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ABSTRACT

Spoken language translation (SLT) exists within one of the most challenging inter-
sections of speech and natural language processing. While machine translation
(MT) has demonstrated its effectiveness on the translation of textual data, the

translation of spoken language remains a challenge, largely due to the mismatch be-
tween the training conditions of MT and the noisy signal that is output by an automatic
speech recognition (ASR) system. In the interchange between ASR and MT, errors prop-
agated from noisy speech recognition outputs may become compounded, rendering the
speech translation to be unintelligible. Additionally, aspects such as stylistic differences
between written and spoken registers can lead to the generation of inadequate transla-
tions. This scenario is predominantly caused by a mismatch between the training con-
ditions of ASR and MT. Due to the lack of training data that couples speech audio with
translated transcripts, MT systems in the SLT pipeline must rely predominantly on tex-
tual data that does not represent well the characteristics of spoken language. Likewise,
independence assumptions between each sentence results in ASR and MT systems that
do not yield consistent outputs.

In this thesis develop techniques to overcome the mismatch between speech and
textual data by improving the robustness of the MT system. Our work can be divided
into three parts. First we analyze the effects the difference between spoken and written
registers has on SLT quality. We additionally introduce a data analysis methodology to
measure the impact of ASR errors on translation quality. Secondly, we propose several
approaches to improve the MT component’s tolerance of noisy ASR outputs: by adapting
its models based on the bilingual statistics of each sentence’s neighboring context, and
through the introduction of a process by which textual resources can be transformed
into synthetic ASR data to use when training a speech-centric MT system. In particu-
lar, we focus on the translation from spoken English to French and German – the two
parent languages of English – and demonstrate that information about the types and
frequency of ASR errors can improve the robustness of machine translation for SLT.
Finally, we introduce and motivate several challenges in spoken language translation
with neural machine translation models that are specific to their modeling architecture.

Keywords: natural language processing, spoken language translation, statistical machine trans-
lation, automatic speech recognition, error analysis
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FORWARD

I was sitting in a chair during a church service one day, thinking about how diffi-

cult cross-lingual communication can be. I recall the pastor was sharing an inter-

esting message, but I can’t remember its contents because I was too busy thinking

about how I could make it possible for other non-native speakers to understand what

was being said without our interpreter being present. About 10 foreign students and

refugees were crowding around an older woman who volunteered to interpret during a

90 minute service, despite lacking formal training from a translation school. After every

service she would be exhausted from the cognitive efforts of simultaneously listening

and translating to a message without much context known in advance.

I had thought about giving interpretation a try, but I, too, was a non-native speaker

and would not have been able to convey all of the message in an adequate message.

After all, I was a PhD student living in Trento, Italy, who was also working hard to

understand and participate in speeches and discussions in Italian.

These translation scenarios and the future possibility of applying my research in

spoken language translation to bridge linguistic divides was the primary motivation for

spending five years in Italy, working at the University of Trento and the Fondazione

Bruno Kessler laboratory. I didn’t just want to address the research problems from

within a lab – I wanted to experience the frustrations of not being able to communi-

cate my needs, wants, and desires with the same finesse and fluency that I was able to

do in the United States as a native English speaker. I wanted to enter communication

scenarios where I would be forced to humble myself and to spend more time listening

than speaking. I wanted to meet other people who shared in those struggles, whether

it was a voluntary or forced decision and to hear their stories about how hard it was to

even do the simple day-to-day societal activities.

Spoken language translation is not only a research problem to be solved, but also a

societal problem that continues to grow with each year. The five years devoted to this

research consisted in understanding the societal needs for spoken language translation

technology and analyzing the drawbacks that are preventing current approaches from
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being widely adopted. While the problem of spoken language translation has a long way

to go before being fully solved for even the simplest language pairs, the completion of

the research in this thesis motivates me even more to work toward the goal of deliver-

ing translation technologies that enable the linguistically disadvantaged to thrive in a

multilingual world.
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INTRODUCTION

Multilingualism is entering the Western world at an accelerating pace. The

United States Center for Immigration Studies reported that, as of 2015, 21.5

percent of United States residences speak a foreign language at home (Ca-

marota and Zeigler, 2016). The increase of foreign language speakers settling in the

West and overall globalization has resulted in an increase in demand for multilingual

technologies to bridge the linguistic divide. While linguistic barriers often coincided

with political and geographic barriers in the past, global migration has shifted this

problem to local communities.

As a result, there is an ever-growing need for translation to ensure that all members

of a society can consume and distribute information. The need for widespread trans-

lation is seen from the perspective of individuals, to government entities, such as the

European Commission Directorate-General for Translation, which reported translating

nearly two million pages of content across the 24 official European Union languages

in 2015 (EC DGT, 2016). In particular, there is a growing need for translation of the

following mediums of communication:

• Text (e.g. literature, legal and bureaucratic documents, online content);

• Media (e.g. news broadcasts, movie subtitling, closed captioning);

• Live speeches (e.g. political speeches, lecture translation);

• Human to human communication (e.g. Skype™, face-to-face conversations)

3
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While professional translators and interpreters work to alleviate some of the need for

translation, translation projects are costly and time-consuming. In addition, there are

various modalities of human communication that are disrupted by involving a human

mediator, such as Skype™ calls and face-to-face conversations.

Two promising technologies that have seen increasing adoption are statistical ma-

chine translation (SMT) and spoken language translation (SLT). Statistical methods for

translation have benefited society by augmenting human translation and interpretation

with a scalable, versatile, and cost-effective alternative. As opposed to human transla-

tion, which requires translators to not only acquire fluency in each natural language,

but also to specialize in the generation of language that meets top literacy standards,

the core approaches of SMT vary little with respect to each language pair. This allows

a SMT architecture to generalize across combinations of language pairs spanning mul-

tiple language families, with the only requirement being the availability of a sufficient

amount of language bitexts to use for training. Although machine translation has not

reached parity with human translation, it is helping us bridge linguistic divides by mak-

ing information available beyond the language barrier.

While statistical machine translation has demonstrated its effectiveness on textual

data such as newswire, government proceedings, patents, and Internet texts, the trans-

lation of spoken language has been challenging. SLT minimally consists of two main

components: an automatic speech recognition (ASR) system, which decodes a speaker’s

speech in a source language into a sequence of words, and a machine translation (MT)

system, which translates the transcribed words into a target language. Each of these

components has its own unique challenges that the underlying models need to over-

come.

Some of the problems faced in SLT are shared with human interpreters and profes-

sional translators. Given the task to communicate the content from a foreign language

into a target language, the interpreter must process the sequence of spoken words she

hears and plan a sequence of utterances to communicate the information received to

the recipient according to the time restrictions and quality expectations required for the

task. In some language pairs, this process can be localized, allowing an interpreter to

translate based on a localized context of words. Likewise, machine translation systems

must process an input source, whether it be text or speech, and generate an adequate re-

sponse in a target language. However, ASR introduces more challenging problems over

the auditory process of word recognition. Even in the best of audio recording scenarios,

ASR must deal with signal noise, speaker dialect and pronunciation variations, disflu-
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encies in the form of filler words (“um”, “uh”), repeated syllables, and under-articulation.

The best performing ASR systems still produce errors and ungrammatical outputs, so

how can the machine translation component identify these errors and work around

them in order to provide a faithful translation of speech?

A further exacerbation of the problem is due to the fact that most SLT systems are

a pipeline in which ASR and MT systems are largely trained independently from one

another – mostly due to the lack of data that covers the recording of human speech

and its professional translation. The majority of the available training data stops at

the production of source language transcripts, or it begins with the written word and

provides its professional translation, but lacks an audio recording for speech processing.

An ideal SLT training scenario consist of a substantially large corpus of data consisting

of audio, source transcript, and target translation tuples in order to use for training

both the ASR and MT systems to ensure their underlying models are optimized for the

target SLT task. However, this data is not readily available due to the time and costs

involved in collecting the data. As a result, SLT systems are impeded by the problem

domain mismatch; while the ASR system is trained on data largely representing con-

versational registers, the MT system is trained on a majority of written register data

with clean, syntactically-correct transcripts. Statistical differences between the speech

and text training corpora create a scenario where MT may not be properly trained to

anticipate ASR errors, as well as differences in registers. As a result, MT will compound

the errors already made by an ASR system, rendering many speech translation outputs

to be unintelligible. This result is unacceptable in communities that have increasing re-

liance on translation technologies to ensure the spread of information across linguistic

barriers.

In this thesis, we aim to address the problem of domain mismatch and lack of error

tolerance in machine translation. In particular, we focus on the problem of context adap-

tation and ASR error modeling in spoken language translation. By context adaptation,

we mean two things: adapting MT systems to anticipate the difference between spoken

and written registers to tolerate the kinds of input coming from speech recognition hy-

potheses, and adapting MT models to remember previous inputs and decisions made by

the MT engine. By error modeling, we intend to model channel noise as a process that

estimates confusions made by the ASR system as a source of data to enhance the MT

system’s tolerance of ASR errors.

5
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SRC1 You know, cadaver dissection is the traditional way of learning human anatomy.
ASR1 Seeing a, cadaver dissection and ease the traditional way of loaning human and that to

me.
REF1 Vous savez, la dissection cadavérique est la manière traditionnelle d’apprentissage de

l’anatomie humaine.
MT1 Vous savez, la dissection de la cadaver est la façon traditionnelle d’apprendre l’anatomie hu-

maine.
SLT1 En voyant une dissection, la dissection et la facilité la façon traditionnelle d’être humain et

de moi.
SRC2 For students, it’s quite an experience, but for a school, it could be very difficult or expensive

to maintain.
ASR2 For students, it’s quite an experience, but for school, it can be very difficult or expensive to

maintain.
REF2 Pour les étudiants, c’est une véritable expérience, mais pour une école, ça pourrait être très

difficile ou coûteux à entretenir.
MT2 Pour les étudiants, c’est plutôt une expérience, mais pour une école, ça pourrait être très

difficile ou cher à entretenir.
SLT2 Pour les étudiants, c’est plutôt une expérience, mais pour l’école, ça peut être très difficile ou

cher à entretenir.
SRC3 So we learned the majority of anatomic classes taught, they do not have a cadaver dissection

lab.
ASR3 So real and promote unity Obama panic class thought, they do not have a kind of a

dissection lab.
REF3 Donc nous avons appris que la majorité des classes anatomiques n’a pas de laboratoire de

dissection cadavérique.
MT3 Nous avons donc appris la majorité des cours anatomiques qu’ils ont appris, ils n’ont pas un

laboratoire de dissection de cadaver.
SLT3 Si vrai et promouvoir l’unité de la classe de panique d’Obama, ils n’ont pas une sorte de

laboratoire de dissection.

Figure 1.1: An example of spoken language translation errors. SLT errors caused by
ASR errors are highlighted in red. MT-related errors are highlighted in blue.

1.1 Motivating Example

When evaluating the performance of a SLT system, we can isolate the sources of errors

as being predominantly caused by either the ASR or the MT system. As we analyze an

except from a TED talk in Fig. 1.1, we observe several interesting SLT errors that mo-

tivate our work. The examples come from the 2012 International Workshop on Spoken

Language Translation (IWSLT) evaluation campaign, which focused on the translation

of lectures.

The ASR output of the first sentence (ASR1) of Figure 1.1 is unintelligible. Recog-

nition errors that transform content words from SRC1, such as “learning”⇒“loaning”

and “anatomy”⇒ “and that to me” corrupt the meaning of the sentence, making an ac-

curate translation impossible. Many speech recognition errors result in sequences of
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words that sound similar to the expected ASR reference but change the meaning of the

utterance. While the MT system (MT1) attempts to correct some of the errors in the

beginning of the sentence, it duplicates “dissection” in the process and drops “cadaver”.

MT1 attempts to translate the remainder of the ASR errors literally, but makes addi-

tional translation errors in the process, such as in “to me”⇒“de moi” (myself).

The second sentence has an ASR hypothesis (ASR2) containing minimal function

word errors that do not have much impact on translation quality. MT2 makes a minor

error caused by a literal translation for “quite an experience”, but the MT and SLT trans-

lations are still understandable. The third sentence is corrupted again by ASR, where

the context of the previous sentences could have helped the ASR decoder to recognize

the words “anatomic” and “cadaver”. Although “anatomy” was already misrecognized

in ASR1, the acoustic information around “cadaver” was discarded in the current recog-

nition context and a phonetically similar sequence of words was hypothesized instead

(“kind of a”). As a result, ASR3 is unintelligible and the SLT result bears no resemblance

to the translation MT3 in a perfect recognition scenario.

While adaptation to ASR models is outside the scope of this thesis, it is important

to highlight scenarios where the ASR system should have been able to find the correct

recognition result. It is in these cases where we look for opportunities for the MT system

to compensate. A machine translation system might have been able to compensate for

errors such as “cadaver”⇒“kind of a”, if it possessed a mechanism to model the previous
decisions of the ASR and MT decoders, and to model noisy ASR outputs during system
training. In order to model the errors made by an ASR system to make a strong SLT

system, we must analyze the impact of ASR errors on translation quality.

1.2 Contributions

The main research contributions of this thesis are as follows:

• we compare and contrast the difficulties of machine translation for textual do-

mains versus speech domains;

• we provide a statistical data analysis framework to analyze the impact of speech

recognition errors on machine translation quality;

• we introduce a novel technique to inexpensively adapt machine translation models

based on small discourse context windows;
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• we introduce an ASR damaging channel that provides synthetic noisy ASR train-

ing data for machine translation;

• we evaluate the effects of speech recognition errors on the recent state-of-the-art

neural machine translation systems against conventional log-linear phrase-based

machine translation approaches and suggest further areas of research for neural

spoken language translation.

1.3 Translation versus Interpretation

Whereas translation involves the transfer of meaning from a source language to a target

language with the use of materials such as phrase books and dictionaries, interpretation

involves an interaction between monolingual speakers and a bilingual mediator who si-

multaneously processes speech and contextualizes it to make it understandable in the

recipient’s target language. Speech interpreters do not have the time to consult phrase

books or dictionaries to aid in translation; instead they are constrained by limited time

and memory to convey the most important information in speech – as such, adequacy is

more important than fluency or literal accuracy. Automatic spoken language translation

does not have the same limitations as an interpreter. A SLT system learns representa-

tions and transfers them from one language to another and can quickly look up the

necessary information to generate translations.

While language translation in interpretation scenarios is an interesting research

problem, the scope of this thesis is to explore the problem of spoken language transla-
tion.

1.4 Structure of this Thesis

The remainder of this thesis is structured as follows. Chapter 2 introduces the funda-

mental concepts of ASR and MT and illustrates their composition to form spoken lan-

guage translation. We outline the de-facto evaluation measures for each component and

outline promising directions of research in the field of SLT.

Chapter 3 analyzes the differences between spoken and written registers and out-

lines how these differences provide unique challenges in machine translation research.

While focusing on the difficulties of translating spoken language content, we reserve the

discussion of the impact of ASR errors on the problem of spoken language translation for

8
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Chapter 4. In Chapter 4, we use linear mixed-effects models to measure how the ASR

error types in popular evaluation metrics exacerbate the English-French translation

problem and contribute to the degradation of translation quality.

Chapter 5 introduces a novel technique to adjust the translation and language model

scores in a statistical machine translation system based on topic adaptation using bilin-

gual latent semantic models. As a log-linear approximation to conventional adaptation

techniques, it can efficiently be used in the SLT scenario. We demonstrate its ability to

improve translation results using a monolingual or bilingual context window of only a

few sentences in machine translation.

Chapter 6 introduces a noisy-channel model designed to transform textual data into

synthetic ASR outputs in order to compensate for the lack of translated ASR data. Eval-

uated on a number of English-X language pairs (e.g. French, Spanish, Italian, Man-

darin), the method is shown to improve translation quality without introducing addi-

tional training corpora to the model, and without affecting the latency of decoding.

Chapter 7 introduces and motivates interesting problems one faces when consid-

ering the translation of ASR outputs on neural machine translation (NMT) systems

for English-French. We compare the robustness of NMT’s encoder-decoder modeling

against a state-of-the-art PBMT system when translating noisy speech input. Chapter 8

concludes this thesis with a summary of the major findings of the thesis and suggests

future research directions.

1.5 Evaluation Data

The majority of experiments in this thesis involve the translation of TED Talks:1 a pop-

ular SLT data source that has been used for over 6 years in the International Workshop

of Spoken Language Translation. TED talks are a collection of short speeches covering

a variety of topics. A large crowd-sourcing community of annotators actively captions

and translates TED talks, thus far providing a rich corpus covering over 80 languages

(Cettolo et al., 2012). In this thesis, we focus primarily on the translation of TED talks

from English to French or English to German.

1.6 Relevant Publications

Parts of Chapter 3 were published in:
1http://www.ted.com/talks
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• Nicholas Ruiz and Marcello Federico. “Complexity of Spoken Versus Written Lan-

guage for Machine Translation” appeared in the proceedings of the 17th Confer-

ence of the European Association for Machine Translation (Ruiz and Federico,

2014a).

Chapter 4 combines the interpretation of ASR errors on SLT quality from the following

papers:

• Nicholas Ruiz and Marcello Federico. “Assessing the Impact of Speech Recognition

Errors on Machine Translation Quality” appeared in the proceedings of the Inter-

national Workshop on Spoken Language Translation (Ruiz and Federico, 2014b).

• Nicholas Ruiz and Marcello Federico. “Phonetically-Oriented Word Error Align-

ment for Speech Recognition Error Analysis in Speech Translation” appeared in

the proceedings of the IEEE Workshop on Automatic Speech Recognition and Un-

derstanding (Ruiz and Federico, 2015).

Parts of Chapter 5 were published in the following papers:

• Nicholas Ruiz and Marcello Federico. “Topic Adaptation for Lecture Translation

through Bilingual Latent Semantic Models” appeared in the proceedings of the

Sixth Workshop on Statistical Machine Translation (Ruiz and Federico, 2011).

• Nicholas Ruiz and Marcello Federico. “MDI Adaptation for the Lazy: Avoiding

Normalization in LM Adaptation for Lecture Translation” appeared in the pro-

ceedings of the International Workshop on Spoken Language Translation (Ruiz

and Federico, 2012).

Parts of Chapter 6 were published in:

• Nicholas Ruiz, Qin Gao, William Lewis, and Marcello Federico. “Adapting Machine

Translation Models toward Misrecognized Speech with Text-to-Speech Pronuncia-

tion Rules and Acoustic Confusability” appeared in the proceedings of Interspeech

(best student paper award) (Ruiz et al., 2015).

The machine translation systems described in the various chapters were submitted in

various IWSLT evaluation campaigns, with the description papers listed below:

• N. Ruiz, A. Bisazza, F. Brugnara, D. Falavigna, D. Giuliani, Diego, S.Jaber, Suhel,

R. Gretter, and M. Federico. “FBK @ IWSLT 2011” appeared in the proceedings of

the International Workshop on Spoken Language Translation (Ruiz et al., 2011).
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• N. Ruiz, A. Bisazza, R. Cattoni, and M. Federico. “FBK’s Machine Translation

Systems for IWSLT 2012’s TED Lectures” appeared in the proceedings of the In-

ternational Workshop on Spoken Language Translation (Ruiz et al., 2012).

• N. Bertoldi, A. Farajian, P. Mathur, N. Ruiz, and M. Federico. “FBK’s Machine

Translation Systems for the IWSLT 2013 Evaluation Campaign” appeared in the

proceedings of the International Workshop on Spoken Language Translation

(Bertoldi et al., 2013b).

• A. Aue and Q. Gao and H. Hassan and X. He and G. Li and N. Ruiz and F. Seide.

“MSR-FBK IWSLT 2013 SLT System Description” appeared in the proceedings of

the International Workshop on Spoken Language Translation (Aue et al., 2013).

• N. Bertoldi, P. Mathur, N. Ruiz, and M. Federico. “FBKs Machine Translation and

Speech Translation Systems for the IWSLT 2014 Evaluation Campaign” appeared

in the proceedings of the International Workshop on Spoken Language Transla-

tion (Bertoldi et al., 2014).
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2
SPOKEN LANGUAGE TRANSLATION MODELING

Spoken language translation (SLT) consists of multiple components: an Automatic

Speech Recognition (ASR) system, which processes an audio signal and tran-

scribes it into a sequence of corresponding words, and a Machine Translation

(MT) system, which takes the words of the speaker and translates them into a sequence

of words in a target language. In this chapter, we introduce and summarize each of

the components of a baseline SLT system and describe the main evaluation metrics for

each component. Then, we compare two general approaches to combining ASR and MT:

either as a sequential pipeline, or as a tightly coupled SLT system.

Both ASR and Statistical Machine Translation (SMT) are based on Shannon (1948)’s

noisy-channel model, which assumes that the output received by a human is a corrup-

tion of a source input that was passed through a noisy channel. In ASR this formula-

tion is easily understood by observing that during the language production process, a

speaker’s planned utterance may be distorted by factors including external noise and

variations in the speaker’s articulation. In SMT, the model is applied under Warren

Weaver’s famous assumption that translation is a decoding process (Weaver, 1949/1955).

The noisy-channel descriptions in this chapter refer to the translation of spoken words

from a foreign language into English. Note that the same construction applies without

loss of generality for SLT tasks from any source language to any target language.

This chapter is organized as follows: in Section 2.1 we introduce the formulation for

automatic speech recognition and outline its evaluation metrics. In Section 2.2 we out-

line the log-linear approach to statistical machine translation and briefly introduce is-
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Source Channel Receiver

P(f) P(x | f) argmaxf P(f | x)

Figure 2.1: Noisy-channel model for ASR. A message f is passed through a noisy chan-
nel, which causes a “corruption” of the message to an audio signal x. The message is
reconstructed via a source model P(f) and a channel model P(x | f).

sues in translation modeling and decoding, as well as introduce the log-linear modeling

paradigm. In Section 2.3 we introduce the task of language modeling, whose principles

are shared in common with ASR and MT modeling. In Section 2.4 we introduce Neural

Machine Translation, an alternative to the log-linear SMT approach described in Sec-

tion 2.2. In Section 2.5 we discuss the evaluation metrics for MT. Finally, in Section 2.6

we discuss the approaches to combine ASR and MT to form SLT and provide a summary

of the chapter discussion in Section 2.8.

2.1 Automatic Speech Recognition

In the noisy channel formulation, ASR decoding is a generative process in which words

are recognized from an audio signal. Figure 2.1 outlines the process, which assumes

that a sequence of words f were received by the hearer as a sequence of observations x
from an audio signal.

The statistical approach to speech recognition is based on the decision rule:

(2.1) f∗ = argmax
f

P(x | f) ·P(f).

The decoding is performed over all possible source word hypotheses for a given spoken

utterance f. P(x | f) corresponds to an intersection between an acoustic model (AM) that

estimates the conditional probability for a (context-dependent) sequence of phonemes

given acoustic observations x and a pronunciation dictionary (PD) that defines the

words that can be legally formed from the sequence of phonemes. P(f) is a language
model (LM) that computes the prior probability over the sequence of words in each

recognition hypothesis.

As a brief overview, automatic speech recognition occurs as follows. A signal pro-
cessing component converts an input audio signal into a sequence of salient feature

vectors x that can be processed by the acoustic model. In order to extract accurate fea-

tures, the component first converts an input audio signal from the time domain to the
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frequency-domain. The input signal is binned into overlapping frames, or Hamming

windows, of about 25 milliseconds and a window shift of about 10 ms. Feature coeffi-

cients are extracted from within each window and also by measuring the change in

coefficients (delta coefficients) across adjacent Hamming windows. Two discriminative

feature sets with higher accuracy are Mel Frequency Cepstral Coefficients (Davis and

Mermelstein, 1980) and Perceptual Linear Prediction components (Hermansky, 1990).

The feature vectors are transformed to account for signal noise and other channel dis-

tortions through techniques such as Linear Discriminant Analysis (Haeb-Umbach and

Ney, 1992), vocal tract length normalization (Acero, 1991; Wooters and Stolcke, 1994;

Lee and Rose, 1996; Giuliani et al., 2006), and neural network-based speaker mapping

(Huang, 1992); as well as speaker adaptation techniques, such as maximum likelihood

linear regression (Leggetter and Woodland, 1995). In order to account for the temporal

variability of speech, most acoustic models utilize hidden Markov models (HMMs) (Ra-

biner and Juang, 1986; Huang et al., 1990). While in the past Gaussian mixture models

(GMMs) were used to determine how well each HMM state fits a window of speech

frames, discriminative hierarchical models such as deep neural networks (DNNs) (Dahl

et al., 2012; Hinton et al., 2012) have demonstrated a marked increase in acoustic mod-

eling accuracy (Seide et al., 2011).

2.1.1 Evaluation

Word error rate (WER) is one of the most important automatic evaluation measures for

ASR accuracy. The WER for an ASR hypothesis, compared against a human reference

transcript is computed as:

(2.2) WER = S+D+ I
L

,

where S, D, and I are the number of word substitutions, deletions, and insertions in the

Levenshtein alignment (Levenshtein, 1966) between the hypothesis and its reference

transcript, and L is the ASR reference length (in words). A substitution occurs when a

word is incorrectly substituted for the correct word; a deletion is the omission of a correct

word in the hypothesis; and an insertion occurs when a word is incorrectly introduced

in the hypothesis.
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2.2 Statistical Machine Translation

The objective in statistical machine translation (SMT) is to find the most probable target

sentence that translates a given source sentence. SMT is most often formulated as a

generative model that maximizes the posterior probability P(e | f) of e = e1, e2, ..., e le

given the observed foreign message f = f1, f2, ..., f lf . Using Bayes’ decision rule, this is

expressed as:

(2.3) e∗ = argmax
e

P(e | f)= argmax
e

P(f | e)P(e).

P(f | e) is referred to as the translation model (TM), which models the conditional

probability of English words (or phrases) given foreign words. The translation model

is constructed using bitexts which are aligned at the sentence or clause level. Similar

to the ASR decision rule, P(e) is represented as a language model, which measures

the fluency of a translated text by computing the probability of a sequence of target

language words, independent of the input sentence f.
The decomposition into exactly two components in (2.3) was directly used in early

approaches to SMT as word-based MT (Brown et al., 1990, 1993), in which P(f | e) is

cast as a lexical translation model that translates words in isolation. More recently,

SMT models were enriched with contextual information: Phrase-Based Statistical Ma-

chine Translation (PBMT) (Zens et al., 2002; Och, 2002; Koehn et al., 2003) models the

translation process in terms of phrases, i.e. sequences of contiguous words; Hierarchical

Machine Translation (Yamada and Knight, 2001; Chiang, 2005) and Syntax-based Ma-

chine Translation, based on formulations such as synchronous context-free grammars

(Chiang, 2005; Wu, 1997), allow discontiguous translation decisions.

In the last few years, the Deep Neural Network paradigm was applied with large

success to SMT, creating a branch of SMT research known as Neural Machine Transla-

tion (NMT) (Sutskever et al., 2014; Cho et al., 2014b; Bahdanau et al., 2015). Section 2.4

summarizes its main concepts.

In Sections 2.2.1 and 2.2.2 we briefly introduce the main concepts of the lexical and

phrase-based translation models, respectively. Section 2.2.3 illustrates the combination

of translation model, language model, and reordering model as weighted features in a

generalized log-linear model that allows additional features to be incorporated. Section

2.2.4 summarizes the decoding process that searches for the best translation of a foreign

sentence. An overview of Hierarchical and Syntax-based machine translation are not

provided, as they are not used in this thesis.
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2.2. STATISTICAL MACHINE TRANSLATION

2.2.1 Lexical Translation Models

Originating from Brown et al. (1993), a bilingual dictionary (or translation table) is

constructed by deriving a probability distribution over alignments between words in

the source and target languages. If our bitexts contained word alignments, we could

simply use maximum likelihood estimation to calculate the probability distribution of

the data; however, in normal translation scenarios, we do not have this information.

Thus, to build the lexical translation model, we learn an alignment model P(f,a | e),

where the marginalized variable a is obtained from an alignment function (a : j → i)
that links a source input word at position j to a target output word at position i.

The alignment function allows one-to-many alignments from source to target. Al-

though unknown at the time of translation, the alignment of words is an important clue

in defining the best translation. The lexical translation model is expressed as:

(2.4) P(f | e)=∑
a

P(f,a | e),

which marginalizes over all possible word alignments between source and target sen-

tences. Such a model favors translations that better follow the alignment rules of the

translation pair.

The model can be further expressed as:

(2.5) P(f,a | e)= Z
l f∏

j=1
q(a( j) | j,f,e) t( f j | ea( j))

i.e. in a composition of the actual lexical translation probabilities t( f | e), and of the

alignment probabilities q(a | j,f,e) of aligning the source word at position j with the

target word at position a. Z is a normalization factor.

In the IBM Candide project, Brown et al. (1990, 1993) derive several alignment mod-

els with increasing dependency assumptions that are used in sequence to learn lexical

translation and alignment probabilities. The models are trained using Expectation Max-
imization (Dempster et al., 1977).

IBM Model 1 assumes that each lexical translation decision is independent from one

another, thus the alignment distribution is uniform and depends only on the source and

target length. As such, the translation probability for a foreign sentence f of length l f

to an English sentence e of length le is defined as:

(2.6) P(f,a | e)= Z
1

(le +1)l f

l f∏
j=1

t( f j | ea( j)),
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ϵ my italian friend works in the united states

il mio amico italiano lavora negli stati uniti

a : {1→ 0,2→ 1,3→ 3,4→ 2,5→ 4,6→ 5,6→ 6,7→ 7,8→ 8}

Figure 2.2: Example Italian to English word alignment in IBM Model 1. A null token ϵ

is introduced to capture source words that are dropped during lexical translation.

where Z is a normalization factor.

IBM Model 2 extends Model 1 by incorporating local alignment through an enhanced

alignment probability distribution: q(a( j) | j,f,e)= q(i | j, le, l f ), which models the likeli-

hood that an arbitrary foreign sentence of length l f aligns position j with position i in

any English translation of length le, without considering the actual words. Model 2 is

defined as:

(2.7) P(f,a | e)= Z
l f∏

j=1
t( f j | ea( j))q(a( j) | j, le, l f ).

During training, each subsequent IBM model (IBM Models 3-5) initializes the lexical

translation and alignment probabilities t( f j | fe( j)) and q(a( j) | j,f,e) to the results of the

previous model after convergence has been reached.

Figure 2.2 provides an example illustrating several alignment types from source to

target for IBM Model 1 – in this case, for Italian to English. During alignment a null

token ϵ is introduced into the target sentence at at position 0 to cover dropped source

words (e.g. “il” ⇒ ϵ). Source words can have multiple corresponding target words (“negli”

⇒ “in the”) and alignments can be discontiguous (“mio amico” ⇒ “my . . . friend”).

IBM Models 3-5 reduce the deficiencies of earlier models by introducing fertility
(word duplication to enforce one-to-one alignments), null (ϵ) word insertion, and word

deletions, as well as increasing context-dependency and constraining against overlap-

ping alignment positions. Alternative alignment models include an HMM-based word

alignment that models relative alignment positions (Vogel et al., 1996) and a “fast

aligner” that re-parameterizes IBM Model 2 in a manner that prefers monotonic align-

ments, particularly working well for languages with the same word order (Dyer et al.,

2013).
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2.2.2 Phrase-Based Models

A major disadvantage of word-based approaches to machine translation is that the con-

text of each word is not taken into account. PBMT (Zens et al., 2002; Och, 2002; Koehn

et al., 2003) incorporates additional context by enabling chunks of words to be trans-

lated at a time. These chunks do not have to correspond to phrasal constituents. These

chunks are translated independently from one another and are scored by the language

model.

PBMT assumes that foreign and English sentences are decomposed into exactly K
phrases governed by the alignment variable bK

1 , defined as:

(2.8) bK
1 = ((J1, I1), (J2, I2), ..., (JK , IK )),

where I1, ..., IK are the contiguous intervals partitioning e, and J1, ..., JK are the cor-

responding alignment positions for the target word positions in each chunk. Note that

the J intervals cover a contiguous span of source words, but their positions may be

permuted due to alignments.

To a certain extent the phrase alignment bK
1 replaces the word alignment al f

1 . Thus,

similarly to the lexical translation model in (2.5), the phrase translation model is decom-

posed into a phrase translation model ϕ and a phrase distortion (or reordering) model d
as:

(2.9) P(f,bK
1 | e)= d(bK

1 ) ϕ(f | e,bK
1 )=

K∏
k=1

d(Jk−1, Jk) ϕ( f̃k | ẽk),

where f̃k are the source words covered by alignment partition Jk and ẽk are the target

words covered by Ik. The standard distortion model d(·) in (2.9) assigns an exponen-

tially decaying cost function for the number of words skipped in either direction from

the position of the previous phrase (Och and Ney, 2004). Alternate and more complex re-

ordering models include lexicalized (or hierarchical) phrase orientation (Tillmann, 2004;

Koehn and Monz, 2005; Galley and Manning, 2008), pairwise lexicalized distortion (Al-

Onaizan and Papineni, 2006), and reordered source n-grams (Feng et al., 2010).

The bidirectional Viterbi alignments (source-to-target and target-to-source) estimated

by the lexical translation model are first symmetrized using heuristics (Och et al., 1999;

Koehn et al., 2003), and then used to extract phrase translation candidates that allow

one-to-one, one-to-many, and many-to-many alignments. From the symmetrized align-

ment a phrase pair ( f̃ , ẽ) is valid and hence it is extracted, if and only if all words of f̃
are aligned with any word of ẽ or to the null token ϵ, and vice-versa.
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Figure 2.3: An example of a word alignment and of phrase pairs extracted from a
training sentence pair. Blue borders highlight some of the phrase pairs that may be
extracted.

An example of an alignment between two sentences and a subset of possible phrase

pairs is shown in Figure 2.3. Note that all valid phase pairs are extracted even if they

overlap with other previously extracted pairs; for instance, “per noi il momento”⇐⇒“the

time for us” is also a valid phrase pair, although it overlaps with “il momento”⇐⇒"the

time”.

Translation table probabilities are estimated via maximum likelihood estimation,

given the counts n(·) of the extracted phrase pairs ( f̃ , ẽ) within the training corpora:

(2.10) ϕ( f̃ | ẽ)= n( f̃ , ẽ)∑
f̃ i

n( f̃ i, ẽ)
.

2.2.3 Log-Linear Translation Model

Given a translation model P(f | e) consisting of a phrase translation table ϕ( f̄ | ē) and a

reordering model d(·), the phrase-based generative model is factorized as:

(2.11) e∗ = argmax
e

K∏
k=1

ϕ( f̃k | ẽk)d(bk|b1 . . .bk−1)
|e|∏
i=1

pLM(e i | e1 . . . e i−1)
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when combining the translation model with the language model. Although (2.11) as-

sumes that each component has equal weight, Och (2002) introduces a log-linear mod-

eling framework for SMT, which allows for the integration of additional components as

weighted feature functions. The subsequent decision rule becomes:

(2.12) e∗ = argmax
e

M∑
m=1

λmhm(e,f),

where hm(e,f) are the M feature functions of the model and λm are their associated

weights. The feature weights may be optimized (or tuned) using discriminative training

approaches such as minimum error rate training (MERT) for dense feature functions

(Och, 2003) or the Margin Infused Relaxed Algorithm (MIRA) for sparse feature func-

tions (Crammer et al., 2006; Watanabe et al., 2007; Chiang et al., 2008; Cherry and

Foster, 2012) against a global evaluation criterion.

State-of-the-art PBMT systems such as Moses (Koehn et al., 2007) and cdec (Dyer

et al., 2010) contain the following features:

• A statistical language model pLM(e),

• Direct and inverse phrase translation models ϕ(f | e,b) and ϕ(e | f,b),

• Direct and inverse lexical translation models lex(f | e,b) and lex(e | f,b),

• A reordering model d(b),

• A phrase insertion penalty I, penalizing translations with little context,

• A word insertion penalty L, penalizing translations with many words.

In addition to these features, a number of additional features have been empirically

shown to increase machine translation performance on a number of translation tasks,

including:

• Operation sequence modeling (Durrani et al., 2011);

• Discriminative Word Lexicon (Niehues and Waibel, 2013);

• Bilingual word embeddings (Zou et al., 2013).
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2.2.4 Decoding

The search for the best translation, called decoding, consists of finding the optimal se-

quence of words e∗ that translates a foreign sentence f. In the case of PBMT, the decod-

ing process comprises three general operations: (i) partitioning the input into phrases

J1, ..., JK , (ii) deciding the permutation of JK
1 , and (iii) deciding the translation ẽk for

source phrase f̃k. The process of decoding in SMT is defined as:

(2.13) e∗ = argmax
e

P(e)
∑
a

P(f,a | e).

The Viterbi approximation is generally used, which approximates (2.13) as:

(2.14) e∗ ≈ argmax
e

P(e)max
a

P(f,a | e),

which allows the use of dynamic programming algorithms, such as DP beam-search

(Tillmann and Ney, 2003) and A* search (Och et al., 2001) for PBMT and chart parsing

(Zollmann and Venugopal, 2006) for hierarchical MT.

The DP beam-search algorithm incrementally constructs hypotheses that consist of

partial translations of the input sentence. Beginning with an empty hypothesis, the

hypothesis is expanded by selecting each translation option that generates the initial

phrase in the English sentence. Expanded hypotheses are placed in a stack that cor-

responds to the number of English words covered by the hypothesis (i.e. if hypothesis

h contains i translated words, it is placed in the ith stack). Each hypothesis has an

associated cost, determined by its current cost and its future cost. The current cost for

a partial hypothesis is determined from the probability of the phrases already in the

hypothesis, which, in the case of a log-linear model, follows (2.12). A low probability

corresponds to a high cost. The future cost is the expected minimum cost of translating

the rest of the sentence.

Pruning techniques are used to limit the number of hypotheses per stack. In his-

togram pruning, a maximum number of n hypotheses with the lowest cost are preserved

in each stack. In threshold pruning, hypotheses with scores that are worse than the best

hypothesis in its corresponding stack by a specific threshold α are pruned.

2.3 Language Modeling

Language modeling is an important component for scoring the fluency of a system’s de-

coded output. In the case of ASR, it is composed with the ASR pronunciation dictionary
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and acoustic model to rank likely recognition hypotheses. It is also a component in the

log-linear model for SMT approaches as described in Section 2.2.3, which guides the

decoding process by suggesting word ordering and lexical choices in translation. Given

a sequence of l words w = w1,w2, ...,wl , the language model computes the joint proba-

bility of every word wi in the sequence. The chain rule factorizes the probability of the

sequence as the conditional probability of each word, given a history of preceding words

in the sequence:

(2.15) P(w)= P(w1) ·
l∏

i=2
P(wi | wi−1

1 )≈
l∏

i=1
P(wi | wi−1

i−n+1).

A Markov assumption is made in (2.15) for n-gram language modeling which assumes

that the history is limited to a window of n−1 preceding words. In their simplest form,

n-gram language models can be computed according to maximum likelihood estimation.

While ASR operates under the closed vocabulary assumption, where words that do

not exist in the pronunciation dictionary cannot be predicted, MT must be able to assign

translation scores for out-of-vocabulary (OOV) words. In order to account for OOVs,

discounting techniques have been proposed to assign some of the probability mass of

more frequently observed words to out-of-vocabulary words. These techniques include

Good-Turing (Good, 1953), Witten-Bell smoothing (Witten and Bell, 1991), and Kneser-

Ney smoothing (Kneser and Ney, 1991, 1993, 1995). In addition, the statistics for higher-

order n-gram models are sparse, thus interpolation and back-off techniques are used

in conjunction with discounting to smooth higher-order n-gram counts by lower-order

observations.

An interpolated language model (Jelinek and Mercer, 1980) is a linear combination

of n-gram language models of varying size, recursively defined as:

(2.16) P I
n(wi | hi,n)=λhi,n P I

n(wi | hi,n)+ (1−λhi,n)P I
n−1(wi | hi,n−1),

where hi,n = wi−n+1, ...,wi−1 is the n-gram history of word wi, with associated interpola-

tion weights λhi,n that are optimized with Expectation Maximization.

Back-off modeling (Katz, 1987) alternatively relies on lower-order counts only if the

particular n-gram’s history is not observed in training. Otherwise, a discounted n-gram

probability P∗(wi | hi,n) is used. The back-off model is defined as a system of equations:

(2.17) PBO
n (wi | hi,n)=

{
P∗(wi | hi,n) if countn(hi,n)> 0,

z(hi,n)−1PBO
n−1(wi | hi,n−1) otherwise

where z(hi,n) normalizes the back-off probability.
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In addition to n-gram language modeling, neural network approaches to language

modeling, such as recurrent neural network models (Mikolov et al., 2010), have shown

to be promising. We do not describe them in detail because they are not used by the MT

systems in our experiments.

2.3.1 Evaluation

The most common metric for evaluating the quality of language models is perplexity,

which measures how well a language model predicts a sequence of words in a test set.

Perplexity refers to the average number of equally probable words the language model

must choose from when predicting the next word in a sequence. Thus, a lower perplex-

ity implies that the language model assigns higher probabilities to the test set. The

perplexity (PP) measure is based on the principle of cross-entropy, which is defined as:

(2.18) H(PLM)=−1
l

l∑
i=1

logPLM(wi | wi−1
i−n+1)

for a sequence of length l, and a n-gram LM. The perplexity is simply the exponential

of the cross-entropy:

(2.19) PP = 2H(PLM).

2.4 Neural Machine Translation

As an alternate representation of SMT, the objective of Neural Machine Translation

(NMT) is to find a target sentence e that maximizes the conditional probability of e
given a source sentence f. While traditional statistical MT models require a collection

of complex features that are combined together in a log-linear framework, NMT fits a

parameterized model to maximize the conditional probability of a collection of bitexts.

NMT simplifies the modeling paradigm of machine translation by casting the entire

problem into a sequence-to-sequence model that does not require any feature engineer-

ing. Let f and e be the source and target sentences. NMT directly addresses the condi-

tional probability defined as:

(2.20) P(e | f)=
le∏

i=1
P(e i | e<i,f),

In particular, NMT acts like a language model that can be used to incrementally predict

each word of the translation e. This predictive model is actually implemented through
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the combination of two recurrent neural networks (RNNs), called encoder and decoder

models, and by a feed-forward neural network called an attention model.

2.4.1 Encoder, Decoder and Attention Models

The state of the art models in NMT (Sutskever et al., 2014; Cho et al., 2014b; Bahdanau

et al., 2015) consists of (i) an encoder RNN that reads and encodes the source sentence f
word by word into a sequence of hidden states h; (ii) a decoder RNN that generates word

by word the target sentence e; and (iii) an attention model that at each step provides

the decoder with a context vector computed over the encoder’s hidden state sequence h.

Source and target words are assumed to be represented with one-hot vectors, i.e. unit

vectors with one single component, corresponding to the represented word, set to one

and all the others set to zero.

More formally, the decoder and attention models can be described with the following

equations:

(2.21) P(e i | e<i,f)= g(e i, e i−1, si, ci),

where the output distribution g is computed on the decoder hidden state si

(2.22) si = f (si−1, e i−1, ci),

and the context vector ci is a convex combination over the encoder’s hidden states:

(2.23) ci =
l f∑

j=1
αi, j h j.

The weights to compute the context vector are provided by the attention model:

(2.24) αi, j ∝ t(si,h j)

which is implemented with a simple feed-forward network coupled with a soft-max layer.

Regarding the encoder, the sequence of hidden state vectors h j is a combination of bidi-

rectional hidden state sequences, i.e.:

(2.25) h j =
[−→

h j,
←−
h j

]
j = 1, . . . , l f

where each directional sequence is generated by two distinct RNNs:

−→
h j = −→g ( f j,

−→
h j−1)

←−
h j = ←−g ( f j,

←−
h j+1)(2.26)
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h1 h2 h3

l’ anatomia umana

s1 s2 s3

human anatomy < s >

< s > human anatomy

+
c1

+
c2

+
c3

α2,1 α2,2 α2,3

Figure 2.4: Translation of “l’anatomia umana” from Italian-English using Bahdanau
et al. (2015)’s Encoder-Decoder RNN with an attention mechanism. The output of y2
depends on the previous RNN hidden state s1 and context vector c2 that is computed
from the attention weights α2, j for each input word position j.

It is worth mentioning that the recurrent networks of both the encoder and decoder

start with a word embedding layer, that maps the one-hot vectors into smaller and dense

vectors, which are passed on to one recurrent layer implemented with gated recurrent

units (GRUs) (Cho et al., 2014b) that generate the internal state vectors. The decoder

is enriched with an output layer and a softmax layer that computes a distribution over

the target vocabulary.

Figure 2.4 provides a graphical example with the translation of “l’anatomia umana”

in Italian to “human anatomy” in English using Bahdanau et al. (2015)’s RNN encoder-

decoder-attention model. The first word is generated by initializing the output sequence

with the start symbol <s>, which is mapped to an embedding and further encoded into

a recursive hidden state s1 that depends on c1, a linear combination of the bidirectional

hidden states of the encoder. The English translation’s second word, “anatomy” is gen-

erated from an RNN decoder that depends on the context vector c2 and the previous

decoding hidden state s1. This process is carried out until the end of sentence symbol

<s> is emitted.

2.4.2 Beam Search

The presented NMT architecture can generate a target sentence by simply sampling

the most probable word from the output distribution of the decoder until the delimiter

string is reached. Better translation quality can be reached by replacing this greedy

local strategy with a beam-search method. At each step i, the most promising k transla-

26



2.5. MACHINE TRANSLATION EVALUATION

tions of the previous step i−1 are used as input alternatives. Then, the corresponding

output distributions are computed and the overall top k translations are to be used dur-

ing the next step i+1. This simple beam-search procedure, which introduces some extra

book-keeping to the search procedure, has been shown to significantly reduce search er-

rors even with small values of k, between 10 and 20.

2.4.3 Training

Source and target vocabularies of about 50K words defines a NMT architecture with

hundreds of thousands of parameters. These include weights and biases of all the layers

of its three component networks, the encoder, the decoder and the attention models. All

parameters can be jointly trained on a parallel corpus with maximum likelihood estima-

tion or other criteria. In particular, stochastic gradient descent (SGD) (Goodfellow et al.,

2016) can be applied on random mini-batches of the training data. This from one side

gives faster convergence and, from the other side, permits to perform the needed calcu-

lations with high-parallelism on a graphical processing unit (GPU). SGD for NMT is im-

plemented with the back-propagation through time algorithm (Goodfellow et al., 2016)

which usually requires several training epochs, i.e. iterations over the entire training

set through the mini-batches. Training is stopped when optimal performance is reached

on a cross-validation set.

2.5 Machine Translation Evaluation

Several automatic evaluation metrics exist to assess the quality of machine transla-

tion output, and generally fall into categories such as precision-based string match-

ing metrics (e.g. BLEU (Papineni et al., 2001), NIST (Doddington, 2002), TER (Snover

et al., 2006)) and semantic matching metrics (e.g. METEOR (Banerjee and Lavie, 2005),

MEANT (Lo and Wu, 2011)). We describe BLEU and TER, the metrics used in this

thesis, below.

2.5.1 BLEU

The most widely used translation metric, BLEU (BiLingual Evaluation Understudy)

(Doddington, 2002) is a precision-based metric that uses n-gram based matching to

measure the similarity between MT outputs and one or more reference translations. The

geometric average of modified n-gram precisions pn are computed, using n-grams up to
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length N (typically 4) and positive weights wn attributed to each n-gram level, which

sum to one. For typical evaluations, uniform weights are assumed. A brevity penalty
is introduced to ensure that exceedingly short translations are not favored over longer

translations which is defined as:

(2.27) BP=
{

1 if Lsys > Lref

e(1−Lref)/Lsys if Lsys ≤ Lref,

where Lsys is the candidate translation length and Lref is the reference translation

length. Thus,

(2.28) BLEUN =BP ·exp

(
N∑

n=1
wn log pn

)
.

BLEU scores range between the interval [0,1], based on the n-gram similarity between

the candidate and reference. It should be noted that BLEU scores are relative to the

translation task and thus cannot be compared universally. An enhanced version of

BLEU can benefit from multiple references.

2.5.2 TER

Similar to WER in ASR evaluation, translation edit rate (TER) (Snover et al., 2006)

computes the minimum number of string edit operations required to transform a MT

hypothesis into its reference translation. In addition to the insertion, deletion, and sub-

stitution Levenshtein error types described in Sec. 2.1.1, TER includes a shift operation

that moves a contiguous sequence of words within the MT hypothesis to another po-

sition that aligns better with the reference. The shift operation is used to prevent the

over-penalization of reordering errors. Because edit distance alignments with shift oper-

ations are NP-complete (Shapira and Storer, 2002), a greedy search is required to select

a minimal alignment.

TER is additionally a suitable metric for computer assisted translation evaluation,

as it correlates well with the amount of effort required to post-edit a machine translation

into a human-acceptable output (Federico et al., 2014).

Several variants of TER exist, including Human-targeted TER (HTER), which com-

putes TER between a machine translation output and its human post-edited version,

and Multi-reference TER (mTER), which computes the TER score against the closest

translation among a collection of multiple translation references.
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Figure 2.5: An illustration of the search problem in SLT.

2.6 Incorporating ASR in Spoken Language
Translation

Spoken language translation (SLT) utilizes automatic speech recognition to enable ma-

chine translation systems to translate speech. SLT consists of two layers, as depicted in

Figure 2.5.1 An input signal x in the form of acoustic vectors is received. The ASR layer

combines the features extracted from waveforms in x into words that compose a source-

language utterance f. The words in f are translated and reordered in the MT layer into

a sequence of translated words e.

This process is broken down as a pipeline in Figure 2.6,2 which begins with the

recognition of source words in an acoustic input signal and ends with translation. The

recognized words are segmented and processed to include missing punctuation prior to

decoding in the MT layer. Ideally, if an oracle ASR system was available, the speech

recognition process would always produce a perfect transcription of an acoustic signal.

Unfortunately, ASR is riddled with ambiguities. As opposed to translating the single

most likely transcription, providing MT with multiple speech recognition hypotheses is

may help overcome noise in the ASR output.

Formally, we define the SLT process that combines ASR and MT with the Bayes’

1Figure 2.5 is adapted from Casacuberta et al. (2008).
2Figure 2.6 is adapted from Stuker et al. (2012).
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Figure 2.6: The basic speech translation pipeline, combining ASR with SMT.

decision rule as proposed by Ney (1999):

e∗ = argmax
e

p(e | x)(2.29)

= argmax
e

∑
f∈F (x)

p(e,f | x)

≈ argmax
e

∑
f∈F (x)

p(e | f)p(x | f)p(f).

Since ASR transcripts are notoriously ambiguous and are a by-product of the SLT

task, the Bayes’ decision rule reduces the importance of a single speech hypothesis by

marginalizing over all source transcriptions f. In practice, it is intractable to explore all

transcription hypotheses F (x) because the number of hypotheses are too large and a

word graph is not easy to manage during search.

There are several considerations that must be made when combining ASR and down-

stream MT to form end-to-end spoken language translation. As ASR hypotheses are pro-

duced, the outputs must be preprocessed to fit the orthographic form expected by the

MT system. As parts of the preprocessing step:

• Sentence segmentation converts ASR utterances into sentence-like units that bet-
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ter fit the syntactic structure modeled during MT training (Stolcke and Shriberg,

1996; Lavie et al., 1997; Shriberg et al., 2000; Matusov et al., 2006b; Rao et al.,

2007).

• Streaming segmentation is an alternative to sentence segmentation that attempts

to segment utterances into minimal units that may be translated adequately while

simultaneously minimizing the latency of the translation system (Fügen et al.,

2007; Sridhar et al., 2013; Oda et al., 2014).

• Disfluency removal deletes filler words, speech noise, and normalizes restarts. It

is often performed alongside sentence segmentation (Stolcke et al., 1998; Heeman

and Allen, 1999; Liu et al., 2006).

• Punctuation insertion is used to ensure the input string matches the training

conditions of the MT system (Beeferman et al., 1998; Huang and Zweig, 2002).

PBMT translation tables contain statistics that score the translations of punctu-

ated source segments into target segments; the reordering model implicitly uses

punctuation to help decide how phrases are organized in the translation. NMT at-

tention mechanisms use source token slots containing punctuation to guide fluent

output generation.

• Word recasing (Kim and Woodland, 2004; Chelba and Acero, 2006). (e.g. “i”⇒“I”)

improves the discriminative power of the MT system; for example, it allows the

MT system to implicitly adjust the translation of named entities from their com-

mon noun counterparts (e.g. Apple (corporation) versus apple (fruit)).

• Orthographic normalization ensures that other lexical forms such as numbers are

represented as in-vocabulary items. This includes cases where ASR lexicon entries

do not match the MT vocabulary (Adda et al., 1997; Sproat et al., 1999, 2001).

• Word tokenization converts single words like don’t and it’s into multiple compo-

nents, such as “do n’t” or “don ’t” and “it ’s” or “it is” to separate the syntac-

tic/semantic information and improve word alignment quality. While MT uses

word tokenization to improve modeling accuracy, the tokenized forms are not typ-

ically used in ASR because they are hard to detect as isolated acoustic events.

In addition to text processing, composition techniques of ASR and MT fall into two

research approaches. The first approach addresses the SLT problem as a pipeline which

concatenates an ASR and a SMT system as a sequence of dependent processes. The
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other approach considers SLT as a joint problem of simultaneously recognizing and

translating utterances. We discuss them in greater detail below.

2.6.1 SLT as a Sequential Pipeline

Treating SLT as a sequential pipeline of processes involves simplifying the marginaliza-

tion of all ASR transcripts in the decision rule defined in (2.29) by considering a list of

the top N speech recognition hypotheses from the ASR decoder. This top N can passed

to the machine translation decoder as a list of utterances, a word lattice (Saleem et al.,

2004; Zhang et al., 2005; Dyer et al., 2008; Schroeder et al., 2009), or as a confusion
network (Mangu et al., 2000; Bertoldi and Federico, 2005). While a word lattice rep-

resents a pruned decoding graph from the ASR decoder weighted by its acoustic and

language model scores, a confusion network is a compact lattice where each arc repre-

sents a word label and a posterior probability. A path in the CN must pass through all

nodes in the graph. Both graphs provide information about the ASR search space that

can be utilized during MT decoding. Fig. 2.7 provides simple examples of a word lattice

and a confusion network. In the alignment process, the CN introduces null arcs that

represent gaps. While the CN can be read as input more efficiently than a word lattice,

it may permit paths that generate word sequences that are not originally present in

the ASR lattice (e.g. “they offer for us [-] weed ratifying fantasies”) and may stretch the

input by inserting an increasing number of epsilons as the word lattice becomes more

complex.

Jiang et al. (2011); Ahmed et al. (2012) propose a closer integration by representing

the MT system as a phoneme to word translation system. The phoneme to word mod-

els are constructed by first modeling word to word translation and reordering models

and subsequently applying a grapheme to phoneme transducer to represent the source

words in translation table as phonemes. ASR phoneme confusion networks are passed

to the MT system for decoding.

In each of these approaches the MT decoder processes an input lattice or CN by con-

structing a translation lattice which pre-fetches all translation options from the trans-

lation model whose constituents appear in any of the paths of the lattice. This idea is

rooted in the concept of multi-source translation (Och and Ney, 2001). Beam search is

used to prune unlikely paths through the input graph.

An advantage of this decoupled approach is that the ASR system can be trained

on monolingual data and enjoys standard acoustic- and translation model adaptation

techniques. Additionally, decoupling substitutes the statistical dependence between the
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Figure 2.7: Examples of a word lattice (top) and a confusion network (bottom). Edges are
weighted by ASR model scores in the word lattice, and posterior scores in the confusion
network.

speech signal and SMT with word lattices or confusion networks, reducing the search

space for each decoder. On the other hand, He et al. (2011a) show that automatic speech

recognition evaluation metrics such as WER are not a good metric for ASR in the SLT

scenario through experiments that highlight the mismatch between WER and BLEU.

While a WER score of zero implies a perfectly recognized ASR hypothesis, a nonzero

score does not provide any indication how the misrecognized words affect the context

of the entire utterance. For example, the deletion or substitution of a content word is

scored by WER the same as that of a function word; however, as shown in the examples

from Figure 1.1, isolated function word substitutions by phonetically similar alterna-

tives may not affect the adequacy of the translation (e.g. “could”⇒“can”), in the same

way that the substitution of a content word changes the meaning of the utterance (e.g.

“learning”⇒“loaning”).

2.6.2 Unified Spoken Language Translation

Unified SLT approaches represent the search space over all ASR hypotheses as an in-

termediate step, enabling the marginalization over all possible source text hypotheses f.
For simplicity, the marginalization in (2.29) is typically simplified by replacing this sum-

mation with a argmax operator to find the most likely ASR hypothesis. By representing
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the translation and lexical reordering models as weighted finite state transducers (WF-

STs), Bangalore and Riccardi (2001, 2002) compose the MT system directly with the

WFST represented by ASR, which has the additional benefit of efficient decoding. Zhou

et al. (2007) integrates the works of Bangalore and Riccardi (2002) and Jiang et al.

(2011) by integrating a fully finite-state phrase-based SMT framework that constructs

source word sequence, source segmentation, phrase translation, phrase-to-word trans-

duction, and the target language model machines. SLT decoding is treated as a best

path search through the WFST after composing the WFST network with the ASR sys-

tem. While the WFST approach allows for the efficient coupling of ASR and MT, the

complexity of the subcomponents of the PBMT system requires strong constraints on

the reordering distance allowed during translation, as well as a limitation on the length

of phrases in the phrase table. Thus, a fast-performing decoder will have to sacrifice

accuracy for speed.

He et al. (2011a) test a “truncated log-linear model” which adds the ASR components

as features into a hierarchical phrase-based English-Chinese SMT system. By only opti-

mizing the ASR feature weights in the log-linear model, they demonstrate the efficacy of

unified SLT with BLEU optimization over sequential pipelining with WER evaluation

for ASR.

Zhang et al. (2011) use decision-feedback learning to optimize ASR and SMT models

for SLT. Using the Bayes’ decision rule in (2.29), a discriminant function D(·) is defined,

(2.30) D(e,f;x)= log(p(e | f)p(x | f)p(f)) ,

which scores each source-language speech input x to its recognition hypothesis f and

translation hypothesis e. The optimal translation hypothesis e0 is selected by finding

the hypothesis with a maximal BLEU score against its reference. The optimal speech

recognition hypothesis is selected by

(2.31) f0 = argmax
fi

D(e0,fi;x).

The optimal hypotheses are used to compute a loss function that defines a parameter

updating scheme for source- and target LMs, as well as the translation model.

2.7 Machine translation error modeling approaches

Pérez et al. (2012) compare the performance of tightly coupled and decoupled approaches

to SLT and discover that while integrating the models keep good quality translation hy-
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potheses in the decoding process, re-scoring models have not been able to exploit the

them to improve translation quality over decoupled approaches.

Ananthakrishnan et al. (2013) modify a phrase-based SMT decoder to include penal-

ties for bilingual phrase pairs spanning erroneous and error-free regions of input, and

target language model (LM) likelihoods in the vicinity of source errors. While observing

significant improvements, their approach assumes the presence of a high-performing

ASR error detection process, which is a non-trivial task.

Tsvetkov et al. (2014) model the presence of ASR errors in MT training by repli-

cating translation model entries and damaging the words with acoustically confusable

words through a sequence of WFST operations and report significant improvements

over baseline TED talk translation tasks.

2.8 Chapter Summary

In this chapter we provided an overview of automatic speech recognition and statistical

machine translation for spoken language translation.

We first outlined the process of ASR, from the identification of speech units to the

recognition of words and described its primary components, the acoustic model, the

pronunciation dictionary, and the language model. We introduced Word Error Rate, the

de-facto automatic evaluation metric for ASR.

We subsequently introduced statistical machine translation and defined a genera-

tive model for SMT based on the noisy-channel model. We outlined the original IBM

models for word alignment, which assume that words are individually translated in

a sentence. We then extended the discussion to phrase-based models, which leverage

word alignments from the IBM models to construct a phrase translation table and a

richer reordering model. We then factorized the phrase-based translation model into a

log-linear model composed of a phrase translation table feature, a reordering feature,

and a language modeling feature that can be assigned different weights. We addition-

ally summarized the decoding process in which an input sentence is translated into an

output sentence and outlined techniques to reduce the search space into a tractable

problem via a beam search.

We introduced language modeling as a component of both ASR and MT: during ASR

decoding language models score the fluency of a recognized hypothesis, while during MT

decoding it is used to score the target language hypotheses as they are being generated.

We introduced n-gram language modeling as a technique used in this thesis for SLT
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language modeling and described smoothing techniques to improve its robustness for

modeling low frequency n-grams. Next, we introduced neural machine translation NMT

as an alternative representation of SMT, which composes the translation problem as a

unified encoder-decoder task that begins by encoding a sequence of source words into

a sequence of hidden states, a decoder that generates target words, and an attention

model that uses the context of hidden states representing the input words to guide the

decoding decisions. Finally, we outlined MT evaluation metrics, which are shared by

SLT and outlined techniques to combine ASR and MT to form an SLT system.

In this thesis, we focus primarily on the single-best outputs from the automatic

speech recognizer, primarily since our SLT experiments rely on the ASR outputs of sys-

tems spanning multiple research laboratories.
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LANGUAGE COMPLEXITY OF TEXT VERSUS SPEECH

As we consider spoken language translation, we must consider attributes which

distinguish spoken language from text and how these attributes impact trans-

lation quality. While speech recognition errors are prime contributors of errors

in machine translation, there are other properties of spoken language that make a SMT

system trained on only text insufficient for speech translation.

Specia et al. (2011) outline three categories of discriminative features that are rele-

vant for models trained to perform MT quality estimation: confidence indicators derived

from MT models, complexity indicators that measure the difficulty of translating the

source text, and fluency indicators that measure the grammaticality of a translation.

Likewise, the difficulty of a translation task can be estimated by analyzing source com-

plexity and target language features that indicate the capacity of a statistical system to

generate fluent translations.

In this chapter, we focus on language complexity and how the transition from a

written to a spoken register poses challenges for machine translation. The majority of

psycholinguistics research on language complexity focuses on language acquisition and

generation by native speakers or second language learners, with a primary focus on a

single language. But what makes a linguistic interaction understandable by humans?

Audience members rely most on extralinguistic information, which includes prior world

knowledge and their familiarity with the topics mentioned within a discourse to inter-

pret its meaning. The conveyor of information often uses a variety of linguistic devices,

such as anaphoric mentions and grounding to prime a recipient’s extralinguistic knowl-
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edge. Additionally, the audience must be able to organize the information received from

the discourse into coherent blocks.

Graesser et al. (1994) claim that the audience routinely attempts to construct co-

herent meanings and connections among constituents in a discourse unless the quality

of the discourse is too poor. This coherence assumption forms one the core hypotheses

in the constructivist theory of discourse comprehension. As a result, many complexity

analysis tools attempt to detect coherence and cohesion through syntax, semantic, and

discourse connectives (Graesser et al., 2004; Mitchell et al., 2010; Newbold and Gillam,

2010).

3.1 Spoken versus Written Registers

It is often assumed that people write in the same manner as they speak. However, the

manner in which an interlocutor conveys her message depends on both the medium

and the context. Finegan (2014) highlights four general distinctions observable in most

spoken and written registers.1

1. Oral communication can exploit intonation and voice pitch to convey
information. Written text must rely on word choice, syntax, rhetorical structure,

and punctuation to provide cues to the reader, while oral communication uses

multiple channels simultaneously to convey information. For example, Finegan

highlights prosodic and tonal features in speech that convey irony and sarcasm.

2. Speakers and addressees often have visual contact with one another. In

addition to speech, speakers and addresses may use multimodal features, includ-

ing body language, to convey information. A speaker may gesture to refer to en-

tities located in vicinity of the conversation or use referents such as “this” and

“that”, without introducing the entities in spoken dialogue.

3. Speech and writing differ in the amount of planning that is possible. Most

written registers provide sufficient time for the author to plan and modify her text.

1While these tenants are true in the majority of written and spoken contexts, there are some registers
that overlap. For example, chat scenarios are dialogue-based, where communicators interact more closely
to real-time and thus do not plan their utterances in the same way as other written registers. Prepared
speeches allow the opportunity to revise and redact the form and content of the speech in a similar process
as written articles; although the speaker may deviate slightly during execution as he receives feedback
from his audience.
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Although the same can be said about prepared speeches, the majority of spoken in-

teractions occur spontaneously or with minimal planning. Finegan remarks that

as a result of planning, written registers typically show a richer and more var-

ied vocabulary than spoken registers. In spontaneous speech, the use of richer

vocabulary may include more pause time as the speaker selects the vocabulary in

real-time.

4. Written registers tend to rely less on the context of interaction than spo-
ken registers do. While a speaker can gauge the addressee’s comprehension or

acceptance of her utterance and can use speech acts to achieve a particular goal, a

writer must construct her discourse based on prior assumptions about the knowl-

edge of the reader that cannot be amended through real-time feedback.

Biber (1988) and follow-up work by researchers investigated the variation in cohe-

sion across text and speech corpora. In particular, Biber (1988) used factor analysis

to divide 23 written and spoken registers into several categories, based on their lin-

guistic features. Louwerse et al. (2004) extended the factor analysis approach of Biber

(1988) by performing a multi-dimensional analysis to identify particular linguistic fea-

tures that divide written and spoken genres across several registers. Their results show

variance between speech and writing corpora on a variety of factors, including type

frequency, polysemy, pronoun density, abstract noun usage, type-token ratios for nouns,

and stem overlap. These features divide the written and spoken genres into subdomains

posing unique challenges in comprehension (e.g. prepared speeches versus conversa-

tional speech; news broadcasts versus legal documents). In addition to distinguishing

between speech versus writing, the results of Biber (1988) and Louwerse et al. (2004)

demonstrate that spoken and written sub-genres share a number of linguistic proper-

ties in common, based on the following dimensions.

• Informational versus declarative registers. Informational registers (e.g. spon-

taneous speeches, broadcast news) are characterized by a higher occurrence of

temporal cohesion, imageability, and concreteness, but a low occurrence of causal-

ity, as opposed to declarative registers (e.g. planned speeches, academic writing).

• Factual versus situational registers. Situational registers (e.g. telephone con-

versations, editorials) contain a higher frequency of imageability and a lower fre-

quency of clarification and causal connectives than factual registers (e.g. sponta-

neous speech, academic writing).
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• Topic consistency versus topic variation. Louwerse et al. remark that written

letters and spontaneous speech, for example, often have a similar set of topics

that are used, while face-to-face conversations, public debates, and editorials have

greater topic variation, marked by lower cohesion.

• Elaborative versus constrained registers. Elaborative registers tend to be

more opinion-based (e.g. personal letters, press reviews), while constrained regis-

ters are more concise and factual (e.g. professional letters, press reviews).

• Narrative versus non-narrative registers. Narration of events is more promi-

nent in fiction writing and biographies, as well as face-to-face conversations, as

opposed to press reviews and professional letters, for example.

3.2 Language Complexity in Machine Translation

Given the differences between linguistic features used in various spoken and written

registers, what aspects of language pose difficulties for natural language processing

tasks, such as machine translation? And how would a mismatch in training and testing

conditions affect a machine translation system’s ability to translate?

Given the variance within spoken and written registers, we attempt to focus on com-

plexity issues that are irrespective of a particular text, speaker, or language pair and

focus on issues that are relevant to the machine translation task. We can categorize

these issues into three general areas: the lexicon, syntax, and semantics. When consid-

ering the lexicon, we can observe effects of vocabulary size, morphological variations,

and both lexical and translation ambiguity as key impacts affecting the ability of the

statistical models to cover the words in the language (Carpuat and Wu, 2007). On the

syntax level, sentence length, structure complexity, and structural dependencies affect

the decoding search space. On the semantic level, phenomena such as idiomatic expres-

sions, figures of speech, anaphora, and elliptical expressions define intrinsic limitations

of syntactic models. While we can observe nearly all of these language features on the

monolingual level, many of these issues have a greater impact when transferring lin-

guistic information in the process of translation. Between distant language pairs, the

effects of these linguistic features cause a cumulative increase in the difficulty of MT.

Although discourse-based machine translation takes into account intersentential

factors affecting translation quality (Carpuat, 2009; Foster et al., 2010; Xiao et al., 2011),
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the majority of MT systems treat each sentence independently, ruling out additional

context.

3.3 Corpus Analysis of Language Complexity

Following our exposition in Ruiz and Federico (2014b), we compare two sources of spo-

ken and written language, derived from the de-facto evaluation campaigns in speech

and text translation. From the International Workshop on Spoken Language Transla-

tion (IWSLT), we utilize as spoken language corpora the English TED talk transcripts2

from the IWSLT 2013 evaluation campaign (Cettolo et al., 2013). TED talks fall under

the prepared speech register, thus minimizing the effects of spontaneous speech and

dialogue on a spoken register in our analysis. As a written register, we select the News

Commentary texts from the translation evaluation campaign in the 2009 Workshop on

Machine Translation (Callison-Burch et al., 2009).

Both types of texts cover a variety of topics whose content is produced by several

authors and represent corpora from the de-facto evaluation tasks for text and speech

translation. Although these types of texts correspond to different genres, they are popu-

lar representatives of spoken and written language investigated in MT, while belonging

to similar domains. Both genres consist of speakers or authors with similar communica-

tion goals: namely, the mass distribution of information and ideas delivered by subject

matter experts. At the same time, TED speakers have the additional objective of sell-

ing ideas through persuasive speeches. We focus on the English-German language pair,

which belong to the same language family, but have marked differences in levels of

inflection, morphological variation, verb ordering, and pronoun cases. In practice, the

top performing MT systems use many of the same training and decoding approaches in

these evaluations. But are the WMT and IWSLT translation tasks just different flavors

of the same translation problem? Are the strategies used to translate written language

directly applicable to the genre of spoken language – in particular, prepared speeches?

Our goal is to investigate the qualitative and quantitative differences between the gen-

res of news texts and prepared speech that explain differences in MT system perfor-

mance across translation tasks, as well as the types of errors occurring often in MT

systems trained on text and speech corpora.

In our experiments, we sample approximately two million words from both the En-

glish TED and WMT News Commentary corpora, as well as the German translations

2http://www.ted.com/talks
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Measure TED-EN WMT-EN TED-DE WMT-DE
Word Count 2,000,018 2,000,016 1,890,106 2,046,071
Line Count 103,588 82,256 103,588 82,256
Surface forms 46,001 50,129 86,787 95,922
Stems 34,417 36,904 62,929 66,735
Words/Line 19.31 24.31 18.25 24.87
Stem/Surface 0.748 0.736 0.725 0.696

Table 3.1: Statistics for two million word TED and WMT News Commentary corpora
samples.

of their sentences. In our continued discussion, we refer to WMT News Commentary

as simply “WMT”. Rather than randomly sampling sentences from the corpora, we se-

quentially read the sample to allow us to preserve the underlying discourse. Sentences

containing more than 80 words are excluded. We additionally subdivide the sampled

corpora into blocks of 100,000 words to measure statistics on vocabulary growth rate.

We use TreeTagger (Schmid, 1994) to lemmatize and assign part-of-speech tags us-

ing the Penn Treebank (Marcus et al., 1993) and STTS (Schiller et al., 1995) tagsets for

English and German, respectively. Some simple corpora statistics are provided in Table

3.1.

3.4 Word statistics

3.4.1 Sentence length

Since the unconstrained search space in MT is exponential with respect to the length

of the source sentence, we examine the distribution of sentence lengths between the

TED and WMT News Commentary corpora, as shown in Figure 3.1. On average, TED

consists of lines containing around 19 words, while News Commentary averages five

more words per line. Forty percent of the sentences in TED have between six and 15

words, while the majority of the sentences in News Commentary contain over 20 words.

This suggests that TED is less susceptible to length-dependent decoding issues such as

long distance reordering.

3.4.2 Predictability: Perplexity and new words

Perplexity measures the similarity of n-gram distributions between a training set and a

test set. Source and target language n-gram distributions govern a Phrase-based SMT

42



3.4. WORD STATISTICS

0%

5%

10%

15%

20%

25%

30%

1-5 6-10 11-15 16-20 21-30 31-40 41-50 51-80

Sentence Length

Sentence Length Distribution

TED EN

WMT EN

Figure 3.1: Sentence length statistics for English. TED talk sentences are shorter –
typically between 6 and 30 words, while WMT News Commentary sentences are usually
11 to 40 words long.

(PBMT) system’s capacity to adequately translate a sequence of words with its phrase

table and language model (LM). Likewise, the out-of-vocabulary (OOV) rate estimates

the amount of source words that are impossible to translate with the given training

data. We measure these notions of complexity by constructing English and German

language models and evaluating their predictive power against in-domain data. Using

our 2 million word corpora samples, we incrementally add 100,000 words to each corpus

and evaluate its perplexity and OOV rate against a held-out 100,000 word sample from
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Figure 3.2: Perplexity change as corpus size increases for English and German.
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each training corpus. Using IRSTLM (Federico et al., 2008), we construct trigram LMs,

using improved Kneser-Ney smoothing, no pruning, and a fixed vocabulary size of 10

million words.

According to the results shown in Figure 3.2, TED consistently has lower trigram

perplexity rates (-46% with the full data for English, -28% for German). We observe

no significant differences in OOV between TED and News Commentary. The results

suggest TED is more capable of being modeled than News Commentary with the same

amount of training data and the translation of TED is more regular than the translation

of News Commentary.

3.5 Lexical ambiguity

Two measurements of lexical ambiguity are word polysemy and translation entropy. We

analyze the ambiguity of noun and verb lemmas, which as content words carry the most

important information needed to understand a sentence. We only consider the types

that contain sense information in WordNet (Fellbaum, 1998). We take the top 100 lists

of verbs and nouns from each corpus and measure their ambiguity, as described in the

sections below. We compare the results against measurements on the full set of nouns

or verbs and additionally measure the overlapping lemmas in the corpora.

3.5.1 Polysemy

As an upper-bound measure of word ambiguity, we measure the number of senses each

English word in the corpus can express, as reported by WordNet. While not every sense

may be observed in our corpora, this measure estimates how ambiguous a corpus is

for a statistical system that considers each sense to be equally likely for a given word.

Figure 3.3 provides a comparison between the top 100 verb and noun lemmas in the

two corpora. On a global scale, we do not observe significant differences in the number

Lemma # Senses TED WMT
tell 8 2159 362
learn 6 1102 336
hear 5 875 187
read 11 529 110

Table 3.2: Common polysemic verbs and their occurrence frequencies in TED and WMT
News Commentary.
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Figure 3.4: Distribution of WordNet senses for all English nouns and verbs in TED and
WMT News Commentary, weighted by observation frequency. Frequencies are bucketed
to highlight differences between the corpora.

of senses over the entire set of verbs and nouns in the corpora. By focusing on the

top 100 lists, we observe that while the nouns and verbs shared in common between

TED and WMT explain the majority of the ambiguity with respect to polysemy, the non-

overlapping lemmas demonstrate TED’s higher ambiguity through the use of common

verbs and nouns. By isolating the lemmas that are unique to each corpus’ top 100 list,

we see that TED’s verbs and nouns exhibit 1.5 and 2 more senses respectively than
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those of WMT.

In order to measure the overall effects of polysemy on the corpora, we weight the

noun and verb senses by their corpora frequencies. Figure 3.4 shows how the distribu-

tional frequency of noun and verb senses varies over TED and WMT vary. For verbs, we

observe that TED exhibits fewer tokens with low ambiguity and a significant increase in

tokens with over 11 word senses. The noun senses behave in a similar manner, though

the differences are not as pronounced.

These results demonstrate that TED favors the use of common, expressive verbs.

Examples are shown in Table 3.2. We find that this is the case when combining these

observations with the perplexity measures in Section 3.4.2.

3.5.2 Lexical translation entropy

If the results in Section 3.5.1 suggest that TED talks are more ambiguous through the

use of common verbs and nouns, does this transfer to the problem of MT? To address

this question, we analyze the lexical translation table provided by Moses and MGIZA

through the word alignment process. We again compare TED and WMT both on the top

100 lists and the full sets of noun and verb lemmas. We train a word alignment model

using MGIZA on the lemmatized corpora to build an English-German lexical translation

table. In order to control the effects of alignment noise, we consider the German lexical

Verbs

(Top 100)

Verbs

(All)

Nouns

(Top 100)

Nouns

(All)

TED 3.166 1.870 2.536 1.667

WMT 3.925 2.051 2.639 1.804

TED-intersect 3.385 2.071 2.471 1.902

WMT-intersect 4.013 2.210 2.804 1.974
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Figure 3.5: Average lexical translation entropy (bits) on English noun and verb stems,
computed from the top 95% threshold in the lexical translation table generated by
MGIZA.
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translations of each English lemma that cover the top 95% of the probability mass.

Figure 3.5 compares TED and WMT in terms of lexical entropy.

Translating the top 100 verbs is much less ambiguous in the TED talk translation

task (3.2 bits versus 3.9 bits). Most of the entropy is explained by the set of verbs TED

and WMT share in common. WMT suffers from underspecification of these primarily

common verbs. For example, the verb “bring”, which occurs over 800 times in both cor-

pora, exhibits an entropy of 4.04 bits and 170 translation options in TED, as opposed to

4.39 bits and 210 translation options for WMT. In terms of translation perplexity, the

translation difficulty is as hard as deciding between 16 equally likely translations in

TED, versus 21 in WMT. As a word with 11 senses in WordNet, this implies that fewer

senses are actually being considered during translation in TED. A similar behavior can

be observed for the common nouns. These results indicate that while TED has poten-

tially higher English noun and verb polysemy, the common nouns and verbs are used

more regularly than in WMT.

3.5.3 Pronominal anaphora

Hardmeier and Federico (2010) demonstrate that differences in the pronominal systems

of a source and target language often results in the mistranslation of pronouns. For ex-

ample, German has four personal pronoun cases, while English only has two. In cases

of high ambiguity, it is up to models that depend on local context, such as n-gram LMs

to determine the correct pronoun to use in the translation. If the local features of the

sentence cannot resolve the ambiguity, the output pronoun is up to chance. We high-

light two additional problems outlined by Hardmeier (2012): the difficulty for anaphora

resolution systems to resolve pronouns (e.g. expletive pronouns), and translation diver-

gences, such as when a pronoun is replaced with its referent in the translation.

Using the POS tags assigned by TreeTagger, we identify the English and German

pronouns for TED and WMT and report statistics in Table 3.3. TED contains three

Person Pronouns TED WMT Diff Rel Diff
1st 10 3.85% 0.48% 3.37% 699.2%
2nd 4 1.68% 0.06% 1.63% 2776.5%
3rd 24 4.06% 2.56% 1.50% 58.6%
Total 38 9.59% 3.10% 6.49% 209.5%

Table 3.3: Percent of English pronoun tokens in the 2 million word TED and WMT
samples. Pronouns are grouped by grammatical person.
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Field TED WMT Difference Relative Difference
Idioms/1K 1.541 2.122 -0.581 -27%
Avg. Length 2.896 2.695 0.201 7.46%
Types 494 556 -62 -11%
Singletons 289 271 18 7%

Table 3.4: The average rate of idioms per 1,000 words, idiom length, and the number of
idiom and singleton types in each corpus sample.

times as many pronouns than WMT. While WMT contains few first and second person

anaphoric mentions, TED consists of talks in which the speaker often refers to himself

and to the audience. In particular, TED and WMT share seven pronominal translations

for the English pronoun “you”, based on the context of the sentence. At times, “you” may

be translated as an indefinite pronoun (“man”, “jemand”, “eine”), or can be replaced with

a different grammatical person (“wir”, “sie”). TED contains additional ambiguity which

may be attributed to word alignment errors, resulting in high translation entropy (1.53

bits). Likewise the indefinite and ambiguous pronoun “it” occurs twice as often in TED.

3.5.4 Idiomatic expressions

Low frequency idiomatic expressions pose challenges for MT systems. We crawled a list

of English idioms generated by an online user community3. We manually scanned and

pruned a handful of submitted entries that were likely to suggest more false positives

than actual idiomatic expressions. In total, we collected 3,720 distinct idiomatic expres-

sions. We perform a greedy idiom search on the surface representation of each corpus,

favoring long idioms and ensuring that idioms do not overlap one another. Some statis-

tics are reported in Table 3.4.

TED and WMT share 237 idioms in common, such as “at the end of the day”, “in the

face of”, and “on the table”. These signify expressions that cross genres and are likely

to be easily represented with statistical models. Some TED-specific expressions include

“beeline for”, “bells and whistles”, “up the wall”, and “warm and fuzzy” – expressions

that may be difficult to translate in MT systems trained on news genres. While TED

uses fewer idioms overall, nearly 60% of the idiom types appear only once, compared to

nearly 50% in WMT.

3http://www.usingenglish.com/reference/idioms/
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3.6 Word reordering

One of the most notorious problems in phrase-based statistical machine translation is

word reordering (Birch et al., 2009). Expressing the reordering problem as a task of

searching through a set of word permutations for a given source sentence f, we arrange

each source word f i according to the mean of the target positions āi aligned to it, as

suggested by Bisazza and Federico (2013). Unaligned words are assigned the mean of

their neighboring words’ alignment positions. We then compute a word-after-word dis-

tortion length histogram between adjacent source words in their projection to the target

language (Brown et al., 1990). To eliminate the effects of sentence length, we randomly

sample 100 sentences with replacement for each observable sentence length in each

corpus. A histogram is computed for each sentence length, whose results are averaged

together.

Figure 3.6 compares the reordering behaviors of TED and WMT after stratified

random sampling. Word permutations are computed from the symmetrized word align-

ments on English and German stems, using the grow-diag-final-and heuristic in Moses.

To visualize the results better, we consider the absolute value of the relative distortion

positions. In the figure, Bucket #1 corresponds to discontiguous reordering jumps one

position forward (i.e. e i __ e i+1) or backward (i.e. e i+1 e i), and so on. For example, “we
could communicate” is translated once as “wir kommunizieren können” and yields re-

1 2-3 4-6 >6

TED 11.81% 9.97% 4.64% 2.85%

WMT 11.71% 10.18% 5.98% 5.52%
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Figure 3.6: Discontiguous word reordering percentage by reordering distance for
English-German. Statistics are computed on reordering buckets of ±1, ±[2,3], ±[4,6],
and ±[7,∞).
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ordering jumps of (+1,-1), which are both binned into Bucket #1. For English-German,

monotonic reorderings account for 70.73% and 66.63% for TED and WMT, respectively.

This 4% absolute increase in monotonic reorderings for TED is accounted for by the

reduction in long distance reorderings of four positions or more.

3.7 Machine Translation performance

Thus far, we have identified several linguistic factors that distinguish the TED trans-

lation task from that of WMT News Commentaries. We continue our analysis with a

head-to-head comparison of MT performance. Since we cannot directly compare BLEU

scores from the two official evaluation tasks, we create a small scale baseline evalua-

tion that fixes the corpora sizes. Using the same two million word samples, we train

separate PBMT systems on TED and WMT, and tune two held-out samples of 100,000

words. We average the results of three MERT runs to reduce random effects. Each MT

system is trained with the default training parameters of Moses (Koehn et al., 2007). We

construct separate 4-gram LMs on the German side of the training data with IRSTLM,

using a similar configuration as in Section 3.4.2. To evaluate, we control the effects of

sentence length by focusing on sentences containing between 10 and 20 words (after

tokenization). For each unique sentence length, we sample 200 sentences with replace-

ment from 300,000 word segments of the TED and WMT corpora. We evaluate using the

Translation Edit Rate (TER) metric (Snover et al., 2006). Results are reported in Figure

3.7 for PBMT systems trained with 500K, 1M, and 2M words.

Due to the limited amount of TED data, we cannot measure the effects of additional

training data on translation quality, but we attempt to extrapolate the learning curve

by looking at smaller training sets. While we cannot explicitly say that TED translation

yields higher translation quality than that of WMT, we do observe a growth in the

absolute TER difference from 6.4% to 6.8% with 500K words and 2M words, respectively.

Likewise, TED has fewer phrase table entries (3.5M vs. 3.7M) and LM entries (1.68M

vs. 1.91M 4-grams) than WMT. These results suggest that the characteristics of TED

allow better modeling of the translation task with less training data.

3.8 Summary

We have studied several phenomena that indicate differences between speech and text

that affect machine translation. Both TED and WMT News Commentary are good sand-
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Figure 3.7: Phrase-based MT results for sampled sentences of length 10-20 in TED and
WMT. PBMT systems are trained with 500K, 1M, and 2M words.

boxes for evaluating specific aspects of MT. Our experimental results identify several

distinct linguistic phenomena that distinguish each genre’s usefulness on specific areas

of MT research.

TED talks enjoy performance advantages due to a MT system’s ability to translate

their content reasonably well with a surprisingly small amount of training data. While

TED has lower lexical ambiguity than WMT in terms of translation entropy, it uses

significantly more common and thus more ambiguous expressions. Because of this, it

is a good candidate for evaluating semantically-informed translation models. The key

issue for TED talks is the problem of pronominal anaphora. With over three times as

many pronouns than WMT and twice as many third person mentions, the ability for MT

systems to handle context is crucial. This makes it is an excellent task for investigating

the translation of anaphoric expressions through discourse-aware MT, while at the same

time managing the complexity of the system.4

As WMT consists of longer sentences with more frequent cases of long distance re-

ordering, it is a better task for measuring differences between hierarchical and linear

phrase-based SMT. Additionally, with a lower German-English sentence length ratio,

noun and verb compound detection may be a larger issue in WMT. WMT also suffers

from higher perplexity scores than TED, suggesting that it can be a good benchmark

for evaluating language modeling strategies with large amounts of readily-available

4The translation of pronouns is an active area of research for discourse-based machine translation.
Due to its high ratio of pronouns to tokens, TED talks have consistently been used in the DiscoMT shared
task on pronoun translation (Hardmeier et al., 2015). https://www.idiap.ch/workshop/DiscoMT
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in-domain data. Both TED and WMT are good candidates for research on handling id-

iomatic expressions during translation.

Some linguistic features do not correspond well with the problem of translation dif-

ficulty. As shown with our comparison of WordNet polysemy and lexical translation en-

tropy, the challenge of disambiguating between a high number of noun and verb senses

lessens during the word alignment process. This could be one of the reasons why previ-

ous work on word sense disambiguation in MT has yet to achieve significant improve-

ments in automatic evaluations (Carpuat and Wu, 2007).

It should also be mentioned that while TED appears to be a simpler MT task overall,

we have not addressed the larger problem of TED talk translation: the integration with

automatic speech recognition. The linguistic features of TED make it a perfect candidate

for speech translation, allowing researchers to focus on problems of translating content

that may have been corrupted by speech recognition errors.

3.9 Chapter Summary

We have shown that the TED spoken language corpus and WMT News Commentary

machine translation corpora exhibit differences in several linguistic features that each

warrant dedicated research in machine translation. By sampling two million words from

TED and WMT, we compared the two corpora on a number of linguistic aspects, includ-

ing word statistics, such as sentence length and language model perplexity, lexical am-

biguity, pronominal anaphora, idiomatic expressions, and word reordering. We observe

that while TED consists of shorter sentences with less reordering behavior and stronger

predictability through language model perplexity and lexical translation entropy, it has

increased occurrences of pronouns that may refer to antecedents in the transcript and a

high amount of polysemy through common verbs and nouns. In a small MT experiment,

we evaluated a subset of sentence lengths in TED and WMT with MT systems trained

on a comparable amount of data and show that TED can be modeled more compactly

and accurately.

Finally, we have outlined linguistic features that distinguish the two corpora and

propose suggestions to the MT community to focus their attention on TED or WMT,

depending on their research goals. While both tasks are interesting for MT research,

characteristics of spoken versus written texts provide different challenges to overcome.

In the subsequent chapters, we turn our attention to the translation of TED talks in the

presence of speech recognition errors.
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SPEECH RECOGNITION ERRORS AND SPOKEN

LANGUAGE TRANSLATION QUALITY

In the previous chapter, we studied linguistic phenomena that demonstrate differ-

ences between speech and text. These differences were shown to affect the way

machine translation handles spoken language versus written language registers.

While the differences outlined in the previous chapter are interesting, they leave out a

crucial piece to spoken language translation: automatic speech recognition (ASR).

In spoken language translation, it is crucial that an ASR system produces outputs

that can be adequately translated by a machine translation system. The introduction

of ASR errors is the single greatest point of failure in machine translation, not only

by affecting the translation of individual words, but also the entire context surrounding

each misrecognized word. A phrase-based MT (PBMT) system’s translation model relies

on statistics governing the translation of contiguous sequences of words from one lan-

guage to another. If a single word is misrecognized, not only does the individual word

get translated wrong, but it is also no longer possible to select long phrases surrounding

that word in the translation model during decoding. Additionally, the reordering behav-

ior of the entire sentence can be affected, as the decisions of each reordering move in

the reordering model is dependent on the previous reordering decisions.

In this chapter, we outline a statistical framework for analyzing the impact of spe-

cific ASR error types on translation quality in a speech translation pipeline, using a

representative sample of ASR systems trained for speech recognition on lectures. Our
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approach is based on linear mixed-effects regression models (Searle, 1973), which we use

to take into account the variability of ASR systems and the difficulty of each speech ut-

terance being translated in a specific experimental setting, while holding the particular

SMT system fixed. We additionally take a second look at the Word Error Rate (WER)

metric and its subsequent Levenshtein alignment of the words belonging to the refer-

ence and hypothesis transcripts and demonstrate that the alignment heuristics of the

conventional alignment algorithms in WER can introduce variance that can skew the

results of our analysis. Instead, we propose a modification to the alignment algorithm

that leverages sub-word information to improve the alignment accuracy which enables

greater insight into the error types that impact downstream natural language process-

ing tasks such as machine translation.

We focus again on the translation of TED talks in order to track the impact of speech

recognition errors on spoken language translation quality. After we introduce our sta-

tistical analysis framework, which is based on our reports in Ruiz and Federico (2014a,

2015), we provide a survey of previous findings in error analysis for machine transla-

tion and summarize the research performed in a related field: quality estimation for

ASR and MT.

4.1 Experimental setup

As mentioned earlier, the individual components of a SLT system are trained and evalu-

ated independently against local optimization metrics that fit each statistical model to

its local task, but they do not generalize to overall SLT quality. Our goal is to analyze

the impact of ASR errors on machine translation quality.

Word Error Rate (WER) (2.2) is the de-facto evaluation metric for ASR, which cat-

egorizes ASR errors as insertions, substitutions, or deletions corresponding to the Lev-

enshtein distance alignments between a hypothesis and its reference. Using WER as a

metric for ASR quality, how do errors in recognizing speech utterances affect the accu-

racy of a machine translation system that assumes that each source sentence is clean

and well-formed?

We perform our experiments on an intersection of the ASR and MT results of the

IWSLT 2013 evaluation campaign (Cettolo et al., 2013), which focused on the transla-

tion of TED talks. We collect each submitter’s English ASR hypotheses on the tst2012

test set and take the subset of the ASR hypotheses that correspond to the reference

set for the English-French MT track. A subset of the MT outputs of each system in the
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MT track was manually post-edited by professionals. These post-editions served as mul-

tiple human references for automatic evaluation. Using these post-edited translations,

we construct 3-way data consisting of eight English ASR hypotheses for 580 utterances,

a single unpunctuated reference transcript from the ASR track, and the human post-

edited translations from the English-French MT track.

We will use Translation Edit Rate (TER) (Snover et al., 2006) as a sentence-level

MT quality metric, as it models the original post-editing scenario of the evaluation cam-

paign by estimating the amount of effort required to correct machine translation output.

In order to analyze the impact of ASR errors on MT quality, we construct experiments

to address the following questions:

• Does ASR’s WER correlate with SMT’s automatic quality metrics (e.g. TER)?

• Do higher WER scores cause a degradation in MT quality with respect to transla-

tions on perfectly recognized utterances (∆TER)?

• Which types of ASR errors have the strongest impact on translation quality?

In Section 4.1.1, we discuss the preprocessing steps for each ASR hypothesis and in

Section 4.1.2, we discuss how machine translation outputs are generated for each ASR

hypothesis.

4.1.1 ASR data processing

IWSLT’s ASR submissions are in lowercase, lack punctuation, and do not have embed-

ded segmentation. We use the segmentation file provided in the SLT track to induce

segmentation. After segmentation, we use the documentation provided in the IWSLT

evaluation campaign to find and match each source transcript and ASR hypothesis with

the tst2012 set from the MT track.

In the past, ASR evaluations such as DARPA Hub-4 (Pallett et al., 1998) and subse-

quent ASR evaluations such as NIST’s Rich Transcription tasks (Garofolo et al., 2002)

used an evolving normalization script to prevent penalization for minor orthographic

variations such as multiple spellings (e.g. British vs. American English), compound

words (e.g. “storyline” vs. “story line”), and contractions (e.g. “it’s” vs. “it is”). Assuming

that a phrase-based SMT system in the SLT pipeline is trained on ASR reference tran-

scripts, orthographic variances in ASR outputs can result in out-of-vocabulary words or

under-represented source language n-grams in the translation model, further degrading
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Figure 4.1: Boxplots describing the distribution of ASR errors (WER) and their impact
on translation errors (TER) by ASR system and utterance. An extended analysis is pro-
vided in Appendix A.

machine translation quality. Although both the ASR hypotheses and the reference tran-

scripts were normalized in prior evaluations, our experiments require the ASR refer-

ence to remain unmodified in order to properly evaluate the translation of ASR outputs

against the translation of the original TED transcripts. Instead, we wrote a supervised

word compounding script that splits or compounds words, depending on the word form

in the reference transcript. Afterward we applied a bare-bones version of the normaliza-

tion file provided by IWSLT which only maps British English to American English, since

we observed anomalies including inconsistent mappings in the filters used for previous

evaluations and as a second pass used a rule-based text normalization tool to correct

other British English words. For extended details on the text normalization approach,

see Appendix A.2.

We observed a ±0.3% absolute difference between our WER measurements after nor-

malization and the scores reported in the official IWSLT evaluation task (Cettolo et al.,

2013). The rankings of each system remained consistent. In Table 4.1 we report the per-

formance of each ASR system, before and after orthographic normalization. Note that

5% of the errors for each system are attributed to normalization issues of compounding

or word form (e.g. British English instead of American English). The majority of the

errors are related to word compounding. The left-hand side of Fig. 4.1 shows a system-

by-system comparison of ASR error distributions. Only a couple of ASR systems have

significantly different error distributions from one another.
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ASR WER % ↓ MT TER % ↓
ASR System Norm All S D I Post-edit REF

fbk
none 21.4 13.3 2.9 5.2 33.70 54.68
+COMP 16.8 10.8 3.0 3.0 32.84 54.10
+NORM 16.5 10.5 3.1 2.9 32.71 54.09

kit
none 15.3 9.2 1.6 4.5 29.86 52.07
COMP 10.4 6.6 1.7 2.1 28.83 51.40
+NORM 10.1 6.3 1.7 2.1 28.73 51.40

mitll
none 16.4 9.6 2.0 4.8 30.13 52.17
COMP 11.6 7.0 2.1 2.5 29.36 51.53
+NORM 11.4 6.8 2.2 2.4 29.32 51.58

naist
none 15.7 9.1 2.2 4.4 29.86 51.88
COMP 10.9 6.5 2.3 2.0 28.94 51.31
+NORM 10.6 6.3 2.3 2.0 28.82 51.28

nict
none 14.5 8.7 1.4 4.4 28.92 51.43
COMP 9.5 6.0 1.5 2.0 27.94 50.75
+NORM 9.2 5.8 1.5 1.9 27.84 50.77

prke
none 21.3 13.2 2.8 5.3 33.79 54.83
COMP 16.9 10.8 2.9 3.1 33.09 54.42
+NORM 16.6 10.6 2.9 3.1 33.01 54.42

rwth
none 16.5 10.1 1.7 4.7 30.93 52.66
COMP 11.9 7.7 1.8 2.4 29.93 52.08
+NORM 11.7 7.5 1.8 2.4 29.84 52.06

uedin
none 17.2 10.2 2.1 4.9 30.84 52.66
COMP 12.6 7.7 2.3 2.7 29.99 52.04
+NORM 12.3 7.4 2.2 2.6 29.94 52.05

gold none 0.0 0.0 0.0 0.0 21.27 46.46

Table 4.1: ASR outputs used as English-French MT evaluation input data on the hu-
man evaluation task of IWSLT 2013. ASR outputs are evaluated with no additional
normalization, oracle word compounding (COMP), or compounding with word form nor-
malization (NORM). Translated ASR outputs are tokenized and evaluated against the
reference translation (Auto) and a combination of the human post-edited sentences from
the MT task (Post-edit).

4.1.2 MT data processing

Since we are evaluating the impact of ASR errors on translation quality, we use a fixed

SMT system trained on TED talk transcripts from the ASR track. We use FBK’s pri-

mary phrase-based SMT system used in the English-French MT track (Bertoldi et al.,

2013b). The normalized ASR hypotheses are post-processed by inserting punctuation

and applying recasing. We insert the punctuation as closely as possible to the position
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dictated in the reference in order to control the impact of punctuation on translation

output. This is done by computing the Levenshtein alignments between the unpunctu-

ated TED transcripts and each ASR hypothesis, using SCLITE1. We train and apply a

recaser model using the standard Moses tools (Koehn et al., 2007) with IWSLT 2013’s

TED training data to all of the newly-punctuated ASR outputs.

After introducing punctuation and recasing the ASR output, we translate each ASR

output and evaluate the results using TER over the seven human post-edited trans-

lations. Translation results are contrasted with FBK’s primary MT submission on the

bottom (gold) of the right-hand side of Table 4.1. We observe over a 6% absolute increase

in TER for each of the translations of ASR hypotheses against the post-edited transla-

tion references. Most of the ASR transcripts’ translations yield a TER score around

30% against the post-edited references. Turchi et al. (2013) empirically determine that

translations with a TER score above 40% against a set of post-edited references require

the translator to re-translate the source sentence from scratch, while lower scores im-

ply that it is productive for the translator to post-edit the MT output. Likewise, our

reported TER scores suggest that the translations of the ASR hypotheses are of good

enough quality to be used in a post-editing scenario. The right-hand side of Fig. 4.1

shows a system-by-system comparison of SLT error distributions, measured in TER. In

particular, we observe less variance among ASR systems as their hypotheses are trans-

lated by the SMT system. Futher details on data preparation and outlier removal, as

well as measurements using BLEU and METEOR, are found in Appendices A.2 and

A.3.

4.2 Phonetically-Oriented Word Alignment

Before we begin our study of the impact of ASR errors on SLT quality, we perform

an analysis on the ASR errors themselves. Let r = r1, r2, ..., rm and h = h1,h2, ...,hn be

the reference and hypothesis strings for an ASR example. The Levenshtein alignment a
between r and h is a= a1,a2, ...,al , where max(n,m)≤ l ≤ n+m. We define a substitution
error span, SS, as a maximal contiguous sequence of two or more alignment errors

1http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
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Figure 4.2: Error alignment differences between the reference (top) and hypothesis (bot-
tom) for WER and POWER. Substitution, Deletion, and Insertion errors are annotated,
as well as Substitution Spans (SS) with the ratio of hypothesis to reference words for
POWER. POWER aligns homophonic errors such as anatomy → and that to me, while
WER rate only aligns single words (e.g. anatomy→me).

containing at least one substitution error and any other error type. In other words,

SS := ai: j | 1≤ i < j ≤ al(4.1)

and ∃x ∈ (ai,a j) | x = “Substitution”

and ∃y ∈ (ai,a j) | y ∈ {“Insertion”,“Deletion”}

and ∀z ∈ (ai,a j), z ̸= “Correct”

and ai−1 = “Correct” if i > 1

and a j+1 = “Correct” if j < l.

If we analyze the SCLITE implementation of Levenshtein alignments, we observe that

the quality of the alignments is highly dependent on the alignment heuristic used for

substitution error spans.

As shown by several alignment examples on the left-hand side of Fig. 4.2, subopti-

mal word alignments may be produced in adjacent error spans that consist of one or

more substitution errors. Although there may be multiple alignment paths that yield

the same edit distance score, the SCLITE implementation of the Levenshtein alignment

algorithm aligns a substitution error span containing k substitution errors by assigning

the k right-most words the substitution error labels. The remaining alignment positions

on the left-hand side are annotated as deletions or insertions.2 For example, in the first

utterance in Fig. 4.2, the hypothesis word “obsessive” within alignment span a12:14 could
2While we highlight the alignment heuristics for error spans in SCLITE, many Levenshtein alignment
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have been aligned to the adverb “obsessively” as a substitution error given that it is the

root form of the reference word. Instead, the alignment heuristic aligned a determiner

to an adverb, instead of the correct noun ⇒ adverb alignment. For the purposes of com-

puting an error rate score, this has no bearing; however, the misalignments themselves

lead one to believe that a noun was improperly inserted during ASR decoding.

We also observe ambiguous alignments such as in the second example of Fig. 4.2,

where “me” aligns with “anatomy”. It is not clear how to best align “anatomy” to a sin-

gle word in the error span. However, if we read out the utterance aloud, we observe

that “anatomy” approximately covers the entire phonetic sequence of “and that to me”.

Fig. 4.3 computationally demonstrates this behavior via a Levenshtein alignment on

the phrases’ phonemes. The frequent observation of this behavior leads us to consider a

third alignment error type that is distinct from the error types used in WER: the pho-
netic substitution span. Phonetic substitution spans are a special case of the alignment

spans defined in (4.2) which consist of one-to-many or many-to-many error alignments

that are best described as phonetic misrecognitions of the audio. They yield three addi-

tional substitution error cases, with examples from the right-hand side of Fig. 4.2:

• Hypothesis span ⇒ Reference word (e.g. “and that to me” ⇒ anatomy)

• Hypothesis word ⇒ Reference span (e.g. brahmin ⇒ “Brown in”)

• Hypothesis span ⇒ Reference span (e.g. “Obama panic” ⇒ “of anatomic”)

In the sections below we outline our Phonetically-Oriented Word Error Rate (POWER)

alignment algorithm that adapts WER to allow for phonetic substitution error spans.

We not only use POWER to align hypothesis words with respect to the reference, but

we can also use it to adjudicate mismatches between the ASR hypothesis and reference.

POWER uses phonetic transcriptions generated by the Festival TTS system trained

with the CMU English pronunciation dictionary (Black and Taylor, 1997) to convert

words into phonemes.

4.2.1 Alignment algorithm

Our phonetically-oriented word alignment algorithm is divided into two stages. First,

we capture error spans whose error labels are likely to be ambiguous. The reference

implementations suffer similar deficiencies. Most authors do not treat this problem because they are only
concerned about the quantity of errors and the aggregation of their score as opposed to the exact positions
of the errors.
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Figure 4.3: Phonetically-oriented alignment of anatomy to and that to me, with word
(∥) and syllable (#) boundaries.

and hypothesis words in each span are transcribed into phonemes by a text-to-speech

(TTS) analyzer. Each phoneme is treated as an independent token and word and sylla-

ble boundary tokens are introduced. The reference and hypothesis tokens are aligned

using a variant of the Levenshtein alignment algorithm that introduces the following

constraints:

1. Boundary tokens may not be substituted.

2. Vowel phonemes can only be aligned to other vowels (including r-colored vowels,

but not semivowels).

3. Consonant phonemes can only be aligned to other consonants (including semivow-

els).

The boundary tokens provide an implicit distance constraint, penalizing adjacent phonemes

within the same syllable when they are aligned far from one another.

In the second stage, we recombine the phonetic alignments into word alignments

by performing a left-to-right scan of the alignment sequence. Substitution alignments

are identified by considering the words covered by the aligned phonemes contained be-

tween two “correct”-aligned word boundary markers in the reference and hypothesis.

Single word substitutions (S) are distinguished from phonetic substitution spans (SS)

containing multiple words in the reference or the hypothesis. If a sequence of reference

phonemes are terminated with a word boundary, but no hypothesis words have been

scanned, the reference word is marked as a deletion (D). Likewise, a hypothesis word

with no aligned reference word is marked as an insertion (I).

Returning to Fig. 4.2, the Levenshtein aligner used in WER could have alterna-

tively aligned the reference word anatomy to any one of the hypothesis words currently

marked as insertion errors. However, anatomy is pronounced similarly to the entire se-

quence of the four hypothesis words in the error span. The phonetically-oriented align-

ment in Fig. 4.3 captures this phenomenon by aligning the smallest word boundary

closure across the entire span of reference and hypothesis words, thereby identifying
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Figure 4.4: POWER alignments for all at→or. The Levenshtein backtrack matrix shows
three alignments with the same optimal edit distance scores (16). The third and correct
alignment (highlighted in the backtrack matrix) compactly aligns all→or with a span
size of 5 symbols, while the others greedily align or to multiple reference words, with
span sizes of 9 symbols.

anatomy⇒and that to me as a phonetic substitution span and yielding the alignment

on the right-hand side of Fig. 4.2. Likewise, while WER may have considered slightly

better word alignments like Brown⇒brahmin and Stanford⇒or, it is incapable of cap-

turing relationships such as Stanford⇒stamp or.

4.2.2 Word alignment heuristics

While the phonetically-oriented alignments provide better phonetically-grounded align-

ments, its underlying Levenshtein alignment algorithm must also decide between mul-

tiple equally-weighted best paths.

In particular, for alignments with large differences in the number of reference and

hypothesis syllables, our implementation tends to align the first and last word bound-

aries close to the beginning and end of the alignment sequence. For example, Fig. 4.4

shows three candidate alignments for the error span all at⇒or that minimize the edit

distance. Two out of three alignments attempt to align or to the entire two-syllable

reference. However, only all should align to or as a substitution, and at should be con-

sidered a deletion error. We resolve ambiguities like these by finding the alignment that
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minimizes the number of alignment gaps between the first and last word boundaries in

both the reference and hypothesis. In practice, we do this by encoding the best paths

in the Levenshtein backtrack matrix into an edge-weighted graph and use Dijkstra’s

algorithm to find the best path.

Since there still remains some noise in the phonetic alignments, we introduce a

couple of heuristics to prevent the aligner from overzealously marking single-syllable

words as members of a phonetic substitution span, when in reality they do not have

a phonetic correspondence on the other side. When annotating a phonetic substitution

span, we keep a record of the number of reference and hypothesis syllables. If there is

an extra syllable in the reference or hypothesis, we check if it is the first syllable of a

new word. If so, we mark this word as a deletion or insertion error, respectively.

4.2.3 Scoring

Our Phonetically-Oriented Word Error Rate (POWER) score is defined nearly identi-

cally to WER as:

POWER= S+D+ I +SS
L

,(4.2)

SS = ∑
span

max(
∣∣spanre f

∣∣ ,
∣∣spanhyp

∣∣),
where L is the length of the reference and S, D, and I are the number of word-level

substitution, deletion, and insertion labels, respectively. SS is the count of phonetic

substitution spans, weighted by the maximum number of words in each span. These

one-to-many or many-to-many word alignments indicate phonetic confusability as the

cause of the error. In principle, WER and POWER provide scores that are virtually

the same as one another. Although the phonetically-oriented alignment process may

occasionally introduce insertion or deletion errors based on violations in the phonetic

alignment rules described above, the resulting score is statistically similar to those of

WER.

4.2.4 Error Analysis Comparison

Using the experimental setup from Section 4.1, we compare POWER to WER. by look-

ing at the basic ASR error types (S, D, I, and SS), which implicitly contain no linguistic

information. Fig. 4.5 shows the contribution of the basic Levenshtein error types toward

the error rate score for each ASR system. According to WER, substitutions intuitively

63



CHAPTER 4. SPEECH RECOGNITION ERRORS AND SPOKEN LANGUAGE
TRANSLATION QUALITY

0%
2%
4%
6%
8%

10%
12%
14%
16%

fb
k

ki
t

m
itl

l
na

is
t

ni
ct

pr
ke

rw
th

ue
di

n

WER S SS D I

0%
2%
4%
6%
8%

10%
12%
14%
16%

fb
k

ki
t

m
itl

l
na

is
t

ni
ct

pr
ke

rw
th

ue
di

n

POWER S SS D I

Figure 4.5: Distribution of error types for WER (left) and POWER (right) for each IWSLT
2013 ASR evaluation participant.

make up the majority of error types (62.3%±0.7%). Across all ASR systems, WER sug-

gests that the number of deletions are slightly lower than the number of insertion errors

(17.9%±0.7% deletions and 19.8%±0.5% insertions).

However, POWER suggests that roughly half of these alleged insertion errors (10.0%±
0.3%) are instances where a larger reference word is being hypothesized as a homo-

phonic sequence of shorter words. Likewise, a portion of “deletion” errors are instances

where multiple reference words were hypothesized as a longer homophonic word (4.1%±
0.5%). Since these phonetic substitution span errors are typically cases of one-to-many

alignments, the number of reported word-level substitution errors are reduced. As such,

POWER claims that 30.0%(±0.7%) of the errors are substitution spans involving ho-

mophony, leaving 13.8%(±0.8%) of the remaining errors as deletions and only 9.8%(±0.3%)

as insertions whose pronunciations do not align to any words – both measures are sub-

stantially lower than those reported by WER. The remaining 46.4%(±0.5%) are word-

level substitutions.

We can corroborate this by observing in Table 4.2 that, across all ASR systems,

70.4%(±2.5%) of the phonetic substitution spans involve multiple hypothesis words,

while only 34.8%(±2.8%) contain multiple reference words. The first figure may be ex-

plained by the presence of out-of-vocabulary words in the ASR reference, as well as

the effects of domain variation on the evaluation data. The alignment of multiple refer-

ence words to a single hypothesis word may be indicative of mispronunciations and/or
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underarticulation by the speaker.

Table 4.3 provides confusion pair examples from FBK’s ASR system output that

demonstrate the utility of POWER. Word confusion pairs such as a⇒today are likely er-

rors induced by an ASR language model that biases the acoustic model to artificially

recognize non-existant phonemes. Likewise, POWER is able to provide insight that

crude⇒crudely is not a morphological error, but rather another language model-induced

bias that considers leaf an unlikely successor to crude. Other confusion pairs include

word normalizations, affix errors, and phonetic confusions.

4.3 Do ASR errors correlate with SMT errors?

Having addressed the word error alignment issue in Section 4.2, we continue our as-

sessment of ASR errors and their impact on translation quality. Using the WER and

POWER metrics, how do ASR errors correlate with SMT errors? We split this question

into two related inquiries. First, is there any relation between an ASR system’s diffi-

culty to recognize a speech utterance and the difficulty of translating the utterance,

assuming it was recognized perfectly? The answer may seem obvious, since an ASR

model could be trained poorly and generate hypotheses that have no bearing with their

references. However, as described earlier, each of the ASR systems used in the IWSLT

evaluation are capable of producing translations that can be efficiently post-edited by a

professional translator. Second, do ASR errors correspond directly with translation qual-

ity? In other words, does the increase or decrease in WER correlate with the number of

translation errors in the speech translation pipeline? We address these questions by

SysID SS.ref SS.hyp SS: ref>1 SS: hyp>1 SS: ref>1 & hyp>1
fbk 0.036 0.040 0.450 0.615 0.065
kit 0.017 0.025 0.254 0.800 0.054
mitll 0.019 0.026 0.321 0.714 0.036
naist 0.019 0.026 0.336 0.715 0.051
nict 0.018 0.025 0.305 0.763 0.069
prke 0.039 0.042 0.488 0.585 0.073
rwth 0.023 0.032 0.310 0.737 0.047
uedin 0.025 0.032 0.317 0.700 0.017

Table 4.2: Left: Percentage of reference/hypothesis words appearing in a phonetic sub-
stitution span. Right: Percentage of phonetic substitution spans containing multiple
reference words, multiple hypothesis words, or both.
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WER POWER
Reference Hypothesis Reference Hypothesis
a today a day today
ascending and ascending and sending
anesthetize and anesthetize and decent size
butchering the butchering maturing
centigrade cents centigrade cents a great
crude crudely crude leaf crudely
cyclones soy cyclones soy clones
face-to-face face face-to-face face to face
of obama of anatomic obama panic

Table 4.3: Confusion pair examples using WER and POWER.

analyzing the correlation between the independent variable (WER) and the dependent

variables (TER on translations of ASR references and ASR hypotheses, respectively) in

Section 4.3.1, followed by constructing linear regression models to test for statistical

significance in Section 4.3.2.

4.3.1 Correlation

We first measure the correlation between the WER scores of each ASR system and the

TER acquired by translating each corresponding ASR reference. The Pearson correla-

tion coefficient, r, measures the linear dependence between two variables. For our ex-

periments, we control the effects of sentence length by binning the ASR hypotheses

from each system into buckets corresponding to the quartiles of the reference length.

Since much of the skewness of ASR errors shown in Fig. 4.1 is related to ASR reference

length, we take correlation measurements on the 2nd and 3rd length quartiles, corre-

sponding to reference lengths of 9-15 and 16-22. Using all ASR systems, we observe r
values of 0.039 and 0.091, on the respective reference lengths, implying no correlation.

Using only the observations of NICT’s primary system (which had the lowest WER in

the ASR evaluation track), we observe r values of -0.031 and 0.049, respectively.

We repeat the experiment, this time comparing ASR errors to their corresponding

translation errors. Using all ASR systems, we observe r values of 0.672 and 0.632, res-

pectively, implying strong correlation. We observe a similar trend when considering

NICT’s system alone. Again, these results are not surprising, since a machine transla-

tion system depends on the speech recognition output in order to generate a translation.

It is important to note that while there is naturally a strong correlation between ASR
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outputs and the quality of their translations, translation quality is not solely dependent

on ASR quality. The missing 30% includes phenomena related to the problem of transfer-

ring content from the source language (English) to the target language (French), which

take into consideration the lexical, syntactic, and semantic properties of each language

(Vilar et al., 2006; He et al., 2011b; Ruiz and Federico, 2014b).

4.3.2 Linear Regression

To verify whether the correlation results in the previous section imply dependence, we

fit univariate linear regression models using a single ASR system to evaluate the con-

tribution of WER to the corresponding translation’s TER score. We focus our attention

on the observations of NICT’s primary system. The response variable is the TER score

computed against seven post-edited translation references. TER is computed either on

the ASR references or on the translations of NICT’s ASR hypotheses. Again, WER is

computed on the uncased, unpunctuated output of the ASR system. Translations are

performed using FBK’s primary MT submission.

Our model treats the TER of the translated ASR hypotheses as the response variable.

WER significantly predicts TER scores, β= 0.696, t(578)= 18.42, p < 10−4 and explains a

significant proportion of variance in TER scores (r2 = 0.369,F(1,225) = 339.4, p < 10−4).

However, much of the variance remains unexplained by the model. Without accounting

for the reference transcript’s utterance length, WER cannot intrinsically anticipate the

difficulty of translating the utterance, since the length of the input affects the search

space and the hypothesis pruning decisions made by the decoder. As evidence, we sam-

ple two utterances recognized by NICT’s ASR system, both with WER scores of 20%

but having a different number of words in the reference (5 and 25, respectively). The

TER scores of their translations are 46.7% and 28.4%, respectively. WER also assumes

that each error contributes independently towards the error metric and thus does not

measure interactions between multiple errors in an utterance. In phrase-based SMT,

the position and density of ASR errors can hinder the translation model’s ability to se-

lect proper target phrases, as well as affect the reordering model’s ability to properly

arrange the phrases in the target language.
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4.4 WER scores and translation quality

Our previous experiments in Section 4.3.1 measured the relationship between WER of

ASR hypotheses and TER. While WER is a significant predictor of TER in our simple

regression model, it fails to capture the variance in TER associated with the innate

difficulty of translating the utterance. WER cannot make predictions about translation

difficulty for perfectly recognized utterances; instead it can be used to estimate the

relative increase of SLT errors caused by ASR errors. Thus, we minimize the bias of the

intrinsic translation difficulty by measuring the difference between the TER associated

with translating the perfect ASR reference and the TER associated with translating the

ASR hypothesis, labeled as ∆TER:

(4.3) ∆TER=TERASR −TERgold,

where TERgold is the TER score for a perfectly recognized utterance, and TERASR is

the TER score on the translation of the ASR hypothesis. By using ∆TER, we assume

that TERgold is the upper-bound on translation quality with the given SMT system. In

other words, we assume that a SMT system cannot translate transcripts containing

errors better than clean transcripts. We check this assumption in our observation data

and note 64 violations out of a total of 4,640 observations covering the outputs of the

eight ASR systems (1.4% of the time). As a sanity check, we had two native French

speakers evaluate the translation quality of several scenarios where ∆TER < −0.1. In

all cases, the native speakers preferred the MT outputs of translated ASR references

over the translations of ASR hypotheses. These violations are likely due to the greedy

alignment heuristics used by the TER algorithm to accommodate reordering shifts in

the Levenshtein alignment (Snover et al., 2006). Extended details of our outlier removal

process are outlined in Appendix A.3.

We first measure the correlation between WER and ∆TER using Pearson’s r. Fol-

lowing the same approach as Section 4.3.1, we observe strong correlations on the ob-

servations with reference lengths in the middle 50% length quartiles: 0.780 and 0.756

using all ASR systems for utterance lengths of 9-15 and 16-22, respectively, and scores

of 0.786 and 0.778 using only NICT’s ASR system.

We next verify ∆TER’s dependence on WER using linear mixed-effects models, which

have been effectively used on linguistic data (Baayen et al., 2008). Mixed-effects models

allow us to take into consideration random effects caused by an ASR system and the

particular features of each ASR utterance. For a sample of n observations with p fixed
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All ASR NICT+FBK
Fixed effects β Std. Error β Std. Error
(Intercept) 8.72e-03 3.14e-03 ◦ 1.01e-02 3.93e-03 ◦
WER 6.30e-01 8.55e-03 • 6.16e-01 1.46e-02 •
Random effects Variance Std. Dev. Variance Std. Dev.
UttID (Inter) 4.50e-03 0.067 3.89e-03 0.062
SysID (Inter) 0.000 0.000 2.57e-06 0.002
Residual 3.74e-03 0.061 3.99e-03 0.063

Table 4.4: Fixed and random effects for the null model (WER-only), which measures
the effect of WER on ∆TER for English-French SLT. The model is constructed with
observations from all ASR systems in IWSLT 2013’s ASR Track on the left-hand side
and only NICT and FBK’s ASR systems on the right. Fixed effects coefficients (β) and
standard errors are reported. Random intercepts account for variances by utterance
(UttID) and ASR system (SysID). Statistical significance at p < 10−4 is marked with •
and p < 10−2 is marked with ◦.

effects and q grouping variables, the regression equation is of the following form:

(4.4) y=Xβ+Zb+ϵ,

where X is a n× p fixed effects design matrix, Z is a n× q random effects design matrix,

β and b are the p fixed and q random effects coefficient vectors, respectively, and ϵ

is a n× 1 observation error vector. We analyze the relationship between WER as an

independent variable and ∆TER as the response variable. We provide random intercepts

for the utterance (labeled as UttID) and ASR system (labeled as SysID), reflecting the

580 speech utterances transcribed by eight ASR systems. An illustration is provided

in Appendix A.1. In total, the model is trained on 4,640 observations. The models are

fit by maximum likelihood, using the R (R Core Team, 2013) implementation of linear

mixed-effects models in the lme4 library (Bates et al., 2014). Fixed effect coefficients

and random effects variance for the WER-only model are reported in Table 4.4.3

Both WER and the intercept are observed as statistically significant. The coefficients

suggest that if there are no ASR errors, TER will increase by 0.87%. However, for each

percentage point of WER, the TER will further increase by roughly 0.63×0.01= 0.0063

(0.63%). We observe a r2 value of 0.840 for the model, 0.154 of which is attributed to the

fixed effects.

As a random effect, SysID was not significant, as it has a standard deviation near

zero. This behavior is also evident in the boxplots of Fig. 4.1, implying that the differ-
3Note that the WER and TER values in Table 4.1 are listed as percentages, while our regression

models express the values between 0 and 1.
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ences between the emitted WER scores and translation TER scores for each ASR system

are not significantly different from one another. In order to verify that the random inter-

cept associated with the ASR system is indeed insignificant, we repeat the mixed-effects

analysis, using two systems with significantly different WER scores; namely NICT and

FBK. Statistics on the fixed and random effects are also listed in Table 4.4. We again

observe near-zero variance for SysID and do not observe significant differences in the

fixed effects coefficients, implying that the SysID random effect has no impact on the

model.

4.5 ASR Levenshtein error types and translation
quality

Now that we have verified that an increase in WER significantly increases TER, are

there significant differences between the effects of individual ASR error types on trans-

lation quality? We hypothesize that not all ASR errors are treated equally when ASR

hypotheses are used in the speech translation pipeline. To demonstrate this, we con-

struct new mixed-effects models which factorize the WER and POWER metrics into the

components used to compute its score. WER is factorized into three independent vari-

ables, corresponding to the number of occurrences of each error type, normalized by the

reference length, according to (2.2), while POWER contains the extra phonetic substitu-

tion span component. We continue to use the utterance ID and the ASR system ID as

random effects. Our null hypothesis states that all length-normalized ASR error types

(S,D, I, as well as SS for POWER) contribute equally to ∆TER, which is the same as

our WER-only model specification in Section 4.4.

4.5.1 Basic error types

We begin by looking at the basic ASR error types (S, D, I, and SS), which implicitly

contain no linguistic information. We use the counts for S, D, I, and SS errors, nor-

malized by the reference length L as fixed effects and maintain the same random ef-

fects as the WER-only model. To simplify the notation in our models, labeled WERbasic

and POWERbasic, we refer to the length-normalized error types in shorthand form (e.g.

WER.S, WER.SS).

The coefficients of the fixed effects of the fitted models (2) and (3) are shown in Table

4.5. We observe a significant difference between WERbasic and the baseline, rejecting
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WER WERbasic POWERbasic

(1) (2) (3)

WER 0.630∗∗∗

(0.586,0.674)
WER.D 0.564∗∗∗ 0.615∗∗∗

(0.506,0.622) (0.556,0.674)
WER.I 0.707∗∗∗ 0.829∗∗∗

(0.642,0.772) (0.753,0.906)
WER.S 0.624∗∗∗ 0.649∗∗∗

(0.578,0.671) (0.601,0.696)
WER.SS 0.535∗∗∗

(0.487,0.584)
Constant 0.001 0.001 −0.0001

(-0.003,0.004) (-0.002,0.004) (-0.003,0.003)

Observations 4,640 4,640 4,640
Log Likelihood 6,172.170 6,180.631 6,194.288
Akaike Inf. Crit. -12,330.340 -12,343.260 -12,368.580
Bayesian Inf. Crit. -12,285.240 -12,285.280 -12,304.150

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.5: Fixed effects coefficients and 95% confidence intervals for the first three
mixed-effects models, which measure the effect of ASR error types on ∆TER for English-
French SLT. The baseline encapsulates all error types in a single WER measure, while
the subsequent models use WER and POWER-aligned error types.

the null hypothesis that each basic ASR error type contributes equally to translation

quality, in terms of ∆TER (χ2(2) = 16.922, p < 2.12×10−4). We additionally observe a

significant difference between the standard WER-aligned error types (WERbasic) and

the POWER-aligned error types (POWERbasic) that include substitution spans (χ2(1)=
27.314, p = 1.73×10−7), indicating that substitution spans are a significant predictor

of translation quality. As shown in Table 4.5, while the impact of substitution errors

remains in principle the same, the impact of insertions increase sharply, both due to

the higher quality of the error labels and their lower frequency. POWERbasic indicates

that an utterance with a WER (or equivalently, POWER) score of 10% as insertion errors

would expect an increase in TER by 0.1×0.829−0.0001= 8.3%, while 10% in substitution

errors would correspond to a TER increase of 0.1×0.649−0.0001= 6.49%.
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4.5.2 Word classes and morphology

In Section 4.5.1, we verified that individual Levenshtein error types have different ef-

fects on translation quality, suggesting that the breakdown of WER into length- normal-

ized Levenshtein alignment types better models the relationship between ASR errors

and translation quality (in ∆TER). Yet, research literature has shown that particular

linguistic classes of words are problematic, either for ASR or MT. In ASR, researchers

such as ? have identified function words (also known as closed class words) as prob-

lematic for speech recognition. Oftentimes a speaker may alter the pronunciation of

high frequency function words, such as prepositions and articles, by underarticulating

or dropping phonemes. While a human can predict these words with high accuracy, an

ASR system relies on phoneme or triphone recognition as an intermediate step toward

recognizing words. Content words (also known as open class words) are generally sim-

pler to recognize, as they often contain more syllables and cover a larger amount of

speaking time within an utterance. On the other hand, open class words might not be

represented in a speech lexicon, rendering them impossible to be generated by an ASR

system. Aside from the issue of out-of-vocabulary words, SMT systems have the oppo-

site problem. Researchers such as Vilar et al. (2006) demonstrate that missing content

words contribute more toward translation errors than missing function words.

Taking this into account, since we have already observed differences between Lev-

enshtein error types, we now look at differences between how misrecognitions of open

and closed class words affect translation outputs. We use TreeTagger (Schmid, 1994) to

assign part-of-speech (POS) tags on the ASR references using the Penn Treebank (Mar-

cus et al., 1993). Using the Levenshtein alignments between each ASR hypothesis and

its reference, we annotate deletion and substitution errors with their POS tags. We do

not annotate insertion errors, as an insertion error indicates that no reference word is

available to tag. We manually map each POS tag associated with a substitution and

deletion error to its class (open or closed), using the mapping rules outlined in Table A.3

in the Appendix.

We annotate each Levenshtein alignment error type by the word classes of the refer-

ence and hypothesis words, respectively, as follows:

S ⇒ S ◦ {closed,open}× {closed,open}(4.5)

D ⇒ D ◦ {closed,open}× {∅}(4.6)

I ⇒ I ◦ {∅}× {closed,open}(4.7)

SS ⇒ SS ◦ {closed,open,span}× {closed,open,span},(4.8)
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where “span” is short-hand for a phonetic substitution span. For example, the WER.S er-

ror type is factorized into four error types as a cross-product of {closed,open}×{closed,open}.

The new mixed-effects models are labeled in Table A.6 as WERwc and POWERwc. Thus,

the WER reference-hypothesis alignment of anatomy→the corresponds to a S.open_closed
error type under (4.5), and the POWER alignment of anatomy→“and that to me” corre-

sponds to a SS.open_span error under (4.8) in the second example of Table 4.2.

We now extend the mixed-effects models from Section 4.5.1 with fixed effects corre-

sponding to our new annotations and use the same random effects. Statistics on the

fixed effects as well as the 95% confidence intervals of their coefficients are shown

on the right-hand side of Table A.6. Likelihood ratio tests between POWERwc and

POWERbasic indicate that the Levenshtein error types grouped by word class better

measure the impact of ASR errors on translation quality (χ2(10)= 120.58, p = 2.20×10−16).4

Our results confirm that all word class-specific ASR error types are significant at the

p < 10−4 level, with insertions of open class words having the highest detrimental im-

pact on translation scores (95% confidence interval of [0.92,1.15]).

4.6 Discussion

The results of our analysis demonstrate that particular ASR error types more prob-

lematic in spoken language translation than others. For example, Section 4.5.2 demon-

strates that, all other factors held constant, a standard phrase-based machine trans-

lation system is apparently more tolerant of ASR deletion errors on function words

than towards substitution errors on function words. This is most commonly due to cases

where a function word is recognized as another function word from a different lexical

category: for example, a preposition misrecognized as a determiner.

Although the fixed effects coefficients for our mixed-effects models reported in Table

A.6 show the expected increase in TER for each percentage of WER associated with a

particular error type, an error type with a high coefficient but a low frequency may not

be important from an error correction standpoint. Ideally, we wish to measure which

ASR errors are particularly problematic for a given SLT task – in this case, TED talks

in the IWSLT evaluation. Considering the fixed and random effect scores on each utter-

ance, we measure the average weighted contribution of each ASR error type toward the

4Likelihood ratio tests between WERwc and WERbasic also indicate that word class-annotated error
types better describe SLT quality (χ2(5)= 75.033, p = 9.16×10−15).
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All utterances Error present in utterance
ErrorType coef µ∆TER Rank ErrorType coef µ∆TER Rank
WER.S.open_open 0.590 0.0175 1 WER.SS.closed_span 0.713 0.102 1
WER.S.closed_closed 0.757 0.0132 2 WER.SS.span_span 0.687 0.100 2
WER.SS.open_span 0.546 0.0123 3 WER.SS.open_span 0.546 0.085 3
WER.D.closed 0.548 0.0069 4 WER.SS.span_closed 0.553 0.084 4
WER.I.closed 0.723 0.0059 6 WER.I.open 1.036 0.077 5
WER.S.open_closed 0.585 0.0057 6 WER.D.open 0.663 0.071 6
WER.D.open 0.663 0.0048 7 WER.SS.span_open 0.451 0.064 7
WER.I.open 1.036 0.0044 9 WER.I.closed 0.723 0.058 8
WER.S.closed_open 0.802 0.0036 9 WER.S.closed_closed 0.757 0.058 8
WER.SS.span_open 0.451 0.0038 9 WER.S.open_open 0.590 0.056 10
WER.SS.span_closed 0.553 0.0016 12 WER.S.closed_open 0.802 0.051 11
WER.SS.span_span 0.687 0.0015 12 WER.S.open_closed 0.585 0.047 12
WER.SS.closed_span 0.713 0.0011 13 WER.D.closed 0.548 0.044 13

Table 4.6: Ranking of word class-annotated POWER ASR error types by their mean
frequency-weighted contributions toward translation ∆TER (µ∆TER) in the tst2012 eval-
uation sample. Error types are ranked according to their contribution to machine trans-
lation errors in the TED talk translation task. Left: Frequency-weighted scores across
all utterances. Right: Frequency-weighted scores only for utterances containing the er-
ror type.

∆TER measure. In other words, if we observe one ASR error of a particular type, how

much is it expected to degrade the translation quality?

Table 4.6 reports the mean increase in TER for each weighted error type, using the

word class-annotated error types provided by POWER. The left-hand side computes

the scores and rank across the entire tst2012 evaluation sample, while the right-hand

side focuses only on the utterances which contain a given error type. Naturally, the

ASR error types with the highest frequencies have the greatest contribution to overall

translation quality. As shown in the ASR error frequency rankings in Table A.4 (see

the Appendix), within-class substitution errors have the highest frequency-weighted

contribution toward ∆TER.

Our analysis ranks phonetic substitution span (SS) errors as the leading contribu-

tor to high TER scores. Although only SS errors on open class reference words occur

frequently, the presence of any SS error type has a serious effect on translation quality.

The translation of Utterance #1 in Fig. 4.6 demonstrates the effects of misrecognizing

anatomy as “and that to me”, which renders the translation unintelligible.

In a similar vein, Utterances #57 and #71 demonstrate the impact of open class word-

level substitution errors. #57 misrecognizes a common noun as a proper noun; although
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anatomy
“and that to me”

SS:NN→span
cadaver dissection est la manière traditionnelle de l’ apprentissage humain de l’ anatomie
cadaver dissection et facilité la manière traditionnelle de prêt humaine et qui pour moi
la dissection de cadavres est la manière traditionnelle d’ apprendre l’ anatomie humaine
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MTHyp
TransRef

Maybe
maybe

I
i

can
can

cut
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S:RB→PP

see
is

S:VB→VBZ
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brain
brain

and

D:CC

I

D:PP

can
can

change
change

my
my

cut
cut

Peut-être que je peux coupé là , vous voyez le cerveau , et je peux changer ma couper .
Peut-être que je peux couper leurs , c’ est le cerveau , peuvent changer ma couper .
Peut-être que je peux couper là , voir le cerveau , et je peux changer ma coupe .

57
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S:NN→NP
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S:VBD→VBD
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S:JJ→NNS
" Votre micro n’ était pas de pendant son vérifier .
" votre Mike était frappe pendant son équilibre .
" Votre micro n’ était pas éteint lors du contrôle de son .
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J’ appelle moi-même un corps architecte .
J’ appelle un foutu architectes .
Je me considère comme un architecte du corps .
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a
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gas
gas
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a
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liquid
liquid

Un peut-être qui pourrait prendre la forme d’ un liquide ou un gaz .
Peut-être que pourrait prendre la forme de liquide ou un gaz .
Un peut-être qui pourrait prendre la forme d’ un gaz ou d’ un liquide .

Figure 4.6: Effects of FBK’s ASR errors, automatically annotated with POS tags, on
machine translation output.

in this case, a text-to-speech synthesis system may pronounce it correctly to a listener,

the translation is further corrupted from the loss of the negation in wasn’t→was. #71

misrecognizes a common noun as an adverb.

The deletion of closed class words happens often in our ASR samples, but their in-

dividual impacts are usually small, with the exception of deleting pronouns. In Utter-

ance #16 from Fig. 4.6, closed-class deletion of the personal pronoun I causes the auxil-

lary verb can to incorrectly attach brain as its subject before translating the utterance,

while the multiple deletions of the determiner a in Utterance #84 have negligible qual-

ity degradation. Covering 16.2%(±0.6%) of all the ASR errors in our experiment, we

consider insertion and deletion errors on closed class words to be low-hanging fruit for

75



CHAPTER 4. SPEECH RECOGNITION ERRORS AND SPOKEN LANGUAGE
TRANSLATION QUALITY

correction. Although closed class words can be under-articulated in ASR, the number

of alternative words are small and an ASR system’s language model would more likely

have sufficient statistics to recover them in alternative ASR hypotheses from the lattice.

4.7 Related Work

Goldwater et al. (2010) used mixed-effects regression models to analyze the effects of

each word’s lexical and prosodic features on each individual word’s contribution to WER

(IWER). Evaluating with two English ASR systems for conversational telephone speech

they reported that acoustically similar words with similar language model probabilities

have strong effect on the contribution of individual words on WER. This is similar to

the analysis outcome we discovered in our analysis through the use of phonetic substi-

tution error spans within our POWER metric. Additionally, while measuring the lexical

and prosodic features in a similar fashion as Goldwater et al. would be useful, it would

require highly accurate alignments between the words in an ASR hypothesis and the

translated outputs. Due to the interdependency between words during translation, it is

not possible to decompose the TER score on an individual word level to measure the ef-

fects of many of the lexical and prosodic features in Goldwater et al. (2010), which is our

primary motivation for analyzing the sentence-level effects of ASR errors on translation

quality.

Quality estimation is an active area of research that is related to our analysis, which

has the primary goal of predicting the response variable used to evaluate the quality of

ASR or MT. We briefly introduce each in the sections below.

4.7.1 Quality Estimation for Machine Translation

The goal of quality estimation in machine translation is to assign a quality score to

machine translation outputs in the absence of a reference translation. This score could

be a confidence score (Ueffing et al., 2003; Specia et al., 2009; Bach et al., 2011), a

prediction of an automatic measure such as BLEU or TER, or it can predict a human-

interpretable score, such as the reviewer’s quality score (Soricut and Echihabi, 2010) or

the time taken to post-edit a machine translation output (Specia, 2011). Quality esti-

mation systems use machine learning techniques such as regression models (Albrecht

and Hwa, 2007), neural networks (Buck, 2012), online and multitask learning (de Souza

et al., 2014) to predict a quality score, given a combination of fluency and adequacy fea-
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tures derived from the linguistic properties (Felice and Specia, 2012; Buck, 2012) of the

source sentence and the MT system’s translation hypotheses, and optionally features

derived from the translation system’s internal models. Our linear mixed-effects model

approach, on the other hand, is used to measure the effects of ASR error types in an

evaluation scenario where the quality of the translation is already known.

4.7.2 Quality Estimation for Automatic Speech Recognition

The idea of estimating ASR quality began with confidence estimation, which uses ASR-

internal features, such as acoustic stability, hypothesis density, and likelihood and pos-

terior scores to score each predicted word (Jiang, 2005). As an alternative, quality esti-
mation (Negri et al., 2014) focuses on the prediction of ASR quality scores in the absence

of reference transcripts. and internal ASR model features typically used for confidence

estimation. Negri et al. (2014); Jalalvand et al. (2016) identify 72 features, comprising

signal features, lexical features, language model features, and part-of-speech features

that are relevant to the task and provide an evaluation tool. Jalalvand et al. (2015) addi-

tionally use sentence-level quality estimation to rank an n-best list of ASR hypotheses

prior to combining them with system combination techniques such as ROVER.

4.8 Chapter Summary

In this chapter, we presented a statistical data analysis framework based on linear

mixed-effects regression models to measure the impact of ASR errors on spoken trans-

lation language quality. We introduced a variant of WER, dubbed POWER, that cap-

tures and scores phonetic substitution error spans (i.e. errors involving multiple words

that sound phonetically similar to its aligned counterpart) in addition to the standard

substitution, deletion, and insertion errors from WER. By annotating ASR errors with

POWER, we observed that the WER metric’s error annotations lead one to believe that

an ASR system generates more recognition errors on content word types than is ac-

tually the case. For example, substitution errors between content words and function

words does not frequently happen. Instead these misalignments are often cases where

a long reference word was misrecognized as a sequence of shorter hypothesis words that

sound similar to the reference word.

As we applied the ASR errors annotated by POWER to our mixed-effects models,

we confirmed that substitution words on similar word classes has the greatest impact
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on SLT quality, followed by our newly annotated phonetic error spans, which capture

error regions that were likely caused by conflicts between the acoustic model and the

language model during ASR decoding. The frequency and severity of these error types

inspires us to research error modeling strategies that attempt to model ASR errors

caused by acoustic confusions directly in the machine translation system to increase

error tolerance in SLT, which we will address in Chapter 6.
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5
CONTEXT ADAPTATION USING BILINGUAL LATENT

SEMANTIC MODELS

Traditional statistical machine translation (SMT) systems operate on the assump-

tion that each sentence to be translated is independent from one another. In the

case of discourse, whether it is speech or the written word, this assumption sel-

dom holds true. As a result, traditional machine translation systems rely only on local

observations to translate a sentence and often provide suboptimal translations. Were

the MT system able to use statistics derived from the context of neighboring sentences,

the system could use semantically related words that better match the topical structure

of the discourse, improving accuracy and cohesion. Likewise, in the spoken language

translation scenario, context can aid in both the automatic speech recognition (ASR)

and the MT components. For ASR the decoder may take into account the decisions made

in previous utterances within a dialogue or discourse. MT in the spoken language trans-

lation pipeline can benefit both from the decisions made by the ASR decoder, as well

as the previous translation decisions made by the decoder, potentially allowing the MT

system to be more forgiving of ASR errors.

In this chapter, we discuss a simple, yet novel approach to incorporating context dur-

ing machine translation decoding using an technique called Minimum Discrimination

Information (MDI) adaptation, where we compute word counts estimated with bilingual

topic modeling approaches. Our variant, dubbed “Lazy MDI”, approximates MDI adap-

tation in a manner that is suitable for real-time translation scenarios by avoiding the
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computation of the normalization term in conventional language model adaptation ap-

proaches that requires all n-grams to be re-estimated. This context modeling approach

is motivated by language model adaptation techniques, but it expands into a general

adaptation technique that fits well in the log-linear framework of MT architectures such

as phrase-based machine translation. We observe that Lazy MDI performs comparably

to classic MDI in topic adaptation for SMT, but possesses the desired scalability features

for real-time adaptation of large-order n-gram LMs. We demonstrate its effectiveness

on the translation of TED talks.

We begin the chapter by providing an overview on topic modeling in Section 5.1 as

well as introducing techniques for language model adaptation in Section 5.2. We ad-

ditionally review our work in Ruiz and Federico (2011) on language model adaptation

via bilingual topic modeling and follow up with a demonstration on how to modify the

adaptation framework as a log-linear feature, which we dub “Lazy MDI”: an efficient

approximation of MDI adaptation (Ruiz and Federico, 2012) (Section 5.3). We then pro-

vide experimental results on its use for model adaptation given windows of context in

two paradigms: one where we take source language information from a sliding window,

and the other where we use bilingual information by using look-ahead and look-behind

context (Section 5.4), followed by a brief survey of relevant previous work in Section 5.5.

In Section 5.6 we summarize our findings.

5.1 Topic adaptation

Topic adaptation is used as a technique to adapt language models based on small con-

texts of information that concentrate on the temporal focus of a discourse, rather than

reflecting an entire domain or genre. In scenarios such as lecture translation, it is ad-

vantageous to perform language model adaptation on the fly to reflect topical changes

in a discourse. In these scenarios, general purpose domain adaptation techniques fail to

capture the local behavior of a discourse; while domain adaptation works well in mod-

eling newspapers and government texts which contain a limited number of subtopics,

the genres of lectures and speech may cover a virtually unbounded number of topics

that change over time. Instead of general purpose adaptation, adaptation should be

performed on smaller windows of context.

Most domain adaptation techniques require the re-estimation of an entire language

model to leverage the use of out-of-domain corpora in the construction of robust models.

While efficient algorithms exist for domain adaptation, they are in practice intended
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to adapt language models globally over a new translation task. Topic adaptation, on

the other hand, intends to adapt language models as relevant contextual information

becomes available. For speech, the relevant contextual information may come in sub-

minute intervals. Well-established and efficient techniques such as Minimum Discrim-

ination Information adaptation (Della Pietra et al., 1992; Federico, 1999) are unable to

perform topic adaptation in real-time scenarios for large order n-gram language mod-

els. In practice, new contextual information is likely to be available before techniques

such as MDI have finished LM adaptation from earlier contexts. Thus spoken language

translation systems are typically unable to use such as technique for the purpose of

topic adaptation.

5.1.1 Topic modeling

Many topic adaptation approaches leverage topic modeling to estimate the topic distri-

bution of documents. This is done with a generative process that assumes that each

word w in a document d is generated by considering the distribution of topics z that are

expressed in the document. Using Bayes’ formula, this process is defined as:

(5.1) P(w | d)= ∑
z∈Z

P(w | z)P(z | d).

In the context of topic modeling, the latent topics z ∈ Z = {z1, ..., zk} are class variables

used to derive probabilistic distributions of words w ∈ W = {w1, ...,wm} in a document

d ∈ D = {d1, ...,dn} with k << n.

One topic modeling approach is Probabilistic Latent Semantic Analysis (PLSA) (Hof-

mann, 1999), which is a statistical model built exactly on (5.1). Thus, the objective of

PLSA is to learn P(z | d) and P(w|z) by maximizing the log-likelihood function:

(5.2) L(W ,D)= ∑
d∈D

∑
w∈W

n(w,d) logP(w | d),

where n(w,d) is the term frequency of w in d. Using the Expectation Maximization (EM)

algorithm (Dempster et al., 1977), the parameters P(z|d) and P(w|z) are estimated via

an iterative process. A document-topic distribution θ̂ can be inferred on a new document

d′ via the decision rule:

(5.3) θ̂ = argmax
θ

∑
w

n(w,d′) log
∑
z

P(w | z)θz,d′ ,

θz,d′ = P(z | d′).
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Topic models can be actually applied to infer a bag-of-word distribution for the new

document d′. In fact, the inferred P(z | d′) topic distribution can be used in conjunction

with the P(w | z) distribution learned during training to estimate a word unigram distri-

bution. It is worth noticing that this method permits to infer full unigram distributions

even from very small documents (Federico, 2002). Other topic modeling approaches are

based on Latent Dirichlet Allocation (LDA) (Blei et al., 2003), which adds a Dirichlet

prior to the formulation in (5.1) that helps the model generalize to unseen documents.

5.1.2 Extending to bilingual contexts

In order to infer an adaptation bag-of-word model in the target language from a source

text, several works have leveraged bilingual topic modeling approaches, including Tam

et al. (2007); Zhao and Xing (2008); Ruiz and Federico (2011). While most bilingual

topic modeling approaches tend to construct separate topic models for the source and

target language and induce a mapping (Tam et al., 2007), Ruiz and Federico (2011)

introduce a simplified form of bilingual topic modeling based on PLSA, which treats

source and target bitext sentences (f,e) as “monolingual” documents with vocabulary

VFE =VF ∪VE. The underlying assumption is that the topics in a parallel text share the

same semantic meanings across languages; thus, their vocabularies can be merged into

a “super language”. In order to ensure the uniqueness between word tokens between

languages, we mark each token with the language it comes from. We perform PLSA

training to estimate word-topic distributions P(w|z),w ∈ VF ∪VE. In normal inference

scenarios, we would again use a bilingual sentence tuple to infer the distribution of

words in the source and target languages. However, the target language is unobserv-

able during MT decoding. Instead, bilingual PLSA is used to perform inference only

from the tokens in the source language. Nevertheless, the model is capable of inferring

a full unigram distribution for the vocabulary VFE. In the context of language model

adaptation for MT, the source words in VF are pruned, and the remaining statistics on

VE are re-normalized.

5.2 MDI Adaptation

MDI adaptation was original designed by Della Pietra et al. (1992) as a means for do-

main adaptation of a generic background n-gram language models from a domain spe-

cific 1-gram model. In practice, MDI adaptation scales the probabilities of a background
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language model, PB(h,w), by a factor determined by a ratio between the unigram statis-

tics observed in an adaptation text A versus the same statistics observed in the back-

ground corpus B:

α(w)=
(

P̂A(w)
PB(w)

)γ
, 0< γ≤ 1(5.4)

where γ is suitable smoothing factor. The adapted language model PA(h,w) is computed

as:

(5.5) PA(h,w)= PB(h,w)α(w),

where h is the n-gram history of word w. As outlined in Federico (2002), the adapted

language model can also be written recursively in an interpolated conditional form with

discounted frequencies f ∗(w|h) and reserved probabilities for out-of-vocabulary words

λ(h):

(5.6) PA(w|h)= f ∗A(w|h)+λA(h)PA(w|h′),

f ∗A(w|h)= f ∗B (w|h)α(w)
z(h)

,(5.7)

λA(h)= λB(h)z(h′)
z(h)

,(5.8)

with a normalization term

z(h)=
( ∑

w:NB(h,w)>0
f ∗B (w|h)α(w)

)
+λB(h)z(h′),(5.9)

that efficiently computes the normalization term for high order n-grams recursively sim-

ply by summing over the observed n-grams in A. The recursion ends with the following

initial values for the empty history ϵ:

z(ϵ) =∑
w PB(w)α(w),(5.10)

PA(w|ϵ) = PB(w)α(w)z(ϵ)−1.(5.11)

While MDI has been applied for domain adaptation on both language models (Fed-

erico, 1999) and translation models (Tam et al., 2007), its re-estimation requires the

computation of the normalization term outlined in (5.9) that makes it unsuitable for

real-time ASR or spoken language translation. In topic adaptation scenarios, it is de-

sirable to rapidly adapt a background language model using small adaptation contexts
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consisting of few sentences. One method of inferring unigram statistics for MDI adapta-

tion given sparse data is to perform bilingual topic modeling (Tam et al., 2007; Mimno

et al., 2009; Ruiz and Federico, 2011). While it has been shown that the combination

of topic modeling and MDI adaptation yield a significant improvement in translation

adequacy, the approach of adapting non-overlapping contexts of size C requires M/C
full LM re-estimations on a translation task with M sentences, with each re-estimation

requiring the expensive computation of the normalization term.

5.3 Lazy MDI Alternative for SMT

The goal of MDI adaptation is to construct an adapted language model that minimizes

its Kullback-Leibler divergence from the background LM, which is effectively performed

via the unigram ratio scaling method described in (5.4) and (5.5). We seek to loosely

approximate this KL divergence in statistical machine translation by adapting only n-

grams that appear as translation options for a given sentence. As such, we seek to avoid

computing the normalization term in (5.9) that requires observing the probabilities of

all high- and lower-order n-grams in the LM. Since the ratio of unigram probabilities is

defined across the range [0,+∞], we explore smoothing functions that bind the ratio to

a finite range.

5.3.1 Smoothing unigram ratios

In machine learning, sigmoid activation functions are typically used to constrain func-

tions in the range of [0,a] or [−a,a] to reduce the bias of a few data points within a

training set. Likewise we explore the use of sigmoid functions to reward n-gram prob-

abilities across the range of [0,a]. However, since we are scaling ratios in general, we

desire the following properties of our smoothing function f :

f (0)= 0; lim
x→+∞ f (x)= a

f (1)= 1; lim
x→−∞ f (x)=−a

In particular the f (1) = 1 constraint ensures that background LM probabilities remain

fixed when the ratio is balanced. A fast sigmoid approximation (Georgiou, 1992) of the

form:

f (x,a)= ax
a+|x|−1

, a > 1(5.12)
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Figure 5.1: A plot of the transformed fast sigmoid function for positive ratios in (5.12)
and its first derivative, evaluated at a = 2. The relative changes in f (x) are labeled,
centered at f (1). The changes in f (x) are symmetric with respect to each ratio and
inverse ratio.

satisfies these properties. Additionally, its first-order derivative is symmetric with re-

spect to inverted ratios, relative to the center at x = 1. Fig. 5.1 demonstrates this for

a = 2, where a ratio of 2:1 (i.e. twice as many observations of a word x in an adaptation

context window over its background statistics) yields a scale of 1+ 1
3 , while a ratio of 1:2

yields a scale of 1− 1
3 .

5.3.2 Log-linear feature

Since we are no longer normalizing n-gram probabilities, we can consider the smoothed

unigram probabilities as a function that rewards or penalizes translation options based

on the likelihood that the words composing the target phrase should appear in the trans-

lation. We treat the smoothed unigram probabilities as a new feature in the discrimi-

native log-linear model of the decoder. While our new feature is independent from any

language model features, we can logically consider the adaptation of a background lan-

guage model as a log-linear combination of the LM feature and the Lazy MDI feature

as:

(5.13) P̂LM(e)= PLM(e)γ1 ·
le∏

i=1
α̂(e i)γ2 ,

where PLM(e) computes the language model probabilities of target sentence e; α̂(e i) is

the Lazy MDI adaptation feature on the ith target word in e, defined as:

(5.14) α̂(e)= f
(

PA(e)
PB(e)

)
.
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By rearranging terms, we arrive at our unnormalized log-linear approximation of (5.5):

(5.15) P̂LM(e)=
le∏

i=1
PLM(e i | e i−2, e i−1)γ1 · α̂(e i)γ2 .

In practice, only translation hypotheses suggested by the translation model are

scored by the language model, thus limiting the number of unigram ratios to consider.

Additionally, for computational efficiency, calculations are performed in log space. For

a = 2, our fast sigmoid function can be rewritten as:

f (x,2)= 2 ·
(
1+ e− ln(x)

)−1
, x > 0,(5.16)

which allows us to compute log probability ratios as lnPA(w)− lnPB(w).

5.3.3 Sparsity considerations

If we treat the background and adaptation unigram statistics as unigram language

models, we can use smoothing to reserve probability for out-of-vocabulary words. How-

ever, due to the sparsity of unigram features in adaptation texts, it is possible that

the adapted unigram statistics are missing words that appear in the background LM.

Assuming that there are insufficient adaptation statistics to reliably scale the probabil-

ities of n-grams containing these words, we instead leave the background probabilities

intact by fixing the unigram probability ratio to 1.

A similar problem can arise in the scenario that the adaptation text contains uni-

grams that are not observed in the background LM. One possible solution is to limit the

vocabulary of the adaptation statistics to the same as that of the background.

5.3.4 Inferring unigrams via bilingual topic modeling

Since an adaptation text is in practice too small to directly compute reliable unigram

statistics, we resort to the topic modeling approach described in Section 5.1.2 to infer full

unigram probabilities. We then convert the word-document probabilities into pseudo-

counts via a scaling function:

(5.17) n(w | d)= P(w | d)
maxw′ P(w′ | d)

·∆,

where ∆ is a scaling factor to raise the probability ratios above 1. Since our goal is to

generate a unigram language model on the target language for adaptation, we remove

the source words generated in (5.17) prior to building the language model.
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5.4 Experiments

We evaluate the utility of Lazy MDI in two scenarios. We first compare in Section 5.4.1

the performance of Lazy MDI against the original MDI system of Ruiz and Federico

(2011) on the adaptation of a lowercased MT system with case-insensitive unigram

statistics from both the adaptation text and the background text. Secondly, in Section

5.4.2, we evaluate the effects of context window size and the presence of previously

translated segments on Lazy MDI adaptation.

Both experiments are conducted on the IWSLT 2012 TED English-French MT shared

task (Federico et al., 2012). All machine translation systems are phrase-based and built

upon the Moses open-source SMT toolkit (Koehn et al., 2007). In the classic MDI adapta-

tion experiments the background LM is replaced by its MDI-adapted counterpart offline

for SMT decoding, and the original LM log-linear feature weight is preserved. For Lazy

MDI, adaptation is integrated into the Moses decoder as a feature function, using the

same context unigrams as in MDI to compute on-the-fly adaptation ratios. MERT is

used to tune each MT system on the dev2010 development set using context-adapted

models. All models are evaluated using Multeval 0.3 (Clark et al., 2011).

5.4.1 Lazy MDI versus MDI adaptation

We first evaluate the performance of our fast sigmoid-smoothed Lazy MDI adaptation

against both an unadapted baseline and the bilingual MDI adaptation approach de-

scribed in Ruiz and Federico (2011). Our first baseline (FBK-TED) is a simple lower-

cased phrase-based SMT system based upon the Moses open-source SMT toolkit (Koehn

et al., 2007)1 and trained only on TED data.

MDI adaptation is applied using the unigram word ratios computed within context

windows of length 5.2 We experiment with adaptation via unigram ratios computed

before and after smoothing with our transformed fast sigmoid function. Words not in

the adaptation unigram LM are fixed with a 1:1 ratio to prevent their effect on the

global translation hypothesis score. The evaluation results of each system are averaged

over their three MERT optimizations.

In Table 5.1, we observe nearly identical MDI and smoothed Lazy MDI scores across

each of the three MERT runs. The systems respectively yield statistically significant

1http://www.statmt.org/moses/
2The five-line contexts were determined by the segmentation provided by the IWSLT evaluators. In

a traditional SLT scenario, we would need to determine the size of the context window.
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System Metric Opt 1 Opt 2 Opt 3 Avg
FBK-TED BLEU 27.64 28.20 28.20 28.0
MDI BLEU 28.49 28.07 28.16 28.2

Lazy MDI (unsmoothed)
BLEU 27.14 17.80 28.40 24.4
weight 0.1537 0.4096 0.0445 0.3361

Lazy MDI (smoothed)
BLEU 28.27 28.39 28.17 28.3
weight 0.0132 0.0177 0.0138 0.0149

Table 5.1: Lowercased evaluation runs for the TED baseline and Lazy MDI adaptations
for the IWSLT 2010 test set across three tuning instances. Unsmoothed Lazy MDI yields
unstable adaptation feature weights across each run. “Opt 2” overpowers the log-linear
model, yielding a drop in over 10 BLEU. “Opt 3” provides the best generalization to the
test set by reducing the effects of the adaptation. For fast sigmoid-smoothed Lazy MDI,
the adaptation weights remain consistent across all runs.

average improvements of 0.2 and 0.3 BLEU over the FBK-TED baseline. As predicted,

unsmoothed Lazy MDI adaptation performs poorly as the unigram ratios between the

background and context LMs often diverge greatly. If we observe the feature weights

for the unsmoothed Lazy MDI model in Table 5.1, we see divergent values across each

MERT instance, suggesting that the unbounded adaptation ratios yield unpredictable

results during decoding. The smoothed Lazy MDI model, on the other hand, has rela-

tively stable weights.

5.4.2 Context window size and bilingual context

Given the positive results in the experiment above, we evaluate the effects of the context-

window size and the use of previously translated sentences on adaptation quality. As-

suming that translation is occurring near real-time, the SMT system can consider slid-

ing context windows that cover up to nine transcript lines before the current line, as

well as optional future context that simulates latency in machine translation.

Our second baseline, (FBK-FULL) is FBK’s primary phrase-based SMT system from

IWSLT 2012, described as follows. A single phrase and reordering table were constructed

using the fill-up technique (Bisazza et al., 2011) in a cascaded fashion in the order of

TED, Giga French-English, and Europarl. The system consists of translation and re-

ordering models trained from the in-domain TED3 corpus, as well as out-of-domain

Giga French-English4 and Europarl v7 (Koehn, 2002) corpora. All out-of-domain par-

3https://wit3.fbk.eu/mt.php?release=2012-03-test
4109 French-English data set provided by the WMT 2012 translation task (Callison-Burch et al.,

2012).
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Window Bilingual Monolingual
Prev Next BLEU NIST BLEU NIST

2 0 33.27 7.562 32.74 7.487
2 2 33.18 7.550 32.69 7.488
4 0 33.19 7.559 32.83 7.503
4 2 32.77 7.496 32.76 7.501
9 0 32.73 7.486 32.73 7.488
9 2 32.74 7.490 32.76 7.496

Unadapted - - 32.42 7.443

Table 5.2: Lazy MDI adaptation results on the IWSLT tst2010 English-French test set.

allel and monolingual corpora were domain-adapted by aggressive filtering using the

cross-entropy difference scoring techniques described by Moore and Lewis (2010); Axel-

rod et al. (2011) on the French side and optimizing the perplexity against the (French)

TED training data by incrementally adding sentences.

A domain-adapted 5-gram mixture language model was constructed with IRSTLM

from the TED, Giga French-English, Gigaword French v2 AFP5, and WMT News Com-

mentary v7 corpora.

Table 5.2 provides evaluation results on tst2010 using adaptation contexts containing

the current transcript line as well as a “look-behind” of 2, 4, or 9 previously translated

transcript lines and optionally a “look-ahead” of two lines. In the bilingual modality,

translated French hypotheses are provided only for the previous transcript lines. The

monolingual contexts are treated as the baseline in the experiment.

Monolingual contexts Similar to the results reported by Ruiz and Federico (2012),

we observe improvements of roughly +0.3 BLEU over the unadapted baseline for mono-

lingual contexts varying from length 3 to 12. This improvement is over a baseline that

was already domain-adapted toward the TED translation task. Each adapted system

improves the translation scores by a similar amount, regardless of the orientation of

the context window (look-behind only, versus look-behind with look-ahead).

Bilingual contexts As shown in Table 5.2, we observe significant improvements of

around +0.4 BLEU over our monolingual adaptation experiments with small adaptation

context windows of 3-5 sentences when including the translation hypotheses generated

by the previous decoding decisions within the look-behind context window.
5http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2009T28
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System Text TER
SRC Gross has several companies, including one called eSolar that has some great solar ther-

mal technologies.
#771

REF Gross possède plusieurs sociétés, ... qui maîtrise quelques importantes technologies
thermiques solaires.

FBK-FULL Bill Gross a plusieurs entreprises, dont un appelé eSolar qui a une grande solaire ther-
mique.

0.500

MDI-M Bill Gross a plusieurs entreprises, dont un appelé eSolar qui a un grand technologies
solaire thermique.

(-0.06)

MDI-B Bill Gross a plusieurs entreprises, dont un appelé eSolar qui a un grand technologies
thermiques solaire.

(-0.11)

SRC Now we can do it in a more precise way. #1497
REF Maintenant, on peut être plus précis .
FBK-FULL Maintenant, nous pouvons le faire d’une manière plus précise. 1.000
MDI-M Maintenant, nous pouvons le faire d’une manière plus précise. (-0.00)
MDI-B Maintenant, on peut le faire d’une manière plus précise. (-0.25)
SRC ... thousands of pink flamingos, a literal pink carpet for as far as you could see. #1018
REF ... des milliers de flamants roses, un véritable tapis rose, s’étalant aussi loin que porte

la vue.
FBK-FULL ... des milliers de flamants roses, une moquette rose littéral pour autant que vous pou-

vez voir.
0.641

MDI-M ... des milliers de flamants roses, une moquette rose littéral pour autant que vous pou-
vez voir.

(-0.05)

MDI-B ... des milliers de flamants roses, un tapis roses littéral pour autant que l’on pouvait
voir.

(-0.08)

Figure 5.2: Effects of bilingual Lazy MDI adaptation using the previous four sentences
as context on the IWSLT 2010 English-French TED talk translation test set. REF refers
to the reference translation, FBK-FULL refers to an unadapted baseline, MDI-M refers to
a monolingual adaptation without translation hypothesis context, MDI-B performs adap-
tation with translation hypothesis contexts. The sentence-level TER scores are listed by
each hypothesis and the difference is listed in parentheses by the reference.

Figure 5.2 shows examples of adaptation improvements using bilingual contexts

with a look-back of 4, and reports sentence-level TER evaluation scores. The adapta-

tion in sentence #771 focuses on the proper translation of “solar thermal technologies”.

Our baseline system misses the word “technologies” altogether, while our MDI-adapted

systems recover it. The monolingual MDI-M recovers the missing word, but the adjec-

tives do not agree in number with the noun. MDI-B manages to correct “thermiques”

and correctly reorders the entire phrase as “technologies thermiques solaire”, but still

deficiently models the morphology.

Line #1497 provides an example of the bilingual model’s improvement of fluency for

colloquial speech. Our baseline and MDI-M systems provide a direct translation of the

source sentence; while it is adequate for written translation, it is too formal for the style

of the speaker. In addition, the sense of the translation is “we are able to do it more pre-

cisely,” which draws attention toward the actor rather than the theme. The reference, on
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the other hand, changes the articulation using “on peut être,” which alters the meaning

of the sentence to “it may be more precise.” MDI-B replaces “nous pouvons” to “on peut”
in a way that emphasizes the focus of the sentence toward the object to be changed.

Each translation is grammatically correct, but for a TED talk, MDI-B’s translation is

preferred. MDI-B was able to make this lexical decision by drawing on the context of

the previous sentence: “We got rid of the stuff that didn’t [work],” in which the reference

translation uses the same trick of substituting the first person plural “nous” with the

third person singular form, “on”. The translation hypothesis context counteracts the pe-

nalized unadapted unigram ratio assigned by MDI-M (0.798) by increasing it to nearly

a 1:1 ratio (0.959).

Sentence #1018 provides an example of improved lexical choice for terminologies.

Drawing on the context of the previous sentence: “At that moment, it was as if a film

director called for a set change,” the speaker uses a metaphor of a “pink carpet” to

describe the flamingos in a farm. The baseline and MDI-M systems use “une moquette”,

which is a type of carpet that is permanently fixed in a location, while MDI-B uses “un

tapis”, which best captures a sense similar to the expression “rolling out the red carpet”.

5.5 Related Work

This work is based on Ruiz and Federico (2011), who combine MDI adaptation with

bilingual topic modeling on small adaptation contexts for lecture translation. Adapta-

tion texts are drawn from source language inputs and are leveraged for language model

adaptation. A bilingual Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999)

model is constructed by combining parallel training texts, allowing for inference on

monolingual source texts for MDI adaptation by removing source language unigram

statistics.

A similar approach is considered by Tam et al. (2007) in domain adaptation by con-

structing two hierarchical LDA models from parallel document corpora and enforcing

a one-to-one correspondence between the models by learning the hyperparameters of

the variational Dirichlet posteriors in one LDA model and bootstrapping the second

model by fixing the hyperparameters. The bilingual LSA framework is also applied to

adapt translation models. Other bilingual topic modeling approaches include Hidden

Markov Bilingual Topic AdMixtures (Zhao and Xing, 2008) and Polylingual Topic Mod-

els (Mimno et al., 2009).

The literature focuses primarily on domain adaptation, using techniques such as
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information retrieval to select similar sentences in training corpora for adaptation, ei-

ther through interpolation (Zhao et al., 2004) or corpora filtering (Sethy et al., 2006), or

mixture model adaptation approaches (Foster and Kuhn, 2007; Koehn and Schroeder,

2007).

An alternative to MDI adaptation is proposed by Chen et al. (1998), which uses a

log-linear combination of binary features f i(h,w) to scale LM probabilities P(w | h):

P̂(w | h)= exp

(∑
i

f i(h,w)λi

)
P(w | h).

Normalization is avoided by simply dividing P̂(w | h) by P̂(w | h)+1.

Bertoldi et al. (2013a) introduce a cache-based language model for adaptation that

is proven useful for professional post-editing of machine translation outputs in a com-

puter assisted translation scenario. The model acts as a local model that rewards the

n-grams found in translation post-edits. The model incorporates freshness by applying

an exponential decaying function to penalize and eventually drop older n-grams. This

work is likely complimentary to ours as the cache-based model could directly use the

unigram ratios generated by Lazy MDI.

5.6 Chapter Summary

We have presented a simplified framework for approximating MDI adaptation in an on-

line manner for lecture translation as a viable strategy for incorporating context during

machine translation and spoken language translation. We avoid normalization compu-

tations that prevent classic MDI from being used in speech translation scenarios. Lazy

MDI adaptation acts as a separate log-linear feature that doesn’t directly adapt LM

probabilities – instead, it rewards or penalizes the scores of each translation hypothesis

by observing the unigram probabilities inferred an adaptation context and compares it

to the background in a smoothed ratio. The smoothing is performed by a conservative

fast sigmoid function that favors 1:1 ratios and prevents ratios from growing above a

magnitude a. The smoothing function is required to ensure the stability of the unigram

adaptation feature in the PBMT log-linear model.

We conducted adaptation experiments on TED talk data from IWSLT 2012 and

demonstrate a significant improvement in terms of BLEU, NIST, and TER over two

baselines: a lowercased TED-only system, and a state-of-the-art cased system that com-

bines in-domain and out-of-domain data. We demonstrate that Lazy MDI adaptation
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has cumulative adaptation effects on already-adapted language models. We additionally

analyzed the effect of incorporating translation hypotheses in the context window and

observed significant improvements for small context windows on the TED talk transla-

tion task.

A potential weakness in our approach is that it uses topic models that do not fil-

ter stop-words and it performs unigram adaptation directly on the surface words. For

morphologically-rich languages, such as German or Arabic, the vocabulary sizes can in-

crease greatly due to word splitting. For languages such as Arabic, it may be beneficial

to apply a morphological segmenter prior to constructing the bilingual topic model.
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AUTOMATIC SPEECH RECOGNITION DAMAGING

CHANNEL

As discussed in the introduction and in Chapter 4, machine translation (MT) sys-

tems that are trained solely on written bitexts do not adapt well to spoken lan-

guage translation (SLT) scenarios. This is the greatest drawback of the conven-

tional approach of treating SLT as a cascade of automatic speech recognition (ASR) and

MT systems, whereby speech recognition is performed and the results are subsequently

translated by a MT system (Matusov et al., 2006a; Bertoldi et al., 2007; Casacuberta

et al., 2008). The loose coupling between ASR and MT training data creates a scenario

where the MT system may not be able to anticipate structural differences between ASR

outputs and the input data observed during training time, as well as the presence of

speech recognition errors that make the source content untrustworthy. A statistical ma-

chine translation (SMT) system trained on written bitexts has statistics covering arti-

facts that differ from those of ASR outputs. Thus, the ASR output that is passed into a

SMT system that lacks sufficient statistical information to model spoken registers may

lack fluency. Additionally, the ASR system may generate errors due to (a) signal noise,

or (b) modeling deficiencies that prevent the transcription of words not present in the

ASR system’s pronunciation dictionary. Without observing training data that contains

these types of errors, a conventional SMT system has no recourse to recover from them

at decoding time. These issues result in the large inventory of translation examples

learned in the translation models of well-performing SMT systems being underutilized
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in SLT, as many of the paths in the MT search space are inaccessible due to the mis-

match between noisy ASR outputs and MT inputs.

Ideally, the structural mismatch between speech and text could be overcome by train-

ing the SMT system on speech corpora that have been both transcribed and translated,

using a combination of human transcriptions to accurately model the speech register.

However, few corpora exist with a sufficient amount of human-transcribed audio with

corresponding target language translations – and this type of three-way data is expen-

sive to construct. As a result, SMT systems are limited to being trained with a com-

bination of large amounts of written bitexts and a small amount of translated speech

transcripts as adaptation data.

To overcome the dearth of bilingual speech training data, an alternative solution

would be to convert the source side of a bitext to ASR-like outputs. Considering the

ASR system as a noisy channel that converts the actual transcripts of the speech in-

put to error-prone outputs, we can model the production of ASR errors and apply it on

a large amount of bitexts to introduce possible ASR errors, either as training data for

SMT system training (Ruiz et al., 2015) or directly injecting examples into the transla-

tion model (Tsvetkov et al., 2014). A straightforward method is to actually pronounce ev-

ery source language sentence in the corpus into a microphone and pass the audio signal

through the actual ASR system that will be used in the pipeline. However, this method

is also costly and time-consuming. Instead of mapping the text to a signal representa-

tion and back to text, we can leverage our knowledge of the noisy channel model used

by conventional ASR systems to generate an intermediate representation. Recall in Sec-

tion 2.1 that an ASR system is minimally composed of an acoustic model, which trans-

forms audio into phoneme sequences, a pronunciation model, which converts phoneme

sequences into words, and a language model, which scores sequences of words based on

their fluency. Likewise, our model can stop at the phoneme level and generate (1) pho-

netic confusion between phonemes; and (2) ambiguity within phoneme sequences, using

actual ASR outputs recognized from a small amount of transcribed speech audio.

In this chapter, we propose a novel technique to simulate the errors generated by

an ASR system, using the ASR system’s pronunciation dictionary and language model.

Treating the generation of ASR errors as a translation problem, we construct a phoneme-

to-word translation model by converting lexical entries in the pronunciation dictionary

into phoneme sequences using a text-to-speech (TTS) analyzer. The translation model

and ASR language model are combined into a phoneme-to-word MT system that “dam-

ages” clean texts to look like ASR outputs based on acoustic confusions. Training texts
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are TTS-converted and damaged into synthetic ASR data for use as adaptation for train-

ing a spoken language translation system. Our proposed technique yields consistent im-

provements in translation quality on a number of English-X language pairs, both for

lecture and conversational data. Our description expands on the findings in Ruiz et al.

(2015).

6.1 Damaging Channel

Our SLT system is a standard cascading ASR-MT pipeline, where the MT system ac-

cepts as input a single-best hypothesis from an ASR system. The MT input is recased,

punctuated, and tokenized prior to translation.

Our goal is to build a pipeline that converts written text into ASR-like utterances.

This pipeline requires (1) a reliable conversion from written text to phonemes, and (2)

a modeling technology that can optimize towards a small development set of actual

ASR output. For (1), we can either use solely the word-to-pronunciation rules listed

in the ASR pronunciation dictionary (PD), or employ the text analysis component of

a TTS engine, which dictates written text based on a combination of PD rules, letter-

to-sound (LTS) rules, and context-dependent pronunciation rules for numbers, ordinals

and acronyms. A discussion of the merits of using TTS is given in Section 6.1.1. For (2),

we use phrase-based SMT (Koehn et al., 2003) and tune the system on a small sample

of actual ASR outputs. The resulting system is used to generate large volumes of SLT

training data to improve the SMT system’s robustness toward speech recognition phe-

nomena by “damaging” the source-side of written bitexts to look like ASR-transcribed

utterances.

We can conceptually divide the ASR damaging channel pipeline into two stages, as

shown in Fig. 6.1. In the first stage, the damaging channel learns how to transform clean

source language texts into outputs that contain synthetic ASR errors. Each word in an

ASR system’s PD is converted into a sequence of phonemes using the LTS rules provided

by a TTS analyzer. The mapping between phoneme sequences and their corresponding

lexical forms are entered into a phoneme-to-word phrase table with uniform forward

and backward probabilities. This phrase table is combined with the language model

used by the original ASR system. Since the SMT system which combines phonemes into

words is monotonic, no reordering table is required. The phoneme-to-word SMT system

is tuned using Minimum Error Rate Training (MERT) (Och, 2003), using a small su-

pervised set of source language speech transcripts and the corresponding single-best
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Figure 6.1: ASR damaging channel pipeline. Source language texts are transformed
into phoneme sequences and translated back into words, corresponding to a phoneme-
to-word SMT system that models errors performed during ASR decoding.

hypotheses from the ASR system. Due to the existence of homophones and other pro-

nunciation anomalies, such a table may have multiple entries for a single phoneme

sequence. For example, the phoneme sequence /T UW/ may be mapped to two, to and

too.

In the second stage, the source side of the training bitexts are again transformed

into phoneme sequences by the TTS analyzer, which are subsequently translated by the

phoneme-to-word SMT system to generate synthetic ASR outputs for training the MT

component of the SLT pipeline. In practice, all training bitexts are duplicated prior to

“damaging”; in this manner the MT component can be trained simultaneously on bitexts

with clean source language texts and synthetic ASR output.

6.1.1 TTS-based pronunciation generation

While it is possible to directly use the phoneme sequences present in an ASR pronun-

ciation dictionary to construct a phoneme-to-word phrase table, there are some severe

drawbacks:

1. No coverage for out-of-vocabulary (OOV) words. The large volume of written
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bitexts used to train conventional SMT systems contain many words that are not

represented in an ASR system’s pronunciation dictionary. In normal speech recog-

nition scenarios, these words are transcribed as a sequence of phonetically similar

words or phrases that cover the phones used by the speaker to utter them. In or-

der to generate pronunciations for OOV words and capture their misrecognitions,

we must rely on LTS rules.

2. No pronunciation rules for some acronyms (e.g. ADHD, MTV) and numeric
sequences (e.g. 1998 or $275,000). In the currency example, “$” is uttered as

“dollars” after the numeric sequence, and the commas are ignored. The remaining

numeral is uttered as a sequence of words. We need to apply external rules to

correctly “pronounce” these tokens.

3. Context dependency. Words may contain different pronunciations given their

context (i.e. record in to record music vs. a music record).

Instead of reinventing the wheel, we borrow the text analysis module from a TTS

system. While the text analysis module can provide a pronunciation hypothesis for any

word, the output of our damaging channel should be ASR-like, meaning it should not

contain any OOV words with respect to the ASR PD. Thus, the phoneme-to-word phrase

table is restricted to contain only entries in ASR PD.

Another issue is that TTS analyzers may use different phoneme sets from the ASR

PD, or they may have been trained on different dialects. For this reason we also pass

the lexical entries in the ASR PD through the TTS analyzer. To account for multiple pro-

nunciations of words inside the ASR PD, we may also collect alternative pronunciations

of words from the written text and augment the phoneme-to-word phrase table.

6.1.2 Phoneme-level confusion

Our damaging channel pipeline described in Section 6.1 models acoustic confusability

in a decoding process similar to the model described in Fig. 6.1. Thus far, we have as-

sumed that the PD contains only valid transcriptions. As such, the decoding process

undergone by the phoneme-to-word SMT system defines segmentation boundaries on

a sequence of phonemes to reconstruct words. However, this pipeline does not account

for phonetic confusability. In the actual ASR scenario, a sequence of phonemes is gen-

erated based on the acoustic properties of an input signal and the most likely sequence

is generated through a Viterbi search though a series of HMMs. During ASR decoding,
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phonemes may be missing or distorted in the input signal, rendering the decoder likely

to misrecognize parts of the actual utterance. In response, we introduce an additional

step in the damaging channel pipeline which introduces distortions into a sequence of

phonemes, based on the observed decoding behavior of an ASR system. Fig. 6.2 outlines

this process as a phoneme-to-phoneme SMT pipeline, similar to that of Tan et al. (2010).

A phoneme-to-phoneme phrase table is estimated on a set of phoneme-transcribed

source language transcripts and their single-best ASR hypotheses. Optionally, a small

lexicalized reordering model may be estimated to allow the swapping of adjacent phon-

emes.1 A phoneme language model is estimated on the phoneme sequences of the ASR

hypotheses. The weights of the models are optimized using MERT on a held-out devel-

opment set. The trained phoneme-to-phoneme SMT system can perform the following

operations: (1) delete one or more potentially silent or unrecognizable phonemes2 (2)

insert one or more adjacent phonemes3; and (3) exchange phonemes that have similar

context. The resulting system is applied to each lexical entry in the ASR PD to generate

n distorted pronunciation alternatives which are used to expand the dictionary.

6.2 Experiments

We perform experiments on the English-French SLT task from the IWSLT 2014 evalu-

ation campaign (Cettolo et al., 2014), which involves the translation of TED talks in a

lecture scenario.

Our baseline SLT system is a cascaded ASR-MT pipeline. The ASR system is de-

scribed in BabaAli et al. (2014). As a brief summary, the acoustic model is trained on

TED talk videos released before December 31, 2010, corresponding to 820 talks and

about 144 hours of speech after filtering. It uses a deep neural network (DNN) that

is trained using the Karel setup of the open-source Kaldi ASR toolkit (Povey et al.,

2011). It is trained over acoustic features generated in the second pass after having

applied LDA-MLLT-fMLLR transformations with SAT HMMs. An eleven-frame context

window of LDA-MLLT-fMLLR features (5 frames at each side) is used as input to form

a 440-dimensional feature vector. The DNN has 6 hidden layers each with 2048 neu-

rons and is pre-trained with Restricted Boltzmann Machines (RBM), followed by mini-

batch Stochastic Gradient Descent training, and sequence-discriminative training such

1This handles the uncommon scenario where a speaker mispronounces a word (i.e. nuclear
/N UW K L IY ER/ → /N UW K UW L ER/).

2Deletion examples: arctic /AA R K T IH K/ → /AA R T IH K/; figure /F IH G Y ER → /F IH G ER/
3Insertion examples: realtor /R IY AH L T ER/ → /R IY AH L AH T ER/; taut /T AO T/ → /T AO N T/
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Figure 6.2: Phoneme damaging channel pipeline. Phoneme-to-phoneme SMT maps
phoneme sequences from reference transcripts to ASR outputs. Acoustic confusability
is modeled directly in the ASR PD.

as Minimum Phone Error (MPE) and state-level Minimum Bayes Risk (sMBR). The

single-best ASR hypotheses are punctuated, recased, and tokenized prior to being trans-

lated by the MT system. Our ASR system yields a word error rate (WER) of 11.7% on

tst2012.

The baseline MT component of our SLT system is a phrase-based Moses system

(Koehn et al., 2003, 2007), trained on the TED talk training set permitted in the IWSLT

2014 evaluation. Our baseline system features a statistical log-linear model including a

phrase-based translation model (TM) and a lexicalized phrase-based reordering model

(RM), both trained on TED data, a 5-gram language model (LM) trained with IRSTLM

(Federico et al., 2008) on the French side of the TED training corpus, and distortion,

word, and phrase penalties.

6.2.1 Damaging channel

The monotonic phoneme-to-word SMT system is trained on one of three PD configura-

tions: (1) the ASR pronunciations (lex); (2) a TTS-generated set of pronunciations for

each word (tts); or (3) a union of the two (lex+tts). In tts configurations, each word in
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Pron Phoneme Confusion n-best
Dict Types 0 5 10
lex 0.31 M 0.33 M 1.45 M 3.30 M
tts 0.31 M 0.31 M 1.36 M 3.15 M
lex+tts 0.31 M 0.48 M 2.08 M 4.83 M

Table 6.1: Number of word pronunciations modeled in each damaging channel configu-
ration. Phoneme confusability is introduced by translating the PD with a phoneme-to-
phoneme SMT system and appending the n-best pronunciations to the dictionary.

the original PD is converted into phonemes using the Festival TTS system (Black and

Taylor, 1997) with the English CMU pronouncing dictionary.4 Statistics on the number

of pronunciations modeled by each dictionary type are listed in Table 6.1.

The ASR system’s language model is included in the phoneme-to-word SMT system

and all model weights are tuned via MERT and evaluated on bitexts that map clean

source-language transcripts to our ASR system’s single-best hypotheses (tst2010 and

tst2012, respectively). The clean transcripts are transcribed into phonemes, either using

the original PD or by running Festival’s TTS analysis component. The ASR hypotheses

maintain their lexical form.

We additionally augment the pronunciation dictionaries described above with phoneme

confusions using the approach described in Section 6.1.2. The phoneme-to-phoneme

SMT system is trained on English bitexts from tst2010. In this case, both the clean tran-

scripts and their ASR hypotheses are converted into phoneme sequences using Festival.

A 4-gram language model is estimated on the ASR phoneme sequences using IRSTLM.

The model weights are tuned on dev2010. Either a 5- or 10-best list of phoneme sequences

is generated for each word in the PD by translating each TTS-generated phoneme se-

quence into damaged phonemes.

The resulting damaging channel configurations are used to mirror and generate

SMT adaptation data from the TED training bitexts, where the source-side transcripts

are processed through the damaging channel to generate synthetic ASR output. The

synthetic outputs are tokenized, recased, and punctuated prior to being included as

training data.

4In practice, we could also have run the TTS analyzer on an entire corpus to extract additional word
pronunciations, but there were practical issues with implementing this with Festival that are beyond the
scope of this experiment.
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Transcript We’re about to go from six and a half to 9 billion people over the next 40 years
LEX PHONEMES w axr ax b aw t t ax g ow f ah m s ih k s ae n ah hh ae f t ax 9 b ih l iy ax n p iy p el ...
LEX-DAMAGE we’re about to go from six and a half to 9 billion people over the next 40 years
TTS PHONEMES w er ax b aw t t ax g ow f r ah m s ih k s ae n d ax hh ae f t ax n ay n b ih l y ax n p iy p

ax l ...
TTS-DAMAGE were about to go from six and a half to nine billion people over the next forty years

Transcript Their hunters could smell animal urine at 40 paces and tell you what left it behind
LEX PHONEMES dh axr hh ah n t axr z k uh d s m eh l ae n ax m el y uh r ih n ae t 40 p ey s ax z ...
LEX-DAMAGE they’re hunters could smell animal urine at 40 paces and tell you what species left it

behind
TTS PHONEMES dh eh r hh ah n t er z k uh d s m eh l ae n ax m ax l y er ax n ae t f ao r t iy p ey s ax z ...
TTS-DAMAGE their hunters could smell animal urine at forty paisa Zand tell you what species left

Iturbe a hind
TTS-DAMAGE-P2P their hunters could smell animal urine at forty paces as and tell you what species left it

behind

Table 6.2: Example damaging channel output on dev2010, using the original ASR pro-
nunciation dictionary and TTS.

Phone Pron ASR Transcript
Trans Dict BLEU TER BLEU TER
lex lex 74.68 16.20 98.37 0.81

tts∗ 20.39 79.53 25.79 72.05
lex+tts 74.67 16.22 98.27 0.87

tts lex∗ 27.97 58.13 33.57 52.00
tts 47.84 40.37 57.26 32.23
lex+tts 51.73 35.82 61.94 27.15

∗Mismatch between pronunciations.

Table 6.3: Damaging channel models, converting English transcripts into ASR-like out-
puts, evaluated on dev2010. Phoneme conversion uses either the ASR PD (lex) or TTS
(tts). Evaluated on the target ASR texts and the original transcripts. Mismatches be-
tween conversion types are also evaluated.

6.2.2 Synthetic ASR outputs

No phoneme confusions. We first measure how well the damaging channel converts

reference transcripts into ASR hypotheses, compared to how much it diverges from it-

self. A large divergence from the ASR output indicates that the damaging channel is

not modeling ASR errors well, while a small divergence from the original transcript in-

dicates that the damaging channel is just reconstructing the original input. Table 6.3

evaluates the effects of phoneme-to-word translation, without factoring in phonetic con-

fusability, both on the ASR hypotheses and the original, unpunctuated transcripts.5

5While we report both BLEU and TER scores, the TER metric better measures this divergence and it
is closely correlated with conventional WER metrics in ASR evaluation.

103



CHAPTER 6. AUTOMATIC SPEECH RECOGNITION DAMAGING CHANNEL

0

20

40

60

80

100

0 5 10 0 5 10

Eval on ASR Eval on Transcript

T
E

R
 %

# Pronunciation Confusions per 

Phrase Dictionary Entry

Transcript to ASR channel modeling:

English TED (dev2010)

- - PD.lex - Trans.lex - - PD.lex - Trans.tts
- - PD.tts - Trans.lex - - PD.tts - Trans.tts

Figure 6.3: Effects of augmenting the PD with phoneme confusions.

While damaging channel models trained on the original ASR PD (lex) yield TER

scores around 16% against the ASR hypotheses, the damaged texts are virtually the

same as the originals; thus, the damaging channel does not model acoustic confusabil-

ity well enough to transform them. On the other hand, TTS-generated pronunciations

yield TER scores around 40% on ASR hypotheses and a similar amount on the original

transcripts. We find similar results when combining the tts and lex pronunciations with

a 5% absolute TER improvement. Mismatches between phoneme converters (i.e. tran-

scribing transcripts with lex and damaging with a tts-trained damaging system and

vice-versa) yield abysmal results.

Phoneme confusions. Fig. 6.3 shows the effects of phoneme transduction on the

damaging channel. This is done for each of the damaging channel configurations. In

nearly every case, adding up to 10 distorted phoneme sequences to each PD before

training the damaging channel yields nearly a 10% absolute improvement in TER, both

against the ASR outputs and the original transcripts. We also observe that the effects

of merging tts and lex dictionaries becomes insignificant when phoneme confusions are

introduced, since the phoneme-to-phoneme SMT system generates the valid pronuncia-

tion variants as well.

Table 6.2 provides some examples of synthetic ASR outputs on dev2010. In the first ex-
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ample, the numbers 9 and 40 are not in the original ASR PD. The PD-driven damaging

channel (LEX-DAMAGE) treats these as OOV words and dumps the numbers back in the

damaged outputs. During SMT model training, phrases containing these numbers will

never be used in the SLT pipeline. The TTS-driven damaging channel (TTS-DAMAGE)

successfully converts them to phoneme sequences and reconstructs their lexical form.

Additionally, we’re is pronounced with a northwestern accent (/W ER/) by the TTS ana-

lyzer, resulting in the word being reconstructed as were.

The second example demonstrates cases where the TTS-driven damaging channel’s

TM may give higher scores to low frequency words than common words. Paces and
is converted to paisa Zand. This is because the TM assigns uniform probabilities to

phoneme-to-word and word-to-phoneme entries. Since the PD was generated in a data-

driven fashion, junk entries appear that usually are never encountered during ASR de-

coding. However, by introducing phoneme confusions through the phoneme-to-phoneme

SMT system (TTS-DAMAGE-P2P), the TM scores are smoothed with the addition of 5

pronunciations per lexical entry. TTS-DAMAGE-P2P assigns paces a pronunciation with

a dropped “s” (/P EY S AX/) and duplicates /AX/, rendering the damaged output as paces
as and (/P EY S AX AX Z AE N D/). We discuss the TM issue in more detail in Section

6.2.4.

6.2.3 SLT evaluation

We conduct two sets of TED-only experiments to simulate two domain adaptation sce-

narios. In the first set of experiments, the damaged TED transcripts and their trans-

lations are concatenated with the clean TED training data to estimate the translation

model and reordering model (CONCAT). In the second set of experiments, a separate

phrase table is estimated on the damaged bitexts. The source phrases in the damaged

phrase-table that are not present in the baseline TED phrase-table are appended using

the fill-up technique (Nakov, 2008; Bisazza et al., 2011) with a provenance feature that

marks the phrase as synthetic (FILL-UP). The overlapping synthetic phrase pairs are

discarded. To control for optimizer instability (Clark et al., 2011), we run MERT three

times on each experiment and evaluate the performance of each system using the Mul-

tEval toolkit6. Table 6.4 evaluates the adaptation techniques reports on the tst2012 data

set.

We observe statistically significant improvements in BLEU, ranging from 0.6-0.8

6https://github.com/jhclark/multeval
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Phoneme Confusion n-best
System 0 5 10 0 5 10
Baseline 28.44– – 28.44– –
lex 29.1929.0428.92 29.0629.0228.83
tts 29.0829.2429.06 28.9028.5428.94
lex+tts 28.9129.1329.20 28.9028.8428.77

CONCAT FILL-UP

Table 6.4: Evaluation results on tst2012 (in BLEU). Damaged TED transcripts are either
CONCATenated with clean transcripts or used to generate new FILL-UP phrase table
entries on the baseline TED phrase-table.

English ref Since it’s digital, we can do reverse dissection.
ASR output Since its digital we can do reverse dissection .
Baseline MT Depuis que nous pouvons faire son numérique inverser sentinelles .
LEX-DAMAGE Puisque c’ est que nous pouvons faire renverser dissection du numérique .
TTS-DAMAGE Depuis ses digital , nous pouvons faire régresser axillaire .
TTS-DAMAGE-P2P Depuis ses numérique , nous pouvons faire renverser axillaire .
French Ref Puisque c’ est numérique , nous pouvons faire une dissection à l’ envers .

English Ref ... I’ve studied technologies of mobile communication ...
ASR output ... I ’ve studied technologies , of mobile , communication ...
Baseline MT ... j’ ai étudié technologies , de téléphones , la communication ...
LEX-DAMAGE ... j’ ai étudié les technologies de communication , de technologie mobile ...
TTS-DAMAGE ... j’ ai étudié les technologies , de technologie mobile , la communication ...
TTS-DAMAGE-P2P ... j’ ai étudié les technologies de communication , de portable ...
French Ref ... j’ ai étudié les technologies de communication mobile ...

Table 6.5: Example SLT outputs from tst2012, using damaging channel output as con-
catentated training data.

for our CONCAT and 0.4-0.6 for FILL-UP (p < 0.01), with the exception of the TTS-

trained damaging channel. The fill-up results are weaker due to the lack of training

data to estimate each phrase table, yielding less reliable count statistics and subsequent

phrase probabilities. With larger amounts of training data, concatenating corpora gen-

erally causes the larger pool of out-of-domain corpora to dominate the TM (Koehn and

Schroeder, 2007).

Table 6.5 provides examples of end-to-end SLT English-French translations on tst2012,

generated by the baseline SMT system and SMT systems trained with LEX-DAMAGE,

TTS-DAMAGE, and TTS-DAMAGE-P2P. In the first example, the contraction it’s is misrec-

ognized as the possessive pronoun its. While all damaging channel systems permit the

error-tolerant mapping of its to c’est, only LEX-DAMAGE applies it successfully. However,

it comes at the cost of splitting the source phrase it’s digital into two separate phrases

and digital is reordered incorrectly to the end of the sentence.
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The second example demonstrates punctuation errors that change a segment’s mean-

ing. Technologies of mobile communication becomes a list of three items. The baseline

and TTS-DAMAGE-P2P systems translate mobile either as a physical telephone device or

a portable object. LEX-DAMAGE and TTS-DAMAGE-P2P generate translations related to

communication technologies, which captures part of the original meaning. TTS-DAMAGE,

on the other hand, generates a translation for mobile technology. While imperfect, each

damaging channel-trained system manages to reorder phrase pairs in order to cross the

erroneous punctuation boundaries, thereby improving the translation quality.

6.2.4 Analysis

Our damaging channel’s phoneme-to-word TM suffers from forward probability dilu-

tion when multiple pronunciations for a word exist. For instance, LEX-DAMAGE has 12

pronunciations for intercontinental, each with a forward score of 0.077. The problem

is exacerbated when introducing phoneme confusions. The 12 original pronunciations

inflate to 34 and 69 when adding the 5- and 10-best phoneme confusions, respectively,

while a word with a single pronunciation gains a quantity proportional to n. This behav-

ior may result in junk word sequences like in ter continent tall to be favored, in spite

of the word penalty feature and the low LM probabilities. The impact of this issue may

be reduced by weighting the probability distribution by corpus frequencies, or pruning

infrequent junk words.

Additionally, using a single TTS pronunciation for each word proves to be detrimen-

tal to the damaging channel. Gerund words such as doing and creating in the PD are

transcribed with a /IH NG/ suffix in isolation by Festival, but in context they are com-

monly transcribed as /AX NG/ in context.7 No valid pronunciations exist in the phrase

table, causing the damager to back off to nonsense constructions with junk entries like

due a ng and create ng. Phoneme-to-phoneme pronunciation expansions minimize this

effect, at the cost of diluting phrase table scores. Instead, the TTS analyzer should gen-

erate additional pronunciations by processing sentences from a corpus and segmenting

the resulting phoneme sequences.

7This issue is not restricted to words belonging to a particular lexical class. It may occur anytime
there is a mismatch between TTS and the entries in the PD.
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Lang Corpus Segments Types Tokens WER
English APP 1111 2772 14186 16.79
English SKP 290 578 2824 17.36

Table 6.6: Statistics on internal conversational test sets.

6.2.5 Experiments on conversational data

We conducted additional experiments to analyze the utility of our damaging channel

on conversational data from English to several target languages. The ASR system is

described in Aue et al. (2013). The MT system is a typical phrase-based SMT system,

similar to that of Koehn et al. (2007), trained on a large collection of in-house speech

and text data. LM rescoring is applied to lattices of ASR hypotheses, and single-best

ASR hypotheses are preprocessed following the approach of Hassan et al. (2014), prior

to translation.

Our damaging channel is a phoneme-to-word MT system as described in Section 6.1.

The phoneme-to-word phrase table is populated by pronouncing each word in the ASR

PD with an in-house TTS recognition engine. We augment the pronunciations by also

running TTS on a large set of text corpora and mapping pronunciations to the words

in the PD. OOV word pronunciations are discarded. All available training corpora are

duplicated, damaged, and trained as separate phrase tables to be used together with

phrase tables trained with clean data.

We evaluate on two sets of in-house conversational data. Statistics on the English

transcripts from the corpora and WER scores are provided in Table 6.6. Our ASR system

yields WER scores around 17% on the internal corpora. We compare the performance of

our SMT system which includes damaged data (DAMAGE) against a baseline (BASE) that

only uses clean data. Results are shown in Table 6.7, both on the translation of ASR hy-

potheses and reference transcripts. We have two references for English-Mandarin and

one reference for other test sets. All SLT experiments that utilize damaged training

data perform statistically as well or better than the baseline. We observe significant im-

provements on the SKP dataset for English-Italian (+0.3 BLEU), and English-Mandarin

(+1.1 BLEU) and improvements for English-Spanish (+1.3 BLEU) on the APP dataset.

In general, we also observe that utilizing the damaging channel not only improves

the translation quality of ASR outputs, but in many cases also increases the phrase

table coverage on reference transcripts, as well. The increase in coverage yields similar

benefits to augmenting a phrase table with paraphrases (Callison-Burch et al., 2006).
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ASR Transcript
Lang Corpus Base Damage Base Damage
English-Spanish APP 31.54 32.89 40.87 43.89
English-Spanish SKP 24.94 24.93 39.26 40.72
English-German SKP 9.96 10.16 17.72 17.17
Engish-French SKP 22.86 22.71 36.46 35.86
English-Italian SKP 14.35 14.67 22.33 22.71
English-Chinese (Mandarin) SKP 29.56 30.73 34.08 35.40

Table 6.7: Evaluation results on internal test sets (in BLEU) for multiple language
pairs.

6.3 Related work

Techniques to generate synthetic ASR errors have been used for discriminative lan-

guage modeling (Kurata et al., 2009; Jyothi and Fosler-Lussier, 2010; Sagae et al., 2012),

ASR error prediction (Jyothi and Fosler-Lussier, 2009), and speech translation (Aue

et al., 2013; Tsvetkov et al., 2014).

Kurata et al. (2009, 2011) use a weighted finite state transducer (WFST) compiled

from an ASR PD to convert phoneme sequences back into words. The ASR system’s

acoustic model is used to measure confusability between phonemes. Sagae et al. (2012)

propose a variant to phoneme transduction by estimating phoneme substitution prob-

abilities using maximum likelihood estimates on Levenshtein alignments between the

reference transcript and a n-best list of ASR hypotheses. In both methods n-best outputs

were generated and utilized in discriminative LM training.

Tan et al. (2010) implement a similar phoneme-to-phoneme transducer, modeled as

a SMT system and propose its use in conjunction with a FST-based phoneme-to-word

transducer to damage texts. However, they assume that no OOVs are present in the

texts to damage and they did not apply their work on actual MT training data. Our

method uses a TTS analyzer to bridge the crucial gap between the ASR PD and the MT

data. Tsvetkov et al. (2014) extend the method by using a phone confusion transducer.

The transducer allows substitutions based on phone clusters, consonant deletions, vowel

duplications, and suffix insertions. Like Tan et al. (2010), they compose the transducer

with the ASR PD and LM. They apply the transducer on each entry in the SMT phrase

table, generating alternative source phrases.

Our approach is an extension and deeper analysis of the text normalization approach

of Aue et al. (2013), which uses a text-to-speech engine to introduce phonetic confusabil-

ity by generating alternative pronunciations for existing words in an ASR lexicon and
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using phoneme-to-word SMT to reconstruct word sequences constrained in the lexicon.

6.4 Chapter Summary

We have constructed several variants of a damaging channel that utilizes principles of

acoustic and phonetic confusability to model the conversion of sequences of phonemes

to synthetic ASR outputs containing potential errors. In particular, clean texts are con-

verted to phoneme sequences by a TTS analyzer and are subsequently “translated” back

into words based on the observed behavior of an ASR system. Our TTS-driven approach

successfully converts OOV words, acronyms, and numeric sequences into words belong-

ing to a ASR PD and can be used to generate synthetic speech data to adapt a MT system

to the SLT task. Our experiments show that MT systems adapted with damaged texts

are better suited to receive ASR outputs as input than systems trained only on bitexts.

In its current state, the TTS-driven damaging channel performs similarly to config-

urations which directly use the ASR PD. However, the TTS-driven approach is capable

of generating synthetic texts that diverge further from the original transcripts in such

a way that utilizing multiple damaged hypotheses could improve error coverage during

MT training.

One of the problems of the phoneme damaging channel is that the introduction of

acoustic confusions is applied on a discrete set of symbols. GMM/DNN approaches to

acoustic modeling implicitly allow tolerance in recognizing phoneme sequences due to

the fact that it must recognize discrete phonemes from acoustic events in the form of

continuous features. While ASR systems use allophone-based acoustic modeling and

speaker adaptation to to model the variability of the acoustic realizations of a phone

(Yi and Fung, 2003), our model maps discrete symbols to phonemes as a grapheme to

phoneme transduction problem. In the process we lose information about the acous-

tic distance between phonemes that acoustic models learn. One could try to map the

grapheme to phoneme transduction problem used by our approach to convert the prob-

lem into a continuous space through the use of word embeddings and sequence-to-

sequence modeling. However, the process would require more data than that available

in our experiments.
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NEURAL SPOKEN LANGUAGE TRANSLATION

EVALUATION

A substantial amount of progress has been made in Neural Machine Translation

(NMT) for text documents. Research has shown that the encoder-decoder model

with an attention mechanism generates high quality translations that exploit

long range dependencies in an input sentence (Bahdanau et al., 2015). While NMT has

proven to yield significant improvements for text translation over log-linear approaches

to MT such as phrase-based machine translation (PBMT), it has yet to be shown the

extent to which gains purported in the literature generalize to the scenario of spoken

language translation (SLT), where the input sequence may be corrupted by noise in

the audio signal and uncertainties during automatic speech recognition (ASR) decod-

ing. Are NMT models implicitly better at modeling and mitigating ASR errors than the

former state-of-the-art approaches to machine translation? As the final chapter in this

thesis, we analyze the impact of ASR errors on neural machine translation quality by

studying the properties of the translations provided by an encoder-decoder NMT system

with an attention mechanism, against a strong baseline PBMT system that rivals the

translation quality of Google Translate™ on TED talks.

In this chapter, we address the following questions regarding NMT:

1. How do NMT systems react when ASR transcripts are provided as input?

2. Do the ASR error types discussed in this thesis impact SLT quality the same for

NMT as PBMT? Or is NMT implicitly more tolerant against ASR errors?

111



CHAPTER 7. NEURAL SPOKEN LANGUAGE TRANSLATION EVALUATION

3. Which types of sentences does NMT handle better than PBMT, and vice-versa?

In order to address these questions, we explore the impact of feeding ASR hypothe-

ses, which may contain noise, disfluencies, and different representations on the surface

text, to a NMT system that has been trained on TED talk transcripts that do not reflect

the noisy conditions of ASR. Our experimental framework is similar to that of Chapter

4, with the addition of a ranking experiment to evaluate the quality of NMT against our

PBMT baseline. These experiments are intended as an initial analysis with the purpose

to suggesting directions to focus on in the future.

7.1 Neural versus Statistical MT

Before beginning our analysis, we summarize some of the biggest differences between

NMT and other forms of statistical machine translation, such as PBMT, and highlight

some works in the literature that provide some preliminary analyses.

Bentivogli et al. (2016) compare neural machine translation against three top- per-

forming statistical machine translation systems in the TED talk machine translation

track from IWSLT 2015.1 The evaluation set consists of 600 sentences and 10,000 words,

which were post-edited by five professional translators by applying the minimal edits

required to transform each sentence into a fluent output with the same meaning as the

source sentence. In addition to reporting a 26% relative improvement in multi-reference

TER (mTER), Luong and Manning (2015)’s encoder-decoder attention-based NMT sys-

tem trained on full words outperformed well-established state of the art SMT systems

on English-German, a language pair known to have issues with morphology and whose

syntax differs significantly from English in subordinate clauses. Bentivogli et al.’s anal-

ysis yields the following observations:

• Precision versus Sentence length: The NMT system outperformed every compara-

ble log-linear MT system, regardless of the sentence length; however, Bentivogli

et al. confirmed Cho et al. (2014a)’s findings that translation quality deteriorates

rapidly as the sentence length approaches 35 words.

• Morphology: NMT generates translations that have better case, gender, and num-

ber agreement than PBMT systems.

• Lexical choice: NMT made 17% fewer lexical errors than any PBMT system.
1The International Workshop of Spoken Language Translation.
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• Word order: NMT yielded fewer shift errors in the TER alignment between its

outputs and its post-edited reference than any SMT system. NMT yielded signif-

icantly higher Kendall Reordering Score (KRS) values than any PBMT system.

In particular, NMT generated 70% fewer verb order errors than the second-best

performing hybrid phrase and syntax-based (PBSY) system .

While NMT performs better than the log-linear SMT approaches in the areas listed

above, there are several modeling challenges that are exacerbated in NMT. The first

significant difference is that log-linear SMT translation models can handle word vocab-

ularies that are orders of magnitude larger than those of NMT systems. Since each

in-vocabulary token increases the size of the network, including its hidden layers, care-

ful modeling is required in NMT to represent a sufficiently large set of tokens that

adequately covers the source and language vocabularies of the translation task, while

simultaneously maintaining the overall network size to ensure that the model remains

small enough to train on existing architectures. Due to the vocabulary size limitations

imposed by NMT, Hirschmann et al. (2016) observe that only 69% of German nouns

are covered when encoding the English-German WMT 2014 training data into a fixed-

size vocabulary of 30,000 words.2 Although noun compound splitting works well in the

German→English direction, English→German model performance not improve signifi-

cantly. In particular named entities (e.g. persons, organizations, and locations) are un-

derrepresented under the reduced vocabulary size restrictions of modern NMT models.

On the other hand, one major advantage of NMT is the ability to model subword

units such as characters (Chung et al., 2016) or coarser grained segmentations on low

frequency words (Sennrich et al., 2016) without substantial changes to the system ar-

chitecture. The main downside of fine-grained segmentation such in as character-based

models is that the length of the input (or output) string is affected. While both the

encoder and decoder hidden states are modeled by recurrent neural networks architec-

tures that can model long distance dependencies over an entire sequence of observations,

sub-word models increase the time and resources required for training and decoding. A

PBMT system such as that described by Koehn and Schroeder (2007) requires strong

constraints on the distance of reordering operations, as well as the number of tokens

permissible in the source or target language side of the translation model. Likewise,

differences in the orthographic representation of the source and target strings can be

problematic, for example, in Japanese-English or Mandarin-English phrase-based MT

2WMT 2014 training data consists primarily of news texts, European parliament proceedings, and
web crawled data. http://www.statmt.org/wmt14/translation-task.html
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(Chang et al., 2008; Wang et al., 2007). On the other hand, works such as Nakov and

Tiedemann (2012); Neubig et al. (2013) attempt to build translation models that com-

bine full words and substring units. The downside of fine-grained segmentations such

as in character-based models for NMT is that the length of the input affects training

and decoding time, as both the attention and hidden state models are modeled by re-

current neural network architectures that model long distance dependencies over the

entire sequence of observations in an input string. Nevertheless, the representation of

subword units allow the attention model to decide the length and grain of the input

sequence that is useful for decoding each target position.

Firat et al. (2016) have additionally demonstrated NMT’s ability to translate be-

tween multiple language pairs with a neural translation model trained with a single

attention mechanism. While there have been attempts to model multilingual transla-

tion in traditional forms of statistical machine using multi-source machine translation

(Och and Ney, 2001; Schroeder et al., 2009) or pivoting (Cohn and Lapata, 2007; Bertoldi

et al., 2008), most phrase-based and hierarchical MT systems require training on indi-

vidual language pairs.

Although NMT models translate with higher precision, it comes at a large cost: mod-

els are slow to train even with the most powerful graphical processing units – often

taking weeks for the strongest systems to complete training. On the other hand, large or-

der PBMT systems trained in the latest ModernMT framework3 may be trained within

a few hours and can be adapted in near real-time with translation memories containing

translation post-editions by professional translators. We discuss the translation system

and summarize the ModernMT project in Section 7.2.2.

7.2 Research Methodology

Similar to our experimental framework in Section 4.1, we collect the English ASR hy-

potheses from eight research laboratories, which correspond to their English ASR sub-

missions on the tst2012 test set. These ASR hypotheses are segmented into sentences

that match the reference set of the English-French MT track of the evaluation cam-

paign. Coupled with the reference translations from the MT track, we construct our

spoken language translation dataset, consisting of the eight English ASR hypotheses

for 1,124 utterances (8,992 in total), a single unpunctuated reference transcript from

the ASR track, and the reference translations from the English-French MT track. The

3http://www.modernmt.eu
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English ASR hypotheses and reference transcript are normalized and punctuated ac-

cording to the same approach as we described in Section 4.1. We use BLEU (Papineni

et al., 2002) and Translation Edit Rate (TER) (Snover et al., 2006) both as global evalua-

tion metrics. For sentence-level MT quality assessments in our subsequent experiments,

we measure the increase in sentence-level TER, ∆TER as a result of ASR errors in the

source language input. We compute automatic translation scores, sentence-level system

ranking, and take a closer look at the types of errors observed in the data.

In the sections below, we briefly describe the MT systems used in this experiment.

7.2.1 Neural MT system

Our NMT system is based on FBK’s primary MT submission to the IWSLT 2016 eval-

uation for English-French TED talk translation (Farajian et al., 2016). The system is

based on the sequence-to-sequence encoder-decoder architecture proposed in Bahdanau

et al. (2015) and further developed by Luong and Manning (2015); Sennrich et al. (2016).

The network architecture closely follows the system described in our exposition on NMT

in Section 2.4 and is trained on full-word text units to allow a direct comparison with

our PBMT counterpart. We refer to this system as NMT-FULL for the remainder of our

experiments.

7.2.2 Phrase-based MT system

Our phrase-based MT system is built upon the ModernMT framework, designed under

the European Union’s Horizon 2020 research and innovation programme.4 ModernMT

is an extension of the phrase-based MT framework introduced in Koehn and Schroeder

(2007) that enables context-aware translation in a framework that allows for fast and

incremental training. Context-aware translation is achieved through the partitioning

of the training data in homogeneous domains by a context analyzer, which permits the

rapid construction of domain-specific translation and language models. The context an-

alyzer also permits a rapid interpolation of the translation, reordering, and language

sub-models based on the context received during a decoding run and the underlying

models may be modified online. Given an input sentence and its context,5 the context

analyzer returns a list of semantically similar example instances which are used to

customize domain-adapted models on-the-fly that represent the domain of the transla-

4https://ec.europa.eu/programmes/horizon2020/
5The context usually consists of the full document to which the input sentence belongs.
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tion task, The adaptive translation and reordering models compute scores exploiting

suffix-array and ranked sampling driven by the context analyzer output. The adaptive

language model computes its score as a weighted linear combination of domain-specific

LMs, where weights are again provided by the context analyzer. The decoder also ex-

ploits other standard features (phrase, word, distortion, and unknown word penalties)

and performs cube-pruning search. A detailed description of the ModernMT project can

be found in Bertoldi et al. (2016). We refer to this system as MMT for the remainder of

our experiments.

7.3 SLT Evaluation

We first report the translation results on the evaluation task in Table 7.1. The results

compare NMT-FULL’s translation performance against the ModernMT version of PBMT

(MMT). NMT outperforms our best PBMT system by 4.5 BLEU in the absence of ASR

errors (gold). In the presence of ASR errors, we note that while the NMT-FULL results

outperform those of MMT, the lead is reduced to approximately 3 BLEU across all ASR

hypothesis inputs. Given the high starting point of NMT-FULL on the gold standard,

we expected it to outperform MMT. Overall, the introduction of ASR errors results in de-

creases in BLEU by 5.5(±0.8) and 5.4(±0.8) and TER increases of 6.0(±0.9) and 6.2(±0.9)

for MMT and NMT-FULL, respectively.

Table 7.2 provides a sentence-level view of the evaluation results by providing the av-

erage sentence level TER scores, as well as average sentence-level ∆TER scores, which

MMT NMT-FULL

ASR system WER BLEU TER BLEU TER
gold 0.0 43.40 39.50 47.90 35.40
fbk 16.5 35.60 48.40 38.50 45.60
kit 10.1 38.10 45.00 41.80 41.70
mitll 11.4 37.70 45.80 41.40 42.40
naist 10.6 38.10 45.00 41.80 41.50
nict 9.2 38.70 44.70 42.50 41.10
prke 16.6 34.90 48.70 38.10 45.80
rwth 11.7 37.20 46.10 41.40 42.30
uedin 12.3 37.30 46.10 40.80 42.90

Table 7.1: A comparison of Neural MT versus Phrase-based MT on the SLT evaluation
of TED talks (tst2012) from the IWSLT 2012 evaluation campaign. Evaluation results
are compared to a gold standard that assumes that no ASR errors occur.
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MMT NMT-FULL DIFFERENCE

SysID TER ∆TER TER ∆TER TER ∆TER
gold 39.6 0.0 35.6 0.0 -4.0 0.0
fbk 49.3 9.7 46.6 11.0 -2.7 1.3
kit 45.9 6.3 42.7 7.1 -3.2 0.8
mitll 46.8 7.2 43.7 8.1 -3.1 0.9
naist 45.6 6.1 42.1 6.5 -3.5 0.5
nict 45.1 5.5 41.9 6.3 -3.1 0.9
prke 49.4 9.8 46.5 10.9 -2.9 1.1
rwth 47.0 7.4 43.2 7.6 -3.8 0.2
uedin 46.7 7.1 43.8 8.2 -2.9 1.1

Table 7.2: Average utterance-level translation TER and ∆TER scores for the MMT and
Neural MT systems. The average Neural MT TER scores are an absolute 3% better than
the PBMT counterpart.

report the degradation of SLT quality by the presence of ASR errors. We observe that

although the average TER scores from the MMT outputs are higher, the ∆TER scores are

lower than their NMT-FULL counterparts, implying that the MMT SLT outputs are closer

to their gold standard MT outputs. This may imply that PBMT may be less sensitive to

local changes to an input caused by minor ASR errors.

7.3.1 MT system ranking

These results above lead us to raise the question: “Are there ASR error conditions in

which PBMT remains a better solution than NMT, and if so, what are the properties

of these utterances that makes them difficult for NMT?” To address this question, we

take a closer look at the sentence-level translation scores by ranking the performance of

each MT system on the utterances where ASR errors exist, in order to understand how

each MT system handles noisy input. For each utterance, we rank the systems based

on their the sentence-level TER scores computed on their translation outputs over each

ASR hypothesis. We also mark ties, in which both systems yield the same TER score.

Results are provided in Table 7.3.

NMT-FULL consistently produces better scoring translations in terms of TER over

47% of the utterances better than MMT. The NMT-FULL and MMT scores are tied on

over 20% of the utterances. The middle of Table 7.3 contains counts and percentage of

the wins by each system. For the better performing ASR systems (e.g. NICT, KIT), we

observe a slightly higher proportion of utterances with better NMT translations and
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TER (avg)
Lab Winner Count Percentage MMT NMT-FULL

fbk
MMT 257 32.4 51.1 64.0
NMT-FULL 373 47.1 58.9 44.5
Tie 162 20.5 54.1 54.1

kit
MMT 213 30.6 46.3 59.1
NMT-FULL 347 49.9 55.0 41.1
Tie 135 19.4 52.9 52.9

mitll
MMT 194 27.6 48.4 61.4
NMT-FULL 351 49.9 55.5 41.5
Tie 159 22.6 52.2 52.2

naist
MMT 189 28.3 43.9 56.5
NMT-FULL 342 51.2 54.8 41.2
Tie 137 20.5 52.5 52.5

nict
MMT 184 31.8 46.3 58.4
NMT-FULL 286 49.4 54.0 40.8
Tie 109 18.8 56.0 56.0

prke
MMT 256 31.6 48.0 60.3
NMT-FULL 378 46.7 57.7 44.1
Tie 175 21.6 55.8 55.8

rwth
MMT 221 29.9 47.0 59.2
NMT-FULL 383 51.8 55.5 41.3
Tie 135 18.3 55.0 55.0

uedin
MMT 219 30.6 47.9 59.2
NMT-FULL 348 48.7 56.5 42.8
Tie 148 20.7 52.2 52.2

Table 7.3: Ranked evaluation of the SLT utterances containing ASR errors in tst2012.
(Left) Counts of the winner decisions and the percentage of all of the decisions that
were influenced by ASR errors. (Right) Mean TER scores across each sentence in the
ranked set. The remainder of winner decisions are made on error-free ASR transcripts.

a reduced number of ties. On the right-hand side of the table we report the average

TER scores within each ranking partition of the data. For example, for the utterances

that are translated better by MMT, we observe that the average TER scores for NMT-

FULL have an absolute average improvement of 10% in TER over MMT. The converse

is also true, suggesting that there is a subset of utterances that MMT translates better

than NMT-FULL. We now focus on these utterances and determine whether the ranking

decisions made under noisy scenarios matches the scenario where the utterance was

recognized perfectly.

The distribution of wins reported in Table 7.3 suggests that systems with more ASR

errors seem to have a greater percentage of sentences that are either scored higher by

MMT or are ties. We look into this more closely by plotting the changes in MT system

ranking as we shift from a gold standard ASR to the actual ASR results from each

system in the evaluation. Figure 7.1 shows the distribution of ranking decision pairs
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Figure 7.1: Changes in MT system rankings as ASR errors are introduced. Tuples are
labeled by (MT rank, SLT rank).

by ASR system. Across all ASR outputs, 70.2% of the MT evaluation ranking decisions

remain the same when ASR errors create noisy input. Of the 29.8% of changes, an

average of 40.8% favor NMT-FULL and 29.8% favor MMT across all systems. There are

fewer cases of mismatches between the gold ranking decisions as the WER of the ASR

system decreases.

7.3.2 Translation examples

We provide three examples of key differences between in how NMT-FULL and MMT mit-

igate FBK’s ASR errors Figure 7.3. In utterance U4, NMT-FULL is missing the transla-

tion of two content words from its vocabulary. In the absence of errors NMT-FULLgold

passes the source word “embody” through to its output without translating it. During

ASR, “embody” is misrecognized as “body”, which could either be a source word passed

through to the translation, or potentially a French piece of lingerie. We find it strange

that “body” was not translated as “corps”, given that other utterances containing “body”

receive that translation. After investigating further, we came across other cases of gold

transcripts where “body” was not translated at all. Utterances U212, U214, and U242
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U212 I call myself a body architect. je m’ appelle un corps architecte .
U214 As a body architect, I fascinate

with the human body
en tant qu’ architecte , je me suis
retrouvé avec le corps humain

U242 As a body architect, I’ve created en tant qu’ architecte , j’ ai créé

Figure 7.2: Examples where NMT translates “body architect” differently, based on its
context. U214 and U242 drop the word “body” altogether.

have the phrase “body architect”, but only U212 has a translation for the word “body”

(shown in Figure 7.2). It is likely that NMT may not be able to fully translate contextual
patterns it hasn’t observed before. MMT on the other hand provides valid translation for

both words; although the meaning of the sentence is lost due to the translation of ASR

errors. As a PBMT system, it will translate phrases consistently, as long as there is not

another overlapping phrase pair in the translation model that leads to a path in the

search graph with a higher translation score.

Utterance U85 shows longer range effects of ASR errors on translation in NMT. In

the translation of ASRgold, both MT systems translate the expression “stepped back”

in the sense of “returned”. MMTgold reorders “centre” incorrectly. ASRhyp has a single

error where the past tense suffix “-ed” on “step” was lost. NMT-FULLASR provides an

adequate translation as “je recule”, but in the process, the attention mechanism seems

to have taken the incorrect source word and translation as context that corrupts the re-

mainder of the translation. While MMTASR makes a translation error at the beginning of

the sense, the remainder of the translated sentence remains the same as its gold trans-

lation. This suggests that ASR errors may have longer range effects on NMT systems in

languages that are even observable in sentences that lack long distance dependencies.

Utterance U296 demonstrates an example where misrecognitions of short function
words can cause the duplication of content words in NMT. While MMT handles the

misrecognition “and”⇒“an” by backing off by translating it independently from other

phrases in the sentence, NMT-FULL, attaches “photo” both to the article “an” and addi-

tionally outputs “photo” at its usual position. As an innocuous closed-class word error

that could happen often in ASR outputs, this could be a potentially significant problem

in NMT.
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TER ∆TER
ASRgold I embody the central paradox. (U4)
ASRhyp I body the central paradox.
Trans j’ incarne le paradoxe central .
MMTASR je corps au paradoxe central . 50.0 50.0
NMT-FULLASR je body le paradoxe central . 33.33 16.66
MMTgold j’ incarne le paradoxe central . 0.0
NMT-FULLgold j’ embody le paradoxe central . 16.67
ASRgold But when I stepped back, I felt myself at the cold,

hard center of a perfect storm.
(U85)

ASRhyp But when I step back, I felt myself at the cold, hard
center of a perfect storm.

Trans mais quand j’ ai pris du recul , je me suis sentie au
centre froid , et dur d’ une tempête parfaite .

MMTASR mais quand j’ ai [] du recul , je me sentais au froid ,
dur centre d’ une tempête parfaite .

21.74 -17.39

NMT-FULLASR mais quand je recule , je me sentais dans le froid
et le centre d’ une tempête parfaite .

47.83 13.05

MMTgold mais quand je suis revenu , je me sentais au froid ,
dur centre d’ une tempête parfaite .

39.13

NMT-FULLgold mais quand je suis revenu , je me sentais au centre
froid et dur d’ une tempête parfaite .

34.78

ASRgold And he emailed me this picture. (U296)
ASRhyp An emailed me this picture.
Trans il m’ a envoyé cette photo .
MMTASR un m’ a envoyé cette photo . 14.29 0.0
NMT-FULLASR une photo m’ a envoyé cette photo . 28.57 14.28
MMTgold et il m’ a envoyé cette photo . 14.29
NMT-FULLgold et il m’ a envoyé cette photo . 14.29

Figure 7.3: Three examples of changes in NMT errors (NMT-FULL) caused by ASR er-
rors: (1) the effects of unobserved context; (2) long distance effects of local ASR errors;
(3) duplication of content words caused by substitution errors on short function words.
Alternative translations are provided by MMT. TER and ∆TER scores are reported for
each sentence translated by NMT-FULL and MMT.

7.4 Mixed-effects analysis

In order to quantify the effects of ASR errors on each system, we build linear mixed-

effects models (Searle, 1973) in a similar manner to our mixed-effects analysis Section

4.1 in Chapter 4. We construct two sets of mixed-effects models, using the word error

rate scores of the 8 ASR hypotheses as independent variables and the resulting increase

in translation errors ∆TER as the response variable. The models contain random effect

intercepts that account for the variance associated with the ASR system (SysID), the

intrinsic difficulty of translating a given utterance (UttID), and a random effects slope

accounting for the variability of word error rate scores (WER) across systems. Instead of
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WER-only (null model)
NMT-FULL MMT

Fixed effects β Std. Error β Std. Error
(Intercept) 4.35×10−3 2.68×10−3 −2.08×10−5 1.92×10−3

WER 6.09×10−1 1.98×10−2 • 5.58×10−1 1.85×10−2 •
Random effects Variance Std. Dev. Variance Std. Dev.
UttID (Intercept) 5.64×10−3 7.51×10−2 2.56×10−3 5.06×10−2

WER 2.33×10−1 4.82×10−1 2.24×10−1 4.73×10−1

SysID (Intercept) 0 0 0 0
Residual 5.45×10−3 7.38×10−2 3.82×10−3 6.18×10−2

WERbasic (Levenshtein alignment errors)
NMT-FULL MMT

Fixed effects β Std. Error β Std. Error
(Intercept) 4.87×10−3 2.69×10−3 −5.76×10−5 1.93×10−3

WER.S 6.80×10−1 2.10×10−2 • 5.35×10−1 1.96×10−2 •
WER.D 4.28×10−1 2.41×10−2 • 5.94×10−1 2.20×10−2 •
WER.I 5.59×10−1 3.01×10−2 • 5.98×10−1 2.68×10−2 •
Random effects Variance Std. Dev. Variance Std. Dev.
UttID (Intercept) 5.73×10−3 7.57×10−2 2.58×10−3 5.08×10−2

WER 2.33×10−1 4.83×10−1 2.26×10−1 4.75×10−1

SysID (Intercept) 0 0 0 0
Residual 5.29×10−3 7.28×10−2 3.81×10−3 6.17×10−2

Table 7.4: Mixed-effects summary, comparing Neural MT (NMT-FULL)’s tolerance
against ASR errors as compared to Phrase-based MT (MMT). Top: Fixed and random
effects for models modeling the WER score as a single predictor of translation ∆TER.
Bottom: Fixed and random effect for models decomposing WER into the basic alignment
error operations. Random intercepts account for variances by utterance (UttID) with a
random slope associated with the WER score, and by ASR system (SysID). Statistical
significance at p < 10−4 is marked with •.

treating each different MT system as a random effect in a joint mixed-effect model, we

construct a mixed-effects model for each MT system with the purpose of comparing the

degree to which each ASR error type explains the increase in translation difficulty. The

models are build using R Core Team (2013) and the lme4 library (Bates et al., 2014).

Our first models, (WER-only), use the raw WER score as a predictor of ∆TER. Our

second models break WER into its substitution (S), deletion (D), and insertion (I) error

alignments. Although we propose the use of phonetic substitution spans in our analysis

of Chapter 4, we leave them out here because these preliminary experiments do not ac-

count for the syntactic properties of the errors. The phonetically-oriented alignment ap-

proach of Ruiz and Federico (2015) is useful for future analyses that focus the linguistic

properties of the error types, which requires more precise word-level alignments than

offered by the conventional bag of alignment errors computed in conventional WER.
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The fixed-effects coefficients and the variance of the random effects for each model are

shown in Table 7.4.

WER score only Our first NMT-FULL and MMT mixed-effects models focus on the ef-

fects of the global WER score on translation quality (∆TER). Our fitted models claim

that each point of WER yields approximately the same change in ∆TER for NMT-FULL

and MMT (roughly 0.61± 0.02, versus 0.056± 1.9 for NMT-FULL versus MMT, respec-

tively).

ASR Levenshtein error alignments Our second model breaks up WER into a bag

of substitution (S), deletion (D), and insertion (I) error alignment counts, each being

normalized by the length of the reference transcript. In particular, we observe that NMT-

FULL assigns higher penalties to substitution errors than MMT. This observation holds

for examples as shown above, where small substitution errors can cause long distance

translation effects and dropped words.

7.5 Chapter Summary

We have introduced a preliminary analysis of the impact of ASR errors on SLT for mod-

els trained by neural machine translation systems. In particular, we identify the follow-

ing as areas to focus on in new research in evaluating NMT for spoken language trans-

lation scenarios: (1) contextual patterns not observed during training – SMT systems

usually can back off to shorter sized entries in their translation table; NMT behavior can

be erratic. (2) localized and minor ASR errors can cause long distance errors in transla-

tion. (3) NMT duplicates content words when minor ASR errors cause the modification

of function words.

As a preliminary work, there are many areas to expand upon. To analyze the effects

of the phenomena observed above, we recommend several experiments. We observed

examples in the paragraphs above where the content word “body” was either passed

through during decoding or omitted altogether. Without a deeper look into the behavior

of the decoder, is not clear why the NMT decoder would not attempt to translate the mis-

recognized phrase “I body” from Utterance U85 in Figure 7.3 similar manner as MMT’s

hypothesis “je corps”, nor is it clear why multiple contexts containing “body architect”

drop the word “body” altogether in the translation.
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Perhaps a more interesting problem is to understand the effects of minor substitu-

tion, deletion, and insertion errors involving short function words on translation quality.

In Chapter 4, we showed that these error types have a strong impact on translation

quality. We showed in Section 7.3.2 an example of a noun being overproduced due to the

substitution of a conjunction with a determiner. In phrase-based machine translation

systems, isolated instances of these error types affect the translations of phrases in a

small window of context. However, a PBMT system uses hypothesis stacks that words

already covered in each step of translation decoding. Tu et al. (2016) recently identi-

fied this problem and proposed a coverage vector to keep track of the history of previ-

ously translated words to help the attention model address untranslated source words.

Appendix Table A.5 consistently lists substitution errors between determiners, preposi-

tions, pronouns, and conjunctions among the top 10 substitution error types present in

the tst2012 dataset. We recommend an ablation test where function words are randomly

inserted and dropped from sentences to measure their effects on NMT translations. This

could also be a good use for our ASR damaging channel, proposed in Chapter 6, which

synthesizes ASR-like errors on text data.

Thus far, we have modeled NMT-FULL, which uses full-word representations. We in-

tend to explore the effects of input and output representations on error tolerance. For

example, does subword unit or character-based modeling allow the attention mecha-

nism to reach over ASR errors due to phonetic confusions?

We will expand this analyses in this chapter further to include mixed-effects models

that account for errors that can be tolerated with subword units.
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CONCLUSION

Spoken language translation operates in the intersection between automatic speech

recognition (ASR) and statistical machine translation (SMT). Currently the most

widely accepted approach of combining ASR and SMT is by treating SMT as

a downstream task that receives the outputs of ASR and decodes it. This approach

has the advantage that enables each component to be trained independently, given

the paucity of bilingual training corpora that simultaneously contains audio recordings,

recording transcripts, and translated transcripts. The overall training time for reduced

as each component may relax its dependency assumptions and focus on local optimiza-

tion against its own evaluation metric – e.g. word error rate for ASR; BLEU (Papineni

et al., 2002) or TER Snover et al. (2006) for SMT.

However, the ease of training comes at a cost. Conventional SMT systems do not

model noisy input texts as part of their training process, in part due to the paucity of

ASR training data that simultaneously contains a reference translation. Instead, the

SMT system expects to receive clean, well-formed source language texts that match its

system training conditions. While the SMT system has been trained to generate fluent

output on well-formed sentences, the search space of adequate translations is inaccessi-

ble in the presence of speech recognition errors, as the statistics representative of noisy

texts are too sparse in the SMT models to generate coherent sentences. Additionally,

the introduction of ASR substitution errors on content words in the source utterance

can transform the meaning of the utterance, rendering it impossible for SMT to provide

a correct translation, largely because under normal training conditions the SMT has no
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way to model phonetic confusions of similar sounding words.

In order to understand and respond to these deficiencies in existing spoken language

translation (SLT) models, we performed several analyses, comparing the difficulty of

translating speech versus text, and proposed techniques to (1) incorporate shallow dis-

course context to adapt machine translation models toward lectures, and (2) to model

the noisy channel scenario in MT training by synthesizing ASR errors. Our analyses and

experiments were evaluated primarily on the translation of TED talks from English to

French.

In our preliminary analyses, we evaluated the differences in the task of translat-

ing TED lectures as a representative of spoken discourse versus a comparable size of

news commentaries collected for evaluation at the Workshop on Machine Translation.

In the translation from English to German, we observed that while spoken language

registers such as TED talks are comprised of shorter sentences with less reordering

behavior and stronger predictability than written news registers, the increased occur-

rence of anaphora require translation systems to be mindful of antecedents within the

discourse to ensure that gender, number, and case agree in its translations. Likewise,

the increased usage of polysemous verbs and nouns can be a boon or a curse, depending

on the language pair – for languages that use similar common words to express the

same concepts, this behavior makes translation easier, while for language pairs such as

English-Mandarin, this can be problematic (Palmer and Wu, 1995).

We next extended our analysis into the realm of spoken language translation by

analyzing the impact of speech recognition errors on the translation quality of a ma-

chine translation that has not been adapted for the English to French spoken language

translation scenario. We performed a linear mixed effects regression analysis, using the

submissions of eight automatic speech recognition hypothesis sets for the IWSLT 2013

TED English ASR track and evaluate a strong SMT baseline system’s degradation, mea-

sured by the increase in translation edit rate (TER) scores against the translation of

clean texts. We aligned the ASR word recognition errors between the ASR hypotheses

and their reference transcripts by using a custom Levenshtein alignment process that

involves phonetic alignments and annotated each word with its word class information.

We observed a significant effect of substitution errors involving phonetically similar

spans of one or more words (e.g. anatomy⇒and that to me) on translation quality and

used this information as inspiration for error modeling in SMT.

Next we addressed the need for spoken language translation systems to use shallow

discourse context to adapt the machine translation models to improve consistency and
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precision through an approximate language model adaptation approach based on bilin-

gual latent semantic analysis that fits well in the log-linear framework for conventional

statistical machine translation systems. Our approach works to adapt the MT models to

account for word distribution changes based on minor shifts in topic that occur during

lectures such as TED talks, based on a small sliding window of context. We demonstrate

that both the monolingual input strings and the translations of previous segments can

improve translation accuracy.

As an error modeling strategy for SMT, we developed an ASR damaging channel
which uses machine translation strategies to decompose textual machine translation

training data into ASR-like outputs by minimally supervising the ASR errors caused

by acoustic confusions on a small development set. The damaging process first normal-

izes all textual data into phonemes and reconstructs words by building a translation

model from an ASR system’s pronunciation dictionary and language model. The damag-

ing channel was applied to entire collections of text corpora and the resulting outputs

were added to the training corpora available for MT training. Evaluation on English-

French TED talk translation demonstrated that the inclusion of damaged training data

improves the robustness of a MT system with respect to ASR errors.

In our outlook for the future of spoken language translation, we turned our atten-

tion to neural machine translation (NMT) and performed a preliminary assessment of

NMT’s inherent robustness against ASR errors, in comparison to conventional phrase-

based machine translation by studying the impact of ASR errors on MT, using the same

TED English-French SLT dataset as described above. Our preliminary results identified

NMT’s sensitivity to localized ASR errors on function words; given that NMT allows long

distance word dependencies to be modeled, the lexical translation of content words can

be affected by minor ASR errors on constituents belonging to a different region of the

sentence. We additionally observed duplications of content word translations, caused by

minor ASR substitution and insertion errors. While NMT consistently yielded higher

automatic translation quality scores than our strong phrase-based machine translation

baseline, the errors found in our initial experiments warrant deeper analysis to under-

stand how even minor ASR errors can cause significant adequacy issues for NMT.

As we look forward to the future of spoken language translation in light of the emer-

gence of deep neural networks in speech recognition and machine translation. Already,

ASR systems are achieving unprecedented recording in recognition accuracy on a num-

ber of tasks, including the recent report by Xiong et al. (2016) on conversational ASR.

While ASR accuracy continues to increase with the latest neural architectures, there re-
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mains a number of languages and environment contexts which ASR systems continue

to struggle with; thus, we are confident that error modeling approaches similar to those

proposed in this thesis will continue to be necessary for increased spoken translation

performance.

It is exciting to be living in a time where machine translation has become a viable

solution in many interaction contexts. In addition to leading research laboratories such

as Microsoft Research, Google, and Systran’s flagship translation applications, the con-

sumer market is starting to fill with products including phone translation applications,

wearable translation devices, and optical character recognition and translation. We are

excited to be among the community of researchers who are actively working toward

breaking down communication barriers through advancements in speech and language

technologies.
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NOTES

Included are some extra details regarding our SLT error analysis experiments on the

TED data from Chapter 4.

A.1 Experiment data

Fig. A.1 provides an example of the hierarchical nature of random effects in a mixed-

effects model. The fixed effects are the measurable results of a particular speech recog-

nition output; however our mixed-effects model accounts for the variance inherit in a

particular ASR system or utterance. For each ASR system, we decode a sample of 580

utterances; thus the mixed-effects model needs to account for the hierarchical nature of

random effects. By controlling for random variance, the model is assumed to generalize

better for any arbitrary ASR system and utterance that resembles English TED talks

than a regression model trained on a single ASR system.

A.2 Data preparation

IWSLT’s ASR submissions are in lowercase, lack punctuation, and do not have embed-

ded segmentation. We use the segmentation file provided in the SLT track to induce

segmentation. After segmentation, we use the documentation provided in the IWSLT
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Utterances: 580  
(UttID) 

ASR Systems: 8 
(SysID) 

Population 

FBK 

1 n 

UEDIN 

1 n 

…

… … 

Figure A.1: Illustration of hierarchical random effects in our SLT quality experiments.
The random effects represent the eight ASR systems used in the IWSLT 2014 evalua-
tion, which are drawn from a theoretically large population of ASR systems. For each
system, we transcribe 580 utterances derived from the audio samples of tst2012.

evaluation campaign to find and match each source transcript and ASR hypothesis with

the tst2012 set from the MT track. While we follow a similar approach to our previous

paper, we revisit a number of preprocessing steps in order to minimize the effects of the

following phonemena:

• Reference-oriented text normalization

– British to American English lexical normalization

– Hyphenation

– Word compounding

– Contractions/Expansions

– Number and date normalization

• Word tokenization

• Punctuation

• Recasing

In the case of text normalization and punctuation, we rely on the punctuated ASR

references (the original TED transcripts) to provide guidance on how to properly prepro-

cess the ASR hypotheses. We do the data gathering process in this order:

1. Normalize British English words into American English words on the ASR hypo-

thesis;
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2. Pre-compute WER and POWER and their Levenshtein alignments, before other

normalization steps;

3. Apply text normalization to the ASR hypothesis with respect to the words in the

unpunctuated ASR reference, based on their Levenshtein alignment;

4. Re-compute WER and POWER and their Levenshtein alignment;

5. Perform POS tagging on the reference and hypothesis; bind the POS tags to the

Levenshtein alignments;

6. Apply “oracle” punctuation insertion on the ASR hypothesis by borrowing the

punctuation from the reference, based on Levenshtein alignment;

7. Tokenize the reference and hypothesis;

8. Recase the hypothesis;

9. Translate the hypothesis and reference with our baseline SMT system; compute

evaluation scores (e.g. BLEU, TER, and METEOR);

10. Compute ∆BLEU, ∆TER, ∆METEOR for each sentence;

11. Collect delta MT metrics, WER, and broken-down WER scores for WER- and

POWER-based error alignments.

We explain each of the steps in further detail below.

A.2.1 Text normalization

Prior to evaluating hypotheses from ASR systems, the DARPA Hub-4 evaluation plan

(Pallett et al., 1998) and subsequent ASR evaluations such as NIST’s Rich Transcrip-

tion tasks (Garofolo et al., 2002) used an evolving normalization script to prevent pe-

nalization for minor orthographic variations such as multiple spellings (e.g. British vs.

American English), compound words (e.g. “storyline” vs. “story line”), and contractions

(e.g. “it’s” vs. “it is”). Assuming that a phrase-based SMT system in the SLT pipeline is

trained on ASR reference transcripts, orthographic variances in ASR outputs can result

in out-of-vocabulary words or under-represented source language n-grams in the trans-

lation model, further degrading machine translation quality. Although both the ASR
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hypotheses and the reference transcripts were normalized in prior evaluations, our ex-

periments require the ASR reference to remain unmodified in order to properly evaluate

the translation of ASR outputs against translation of the original TED transcripts.

British to American English Although the TED talks are transcribed in American

English most of the ASR submissions use British English, We use the varcon tool from

SCOWL1 to convert British English words to American English. SCOWL is a database

of information on English words useful for creating word lists suitable for spell checkers

of various English dialects.

Contractions, numbers, acronyms, and abbreviations In order to carry out the

remainder of the text normalization, we require that the hypothesis and reference words

are orthographically consistent. We use SCLITE to perform an initial alignment be-

tween the reference and hypothesis and use the alignments to find the orthographic

differences in the hypothesis that need correction.

A.2.2 Re-alignment of errors

After applying the proper text normalization, we recompute WER and POWER with

their associated word alignments.

A.2.3 Punctuation insertion

Again, we rely on the POWER alignment to apply punctuation on the hypothesis. We in-

sert punctuation in two steps. First, we apply a character-based alignment between the

unpunctuated and the punctuated reference to segment the punctuation, which appear

as insertion errors. Then we pivot around the POWER alignment to assign the punctu-

ation to a particular slot. If punctuation appears at the end of the reference utterance,

it is forced to the end of the hypothesis utterance.

A.2.4 Recasing

We trained a recaser using the Moses tools on the IWSLT 2013 English TED training

data and apply it to the normalized, punctuated ASR hypotheses.

1https://github.com/kevina/wordlist
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A.2.5 Translation and evaluation

We use the defualt English-French TED-only system trained by the providers for the

WIT3 corpus. The system is trained on the English-French training sets for the MT

track in IWSLT 2013. We translate each of the normalized, punctuated, and recased

ASR hypotheses, as well as the punctuated ASR referenceerence and evaluate using

MultEval v0.3 (Clark et al., 2011) to compute BLEU, TER, and METEOR, both on the

sentence level and the summary level. In order to measure the effects of particular ASR

errors on translation quality, we are interested in the amount each sentence-level metric

changes when ASR errors are introduced.

Using TER as an example, we control for the difficulty of translating an otherwise

perfect speech recognition hypothesis, we use the difference between the TER associated

with translating the perfect ASR reference and the TER associated with translating the

ASR hypothesis, labeled as ∆TER:

(A.1) ∆TER=TERASR −TERgold,

where TERgold is the TER score for a perfectly recognized utterance, and TERASR is

the TER score on the translation of the ASR hypothesis. By using ∆TER, we assume

that TERgold is the upper-bound on translation quality with the given SMT system. The

equations for ∆BLEU and ∆METEOR are derived in the same way. Note that ∆TER is

expected to be positive, while the others should be negative.

A.3 Outlier removal

Let’s look at the relationship between ASR’s WER and MT’s ∆TER in order to better

understand the data. This plot doesn’t separate each ASR system (SysID) or each utter-

ance (UttID), but it helps us to spot potential outliers. In principle, a increase in WER

should yield an increase in TER. We see several outliers in the data. Some of the out-

liers may be due to some anomalies in the text normalization process described above,

while others could be due to data that is extreme in nature. For example, a single error

in a short utterance yields a high WER. However, due to deficiencies in our translation

metrics, a single deletion error could actually improve the translation score, although

the adequacy of the translation utterance would be poor.

Table A.1 shows some examples. The first example shows how a simple morpholog-

ical error yields a better translation score; however, the main difference in the trans-
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Figure A.2: ASR errors (WER) vs. change in MT errors (∆TER) by ASR system, before
outlier removal.
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Figure A.3: ASR errors (WER) vs. change in MT errors (∆TER) by ASR system, after
outlier removal.

134



A.3. OUTLIER REMOVAL

0.00

0.25

0.50

0.75

1.00

1.25

fbk kit mitll naist nict prke rwthuedin
System

P
O

W
E

R

−0.5

0.0

0.5

1.0

1.5

fbk kit mitll naist nict prke rwthuedin
System

D
el

ta
 T

E
R

−1.0

−0.5

0.0

fbk kit mitll naist nict prke rwthuedin
System

D
el

ta
 B

LE
U

−0.8

−0.4

0.0

fbk kit mitll naist nict prke rwthuedin
System

D
el

ta
 M

E
T

E
O

R

Figure A.4: (Pre-outlier removal) Boxplots describing the distribution of ASR errors
(POWER) and their impact on translation errors by ASR system and utterance.
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Figure A.5: (Post-outlier removal) Boxplots describing the distribution of ASR errors
(POWER) and their impact on translation errors by ASR system and utterance.
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UEDIN #98 (WER: 0.25, ∆TER: -0.25) NAIST #293 (WER: 0.14, ∆TER: -0.14)
ASR Ref So case closed , right ? Our disciplinary conventions were funny as well .
ASR Hyp So case close , right ? Disciplinary conventions were funny as well .
ASR Ref trans Donc cas fermé , pas vrai ? Notre disciplinary conventions étaient drôle aussi .
ASR Hyp trans Donc cas près , non ? Disciplinary conventions étaient drôle aussi .
French Ref La discussion est close , non ? Nos conventions disciplinaires étaient drôles aussi .

Table A.1: Outlier examples with negative ∆ TER scores from tst2012.

lation is the translation of the tag question, “right?”, which is likely due to a weakly-

trained SMT system.

The second example demonstrates an ASR system dropping a possessive determiner.

TER penalizes a mistranslation of “our” in the ASR reference (“notre”), whose object is

plural: the substitution error “nos” → “notre” is penalized over a deletion error. Likewise,

the ratio of matched n-grams is affected by utterance-level BLEU and METEOR.2

In order to correct them, we discard entries that meet one or more of the following

criteria:

• WER ≥ 1: 36 utterances

• Less than 5 words in the ASR reference: 23 utterances per lab

• Greater than 40 words in the ASR reference: 20 utterances per lab

• Delta MT metrics in the wrong direction (∆BLEU > 0 and ∆METEOR > 0 and

∆TER< 0): 111 utterances

In total, we remove 471 data points. Our primary summary statistics are the following

are listed in Table A.2.

A.4 Word class clustering

As linguistic annotations, we consider each word’s word class, as well as a generalized

categorization of part-of-speech (POS) tags, which simplifies the Penn Treebank POS

labels into nine classes. Table A.3 lists our mapping of Penn Treebank POS tags to open

and closed classes.

For substitutions and substitution spans, linguistic annotations are reported first

for the reference word(s), followed by the annotations for the hypothesis word(s). For

2Again, as an aside, the WIT3 MT system is not trained with enough examples to correctly translate
“disciplinary”.
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Statistic Mean St. Dev. Min Median Max

ASR.hyplen 16.390 8.360 3 15 42
ASR.reflen 16.344 8.291 5 15 40
WER.basic.S 0.942 1.345 0 0 10
WER.basic.SS 0.606 1.343 0 0 13
WER.basic.D 0.254 0.672 0 0 14
WER.basic.I 0.192 0.596 0 0 7
WER 0.128 0.162 0.000 0.071 0.900
MT.eval.ter.delta 0.085 0.130 −0.154 0.030 1.000
MT.eval.bleu.delta −0.102 0.150 −0.894 −0.033 0.168
MT.eval.meteor.delta −0.085 0.122 −0.799 −0.033 0.194

Table A.2: Summary data of key statistics after outlier removal. Levenshtein error
counts are provided instead of % contribution to POWER.

Type Members
open noun ∪ verb ∪ adv ∪ adj
closed prn ∪ prep ∪ coord ∪ det ∪ aux
noun {NN NNP NNPS NNS POS CD}
verb {VB VBD VBG VBN VBP VBZ}
aux {MD}
adv {RB RBR RBS WRB}
prn {PRP PRP$ WP WP$ EX}
coord {CC}
prep {IN RP TO}
det {DT PDT WDT}
adj {JJ JJR JJS}

Table A.3: Mapping of Penn Treebank POS tags to word classes and general POS
classes.

example, the ref→hyp alignment of “know”→“a” is annotated as S.open_closed when

considering word classes, and S.verb_det when considering general part-of-speech (POS)

clusters. For deletions, linguistic annotations are on the deleted reference word, while

for insertions, linguistic annotations are on the inserted hypothesis word.

A.5 POWER vs WER: Word class-annotated errors

Given the inconsistent error labeling in WER, which types of errors are actually be-

ing skewed by false alignments? To answer this question, we annotate the reference
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Figure A.6: Distribution of error types by word class for POWER for each IWSLT 2013
ASR evaluation participant.

and hypothesis words by their word class and observe their alignment statistics. We

additionally apply lemmatization to distinguish morphological errors from other substi-

tution types. According to the word statistics in Table ??, the ratio of open to closed class

words remains the same across each ASR hypothesis and the reference (gold).

The distribution of word class-annotated ASR errors for each IWSLT 2013 partici-

pant is shown in Fig. A.6. We observe an asymmetrical behavior by each of the ASR

systems: while an ASR system will commonly misrecognize an open class word as a

sequence of shorter words; the opposite rarely occurs. This is due to the fact that the

misrecognized hypothesis words are usually frequently-occurring words that are well-

represented by a n-gram language model, while the misrecognized reference words are

often domain-specific nouns or verbs. As the ASR system more closely fits the domain

of the speaker, the number of phonetic substitution error spans will decrease. We also

observe that the majority of substitution errors are within the same word class.

The proportion of errors associated with each ASR error type is shown in Table A.4.

Word-level substitution errors. Both WER and POWER report that the majority

of substitution errors are within the same word class. While the proportion of closed-

closed class substitutions remain the same, POWER reports 8% fewer open-open class

substitution errors, which are often instances of substitution error spans containing a

word-level substitution error and one or more short function words (e.g. Brown in→brahmin
from Fig. 4.2). Of the open-open class substitution errors, 5.4% are morphological errors.
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ErrorType WER POWER WER Rank POWER Rank
S.open_open 0.299 0.219 1 1
SS.open_span 0.186 2
S.closed_closed 0.148 0.140 2 3
D.closed 0.112 0.097 4 4
S.open_closed 0.107 0.069 4 6
SS.span_open 0.069 6
I.closed 0.101 0.065 6 7
D.open 0.067 0.041 8 8
S.closed_open 0.069 0.036 8 8
I.open 0.096 0.033 6 10
SS.span_closed 0.019 12
SS.span_span 0.016 12
SS.closed_span 0.010 13

Table A.4: Proportion of ASR error types by word class, averaged across all ASR systems
and ranked by importance. Substitution labels (S, SS) show the alignment from refer-
ence class to hypothesis class. Substitution spans (SS) contain a span of words aligned
either to a single word or another span.

POWER likewise reports 7% fewer cross-class substitution errors, many of which are at-

tributed to the correction of misalignments.

Table A.5 provides the 10 most common substitution errors by general POS type for

each ASR system, using POWER as the evaluation metric. In particular, we observe that

nouns and verbs are confused with themselves. Of the substitution errors, 17.4%(±0.7%)

are instances of nouns being confused with other nouns, and 13.9%(±0.3%) are instances

of verbs being confused with other verbs. We also observe that nouns and verbs are

commonly confused with one another (2.8%±0.2% are reference verbs misrecognized as

nouns and 2.8%±0.2% is vice-versa).

Aside from nouns and verbs, the majority of the most common substitution errors

involving hard-to-recognize function words. Determiners are commonly confused with

one another 4.1%(±0.2%), which is the third most common substitution error. Other

confusable closed class types include prepositions to determiners (3.0%±0.2%) and coor-

dinations to prepositions (3.3%±0.3%). Incidentally, the converse is less likely to occur.

Reference determiners are less likely to be confused with prepositions (1.1%±0.2%), and

reference prepositions are less likely confused with coordinations (1.8%±0.1%).

It is interesting to note that adjectives and nouns are commonly confused (2.1%±
0.1% in the reference-hypothesis direction and 1.4%±0.2% in the opposite direction).

The remaining proportion of substitution errors are tapered off by similarly common
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fbk.Err fbk.Pct kit.Err kit.Pct mitll.Err mitll.Pct naist.Err naist.Pct
1 S.noun_noun 0.131 S.noun_noun 0.198 S.noun_noun 0.167 S.noun_noun 0.177
2 S.verb_verb 0.126 S.verb_verb 0.138 S.verb_verb 0.146 S.verb_verb 0.140
3 S.det_det 0.041 S.det_det 0.044 S.det_det 0.054 S.prep_prep 0.040
4 S.verb_noun 0.038 S.prn_prn 0.040 S.coord_prep 0.044 S.prn_prn 0.038
5 S.prep_det 0.033 S.coord_prep 0.037 S.prep_prep 0.042 S.det_det 0.036
6 S.verb_prep 0.032 S.verb_noun 0.029 S.prn_prn 0.035 S.coord_prep 0.034
7 S.noun_verb 0.031 S.verb_prn 0.029 S.prep_det 0.031 S.prep_det 0.034
8 S.prn_det 0.031 S.adj_noun 0.025 S.verb_prep 0.031 S.verb_prep 0.030
9 S.prep_prep 0.029 S.verb_prep 0.023 S.adj_noun 0.027 S.noun_verb 0.028

10 S.coord_prep 0.025 S.prep_prep 0.021 S.verb_noun 0.025 S.verb_prn 0.026
nict.Err nict.Pct prke.Err prke.Pct rwth.Err rwth.Pct uedin.Err uedin.Pct

1 S.noun_noun 0.184 S.noun_noun 0.168 S.noun_noun 0.183 S.noun_noun 0.183
2 S.verb_verb 0.132 S.verb_verb 0.148 S.verb_verb 0.147 S.verb_verb 0.139
3 S.coord_prep 0.040 S.prep_prep 0.047 S.det_det 0.038 S.verb_prn 0.038
4 S.det_det 0.040 S.det_det 0.039 S.prn_prn 0.034 S.verb_noun 0.037
5 S.prep_det 0.038 S.prn_prn 0.031 S.verb_prep 0.034 S.coord_prep 0.035
6 S.prep_prep 0.038 S.coord_prep 0.027 S.noun_verb 0.033 S.det_det 0.035
7 S.noun_verb 0.035 S.prep_det 0.026 S.prep_det 0.029 S.prn_prn 0.033
8 S.prn_prn 0.031 S.verb_prep 0.026 S.prep_prep 0.027 S.noun_verb 0.031
9 S.verb_noun 0.028 S.verb_noun 0.025 S.verb_prn 0.025 S.prep_det 0.031

10 S.verb_prep 0.028 S.noun_verb 0.023 S.verb_noun 0.024 S.prep_prep 0.031

Table A.5: Top 10 substitution error types for each research lab’s ASR system for each
system, clustered by POS tag (POWER).

errors.

Deletions and Insertions. According to WER, deletion and insertion errors ac-

count for 37.7%(±0.7%) of all errors. WER marks nearly as many open class insertions

as closed class insertions, but suggests that closed class deletions are more prominent

than open class ones (6.7%±0.4% open versus 11.2%±0.5% closed class deletions). How-

ever, with POWER, deletion and insertion errors only account for 23.6%(±0.8%) of all

errors, with the majority of the reduction attributed to fewer open class insertion errors

(3.3%± 0.1%). An example of a corrected open class “deletion” is Stanford→stamp or
from Fig. 4.4.

Substitution spans. The majority of substitution spans have a single open class ref-

erence word (18.6%±0.7%), such as anatomy→and that to me in Fig. 4.4; these represent

the second most common POWER error type. Likewise, the presence of a substitution

span in the ASR reference indicates that the hypothesis word is likely to be a content

word (6.9%±0.8%). Closed class function words are unlikely to be aligned to substitu-

tion spans (2.9%±0.3%), since most have few syllables that cannot easily be mistaken

for multiple words. Instead, as shown in Table A.4, closed class words are more likely to

be deletion or insertion errors.
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A.6 SLT evaluation

We now focus our attention on spoken language translation evaluation, where we seek

to measure the impact of ASR errors on speech translation quality. As described in

Chapter 4, we seek to measure how particular ASR error types confound a baseline MT

system that has been trained on text data. To do so, we evaluate the difference between

the MT quality score (in most cases, TER) computed on the punctuated and cased ASR

references3 and the ASR hypotheses of each ASR system described earlier.

We use linear mixed-effects models to measure the contribution of each ASR error

type reported earlier to the change in the MT error metric. To make this more concrete,

let’s focus for a moment on a particular scenario, using WER as a baseline. First, we can

measure the contribution of the general WER score of an ASR hypothesis to the change

in the TER score for the associated translation output (∆TER). Then, segmenting WER

into its Levenshtein error types (S, D, I) and normalizing each by the ASR reference

length, we have an exact construction of the features that compose the WER score. By

using these in a subsequent mixed-effects model, we can test whether one type (e.g.

substitution errors) have a greater impact on ∆TER than insertion errors. Taking it

even further, we can deconstruct the general Levenshtein error types into error types

with linguistic properties, such as word classes, similar to the process carried out in

Section 4.2.4.

In the ASR-only experiments, we evaluated the frequency of error types. For our

models, we will normalize the error types by their contribution to WER or POWER, in

order to normalize the scale for each utterance. Table A.6 lists the fixed effects variables

and their coefficients for the mixed-effects models described in Chapter 4.

3These correspond to the exact MT source data used in the evaluation
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WER WERbasic POWERbasic WERwc POWERwc

(1) (2) (3) (4) (5)

WER 0.63∗∗∗
(0.59,0.67)

WER.D 0.56∗∗∗ 0.61∗∗∗
(0.51,0.62) (0.56,0.67)

WER.D.closed 0.44∗∗∗ 0.55∗∗∗
(0.36,0.51) (0.47,0.62)

WER.D.open 0.67∗∗∗ 0.66∗∗∗
(0.59,0.75) (0.58,0.74)

WER.I 0.71∗∗∗ 0.83∗∗∗
(0.64,0.77) (0.75,0.91)

WER.I.closed 0.64∗∗∗ 0.72∗∗∗
(0.57,0.72) (0.63,0.81)

WER.I.open 0.81∗∗∗ 1.04∗∗∗
(0.72,0.90) (0.92,1.15)

WER.S 0.62∗∗∗ 0.65∗∗∗
(0.58,0.67) (0.60,0.70)

WER.S.closed_closed 0.68∗∗∗ 0.76∗∗∗
(0.61,0.76) (0.69,0.83)

WER.S.closed_open 0.75∗∗∗ 0.80∗∗∗
(0.66,0.84) (0.69,0.91)

WER.S.open_closed 0.48∗∗∗ 0.58∗∗∗
(0.41,0.55) (0.51,0.66)

WER.S.open_open 0.63∗∗∗ 0.59∗∗∗
(0.57,0.68) (0.53,0.65)

WER.SS 0.54∗∗∗
(0.49,0.58)

WER.SS.closed_span 0.71∗∗∗
(0.56,0.87)

WER.SS.open_span 0.55∗∗∗
(0.49,0.60)

WER.SS.span_closed 0.55∗∗∗
(0.47,0.64)

WER.SS.span_open 0.45∗∗∗
(0.39,0.51)

WER.SS.span_span 0.69∗∗∗
(0.59,0.78)

Constant 0.001 0.001 −0.0001 0.001 0.0002
(-0.003,0.004) (-0.002,0.004) (-0.003,0.003) (-0.002,0.004) (-0.003,0.004)

Observations 4,640 4,640 4,640 4,640 4,640
Log Likelihood 6,172.17 6,180.63 6,194.29 6,218.15 6,237.29
Akaike Inf. Crit. -12,330.34 -12,343.26 -12,368.58 -12,408.30 -12,436.59
Bayesian Inf. Crit. -12,285.24 -12,285.28 -12,304.15 -12,318.10 -12,314.18

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.6: Side-by-side comparison of linear mixed-effects models. Fixed effects co-
efficients and 95% confidence intervals are reported for WER score, the primitive
Levenshtein error types (WERbasic, POWERbasic), and Levenshtein errors annotated
by word class (WERwc, POWERwc). Word class error types are annotated by their
reference→hypothesis word alignments.





BIBLIOGRAPHY

Alejandro Acero.

Acoustical and Environmental Robustness in Automatic Speech Recognition.

PhD thesis, Pittsburgh, PA, USA, 1991.

UMI Order No. GAX91-17502.

Gilles Adda, Martine Adda-Decker, Jean-Luc Gauvain, and Lori Lamel.

Text normalization and speech recognition in French.

In Proceedings of the European Speech Communication Association (Eurospeech),
Rhodes, Greece, September 1997.

Zeeshan Ahmed, Jie Jiang, Julie Carson-Berndsen, Peter Cahill, and Andy Way.

Hierarchical Phrase-Based MT for Phonetic Representation-Based Speech Transla-

tion.

In Proceedings of the tenth Biennial Conference of the Association for Machine Trans-
lation in the Americas (AMTA), San Diego, CA, 2012.

Yaser Al-Onaizan and Kishore Papineni.

Distortion models for statistical machine translation.

In Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics, pages 529–536,

Sydney, Australia, July 2006. Association for Computational Linguistics.

Joshua S Albrecht and Rebecca Hwa.

Regression for Sentence-Level MT Evaluation with Pseudo References.

Association of Computational Linguistics, page 296, 2007.

Sankaranarayanan Ananthakrishnan, Wei Chen, Rohit Kumar, and Dennis Mehay.

Source-Error Aware Phrase-Based Decoding for Robust Conversational Spoken Lan-

guage Translation.

In Proceedings of the International Workshop on Spoken Language Translation
(IWSLT), Heidelberg, Germany, 2013.

145



BIBLIOGRAPHY

Anthony Aue, Qin Gao, Hany Hassan, Xiaodong He, Gang Li, Nicholas Ruiz, and Frank

Seide.

MSR-FBK IWSLT 2013 SLT System Description.

In Proceedings of the International Workshop on Spoken Language Translation
(IWSLT), Heidelberg, Germany, December 2013.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

Domain Adaptation via Pseudo In-Domain Data Selection.

In Conference on Empirical Methods in Natural Language Processing, pages 355–362,

Edinburgh, United Kingdom, 2011.

R. Harald Baayen, Douglas J. Davidson, and Douglas M. Bates.

Mixed-effects Modeling with Crossed Random Effects for Subjects and Items.

Journal of memory and language, 59(4):390–412, 2008.

Bagher BabaAli, Romain Serizel, Shahab Jalalvand, Daniele Falavigna, Roberto Gret-

ter, and Diego Giuliani.

FBK @ IWSLT 2014 - ASR track.

In Proceedings of the International Workshop on Spoken Language Translation
(IWSLT), Lake Tahoe, USA, December 2014.

Nguyen Bach, Fei Huang, and Yaser Al-Onaizan.

Goodness: A Method for Measuring Machine Translation Confidence.

In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Techologies, pages 211–219, Portland, Oregon, USA, June

2011. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural Machine Translation by Jointly Learning to Align and Translate.

In 5th International Conference on Learning Representations, San Diego, USA, 2015.

ICLR.

Satanjeev Banerjee and Alon Lavie.

METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with

Human Judgments.

In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan,

June 2005. Association for Computational Linguistics.

146



BIBLIOGRAPHY

Srinivas Bangalore and Giuseppe Riccardi.

A Finite-state Approach to Machine Translation.

In Proceedings of the Second Meeting of the North American Chapter of the Associ-
ation for Computational Linguistics on Language Technologies (NAACL), pages 1–8,

Stroudsburg, PA, USA, 2001. Association for Computational Linguistics.

Srinivas Bangalore and Giuseppe Riccardi.

Stochastic Finite-State Models for Spoken Language Machine Translation.

Machine Translation, 17(3):165–184, 2002.

ISSN 1573-0573.

Douglas Bates, Martin Maechler, Ben Bolker, and Steven Walker.

lme4: Linear mixed-effects models using Eigen and S4, 2014.

URL http://CRAN.R-project.org/package=lme4.

R package version 1.1-6.

Doug Beeferman, Adam Berger, and John Lafferty.

Cyberpunc: A lightweight punctuation annotation system for speech.

In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE Inter-
national Conference on, volume 2, pages 689–692. IEEE, 1998.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and Marcello Federico.

Neural versus Phrase-Based Machine Translation Quality: a Case Study.

In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 257–267,

2016.

Nicola Bertoldi and Marcello Federico.

A New Decoder for Spoken Language Translation based on Confusion Networks.

In Proceedings of the IEEE Automatic Speech Recognition and Understanding Work-
shop, pages 86–91, San Juan, Puerto Rico, 2005.

Nicola Bertoldi, Richard Zens, and Marcello Federico.

Speech Translation by Confusion Network Decoding.

In Proceedings of International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), pages 1297–1300, Honolulu, HA, 2007.

Nicola Bertoldi, Madalina Barbaiani, Marcello Federico, and Roldano Cattoni.

Phrase-based statistical machine translation with pivot languages.

147

http://CRAN.R-project.org/package=lme4


BIBLIOGRAPHY

In In Proceedings of the International Workshop on Spoken Language Translation,

pages 143–149, 2008.

Nicola Bertoldi, Mauro Cettolo, and Marcello Federico.

Cache-based Online Adaptation for Machine Translation Enhanced Computer As-

sisted Translation.

In Proceedings of the MT Summit XIV, pages 35–42, Nice, France, September 2013a.

Nicola Bertoldi, M. Amin Farajian, Prashant Mathur, Nicholas Ruiz, and Marcello Fed-

erico.

FBK’s machine translation systems for the IWSLT 2013 evaluation campaign.

In Proc. of the 10th International Workshop on Spoken Language Translation, Decem-

ber 2013b.

Nicola Bertoldi, Prashant Mathur, Nicholas Ruiz, and Marcello Federico.

FBK’s Machine Translation and Speech Translation Systems for the IWSLT 2014

Evaluation Campaign.

In Proceedings of the International Workshop on Spoken Language Translation
(IWSLT), Lake Tahoe, USA, December 2014.

Nicola Bertoldi, Davide Caroselli, David Madl, Mauro Cettolo, and Marcello Federico.

ModernMT Second Report on Database and MT Infrastructure.

Technical Report D.32, European Union Horizon 2020 research and innovation pro-

gramme, December 2016.

Douglas Biber.

Variation Across Speech and Writing.

Cambridge University Press, Cambridge, 1988.

Alexandra Birch, Phil Blunsom, and Miles Osborne.

A quantitative analysis of reordering phenomena.

In In Proceedings of the Fourth Workshop on Statistical Machine Translation
(StatMT), pages 197–205, Morristown, NJ, USA, 2009. Association for Computational

Linguistics.

Arianna Bisazza and Marcello Federico.

Dynamically Shaping the Reordering Search Space of Phrase-Based Statistical Ma-

chine Translation.

Transactions of the Association for Computational Linguistics, 1:327–340, 2013.

148



BIBLIOGRAPHY

Arianna Bisazza, Nick Ruiz, and Marcello Federico.

Fill-up versus Interpolation Methods for Phrase-based SMT Adaptation.

In In Proceedings of the International Workshop on Spoken Language Translation
(IWSLT), pages 136–143, San Francisco, CA, 2011.

Alan W. Black and Paul A. Taylor.

The Festival Speech Synthesis System: System documentation.

Technical Report HCRC/TR-83, Human Communciation Research Centre, University

of Edinburgh, Scotland, UK, 1997.

Avaliable at http://www.cstr.ed.ac.uk/projects/festival.html.

David M. Blei, Andrew Ng, and Michael Jordan.

Latent Dirichlet Allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick

Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin.

A statistical approach to machine translation.

Computational Linguistics, 16(2):79–85, 1990.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer.

The Mathematics of Statistical Machine Translation: Parameter Estimation.

Computational Linguistics, 19(2):263–312, 1993.

Christian Buck.

Black Box Features for the WMT 2012 Quality Estimation Shared Task.

In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages

88–92, Montreal, Canada, June 2012. Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, and Miles Osborne.

Improved Statistical Machine Translation Using Paraphrases.

In Proceedings of the Human Language Technology Conference of the NAACL, Main
Conference, pages 17–24, New York City, USA, June 2006. Association for Computa-

tional Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz, and Josh Schroeder.

Findings of the 2009 Workshop on Statistical Machine Translation.

In Proceedings of the Fourth Workshop on Statistical Machine Translation, pages 1–

28, Athens, Greece, March 2009. Association for Computational Linguistics.

149



BIBLIOGRAPHY

Chris Callison-Burch, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lu-

cia Specia.

Findings of the 2012 workshop on statistical machine translation.

In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages

10–51, Montréal, Canada, June 2012. Association for Computational Linguistics.

Steven A. Camarota and Karen Zeigler.

Nearly 65 Million U.S. Residents Spoke a Foreign Language at Home in 2015.

Center for Immigration Studies, October 2016.

URL http://cis.org/sites/cis.org/files/camarota-language-16.pdf.

Marine Carpuat.

One Translation Per Discourse.

In Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and
Future Directions, DEW ’09, pages 19–27, Stroudsburg, PA, USA, 2009. Association

for Computational Linguistics.

ISBN 978-1-932432-31-2.

Marine Carpuat and Dekai Wu.

Improving statistical machine translation using word sense disambiguation.

In Joint Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 61–72, 2007.

Francisco Casacuberta, Marcello Federico, Hermann Ney, and Enrique Vidal.

Recent Efforts in Spoken Language Processing.

IEEE Signal Processing Magazine, 25(3):80–88, May 2008.

Mauro Cettolo, Christian Girardi, and Marcello Federico.

WIT3: Web Inventory of Transcribed and Translated Talks.

In Proceedings of the Annual Conference of the European Association for Machine
Translation (EAMT), Trento, Italy, May 2012.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico.

Report on the 10th IWSLT Evaluation Campaign.

In Proceedings of the International Workshop on Spoken Language Translation, De-

cember 2013.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico.

Report on the 11th IWSLT Evaluation Campaign.

150

http://cis.org/sites/cis.org/files/camarota-language-16.pdf


BIBLIOGRAPHY

In Proceedings of the International Workshop on Spoken Language Trnaslation
(IWSLT), Lake Tahoe, USA, December 2014.

Pi-Chuan Chang, Michel Galley, and Christopher D Manning.

Optimizing Chinese word segmentation for machine translation performance.

In Proceedings of the third Workshop on Statistical Machine Translation, pages 224–

232. Association for Computational Linguistics, 2008.

Ciprian Chelba and Alex Acero.

Adaptation of maximum entropy capitalizer: Little data can help a lot.

Computer Speech & Language, 20(4):382–399, 2006.

Stanley F. Chen, Kristie Seymore, and Ronald Rosenfeld.

Topic adaptation for language modeling using unnormalized exponential models.

In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 681–684. IEEE, 1998.

Colin Cherry and George Foster.

Batch tuning strategies for statistical machine translation.

In Proceedings of the 2012 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL HLT ’12,

pages 427–436, Stroudsburg, PA, USA, 2012. Association for Computational Linguis-

tics.

ISBN 978-1-937284-20-6.

David Chiang.

A Hierarchical Phrase-based Model for Statistical Machine Translation.

In Proceedings of the 43rd Annual Meeting on Association for Computational Linguis-
tics, ACL ’05, pages 263–270, Stroudsburg, PA, USA, 2005. Association for Computa-

tional Linguistics.

doi: 10.3115/1219840.1219873.

David Chiang, Yuval Marton, and Philip Resnik.

Online Large-Margin Training of Syntactic and Structural Translation Features.

In EMNLP ’08: Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 224–233, Honolulu, Hawaii, 2008. Association for Computa-

tional Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.

151



BIBLIOGRAPHY

On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.

In Proceedings of the Eighth Workshop on Syntax, Semantics and Structure in Statis-
tical Translation, pages 103–111, 2014a.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio.

Learning phrase representations using RNN encoder-decoder for statistical machine

translation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, pages 1724–1734, 2014b.

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio.

A Character-level Decoder without Explicit Segmentation for Neural Machine Trans-

lation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics, ACL. Volume 1: Long Papers, Berlin, Germany, August 2016.

Jonathan Clark, Chris Dyer, Alon Lavie, and Noah Smith.

Better Hypothesis Testing for Statistical Machine Translation: Controlling for Opti-

mizer Instability.

In Proceedings of the Association for Computational Lingustics, ACL 2011, Portland,

Oregon, USA, 2011. Association for Computational Linguistics.

Trevor Cohn and Mirella Lapata.

Machine Translation by Triangulation: Making Effective Use of Multi-Parallel Cor-

pora.

In Proceedings of the 45th Annual Meeting of the Association of Computational Lin-
guistics, pages 728–735, Prague, Czech Republic, June 2007. Association for Compu-

tational Linguistics.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.

Online Passive-Aggressive Algorithms.

Journal of Machine Learning Research, 7:551–585, 2006.

G. E. Dahl, Dong Yu, Li Deng, and A. Acero.

Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech

Recognition.

Trans. Audio, Speech and Lang. Proc., 20(1):30–42, January 2012.

152



BIBLIOGRAPHY

ISSN 1558-7916.

doi: 10.1109/TASL.2011.2134090.

Steven B. Davis and Paul Mermelstein.

Comparison of parametric representations for monosyllabic word recognition in con-

tinuously spoken sentences.

IEEE Transactions on Acoustics, Speech and Signal Processing, pages 357–366, 1980.

José G. C. de Souza, Marco Turchi, and Matteo Negri.

Towards a combination of online and multitask learning for mt quality estimation: a

preliminary study.

In Proceedings of the Workshop on interactive and adaptive machine translation,

pages 9–19, 2014.

Stephen A. Della Pietra, Vincent J. Della Pietra, Robert Mercer, and Salim Roukos.

Adaptive Language Model Estimation using Minimum Discrimination Estimation.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, volume 1, pages 633–636, San Francisco, CA, 1992.

A. P. Dempster, N. M. Laird, and D. B. Rubin.

Maximum-likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society, B, 39:1–38, 1977.

George Doddington.

Automatic evaluation of machine translation quality using n-gram co-occurrence

statistics.

In Proceedings of the Second International Conference on Human Language Tech-
nology Research, HLT ’02, pages 138–145, San Francisco, CA, USA, 2002. Morgan

Kaufmann Publishers Inc.

Nadir Durrani, Helmut Schmid, and Alexander Fraser.

A Joint Sequence Translation Model with Integrated Reordering.

In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 1045–1054,

Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

ISBN 978-1-932432-87-9.

Chris Dyer, Jonathan Weese, Hendra Setiawan, Adam Lopez, Ferhan Ture, Vladimir

Eidelman, Juri Ganitkevitch, Phil Blunsom, and Philip Resnik.

153



BIBLIOGRAPHY

Cdec: A decoder, alignment, and learning framework for finite-state and context-free

translation models.

In Proceedings of the ACL 2010 System Demonstrations, ACLDemos ’10, pages 7–12,

Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.

A Simple, Fast, and Effective Reparameterization of IBM Model 2.

In Human Language Technologies: Conference of the North American Chapter of
the Association of Computational Linguistics, Proceedings, June 9-14, 2013, Westin
Peachtree Plaza Hotel, Atlanta, Georgia, USA, pages 644–648, 2013.

Christopher Dyer, Smaranda Muresan, and Philip Resnik.

Generalizing Word Lattice Translation.

In Proceedings of ACL-08: HLT, pages 1012–1020, Columbus, Ohio, June 2008. Asso-

ciation for Computational Linguistics.

M Amin Farajian, Rajen Chatterjee, Costanza Conforti, Shahab Jalalvand, Vevake

Balaraman, Mattia A Di Gangi, Duygu Ataman, Marco Turchi, Matteo Negri, and

Marcello Federico.

FBKs Neural Machine Translation Systems for IWSLT 2016.

In Proceedings of the 9th International Workshop on Spoken Language Translation
(IWSLT), Seattle, WA, USA, December 2016.

Marcello Federico.

Efficient language model adaptation through MDI estimation.

In Proceedings of the 6th European Conference on Speech Communication and Tech-
nology, volume 4, pages 1583–1586, Budapest, Hungary, 1999.

Marcello Federico.

Language Model Adaptation through Topic Decomposition and MDI Estimation.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, volume I, pages 703–706, Orlando, FL, 2002.

Marcello Federico, Nicola Bertoldi, and Mauro Cettolo.

IRSTLM: an Open Source Toolkit for Handling Large Scale Language Models.

In Proceedings of Interspeech, pages 1618–1621, Brisbane, Australia, 2008.

Marcello Federico, Mauro Cettolo, Luisa Bentivogli, Michael Paul, and Sebastian

Stüker.

154



BIBLIOGRAPHY

Overview of the IWSLT 2012 evaluation campaign.

In Proc. of the International Workshop on Spoken Language Translation, December

2012.

Marcello Federico, Matteo Negri, Luisa Bentivogli, and Marco Turchi.

Assessing the Impact of Translation Errors on Machine Translation Quality with

Mixed-effects Models.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1643–1653, 2014.

Mariano Felice and Lucia Specia.

Linguistic Features for Quality Estimation.

In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages

93–100, Montreal, Canada, June 2012. Association for Computational Linguistics.

Christiane Fellbaum, editor.

WordNet: an electronical Lexical Database.

MIT Press, Cambridge, MA, 1998.

Minwei Feng, Arne Mauser, and Hermann Ney.

A Source-side Decoding Sequence Model for Statistical Machine Translation.

In Conference of the Association for Machine Translation in the Americas (AMTA),
Denver, Colorado, USA, November 2010.

Edward Finegan.

Language: Its Structure and Use.

Cengage Learning, 2014.

ISBN 9781305162815.

Orhan Firat, Kyunghyun Cho, Baskaran Sankaran, Fatos T Yarman Vural, and Yoshua

Bengio.

Multi-way, multilingual neural machine translation.

Computer Speech & Language, 2016.

George Foster and Roland Kuhn.

Mixture-Model Adaptation for SMT.

In Proceedings of the Second Workshop on Statistical Machine Translation, pages 128–

135, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

155



BIBLIOGRAPHY

George Foster, Pierre Isabelle, and Roland Kuhn.

Translating structured documents.

In Proceedings of the Ninth Conference of the Association for Machine Translation in
the Americas, November 2010.

Christian Fügen, Alex Waibel, and Muntsin Kolss.

Simultaneous translation of lectures and speeches.

Machine Translation, 21(4):209–252, December 2007.

Michel Galley and Christopher D. Manning.

A simple and effective hierarchical phrase reordering model.

In Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 848–856, Morristown, NJ, USA, October 2008. Association for

Computational Linguistics.

John S. Garofolo, Jonathan G. Fiscus, Alvin F. Martin, David S. Pallett, and Mark A.

Przybocki.

NIST Rich Transcription 2002 Evaluation: A Preview.

In LREC. European Language Resources Association, 2002.

George Michael Georgiou.

Parallel distributed processing in the complex domain.

PhD thesis, Tulane University, New Orleans, LA, USA, 1992.

UMI Order No. GAX92-29796.

Diego Giuliani, Matteo Gerosa, and Fabio Brugnara.

Improved Automatic Speech Recognition Through Speaker Normalization.

Comput. Speech Lang., 20(1):107–123, January 2006.

ISSN 0885-2308.

doi: 10.1016/j.csl.2005.05.002.

Sharon Goldwater, Daniel Jurafsky, and Christopher D. Manning.

Which words are hard to recognize? Prosodic, lexical, and disfluency factors that in-

crease speech recognition error rates.

Speech Communication, 52(3):181–200, 2010.

I. J. Good.

The population frequencies of species and the estimation of population parameters.

Biometrika, 40:237–264, 1953.

156



BIBLIOGRAPHY

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep Learning.

MIT Press, 2016.

Arthur C. Graesser, Murray Singer, and Tom Trabasso.

Constructing inferences during narrative text comprehension.

Psychol Rev, 101(3):371–395, July 1994.

ISSN 0033-295X.

Arthur C. Graesser, Danielle S. McNamara, Max M. Louwerse, and Zhiqiang Cai.

Coh-Metrix: Analysis of text on cohesion and language.

Behavior Research Methods, Instruments, & Computers, 36(2):193–202, May 2004.

R. Haeb-Umbach and H. Ney.

Linear Discriminant Analysis for Improved Large Vocabulary Continuous Speech

Recognition.

In Proceedings of the 1992 IEEE International Conference on Acoustics, Speech and
Signal Processing, volume 1 of ICASSP’92, pages 13–16, Washington, DC, USA, 1992.

IEEE Computer Society.

Christian Hardmeier.

Discourse in Statistical Machine Translation.

Discours, (11), December 2012.

Christian Hardmeier and Marcello Federico.

Modelling Pronominal Anaphora in Statistical Machine Translation.

In Proceedings of the Seventh International Workshop on Spoken Language Transla-
tion (IWSLT), pages 283–289, 2010.

Christian Hardmeier, Preslav Nakov, Sara Stymne, Jörg Tiedemann, Yannick Versley,

and Mauro Cettolo.

Pronoun-Focused MT and Cross-Lingual Pronoun Prediction: Findings of the 2015

DiscoMT Shared Task on Pronoun Translation.

In Proceedings of the Second Workshop on Discourse in Machine Translation (Dis-
coMT), pages 1–16, 2015.

Hany Hassan, Lee Schwartz, Dilek Hakkani-Tur, and Gokhan Tur.

Segmentation and Disfluency Removal for Conversational Speech Translation.

157



BIBLIOGRAPHY

In Proceedings of Interspeech. ISCA - International Speech Communication Associa-

tion, September 2014.

Xiaodong He, Li Deng, and Alex Acero.

Why word error rate is not a good metric for speech recognizer training for the speech

translation task?

In International Conference on Acoustics, Speech, and Signal Processing, pages 5632–

5635. IEEE, 2011a.

ISBN 978-1-4577-0539-7.

Xiaodong He, Li Deng, and Alex Acero.

Why Word Error Rate is not a Good Metric for Speech Recognizer Training for the

Speech Translation Task.

In Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing. IEEE, May 2011b.

Peter A Heeman and James F Allen.

Speech repairs, intonational phrases, and discourse markers: modeling speakers’ ut-

terances in spoken dialogue.

Computational Linguistics, 25(4):527–571, 1999.

Hynek Hermansky.

Perceptual linear predictive (PLP) analysis of speech.

Journal of the Acoustical Society of America, 87(4):1738–1752, 1990.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep

Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian

Kingsbury.

Deep Neural Networks for Acoustic Modeling in Speech Recognition.

IEEE Transactions on Acoustic, Speech, and Signal Processing, pages 30–42, 2012.

Fabian Hirschmann, Jinseok Nam, and Johannes Fürnkranz.

What Makes Word-level Neural Machine Translation Hard: A Case Study on English-

German Translation.

In Proceedings of the 25th International Conference on Computational Linguistics,

Osaka, Japan, December 2016.

Thomas Hofmann.

Probabilistic Latent Semantic Analysis.

158



BIBLIOGRAPHY

In Proceedings of the 15th Conference on Uncertainty in AI, pages 289–296, Stockholm,

Sweden, 1999.

Jing Huang and Geoffrey Zweig.

Maximum entropy model for punctuation annotation from speech.

In INTERSPEECH, 2002.

Xuedong Huang.

Speaker Normalization for Speech Recognition.

In Proceedings of the 1992 IEEE International Conference on Acoustics, Speech and
Signal Processing - Volume 1, ICASSP’92, pages 465–468, Washington, DC, USA,

1992. IEEE Computer Society.

ISBN 0-7803-0532-9.

Xuedong Huang, Yasuo Ariki, and Mervyn Jack.

Hidden Markov Models for Speech Recognition.

Columbia University Press, New York, NY, USA, 1990.

ISBN 0748601627.

Shahab Jalalvand, Matteo Negri, Daniele Falavigna, and Marco Turchi.

Driving ROVER with segment-based ASR quality estimation.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 1095–1105, 2015.

Shahab Jalalvand, Matteo Negri, Marco Turchi, José GC de Souza, Daniele Falavigna,

and Mohammed RH Qwaider.

TranscRater: a tool for automatic speech recognition quality estimation.

pages 43–48. Association for Computational Linguistics, Berlin, Germany, 2016.

Frederick Jelinek and Robert L. Mercer.

Interpolated estimation of Markov source parameters from sparse data.

In Pattern Recognition in Practice, pages 381–397, Amsterdam, Holland, 1980.

Hui Jiang.

Confidence measures for speech recognition: A survey.

Speech Communication, 45(4):455–470, 2005.

159



BIBLIOGRAPHY

Jie Jiang, Zeeshan Ahmed, Julie Carson-Berndsen, Peter Cahill, and Andy Way.

Phonetic representation-based speech translation.

In 13th Machine Translation Summit, Xiamen, China, 2011.

Preethi Jyothi and Eric Fosler-Lussier.

A comparison of audio-free speech recognition error prediction methods.

In INTERSPEECH, pages 1211–1214. ISCA, 2009.

Preethi Jyothi and Eric Fosler-Lussier.

Discriminative language modeling using simulated asr errors.

In Takao Kobayashi, Keikichi Hirose, and Satoshi Nakamura, editors, INTER-
SPEECH, pages 1049–1052. ISCA, 2010.

Slava M. Katz.

Estimation of probabilities from sparse data for the language model component of a

speech recognizer.

IEEE Transactions on Acoustic, Speech and Signal Processing, ASSP-35(3):400–401,

1987.

Ji-Hwan Kim and Philip C Woodland.

Automatic capitalisation generation for speech input.

Computer Speech & Language, 18(1):67–90, 2004.

Reinhard Kneser and Herman Ney.

Improved clustering technique for class-based statistical language modelling.

In Proceedings of the 3rd European Conference on Speech Communication and Tech-
nology, pages 973–976, Berlin, Germany, 1993.

Reinhard Kneser and Hermann Ney.

Forming word classes by statistical clustering for statistical language modelling.

In R. Köhler and B. B. Rieger, editors, Proceedings of the First International Con-
ference on Quantitative Linguistics, pages 221–226, Trier, Germany, 1991. Kluwer

Academic Publisher.

Reinhard Kneser and Hermann Ney.

Improved backing-off for m-gram language modeling.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, volume 1, pages 181–184, Detroit, MI, 1995.

160



BIBLIOGRAPHY

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,

W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst.

Moses: Open Source Toolkit for Statistical Machine Translation.

In Proceedings of the 45th Annual Meeting of the Association for Computational Lin-
guistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–

180, Prague, Czech Republic, 2007.

Philipp Koehn.

Europarl: A Multilingual Corpus for Evaluation of Machine Translation.

Unpublished, http://www.isi.edu/∼koehn/europarl/, 2002.

Philipp Koehn and Christof Monz.

Shared task: Statistical machine translation between European languages.

In Proceedings of the ACL Workshop on Building and Using Parallel Texts, pages 119–

124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics.

Philipp Koehn and Josh Schroeder.

Experiments in Domain Adaptation for Statistical Machine Translation.

In Proceedings of the Second Workshop on Statistical Machine Translation, pages 224–

227, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.

Statistical phrase-based translation.

In Proceedings of HLT-NAACL 2003, pages 127–133, Edmonton, Canada, 2003.

G. Kurata, N. Itoh, and M. Nishimura.

Acoustically discriminative training for language models.

In Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 4717–4720, April 2009.

doi: 10.1109/ICASSP.2009.4960684.

Gakuto Kurata, Nobuyasu Itoh, and Masafumi Nishimura.

Training of error-corrective model for ASR without using audio data.

In In Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, pages 5576–5579. IEEE, 2011.

ISBN 978-1-4577-0539-7.

Alon Lavie, Donna Gates, Noah Coccaro, and Lori Levin.

161



BIBLIOGRAPHY

Input segmentation of spontaneous speech in JANUS: A speech-to-speech translation
system, pages 86–99.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

ISBN 978-3-540-69206-5.

doi: 10.1007/3-540-63175-5_39.

Li Lee and R. C. Rose.

Speaker Normalization Using Efficient Frequency Warping Procedures.

In Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing - Volume 01, ICASSP ’96, pages 353–356, Washington, DC, USA, 1996. IEEE

Computer Society.

ISBN 0-7803-3192-3.

doi: 10.1109/ICASSP.1996.541105.

C.J. Leggetter and P.C. Woodland.

Maximum likelihood linear regression for speaker adaptation of continuous density

hidden markov models.

Computer Speech and Language, 9(2):171 – 185, 1995.

ISSN 0885-2308.

doi: http://dx.doi.org/10.1006/csla.1995.0010.

V. I. Levenshtein.

Binary Codes Capable of Correcting Deletions, Insertions and Reversals.

Soviet Physics Doklady, 10:707, February 1966.

Yang Liu, Elizabeth Shriberg, Andreas Stolcke, Dustin Hillard, Mari Ostendorf, and

Mary P. Harper.

Enriching speech recognition with automatic detection of sentence boundaries and

disfluencies.

IEEE Trans. Audio, Speech & Language Processing, 14(5):1526–1540, 2006.

doi: 10.1109/TASL.2006.878255.

Chi-kiu Lo and Dekai Wu.

MEANT: an inexpensive, high-accuracy, semi-automatic metric for evaluating trans-

lation utility based on semantic roles.

In The 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland,
Oregon, USA, pages 220–229, 2011.

162



BIBLIOGRAPHY

Max M. Louwerse, Phillip M. McCarthy, Daniel S. McNamara, and Arthur C. Graesser.

Variation in language and cohesion across written and spoken registers.

In Proceedings of the 26th Annual Meeting of the Cognitive Science Society, pages

843–848, 2004.

Minh-Thang Luong and Christopher D. Manning.

Stanford neural machine translation systems for spoken language domain.

In International Workshop on Spoken Language Translation, Da Nang, Vietnam,

2015.

L. Mangu, E. Brill, and A. Stolcke.

Finding Consensus in Speech Recognition: Word Error Minimization and Other Ap-

plications of Confusion Networks.

Computer, Speech and Language, 14(4):373–400, 2000.

M. Marcus, B. Santorini, and M.A. Marcinkiewicz.

Building a Large Annotated Corpus of English: the Penn Treebank.

Computational Linguistics, 19:313–330, 1993.

E. Matusov, S. Kanthak, and H. Ney.

Integrating speech recognition and machine translation: Where do we stand?

In Proceedings of ICASSP, pages 1217–1220, Toulouse, France, 2006a.

Evgeny Matusov, Arne Mauser, and Hermann Ney.

Automatic sentence segmentation and punctuation prediction for spoken language

translation.

In Proceedings of the International Workshop of Spoken Language Translation
(IWSLT), pages 158–165, 2006b.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur.

Recurrent neural network based language model.

In INTERSPEECH 2010, 11th Annual Conference of the International Speech Com-
munication Association, pages 1045–1048, Makuhari, Chiba, Japan, September 2010.

David Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith, and Andrew

McCallum.

Polylingual Topic Models.

In Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, August 2009.

163



BIBLIOGRAPHY

Jeff Mitchell, Mirella Lapata, Vera Demberg, and Frank Keller.

Syntactic and semantic factors in processing difficulty: An integrated measure.

In Proceedings of the 48th Annual Meeting of the Association for Computational Lin-
guistics, pages 196–206, Stroudsburg, PA, USA, 2010.

Robert C. Moore and William Lewis.

Intelligent selection of language model training data.

In ACL (Short Papers), pages 220–224, 2010.

Preslav Nakov.

Improving English-Spanish Statistical Machine Translation: Experiments in Domain

Adaptation, Sentence Paraphrasing, Tokenization, and Recasing.

In Workshop on Statistical Machine Translation, Association for Computational Lin-
guistics, 2008.

Preslav Nakov and Jörg Tiedemann.

Combining word-level and character-level models for machine translation between

closely-related languages.

In Proceedings of the 50th Annual Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 301–305. Association for Computational Lin-

guistics, 2012.

Matteo Negri, Marco Turchi, José G. C. de Souza, and Daniele Falavigna.

Quality estimation for automatic speech recognition.

In COLING 2014, 25th International Conference on Computational Linguistics, pages

1813–1823, 2014.

Graham Neubig, Taro Watanabe, Shinsuke Mori, and Tatsuya Kawahara.

Substring-based machine translation.

Machine translation, 27(2):139–166, 2013.

Neil Newbold and Lee Gillam.

The linguistics of readability: The next step for word processing.

In Proceedings of the NAACL HLT 2010 Workshop on Computational Linguistics and
Writing: Writing Processes and Authoring Aids, pages 65–72, Stroudsburg, PA, USA,

2010.

Hermann Ney.

Speech translation: coupling of recognition and translation.

164



BIBLIOGRAPHY

In Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), Phoenix, Arizona, 1999.

Jan Niehues and Alex Waibel.

An MT Error-Driven Discriminative Word Lexicon using Sentence Structure Fea-

tures.

In Proceedings of the Eighth Workshop on Statistical Machine Translation,
WMT@ACL 2013, August 8-9, 2013, Sofia, Bulgaria, pages 512–520, 2013.

Franz J. Och and Hermann Ney.

The Alignment Template Approach to Statistical Machine Translation.

Computational Linguistics, 30(4):417–450, 2004.

Franz J. Och, Christoph Tillmann, and Hermann Ney.

Improved alignment models for statistical machine translation.

In Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing and Very Large Corpora, pages 20–28, University of Maryland, College Park, MD,

June 1999.

Franz Josef Och.

Statistical machine translation: from single word models to alignment templates.

PhD thesis, RWTH Aachen University, Germany, 2002.

Franz Josef Och.

Minimum Error Rate Training in Statistical Machine Translation.

In Erhard Hinrichs and Dan Roth, editors, Proceedings of the 41st Annual Meeting of
the Association for Computational Linguistics, pages 160–167, 2003.

Franz Josef Och and Hermann Ney.

Statistical multi-source translation.

In Machine Translation Summit, pages 253–258, Santiago de Compostela, Spain,

September 2001.

Franz Josef Och, Nicola Ueffing, and Hermann Ney.

An Efficient A* Search Algorithm for Statistical Machine Translation.

In Proceedings of the Workshop on Data-driven Methods in Machine Translation -
Volume 14, DMMT ’01, pages 1–8, Stroudsburg, PA, USA, 2001. Association for Com-

putational Linguistics.

doi: 10.3115/1118037.1118045.

165



BIBLIOGRAPHY

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura.

Optimizing Segmentation Strategies for Simultaneous Speech Translation.

In Association of Computational Linguistics, pages 551–556, 2014.

David Pallett, Jonathan G. Fiscus, John S. Garofolo, Alvin Martin, and Mark Przybocki.

The 1998 Hub-4 Evaluation Plan for Recognition of Broadcast News, in English.

http://www.itl.nist.gov/iad/mig/tests/bnr/1998/hub4e_98_spec.html, 1998.

Accessed: 2014-05-21.

Martha Palmer and Zhibiao Wu.

Verb semantics for english-chinese translation.

Machine translation, 10(1-2):59–92, 1995.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.

BLEU: a Method for Automatic Evaluation of Machine Translation.

Research Report RC22176, IBM Research Division, Thomas J. Watson Research Cen-

ter, 2001.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.

BLEU: a method for automatic evaluation of machine translation.

In Proceedings of the 40th Annual Meeting of the Association of Computational Lin-
guistics (ACL), pages 311–318, Philadelphia, PA, 2002.

Alicia Pérez, M Inés Torres, and Francisco Casacuberta.

Finite-state acoustic and translation model composition in statistical speech transla-

tion: Empirical assessment.

In Finite-State Methods and Natural Language Processing (FSMNLP), pages 99–107,

2012.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Na-

gendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan

Silovsky, Georg Stemmer, and Karel Vesely.

The kaldi speech recognition toolkit.

In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE

Signal Processing Society, December 2011.

R Core Team.

R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2013.

166

http://www.itl.nist.gov/iad/mig/tests/bnr/1998/hub4e_98_spec.html


BIBLIOGRAPHY

Lawrence R. Rabiner and Biing-Hwang Juang.

An introduction to hidden markov models.

IEEE ASSP Magazine, 1986.

Sharath Rao, Ian R. Lane, and Tanja Schultz.

Optimizing sentence segmentation for spoken language translation.

In INTERSPEECH, pages 2845–2848. ISCA, 2007.

Nicholas Ruiz and Marcello Federico.

Topic Adaptation for Lecture Translation through Bilingual Latent Semantic Models.

In Proceedings of the Sixth Workshop on Statistical Machine Translation, pages 294–

302, Edinburgh, Scotland, July 2011. Association for Computational Linguistics.

Nicholas Ruiz and Marcello Federico.

MDI Adaptation for the Lazy: Avoiding Normalization in LM Adaptation for Lecture

Translation.

In International Workshop on Spoken Language Translation (IWSLT), pages 244–251,

Hong Kong, 2012.

Nicholas Ruiz and Marcello Federico.

Assessing the Impact of Speech Recognition Errors on Machine Translation Quality.

In Association for Machine Translation in the Americas (AMTA), pages 261–274, Van-

couver, Canada, 2014a.

Nicholas Ruiz and Marcello Federico.

Complexity of Spoken Versus Written Language for Machine Translation.

In Proceedings of the 17th Conference of the European Association for Machine Trans-
lation (EAMT), pages 173–180, 2014b.

Nicholas Ruiz and Marcello Federico.

Phonetically-Oriented Word Error Alignment for Speech Recognition Error Analysis

in Speech Translation.

In IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),
Scottsdale, Arizona, December 2015. IEEE.

Nicholas Ruiz, Arianna Bisazza, Roldano Cattoni, and Marcello Federico.

FBK’s Machine Translation Systems for IWSLT 2012’s TED Lectures.

In IWSLT, pages 61–68. Citeseer, 2012.

167



BIBLIOGRAPHY

Nicholas Ruiz, Qin Gao, William Lewis, and Marcello Federico.

Adapting Machine Translation Models toward Misrecognized Speech with Text-to-

Speech Pronunciation Rules and Acoustic Confusability.

In Proceedings of Interspeech, Dresden, Germany, September 2015. ISCA.

Nick Ruiz, Arianna Bisazza, Fabio Brugnara, Daniele Falavigna, Diego Giuliani, Suhel

Jaber, Roberto Gretter, and Marcello Federico.

FBK @ IWSLT 2011.

In International Workshop on Spoken Language Translation (IWSLT), pages 86–93,

San Francisco, CA, 2011.

Kenji Sagae, Maider Lehr, Emily Tucker Prud’hommeaux, Puyang Xu, Nathan

Glenn, Damianos Karakos, Sanjeev Khudanpur, Brian Roark, Murat Saraclar, Izhak

Shafran, Daniel M. Bikel, Chris Callison-Burch, Yuan Cao, Keith Hall, Eva Hasler,

Philipp Koehn, Adam Lopez, Matt Post, and Darcey Riley.

Hallucinated n-best lists for discriminative language modeling.

In ICASSP, pages 5001–5004. IEEE, 2012.

ISBN 978-1-4673-0046-9.

Shirin Saleem, Szu-Chen (Stan) Jou, Stephan Vogel, and Tanja Schultz.

Using word lattice information for a tighter coupling in speech translation systems.

In International Conference of Spoken Language Processing, 2004.

Anne Schiller, Simone Teufel, Christine Stöckert, and Christine Thielen.

Vorläufige Guidelines für das Tagging deutscher Textcorpora mit STTS.

Universität Stuttgart, Institut für maschinelle Sprachverarbeitung, 1995.

Helmut Schmid.

Probabilistic part-of-speech tagging using decision trees.

In Proceedings of the International Conference on New Methods in Language Process-
ing, Manchester, UK, 1994.

Josh Schroeder, Trevor Cohn, and Philipp Koehn.

Word lattices for multi-source translation.

In Proceedings of the 12th Conference of the European Chapter of the Association for
Computational Linguistics, pages 719–727. Association for Computational Linguis-

tics, 2009.

S. R. Searle.

168



BIBLIOGRAPHY

Prediction, mixed models, and variance components.

Technical Report BU-468-M, Biometrics Unit, Cornell University, June 1973.

Frank Seide, Gang Li, and Dong Yu.

Conversational speech transcription using context-dependent deep neural networks.

In INTERSPEECH, pages 437–440. ISCA, August 2011.

Rico Sennrich, Barry Haddow, and Alexandra Birch.

Neural machine translation of rare words with subword units.

In Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.

Abhinav Sethy, Panayiotis Georgiou, and Shrikanth Narayanan.

Selecting relevant text subsets from web-data for building topic specific language

models.

In Proceedings of the Human Language Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 145–148, New York City, USA, June 2006. Asso-

ciation for Computational Linguistics.

Claude E. Shannon.

A mathematical theory of communication.

Bell System Technical Journal, 27(3):379–423, 1948.

Dana Shapira and James A. Storer.

Edit distance with move operations.

In Combinatorial Pattern Matching, 13th Annual Symposium, CPM 2002, Fukuoka,
Japan, July 3-5, 2002, Proceedings, pages 85–98, 2002.

doi: 10.1007/3-540-45452-7_9.

Elizabeth Shriberg, Andreas Stolcke, Dilek Hakkani-Tür, and Gökhan Tür.

Prosody-based automatic segmentation of speech into sentences and topics.

Speech communication, 32(1):127–154, 2000.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and John Makhoul.

A study of translation edit rate with targeted human annotation.

In 5th Conference of the Association for Machine Translation in the Americas (AMTA),
Boston, Massachusetts, August 2006.

Radu Soricut and Abdessamad Echihabi.

169



BIBLIOGRAPHY

Trustrank: Inducing trust in automatic translations via ranking.

In Proceedings of the 48th Annual Meeting of the Association for Computational Lin-
guistics, pages 612–621, Uppsala, Sweden, July 2010. Association for Computational

Linguistics.

Lucia Specia.

Exploiting objective annotations for minimising translation post-editing effort.

In Mikel L. Forcada, Heidi Depraetere, and Vincent Vandeghinste, editors, Proceed-
ings of the 15th International Conference of the European Association for Machine
Translation (EAMT), pages 73–80, 2011.

Lucia Specia, Marco Turchi, Zhuoran Wang, John Shawe-Taylor, and Craig Saunders.

Improving the confidence of machine translation quality estimates.

In Proceedings of the Twelfth Machine Translation Summit (MT Summit XII). Inter-

national Association for Machine Translation, 2009.

Lucia Specia, Najeh Hajlaoui, Catalina Hallett, and Wilker Aziz.

Predicting Machine Translation Adequacy.

In Machine Translation Summit XIII, pages 73–80, 2011.

Richard Sproat, Alan Black, Stanley Chen, Shankar Kumar, Mari Ostendorf, and

Christopher Richards.

Normalization of non-standard words: Ws ’99 final report.

Technical report, Hopkins University, 1999.

Richard Sproat, Alan W Black, Stanley Chen, Shankar Kumar, Mari Ostendorf, and

Christopher Richards.

Normalization of non-standard words.

Computer Speech & Language, 15(3):287–333, 2001.

Vivek Kumar Rangarajan Sridhar, John Chen, Srinivas Bangalore, Andrej Ljolje, and

Rathinavelu Chengalvarayan.

Segmentation Strategies for Streaming Speech Translation.

In Proceedings of NAACL-HLT, pages 230–238, 2013.

A. Stolcke, E. Shriberg, R. Bates, M. Ostendorf, D. Hakkani, M. Plauche, G. Tur, and

Y. Lu.

Automatic detection of sentence boundaries and disfluencies based on recognized

words.

170



BIBLIOGRAPHY

In Proceedings of ICSLP, volume 5, pages 2247–2250, Sydney, Australia, 1998.

Andreas Stolcke and Elizabeth Shriberg.

Automatic linguistic segmentation of conversational speech.

In Spoken Language, 1996. ICSLP 96. Proceedings., Fourth International Conference
on, volume 2, pages 1005–1008. IEEE, 1996.

S. Stuker, T. Herrmann, M. Kolss, J. Niehues, and M. Wolfel.

Research Opportunities In Automatic Speech-To-Speech Translation.

Potentials, IEEE, 31(3):26–33, 2012.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.

Sequence to sequence learning with neural networks.

In Proceedings of the 27th International Conference on Neural Information Processing
Systems, NIPS’14, pages 3104–3112, Cambridge, MA, USA, 2014. MIT Press.

Yik-Cheung Tam, Ian Lane, and Tanja Schultz.

Bilingual LSA-based adaptation for statistical machine translation.

Machine Translation, 21:187–207, December 2007.

ISSN 0922-6567.

doi: 10.1007/s10590-008-9045-2.

Qun Feng Tan, Kartik Audhkhasi, Panayiotis G. Georgiou, Emil Ettelaie, and

Shrikanth S. Narayanan.

Automatic speech recognition system channel modeling.

In Takao Kobayashi, Keikichi Hirose, and Satoshi Nakamura, editors, INTER-
SPEECH 2010, 11th Annual Conference of the International Speech Communica-
tion Association, Makuhari, Chiba, Japan, September 26-30, 2010, pages 2442–2445.

ISCA, 2010.

The European Commission Directorate-General for Translation (EC DGT).

2015 Annual Activity Report.
The European Commission, April 2016.

https://ec.europa.eu/info/publications/annual-activity-report-2015-

translation_en.

Christoph Tillmann.

A Unigram Orientation Model for Statistical Machine Translation.

171

https://ec.europa.eu/info/publications/annual-activity-report-2015- translation_en
https://ec.europa.eu/info/publications/annual-activity-report-2015- translation_en


BIBLIOGRAPHY

In Proceedings of the Joint Conference on Human Language Technologies and the
Annual Meeting of the North American Chapter of the Association of Computational
Linguistics (HLT-NAACL), pages 101–104, Boston, Massachusetts, USA, 2004.

Christoph Tillmann and Hermann Ney.

Word reordering and a dynamic programming beam search algorithm for statistical

machine translation.

Computational Linguistics, 29(1):97–133, 2003.

Yulia Tsvetkov, Florian Metze, and Chris Dyer.

Augmenting translation models with simulated acoustic confusions for improved spo-

ken language translation.

In Proceedings of the European Association of Computational Linguistics (EACL),
pages 616–625, 2014.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li.

Modeling coverage for neural machine translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics, 2016.

Marco Turchi, Matteo Negri, and Marcello Federico.

Coping with the subjectivity of human judgements in MT quality estimation.

In Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 240–

251, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

Nicola Ueffing, K. Macherey, and Hermann Ney.

Confidence measures for statistical machine translation.

In Proceedings of the MT Summit IX, 2003.

David Vilar, Jia Xu, Luis Fernando dHaro, and Hermann Ney.

Error analysis of statistical machine translation output.

In Proceedings of the Fifth International Conference on Language Resources and Eval-
uation (LREC’06), pages 697–702, 2006.

S. Vogel, H. Ney, and C. Tillmann.

HMM-based word alignment in statistical translation.

In Proceedings of COLING, pages 836–841, Copenhagen, Denmark, 1996.

Chao Wang, Michael Collins, and Philipp Koehn.

172



BIBLIOGRAPHY

Chinese syntactic reordering for statistical machine translation.

In EMNLP-CoNLL, pages 737–745, 2007.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki.

Online Large-Margin Training for Statistical Machine Translation.

In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, pages 764–773,

2007.

Warren Weaver.

Translation.

In William N. Locke and A. Donald Boothe, editors, Machine Translation of Lan-
guages, pages 15–23. MIT Press, Cambridge, MA, 1949/1955.

Reprinted from a memorandum written by Weaver in 1949.

Ian H. Witten and Timothy C. Bell.

The Zero-Frequency Problem: Estimating the Probabilities of Novel Events in Adap-

tive Text Compression.

IEEE Trans. Inform. Theory, IT-37(4):1085–1094, 1991.

Chuck Wooters and Andreas Stolcke.

Multiple-pronunciation lexical modeling in a speaker independent speech under-

standing system.

In The 3rd International Conference on Spoken Language Processing, ICSLP 1994,
Yokohama, Japan, September 18-22, 1994, 1994.

Dekai Wu.

Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Cor-

pora.

Comput. Linguist., 23(3):377–403, September 1997.

ISSN 0891-2017.

Tong Xiao, Jingbo Zhu, Shujie Yao, and Hao Zhang.

Document-level consistency verification in machine translation.

In Proceedings of the 13th Machine Translation Summit (MT Summit XIII), pages

131–138. International Association for Machine Translation, 2011.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas Stol-

cke, Dong Yu, and Geoffrey Zweig.

173



BIBLIOGRAPHY

Achieving human parity in conversational speech recognition.

CoRR, abs/1610.05256, 2016.

Kenji Yamada and Kevin Knight.

A Syntax-based Statistical Translation Model.

In Proceedings of the 39th Annual Meeting on Association for Computational Linguis-
tics, ACL ’01, pages 523–530, Stroudsburg, PA, USA, 2001. Association for Computa-

tional Linguistics.

doi: 10.3115/1073012.1073079.

Liu Yi and Pascale Fung.

Partial change accent models for accented mandarin speech recognition.

In Automatic Speech Recognition and Understanding, 2003. ASRU ’03. 2003 IEEE
Workshop on, pages 111–116, Nov 2003.

doi: 10.1109/ASRU.2003.1318413.

Richard Zens, Franz Josef Och, and Hermann Ney.

Phrase-Based Statistical Machine Translation.

In KI 2002: Advances in Artificial Intelligence, 25th Annual German Conference on AI,
KI 2002, Aachen, Germany, September 16-20, 2002, Proceedings, pages 18–32, 2002.

doi: 10.1007/3-540-45751-8_2.

Ruiqiang Zhang, Gen-ichiro Kikui, Hirofumi Yamamoto, and Wai-Kit Lo.

A decoding algorithm for word lattice translation in speech translation.

In International Workshop on Spoken Language Translation, IWSLT, pages 23–29,

Pittsburgh, PA, USA, October 2005.

Yaodong Zhang, Li Deng, Xiaodong He, and Alex Acero.

A novel decision function and the associated decision-feedback learning for speech

translation.

In ICASSP, pages 5608–5611, 2011.

Bing Zhao and Eric P. Xing.

HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation.

In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Informa-
tion Processing Systems 20, pages 1689–1696. MIT Press, Cambridge, MA, 2008.

Bing Zhao, Matthias Eck, and Stephan Vogel.

174



BIBLIOGRAPHY

Language Model Adaptation for Statistical Machine Translation via Structured

Query Models.

In Proceedings of Coling 2004, pages 411–417, Geneva, Switzerland, Aug 23–Aug 27

2004. COLING.

Bowen Zhou, Laurent Besacier, and Yuqing Gao.

On efficient coupling of ASR and SMT for speech translation.

In Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 101–104, Honolulu, HA, 2007.

Andreas Zollmann and Ashish Venugopal.

Syntax Augmented Machine Translation via Chart Parsing.

In Proceedings of the Workshop on Statistical Machine Translation, StatMT ’06, pages

138–141, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

Will Y. Zou, Richard Socher, Daniel M. Cer, and Christopher D. Manning.

Bilingual Word Embeddings for Phrase-Based Machine Translation.

In Empirical Methods of Natural Language Processing, pages 1393–1398. ACL, 2013.

175




	List of Tables
	List of Figures
	Introduction
	Motivating Example
	Contributions
	Translation versus Interpretation
	Structure of this Thesis
	Evaluation Data
	Relevant Publications

	Spoken Language Translation Modeling
	Automatic Speech Recognition
	Evaluation

	Statistical Machine Translation
	Lexical Translation Models
	Phrase-Based Models
	Log-Linear Translation Model
	Decoding

	Language Modeling
	Evaluation

	Neural Machine Translation
	Encoder, Decoder and Attention Models
	Beam Search
	Training

	Machine Translation Evaluation
	BLEU
	TER

	Incorporating ASR in Spoken Language Translation
	SLT as a Sequential Pipeline
	Unified Spoken Language Translation

	Machine translation error modeling approaches
	Chapter Summary

	Language Complexity of Text versus Speech
	Spoken versus Written Registers
	Language Complexity in Machine Translation
	Corpus Analysis of Language Complexity
	Word statistics
	Sentence length
	Predictability: Perplexity and new words

	Lexical ambiguity
	Polysemy
	Lexical translation entropy
	Pronominal anaphora
	Idiomatic expressions

	Word reordering
	Machine Translation performance
	Summary
	Chapter Summary

	Speech Recognition Errors and Spoken Language Translation Quality
	Experimental setup
	ASR data processing
	MT data processing

	Phonetically-Oriented Word Alignment
	Alignment algorithm
	Word alignment heuristics
	Scoring
	Error Analysis Comparison

	Do ASR errors correlate with SMT errors?
	Correlation
	Linear Regression

	WER scores and translation quality
	ASR Levenshtein error types and translation quality
	Basic error types
	Word classes and morphology

	Discussion
	Related Work
	Quality Estimation for Machine Translation
	Quality Estimation for Automatic Speech Recognition

	Chapter Summary

	Context Adaptation using Bilingual Latent Semantic Models
	Topic adaptation
	Topic modeling
	Extending to bilingual contexts

	MDI Adaptation
	Lazy MDI Alternative for SMT
	Smoothing unigram ratios
	Log-linear feature
	Sparsity considerations
	Inferring unigrams via bilingual topic modeling

	Experiments
	Lazy MDI versus MDI adaptation
	Context window size and bilingual context

	Related Work
	Chapter Summary

	Automatic Speech Recognition Damaging Channel
	Damaging Channel
	TTS-based pronunciation generation
	Phoneme-level confusion

	Experiments
	Damaging channel
	Synthetic ASR outputs
	SLT evaluation
	Analysis
	Experiments on conversational data

	Related work
	Chapter Summary

	Neural Spoken Language Translation Evaluation
	Neural versus Statistical MT
	Research Methodology
	Neural MT system
	Phrase-based MT system

	SLT Evaluation
	MT system ranking
	Translation examples

	Mixed-effects analysis
	Chapter Summary

	Conclusion
	Spoken Language Translation Error Analysis Notes
	Experiment data
	Data preparation
	Text normalization
	Re-alignment of errors
	Punctuation insertion
	Recasing
	Translation and evaluation

	Outlier removal
	Word class clustering
	POWER vs WER: Word class-annotated errors
	SLT evaluation

	Bibliography

