3.1.

Failure at D

(i) EB ∪ (S22 = 0)
(ii) (S22 = 0)

Table 3.1: Classification of the optimal cycles for plane-strain load-driven DEGs,
according to the relevance of the electric breakdown Eeb on the failure at D, cf. Fig. 3.5.

Analysis of the critical threshold value beyond which Eeb is irrelevant with respect to

the optimal cycle reveals that there is an interplay between this value and the ultimate

stretch ratio λU (see Fig. 3.5). For the plane-strain generator two classes of materials

have been identified: the high ultimate stretch regime (HΛU), characterised by λU ≥
2.546, and the moderate ultimate stretch regime (MΛU), individuated by λU < 2.546.

The value of λU distinguishing these two regimes has been chosen in analogy with the

regime classification obtained for the equibiaxial case, see e.g. Sect. 4.1.3.

3.2 Numerical results

The numerical analysis demonstrates that large values of λU lead to an increase in the

amount of harvested energy, but, at the same time, to an efficiency decrease. Specifically,

as explained later, the maximal efficiency (14.7%) is obtained through a cycle with a

moderate maximal stretch λU = 1.546 out of which the extracted energy is |Hg| = 0.0719.

The maximal harvested energy (|Hg| = 0.2724) is harvested through a cycle exploiting

the highest allowable stretch (λU = 3), but whose efficiency is just over half of the

maximal one (8.2%). This can be understood on grounds of the fact that as the ultimate

stretch increases, it is necessary to spend more mechanical work to stretch the dielectric

elastomer membrane.
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Two values of λU , which are characteristic of the high and moderate ultimate stretch

regimes (HΛU and MΛU), are investigated in the following.

3.2.1 High ultimate stretch regime (HΛU): λU = 3

a)

b)

Figure 3.3: Optimal cycles on the mechanical and electrical planes for λU = 3 and:
a) Ēeb = 0.6 and b) Ēeb ≥ 0.8263.

According to Eq. (3.12), for λU = 3 the electric breakdown is irrelevant beyond the

threshold value 0.9428. In Fig. 3.3, two representative harvesting cycles are sketched on

the electrical plane, each for a different value of Ēeb. The measures of the coloured areas,

which are bounded by the four curves representing the four strokes of the cycle, are equal

to the amount of energy |Hg| extracted during the harvesting cycle. The dashed curves

representing the various failure mechanisms are also shown. In figures 3.3a and b the

dashed curves corresponding to the failure modes (S22 = 0) and λU are identical. Thus,

the differences between the optimal cycle are solely due to the different values of Eeb

assumed in each case.

Complementary numerical quantities for the various optimal cycles are listed in Tab. 3.2.

For different values of the dielectric strength, the absolute value of the dimensionless

gained energy |Hg|, the efficiency η (2.58), the dimensionless theoretically achievable
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energy Hmax, the effectiveness ζ (2.61) and the dominating failure modes at point D are

reported.

[Ref.] Ēeb |Hg| η Hmax ζ Failure at D

Fig. 3.3b > 0.9428 0.272 8.2% 0.654 41.6% (S22 = 0) (ii) b
Fig. 3.3b 0.9 0.272 8.2% 0.641 42.5% (S22 = 0) (ii) a
Fig. 3.3b 0.8263 0.272 8.2% 0.591 46.1% EB ∪ (S22 = 0) (i) a

– 0.8 0.269 7.9% 0.567 47.4% EB ∪ (S22 = 0) (i) a
Fig. 3.3a 0.6 0.166 4.6% 0.358 46.3% EB ∪ (S22 = 0) (i) a

– 0.5 0.114 3.2% 0.257 42.5% EB ∪ (S22 = 0) (i) a
– 0.4 0.073 2.0% 0.169 43.0% EB ∪ (S22 = 0) (i) a

Table 3.2: Relevant numerical values for optimal cycles associated with a DEG with
λU = 3 and different values of Ēeb.

3.2.2 Moderate ultimate stretch regime (MΛU): λU = 1.8

Figure 3.4: Optimal cycles on the mechanical and electrical planes for λU = 1.8 and
Ēeb ≥ 0.6889.

According to Eq. (3.12), for λU = 1.8 the electric breakdown is irrelevant beyond the

threshold value 0.8315. The numerical analysis, besides, shows that the optimal cycle is

not affected by the electric breakdown, when it exceeds the threshold value 0.6889.

Materials with λU = 1.8 and three different electric breakdown limits are shown in

Fig. 3.4, the dashed curves are related to the various failure modes. Accordingly, for

Ēeb ≥ 0.6889 the representative optimal harvesting cycle is the same irrespective of the

EB failure, as depicted in Fig. 3.4. Similarly to the strategy followed in Subsect. 3.2.1,

corresponding relevant numerical values are listed in Tab. 3.3.
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[Ref.] Ēeb |Hg| η Hmax ζ Failure at D

Fig. 3.4 > 0.8315 0.272 14.1% 0.242 48.9% (S22 = 0) (ii) b
Fig. 3.4 0.8 0.272 14.1% 0.240 49.4% (S22 = 0) (ii) a
Fig. 3.4 0.6889 0.269 14.1% 0.211 56.3% EB ∪ (S22 = 0) (i) a

– 0.6 0.166 12.9% 0.174 61.3% EB ∪ (S22 = 0) (i) a
– 0.5 0.114 9.9% 0.129 62.0% EB ∪ (S22 = 0) (i) a
– 0.4 0.073 6.7% 0.087 61.3% EB ∪ (S22 = 0) (i) a

Table 3.3: Relevant numerical values for optimal cycles associated with a DEG with
λU = 1.8 and different values of Ēeb.

3.3 A universal plot for plane-strain load-driven DEGs

The discussion carried out so far can be conveniently summarized in the two-dimensional

plot introduced in Fig. 3.5. The abscissa and the ordinate of the plot correspond the

electromechanical limits of the film λU and Ēeb, respectively.

Figure 3.5: A universal plot for planar plane-strain load-driven DEGs. The abscissa
and the ordinate of the plot correspond to the electromechanical limits of the film λU
and Ēeb, respectively. The dark-blue curve divides the space of materials parameters
into two sections, depending on the mode of failure at point D of the optimal harvesting
cycle. Beyond the light-blue curve the electric breakdown becomes unimportant in the
definition of the allowable state region. The dark-blue dashed curve is related to the

analytical prediction (3.14).

In Fig. 3.5, the solid dark-blue curve correspond to the numerical results of the optimi-

sation computed through the algorithm, while the dashed curve is associated with an

analytical prediction, as explained in the following of this Section.

In accordance with the qualitative discussion developed in Subsect. 3.1.3, we observe

that the dark-blue solid curve splits the two-dimensional Ēeb–λU space in two. The



34 Chapter 3. Optimisation of an ideal DEG in plane-strain loading mode

points below the curve correspond to materials in which the electrical breakdown limit

dominates the failure at point D of the optimal cycle. The points above the curve are

associated with materials in which the optimal cycle is independent of Eeb. At a fixed

λU , beyond this solid dark-blue curve the energy harvested during the cycle remains

constant, as well as the efficiency.

An analytical estimate of the dark-blue curve can be obtained noting that the area

of the cycle is visually similar to the rectangle whose height is equal to the potential

difference δφ̄ among the loss of tension (S22 = 0) and the ultimate stretch λU curve, see

e.g. Fig. 3.6.

Figure 3.6: Approximation of the cycle area through a rectangle whose height is equal
to the potential difference δφ̄ among the loss of tension (S22 = 0) and the ultimate

stretch λU curve.

Thus, we can obtain an analytical expression for the universal curve by maximising

the area of the rectangle δφ̄ × ω̄0 and detecting the value of Ēeb corresponding to this

condition. Employing Eq. (2.40)2 and Eq. (2.37)2 to express the voltage difference δφ̄,

we can find the maximum of the rectangle area by imposing

d

dω̄0
(δφ̄ω̄0) =

d

dω̄0

(
ω̄2

0

1 + ω̄2
0

− ω̄2
0

λ2
U

)
= 0. (3.13)

Solving Eq. (3.13) with respect to ω̄0, we obtain the value ω̄•0 =
√
λU − 1 for which the

area of the rectangle (and, hence, the area of the cycle) is maximal. Then, imposing the

equality of the voltages relative to the electric breakdown and loss of tension, Eq. (2.36)2

and Eq. (2.40)2, and substituting the value of ω̄•0, we obtain the value of the dimensionless

electric breakdown threshold for which the area of the cycle is maximal

Ēeb =

√
λU − 1

λU
. (3.14)
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Eq. (3.14) is the dashed dark-blue curve in Fig. 3.5 and well approximates the numerical

result.

The light-blue solid curve represents the limit curve Êeb(λU ) for the influence on the al-

lowable state region of the electric breakdown failure obtained by employing Eq. (3.12).

The points below this light-blue curve correspond to materials in which the electric

breakdown is relevant to the definition of the allowable state region (Case a in Sub-

sect. 3.1.3), while points above the curve are associated with materials for which the al-

lowable state region is unresponsive of the breakdown failure (Case b in Subsect. 3.1.3).

Hence, beyond the light-blue solid curve, at a fixed λU , the maximal energy theoretically

extractable by the generator remains constant.

We note that for any given material candidate to be used as a membrane in a DEG

subjected to plane-strain loading, the pair (λU , Ēeb) specifies which are the failure mech-

anisms that limit the optimal cycle. The solid dark-blue curve can be used as a design

tool for choosing materials and modes of operations for load driven DEGs. Clearly,

an effective design is such that the material parameters are as close as possible to the

universal curve.

3.3.1 Electromechanical properties for the best energy and efficiency

cycles

The universal dark-blue curve in Fig. 3.5, as said before, is a design tool for the realization

of optimal electromechanical transducers. Among the optimal configurations detected

by the curve, it is interesting to individuate the optimal couples of electromechanical

properties (λU , Ēeb) ensuring the best performance with regard to the efficiency, as well

as to the harvested energy.

Following the procedure explained at the beginning of this Chapter, we minimise Eq. (3.7)

and maximise Eq. (3.11) with respect to the variable set {λA, λB, λD,∆φ̄, ĒU , Ēeb, λU},
imposing the additional constraint 1 < λU ≤ 3.

The outcome of this procedure is the two pairs of electromechanical properties entailing

maximal efficiency and maximal gained energy, see Tab. 3.4.

λU Ēeb |Hg| η [%] Hmax ζ [%] Failure

Maximal efficiency 1.546 0.5929 0.072 14.7 0.1713 41.9 (i)a
Maximal energy 3 0.8263 0.272 8.2 0.5908 46.1 (i)a

Table 3.4: Electromechanical properties ensuring the best performance in terms of
efficiency and harvested energy for a plane-strain load-driven DEG.
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Comparing the results, it is evident that the two optimum DEGs, optimum-efficiency

and optimum-energy, are characterised by similar effectiveness. Hence, by exploiting

approximately the 40% of the admissible state region, the first DEG operating at MΛU

achieves maximal efficiency, whereas the second one harvests maximal energy working at

HΛU. It is interesting to note that, even if the energy harvested by the optimum-energy

DEG is four times the one produced by the optimum-efficiency device, its efficiency is a

half of the value attained by the optimum-efficiency DEG.

For a given value of the dimensionless breakdown threshold Ēeb, reminding that it is

a function of the material electromechanical properties (µ, εr) and inverting Eq. (2.33),

we can obtain the current electric breakdown Eeb and plot it as a function of the shear

modulus µ and of the relative permittivity εr. The plots of the current electric field

relative to the optimum-efficiency and to the optimum-energy devices are depicted in

Figs. 3.7a and 3.7b for µ = 10÷ 1000 kPa and εr = 2÷ 10.

The current electric field ranges from 6 to 141 MV/m for the optimum-efficiency device

at λU = 1.546 and Ēeb = 0.5929 as depicted in Fig. 3.7a, while it ranges from 9 to 196

MV/m for the optimum-energy device at λU = 3 and Ēeb = 0.8263, see Fig. 3.7b.

For a fixed couple of electromechanical properties (λU , Ēeb), on the one hand, the high-

est the shear modulus µ, the highest the gained energy Hg and, on the other hand,

the lower the relative permittivity εr, the higher the current electric breakdown field

Eeb. Focusing on the best energy cycle, if the shear modulus is µ = 10, 100, 1000 kPa

the gained energy is, respectively, Hg = 2.724, 27.240, 272.400 kJ, independently of the

relative permittivity εr. The current breakdown fields corresponding to these values of

shear modulus are, respectively, Eeb = 19.64, 62.09, 196.36 MV/m if εr = 2, while are

Eeb = 9.82, 31.05, 98.18 MV/m if εr = 8. These computations show that the effect of

an increase in the shear modulus of the material is a directly proportional increase in

the energy, while an increment in the relative permittivity results in a proportional de-

crease in the electric breakdown field (and, generally, in all the other electrical quantities

involved).

3.4 Plane-strain DEGs based on commercially available

soft DEs

We apply the analysis previously described to two specific commercially available DEs,

the acrylic VHB-4910 and the acrylonitrile butadiene rubber (NBR). The VHB-4910,

produced by 3M, is a polyacrylate dielectric elastomer available as a pre-cast 1 mm thick

polyacrylate adhesive foam. The acrylonitrile butadiene rubber (NBR) is a synthetic



3.4 Plane-strain DEGs based on commercially available soft DEs 37

a)

b)

Figure 3.7: Values of the electric breakdown strength Eeb [MV/m] as a function of the
shear modulus µ and of the relative dielectric permittivity εr for the best performance
in terms of: a) efficiency, λU = 1.546 (MΛU) and Ēeb = 0.5929, and b) energy, λU = 3

(HΛU) and Ēeb = 0.8263.

elastomer, produced by co-polymerization of acrylonitrile (ACN) and butadiene rubber

(BR). This rubber exhibits enhanced actuation performance conferred by the presence

of the ACN in the range between 18-50% together with vulcanization agents [29]. The

pertinent mechanical and electrical properties of the two materials listed in Tab. 3.5

have been reported in [29].

The dielectric strength of these materials, which commonly depends on the applied

pre-strain, deserves a particular attention. Thus, we recall that in common EAP ap-

plications the films are pre-strained in order to reduce the film thickness and increase
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the breakdown strength [35, 60]. As an example, the data reported in [35] for VHB-

4910 demonstrates that the electric breakdown limit ranges between 20 MV/m in the

unstrained state and 218 MV/m in the case of 500% equibiaxial strain. Accordingly, in

the sequel two typical values are assumed for the dielectric strength, Eeb1 = 20 MV/m

and Eeb2 = 100 MV/m.

Material [Ref.] µ [kPa] εr Ēeb1 Ēeb2
VHB-4910 [29] 83.4 4.7 0.4468 2.2338
NBR [29] 1333.4 14 0.1928 0.9642

Table 3.5: Physical properties assumed for the elastic dielectrics.

To enable a comparison between the performances of load-driven DEGs based on the

these materials, we select the VHB-4910 as a benchmark and determined the maximal

stresses (Smax = SB11) attained along the optimal cycles corresponding to all four possible

combinations of Eeb1 , Eeb2 , λU = 1.5 and λU = 3. The four resulting stresses are listed

in Tab. 3.6. We note that since the maximal stretch is attained at the end of the electric

charging stroke (point C), the stresses corresponding to the larger dielectric breakdown

are slightly lower since a larger portion of the allowable stretch is excited electrically.

Next, we determined limits on the maximal stretch λC of the NBR such that, during the

optimal cycles dictated by these stretches and the pair Eeb1 and Eeb2 , the same maximal

stresses will be developed. The resulting stretch ratios for the NBR, together with the

harvested energy and the normalized activation potential, are also listed in Tab. 3.6.

In this table we also list the material classification (M-C), according to Fig. 3.5. As

the shear modulus of the NBR is one order of magnitude larger than that of the acrylic

elastomer, the stretches that correspond to similar maximal stresses for the two materials

differ of one order of magnitude.

Eeb1 = 20 MV/m Eeb2 = 100 MV/m
Smax µHg µHmax λC M-C Smax µHg µHmax λC M-C

Material [kPa] [kJ/m3] [kJ/m3] [kPa] [kJ/m3] [kJ/m3]
VHB-4910 132.2 5.49 8.89 1.8 (i)a 123.2 9.88 20.19 1.8 (ii)b
NBR 132.2 0.77 1.25 1.035 (i)a 123.2 0.71 2.19 1.036 (ii)b
VHB-4910 246.3 7.60 17.39 3 (i)a 240.5 22.72 54.56 3 (ii)b
NBR 246.3 1.86 2.37 1.059 (i)a 240.5 2.48 4.92 1.064 (ii)b

Table 3.6: The harvested energy-density µHg, activation electric potential per unit
referential thickness ∆φ/h0 and material classification M-C, determined for the optimal
cycles according to the dielectric strength limits and the maximal stretch ratios λC

determined for the maximum stresses Smax.

At first glimpse we deduce from Tab. 3.6 that the amounts of energy extractable from

the VHB-4910 are an order of magnitude larger than those available for the NBR (when

the load or the traction on the DEG are specified). This is due to the extensibility
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of the former and in spite of the fact that the dielectric constant of the VHB-4910 is

substantially smaller than that of the NBR.

Another important observation concerns the importance of the classification of the mate-

rials. In particular, we note the differences in the energies harvested from the VHB-4910.

In the first line of Tab. 3.6 the energy µHg associated with the VHB-4910 for smaller

dielectric strength is comparable with the one extracted from the material whose di-

electric strength is 5 times larger. This fact occurs because the material with larger

dielectric breakdown is associated with Case b in Fig. 3.5, according to which this larger

dielectric strength does not participate in the definition of the allowable state region

and hence it is not reached during the optimal cycle (failure (ii)), so that the potential

of the material remains unexpressed. Along the third line of Tab. 3.6, where VHB-4910

with larger stretchable domain is considered, the situation is somewhat different: the

energy extracted from the material with larger Eeb is approximately three times the one

extracted from the one with smaller Eeb. This is due to the fact that the pair (λU , Ēeb)

for the material with larger dielectric breakdown is closer to the universal curve shown

in Fig. 3.5, suggesting that this material is closer to the optimal balance between the

ultimate stretch ratio and the dielectric breakdown.





Chapter 4

Optimisation of an ideal DEG in

equibiaxial loading mode

This Chapter focuses on the performance optimisation of the ideal hyperelastic parallel

plate generator deforming equibiaxially presented in Subsect. 2.3.2. The membrane is

deformed in-plane by equal forces applied along x1 and x2 directions, as depicted in

Fig. 4.1.

_

_

_   _    _    _    _    _    _    _    _    _

+ + +    +    +    +    +    +    +
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Figure 4.1: Reference and deformed configurations of a soft planar DE generator with
undeformed dimensions (l0 × l0 × h0) subjected to equibiaxial loading: as a result of

the deformation, the current dimensions are l = l1 = l2 = l0λ and h = h0λ
−2.

In the following, employing the same procedure illustrated in Chap. 3, we optimise

the performance of this ideal generator by determining the optimal cycle, within the

admissible state region, out of which the maximal energy can be harvested. Details

about the modes of failure have been introduced in Subsect. 2.6.2.

41
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4.1 Constrained optimisation problem for equibiaxial load-

ing mode

Here, we specialise expressions (2.55) of the generated energy and (2.56) of the invested

energy for the equibiaxial loading mode. The possible failures of the generator will be

taken into account as constraints to the cycle optimisation. Particular attention will be

paid to the electric breakdown and its influence on both the allowable state region and

the failure characterising the optimal cycle.

4.1.1 The harvested energy Hg

With respect to the load-driven harvesting cycle illustrated in Sect. 2.5, reminding that

S is constant along both paths B–C and A–D, letting S̄const = S̄B along the former and

S̄const = S̄A along the latter, it is convenient to express the dimensionless potential φ̄

as a function of the stretch λ and the constant stress S̄const. Thus, employing (2.21)1,

along the two steps

φ̄(λ) =
√
λ−2 − λ−8 − S̄constλ−3. (4.1)

Moreover, Eq. (2.21)2 allows us to evaluate the differential dω̄0 in terms of the same pair

dω̄0 = d[φ̄(λ)λ4] =
6λ− 5S̄const

2
√
λ−2 − λ−8 − S̄constλ−3

dλ. (4.2)

Hence, the first integral in Eq. (2.55) can be evaluated explicitly

∫ C

B
φ̄ dω̄0 =

∫ λC

λB

(
3λ− 5

2
S̄const

)
dλ =

∣∣∣∣12λ(3λ− 5S̄const)

∣∣∣∣λC
λB

. (4.3)

The second integral can be determined in a similar manner. Summation of the two

integrals leads to the explicit expression for the dimensionless gained energy, namely

Hg =
1

2

[
3(λ2

C − λ2
B)− 5S̄B(λC − λB) + 3(λ2

A − λ2
D)− 5S̄A(λA − λD)

]
. (4.4)

Since λS̄const = − 1
λ4

+ λ2 − λ4φ̄2, Eq. (4.4) can be written as

Hg =
1

2

(
1

λ4
A

+ 2λ2
A + λ4

Aφ̄
2
A

)
− 1

2

(
1

λ4
D

+ 2λ2
D + λ4

Dφ̄
2
D

)
− 2S̄A(λA − λD)

+
1

2

(
1

λ4
C

+ 2λ2
C + λ4

C φ̄
2
C

)
− 1

2

(
1

λ4
B

+ 2λ2
B + λ4

Bφ̄
2
B

)
− 2S̄B(λC − λB).

(4.5)

The same result can be obtained from Eq. (2.52) by employing the dimensionless stress

S̄ and the strain energy function (2.14) divided by the shear modulus, i.e W (F ,E0)/µ.
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In addition, according to Eq. (2.21) and similarly to Subsect. 3.1.1, we can impose the

equalities

λC = λU , φ̄D = ĒUλ
−2
D , ∆φ̄ = φ̄C − φ̄B, (4.6)

through relations (2.32).

Upon substitution of relations (4.6) into expression (4.5), we end up with the following

expression for harvested energy as a function of the parameters set {λA, λB, λD,∆φ̄, ĒU},

Hg(λA, λB, λD,∆φ̄, ĒU ) =
1

2

{
1

λ4
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− 1

λ4
D

+
1

λ4
U

− 1

λ4
B

+ 2(λ2
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B)

+ ĒU

(
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U

− 1

)
+ λ4

B
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1
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(
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λ4
U
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.

(4.7)

In order to identify the optimal cycle, through which the maximal energy can be har-

vested, we optimise the expression forHg with respect to the variables {λA, λB, λD,∆φ̄, ĒU}.
Practically, since Hg is a negative quantity, we minimise expression (4.7). To ensure that

the optimisation is performed over the set of admissible values within the failure enve-

lope, we perform a constraint minimisation where the constraints are

S̄A ≥ 0, S̄D ≥ λD −
1

λ5
D

−
Ē2
eb

λD
, S̄D ≥

2

3

(
λD − 4

1

λ5
D

)
,

∆S̄D−A = 0, ∆S̄B−C = 0,

0 < ĒU ≤ Ēeb,

1 ≤ λA ≤ λU , 1 ≤ λB ≤ λU , 1 ≤ λD ≤ λU .

(4.8)

The constraint minimisation is carried out numerically by application of the Nelder-

Mead algorithm.

4.1.2 The invested energy Hi

As for the load-driven cycle displayed in Fig. 2.2, reminding that along the path A–B

the charge is constant while the stress varies according to S̄(λ) = λ− 1
λ5

(1+ ω̄2
0const) and
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integrating Eq. (2.56) with κ = 2, the explicit expression of the specific invested energy

for an equibiaxially loaded DEG is

Hi =
1

2

[
3(λ2

C − λ2
A)− (S̄BλC − S̄AλA)

]
. (4.9)

Reminding that λS̄const = − 1
λ4

+ λ2 − λ4φ̄2, the invested energy can be written as

Hi =
1

2

(
1

λ4
C

+ 2λ2
C + λ4

C φ̄
4
C

)
− 1

2

(
1

λ4
A

+ 2λ2
A + λ4

Aφ̄
4
A

)
. (4.10)

The same result of Eq. (4.10) can be obtained from Eq. (2.53) by employing the strain

energy function (2.14) divided by the shear modulus, i.e. W (F ,E0)/µ. Once again, this

quantity is written in terms of the parameter set {λA, λB, λD,∆φ̄, ĒU}. The resulting

expression is

Hi[λA, λB, λD,∆φ̄, ĒU ] =
1

2

{
− 2λ2

A +
1

λ4
U

(
1 + Ē2

Uλ
4
D + 2λ6

U
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− 1

λ4
A

(
1 +

λ8
B

λ8
U

(ĒUλ
2
D −∆φ̄λ4

U )2

)}
.

(4.11)

Eq. (4.11) enables to maximise the cycle efficiency η (2.58) within the admissible state

region via a numerical constrained maximisation. In the following numerical analyses

are executed in order to detect those cycles that leads to the maximal gained energy

and to the highest efficiency.

4.1.3 Influence of the electric breakdown

As introduced in Subsect. 3.1.3, the electric breakdown is an extremely important pa-

rameter. As before, it may or may not affect the allowable state region. Furthermore,

even if the electric breakdown contributes to the outlining of the failure envelope, it may

or may not have influence on the optimal cycle.

Focusing on the failure mode stresses, the possible existence of two intersection points,

λ∗ and λ∗∗, at which simultaneous failures may take place, can be assessed. Specifically,

these points can be detected by comparing expressions (2.44)1 and (2.49)1, related to EB

and (S = 0), and expressions (2.44)1 and (2.46)1, associated to EB and EMI. Therefore,

as in the case of plane-strain loading, we can determine a limit curve for the electric

breakdown influence on the allowable state region.

When the electric breakdown strength Ēeb is lower than 1.091, only the intersection

point λ∗ between loss of tensile state (S = 0) and electric breakdown EB exists and at

this point simultaneous failures may take place. By imposing the equality of expressions
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a) b)

Figure 4.2: Region of admissible state for an equibiaxially loaded DEG with Ēeb =
1.0912, λ∗ = 1.259, λ∗∗ = 1.739, ω̃0 = 15.642 and ω̂0 = 26.981 on the a) mechanical

and b) electrical planes.

(2.47)2 and (2.49)2 for the voltage relative to the failure modes λU and (S = 0), we can

compute the value of ω̄0 at which the two failures take place at the same time, that

is ω̂0 =
√
λ6
U − 1 (see Fig. 4.2). Then, imposing the equality of equations (2.44)2 and

(2.49)2 for the voltage corresponding to the failure modes EB and (S = 0), substituting

ω̂0 and solving with respect to the electric breakdown we find Eq. (4.12a), which is valid

until λU ≤ 1.259.

If the electric breakdown strength Ēeb is equal to 1.091, the intersection between the

electric breakdown EB and the loss of tensile stress (S = 0) occurs at λ∗ = 1.259 and

that between the electric breakdown EB and the electromechanical instability EMI takes

place at λ∗∗ = 1.739, as depicted in Fig. 4.2. Therefore, for Ēeb = 1.091 the electric

breakdown does not influence the allowable state region if the ultimate stretch is in the

range between 1.259 and 1.739 (4.12b).

When the electric breakdown strength Ēeb is larger than 1.091, only the intersection

point λ∗∗ between electromechanical instability EMI and electric breakdown EB takes

place. By imposing the equality of expressions (2.47)2 and (2.46)2 for the voltage relative

to the failure modes λU and EMI, we can compute the value of ω̄0 at which the two

failures occur at the same time, that is ω̃0 =
√

(λ6
U + 5)/3 (see Fig. 4.2). Then, imposing

the equality of equations (2.44)2 and (2.46)2 for the voltage corresponding to the failure

modes EB and EMI, substituting ω̃0 and solving with respect to the electric breakdown

we find Eq. (4.12c), which is valid if λU ≥ 1.739. Overall, the limit curve for the electric
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breakdown influence on the allowable state region can be explicit as

Êeb(λU ) =



√
λ6
U − 1

λ4
U

λU ≤ 1.259, (4.12a)

1.091 1.259 ≤ λU ≤ 1.739, (4.12b)√
λ6
U + 5

3λ4
U

λU ≥ 1.739. (4.12c)

As a consequence, as shown in Subsect. 3.1.3, for a given ultimate stretch λU we can

distinguish between the two main cases, to which we will refer in the following:

Case a) if Ēeb ≤ Êeb, the failure mode EB must be accounted for in order to define the

region of admissible states;

Case b) if Ēeb > Êeb, the optimal cycle lies in the envelope dictated by (S = 0), EMI

and λU where the EB failure is unattainable.

With respect to Case a, focusing on the influence of the electric breakdown on the

optimal cycle, one of three independent failure modes may take place at point D: electric

breakdown EB, electromechanical instability EMI or loss of tensile state (S = 0). The

first two modes, EB and EMI, are trivially associated with the fact that at point D the

electric field attains its largest value throughout the cycle. The mode (S = 0) is related

to the fact that during the step C–D the membrane is mechanically released (see e.g.

Fig.2.2) and we require not to have a compressive stress. A conclusion following this

competition between the failure modes is that we can identify a threshold beyond which

the electric breakdown is irrelevant with respect to the optimal cycle. On this basis,

if the electric breakdown limit Eeb is smaller than a threshold, then it is the dominant

failure mode at D. However, if Eeb is larger than this value, then it is irrelevant since a

different mode set the failure at D. For the sake of the following analysis we distinguish

between those optimal cycles in which Eeb is attained at point D (failures (i), (iv),

(v) and (vi)) and those along which Eeb is irrelevant (failures (ii), (iii) and (vii)), as

summarised in Tab. 4.1.

Analysis of the critical threshold value beyond which Eeb is irrelevant with respect to the

optimal cycle reveals that there is a fine interplay between this value and the ultimate

stretch ratio λU . Thus, for the equibiaxial generator, three classes of materials can be

identified as follows (see Fig. 4.6):

• For high ultimate stretch (HΛU) materials (λU ≥ 2.546), the dimensionless thresh-

old value is:

Ēeb ∼= 0.453λU + 0.035. (4.13)



4.2 Numerical results 47

Failure at D

(i) EB ∪ (S22 = 0)
(ii) (S22 = 0)
(iii) (S22 = 0) ∪ EMI
(iv) EB
(v) EB ∪ (S22 = 0) ∪ EMI
(vi) EB ∪ EMI
(vii) EMI

Table 4.1: Classification of the optimal cycles for equibiaxial load-driven DEGs, ac-
cording to the relevance of the electric breakdown Eeb on the failure at D, cf. Fig. 4.6.

• For moderate ultimate stretch (MΛU) materials (1.468 < λU < 2.546), the dimen-

sionless threshold value is:

Ēeb = 1.091. (4.14)

• For low ultimate stretch (LΛU) materials (1 < λU ≤ 1.468), the dimensionless

threshold value is:

Ēeb ∼= −56.480λ4
U + 288.170λ3

U − 551.541λ2
U + 470.863λU − 150.895. (4.15)

Equalities (4.13) and (4.15) are obtained by fitting points determined numerically, while

equality (4.14) is a rigorous analytical result.

Four values of λU that are characteristic of the identified regimes are investigated in next

Section. We anticipate that the complete overview of all discussed cases is sketched in

Fig. 4.6.

4.2 Numerical results

The numerical analysis demonstrates that large values of λU lead to an increase in the

amount of harvested energy, but, at the same time, to an efficiency decrease. Moreover,

in the cases analysed in this work, the cycle optimising the gained energy Hg also max-

imises the efficiency η. Specifically, as explained later, the maximal efficiency (43.75%)

is obtained through a cycle with a moderate maximal stretch λU = 1.563, out of which

the extracted energy is |Hg| = 0.559. The maximal harvested energy (|Hg| = 1.145) is

harvested through a cycle exploiting the highest allowable stretch (λU = 3), but whose

efficiency is less than a half of the maximal one (17.2%). This can be understood on

account of the fact that, as the ultimate stretch increases, it is necessary to spend more

mechanical work to stretch the dielectric elastomer membrane. We also note that, in all

the cases examined in this work, it was found that the optimal cycles are achieved when

the initial stretching (step A–B) is carried out with zero charge on the electrodes.
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4.2.1 High ultimate stretch regime (HΛU): λU = 3

Figure 4.3: Optimal cycles for λU = 3 and: a) Ēeb = 0.9, b) Ēeb = 1.038, c)
Ēeb = 1.091, and d) Ēeb ≥ 1.396.

For λU = 3, according to Eq. (4.12c), the electric breakdown is not part of the failure

envelope beyond the value 1.739 and, according to inequality (4.13), already beyond

the threshold value 1.396 the electric breakdown is irrelevant with respect to the cycle

failure.

In Fig. 4.3, four representative harvesting cycles are sketched on the thermodynamic

electrical plane, each for a different value of Ēeb. In these figures are also shown dashed

curves that represent the various failure mechanisms. In all four figures the dashed

curves corresponding to the failure modes EMI, (S = 0) and λU are identical. Thus,

the differences between the optimal cycle are solely due to the different values of Eeb

assumed in each case.

Complementary numerical quantities for the various optimal cycles are listed in Tab. 4.2.

For different dielectric strengths, the stretch λD, the absolute value of the dimensionless

gained energy |Hg|, the efficiency η (2.58), the dimensionless theoretically achievable

energy Hmax, the effectiveness ζ, defined by Eq. (2.61), and the dominating failure

modes at point D are presented.

Fig. 4.3a corresponds to Ēeb = 0.9 and, since it is a relatively small breakdown field, this

is the mode which sets the failure at point D and confines the intensity of the electric
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[Ref.] Ēeb |Hg| η Hmax ζ Failure at D

– ≥ 1.738 1.145 17.2% 3.077 37.2% EMI (vii)b
Fig. 4.3d 1.5 1.145 17.2% 2.966 38.6% EMI (vii)a
Fig. 4.3d 1.396 1.145 17.2% 2.852 40.1% EB ∪ EMI (vi)a
Fig. 4.3c 1.091 0.863 11.4% 2.303 37.5% EB ∪ EMI ∪ (S = 0) (v)a
Fig. 4.3c 1.091 0.869 12.0% 2.303 37.7% EB ∪ EMI (vi)a

– 1.050 0.803 10.7% 2.192 36.6% EB ∪ EMI high φ̄ (via)
– 1.050 0.809 10.9% 2.192 36.9% EB ∪ EMI low φ̄ (vi)a

Fig. 4.3b 1.038 0.789 10.6% 2.152 36.6% EB ∪ EMI (vi)a
Fig. 4.3a 0.9 0.551 7.5% 1.661 33.2% EB (iv)a

Table 4.2: Relevant numerical values for optimal cycles associated with a DEG with
λU = 3 and different values of Ēeb.

field. However, starting from Ēeb = 1.038, which is the case shown in Fig. 4.3b, the elec-

tromechanical instability EMI must be accounted for. Thus, the curves corresponding to

the failure modes EB and EMI intersect, and the optimal cycle is the one in which point

D is at the intersection point. In the range 1.038 < Ēeb ≤ 1.091, the EB curve intersects

the EMI curve twice below the loss of tension threshold curve (S = 0). The extremal

case Ēeb = 1.091 is shown in Fig. 4.3c. In this range of Ēeb there are two possible cycles

that are limited by the pair of curves EMI and EB. In Fig. 4.3c, the areas bounded by

the two harvesting cycles are represented by two different colours. Remarkably, for any

Ēeb sitting in this range the amount of energy harvested from these two cycles is nearly

the same, and their efficiencies are almost identical too. When Ēeb = 1.091 [Fig. 4.3c],

the upper intersection point lies on the curve (S = 0), and point D of the corresponding

cycle coincide with this triple intersection point. In comparison, the cycle involving the

low intersection point (the light-grey area) provides a similar amount of energy, but

its efficiency is slightly lower (see Tab. 4.2). At values of the non-dimensional electric

breakdown larger than 1.091, the optimal cycle is governed by a single intersection point

of the curves for the EMI and the EB failures. The amount of energy gained monotoni-

cally increases with Ēeb up to 1.396. This limiting case is depicted in Fig. 4.3d with the

aid of the dashed-dotted red curve. Beyond this limit, the maximal harvested energy is

independent of the material electrical breakdown limit, and the failure mode confining

the electric field at D is the electromechanical instability. The dashed curve correspond-

ing to Ēeb = 1.5 is also shown in this figure to highlight the fact that the optimal cycle

is independent of Ēeb.

4.2.2 Moderate ultimate stretch regime (MΛU): λU = 2.1 and λU = 1.8

For MΛU materials, the electric breakdown is not part of the failure envelope beyond

the value defined by Eq. (4.12c) for 1.759 ≤ λU ≤ 2.546 and by Eq. (4.12b) for 1.468 ≤
λU ≤ 1.759.
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Figure 4.4: Optimal cycles for λU = 2.1 and: a) Ēeb < 1.091 and b) Ēeb ≥ 1.091.

Figure 4.5: Optimal cycles for λU = 1.8 and: a) Ēeb < 1.091 and b) Ēeb ≥ 1.091.

We recall that for the class of MΛU materials (i.e., 1.468 < λU < 2.356), the optimal

cycle is independent of the electric breakdown limit whenever Ēeb > 1.091. For materials

with Ēeb < 1.091 we further distinguish between those with 1.985 ≤ λU < 2.356 and

1.468 < λU ≤ 1.985. Accordingly, in Figs. 4.4 and 4.5 four representative optimal

harvesting cycles are shown with the corresponding dashed curves associated with the

various failure modes. Materials belonging to the first subgroup, with λU = 2.1 and

electric breakdown limits Eeb = 0.9 and 1.4, are shown in Figs. 4.4a and b, respectively.

Materials from the second subgroup, with λU = 1.8 and similar electric breakdown

limits, are shown in Figs. 4.5a and b. According to Eq. (4.12c), the electric breakdown

does not contribute to the definition of the failure envelope beyond the threshold value

1.247 for λU = 2.1 and beyond the value 1.113 for λU = 1.8. In a similar way to the one

followed in Subsect. 4.2.1, corresponding relevant numerical values are listed in Tabs. 4.3

and 4.4.

A comparison between Figs. 4.4a and 4.5a reveals that in the former case, where the

material ultimate stretch is higher, the electric breakdown limit is the one restricting

the intensity of the electric field at point D. In the second case, with a smaller ultimate

stretch, point D of the optimal cycle is located at the intersection of the curves for the
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[Ref.] Ēeb |Hg| η Hmax ζ Failure at D

Fig. 4.4b ≥ 1.247 0.798 26.5% 1.514 52.7% EMI ∪ (S = 0) (iii)b
Fig. 4.4b 1.091 0.798 26.5% 1.453 54.9% EB ∪ EMI ∪ (S = 0) (v)a
Fig. 4.4a 0.9 0.495 16.7% 1.083 45.7% EB (iv)a

Table 4.3: Relevant numerical values for optimal cycles associated with a DEG with
λU = 2.1 and different values of Ēeb.

[Ref.] Ēeb |Hg| η Hmax ζ Failure at D

Fig. 4.5b ≥ 1.113 0.717 37.0% 1.088 65.9% EMI ∪ (S = 0) (iii)b
Fig. 4.5b 1.091 0.717 37.0% 1.086 66.0% EB ∪ EMI ∪ (S = 0) (v)a
Fig. 4.5a 0.9 0.456 24.5% 0.833 54.7% EB ∪ (S = 0) (i)a

Table 4.4: Relevant numerical values for optimal cycles associated with a DEG with
λU = 1.8 and different values of Ēeb.

EB and the (S = 0) failure modes. For values of Eeb larger than 1.091 the optimal cycles

for the MΛU materials are qualitatively identical. This can be perceived from Figs. 4.4b

and 4.5b where the curves corresponding to Eeb = 1.091 (the red dashed-dotted curves)

passes through the intersection points of the failure curves EMI and (S = 0). Thus,

during the optimal cycle, the intensity of the electric field at point D is restricted by

electromechanical instability at zero transverse tension in the membrane. The gained

energy is therefore independent of the value of Ēeb.

4.2.3 Low ultimate stretch regime (LΛU): λU = 1.4

For the class of LΛU materials (i.e., λU < 1.468), the electric breakdown is relevant in

the definition of the failure envelope beyond the threshold defined by Eq. (4.12b) for

1.259 ≤ λU ≤ 1.468 and by Eq. (4.12a) for λU ≤ 1.259. Moreover, for this class of

materials, the optimal cycle is independent of the electric breakdown limit whenever Ēeb

is larger than the threshold value given in Eq. (4.15). The plots that correspond to the

two classes of materials are qualitatively identical to the ones shown in Fig. 4.5. Thus,

at smaller values of Ēeb point D of the optimal cycle is dictated by loss of the tensile

state and electric breakdown EB ∪ (S = 0), while for values of electric breakdown limit

that satisfy inequality (4.15) point D of the optimal cycle is limited by the (S = 0)

failure curve. A few representative numerical values for a material with λU = 1.4 are

listed in Tab. 4.5. For this material, according to Eq. (4.12b), the electric breakdown

does not contribute to the definition of the failure envelope beyond the threshold value

1.091 and, according to inequality (4.15), the electric breakdown threshold Ēeb, beyond

which the EB failure mode is irrelevant to the cycle definition, is equal to 1.054.
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Ēeb |Hg| η Hmax ζ Failure at D

≥ 1.091 0.342 36.8% 0.524 65.2% (S = 0) (ii)b
1.054 0.342 36.8% 0.519 65.9% EB ∪(S = 0) (i)a
0.9 0.297 37.9% 0.426 69.7% EB ∪(S = 0) (i)a

Table 4.5: Relevant numerical values for optimal cycles associated with a DEG with
λU = 1.4 and for different values of Ēeb.

4.3 A universal plot for equibiaxial load-driven DEGs

The discussion carried so far can be conveniently summarized in the two-dimensional

plot introduced in Fig. 4.6. The abscissa and the ordinate of the plot correspond the

electromechanical limits of the film λU and Ēeb, respectively.

Figure 4.6: A universal plot for planar equibiaxial load-driven DEGs. The abscissa
and the ordinate of the plot correspond to the electromechanical limits of the film λU
and Ēeb, respectively. The dark-blue and orange curves divide the space of materials
parameters into sections depending on the mode of failure at point D of the optimal
harvesting cycle. Along the solid-dotted dark-blue curve we distinguish between the
high, the moderate and the low ultimate stretch regions. Uniquely below the dark-blue
curve, the failure depends on the electrical breakdown limit. Along the solid light-blue
curve we distinguish between Case a and Case b, so that above this curve the electrical

breakdown does not participate in the definition of the allowable state region.

In accordance with the qualitative discussion developed at the beginning of this Chapter,

see e.g. Subsect. 4.1.3, we observe that the dark-blue solid curve with dots splits the

Ēeb–λU space in two. The points below the curve correspond to materials in which

the electrical breakdown limit dominates the failure at point D of the optimal cycle.
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The points above the curve are associated with materials in which the optimal cycle is

independent of Eeb. Thus, at fixed ultimate stretch λU , beyond the dark-blue curve the

harvested energy Hg and the efficiency η remain constant. The curve is characterised

by three regions that correspond to the low, the moderate and the high ultimate stretch

ratio. The curves and line segments emanating from the main curve divide the two-

dimensional space (λU , Ēeb) into subregions according to the failure mode dominating

at point D (cf. Tab. 4.1). In particular, for 1.468 < λU < 2.546 (MΛU regime) the dark-

blue line itself corresponds to the subregion (v), characterised by the triple intersection

among the EB, the EMI and the (S = 0) curves. Furthermore, the orange curve encloses

subregion (iv) that corresponds to EB failure. The region between the orange and the

dashed blue curves is the one corresponding to the case of two intersections between EB

and EMI failure lines. On the dashed blue line itself there is a triple intersection where

one of the intersections between the EB and the EMI curves coincide with the (S = 0)

curve [the situation discussed in connection with Fig. 4.3c ].

In the same way, the light-blue solid curve represents the limit curve Êeb(λU ), see

Eqs. (4.12a), (4.12b) and (4.12c), relative to the influence of the electric breakdown

in the definition of the admissible state region. This curve splits the electromechanical

plane (λU , Ēeb) in two, distinguishing among Case a and Case b. The points above

the light-blue curve are associated with materials in which the allowable state region is

independent of Eeb. Hence, at fixed ultimate stretch λU , beyond the light-blue curve

the theoretically achievable energy Hmax is constant, as well as the effectiveness ζ.

We note that, for any given candidate to be used as a membrane in a DEG in equibiaxial

loading mode, the pair (λU , Ēeb) specifies which are the failure mechanisms that limit

the optimal cycle. The solid dark-blue curve can be used as a design tool for choosing

materials and modes of operations for load driven DEGs. Clearly, an effective design is

such that the material parameters lie as close as possible to the dark-blue curve.

4.3.1 Electromechanical properties for the best energy and efficiency

cycles

The universal dark-blue curve in Fig. 4.6, as said before, is a design tool for the realization

of optimal electromechanical transducers. Among the optimal configurations detected

by the curve, it is interesting to individuate the optimal couples of electromechanical

properties (λU , Ēeb) ensuring the best performance in terms of efficiency, optimum-

efficiency device, as well as in terms of harvested energy, optimum-energy device.
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Following the procedure explained at the beginning of this Chapter, we minimise Eq. (4.7)

and maximise Eq. (4.11) with respect to the variable set {λA, λB, λD,∆φ̄, ĒU , Ēeb, λU},
imposing the additional constraint 1 < λU ≤ 3.

The outcome of this procedure is the two pairs of electromechanical properties entailing

maximal efficiency and maximal gained energy, see Tab. 4.6.

λU Ēeb |Hg| η [%] Hmax ζ [%] Failure

Maximal efficiency 1.563 1.091 0.559 43.7 0.762 73.3 (v)a
Maximal energy 3 1.396 1.145 17.2 2.852 40.1 (vi)a

Table 4.6: Electromechanical properties ensuring the best performance in terms of
efficiency and harvested energy for an equibiaxial load-driven DEG.

From the comparison of the results, we note that the optimum-efficiency DEG has

not only higher efficiency but also higher effectiveness with respect to the optimum-

energy one. Moreover, differently from the plane-strain case, the energy harvested by the

optimum-energy device is just two times the energy harvested by the optimum-efficiency

one. This means that, the optimum-efficiency generator is exploiting the major part of

the allowable state region obtaining approximately the 40% of the total invested energy.

The optimum-energy generator instead exploits less than a half of the admissible state

region harvesting a double amount of energy, which, however, is only 17% of the total

invested energy.

Following the same procedure explained in Subsect. 3.3.1, for a given value of the di-

mensionless breakdown threshold Ēeb, we can obtain the current electric breakdown Eeb

and plot it as a function of the shear modulus µ and of the relative permittivity εr. The

plots of the current electric field relative to the optimum-efficiency and to the optimum-

energy ideal equibiaxial DEGs are depicted, respectively, in Figs. 4.7a and 4.7b, for

µ = 10÷ 1000 kPa and εr = 2÷ 10.

These plots show that the current electric field ranges from 12 to 259 MV/m for the

optimum-efficiency device at λU = 1.563 (MΛU) and Ēeb = 1.091, while it ranges from

15 to 331 MV/m for the optimum-energy device at λU = 3 (HΛU) and Ēeb = 1.396. For

the plane-strain loading mode, see Sect. 3.3.1, the electric breakdown fields required by

the optimum cycles are higher, whereas the ultimate stretches required are nearly the

same, cf. Tabs. 3.7 and 4.7. In terms of harvested energy, with respect to the plane-

strain loading mode, the equibiaxial one allows a seven-fold and a four-fold increments

for the optimum-efficiency and optimum-energy devices, respectively.

The main outcome arising from this analysis is that for a fixed pair of electromechanical

properties (λU , Ēeb), on the one hand, the highest the shear modulus µ, the highest

the gained energy Hg and, on the other hand, the lower the relative permittivity εr,
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a)

b)

Figure 4.7: Values of the electric breakdown strength Eeb [MV/m] as a function of the
shear modulus µ and of the relative dielectric permittivity εr for the best performance
in terms of: a) efficiency, for λU = 1.563 (MΛU) and Ēeb = 1.091 and b) energy, for

λU = 3 (HΛU) and Ēeb = 1.396.

the higher the current electric breakdown field Eeb. For example, focusing on the best

efficiency cycle, if the shear modulus is µ = 10, 100, 1000 kPa the gained energy is

Hg = 5.59, 55.90, 559.00 kJ, independently of the relative permittivity εr. The current

breakdown fields corresponding to these values of shear modulus are, respectively, Eeb =

23.76, 75.15, 237.64 MV/m if εr = 2, while are Eeb = 11.88, 37.57, 118.82 MV/m if

εr = 8.

As a general rule, for a given value of the shear modulus, a four-fold increment in the

relative permittivity involves a halving of the current electric breakdown field, whereas,
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for a given value of the relative permittivity, the energy increases proportionally to the

shear modulus of the material.

4.4 Equibiaxial DEGs based on commercially available soft

DEs

The analysis previously developed is applied to two specific commercially available DEs,

the acrylic VHB-4910 and the natural rubber designated ZruElast A1040. The ZruElast

A1040, produced by Zrunek Rubber Technology, is a natural rubber containing 23 wt%

of inorganic fillers and 1.19 wt% of carbon. The mechanical and electrical properties of

the two materials listed in Tab. 4.7 are taken from [31].

Material [Ref.] µ [kPa] εr ρ [kg/m3] Eeb(1) [MV/m] R
VHB-4910 [31] 52 4.2 960 68.57 0.54
ZruElast A1040 [31] 917 3.4 945 120.1 0.70

Table 4.7: Physical properties and electric breakdown parameters for the rigid elec-
trode configuration.

VHB-4910 ZruElast A1040
λU Eeb [MV/m] Ēeb Eeb [MV/m] Ēeb
1.8 94 2.518 181 1.037
2.0 100 2.666 195 1.117
3.0 124 3.318 260 1.483

Table 4.8: Electric breakdown data for the two elastomers at different ultimate
stretches λU , see [60].

In [60] two experimental configurations for the measurement of the stretch dependence

of the electric breakdown strength are reported and the dielectric function (i.e., the di-

electric permittivity) and breakdown strength of VHB-4910 and ZruElast are compared.

The experimental data are obtained employing both rigid and compliant electrodes and

are fitted with the phenomenological relation

Eeb(λ) = Eeb(1)λR, (4.16)

where Eeb(1) is the electric breakdown field when the membrane is not stretched and R
is the degree of sensitivity of the Eeb toward the stretch λ. Herein we take into account

the data reported in [60] corresponding to the experiments with rigid electrodes. This

configuration suppresses the actuation of the elastomer during the breakdown measure-

ments. The parameters Eeb(1) and R for the rigid electrode configuration are listed in

Tab. 4.7, while the electric breakdown data for the two materials at different λU are

summarized in Tab. 4.8.
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Once the dielectric strength is determined, we can compute the theoretically achievable

energy (2.59) according to the different choices of the ultimate stretches. Furthermore,

we estimate the performance of a generator, or a cycle, by computing both the efficiency

(2.58) and the effectiveness (2.61). In facts, the computation of both these parame-

ters allows the comparison of the various optimal cycles for materials with different

electromechanical characteristics.

In the central sections of Tabs. 4.9 and 4.10 the performance of generators based on a

single membrane of these two materials is compared for λU = 1.8 and 3, respectively.

The column ‘M-C’ stands for material classification and refers to the failure modes lim-

iting the optimal cycle according to the subregion introduced in Fig. 4.6. A comparison

between the two tables reveals that, at the one hand, the total amount of energy ex-

tracted from a single HΛU membrane is substantially higher than the one extracted

from a similar membrane with a smaller λU . At the other hand, the cycles in the MΛU

regime (λU = 1.8) exhibit higher efficiencies and effectivenesses than the ones exhibited

by the corresponding cycles in the HΛU regime (λU = 3). We also note that for λU = 3

the optimal cycle for both membranes is the same in terms of dimensionless quantities,

as both HΛU cycles are independent of the dielectric strengths. Therefore, the efficiency

of the two generators is identical. The effectiveness of the two HΛU cycles is slightly

different since the theoretically achievable energy for the ZruElast is limited by the elec-

tric breakdown limit, while for the VHB-4910 it is independent of this limit. Looking

at the theoretically achievable energy per unit mass, [31] reports for a ZruElast-based a

value of 3000 J/kg, that is compatible with our finding of 2862.68 J/kg (see Tab. 4.10).

Whereas, for a generator made up of VHB-4910, the same paper provides a value of

1200 J/kg calculated employing an extremely high rupture stretch, approximately equal

to 8. In our case, the estimated value for λU = 3 is 166.68 J/kg.

λU = 1.8
Single membrane Multi-membrane

Smax Ĥg ∆φ/h0 η M-C Ĥmax ζ n nH̃g

Material [kPa] [J/kg] [kV/mm] % [J/kg] % [1/kN] [J/kN]
VHB-4910 82.59 38.82 6.17 37.1 (iii)b 58.93 65.9 121 45.124
ZruElast 1480 608.46 25.75 32.9 (i)a 1019.17 59.7 7 38.851

Table 4.9: Data for DEGs with two MΛU elastomers and two configurations: Ĥg =
µHg/ρ, harvested energy density per unit mass, ∆φ/h0, activation electric potential
per unit referential thickness, η, efficiency, M-C, material classification according to
Fig. 4.6, Ĥmax = µHmax/ρ, theoretically achievable energy, ζ, effectiveness; n, number
of 1 mm thick layers required to sustain 1 kN at λU , nH̃g, total harvested energy by the

multi-membrane DEG.

As a conclusion, we note that, from a practical viewpoint, a comparison between DEGs

based on different materials should take into account their load capacity too. Thus,

while the comparison carried so far between the VHB-4910 and the ZruElast based
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λU = 3
Single membrane Multi-membrane

Smax Ĥg ∆φ/h0 η M-C Ĥmax ζ n nH̃g

Material [kPa] [J/kg] [kV/mm] % [J/kg] % [1/kN] [J/kN]
VHB-4910 142.25 62.04 3.67 17.2 (vi)a 166.68 37.2 70 41.878
ZruElast 2508 1111.51 17.14 17.2 (vi)a 2862.62 38.8 4 41.878

Table 4.10: Data for DEGs with two HΛU elastomers and two configurations: Ĥg =
µHg/ρ, harvested energy density per unit mass, ∆φ/h0, activation electric potential
per unit referential thickness, η, efficiency, M-C, material classification according to
Fig. 4.6, Ĥmax = µHmax/ρ, theoretically achievable energy, ζ, effectiveness; n, number
of 1 mm thick layers required to sustain 1 kN at λU , nH̃g, total harvested energy by the

multi-membrane DEG.

DEGs is significant in terms of efficiency and effectiveness, to compare the total amount

of harvested energy, DEGs with similar load bearing capacities should be considered. To

this end, we examine DEGs based on layered membranes of similar external dimensions

which are made up of a number of DE layers with identical thickness. The number of

layers is set in such a way that, at a given stretch, the multi-membrane device withstands

a lateral force of 1 kN. By way of illustration, if we take the thickness of each layer to

be 1 mm, then 121 VHB-4910 layers are required to sustain a 1 kN lateral force at

λU = 1.8 for an equibiaxial stress state. For a ZruElast-based layered membrane, due

to its relatively higher stiffness, only 7 layers with the same thickness are needed.

The relevant data for MΛU and HΛU DEGs is summarized at the right-hand side sections

of Tabs. 4.9 and 4.10, respectively. In terms of the total amount of extractable energy

(nH̃g), the VHB-based DEG performs slightly better at the moderate stretch level (λU =

1.8). At the high stretch regime (λU = 3) the amounts of energy that can be extracted

from the two DEGs are the same since in this case the selected optimal cycles for both

materials correspond to points in subregion (vi) of Fig. 4.6 (see the M-C column in

Tab. 4.10). We note that, from a theoretical point of view, with the right configuration,

the performances of DEGs based on the two materials are quite similar in terms of total

harvested energy, efficiency and effectiveness. The VHB-based DEG is slightly superior

at the low stretching regime, but from a practical viewpoint it is inferior due to its

complicated structure that involves a large number of layers. However, we find that the

performances of the MΛU DEGs are superior to those of HΛU DEGs in the sense that

similar amounts of energy can be extracted at each cycle, but the efficiencies of the MΛU

cycles are higher. This implies that, in real-life applications, less heat due to wasted

mechanical energy will be dissipated to the environment. The smaller number of layers

required for the HΛU DEGs is an advantage from a manufacturing viewpoint.
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4.5 Benefits of ceramic filler addition

As we have seen in Sect. 4.3, in order to extract the maximum energy from the DEG, it

is important that the pair of electromechanical properties of the material (λU , Ēeb) lies

as close as possible to the universal curve.

To this end, composite materials with improved electromechanical coupling could be

employed in the realization of enhanced electromechanical transducers. In facts, it is

possible to modify the DEG performance by adding small amount of ceramic fillers to the

silicone. As a result of this operation, the electromechanical properties of the material

approach the universal curve.

Promising materials, already tested for dielectric elastomer actuators, are random com-

posites, where ceramic fillers with a high dielectric constant are dispersed in a silicone

matrix. Three ceramic–polymer composites are here taken into account (see [20], [56] and

[51]), all three adopting for the matrix similar commercial formulations based on poly–

dimethyl–siloxane (hereafter simply denoted as PDMS), as candidates for the realization

of enhanced DEGs. The silicone elastomer is chosen for its suitable mechanical prop-

erties (low shear modulus and high stretchability), high dielectric breakdown strength,

low dielectric loss, fast response, chemical and biological inertness, easy workability and

bonding to the fillers. The filler particles for the three materials consist of the following

perovskite–type electroceramics, respectively:

a) PMN–PT powder very finely sized with spherically shaped particles, precisely a mix of

85% lead magnesium niobate Pb(Mg1/3Nb2/3)O3 (PMN) and 15% lead titanate PbTiO3

(PT) [20] (density ρ ' 7900 kg/m3); PMN–PT belongs to a new generation of piezoelec-

tric ceramics formulated to exhibit very high values of both piezoelectric coefficient and

relative permittivity (declared to be 19000 in the product data sheet for the formulation

we refer to, [20]) with low dielectric losses. The addition of PT to PMN stabilizes its

inclination to assume a perovskite structure, therefore PMN–PT exhibits a dielectric

constant higher than PMN. Moreover, the adoption of spherical particles for the filler

contributes to limit the increase in stiffness due to the ceramic. While paper [20] com-

pares the behaviour of composites at various filler contents, namely 10%, 20%, 30% in

volume, the formulation chosen as material a) refers to a percentage of 10% (chosen in

order to maximise the DEG harvested energy) and the relevant fundamental parameters

are summarized in Tab. 4.11;

b) PZT powder, i.e. lead zirconate–titanate, Pb[Zr1−xTix]O3 [56], one of the most widely

used piezoelectric ceramic materials (density ρ ' 7700 kg/m3), having a considerable

dielectric constant (about 2000). In [56], where the composite is investigated towards

the application as a vibration damper, exploiting the increase of the material loss factor
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# Composite [Ref.] µ [kPa] εr Eeb[MV/m] Ēeb ρ [kg/m3]

a) PMN–PT [20] 33.33 10.2 21 1.093 1660

b) PZT [56] 42 10 25.208 1.157 1030

c) CCTO [51] 43.5 4.48 37.9 1.144 1955

Table 4.11: Sets of parameters for the ceramic–polymer composites analyzed.

allowed by PZT, different volume fractions of the ceramic are considered, ranging from

0 to 32% and great care is devoted to the description of the poling treatment, further

enhancing the dielectric constant and the piezoelectric coefficient of the PZT/PDMS

composite. The formulation chosen here as material b) assumes a percentage of PZT

equal to 1% in volume (the poling treatment doesn’t affect significantly the performance

of the composite at such low concentration) with the relevant parameters summarized

in Tab. 4.11.

c) CCTO powder, i.e. calcium copper titanate, CaCu3Ti4O12 [51], a non-ferroelectric

ceramic filler (density ρ ' 5120 kg/m3), having a substantial dielectric constant (about

1000 at 0.1 Hz). In [51], the composite is investigated for the realization of an industrially

scalable DE actuator. In this paper, different volume fractions of the ceramic dispersed

phase are considered, namely 2.3%, 5.1%, 8.4%, and experimental values of the dielectric

breakdown strength are reported. The formulation chosen here as material c) assumes a

percentage of CCTO equal to 2.3% in volume, whose relevant parameters are summarized

in Tab. 4.11.

The first two materials considered are both based on lead, while the last one is a non-

ferroelectric lead-free ceramic. All the significant parameters for the three composites

investigated are reported in Tab. 4.11, namely the shear modulus µ, the relative permit-

tivity εr, the dielectric strength Eeb, its dimensionless version Ēeb and the estimate of

the density ρ assuming for PDMS a value of 970 kg/m3. Actually, the dielectric strength

of materials a) and b), not given in the reference papers, has been evaluated on the basis

of equation (6.23) in [9].

As for the relative permittivity, it is interesting to point out that all the data available

in [20] for material a) have been evaluated using frequencies of 100 Hz and 10 kHz,

respectively: unfortunately the data for lower frequencies were not available, so we

decided to adopt the values measured for a frequency of 100 Hz. For material c), in [51]

the data regarding the relative permittivity have been evaluated ranging the frequency

from 0.1 Hz up to 1 MHz, however the relative permittivity of this material show a

frequency independent behaviour. Whereas for material b), the Authors of [56] do not

specify the assumed frequency for the measurement of the relative permittivity. It is

interesting to observe here that the operating frequencies of DEGs can vary widely, e.g.

more than 100 Hz in the case of vibrational energy harvesting systems or less than 1 Hz
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for ocean wave power harvesting devices. The shear modulus assumed for both materials

corresponds to the extrapolation to a frequency of 0 Hz, as the constitutive law adopted

does not consider a variability of the mechanical properties with frequency.

The ultimate strength λU is not mentioned explicitly in the reference papers [20], [56]

and [51]. Nevertheless, Fig. 2 in [20], illustrating the nominal stress–nominal strain

curve for material a), shows very high extreme values of strain (it is not specified if

ultimate), at least 480% and 570% for pure PDMS and for the composite with 10%

PMN–PT filler content, respectively. However, in order to maximise the harvested

energy of DEGs, moderate maximal strains are considered, therefore it seems that for

all the three composites under study λU can be assumed quite large (hereafter as large

as 3).

For the sake of completeness, the same parameters are reported in Tab. 4.12 for the

PDMS formulations used as matrices in the three composites: from a comparison with

Tab. 4.11, the enhancement of the relative permittivity, as well as both the increase of

the shear modulus and the drop of the dielectric strength, can be appreciated.

# PDMS [Ref.] µ [kPa] εr Eeb [MV/m] Ēeb ρ [kg/m3]

a) PMN–PT [20] 20.7 7.32 55 3.07 970

b) PZT [56] 34 3.5 55 1.66 970

c) CCTO [51] 43 3.13 55.9 1.42 970

Table 4.12: Sets of parameters for the three PDMS involved in the ceramic–polymer
composites.

For each materials, we can individuate the optimal harvesting cycle by plotting the

electromechanical properties of the three composite and of their PDMS matrices on the

Ēeb–λU plane, as depicted in Fig. 4.8. In this way we identify the failure subregion to

which each materials belong.

As evident from Fig. 4.8, in the moderate stretch regime (MΛU), the electromechanical

properties of the three composites lie closer to the universal curve with respect to those

of the silicones.

Concerning the dissipative behaviour of the three composite materials, the only available

data regard the dielectric loss (ratio between imaginary and real parts of the complex

dielectric constant) for materials a) and c) and the material loss (ratio between the

viscous loss modulus and the storage modulus) for material b): in all the three cases it

is evident an increase of losses with the filler content, even if for material b) the effects

are very limited, as the filler content is very low. However the current analysis neglects

all the dissipative sources.
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PDMS + 1% PZT

PDMS + 10% PMN-PT

PDMS + 2.3% CCTO

Figure 4.8: Universal design curve for planar equibiaxial load-driven DEGs already
introduced in Fig. 4.6: electromechanical characteristics of the three composites, black

shapes, and of their PDMS matrices, white shapes.

We have to specify that, in this work, we consider the random composite as a homo-

geneous material at the macroscopic level. However, at the micro-scale, phenomena of

stress concentration and interface damage due to the filler inclusions may occur.

4.5.1 Material a)

Looking at the dimensionless performance of the composite and the pure PDMS gen-

erators, reported in Tab. 4.13, we can advance some preliminary considerations about

the substantial behaviour of the two DEGs at MΛU and HΛU. At λU = 1.8 both the

generators experience the same failure (iii) characterised by the same energy. Thus, the

material with the higher shear modulus, that is the composite, will harvest the larger

amount of energy. The increment in the energy produced by the composite DEG will

be equal to the increment in the shear modulus of material a) with respect to its pure

matrix, i.e. 60%. At λU = 3.0 composite and pure PDMS generators undergo different

failures, (vi) and (vii) respectively. From a dimensionless viewpoint, the pure PDMS

DEG harvests a larger amount of energy with respect to the composite DEG. On the

contrary, taking into account the generated energy per unit volume, we have that the

energy µmat.a)Hg
(vi)
mat.a) produced by the composite DEG is larger than that harvested by

the pure PDMS device, µPDMSHg
(vii)
PDMS

. This is due to the fact that the shear modulus
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of material a) is larger than an equivalent shear modulus defined as

µmat.a) > µeq
mat.a) = µPDMS

Hg
(vii)
PDMS

Hg
(vi)
mat.a)

= 1.3128µPDMS = 21.17 kPa. (4.17)

Since the shear modulus of material a) is equal to 33.33 kPa (see Tab. 4.11), we expect,

accordingly, a 22.6% increment in the generated energy with respect to the pure PDMS

DEG.

Material a) Pure PDMS PDMS–10%PMN–PT

Generated energy-density per unit shear modulus

λU = 1.8 (iii)b 0.7167 (iii)a 0.7167
λU = 3 (vii)b 1.1454 (vi)a 0.8725

Table 4.13: Material classification M-C, according to Fig. 4.8, and generated energy-
density per unit shear modulus Hg for the selected harvesting cycles for the composite

material a) and its matrix.

Tab. 4.14 reports a comparison between the generated energy per unit volume and the

voltage jump ∆φ = φC−φB necessary for the activation of the harvesting cycle both for

the PDMS material and the PDMS–10%PMN-PT composite: the advantage of material

a) over its PDMS formulation is higher than 60% for λU = 1.8, while it is just higher

than 20% for λU = 3.0. Fig. 4.8 shows precisely that, for the two values λU considered,

the composite electromechanical properties lie closer to the universal design curve with

respect to the pure PDMS ones. As the content of the ceramic filler is such that the

density of the composite is about 70% higher than that of the PDMS (see Tab. 4.11),

there is no substantial advantage in using this composite in place of the homogeneous

material when the performance is compared in terms of harvested energy per unit mass.

Material a) Pure PDMS PDMS–10%PMN–PT Gain

Generated energy per unit volume

λU = 1.8 (iii)b 14.836 kJ/m3 [2.95 kV] (iii)a 23.888 kJ/m3 [3.15 kV] 61.0%
λU = 3 (vii)b 23.711 kJ/m3 [1.75 kV] (vi)a 29.083 kJ/m3 [0.78 kV] 22.68%

Table 4.14: Material classification M-C according to Fig. 4.8, generated energy per
unit volume µHg, required voltage ∆φ (inside square brackets) and percentage gain for

the selected harvesting cycles allowed by the composite material a) over its matrix.

In respect of the cycles plotted on the mechanical S–λ plane, we also note that the

composite requires maximum forces higher than the pure PDMS and this effect becomes

more marked for high maximum stretches (see Figs. 4.9A.I and 4.9A.II and, in particular,

Figs. 4.10A.I and 4.10A.II). The maximum stresses achieved during the cycle by the pure

silicone device are approximately 32 kPa at λU = 1.8 and 56 kPa at λU = 3.0, while

those reached by the composite material a) are respectively 53 kPa and 98 kPa.
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A) B) (I)

A) B) (II)

Figure 4.9: Optimal cycle for (I) the pure PDMS and (II) the PDMS–%10PMN–PT
composite, on the A) mechanical and B) electrical planes, in the case λU = 1.8. With
respect to the EB influence on the optimal cycle, both materials appertain to subregion
(iii) (cf. e.g. Fig. 4.8). With respect to the EB influence on the admissible state region,

the pure PDMS is related to Case b, whereas the composite pertains to Case a.

A) B) (I)

A) B) (II)

Figure 4.10: Optimal cycle for (I) the pure PDMS and (II) the PDMS–%10PMN–PT
composite, on the A) mechanical and B) electrical planes, in the case λU = 3.0. With
respect to the EB influence on the optimal cycle, the pure PDMS lies on subregion
(vii), while the composite belongs to subregion (vi) (cf. e.g. Fig. 4.8). With respect to
the EB influence on the admissible state region, the pure PDMS is related to Case b,

instead the composite pertains to Case a.
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4.5.2 Material b)

Looking at the dimensionless performance of the composite and the pure PDMS gen-

erators, reported in Tab. 4.15, we can obtain some preliminary informations about the

substantial behaviour of the two DEGs at MΛU and HΛU. As for material a), at λU = 1.8

both the generators experience the same failure (iii) characterised by constant energy.

Thus, the material with the higher shear modulus, i.e. the composite, will harvest the

larger amount of energy. As said before, the increment in the energy produced by the

composite DEG will be equal to the increment in the shear modulus of material b) with

respect to its pure matrix, i.e. 23.5%. At λU = 3.0 the composite and pure PDMS

generators undergo different failures, (vi) and (vii) respectively. From a dimensionless

viewpoint, as for material a), the pure PDMS DEG harvests a larger amount of energy

with respect to the composite DEG. But, taking into account the generated energy per

unit volume, we have that the energy µmat.b)Hg
(vi)
mat.b) extracted by the composite gener-

ator is larger than that harvested by the pure PDMS DEG, µPDMSHg
(vii)
PDMS

. This is due

to the fact that, as for material a), the shear modulus of composite b) is larger than an

equivalent shear modulus defined as

µmat.b) > µeq
mat.b) = µPDMS

Hg
(vii)
PDMS

Hg
(vi)
mat.b)

= 1.195µPDMS = 40.03 kPa. (4.18)

On account of the fact that the material b) has a shear modulus equal to 42 kPa (see

Tab. 4.11), we expect just a 3% increment in the generated energy with respect to the

pure PDMS DEG.

Material b) Pure PDMS PDMS–1%PZT

Generated energy-density per unit shear modulus

λU = 1.8 (iii)b 0.7167 (iii)b 0.7167
λU = 3 (vii)a 1.1454 (vi)a 0.9586

Table 4.15: Material classification M-C, according to Fig. 4.8, and generated energy-
density per unit shear modulus Hg for the selected harvesting cycles for the composite

material b) and its matrix.

Tab. 4.16 reports a comparison between the harvested energy per unit volume and the

voltage for the activation of the harvesting cycle for the pure PDMS and for the PDMS–

1%PZT composite: at λU = 1.8 the advantage of material b) on the corresponding

silicone is less evident but still consistent around 23.5%, while at λU = 3 the advantage

is only 3.44%. As depicted in Fig. 4.8, for λU = 1.8 the composite electromechanical

properties lie closer to the universal curve with respect to the pure PDMS ones, while

for λU = 3.0 the electromechanical properties of the two material are approximately

equidistant from the universal design curve. As evident from the numerical data listed
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in Tab. 4.16, at λU = 3.0 material b) and its corresponding PDMS harvest nearly the

same amount of energy. Moreover, this composite, unlike material a), shows also a

sensible improvement of the generated energy per unit mass with respect to the pure

PDMS for λU = 1.8 and then it is particularly suitable for applications where weight is

an important issue to be addressed in the generator design.

Material b) Pure PDMS PDMS–1%PZT Gain

Generated energy per unit volume

λU = 1.8 (iii)b 24.368 kJ/m3 [5.46 kV] (iii)b 30.102 kJ/m3 [3.59 kV] 23.5%
λU = 3 (vii)a 38.945 kJ/m3 [3.25 kV] (vi)a 40.261 kJ/m3 [1.13 kV] 3.44%

Generated energy per unit mass

λU = 1.8 (iii)b 25.12 J/kg (iii)b 29.22 J/kg 16.3%
λU = 3 (vii)a 40.14 J/kg (vi)a 39.09 J/kg -2.64%

Table 4.16: Material classification M-C according to Fig. 4.8, generated energy per
unit volume µHg and per unit mass Ĥg, required voltage ∆φ for the selected harvesting
cycles (inside square brackets) and percentage gain allowed by the composite material

b) over its matrix.

Also in this case we note that the composite requires maximum forces higher than the

pure silicone, particularly for high maximum stretches. The maximum stresses achieved

during the cycle by the pure PDMS DEG are approximately 54 kPa at λU = 1.8 and 93

kPa at λU = 3.0, while those reached by the composite b) are respectively 66 kPa and

122 kPa.

4.5.3 Material c)

Looking at the dimensionless performance of the composite and the pure PDMS genera-

tors, reported in Tab. 4.17, we can acquire some basic informations about the substantial

behaviour of the two DEGs at MΛU and HΛU. As for material a) and b), at λU = 1.8

both the generators experience the same failure (iii) characterised by constant energy.

Thus, the material with the higher shear modulus, i.e. the composite, will harvest the

larger amount of energy. As said before, the increment in the energy produced by the

composite DEG will be equal to the increment in the shear modulus of material c) with

respect to its pure matrix, i.e. 1.16%. At λU = 3.0, as for the other two materials, the

composite and pure PDMS generators undergo different failures, (vi) and (vii) respec-

tively. The pure PDMS DEG harvests a larger amount of energy with respect to the

composite DEG and in this case not only from a dimensionless viewpoint, but also tak-

ing into account the generated energy per unit volume µHg. Actually, we have that the

energy µmat.c)Hg
(vi)
mat.c) harvested by the composite DEG is smaller than that produced

by the pure PDMS device, µPDMSHg
(vii)
PDMS

. This is due to the fact that the shear modulus
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of material c) is larger than an equivalent shear modulus defined as

µmat.c) < µeq
mat.c) = µPDMS

Hg
(vii)
PDMS

Hg
(vi)
mat.c)

= 1.216µPDMS = 52.29 kPa. (4.19)

In view of the fact that the shear modulus of material c) is equal to 43.5 kPa (see

Tab. 4.11), we expect a 16.8% decrement.

Material c) Pure PDMS PDMS–2.3%CCTO

Generated energy-density per unit shear modulus

λU = 1.8 (iii)b 0.7167 (iii)b 0.7167
λU = 3 (vii)a 1.1454 (vi)a 0.9418

Table 4.17: Material classification M-C, according to Fig. 4.8, and generated energy-
density per unit shear modulus Hg for the selected harvesting cycles for the composite

material c) and its matrix.

Tab. 4.18 reports a comparison between the harvested energy per unit volume and the

voltage for the activation of the harvesting cycle for the pure PDMS and for the PDMS–

2.3%CCTO composite: the advantage of material c) over its PDMS formulation is less

than 2% at λU = 1.8. This is due to the fact that both the composite and the pure

PDMS electromechanical properties lie very close to the universal curve, see Fig. 4.8.

Moreover, the increment in the harvested energy entailed by the composite DEG is pro-

portional to the increment in the shear modulus with respect to its PDMS formulation.

In this case, the shear modulus increment is exactly 1.16%. The PDMS–2.3%CCTO

composite entails an advantage only at λU = 1.8, since in the high stretch regime HΛU

the electromechanical properties of the pure silicone lie closer to the universal curve.

Material c) Pure PDMS PDMS–2.3%CCTO Gain

Generated energy per unit volume

λU = 1.8 (iii)b 30.818 kJ/m3 [6.50 kV] (iii)b 31.176 kJ/m3 [5.46 kV] 1.16%
λU = 3.0 (vii)a 49.254 kJ/m3 [3.86 kV ] (vi)a 40.969 kJ/m3 [1.65 kV ] -16.8%

Table 4.18: Material classification M-C according to Fig. 4.8, generated energy per
unit volume µHg, required voltage ∆φ for the selected harvesting cycles (inside square
brackets) and percentage gain allowed by the composite material c) over its matrix.

In this case, we note that the composite and the pure PDMS require nearly the same

maximum forces and this is due to the fact that the shear modulus of the two materials

is fairly the same. The maximum stresses achieved during the cycle by the pure PDMS

device are approximately 68 kPa at λU = 1.8 and 128 kPa at λU = 3.0, while those

reached by the composite material c) are respectively 69 kPa and 127 kPa.





Chapter 5

Optimisation of an ideal DEG in

out-of-plane loading mode

In a real harvesting field, we can think that the mechanical action be outlined as an os-

cillating force, or pressure, that stretches and releases periodically the soft capacitor at a

frequency on the order of the Hz. Therefore, electrical energy can be collected after the

four-stroke cycle, presented in Sect. 2.5, where (i) an initial, relatively slow, stretching

of the material induced by the growing force is followed by (ii) a fast charging phase;

then, (iii) the slow decrease of the force will relax the capacitor at constant charge

and, finally, (iv) the charge is harvested at high electric potential at low force. The

same cycle has been already considered to determine optimal working ranges for homo-

geneous conservative planar generators deforming in uniaxial plane-strain, see Chap. 3,

and equibiaxially, see Chap. 4 (cf. also [6, 57]).

In this part we assume that the external source deforms a circular DE membrane non-

homogeneously out-of-plane, a layout preliminary investigated in [24] as an actuator and

in [64] as a generator. Regarding the latter, however, it is important to point out that

the analysis is partial, as many of the fundamental features necessary to evaluate the

effectiveness of this configuration (prestretch influence, failure modes, maximum load,

etc.) as a DEG are not considered. We aim at filling the gap, providing a complete

analysis of this harvester layout along the lines traced in the previous Chapters. The

adoption of the same methodology will also enable us to compare the different config-

urations on a common ground, offering the possibility to reflect on the best coupling

between geometry and materials for a particular application.

The analysed deformation mode of the DE annular membrane is particularly interesting

for sea-wave energy conversion as it can constitute the base power take-off element of

a floating harvesting system based on a Gough/Stewart platform moored to the sea

69
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bottom by metallic legs, which are formed by a hollow cylinder constrained to the sea

bed and a concentric small cylinder anchored to the buoy [11]. A number of membranes

can be placed between the two elements to exploit their relative motion and producing

electrical energy (Fig. 5.1c). A preliminary design performed in [11] on a prototype

proposed for the Mediterranean Sea has indicated that each leg bears a total force

of approximately 34 kN and this value will be adopted for the comparisons between

materials and generator layouts presented in the last part of the paper. The application

described above highlights one of the advantages of this generator configuration: the

membrane deformation can take place on both sides of the film, being potentially capable

to fully exploit an oscillating source of mechanical work.

Driven by the above motivations, and aiming at completing the research program on

optimal design of load-driven DE energy harvesters within the hypothesis of energy

conservation, we intend to investigate the nonlinear behaviour of the annular membrane

generator with the following goals:

• determine the initial prestretch of the film that ensure the best performance of the

device;

• define the ratio between inner and external radii of the annular membrane that

maximise efficiency and/or harvested energy per unit mass;

• compare the performance of different soft materials (acrylic elastomer and natural

rubber) for the same device and

• compare different prototype devices.

The above objectives are addressed in Sects. 5.3 and 5.4. Interestingly, the comparison

of different DEG layouts, reported in Sect. 5.4, demonstrates that the annular DEG can

compete with the equibiaxial planar generator, in terms not only of efficiency, but also

of harvested energy.

5.1 Governing equations and material modelling of the an-

nular DE membrane

In this Section we introduce the theoretical background of an annular membrane de-

forming non-homogeneously out-of-plane, by briefly recalling the governing equations

and the constitutive assumptions for this coupled electromechanical problem in finite

elasticity. The standard notation of continuum electromechanics is adopted and quasi-

static electromechanical conditions are considered [15, 24, 45].
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a)

b)

c)

Figure 5.1: Sketch of the periodic four-phase cycle for the investigated electroac-
tive membrane generator (phases IV and I coincide): a) membrane configurations; b)
mechanical force (F)–out-of-plane displacement (u) plane; c) multi-membrane device

subjected to a total force Ftot.
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In the undeformed configuration the membrane, of initial thickness h0, inner radius

ri0, and outer radius re0, is stress-free and unconstrained. Then the elastomeric film is

radially and homogeneously prestretched of a quantity λpre(≥ 1) and constrained at the

outer boundary to a rigid ring of radius λprer
e
0 and at the inner boundary to a rigid

circular plate of radius λprer
i
0; the plate can move out-of-plane relatively to the outer

ring because of the application of an external force F (Fig. 5.2). The surfaces of the

dielectric elastomer membrane are coated with a pair of compliant electrodes, between

which an electric potential difference φ can be applied, then producing an electric field

through the membrane thickness. Due to the electromechanical loading, the membrane

deforms non-homogeneously out-of-plane, as shown in Fig. 5.1a and in Fig. 5.2c.

Figure 5.2: Configurations of the annular membrane generator: a) undeformed,
b) prestretched and c) deformed.
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In the deformed configuration, the material point with initial position at a generic r0 has

coordinates r(r0) and z(r0), see Fig. 5.2. They have to fulfill the boundary conditions

r(ri0) = λprer
i
0, r(re0) = λprer

e
0, z(re0) = 0, z(ri0) = u, (5.1)

where u is the maximum transverse displacement. Denoting by dl the distance between

two adjacent points in the deformed configuration and by θ(r0) the slope of the vector

connecting them, on the basis of simple trigonometric relations we can write (dl)2 =

(dr)2 + (dz)2, where dr = cos θ dl and dz = − sin θ dl. The longitudinal stretch at r0

λ1(r0) is defined as λ1 = dl/dr0 or, alternatively,

λ1 =
dl

dr0
=

√
(r′)2 + (z′)2, (5.2)

where the notation •′ indicates the first derivative of the quantity • with respect to R,

i.e. •′ = d • /dR. Due to the axisymmetry inherent in the problem, the circumferential

stretch λ2(r0) simply writes as λ2 = r/r0. The material is assumed to be incompressible,

i.e. J = λ1λ2λ3 = 1, and, as a consequence, the stretch in the thickness direction λ3 of

the membrane is given by

λ3 = 1/(λ1λ2). (5.3)

In the prestretched configuration, the membrane in-plane deformed is subjected to an

homogeneous state of deformation, that is λ1 = λ2 = λpre (see Fig. 5.2b).

As the membrane is thin, we assume that along the deformation electric displacement

and electric fields remain always orthogonal to the membrane middle-plane. In the

deformed configuration the total charge Q on the electrodes is

Q = 2π

∫ re0

ri0

D0(r0)r0 dr0, (5.4)

where D0(r0) is the nominal electric displacement, defined as the charge density per unit

undeformed area.

It is convenient to choose the nominal electric displacement D0 as independent electrical

variable, therefore, the material is assumed to be governed by an isotropic energy-density

function W(F ,D0), cf. Sect. 2.2. In order to obtain the constitutive equations we can

write the principle of energy conservation, as already done in Chap. 2 considering as free

electrical variable the nominal electric field E0. Analogously to Eq. (2.12), we obtain[
S − ∂W

∂F
+ pF−T

]
· Ḟ +

[
E0 − ∂W

∂D0

]
· Ḋ0

= 0 . (5.5)
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A sufficient condition for (5.5) to be fulfilled is that

S =
∂W
∂F
− pF−T , E0 =

∂W
∂D0 , (5.6)

where p is the indeterminate hydrostatic pressure. Recalling that, as a consequence of

the incompressibility, λ3 is a function of the longitudinal and circumferential stretches,

from Eq. (5.3) and Eq. (5.6)1 we can compute the hydrostatic pressure p by requiring

the through-thickness stress S33 to be zero.

As a result of the incompressibility requirement (5.3), the state of a membrane element

is fully described by the three functions λ1(r0), λ2(r0) and D0(r0). Therefore, we can

express the isotropic energy-density function as W(λ1, λ2, D
0). In this way, the incom-

pressibility constraint is directly incorporated in the strain-energy function and we can

explicit the constitutive equations as

S11 =
∂W(λ1, λ2, D

0)

∂λ1
, S22 =

∂W(λ1, λ2, D
0)

∂λ2
, E0 =

∂W(λ1, λ2, D
0)

∂D0
. (5.7)

From the balance of forces along z and the circumferential direction, see [59], we obtain

the equilibrium equations for the membrane, namely

2πr0h0S11 sin θ = F , (5.8)

d(r0S11 cos θ)

dr0
= S22. (5.9)

In addition to the previous equations, the definition of nominal electric field gives

E0 = φ/h0. (5.10)

An explicit form of the free-energy function W(λ1, λ2, D
0) can be formulated assuming

the material as an ideal dielectric. Under this assumption, the dielectric behaviour of the

elastomer is unaffected by the deformation, i.e. D = εE , with the strain independent

permittivity ε = εrε0 (cf. Sect. 2.3).

To illustrate the main features of the load-driven out-of-plane DEG, we adopt the ex-

tended neo-Hookean energy-density function

W =
µ

2
[I1 − 3] +

1

2ε
K5 =

µ

2

(
λ2

1 + λ2
2 +

1

λ2
1λ

2
2

− 3

)
+

1

2ε

D02

λ2
1λ

2
2

, (5.11)

where µ is the shear modulus of the material and where the invariants I1 and K5 are

defined by Eqs. (2.8)1 and (2.11)2, respectively.
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Substituting (5.11) in (5.7), we obtain the explicit form of the constitutive equations as

S11 = µλ1 −

(
µ+

D02

ε

)
1

λ3
1λ

2
2

, S22 = µλ2 −

(
µ+

D02

ε

)
1

λ2
1λ

3
2

, E0 =
D0

ε

1

λ2
1λ

2
2

.

(5.12)

The same results cn be achieved using Eq. (5.6)1, Eq. (5.3). The hydrostatic pressure p

results to be

p =

(
µ+

D02

ε

)
1

λ2
1λ

2
2

. (5.13)

From (5.12)3 and (5.10), we can obtain the expression of the nominal dielectric displace-

ment D0(r0) as a function of the applied voltage

D0(r0) = εE0λ1(r0)2λ2(r0)2 = ε
φ

h0
λ1(r0)2λ2(r0)2. (5.14)

Substituting (5.14) into (5.4), we obtain the explicit expression of the total charge

Q = 2πε
φ

h0

∫ re0

ri0

λ1(r0)2λ2(r0)2r0 dr0. (5.15)

The equations of equilibrium along with the boundary conditions constitute a system of

non-linear differential algebraic equations that can be numerically solved by employing

the shooting method (Appendix C shows in detail the solving procedure).

5.2 The load-driven harvesting cycle for an out-of-plane

DEG

The DE annular membrane undergoes a load-driven harvesting cycle, analogous to that

delineated in Sect. 2.5, deforming non-homogeneously out-of-plane. In this case, the

cycle is described in electrical terms by the total charge on the electrodes Q and by the

voltage φ, while in mechanical terms it is characterised by the applied load F and by the

maximum transverse displacement u. We concentrate now on the analysis of the I–II–I

path on the right-hand side of Fig. 5.1b. In this four-stroke cycle, shown in more detail

in Fig. 5.3, the load F and the total charge Q are alternately held constant. Specifically,

it is composed by:

1. stroke A-B: the membrane is stretched by increasing the applied load from FA = 0

to FB = Fmax under the open circuit condition. During this stage the total charge

on the electrodes is fixed, so that QA = QB = 0;
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2. stroke B-C: at the stretched configuration the total charge Q on the electrodes

increases from QB = 0 to QC by applying a potential jump ∆φ. During this stage

the load is held fixed, so that FB = FC = Fmax;

3. stroke C-D: the elastomer is open-circuit released by decreasing the load from

FC = Fmax to FD = 0. The charge is then kept constant, QD = QC . Note

that during this phase both the potential between the two electrodes and the

electric field increase, attaining their maximal values at the end of this stroke.

The obtained potential jump during this phase is φD − φC .

4. stroke D-A: the surplus charge QD − QA is harvested at high potential to the

storage battery, while the load is held constant so that FD = FA = 0.

The cycle is presented on the thermodynamical planes shown in Fig. 5.3 and the measure

of the area of the cycle on both planes is equal to the harvested energy Hg. The first plot

of Fig. 5.3b corresponds to the electrical φ–Q plane and the second one to the mechanical

F–u plane. We note that, in practice, strokes B–C and D–A are substantially shorter

than the mechanical loading and unloading steps. Thus, as explained in Sect. 2.5, the

applied external force should be regarded as a continuously oscillating force such that

appropriate electrical circuits are temporarily connected to the electrodes when it attains

its maximal and minimal values.

We recall that the process here presented is ideal, since we assume instantaneous charging

and lossless behaviour of the DE membrane, the electrodes and of the electric circuits.

The feasible working cycle is constrained by the several failure modes of which DEs are

susceptible, as explained in Sect. 2.6. In the following analysis we will take into account

the electric breakdown EB, the ultimate stretch λU , the loss of the tensile stress state

(S22 = 0) and the electromechanical instability EMI.

5.3 Harvested energy, efficiency, and performance evalua-

tion

The performance of the device is evaluated on the basis of (i) the harvested energy Hg

along the cycle and (ii) of the efficiency η. Eq. (2.58) defines the latter as the modulus of

the ratio of Hg on the total invested energy Hi from step A to step C, which is composed

of two contributions: mechanical work, Wmech, and electrical work, Wel. Therefore, we

can rewrite Eq. (2.58) as

η =

∣∣∣∣Hg

Hi

∣∣∣∣ =

∣∣∣∣ Hg

Wmech +Wel

∣∣∣∣ . (5.16)
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b)

Figure 5.3: The investigated harvesting cycle: a) illustration of the four strokes along
the I–II–I path with a service battery at the right and a storage battery at the left
b) plot of the cycle on the electrical Q–φ plane and on the mechanical F–u plane.
The measure of the area of the cycle, on both planes, is equal to the modulus of the
harvested energy, |Hg|. The light-grey shaded areas represent the electrical and the

mechanical work invested into the conversion process.

On both the mechanical and the electrical plane, the measure of the area of the cycle

equates |Hg| (Fig. 5.3b). Hence, we can simply compute numerically Hg evaluating the

following integrals

Hg =

∫ Qmax

0
φlow(Q)dQ+

∫ 0

Qmax

φhigh(Q)dQ, (5.17)
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VHB-4910
µ [kPa] εr ρ [kg/m3] Eeb [kV/mm]

35 4.5 960 50

Table 5.1: Electromechanical properties of VHB-4910.

where φhigh(Q) and φlow(Q) are the functions on the electrical plane relative to strokes

D–A and B–C, respectively; moreover, Qmax = QC = QD is the maximum total charge

reached in the cycle. Note that the energy is extracted from the system and thus Hg is

negative.

The mechanical work Wmech invested in the cycle from A to C corresponds to

Wmech =

∫ uB

0
Fap(u) du+ Fmax(uC − uB), (5.18)

where Fmax = FB = FC , and the applied load Fap(u) in stroke A–B is numerically

evaluated. In the computations, to avoid the planar configuration where the governing

equation (5.8) loose meaning, we assume that in A a small force of 1 N is applied.

Finally, the electrical work Wel provided to the cycle along B–C is given by the integral

Wel =

∫ Qmax

0
φlow(Q) dQ. (5.19)

In the simulations, we adopt typical parameters of VHB-4910 whose electromechanical

properties are reported in Tab. 5.1. This choice will allow us a performance comparison

among generators analysed in Chap. 3 and Chap. 4 (see also [6, 57]), made up of the

same material, but with different geometries, all mechanically activated by the same

principle: an external oscillating driving force able to reach a maximum value.

The undeformed thickness h0 of the membrane is taken equal to 1 mm in all the ex-

amined cases. Moreover, in order to integrate the governing equations and solve the

electromechanical boundary-value problem, we fix the value of the undeformed external

radius re0 at 500 mm. The gained energy will be always referred to the unit mass of the

polymer, then, according to Eq. (2.62)1, we introduce the variable

Ĥg =
|Hg|

ρπ(re0
2 − ri0

2
)h0

.
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Figure 5.4: Influence of the prestretch on the performance of a generator with re0/r
i
0 =

2. Plot on the electrical φ–Q plane of the optimal cycle for different prestretch values,
namely λpre = 1, 1.05, 1.1, 1.25, 1.5 and 2, and Fmax = 90 N. The relevant failure

mode is indicated below the prestretch label.

5.3.1 Influence of the prestretch

In electroactive devices, VHB films are usually prestretched before being electrically

activated. Then, we firstly focus our attention on the influence of the prestretch λpre, at

constant Fmax, on the generator performance. We consider a configuration characterised

by a radius ratio equal to two, ri0 = re0/2. This value is justified as we will show that

it corresponds to one of the more efficient configurations, moreover this radius ratio

has been investigated in previous works dealing with electroactive annular membrane

devices [24, 63, 64].

After a careful inspection, we decided to set the maximum applied force Fmax = 90 N, so

that, in the unprestretched configuration (λpre = 1), the maximum stretch attained dur-

ing the cycle is approximately equal to two (λmax|λpre=1 ≈ 2). Then, we have increased

the prestretch and subjected the membrane to a combination of electromechanical load-

ings to reach one of the possible failure listed in the previous Section. Later on, the

change in the applied maximum force at a given prestretch will be analysed.

Fig. 5.4 reports an effective sketch of the cycle evolution at increasing λpre onto the

electrical φ–Q plane. Six representative values of the prestretch are analysed in the

range 1 ≤ λpre ≤ 2. Increasing this parameter, the area of the cycle enlarges, due to the

rise of both the charge and the maximum voltage φD, till λpre = 1.25, then decreases

monotonically. The leading failure takes always place at point D (see the marked spots
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a)

b)

Figure 5.5: Influence of the prestretch λpre on the performance of a generator with

re0/r
i
0 = 2, Fmax = 90 N: a) gained energy per unit mass Ĥg and b) efficiency η. The

failure mode in the relevant prestretch range is reported below the horizontal axis.

in Fig. 5.4): at low prestretches, it is due to loss of the tensile stress state (S22 = 0),

whereas at a higher prestretch the crisis is associated with electromechanical instability

EMI at a point of a membrane on the inner boundary (r0 = ri0). These two failures

occur simultaneously at the threshold λpre = 1.25.

This failure change is a clear sign of the existence of different working regimes for the

generator. For λpre < 1.25, the device works at low charge and high voltage, while for

high prestretches the working regime is characterised by high charge and low voltage.

Numerical data reported in Tab. 5.2 shows that cycles at λpre = 2 and 1.1 are nearly

equivalent with respect to the amount of harvested energy, but the working regime of

the devices is markedly different and this fact is reflected in a strong efficiency difference.

Fig. 5.5 summarises the main performance indicators (Ĥg and η) for the investigated

generator, extending the analysis up to λpre = 3.1. It can be noticed that EB failure

comes into play for λpre ≥ 3 at the state C, at the inner boundary. In these cases, the

harvested energy per unit mass Ĥg drops down at constant maximum current electric

field Emax. In any case, λpre = 1.25 represents the optimal value both in terms of
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a)

b)

Figure 5.6: Influence of the prestretch λpre on the performance of a generator with
re0/r

i
0 = 2, Fmax = 90 N: a) maximum stretch λmax and b) maximum current electric

field Emax. The failure mode in the relevant prestretch range is reported below the
horizontal axis.

harvesting energy (part a of the figure) and efficiency (part b), being, for λpre > 1.25,

the efficiency drop more pronounced than that of the energy.

Fig. 5.6 reports the maximum stretch and maximum electric field experienced by the

generator, where the three working regimes are still evident. It is important to remark

that at the optimal prestretch value the electrical/mechanical stresses are definitely not

severe (λmax = 2.399 ≈ 2.4, Emax = 32 kV/mm) and this suggests the possibility to

exploit the same DEG configuration for higher driving force Fmax.

Thus, as a partial conclusion, the initial prestretch of the plane membrane is a crucial

issue in the design of an enhanced annular DEG working out-of-plane. Tab. 5.2 collects

the main physical quantities for the cycles considered in Fig. 5.4. We note that higher

values of the obtained voltage jump (φD − φC) correspond to higher efficiency values.
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re0/r
i
0 = 2

λpre Ĥg [J/kg] δĤg η [%] δη ∆φ [kV] φD − φC [kV] Failure mode

1 0.487 — 2.45 — 2.345 3.65 (S22 = 0)
1.05 3.150 6.5 12.84 5.2 5.650 8.35 (S22 = 0)
1.1 5.768 11.8 19.67 8.0 7.340 10.16 (S22 = 0)
1.25 10.767 22.1 26.51 10.8 9.015 10.78 (S22 = 0) ∪ EMI
1.5 7.987 16.4 18.87 7.7 7.520 6.08 EMI
2 6.264 12.9 12.81 2.5 5.878 2.62 EMI

Table 5.2: Influence of the prestretch λpre on the performance of a generator with

re0/r
i
0 = 2. Gained energy per unit mass Ĥg, efficiency η, supplied voltage ∆φ and

obtained voltage jump φD −φC are reported. For each examined prestretch the failure
mode experienced by the device is listed. Furthermore, the improvement in the gained
energy δĤg and in the efficiency δη with respect to the unprestretched case (λpre = 1)

are quantified.

5.3.2 Influence of the radius ratio

We draw now the attention on the relative dimensions of the annular membrane by

analysing generators characterised by different radius ratios, namely re0/r
i
0 = 1.5, 2, 2.5

and 4 (still re0 = 500 mm). In order to investigate a comparable range of prestretch

values, we set for each device the maximum applied load so that, in the unprestretched

configuration, the maximum stretch attained in the cycle is the same for all (λmax ≈ 2).

DEGs characterised by radius ratios of 1.5, 2 and 2.5 show a similar behaviour, at least in

terms of optimal prestretch (i.e. λpre = 1.25) and efficiency (see Fig. 5.7b and Tab. 5.3).

At the optimal prestretch, the energy per unit mass harvested by these three devices is

almost inversely proportional to the radius ratio (Fig. 5.7a), and the best performance

is entailed by that with the smaller radius ratio (1.5). For high prestretches, instead,

the generators with re0/r
i
0 = 2 and 2.5 convert nearly the same amount of energy, while

that with re0/r
i
0 =1.5 performs better.

With the ratio re0/r
i
0 = 4, the behaviour of the generator changes markedly. The peak

in the efficiency and in the harvested energy takes place at 12.5% of initial stretch, i.e.

half of the optimal prestretch for the other cases. Moreover, for λpre > 1.125 the failure

is still due to electromechanical instability EMI, but the crisis is anticipated at state C

of the cycle, hence at the most deformed configuration of the generator.

Furthermore, in the optimal configuration, numerical data shows that the generators

with radius ratio close to 2 allow a higher voltage jump against a smaller applied voltage

(or equal in the case re0 = 2.5ri0), while the generator with the radius ratio equal to 4

requires a higher applied voltage against a lower obtained voltage jump (see Tab. 5.3).



5.3 Harvested energy, efficiency, and performance evaluation 83

a)

b)

Figure 5.7: Influence of the radius ratio re0/r
i
0 on the performance of the generator

for different prestretches: a) gained energy per unit mass Ĥg and b) efficiency η.

re0/r
i
0 ri0 [mm] Fmax [N] λpre Ĥg [J/kg] η [%] ∆φ [kV] φD − φC [kV]

1.5 333 120 1.25 12.515 25.84 8.02 11.88
2.0 250 90 1.25 10.767 26.51 9.05 10.79
2.5 200 72 1.25 9.723 26.91 9.85 9.85
4.0 125 45 1.125 5.051 24.12 10.58 7.92

Table 5.3: Influence of the radius ratio on the generator performance: internal radius
ri0 (re0 = 500 mm), and maximum applied load Fmax. For the best performance of the
generator, the prestretch λpre, the gained energy per unit mass Ĥg, the efficiency η,

the applied voltage ∆φ and the obtained voltage jump φD − φC are reported.

5.3.3 Influence of the maximum applied load

The previous analysis has clarified that a radius ratio equal to 2 allows to leverage the

material obtaining a good performance in terms of both gained energy and efficiency.

In order to identify the optimal maximum applied load for this configuration, we compute

both the efficiency and the harvested energy as a function of the applied load for different

prestretches, namely λpre = 1.15, 1.25, 1.5 and 2.5. The load is increased until the

maximum stretch λmax reaches the ultimate value λU = 4.
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a)

b)

Figure 5.8: Influence of the maximum applied load Fmax on a) the efficiency η and
b) the gained energy per unit mass Ĥg of a generator with re0/r

i
0 = 2. A dot at the end

of a curve indicates that one stretch in the membrane has reached the ultimate value
λmax = λU = 4 (in all cases λ1 = λmax).

The data, obtained varying the maximum applied load in the range between 50 N and 200

N, shows that, on the one hand, prestretch λpre = 1.25 ensures a overall higher efficiency

with a peak (26.85%) for a value of Fmax = 80 N, see Fig. 5.8a, where the attainment

of the failure associated with maximum stretch (λmax = λU = 4) is indicated by a dot

terminating the relevant curve. On the other hand, the prestretch λpre = 1.25 ensures

the highest amount of specific gained energy with respect to the other prestretches, but

the harvested energy increases almost proportionally to the maximum applied load, as

depicted in Fig. 5.8b.

Hence, in the selection of the maximum applied load for a given membrane, it is im-

portant to find a good compromise among high harvested energy and high efficiency.

For the generator with re0/r
i
0 = 2 and λpre = 1.25, in the light of results displayed in

Fig. 5.8a, the anticipated choice of setting the maximum load at 90 N showed to be

reasonable.
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5.4 Comparison of different DEG materials and configura-

tions

The energy harvesting technique based on soft dielectric elastomers is not yet an estab-

lished technology and further investigation is needed in order to select the best suitable

material and configuration for each design. This Section is aimed at comparing the

behaviours of two different materials for the annular membrane (the acrylic VHB and a

type of natural rubber already employed in the literature) and, only for the VHB mate-

rial, the performance of the same geometry with that of a planar membrane deforming

both in plane-strain and equibiaxially.

5.4.1 Comparison of different DEG materials

For an annular membrane generator with a radius ratio of two and h0 = 1 mm it

is interesting to compare, on the basis of the best performance in terms of both (i)

efficiency η and (ii) gained energy per unit mass Ĥg, a VHB device with a generator

made up of natural rubber (ZruElast A1040), whose mechanical properties are recalled

in Tab. 5.4 [31]. See Sect. 4.4 for details on the ZruElast A1040.

ZruElast A1040
µ [kPa] εr ρ [kg/m3] Eeb [kV/mm]

917 3.4 945 120

Table 5.4: Electromechanical properties of the natural rubber ZruElast A1040 [31].

Following the same procedure employed in the performance analysis of the VHB gener-

ator (see Sect. 5.3), we can determine, for the natural rubber, the couples (Fmax, λpre)
providing the best efficiency and the maximum harvested energy, the latter still imposing

λmax = λU = 4. These are reported in left-hand sides of Tabs. 5.5a and 5.5b, respec-

tively, and correspond to (1500 N, 1.10) and to (5000 N, 1.10), respectively. It is worth

noting that for this material, differently from VHB, the optimal prestretch separates

two failure ranges associated with EB and (S22 = 0) – loss of the tensile stress state in

the circumferential direction.

Data summarising the performance of the two DEGs at maximum efficiency are

shown in the central part of Tab. 5.5a. The efficiency of the natural rubber system

is slightly lower than that of the acrylic one (approximately −5.8%), while the gained

energy per unit mass H̃g is markedly higher, as it is well known that the harvested energy

is proportional to the shear modulus of the material at the same maximum stretch (in

turn, this requires a considerably higher driving force, i.e. Fmax), see also [6, 31, 37].



86 Chapter 5. Optimisation of an ideal DEG in out-of-plane loading mode

Maximum efficiency η
Material Fmax [N] λpre λmax η [%] Ĥg [J/kg] n n|Hg| [kJ]

VHB-4910 80 1.25 2.4 26.85 9.87 425 2.73
ZruElast 1500 1.10 1.7 21.06 95.04 23 1.24

Table 5.5a: Performance comparison of devices made up of two different materials
working at maximum efficiency. Left-hand and central parts of the table refer to the
behaviour of a single membrane. The right-hand side of the table reports the perfor-
mance of multi-membrane systems subjected to a total maximum force Ftot = 34 kN:

n, number of layers required; n|Hg|, total energy harvested.

Maximum energy Ĥg

Material Fmax [N] λpre λmax η [%] Ĥg [J/kg] n n|Hg| [kJ]

VHB-4910 200 1.25 4 14.22 16.83 170 1.62
ZruElast 5000 1.10 4 7.22 187.34 7 0.75

Table 5.5b: Performance comparison of devices made up of two different materials
working at maximum energy. Left-hand and central parts of the table refer to the
behaviour of a single membrane. The right-hand side of the table reports the perfor-
mance of multi-membrane systems subjected to a total maximum force Ftot = 34 kN:

n, number of layers required; n|Hg|, total energy harvested.

A fair method to compare the two materials is to compute the amount of energy that

a certain number n of annular membranes (to be determined) connected in parallel are

able to harvest at a given external force Ftot, as depicted in Fig. 5.1c. The comparison

of the systems (for Ftot = 34 kN) designed employing the two materials is summarised

in the right-hand side of Tab. 5.5a. Due to the values of Ĥg of the single membranes,

the number n of required acrylic layers is extremely higher with respect to that of the

ZruElast. However, the total energy harvested by the multi-layer device n|Hg| is higher

for the VHB generator. The reason lays in the different maximum stretch λmax reached

by the two materials: the one attained by an acrylic membrane is approximately 1.5

times the one reached by a rubber film, cf. Tab. 5.5a. As it has been demonstrated

in the previous Chapters, the energy increases proportionally to the maximum stretch

attained by the DE membrane during the cycle, see also [6].

The comparison with respect to the maximum gained energy is reported in the left-

hand side of Tab. 5.5b. The VHB generator entails a higher efficiency, but an extremely

lower gained energy with respect to the ZruElast one. Analogously to the previous

case, if we think to equally distribute a total acting force Ftot of 34 kN on a number of

layers, due to the relatively higher stiffness of the natural rubber, the ZruElast generator

requires 7 membranes, while the VHB device 170. However, even in this case, the total

energy harvested by the multi-layer device is higher for the latter generator.

The choice of the material depends on a number of factors, such as operational conditions

and durability. For instance, VHB displays a higher viscoelastic response than the
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natural rubber, however the latter, being an organic compound, exhibits a marked ageing

and degradation due to chemical interaction with the environment [18].

Focusing on the total energy harvested by the multi-layer devices based on the two

different design strategies, those maximising the efficiency allow to harvest the highest

total energy n|Hg|, contrary to what happen for a plate DEG (see [6]), even if the

energy gained by the single membrane is lower with respect to the single-membrane

DEGs optimised with respect to the energy. This is due to the fact that the maximum

load required by the energy–optimum membrane is approximately 2.5 ÷ 3 times that

needed by the efficiency–optimum cycle. As a consequence the number of layers n (and

thus also the total harvested energy) required by the energy–optimum multi-membrane

device is 1/2.5÷ 1/3 that required by the efficiency–optimum multi–membrane DEG.

5.4.2 Comparison of different DEG configurations

λmax = 2.4

DEG loading conditions Ĥg [J/kg] η [%]

Out-of-plane 10.767 26.5
Plane-strain, ref. [57] 7.645 11.0
Equibiaxial, ref. [6] 27.804 18.8

Table 5.6a: Performance comparison at λmax = 2.4 for different prototype generator
configurations, acrylic material properties (VHB-4910)

Smax = 70 kPa

DEG loading conditions Ĥg [J/kg] η [%]

Out-of-plane 10.767 26.5
Plane-strain, ref. [57] 6.770 12.0
Equibiaxial, ref. [6] 24.769 19.2

Table 5.6b: Performance comparison at Smax = 70 kPa for different prototype gen-
erator configurations, acrylic material properties (VHB-4910)

We focus now on the comparison between different generator prototype configurations,

based on the acrylic material (VHB-4910)(properties listed in Tab. 5.1). We examine:

(i) an annular membrane as investigated in Sect. 5.3 (re0/r
i
0 = 2, re0 = 500 mm, h0 = 1

mm, λpre = 1.25, Fmax = 90 N) following a I–II–I path; (ii) a planar membrane DEG

following an optimised cycle deforming under plane-strain conditions (see Chap. 3 and

[57] for all details); (iii) a planar membrane DEG deforming equibiaxially (cf. Chap. 4

and [6]). In particular comparisons between energy per unit mass are made with respect

to two limit conditions set by the operational characteristics of the optimised out-of-

plane DEG: (A) all devices reach the maximum stretch λmax = 2.4 along the relevant

cycle (see data in Tab. 5.6a); (B) all devices reach the maximum nominal stress Smax =
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max{S11, S22} = 70 kPa along the relevant cycle (Tab. 5.6b). In both cases the highest

energy per unit mass is provided by the planar membrane deforming equibiaxially, but

the best performance in terms of efficiency is attained by the out-of-plane DEG. The

membrane deforming under plane-strain conditions always exhibits inferior performance,

however this configuration can be definitely enhanced by a transverse prestretch. It

is important to underline that in the comparison between the two best geometries,

the annular generator can follow a complete path I–IV along the same range of forces

(Fig. 5.1b), therefore the energy that is potentially able to collect is two times the

amount listed in the table (equal to 21.534 J/kg).



Chapter 6

Viscoelastic DEG operating in an

electric circuit for energy

harvesting

Recalling some fundamental concepts introduced in the previous Chapters, a soft di-

electric generator, in its basic configuration, consists of a block of thin soft dielectric

elastomer with dimensions l0 × l0 × h0 in the reference configuration B0. In the case

analysed in this Chapter, the device is assumed to deform homogeneously and is loaded

by in-plane external oscillating forces represented by the nominal stress components

S11(t) and S22(t), as depicted in Fig. 6.1a. The two opposite surfaces are treated so

as to act like compliant electrodes inducing, neglecting fringing effects, a nominal time-

dependent electric field E0(t) directed along e3-direction. Related to the deformation

history the dimensions of the elastomer vary as a function of the time-dependent princi-

pal stretches λi(t), with i = 1, 2, 3, to reach, at a certain time t, the current dimensions

l1 = l0 λ1(t), l2 = l0 λ2(t) and h = h0 λ3(t).

This generator can generally be modelled as a stretch-dependent variable plane capacitor,

the capacitance C of which is defined as

C(t) = ε
A

h
= ε

l20
h0

λ1(t)λ2(t)

λ3(t)
. (6.1)

In a real device, however, the dielectric material shows a certain conducting current,

also denoted as leakage current iRi, while the electrodes have a non-negligible resistance.

Hence, a more realistic electrical model of the generator is a variable capacitor connected

in parallel to a resistor Ri, representing the electrical resistance of the dielectric film, and

89
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a)

+ +

__ b)

Figure 6.1: Soft dielectric elastomer generator: a) reference configuration and b)
scheme of the equivalent circuit diagram.

connected in series to a resistor Rs, representing the electrical resistance of electrodes

and wires, as shown in Fig. 6.1b, see [54].

Furthermore, the charge Q exchanged by the system is given by the sum of the time-

integral of the leakage current and the product of capacitance and voltage of the soft

variable capacitor,

Q(t) =

∫ t

0
iRi(τ) dτ + C(t)φC (t) . (6.2)

6.1 A simple real harvesting circuit

In a real energy harvesting application, the generator operates in an electrical circuit

achieved by connecting the dielectric elastomer generator in parallel to a battery through

a diode and to an electrical load, as illustrated in Fig. 6.2. The battery supplies the

circuit with a difference in the electric potential φo(t). In the analysis of the circuit, we

assume that the voltage supplied by the battery is zero at the initial time t = 0 and

then increases linearly during the semi-period T/2 of the stretch oscillation up to the

value φo, namely

φo(t) = t
φo
T/2

for 0 < t < T/2 . (6.3)

Thereafter, for t > T/2, the supplied voltage is kept constant, i.e.

φo(t) = φo for t > T/2 .

The electrical load is represented by the external resistor Rext. The impedance of the

load has to be sufficiently high so that the charge is maintained constant during the

release of the elastomer and, as a consequence, the voltage on the dielectric elastomer is

increased with respect to the constant value φo supplied by the battery.

The diode prevents the charge from flowing from the generator to the battery during

the release phase. Its current iD(t) is modelled according to the classical Shockley diode
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+_

BATTERY

Figure 6.2: Scheme of the electrical circuit in which the dielectric elastomer generator
operates.

equation

iD(t) = Is

[
exp

(
φD(t)

n vT

)
− 1

]
, (6.4)

where Is is its saturation current, vT the thermal voltage, n the ideality factor with

1 < n < 2, and φD(t) the diode voltage. The thermal voltage depends on the Boltzmann

constant K, the temperature T and on the elementary charge qe = 1.60217653×10−19 C,

as vT = KT /qe.

In the case where the components of a circuit are connected in series, the total voltage

is equal to the sum of the voltage on each of the components. By applying Kirchhoff’s

voltage law to the circuit one obtains

φo(t) = φD(t) + φRs(t) + φC (t) , (6.5)

φo(t) = φD(t) + φRext(t) , (6.6)

where φC (t) is the voltage on the generator and the parallel resistor Ri, while φRext(t) is

the voltage on the electric load, here represented by the external resistor with impedance

Rext. The combination of relations (6.5) and (6.6) results in the voltage relation for a

parallel connection, that is

φo(t)− φD(t) = φRs(t) + φC (t) = φRext(t) .

Recalling that series-connected circuit elements carry the same current, while parallel-

connected circuit elements share the same voltage so that the overall current is the sum

of the currents on each element, we can describe the circuit by using Kirchhoff’s current

law

iD(t) = i
battery

(t) = iDEG(t) + i
load

(t) . (6.7)
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Experiments on acrylic elastomers [14] have shown that the response of resistors Ri and

Rs is ohmic if the electric field in the material will not exceed a threshold value in the

range between 20 and 40 MV/m, beyond which the resistance will decrease exponentially.

In our simulations we take the voltage φo supplied by the battery at constant regime as

1 kV and therefore the intensity of the electric field in the generator remains bounded

to 20 MV/m. As a consequence, we assume Ohm’s laws iDEG(t) = φRs(t)/Rs and

iRi(t) = φC (t)/Ri to complete the formulation.

Therefore, Eq. (6.7) together with Eqs. (6.5) and (6.6) constitute a non-linear differential

algebraic system of four equations

φo(t)− φD(t) = φRs(t) + φC (t) ,

φRs(t) + φC (t) = φRext(t) ,

Is

[
exp

(
φD(t)

n vT

)
− 1

]
=
φRs(t)

Rs
+
φRext(t)

Rext
,

φRs(t)

Rs
= C(λ(t)) φ̇C (t) + Ċ(λ(t)) φC (t) +

φC (t)

Ri
,

(6.8)

where the voltages φD(t), φRs(t), φC (t) and φRext(t) are the four unknowns. The non-

linear system (6.8) can be solved numerically, e.g. by using a DAE solver. Schuster

[55] presented the recourse to differential algebraic equation solvers in the analysis of

nonlinear electric networks. Regarding the values of resistances in the circuit, on one

hand, a review of the literature [23, 32, 42] has led us to set Ri = 100 GΩ and Rs = 70

kΩ as a reasonable choice. On the other, as we aim at comparing the behaviour of

the generator for different end users, we select a quite large range for Rext, namely

Rext ∈ [0.001, 1000] GΩ.

For the description of the characteristic parameters of the diode, we refer to the com-

mercial type designated as NTE517 produced by NTE Electronics Inc. In agreement

with [28], we estimate that the saturation current Is is ' 0.1 µA and that the thermal

voltage vT is ' 25 mV at room temperature. In the computations, we will assume a

unitary value n = 1 for the ideality factor of the diode.

From an electro-mechanical point of view, the soft dielectric generator consists of an

incompressible electroactive polymer (EAP) to be modelled by employing the large-

strain electro-viscoelasticity, as introduced in Sect. 2.4.
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6.2 Calibration of the electro-viscoelastic model

The material taken into consideration is the polyacrylate dielectric elastomer VHB-4910

assumed to show incompressible behaviour, i.e. J = 1. Using the energy function (2.25)

and the constitutive equations (2.13)1,2, we obtain the following expressions

S = −pF−T + µF +
∑
α

βα µFC−1
vα + εF−TE0 ⊗C−1E0 , (6.9)

D0 = εC−1E0 , (6.10)

for the nominal stress S and for the nominal electric displacement D0. Furthermore,

the Mandel-type referential stress tensor defined in Eq. (2.27) is given by

M vα =
1

2
βα µCC−1

vα , (6.11)

so that the evolution equations (2.29) result in

Ċ vα =
1

2
βα µ Γ̇α

[
C − 1

3
[C ·C−1

vα ] C vα

]
. (6.12)

The material parameters are identified by separating mechanical and electrical be-

haviour. Experimental data by Tagarielli et al. [58] is used for the calibration of the

electro-viscoelastic model.

6.2.1 Calibration of the mechanical behaviour

The mechanical response of the model is calibrated with experimental data based on

a uniaxial tensile loading test. In the absence of electrical effects, i.e. E0 = 0, for a

uniaxial stress state – where the Cartesian base vectors {e1, e2, e3} are assumed to

coincide with the principal directions such that λ1 = λ(t) , λ2 = λ3 = 1/
√
λ(t) – the

viscoelastic stress in the loading direction can be computed using Eq. (6.9),

S = µλ+
∑
α

βα µ
λ

λ2
vα

−
∑
α

µ
βα λvα + 1

λ2
, (6.13)

cf. [2]. Here λvα are the internal variables formally defined as the square root of the

eigenvalues of the respective C vα = λ2
vα e1 ⊗ e1 + λ−1

vα [I − e1 ⊗ e1].

In [58] three different strain rates δ̇m are considered, namely δ̇1 = 7 × 10−3 s−1, δ̇2 =

1.5 × 10−2 s−1 and δ̇3 = 3 × 10−2 s−1. The strain rate is held constant during the

measurements, displacing the cross-head of the testing machine at a variable velocity
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u̇m such that

δ̇m =
u̇m
l

=
u̇m

l0 + um(t)
= const , (6.14)

where l0 is the initial length of the sample and where l is the current length. From

equation (6.14), the displacement of the cross-head um(t) can be computed by solving

the ordinary differential equation u̇m = δ̇m [l0 + um(t)] under the condition um(0) = 0,

namely

um(t) = l0 [exp (δ̇m t)− 1] .

This leads to the stretch ratio

λ(t) =
l0 + um(t)

l0
= exp (δ̇m t) .

The response of the model is compared to the experimental data obtained at discrete

time points (i, j, k) for the three strain rates δ̇m. The aim is to find the set of parameters

{µ, βα, Γ̇α} by minimising, for all measured data points, the difference between the stress

Sexp determined experimentally and Ssim predicted by the model. In particular, the

error to be minimised is computed using the L2-norm as

Error(µ, βα, Γ̇α) =

√∑
i

[∆Si(δ̇1)]2 +
∑
j

[∆Sj(δ̇2)]2 +
∑
k

[∆Sk(δ̇3)]2 , (6.15)

where ∆Si(δ̇1), ∆Sj(δ̇2) and ∆Sk(δ̇3) denote the differences [Sexpi (δ̇1)−Ssimi (δ̇1)], [Sexpj (δ̇2)−
Ssimj (δ̇2)] and [Sexpk (δ̇3)− Ssimk (δ̇3)], respectively.

We use a simplex search method, i.e. the Nelder-Mead algorithm for numerical min-

imisation (see Appendix A for more details on the minimisation algorithm). Only one

Maxwell element is used in the calibration, so that α = 1. Indeed, for the experimen-

tal data considered, adding more Maxwell elements does not substantially improve the

fitting. Fig. 6.3 shows the comparison between simulated and experimental data. The

solid lines represent the simulated data, whereas the dots correspond to the experimental

data, cf. [58]. The obtained material parameters are shown in Tab. 6.1.

The relaxation time for the Maxwell’s rheological element can be computed according

to the following relation

τ =
1

1
2 β µ Γ̇

. (6.16)

With the calibrated material parameters, this equation renders τ approximately equal to

45 seconds. For a similar material, namely VHB-F9473PC, a relaxation time comparable

with the value resulting from our calibration is found in [46].
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Figure 6.3: Viscoelastic behaviour of VHB-4910: stress response at different strain
rates as obtained from parameter identification. Dots: experimental data based on

experiments by Tagarielli et al. [58]; solid lines: simulated data.

µ [MPa] β Γ̇ [s−1 MPa−1]

0.02746 1.46846 1.10174

Table 6.1: Mechanical material parameters.

6.2.2 Calibration of the electrical behaviour

In order to calibrate the electrical response of the model and to assess the electrostrictive

behaviour of VHB-4910, experimental data is used for the relative dielectric permittivity

at different equibiaxial stretches. In [58] two different frequencies f̄ are considered,

namely 10−3 Hz and 200 kHz. The experimental data, see Fig. 6.4, shows that ε0r,10−3Hz =

6.4 and ε0r,200kHz = 3.8 and suggests to model the dependency of the relative dielectric

permittivity εr on the mechanical deformation through the first invariant I1 according

to the following relation

εr(λ1, λ2, λ3) =
A

α0 + α1 arctan(α2 + α3(I1(λ1, λ2, λ3)− 3))
, (6.17)

where A, α0, α1, α2, α3 are dimensionless constant parameters. The response of the

model is compared to the experimental data at different stretch levels, with the aim to

find the set {A,α0, α1, α2, α3} that minimises the difference. Similarly to the previous

case, the error is computed as the L2-norm and is then minimised by using a simplex



96 Chapter 6. Viscoelastic DEG operating in an electric circuit for energy harvesting

search method (for further details see Appendix A). Fig. 6.4 shows the comparison with

experimental data. The solid lines represent the prediction of the model, while the dots

indicate the measured permittivity, cf. [58]. The obtained material parameters for the

relative dielectric permittivity are summarised in Tab. 6.2.

Experimental data

Simulated data
Experimental data
Simulated data

R

Figure 6.4: Dielectric permittivity of VHB-4910 at different equibiaxial stretches for
two representative frequencies f̄ as obtained from parameter identification based on

experiments by Tagarielli et al. [58].

A α0 α1 α2 α3

10−3 Hz 4.67636 0.85362 − 0.18891 0.62074 − 0.07079

200 kHz 0.88568 0.37447 − 0.16267 1.20897 − 0.12075

Table 6.2: Electrical and coupling material parameters.

The analysis of the DEGs presented in the next Sections will be based on values of the

dielectric permittivity which follow the experimental data acquired at a frequency of

10−3 Hz.

6.3 Generator operating in the electrical circuit

The performance of a soft viscoelastic dielectric elastomer generator operating in the

electrical circuit is analysed. The dielectric elastomer material is acrylic VHB-4910 as

presented above. We assume that the initial side length l0 and thickness h0 are equal to

100 mm and 1 mm, respectively.

We postulate that the elastomer film is initially prestretched up to a minimum value

λmin = λo − Λ, that is maintained for a sufficiently long time to allow for full relax-

ation. Therefore, the dielectric elastomer is connected to a source of mechanical work
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that stretches it periodically up to a maximum value λmax = λo + Λ according to the

cosinusoidal relation

λ(t) = −Λ cos(ψ t) + λo, (6.18)

where Λ represents the amplitude of the stretch oscillation. In addition, ψ = 2πf is the

angular frequency, f is the frequency of the oscillation and λo > 1 is the mean value of

the stretch.

We solve the system of differential algebraic equations given by the electric circuit (6.8),

the nominal stress S(t) (6.9) and the evolution equation (6.12) for given loading (6.18)

using a DAE-solver. With all relevant quantities at hand, it is possible to determine the

energies in order to evaluate the generator performance. The input electrical energy Ein

is the integral over a cycle of the input power Pin, defined as the product of the current

through the battery i
battery

(t) and the voltage φo of the battery itself

Ein =

∫
cycle

Pin(t) dt =

∫
cycle

i
battery

(t)φo dt . (6.19)

Similarly, we can calculate the total output electrical energy Eout as the integral over

a cycle of the output power Pout, defined as the product of the current through the

external resistor i
load

(t) and its voltage φRext(t)

Eout =

∫
cycle

Pout(t) dt =

∫
cycle

i
load

(t)φRext(t) dt . (6.20)

Hence, the electrical energy produced by the generator ∆E = Eout−Ein is the difference

between the electrical energy input and output. Obviously, if ∆E is positive the genera-

tor produces energy in the sense that mechanical energy is converted to electrical energy.

If ∆E is negative, the generator dissipates energy, while if it is zero the generator does

not convert mechanical to electrical energy.

The same net energy can be attained by subtracting the energy dissipated in the circuit

(D) from the amount of energy in the capacitor generated by the dielectric elastomer

(EC), i.e.

∆E = Eout − Ein = EC −D , (6.21)

where

EC =

∫
cycle

PC(t) dt =

∫
cycle

iC(t)φC(t) dt . (6.22)

The energy dissipated throughout the circuit is the sum of the energy dissipated over

the diode, and the two resistances Rs and Ri, namely,

D = DD +DRs +DRi , (6.23)
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given by

DD =

∫
cycle

PD(t) dt =

∫
cycle

iD(t)φD(t) dt ,

DRs =

∫
cycle

PRs(t) dt =

∫
cycle

iDEG(t)φRs(t) dt ,

DRi =

∫
cycle

PRi(t) dt =

∫
cycle

iRi(t)φRi(t) dt .

(6.24)

The mechanical work performed by periodically stretching the dielectric elastomer can

be determined as

Wmech =

∫
cycle

[
S11(t) l0 h0 Ẋ1(t) + S22(t) l0 h0 Ẋ2(t)

]
dt

=

∫
cycle

[
S11(t) l20 h0 λ̇1(t) + S22(t) l20 h0 λ̇2(t)

]
dt .

(6.25)

As we have already seen, a measure of the performance of the generator is given by the

efficiency η (2.58). In this case, the efficiency is given by ratio of the electrical energy

produced by the generator ∆E over the total input energy invested, that is the sum of

mechanical work Wmech and electrical input energy Ein. Eq. (2.58) turns to

η =
∆E

Ein +Wmech
. (6.26)

For different values of the characteristic parameters of the oscillation (λo, Λ) we analyse

the performance of the generator by varying the excitation frequency f in the range from

0.1 Hz to 10 Hz, and, as previously mentioned, the resistance of the external resistor Rext

in the range from 0.001 GΩ to 1000 GΩ. Regarding the former range, we notice that

having disregarded the inertia effects will not affect the outcome of the investigation, as

an estimate of the kinetic energy involved in the motion reveals that its maximum value

in the more severe case (f=10 Hz, λo = 3, Λ = 0.50) is only about 5× 10−3 the amount

of change of elastic part of the strain energy in the material along the oscillations.

To calculate the kinetic energy in the DEG we assume a homogeneous deformation in

the plate with no superimposed rigid body motion, i.e. the center of mass stays at a

fixed point, see Fig. 6.1. This leads us to deformation map components ϕi(X , t) =

λi(t) Xi with i = 1, 2, 3. The kinetic energy is given by K =
∫
B0 1/2 ρ0 ϕ̇ · ϕ̇dV and

can be calculated, e.g., for the equibiaxial load case defined as λ1(t) = λ2(t) = λ(t)

and λ3(t) = 1/λ2(t), see next section, together with equation (6.18). Afterwards, its

maximum value, max(K), is compared with the maximum of the change of the elastic

part of the total strain energy, max(
∫
B0 Wel(λ(t))−Wel(λmin) dV ), during one load cycle.
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As the relaxation time is approximately 45 seconds, see Sect. 6.2, the generator efficiency

η is computed for one cycle after 200 seconds from the beginning of the stretch oscillation.

In this context the viscous effects can be considered to be fully stabilised.

In the analysis, we compare the behaviour of the generator modelled with three consti-

tutive responses:

1. hyperelastic (HYP), with constant dielectric permittivity: the energy corresponds

to (2.14) with ε0r = 6.4;

2. viscoelastic, with constant dielectric permittivity (VC): the energy refers to (2.25)

with ε0r = 6.4;

3. viscoelastic, with electrostriction (VE): the energy is determined by (2.25) with

deformation-dependent relative dielectric permittivity εr(λ1, λ2, λ3), as discussed

in Eq. (6.17).

In the following the performance of the generator is evaluated for different loading con-

ditions.

6.4 Equibiaxial loading

We assume that the generator is subjected to equibiaxial loading in the e1- and e2-

directions, i.e. S33 = 0. Imposing the incompressibility constraint, the principal stretches

are λ1(t) = λ2(t) = λ(t) and λ3(t) = 1/λ2(t) with λ(t) given by Eq. (6.18). Hence, the

deformation gradient tensor becomes F = λ(t) [I − e3 ⊗ e3] + λ−2(t) e3 ⊗ e3. In this

case the capacitance, as defined in Eq. (6.1), takes the following form

C = ε
l20
h0
λ4(t) (6.27)

and is thus proportional to the fourth power of the stretch.

Bearing in mind that E0 = E0(t) e3, with E0(t) = φC(t)/h0, and using expressions (6.9)

and (6.10), we can write the nominal electric displacement and the nominal stress in the

loading directions as

D0(t) = ε
φC(t)

h0
λ4(t), (6.28)

S11(t) = S22(t) = µ

[
λ(t)− 1

λ5(t)

]
+ β µ

[
λ(t)

λ2
v(t)
− λ4

v(t)

λ5(t)

]
− ε

φ2
C(t)

h2
0

λ3(t) . (6.29)
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The internal variable λv(t), with Cv(t) = λ2
v(t) [I−e3⊗e3]+λ−4

v (t) e3⊗e3, is computed

for the case α = 1 and by using (6.12) which results in the differential equation

λ̇v(t) = 2 Γ̇ β µ λv(t)

[
λ2(t)

2λ2
v(t)
− 1

3

[
λ2(t)

λ2
v(t)

+
λ2
v(t)

2λ2(t)

]]
(6.30)

with the initial condition λv(0) = λmin.

6.4.1 Cycle characterisation of a viscoelastic DEG

The evolution with time of the mechanical and electrical quantities of the generator is

best captured by plotting conjugated quantities for one loading cycle, like nominal stress

S – stretch λ and voltage φC + φRs – charge Q. These are illustrated in Figs. 6.5 and

6.6 for two different frequencies, i.e. f = 0.1 Hz and f = 1 Hz, for a viscoelastic material

following model VC, assuming a prestretch λo = 3.0, Λ = 0.50 and Rext = 0.1 GΩ.

In Figs. 6.5a and 6.6a cycles starting at different times ti = 10, 50, 100 and 200s are

sketched in the λ − S diagram. The times ti are computed relative to the full-charge

of the battery occurring at 0.5T . The viscous behaviour causes a perceptible hysteresis

with a stabilisation occurring after almost 200 seconds. The downward shifting of the

stress is also highlighted by the crossing point in the first depicted cycle in Fig. 6.5a,

starting at ti = 10 s. This crossing point results from the fact that, under cyclic loading,

the resulting nominal stress S is not periodical at the beginning of the loading until the

above mentioned stabilisation occurs. In contrast, the electrical quantities, see Figs. 6.5b

and 6.6b, show almost no change over the number of loading cycles.
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Figure 6.5: Plot of loading cycles of a DEG a) in the mechanical S–λ and b) in the
electrical φ

C
+ φRs–Q planes at different initial times ti, namely 10, 50, 100 and 200

seconds. Model VC, λo = 3.0, Λ = 0.50, f = 0.1 Hz, Rext = 0.1 GΩ.
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Figure 6.6: Plot of loading cycles of a DEG a) in the mechanical S–λ and b) in the
electrical φ

C
+ φRs–Q planes at different initial times ti, namely 10, 50, 100 and 200

seconds. Model VC, λo = 3.0, Λ = 0.50, f = 1 Hz, Rext = 0.1 GΩ.

Figure 6.7: Plot of the viscous dissipation Dv and the leakage dissipation DRi
at

different frequencies f . Model VC, λo = 3.0, Λ = 0.50, Rext = 0.1 GΩ.

The analysis of the dissipation in the generator is depicted in Fig. 6.7. We computed

during one loading cycle at time t = 200 s for different excitation frequencies the specific

viscous dissipation Dv and the dissipation DRi due to the leakage current iRi . Contrary

to [19], and due to the low voltage applied to the circuit, we observe that dissipation

due to viscosity is always dominant in comparison to the dissipation resulting from the

leakage current in the investigated range of frequencies.

In view of the energy performance of the investigated DEGs, Tab. 6.3 summarises the

net energy, the mechanical work and the efficiency. All values are computed for one load

cycle at t = 200 s. We note that the net converted energy turns out to be identical for

HYP and VC models as, for both, the electric permittivity is independent of the stretch,

even though it is necessary for the viscoelastic DEG to carry out more mechanical work.
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Clearly, the VE model predicts a strong reduction in the produced energy due to the

decrease of the permittivity with the stretch. More specific comments on the efficiency

η are made in section 6.4.2.

λo = 3.0, Λ = 0.5, Rext = 0.1 GΩ

f ∆E/V0 Wmech/V0 η
[Hz] [kJ/m3] [kJ/m3]

HYP 0.1 1.763 1.792 13.48 %
1.0 2.456 2.482 55.95 %

VC 0.1 1.763 3.419 11.99 %
1.0 2.456 2.645 53.94 %

VE 0.1 0.374 2.068 3.01 %
1.0 1.661 2.032 44.32 %

Table 6.3: Energy produced by the generator and mechanical work invested at two
different frequencies, f = 0.1 Hz and f = 1 Hz, computed after 200 s for the three
material models considered: λo = 3, Λ = 0.50, ε0r = 6.4, Rext = 0.1 GΩ. The reference

volume V0 is given by l20 h0.

We close this Subsection with a comment on the maximum admissible amplitude of the

oscillation Λ. Once an initial prestretch is applied, followed by an in-plane tensile stress

imposed in the dielectric elastomer film, a sufficient requirement along the cosinusoidal

cycles is that the stress should always remain positive at any time of the loading history

in order to avoid any kind of buckling or wrinkling instability. For a hyperelastic for-

mulation, this is achieved by simply controlling that λ > 1, whereas, for a viscoelastic

material, the maximum amplitude Λmax must be computed carefully for the selected

material, depending on the mean stretch λo, the excitation frequency f and the external

resistance Rext characterising the electrical load. For VHB-4910 a numerical estimation

is reported in Tab. 6.4 for Rext = 0.1 GΩ and f = 1 Hz using model VC. At a given λo,

the corresponding Λmax was obtained by letting the system oscillate until stabilisation of

the cycle and then taking the value at which min
t
{Sii(t)} ≈ 0. The values summarised in

Tab. 6.4 clearly show the influence of viscoelasticity on the limitation of the admissible

oscillation width.

λo 1.8 2.0 3.0 4.0
Λmax 0.30 0.38 0.69 0.88

Table 6.4: Maximal oscillation amplitude Λmax achievable in an equibiaxial test with-
out inducing in-plane negative stresses. Model VC, Rext = 0.1 GΩ, f = 1 Hz.

6.4.2 Efficiency analysis

The generator efficiency η, calculated by means of Eq. (6.26) and by using relation (6.25)

along with Eq. (6.29), is now investigated in terms of the imposed frequency and the
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external electrical resistance. Plots of η(f,Rext) for the three considered constitutive

models and λo = 3 are shown in Fig. 6.8. Three amplitudes Λ are analysed in every

chart, namely Λ = 0.50, Λ = 0.25 and Λ = 0.10. The frequency is examined up to 10 Hz,

even though the maximum operational frequency for DEG devices of the type analysed

here is usually in the order of a few Hz.

Firstly, we note that the efficiency η could be either positive or negative depending

on the values of the external resistance Rext. Negative values for η are observed for

Rext taking values greater than 30 GΩ in the case of small oscillation amplitudes Λ. An

evident outcome of the data is that the hyperelastic (HYP) model always predicts higher

efficiency in comparison to both viscoelastic models. Moreover, larger amplitudes are

always associated with larger efficiency, irrespective of the material model. The reason

for this is that the capacitance of the generator depends on the stretch to the power

of four which results in considerable increase of the output electrical energy. On the

contrary, the energy supplied to the system shows a less than proportional increase in

the oscillation amplitude Λ.

Tab. 6.5 shows these energy figures for the three selected amplitudes. In addition, we

observe that the difference between the three material models is more pronounced for

high values of Λ, as shown in Figs. 6.9a and 6.9b.

λo = 3.0, f = 1 Hz, Rext = 0.1 GΩ, VC model

Λ Ein/V0 Eout/V0 ∆E/V0 Wmech/V0 η
[kJ/m3] [kJ/m3] [kJ/m3] [kJ/m3]

0.10 1.067 1.142 0.075 0.085 6.49 %

0.25 1.303 1.771 0.468 0.516 25.74 %

0.50 1.906 4.362 2.465 2.645 53.94 %

Table 6.5: Energy produced by the generator and mechanical work invested for the
three selected amplitudes Λ = 0.10, Λ = 0.25 and Λ = 0.50, computed after 200 s for
the VC model: λo = 3, f = 1 Hz, ε0r = 6.4, Rext = 0.1 GΩ. The reference volume V0 is

given by l20 h0.

Fig. 6.9a displays the efficiency comparison for the three constitutive models in the case

of λo = 3 and Rext = 1 GΩ, as data show that the highest efficiency values lie close

to this value, cf. Fig. 6.8. For Λ = 0.5 the efficiency difference between models HYP

and VC is around 15%, while that between HYP and VE is approximately 23%. This

difference reduces respectively to 5.3% and 9.5% for Λ = 0.25, and to 0.6% and 2.4% for

Λ = 0.1. The stretch dependency of the permittivity accounted in model VE reduces η to

approximately 8% (2%) with respect to the efficiency of the classical electro-viscoelastic

model VC for Λ = 0.5 (Λ = 0.1).

The same comparison for λo = 3 and f = 1 Hz in terms of the external resistance

Rext is depicted in Fig. 6.9.b. As already observed, η is negative for high values of the
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a)

b)

c)

Figure 6.8: Plot of the efficiency η(Rext, f) for the three different material models: a)
hyperelastic, HYP, b) viscoelastic, VC, and c) electrostrictive viscoelastic, VE. Equi-

biaxial loading conditions with λo = 3.0; Λ = 0.50, Λ = 0.25 and Λ = 0.10.
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a)

b)

Figure 6.9: Plot of the efficiency η versus a) frequency f at Rext = 1 GΩ, and b)
external resistance Rext at f = 1 Hz. Equi-biaxial loading conditions with λo = 3.0;
Λ = 0.50, 0.25, 0.10. Dashed, continuous and dotted lines are referred respectively to

HYP, VC and VE models.

external resistance Rext, depending on the value of the oscillation amplitude Λ, in the

range between 30 and 300 GΩ (increasing values for increasing Λ’s).

In these cases, the output electrical energy is lower than the input one. An explanation

is that the voltage of the connected battery, φo=1 kV, is not sufficient to power the

mechanical energy conversion. As a result, the charge exchanged by the generator at

every cycle is relatively low and inadequate to feed the external resistor. For a battery

operating at a higher voltage, the threshold value of Rext, beyond which η < 0, increases

accordingly.

Among the three models, hyperelasticity predicts a wider range where the efficiency is

positive. For small values of Rext, the VC model behaves similarly to the hyperelastic one

up to a peak value, which occurs at lower values of the external resistance Rext increasing

the amplitude Λ. Moreover, it is noted that, for the model with electrostriction (VE),
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the values of the efficiency are always lower in comparison to the hyperelastic model

within the whole considered range of Rext.

The influence of the mean stretch λo on the efficiency in terms of the external frequency

f is outlined in Fig. 6.10 for Rext = 1 GΩ and for a generator based on the viscoelastic

(VC) constitutive assumption. When λo is equal to 1.8 the behaviour of the generator

is noticeably different between frequencies lower and higher than 1 Hz: the change in

η through the frequency range is approximately 19% for Λ = 0.1 raising to 33% for

Λ = 0.25. On the contrary, for a higher mean stretch (λo = 3), the behaviour of the

generator is more stable, the efficiency variation is up to 6% for the considered values of

the amplitude. Hence, for a viscoelastic DEG, when the average value of the oscillation

λo increases, the behaviour of the generator becomes more stable and less dependent on

the other electrical and mechanical parameters.

Figure 6.10: Plot of the efficiency η versus frequency f for two values of the mean
value of the oscillation stretch λo = 1.8 and λo = 3. Equi-biaxial loading conditions

with Rext = 1 GΩ, VC model.

6.4.3 Failure envelope at regime conditions

At regime conditions, the in-plane viscous stretches tend to the mean stretch λo, namely

t→∞ λv(t)→ λo.

Precisely, the in-plane viscous stretches experience a small oscillation around a value

approximately equal to 98%λo. Hence, we can assume as the most severe case that, at

regime, the principal viscous stretches {λv1(t), λv2(t), λv3(t)} are equal to {λo, λo, 1/λ2
o}.

Under this assumption, for an ideal dielectric (i.e. D = εE), we can obtain the expression

of the failure curves for the generator in terms of the dimensionless variables (2.17)
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adopting the model VC. In the following, we employ the same procedure illustrated in

Subsect. 2.6.2 for the ideal hyperelastic DEG under equibiaxial loading conditions (i.e.

HYP model).

In the electrical plane, the curves relative to the stretches limiting the oscillation,

i.e. λmin = λo−Λ and λmax = λo +Λ, are simply prescribed by the following equations

φ̄ =
ω̄0

λ4
min

, φ̄ =
ω̄o
λ4
max

. (6.31)

Analogously, in the electrical plane, the curve related to the mean value of the stretch

oscillation is characterised by this expression

φ̄ =
ω̄0

λ4
o

. (6.32)

The electric breakdown failure is outlined by two curves, which surround the region

of admissible states in the mechanical and in the electric planes, respectively prescribed

as

S̄ = λ

(
1 + β

1

λ2
o

)
− 4

λ5
(1 + βλ4

o)−
Ē2
eb

λ
, φ̄ =

Ē2
eb

ω̄o
, (6.33)

where Ēeb is the dimensionless breakdown strength (2.33). The electric breakdown

strength of VHB-4910 is assumed to be 100 MV/m, hence its dimensionless value is

Ēeb = 4.54 .

The loss of the tensile state (S = 0), in the electric plane, is characterised by the

expression

φ̄ =
ω̄0[

ω̄2
0+1+βλ4o
1+β 1

λ2o

]2/3
. (6.34)

Finally, the curves corresponding to the electromechanical instability in the two

thermodynamic planes are

S̄ =
2

3

[
λ(1 + βλ2

o)−
4

λ5
(1 + βλ4

o)

]
, φ̄ =

ω̄0[
3ω̄2

0−5(1+βλ4o)

1+β 1

λ2o

]2/3
. (6.35)

In Figs. 6.11a, 6.11b and 6.11c are depicted the failure curves relative to VC model for

three different values of the mean stretch, namely λo = 1.8, 3, 4. In the same figures,

the dashed lines represent the failure curves referred to HYP model (see Subsect. 2.6.2).

Comparing the failure curves obtained by employing HYP and VC models, it is evident

that the limit stretches and the electric breakdown curves are not modified by viscous

effects, whereas the electromechanical instability and the loss of tensile stress state
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a)

b)

c)

Figure 6.11: Plot on the electrical φ̄–ω̄0 plane of the failure envelope for different
values of the mean stretch λo. Solid lines are referred to the VC model, dashed lines to

the HYP model.

curves are strongly modified when the viscosity of the polymer is taken into account in

the analysis.

When the mean stretch λo increases, the admissible state region not only becomes smaller

but also changes shape, as can be deduced from Fig. 6.11. Furthermore, the failure curves
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a)

b)

Figure 6.12: Plot on the electrical φ̄–ω̄0 plane of the a) loss of tensile state and b)
electromechanical instability curves for different values of the mean stretch, namely
λo = 1.8, 3, 4. Solid lines are referred to the VC model, dashed lines to the HYP model.

relative to loss of tension and electromechanical instability differ increasingly from the

hyperelastic case. The peak of the loss of tensile state curve occurs for lower value

of the voltage φ̄ and higher value of the charge density ω̄0, as shown in Fig. 6.12a.

As a consequence, the electromechanical instability curve is shifted right-hand side, as

depicted in Fig. 6.12b.

As a result of the modification of the generator admissible state region, the natural

configuration (i.e. λ = 1) is a not-allowed state for VC model. Thus, there is an upper

bound on the maximal amplitude of the stretch oscillation Λmax, as anticipated in Sub-

sect. 6.4.1. This value depends on the frequency f of the mechanical excitation and on

the external resistance value Rext.

Varying the external resistance of the circuit at fixed frequency (or vice versa changing
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the frequency of the excitation at fixed external resistance) in such a way that the

product of the two is held constant, we obtain the same cycle on the electrical plane,

see Fig. 6.13. Thus, the cycle is uniquely identified for a given value of the product of

the mechanical excitation frequency f and the external resistance Rext.

Figure 6.13: Plot of the cycle on the electrical plane for different values of the product
fRext, at λo = 3 and Λ = 0.695. The failure curves are represented by dashed black

lines for the HYP model and by solid black lines for the VC model.

This product is in fact equal to the ratio of the maximum voltage and the maximal

current over the external resistor

fRext =
max(φRext(t))

max(i
load

(t))
. (6.36)

From a dimensional analysis of Eq. (6.36), it can be found that the product fRext is

the inverse of a capacitance. This means that the external resistance is equal to the

capacitative reactance of an equivalent capacitor whose working frequency is equal to

that of the mechanical excitation

Rext =
1

2πfC◦
. (6.37)
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Inverting Eq. (6.37) we can easily obtain the capacitance of the capacitor equivalent

to the external resistor as C◦ = 1/(2πfRext). Finally, multiplying Eq. (6.37) by the

frequency f , we can derive that the product of the stretch oscillation frequency and the

external resistance is actually equal to the inverse of the equivalent capacitance

fRext =
1

2πC◦
. (6.38)

In the light of this fact, we can determine the maximal amplitude of the stretch oscillation

as a function of the product fRext. In Fig. 6.14 the values of the maximal amplitude

Λmax for a mean stretch λo = 3 as a function of the product fRext are reported.

Figure 6.14: Plot of the maximal oscillation amplitude Λmax as a function of the
product fRext for λo = 3.

6.5 Uniaxial loading

The soft dielectric elastomer here is subjected to uniaxial loading conditions in the direc-

tion e1 so that S22 = S33 = 0. Imposing the incompressibility constraint, the principal

stretches are λ1(t) = λ(t) and λ2(t) = λ3(t) = 1/
√
λ(t). Hence, the deformation gra-

dient tensor becomes F = λ(t) e1 ⊗ e1 + 1/
√
λ(t) [I − e1 ⊗ e1]. Compared with the

equibiaxial case, the capacitance is lower as it shows only a direct proportionality to the

axial stretch, i.e.

C = ε
l20
h0
λ(t) . (6.39)

Bearing in mind that E0 = E0(t) e3, with E0(t) = φC(t)/h0, we can write the nominal

electric displacement and the nominal stress in the loading direction as

D0(t) = ε
φC (t)

h0
λ(t) , (6.40)



112 Chapter 6. Viscoelastic DEG operating in an electric circuit for energy harvesting

while the relation between stress, stretch and voltage turns out to be

S11(t) = µ

[
λ(t)− 1

λ(t)2

]
+ β µ

[
λ(t)

λv(t)2
− λv(t)

λ(t)2

]
− ε φC (t)2

h2
0

. (6.41)

The internal variable λv(t) is computed by integrating the evolution equation (6.12)

which, in the incompressible uniaxial case, reduces to

λ̇v(t) =
1

4
Γ̇ β µ λv(t)

[
λ(t)2

λv(t)2
− 1

3

[
λ(t)2

λv(t)2
+ 2

λv(t)

λ(t)

]]
, (6.42)

with the initial condition λv(0) = λmin.

Figure 6.15: Plot of the efficiency η(Rext, f) for an external resistance Rext =1 GΩ
and λo = 3.0, Λ = 0.50 and Λ = 0.25. Dashed, continuous and dotted lines are referred

respectively to HYP, VC and VE models.

Three-dimensional plots of the efficiency, i.e. graphical representations of the function

η(f,Rext), are not given here for conciseness. But it is found that at the same supplied

voltage φo and compared with the equibiaxial loading, the uniaxial excitation leads to

overall lower values of the efficiency. Additionally, the range of points (f,Rext) with

positive efficiency is more limited. As in the case of equibiaxial loading, the HYP

constitutive model always predicts higher values of the efficiency with respect to the two

kinds of viscoelasticities. However, in this uniaxial loading case, the efficiency of the

generator is greater than zero only for few values of the variables f and Rext. When the

amplitude of the oscillation Λ is small, i.e. Λ = 0.10, the efficiency is always lower or

equal to zero, i.e. η ≤ 0, even in the case of hyperelasticity.

Fig. 6.15, obtained for λo = 3 and Rext = 1GΩ with Λ = 0.25 and Λ = 0.50, shows

negative values of efficiency at low frequencies. As in the case of equibiaxial loading,

the efficiency computed with the HYP model is greater than the predicted by VC and

VE models. The difference between the three different models decreases for decreasing
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values of the oscillation amplitude Λ. For Λ = 0.5, the difference in efficiency between

HYP and VC models is approximately 1.3%, while the difference between HYP and

VE models is approx. 3.1%. For Λ = 0.25 we obtained 0.2% and 0.9%, respectively.

As mentioned before, the analysis clearly demonstrates that, by applying the same

oscillation conditions Λ and λo the uniaxial loaded generator shows a considerably lower

efficiency than the equibiaxially loaded generator.

To relate the two loading conditions we investigate the DEG performance when the

capacitance changes during a cycle are equal. As a reference, we choose the hyperelastic

(HYP) model under equibiaxial loading with λo = 1.8 and Λ = 0.1. An equal capacitance

change is observed in a DEG subjected to the uniaxial loading for λo = 10.621 and

Λ = 2.34. The computed efficiency with Rext = 1 GΩ and f = 1 Hz are η = 15.16% for

equibiaxial and η = 13.04% for uniaxial loading.





Chapter 7

Conclusions

The performance optimisation of Dielectric Elastomer Generators has been investigated

in the framework of the nonlinear electro-elasticity.

The analysed load-driven DEG is made up of a dielectric film coated with compliant

electrodes at both sides, undergoing a Carnot-type electromechanical cycle formed by

a sequence of four strokes, during which charge and load are alternately held constant.

Overall, a net amount of electric energy is released over a single cycle.

In the first part of this work, two in-plane loading mode have been considered, namely

plane-strain and equibiaxial. In order to identify the best cycle out of which maximum

energy can be harvested, a constraint optimisation problem has been formulated ac-

counting for possible failure modes of the DEG, namely electric breakdown, mechanical

rupture due to over-stretching of the polymeric film, buckling-like instabilities due to

loss of tension and electromechanical instability.

First of all, the threshold for the dielectric strength of the material, stating the limit of

the electric breakdown influence on the definition of the allowable state region for the

generator, has been identified. This dielectric strength threshold detects the maximal

energy theoretically extractable by the generator.

Within the framework of conservative electro-elasticity, a numerical constraint optimi-

sation procedure has been employed to determine the optimal cycle that resides within

the failure envelop. Both the total amount of harvested energy per unit volume and

the efficiency of the DEG were optimised. Particular attention has been paid to the

influence of the electric breakdown on the optimal cycle failure.

The performance of a DEG crucially depends on the stretchability of the elastic dielectric.

This is due to the fact that the mechanical work produced by the external force can be

larger if the film can reach large reversible stretch ratios.

115
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The main outcome of the optimisation process is a universal curve, relating the attainable

stretch ratio and the dielectric strength of the material. Clearly, the larger the dielectric

strength of materials, the more energy can be harvested from the DEG. However, if

the dielectric strength of the film is larger than the threshold limit represented by this

curve, the maximal electric field that develops during the optimal cycle does not reach

the electric breakdown of the material. This implies that if the pair dielectric strength–

ultimate stretch ratio of the film corresponds to a point above the universal curve, the

maximal harvested energy is independent of the dielectric strength of the film. In other

words, once the ultimate stretch ratio of the film is given, the maximal extractable

energy is bounded by the universal curve regardless of the material electric breakdown

limit. The universal curve may also serve as a design criterion for DE-based generators.

Besides these in-plane configurations, the performance of a DEG composed of an annular

membrane deformed out-of-plane by an external oscillating loading has been investigated

employing a hyper-electro-elastic model. Also in this case, the performance quantities,

that is efficiency and amount of gained energy per unit mass, have been extensively

analysed for several configurations. The main findings can be summarised as follows:

• an optimal initial prestretch of the membrane exists for which the energy conver-

sion is more favourable: its value depends on the external-to-inner radius ratio and

it is not larger than 25-30% of the initial length/width. This is a very important

design indication as typical imposed prestretches for acrylic films in DE devices

are usually on the order of 300–400%;

• for an acrylic elastomer generator, a radius ratio close to one determines the ideal

configuration to maximise the amount of energy per unit mass. Differently, ef-

ficiency of the energy conversion process reaches the top for radius ratios in the

range 2÷2.5;

• similarly, at the optimal prestretch, the efficiency is maximised for maximum loads

of about one half of the highest possible Fmax, while the gained energy is rather

proportional to the applied load.

The last two items show that a design based on maximisation of energy may lead to a

quite different device with respect to the outcome of an efficiency-guided design. Hence it

is important to find the best compromise between the harvested energy and the efficiency.

Soft materials usually employed in dielectric elastomer generators show a remarkable

viscoelastic behaviour and may display a deformation-dependent permittivity, a phe-

nomenon known as electrostriction. Therefore, the design and the analysis of soft energy

harvesters, which undergo a high number of electromechanical cycles at frequencies in
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the range of one Hertz, must be based on reliable models that include such behaviour. In

the final part of this work, removing the conservative hypothesis, a large strain electro-

viscoelastic model for a polyacrilate elastomer, VHB-4910 produced by 3M, has been

proposed and calibrated on the basis of experimental data available in the literature.

The model has been used to simulate the performance of a soft prestretched dielectric

elastomer generator operating in a circuit where a battery at constant voltage supplies

the required charge at each cycle and where an electric load consumes the produced

energy. Two periodic in-plane loading conditions, namely homogeneous states under

equi-biaxial and uniaxial deformation, are considered for the soft capacitor.

The application of the proposed model has provided, for the generator, i) the assessment

of viscous and electrostrictive effects on the efficiency and on the net energy gained after

each cycle and ii) the evaluation of energy losses in all dissipative sources of the device, as

a function of the imposed mechanical frequency and of the electrical load characterising

the circuit.

The main result of this analysis is that, compared with a hyperelastic model, the ef-

ficiency is reduced by viscoelasticity for high values of the mean stretch and of the

amplitude of stretch oscillation. The reduction is almost insensitive of the mechanical

frequency, whereas the efficiency is further reduced by possible electrostrictive proper-

ties of the material. We observed a range of values of the external electric load with a

maximal efficiency. Furthermore, at low applied voltage, the viscous dissipation of the

material dominates the energy loss stemming from the leakage current across the filled

soft capacitor.





Appendix A

Non-linear optimisation:

Nelder-Mead method

The Nelder-Mead algorithm is a simplex search method, belonging to the general class of

direct search methods. This technique was proposed by John Nelder and Roger Mead in

1965 [47]. The algorithm is designed for multidimensional optimization without deriva-

tives, for this reason it is suitable for problem with non-smooth functions, uncertain

function values or discontinuous functions.

The method solves the problem of minimizing a given non-linear function f : Rn → R
using only function values at some point in Rn, without attempting to compute an

approximate gradient at any of these points.

A simplex S in Rn is defined as the convex hull of n+ 1 vertices x0, ..., xn ∈ Rn, e.g., in

R2 S is a triangle and in R3 is a tetrahedron. The Nelder-Mead algorithm begins with a

set of n+1 points x0, ..., xn ∈ Rn, constituting the vertices of the working simplex S, and

the corresponding set of function values at the vertices fj = f(xj) for j = 0, ..., n. The

initial working simplex S has to be non-degenerate, i.e., the initial points x0, ..., xn must

not lie on the same hyperplane. The method then perform a sequence of transformation

of the working simplex S with the aim of decrease the function values at its vertices. At

each step, the transformation is determined by computing one or more test points and

comparing their corresponding function values with those at the vertices of the simplex

S. The process terminates when the working simplex S becomes sufficiently small , or

when the function values fj are close enough.

The method could be implemented in many different ways, depending on the procedure

for the construction of the initial simplex and on the selection of the convergence or

termination test used to end the iterative process.
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Despite these differences, the general algorithm is the following:

1. construct the initial working simplex S;

2. iteration until convergence:

• ordering : determine the indices h, s, l of the worst, second worst and the best

vertex, respectively, in the current working simplex S, e.g., fh = maxj fj ,

fs = maxj 6=h fj , fl = minj 6=h fj ;

• centroid computation: compute the centroid c of the best side, i.e. the one

opposite to the worst vertex xh;

• transformation: construct a new working simplex from the current one. First

of all, try to substitute the worst vertex with a better point using reflection,

expansion or contraction with respect to the best side. Else shrink the simplex

towards the best vertex xl, computing new n points.

3. return the best vertex of the current simplex S and the associated function value.

The initial simplex S is usually constructed by generating n+1 vertices x0, ..., xn around

a given input point xin ∈ Rn. In practice, the usual choice is x0 = xin to allow suitable

restarts of the algorithm. The remaining n vertices are determined generating one of

the two standard shapes of the simplex S.

The simplex transformation is ruled by four parameters (α, β, γ, δ), controlling, respec-

tively, reflection, contraction, expansion and shrinkage.

The transformation parameters must fulfil the following constraints:

α > 0 0 < β < 1 γ > 1 γ > α 0 < δ < 1,

standard values, used in many implementation, are α = 1, β = 1/2, γ = 2 and δ = 1/2.

The algorithm accomplishes the following steps for the transformation of the simplex:

1. reflection: compute the reflection point xr = c + α(c − xr) and fr = f(xr), if

fl ≤ fr ≤ fs the point is accepted and the iteration stop;

2. expansion: if fr < fl, compute the expansion point xe = c + γ(xr − c) and

fe = f(xe). If fe ≤ fr the point xe is accepted and the iteration finishes, else the

point xr is accepted and the iteration follows;

3. contraction: if fe ≥ fr, compute the contraction point xc using the better point

between xh and xr
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Figure A.1: Nelder-Mead method: reflection of the simplex.

Figure A.2: Nelder-Mead method: expansion of the simplex.

• outside :

if fs ≤ fr < fh compute xc = c+ β(xrc) and fc = f(xc), if fc ≤ fr, accept xc

and terminate the iteration.

• inside :

if fr ≤ fh compute xc = c+ β(xhc) and fc = f(xc), if fc < fh, accept xc and

terminate the iteration.

a) b)

Figure A.3: Nelder-Mead method: contraction of the simplex a) outside and b) inside.

4. shrinkage: compute n new vertices xj = xl+(xjxl) and fj = f(xj) for j = 0, ..., n,

with j 6= l, generating the new simplex.

In order to ensure the termination of the iterative process in a finite amount of time, the

implementation of the Nelder-Mead algorithm must include a termination test. Usually

the termination test is composed of three different part:

1. a domain convergence test, satisfied when the simplex is small enough;
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Figure A.4: Nelder-Mead method: shrinkage of the simplex.

2. a function-value convergence test, satisfied when the function values are close

enough;

3. a no-convergence test, satisfied when the number of iteration exceeds the maximum

value prescribed.

The algorithm ends when at least one of these test is satisfied.



Appendix B

Constrained optimisation

problem: Lagrange multiplier

method

For an ideal DEG in plane-strain loading mode, the explicit expression for the dimen-

sionless harvested energy

Hg =
1

2
(λA − λD)

[
λD
(
3φ̄2

D − 1
)

+ 2λA + 3λ−3
D

]
+

1

2
(λC − λB)

[
λB
(
3φ̄2

B − 1
)

+ 2λC + 3λ−3
B

]
.

(B.1)

involves only the squares of the variables φ̄B and φ̄D. Therefore it is convenient to derive

φ̄2
B and φ̄2

D from conditions (2.31) as functions of the stretches λA, λB, λC and λD and

substitute them in Eq. (B.1). This will lead to an expression for Hg in terms of the

four characteristic stretches. Similar developments can be followed for the constraints

defining the failure envelope, whose final expressions determined for all the functions

involved are outlined next.

In order to determine the optimal cycle, out of which the maximum energy can be

harvested, within the region of admissible states, we formulate the following constrained

optimisation problem:

find min
Λ

Hg[λA, λB, λC , λD]

with Λ = [λA, λB, λC , λD]T and the minimum is sought since Hg ≤ 0. The optimisation

is to be evaluated under the following constraints:
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• Equality constraint (active constraint)

f [λA, λB, λC , λD] = −λC + λU = 0;

The simplicity of this constraint enabled us to substitute λU for λC throughout

the Lagrangian function and reduce the set of optimisation variables Λ to ΛR =

[λA, λB, λD]T .

• Inequality constraints (possibly active constraints)

k1[λA, λB, λC , λD] = SD33[λA, λB, λC , λD] ≥ 0,

k2[λA, λB, λC , λD] = −Ē2
D[λA, λB, λC , λD] + Ē2

eb ≥ 0,

k3[λA, λB, λC , λD] = φ̄2
B ≥ 0 i.e. φ̄B ∈ R, (B.2)

k4[λA, λB, λC , λD] = λA − 1 ≥ 0, k5[λA, λB, λC , λD] = −λA + λU ≥ 0,

k6[λA, λB, λC , λD] = λB − 1 ≥ 0, k7[λA, λB, λC , λD] = −λB + λU ≥ 0,

k8[λA, λB, λC , λD] = λD − 1 ≥ 0, k9[λA, λB, λC , λD] = −λD + λU ≥ 0.

The detailed expressions for the objective function Hg and the contraints k1, k2, k3 as

functions of the stretches are:

Hg[λA, λB, λC , λD] =
1

2(λ3
Aλ

3
C − λ3

Bλ
3
D)

[
− λ3

Cλ
5
A + 3λD

(
λ3
C − λ2

DλC + λBλ
2
D

)
λ4
A

−
[
3(λB − λC)λ4

D + 2λ3
Cλ

2
D + λ3

C

(
2λ2

B − 3λCλB + λ2
C

)]
λ3
A

−2λ3
Bλ

3
Dλ

2
A + 3λ3

B

[
λ4
D + (λB − λC)λ3

C

]
λA

−λ3
BλD

[
λ4
D + (λB − 2λC)(λB − λC)λ2

D + 3(λB − λC)λ3
C

] ]
,

k1[λA, λB, λC , λD] =
λ4
Aλ

3
CλD − λ3

Aλ
3
C

(
λ2
D − 1

)
− λ3

BλD
(
λBλ

3
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3
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Bλ
3
D

,

k2[λA, λB, λC , λD] =
λ4
Aλ

3
Cλ

3
D − λ3

Aλ
3
C

(
λ4
D − 1

)
− λ3

Bλ
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λBλ
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D(λ3

Aλ
3
C − λ3

Bλ
3
D)

+ Ē2
eb,
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.
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The following generalized Lagrangian function is evaluated

L[λA, λB, λD, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9] =

Hg[λA, λB, λU , λD]−
9∑
i=1

γi ki[λA, λB, λU , λD],

therefore, at every admissible (i.e. satisfying all the constraints) local minimum Λ̃R, the

following Karush–Kuhn–Tucker conditions are to be verified:

∇ΛR
L[λ̃A, λ̃B, λ̃D, γ̃1, γ̃2, γ̃3, γ̃4, γ̃5, γ̃6, γ̃7, γ̃8, γ̃9] = 0,

ki[λ̃A, λ̃B, λU , λ̃D] ≥ 0 (i = 1, . . . , 9),

γ̃i ≥ 0 (i = 1, . . . , 9),

γ̃i hi[λ̃A, λ̃B, λU , λ̃D] = 0 (i = 1, . . . , 9).

The gradient operator corresponds to the operation

∇ΛR
L = {∂L/∂λA, ∂L/∂λB, ∂L/∂λD}T ,

where the independent variables have been omitted for the sake of conciseness. Finally,

the stationarity condition reads:

∇ΛR
L[λA, λB, λD, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9] =

∇ΛR
Hg[λA, λB, λU , λD]−

9∑
i=1

γi∇ΛR
ki[λA, λB, λU , λD] = 0.





Appendix C

Annular membrane solving

procedure: numerical shooting

method

On the basis of simple trigonometric relationships, we can rephrase Eq. (5.2) in terms

of the functions r(r0) and z(r0) as

r′ = λ1 cos θ, z′ = −λ1 sin θ. (C.1)

A combination of the equilibrium equations (5.8) and (5.9) gives

θ′ = − S2

S1r0
sin θ. (C.2)

Equations (C.1)1, (C.2) and (5.8) constitute the system of non-linear differential alge-

braic equations (DAEs) in the three unknowns r(r0), θ(r0) and λ1(r0). This system

must be integrated with the boundary conditions (5.1)1,2.

For the solution of this boundary value problem we employ the numerical shooting

method. This is a numerical technique for solving a boundary value problem by reducing

it to the solution of an initial value problem. Once the applied force F and the voltage

φ are imposed, the system is solved with the initial conditions r(ri0) = λprer
i
0 and

λ1(ri0) = λi1. The boundary constraint r(re0) = λprer
e
0 is imposed comparing iteratively

the actual solution with the target, updating at each step the initial value λi1.

Once the system is solved, the function z(r0) could be consequently determined inte-

grating the differential equation (C.1)2 with the boundary condition (5.1)3.
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