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Abstract 
 
Understanding and predicting the effects of width variability and the controls on width adjustment in 

rivers has a key role in developing management approaches able to account for the physical, 

ecological and socio-economical dimensions of a river system. 

Width adaptation in a river occurs due to erosion and accretion of banks, within various geomorphic, 

environmental and anthropogenic contexts, which set the most relevant factors controlling the 

morphological dynamics of the river corridor. In turn, changes in channel width imply alterations of 

the river channel morphodynamics at a variety of space and time scales, implying, for instance, 

modifications of important controlling parameters, like the width-to-depth ratio, which is closely 

related to the planform morphology of alluvial rivers. Width adaptation bears crucial implications for 

river management: on one hand, channel widening may result in loss of valuable land and in the 

increase of the damage risk of infrastructures in surrounding areas, which are often subjected to 

increasing pressures related to human settlements and economic activities. On the other hand, several 

approaches to river restoration are based on the concept of “giving more room to the river”, and thus 

allow the banks to erode and widen, to increase morphological and physical habitat diversity. In view 

of these implications, the prediction of width adaptation, understanding of its main causes and 

controlling factors, and quantification of the riverbed morphodynamic response to width variability is 

of crucial importance to support effective river management. 

The practical and engineering interest on stable cross-sections of alluvial channels has attracted a 

considerable amount of scientific research since late 19
th
 century. Much of the research has focused in 

developing width prediction tools mostly based on empirical approaches and methods based on 

extremal hypothesis and to lesser extent on mechanistic methods. In the past two decades, research 

has advanced in developing numerical models including geotechnical as well as fluvial processes to 

simulate bank failure mechanism more accurately. Despite significant development on the width 

predictors, research in controls on width evolution of river channels cannot still be considered a fully 

settled issue. 

The study of the morphodynamic response of the riverbed to width variability in space and time is 

somehow more recent, and has focussed on the dynamics of large-scale bedforms (river bars) that 

produce a variety of riverbed configurations and planform morphologies. The effect of spatial width 

variability on river bars has mainly been based on assessing the role of such planform forcing effects 

to the bed topography, both in case of straight and meandering river channels. The amplitude of width 

variability has been related to fundamental questions as those behind the transition between single- 

and multi-thread river morphologies, and most studies consider regular spatial variations of the 

channel width. Research on the response of channel bed to spatial width variability has mostly 

consisted of modelling and theoretical approaches, which point out the limit cases of a purely “free” 

system response, associated with morphodynamic instability, an of purely “forced” bedform pattern 

by spatial planform non-homogeneity. The large spectrum of mixed configurations between those two 

theoretical limits has been so far seldom investigated, despite its strong relevance for real river 

systems. The limits of what can actually be considered a “planform forcing” effect, or has instead a 

too small variability have never been clarified, a well as its role on the resulting channel 

morphodynamics. For instance, the effects of small amplitude width variations on straight channels, 

which may be due to imperfect bank lines or protrusion due to vegetations, on morphodynamics of 

river bed has been neglected so far.  
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This study has two main scientific goals. The first goal is to quantitatively investigate the role of 

potentially controlling factors on the width evolution of bedload-dominated straight river channels, 

including the initial channel width, the flow regime and the sediment supply regime. The major 

question driving the research is whether a river would attain the same width independently of the 

initial conditions and whether this would be true for all types of discharge regimes of water and 

sediment supply. The study is carried out using both laboratory experiments (Chapter 3), analytical 

model (Chapter 4) and numerical model (Chapter 5) tested with reference to real river data. 

Integrating the results of the experiments with those of analytical and numerical models allows 

deriving a more robust and complete understanding of the processes involved, including transient 

width evolution, time scales to morphodynamic equilibrium, equilibrium conditions and role of each 

controlling factor. In Chapter 3 a set of controlled laboratory experiments have been performed to 

study channel adjustments in a movable-bed, erodible-bank channel under different flow and sediment 

regimes and different initial widths. The long-term width evolution is observed to be independent of 

initial channel width under uniform formative discharge without upstream sediment supply. Width 

evolution rate is observed to depend on the initial channel width when the sediment is supplied from 

upstream with the narrowest initial channel evolving at the highest widening rate and resulting into 

the widest channel. A physics based analytical model of channel adjustment (Chapter 4) has been 

applied to some of the experiments described in Chapter 3. Furthermore, in Chapter 5 a field scale 

numerical model was setup using the flow and topographic data of gravel bed reach of Upper Severn 

River near Abermule (UK). The trend of width evolution computed by analytical model is also 

qualitatively in agreement with the observations in the experiments. The results of numerical 

modeling have further supported the observations in the experiments which reinforce the findings in 

agreement with laws of physics.   

The second goal of the present PhD research is to analyze the morphodynamic response of the 

riverbed to small-scale spatial variability of the channel width, focusing on alternate bars. The main 

question driving the investigation (Chapter 6) is to which extent small-amplitude, irregular width 

variations in space affect the morphodynamics of river bars, the fundamental riverbed patterns at the 

scale of the channel width. The key theoretical question behind this investigation is to which extent 

“small amplitude” width variations can be considered as a planform forcing, for the channel bed 

morphodynamic response, and whether it is possible to establish a threshold amplitude below which 

they may act as a near bank-roughness element. The study is based on hydraulic conditions typical of 

bedload-dominated piedmont streams, often having flows with Froude numbers around 1 or higher at 

bar-forming or channel-forming conditions. The study is developed through a numerical modeling 

approach. Because of the considered hydraulic conditions (close to critical-Froude number) first, a 

comparison is made between one semi-coupled numerical morphodynamic model, expected to be 

most suitable for sub critical flows, and one fully-coupled numerical morphodynamic model which 

can handle Froude-critical flows to assess the potential shortcomings of applying a semi-coupled 

model under close-to-critial Froude conditions. Such test, (Appendix B) supports the use of both 

models, and the semi-coupled model is eventually preferred for the advantages in computational 

speed. Such model is used for the numerical investigations performed in Chapter 6 and to some extent 

also in Chapter 5. The comparison is based on the reproduction of alternate bars morphodynamics 

observed in existing sets of flume experiments with fixed banks and super-critical flow conditions. 

The results of numerical modeling have shown that the small width variations have accelerated the 

development of the steady bars suppressing the free bar instability. Further investigations reveal that 

the effects of small width variations to a certain extent can be captured by parameterizing them in the 

form of increased roughness close to the banks or as small obstructions along the banks.
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1 INTRODUCTION 

Most ancient civilizations existed along rivers like the Jordan, the Euphrates, the Tigris, the Nile, the 

Indus and the Yellow River, from as early as the 11
th
 Millennium BC. The earliest uses of the river 

water for irrigation with a developed canal systems occurred around the 7
th
 century BC along the 

Tigris River. Navigation started in the Euphrates in the 4
th
 millennium BC and the first dams were 

constructed in Jawa in the 3
rd

 millennium BC [Pierre-Louis, 2005]. An exponential increase in use 

and modification of natural water resources, especially in Europe, occurred after the 16
th
 century AD 

[Nienhuis and Leuven, 2001]. Human-made physical changes in rivers include canalization, 

narrowing and straightening to reclaim riparian land for settlement and economical activities. Dams 

and reservoirs are made for flood control, hydropower generation and storage of water for irrigation 

and drinking purposes [Nienhuis and Leuven, 2001]. Extraction of sand and gravel from rivers is 

mainly carried out for construction purposes [e.g. Surian and Rinaldi, 2003]. Such interventions 

change both discharge and sediment regimes of rivers, which then lead to river channel adaptation 

through morphological changes [Jansen et al., 1979]. At the basin scale, also the change in land use 

result in river discharge and sediment regimes alterations [Walling, 1999; Foley, 2005]. The on-going 

exponential growth of human population and economic development is expected to further increase 

the number of human interventions in rivers, also in developing nations. Zarfl et al. [2015] report that 

about 3,700 dams are presently under construction or at the planned stage in developing countries. 

Church and Ferguson [2015] point out the need to understand the morphological impact of such 

human interventions in rivers. At the same time there is an increasing trend of rehabilitating modified 

rivers to achieve a more natural state in the developed nations [Nienhuis and Leuven, 2001].  River 

rehabilitation is generally carried out to allow higher dynamics in the morphological processes 

[Shields et al., 2003]. However, increased bed and bank dynamics may lead to undesirable channel 

widening, resulting in loss of flood plains [Amiri-Tokaldany et al., 2003] and damage to hydraulic 

structures [Simon, 1995], transportation and flood defense infrastructures [Iwasaki et al., 2015]. 

Channel reconfiguration (Figure 1) and flow restoration are key activities in river rehabilitation [Wohl 

et al., 2015]. These interventions need quantitative process-based knowledge of channel geometry and 

planform evolution on the long term [Shields et al., 2003; Niezgoda and Johnson, 2005]. 

After a permanent change of flow, sediment regimes and morphology, caused for instance by human 

interventions or by a natural event, rivers evolve towards a new morphodynamic equilibrium. At the 

reach scale, this is characterized by adjusted values of longitudinal slope, channel width and depth. 

Oscillations around the averaged values of these variables can be expected due to short-term 

fluctuations related to the variation of discharge and sediment input occurring at the event time scale. 

The path to the adjusted values, or value ranges, starts from the conditions at which the intervention is 

made (initial conditions). Early width adaptation occurs over a relatively short time-scale, years to 

decades, whereas slope adaptation occurs over much longer time-scale, decades to centuries. In turn 

changes of longitudinal slope influence the width, resulting in long-term width adaptation [Wilson, 

1973; Parker et al., 2007]. The depth adaptation is governed by both the evolving slope and width. 

Due to the shorter time-scale of the width adaptation, the effects of changes in hydrological and 

sediment supply conditions are often described in terms of width and depth [Huang et al., 2014; 

Kaless et al., 2014] or equivalently, in terms of width and bed level adjustments [Surian and Rinaldi, 

2003] . However, the slow river slope adaptation can result in additional important long-term channel 

adjustments. 
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Figure 1. Images showing examples of river restoration projects a) re-meandering of the straightened reach of 

River Brede at Logumkloster, Denmark and b) local widening along the straight reach of River Emme at 

Aeflingen, Switzerland (Courtesy: Dr. Alessandra Crosato) 

The channel geometry has historically represented a fundamental topic in river geomorphology. It 

includes channel planform, width and depth. The planform can be studied by means of planform 

predictors. The predictors based on channel classifications [Schumm, 1985] and physics [Crosato and 

Mosselman, 2009] require prior estimation of the channel width, whereas empirical planform 

predictors [van den Berg, 1995; Kleinhans and van den Berg, 2011]. Planform predictors based on 

extremal hypotheses [Millar, 2000; Eaton et al., 2010] rely on their width predictors. So, channel 

width prediction has an important role in the possibility to predict the pattern of unconfined alluvial 

channels, with key implications for the design of river restoration measures that forsee “more room to 

the rivers” and for the sustainable management of the “erodible river corridor” [Piégay et al., 2005; 

Rinaldi et al., 2009]. 

The width adaptation has been studied so far by using: 

 Reach-averaged width predictors: empirical hydraulic geometry relations [Leopold and 

Maddock, 1953; Andrews, 1984; Hey and Thorne, 1986; Parker et al., 2007], mechanistic 

approaches [Parker, 1978a, 1978b; Vigilar, Jr. and Diplas, 1998] and extremal hypothesis 

approaches [Millar and Quick, 1993; Cao and Knight, 1996; Millar, 2005; Eaton and Church, 

2007]. 

 Numerical models (reach scale or depth scale) [Langendoen and Simon, 2008; Rinaldi et al., 

2008; Jia et al., 2010; Langendoen et al., 2015]; analytical models [Tealdi et al., 2011]. 

Reach-averaged width predictors are widely used. They compute the hydraulic geometry of a channel 

cross-section, based on discharge and sediment properties, irrespective of the initial conditions. 

However, Mosselman [2004] argue that the equilibrium hydraulic geometry may depend also on 

initial and boundary conditions. Cao and Knight [1996] highlight the width-to-depth ratio as an 

important parameter to define the equilibrium hydraulic geometry. Blench (Blench 1969, cited by 

Mosselman 2004) state that the equilibrium hydraulic geometry can take any value within a range of 

values. More in general, the effect of initial channel width on the long-term channel configuration still 

represents an open issue that requires further investigation.  

 

a) b) 
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The discharge of both natural and modified rivers varies at a variety of time scales. Bank-full 

discharge is widely used as the channel-forming hydraulic condition in most width-prediction models. 

The channel-forming discharge is an idealized concept, defined as a single value of the discharge 

which results in a channel configuration comparable to the one obtained with variable discharge 

[Shields et al., 2003].  In general, this may not be satisfied by a single value of the discharge, because 

of the non-linear relations between river flow and morphology [Prins and De Vries, 1971]. Van Der 

Klis [2003] and Tubino [1991], among others, highlight the importance of discharge variation in 

modelling of river morphology. Visconti et al. [2010] found out that discharge variations has a key 

role in maintaining certain river patterns, such as transitional morphologies between single and multi-

thread rivers. Few experimental studies showed that the initial bank-full discharge leads to wider 

channels, so that the final bank-full discharge is not the channel forming condition [Valentine et al., 

2001; Bertoldi and Tubino, 2005; Byishimo, 2014]. So, better understanding is required on the role of 

variable discharge and bank full discharge on the evolution of the channel width. 

The flow over alluvial beds causes morphodynamic instability, resulting in bed waves at different 

scales, depending on the width-to-depth ratio and flow characteristics [Colombini and Stocchino, 

2012]. The morphological characteristics of the smallest bed waves, ripples, scale with the sediment 

size, the larger dunes and anti-dunes scale with the flow depth. Bars, the largest of all, scale with the 

cross-section of the river. Ripples form at low Shields numbers, corresponding to hydraulically 

smooth or transitional regimes. Also dunes and anti-dunes form at hydraulically smooth or transitional 

flow regimes, but at higher Shields numbers [Colombini and Stocchino, 2011]. Dunes are dominant at 

subcritical flow conditions whereas anti-dunes appear at super-critical flow conditions [Colombini 

and Stocchino, 2008]. Bars occur at shallow water conditions i.e. at large width to depth ratio,  

irrespective of the flow being sub critical or super critical [Tubino et al., 1999; Colombini and 

Stocchino, 2012]. 

 

 

 

Figure 2: Images showing a) Point bars (forced bars) in the meandering reach of Mohona River at Bordadi, 

Nepal, from Google Earth, b) alternate bars (free bars) in the straight reach of the Rhine at Sargans, Switzerland, 

from Google Earth and c) alternate bars formed during the early stage of channel development in laboratory 

experiments of Bertoldi and Tubino [2005]. 

Bars are commonly present in natural rivers, affect and are strongly affected by variations of the 

channel width (Figure 2). Bars can be classified as free [Tubino et al., 1999], forced [Zolezzi and 

Seminara, 2001] and hybrid [Duró et al., 2015] i.e. resulting from free-forced interactions [Seminara 

and Tubino, 1989]. Free bars originate by morphodynamic instability caused by the flow over a 

a) 

b) 

c) 

point bars 

alternate bars 

b) 
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mobile channel bed at sufficiently high width-to-depth ratios and have a periodic character, whereas 

forced bars appear due to forcing by a local flow perturbation and may have spatially variable 

amplitude. Free bars migrate mainly in downstream but forced bars don’t move. Free bars have been 

studied since long by means of “bar instability theories”; linear [Callander, 1969; Engelund, 1970; 

Parker, 1976; Fredsøe, 1978] and weakly non-linear models [Colombini et al., 1987; Schielen et al., 

1993]. Forced bars mostly occur by local forcing (e.g. groynes, bend) or boundary conditions (e.g. 

width variations) that can be viewed as distributed planform forcing effects. Hybrid bars are periodic 

steady bars that form due to a combination and/or interaction of morphodynamic instability and 

steady forcing. Morphodynamic instability may affect their geometrical characteristics whereas steady 

forcing determines their spatial location and celerity (= 0), as well as their growth rate and, to some 

extent, geometry. Hybrid bars have been studied using linear models [Struiksma et al., 1985; 

Struiksma and Crosato, 1989] and weakly nonlinear bar models [Seminara and Tubino, 1992]. 

Besides analytical theories, alternate bars have been studied in laboratory flumes [e.g. Fujita and 

Muramoto, 1985; Lanzoni, 2000a, 2000b; Crosato et al., 2012] and to lesser extent using physics-

based numerical morphodynamic models [Defina, 2003; Jang and Shimizu, 2005b; Bernini et al., 

2006]. The evolution of alternate bars in models are mostly discussed in the light of the analytical 

theories and most of the times qualitatively, compared with laboratory experiments [Defina, 2003; 

Bernini et al., 2006]. Jang and Shimizu [2005] present one of the scarce examples where laboratory 

experiment data is used to calibrate a numerical model and quantitative comparison of the bar 

evolution is made.   

Numerical modelling of alternate bars in laboratory experiments remains a challenge for a number of 

reasons.  Flow in laboratory experiments is often close to critical or is at super critical conditions 

[Peakall et al., 1996] which might induce errors if semi-coupled numerical models are used. Due to 

shallow flows, in laboratory experiments other forces, such as surface tension can have effects. 

Properties of bars in the experiments may not be fully captured by numerical models which often do 

not take into account such forces. Equations for flow field and bed evolution are solved using various 

numerical schemes in numerical models. Numerical solutions may contain additional diffusion due to 

the numerical schemes, which makes it difficult to simulate morphological phenomena at the same 

time scale of that in the laboratory experiments. 

Another aspect, related to the channel width that needs further investigation is the morphodynamic 

response of the river bed to a specified spatial distribution of an imposed channel width. Research on 

the response of channel bed to spatial width variability has mostly consisted of modelling and 

theoretical approaches, which point out the limit cases of a purely “free” system response, associated 

with morphodynamic instability, an of purely “forced” bedform pattern by spatial planform non-

homogeneity. The effect have been studied in the symmetric settings [Bittner, 1994; Repetto et al., 

2002; Wu and Yeh, 2005; Wu et al., 2011] which are known to develop symmetric forced bedforms 

such as mid-channel bar. Most of these studies attempt to establish the threshold amplitude of width 

variation at which the fully forced bed forms are developed. . Other studies like Duro et al. [2015] 

explore the effect of spatial change in reach averaged width on the evolution of bars. The large 

spectrum of mixed configurations between those two theoretical limits has been so far seldom 

investigated, despite its strong relevance for real river systems The limits of what can actually be 

considered a “planform forcing” effect, or has instead a too small variability have never been 

clarified, as well as its role on the resulting channel morphodynamics.For instance, free bars in the 

laboratory experiments or channelized rivers can be affected by minor width variations (two orders of 

magnitude less than the channel width) due to imperfections along the straight banks. Such small 

width variations have been mostly neglected in studies of bar evolution so far. A question needs to be 
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answered about the actual planform forcing role of these “small” width variations. Can a threshold 

amplitude of these spatial width variations be defined below which free bars instability develops 

almost unaffected by any forcing effects? To which extent apparently small amplitude (at the scale of 

flow depth) spatial width variations might interact with free bar instability altering properties of free 

alternate bars?   

1.1 Aim of the study 
This research has two main aims. The first one is to investigate the role of controlling factors on the 

long-term reach-averaged channel geometry, focusing on the width evolution of alluvial, bedload-

dominated rivers. The second aim is to analyze the morphodynamic response of the riverbed to small-

scale spatial variability of the channel width, focusing on the dynamics of alternate bars. 

A river reach is defined here as longitudinal river stretch that i) is several times longer than its width 

and ii) has rather uniform cross-sectionally averaged longitudinal slope, channel sinuosity and width, 

and iii) has uniform type of bars and other morphological features at the width scale. The long-term 

evolution refers to the time scale at which the reach-averaged value of the morphological variable of 

interest (width, sediment transport rate, bar properties) reaches a dynamic equilibrium, whereby 

event-scale fluctuations are superimposed over an average value that does not change with time under 

steady external conditions.  

1.2 Research questions 
To summarize, this research aims to answer the following research questions: 

Hydro-morphological controls of reach-averaged evolution of alluvial channel geometry 

 Does the long-term equilibrium alluvial channel geometry depend upon the initial channel 

width? 

 Which are the roles of variable discharge and upstream sediment supply on the long-term 

evolution of the channel width? 

Effects of small width variations on the bed morphodynamics of alluvial channels 

 To what extent can the alternate bars observed in laboratory experiments be reproduced by a 

state-of-the-art numerical model? 

 Do small-amplitude, irregular, width variations in space affect the morphodynamics of 

alternate bars? 

 To which extent do small-amplitude width variations act as a planform forcing on riverbed 

topography? 

1.3 Methodology 
Phenomena in geosciences are studied by i) field observations, ii) physical experiments and iii) 

numerical models. These methods provide understanding in different ways since they have different 

strengths and limitations.  Kleinhans [ 2010], Zolezzi et al.[2012] and many others agree that an 

understanding based on all three approaches is more robust and complete than one based on a single 

approach. This study is carried out using laboratory experiments, numerical and semi-analytical 

models. Field observations or field-scale experiments are not part of the study, though they might 

support follow-up of the present research in the future.  
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Laboratory experiments (Chapter 3) are carried out to study the effects of starting and boundary 

conditions on the river channel formation (width, depth and slope). Several tests are carried out 

starting with different initial channel widths with both constant or variable discharges and sediment 

inputs at the upstream boundary. Discharge hydrographs are designed to explore the amplitude and 

duration of discharge variability on the width evolution. The evolutions of reach-averaged channel 

width and channel bed level are then analyzed based on the experimental observations. The channel 

width evolution is also analysed using the semi-analytical model of Tealdi et al.[2011] which allows 

computing the channel adjustment under varying discharge and sediment supply conditions (Chapter 

4). For the experiments, a small laboratory experimental facility was available. Its small size 

represented a limiting factor for long duration experiments. So, the experimental results are integrated 

with the results of numerical modelling of a similar river for a longer time scale. The numerical 

simulations (Chapter 5) are designed similar to the scenarios explored in the laboratory experiments. 

The Delft3D numerical morphodynamic model, which includes a module for bank erosion process is 

used for the investigations. The flow and sediment characteristics in the laboratory experiments when 

up scaled represent those in the gravel-bed rivers. Simulations are carried out using the longitudinal 

slope, sediment and discharge characteristics of River Severn near Abermule as an illustrative case 

study, which is a gravel bed river. The results of the numerical model are then discussed in the light of 

the results of the laboratory experiments. 

Considering that natural rivers always present some width discontinuities, the effects of small width 

variations on river bed evolution are analysed by numerical modelling (Chapter 6), with reference to a 

set of existing laboratory experiments. A fully non-linear numerical model allows studying the long-

term bar development when non-linear processes are dominant. Laboratory experiment data of Garcia 

Lugo et al.,[2015] are used for the investigation and for numerical model setup. This allows for 

comparison between the bars evolved in numerical models and in the experiments. Laboratory 

experiments were carried out at Froude super-critical or near-critical flow conditions. So, first 

comparison needs to be made between semi coupled models (Delft3D) and fully coupled model 

(GIAMT-2D) to assess the appropriateness of each tool for the numerical investigation. Semi-coupled 

model is most suitable for sub-critical flows whereas fully coupled model can also handle super-

critical flows. The coupling strategy greatly affects the computational time since the semi coupled 

model is significantly faster than the fully coupled model. Model comparison is made based upon the 

ability of the models to reproduce alternate bars observed in the flume experiments. As both models 

had similar outcomes, the faster running, semi-coupled model has been chosen for the numerical 

investigations on bar dynamics in chapter 6. The effects of small-amplitude width variations on 

channel bed evolution are then explored by imposing small-amplitude width variations of known 

amplitude and wavelength along one bank, to isolate the effect. The amplitude of width variations is 

varied among different scenarios. The bed topography evolution of these scenarios is analyzed and 

compared with the constant-width scenario. This allows quantifying the effects of small-amplitude 

width variations in the evolution of the channel bed topography and to answer the research questions 

presented in the previous section. 

1.4 Outline of the thesis 
This thesis is outlined in 7 chapters. Chapter 2 presents the state of the art on the channel formations, 

focusing on the channel width and channel bed formation. The review is made on the channel forming 

processes and the prediction methods. Chapter 3, Chapter 4 and Chapter 5 present investigations of 

the effects of different controls on the channel evolution focusing on the width. Chapter 3 presents the 

results of the laboratory experiments, Chapter 4 presents the results of the semi-analytical modelling 

and Chapter 5 presents the results of numerical modelling. The numerical modelling study of the river 
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bed topography adaptations to small amplitude width variations, focusing on alternate bars are 

presented in Chapter 6. Finally, Chapter 7 concludes the key findings of this doctoral thesis, discusses 

the key limitations encountered in the research and suggests the key investigations for the future.   
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2 STATE OF THE ART ON RIVER CHANNEL FORMATION 

2.1 Channel width formation 
A self-formed river flowing through an alluvium adapts its width, depth and slope based on 

hydrological conditions, sediment characteristics, riparian vegetation and bank material [Parker et al., 

2007]. The river channel interacts with its flood plain by width adaptation by bank erosion and 

accretion. This defines evolution of the river channel and flood plains and their habitats [Rinaldi and 

Darby, 2007]. During the evolution of natural rivers, the width adaptation occurs over a relatively 

short time-scale, years to decades, whereas slope adaptation occurs over much longer time-scale, 

decades to centuries [Wilson, 1973; Parker et al., 2007]. The depth adaptation is governed by the 

adaptation of slope and the width. Due to the shorter time-scale of width adaptation, the effects of 

changes in hydrological conditions are often seen in terms of width and depth adaptation [Huang et 

al., 2014; Kaless et al., 2014]. 

2.1.1 Process 

River adjusts width within a wide range of geomorphic context which is summarized well in a review 

paper by Thorne et al. [ 1998]. Widening of river occurs due to erosion of both banks or erosion of 

one bank due to bar growth on other banks. Widening in meandering rivers occur when the erosion 

rate of the outer banks exceeds the accretion rate of the inner bank [e.g. Zolezzi et al., 2012]. In rivers 

in transition widening occurs due to growth of mid-channel bars which deflects the flow towards the 

banks [e.g. Leopold and Wolman, 1957]. In braided rivers widening is caused by avulsions or bank 

erosion by channels close to the flood plains [e.g. Klaassen et al., 1993]. The bed aggradations may 

also lead to widening caused by increase in the flow velocity due to steepening of bed [Ikeda, 1989] 

and flow deflection around the growing bars [e.g. Simon and Thorne, 1996]. Incision of river bed 

increase height and steepness of banks which beyond certain threshold cause failure of banks and thus 

widening of the river. The lowering of the water surface due to incision of river bed level also 

contribute to bank erosion due to higher pore water pressure induced by higher ground water level in 

the flood plain [e.g. Simon et al., 2000]. Geomorphic context of river widening is illustrated in Figure 

3 and summarized in Table 1. 

Table 1. Summary of geomorphic context of river width adjustment 

Width adaptation 
Geomorphic context 

Bed aggradations Bed incision Planform Vegetation 

Widening 

[Ikeda, 1981; 

Simon and Thorne, 

1996] 

[Osman and 

Thorne, 1988; 

Simon et al., 

2000; Langendoen 

and Alonso, 2008] 

[Leopold and 

Wolman, 1957; 

Klaassen et al., 

1993; Zolezzi et 

al., 2012; Klösch 

et al., 2015] 

[Huang and 

Nanson, 1997; 

Anderson et al., 

2005] 

Narrowing 

 [Simon, 1989; 

Pizzuto, 1994] 

[Nanson and 

Hickin, 1983; 

Klaassen et al., 

1993] 

[Simon, 1989; 

Tal and Paola, 

2010; Crosato 

and Saleh, 

2011; Gurnell 

et al., 2012] 
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Narrowing of the river occurs due to formation of in-channel berms during the incision of the river 

bed. In meandering rivers, narrowing occurs when the accretion rate of inner bank exceeds the erosion 

rate of the outer banks. Riparian vegetation colonization strengthens banks by root reinforcements 

[e.g. Tal and Paola, 2010], increases the hydraulic roughness and deflects the flow towards main 

channel [e.g Crosato and Saleh, 2011] making the cross-section narrower and deeper. In rivers with 

multi thread channels, narrowing occurs due to the abandonment of channels caused by instability at 

the bifurcations [e.g. Klaassen et al., 1993]. Within braided corridor the colonisation and growth of 

vegetation on bars creates islands which are more stable. By trapping fine sediments, vegetation also 

plays a key role in pioneer landform development which can enlarge and combine together to become 

larger islands [Gurnell et al., 2012] and may also become the part of the flood plain. Geomorphic 

context of channel narrowing is illustrated in Figure 4 and summarized in Table 1. 

   

  

 

Figure 3. Geomorphic context of river widening a) channel enlargement without bed incision, b) outer bank 

retreat at faster rate than the rate of accretion of the inner bank in a sinuous channel, c) bank erosion induced by 

flow deflection due to mid-channel bar growth, d) bank failure due to over steepening of banks due to channel 

incision and e) bank erosion due to acceleration flow due to channel aggradation (Source: Thorne et al., 1998)   
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Figure 4. Geomorphic context of channel narrowing a) reduction of channel area by berm formation, b) inner 

bank accretion at faster than the retreat rate of outer banks in sinuous channel, c) abandonment of the anabranch 

in multi-thread channels and d) closure of the channel when it gets attached to the flood plain. (Source: Thorne 

et al., 1998)   

2.1.2 Predictions 

There has been a considerable research on prediction of stable cross-section of alluvial channel since 

late 19
th
 century [Kennedy, 1895], even before the Exner’s [1925] sediment balance principle, the 

fundamental principle of river morphodynamics, existed. Width adaptation of a river is studied at a 

reach scale. The longitudinal stretch of river having similar morphological characteristics (e.g. slope, 

sinuosity) is considered as a river reach. Width prediction methods consist of hydraulic geometrical 

relations, relations derived from extremal hypothesis approach, Mechanistic approaches, laboratory 

modelling and numerical modelling. 

Hydraulic geometry relation 

Empirical methods, also refered as Regime theories, were the first methods developed to predict 

hydraulic geometry of stable irrigation canals. Kennedy  [1895] proposed the first regime relation. 

Lindley [1919] revisited Kenedy’s work and expressed width, depth and longitudinal slope as design 

outputs for stable sediment transporting canals. Lacey  [1930] further build upon works of Kennedy  

[1895]  and Lindley [1919], using data of stable irrigation canals, developed the quantitative empirical 

relationship between wetted width, depth, slope and discharge. Leopold and Maddock [1953], using 

data of natural rivers and laboratory experiments, developed an empirical power law relation of 

hydraulic geometry of river (top width, depth and average velocity) relating with the bank full 

discharge. Several regime equations were developed further using different dataset of natural rivers 
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and laboratory experiments [e.g. Blench, 1969; Hey and Thorne, 1986]. Regime theories are 

expressed in the form of power law and its general form is expressed in equations ( 1 ) ( 2 ) and ( 3 ). 

 
nw

bf w bf
X QW   ( 1 ) 

   

  
nh

bf h bf
H X Q  ( 2 ) 

   

 ns

s bf
S X Q


  

( 3 ) 

   

where, Wbf, Hbf and S are bankfull channel width and depth, and longitudinal slope respectively; Qbf is 

the bank full discharge, m
3
/s; Xw, Xh and Xs are regression coefficients for width, depth and 

longitudinal slope of channel respectively; ns, nh,ns are exponents for width, depth and longitudinal 

slope of channel respectively. 

Table 2 Values of exponents ns, nh,ns proposed in different empirical hydraulic geometry relations  

Source Year nw nh ns 

Lacey 1930 0.5 0.33 0.11 

Bose 1936 0.5 0.33 0.21 

Glover et al., 1951 0.46 0.46 0.46 

Leopold et al., 1953 0.45-0.56 0.37-0.45 0.19-0.50 

Leopold et al., 1956 0.50 0.28 0.0667 

Blench, sand 1957 0.50 0.33 0.167 

Blench, gravel 1957 0.50 0.4 0.40 

Inglis 1957 0.50 0.33 0.167 

Nash 1959 0.54 0.27 0.12 

Nixon 1959 0.50 0.38 0.10 

Simons et al., 1960 0.51 0.36 0.40 

Ackers, cohesive 1964 0.53 0.35 0.29 

Ackers, experiments 1964 0.42 0.43  

Kellerhals 1967 0.50 0.40 0.40 

Lapturev 1969 0.50 0.33 0.10 

Bray, regression 1982 0.53 0.33 0.334 

Bray, threshold 1982 0.50 0.48 0.482 

Hey 1982 0.54 0.41 0.53 

Hey and Thorne 1983 0.50 0.39 0.57 

Ghosh 1983 0.46 0.46 0.46 

Chang 1988 0.50 0.30 0.51 

Yalin, sand 1991 0.50 0.33 0.11 

Yalin, gravel 1991 0.50 0.43 0.43 

(Source: Cao and Knight, 1996) 

Bank full discharge is consistently used in the regime theories. Bank full discharge is cross-section 

dependant so in the absence of gauge data bankfull discharge is estimated as 2 years recurrence 

interval flood [e.g. Bray, 1982] for single thread rivers. The third regime equation of Leopold and 

Maddock [1953] was relation between cross-section average flow velocities and bank full discharge. 
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Most regime theories (Summarized by Ferguson, 1986) use longitudinal slope as surrogate to the 

cross-section average flow velocity. Cao and Knight [1996] provide the summary of exponents of 

width, depth and longitudinal slope of channel provided in different regime theories: 

The value of exponent nw among most of regime theories remain 0.5 whereas the exponent of slope 

shows most variation. The value of exponent nh also shows variation but within a narrow range 

compared to ns. One of the reason of high variance of ns compared to nw and nh could be the longer 

geomorphic time scale required for the slope adaptation Parker et al. [2007]. 

The regression coefficients Xw, Xh and Xs also vary widely among the regime theories. Hey and 

Thorne  [1986] show that the value of regression coefficient Xw varies within the range of 2.33-4.34 

among channels with different vegetation class. The variation in Xw is due to the effects of bed 

material, bank material properties, vegetation and sediment supply conditions [summarized by Millar, 

2005].  

The regime equations, discussed above, are empirically derived based upon data of specific regions 

which might restrict their validity to the region where they are derived from. They are also 

dimensionally inhomogeneous so they cannot provide good explanation on the underlying physics. 

Parker et al. [2007] present the dimensionless bankfull hydraulic relationship for single thread gravel 

bed river. Since the relationship is derived in dimensionless form, it has been used to develop the 

physics based explanation of the “quasi-universal” effects of bank strengths, roughness and sediment 

supply on the width of the rivers which are expressed in equations ( 4 ) ( 5 ) and ( 6 ). 
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where, S is the longitudinal channel slope; W , H and Q are dimensionless width, depth and bank full 

discharge respectively using equations ( 7 ) ( 8 ) and ( 9 ). 
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In which, Wbf, Hbf and Qbf are bankfull width, m, bankfull depth, m, and bankfull discharge, m
3
/s, 

respectively; D50 is the median sediment diameter, m, of the surface; g is the acceleration due to 

gravity, m/s
2
. Some other approaches use only median sediment diameter (D50) to make bank channel 
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width and bankfull depth dimensionless [e.g. Parker, 1979; Andrews, 1984]. A similar non 

dimensional relation is also suggested by Bray [1982] for gravel bed river which is expressed in 

equations ( 10 ) ( 11 ) and ( 12 ). 
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where, V is the cross-sectional velocity, m/s.   

Extremal hypothesis  

One dimensional problem of a flow in a alluvial  channel can be formulated in the form of six sets of 

equation which define the conservation of mass and momentum of water and conservation of mass of 

sediment in one dimension, relation between flow and the cross-sectional area, flow resistance closure 

relationship and empirical sediment transport rate predictor. The six set of equations contain seven 

variables if width is allowed to adjust. So, additional constraint or closure relationship should be 

defined to obtain the steady state solution of the system. 

In an Extremal hypothesis approach additional hypothesis is used to define the additional constraint or 

closure relationship required to obtain the solution of the system. The hypotheses are based upon 

assumptions which do not have physics based explanation. Griffiths [1984] and Singh [ 2004] provide 

a detailed review on the Extremal hypothesis used to predict the hydraulic geometry of alluvial 

channels. Minimum unit stream power rate, minimum stream power, minimum energy dissipation 

rate, maximum friction factor, maximum sediment transport efficiency, maximum sediment transport 

rate, least channel mobility, least resistance, minimum Froude number, thermodynamic entropy, 

minimum variance, maximum entropy, maximum entropy-minimum energy, maximum flow 

efficiency, equal probability of width and depth adjustment, least action principle, and maximum flow 

resistance are some of the common examples.  

Cao and Knight [1996] based upon equal mobility of width and depth adjustment probability 

hypothesis showed that width to depth ratio as an important parameter in determining the channel 

geometry in regime theories. Eaton and Millar [2004] used the Millar and Quick  [1993] model based 

upon maximum sediment transport capacity (MSTC) hypothesis to analyze the effects of the bank 

strength on the channel prediction. The MSTC approaches that do not include the bank strength [e.g. 

Valentine et al., 2001] predicted narrower channels compared to the MSTC approaches including 

bank strength. The analysis also suggest that influence of bank vegetation on river width is more in 

the case of small channel but less as the size of the channel becomes larger. Based on extremal 

hypothesis approach of Eaton and Millar [2004], Millar [2005] derived the hydraulic geometry 

relation for gravel bed rivers which is expressed in equations ( 13 ) ( 14 ) and ( 15 ). 

 0.7 0.6ˆˆ 16.5W Q S  ( 13 ) 
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in which, Δ=1.65 is the relative density of the sediment. 

Mechanistic approaches 

Mechanistic models are derived based on laws of physics. Earlier mechanistic model developed were 

threshold channel theories [Glover and Florey, 1951; Lane, 1955] which were based on the tractive 

force approach. The theory assumes a flow in a straight channel, neglecting secondary flows, over 

non-cohesive sediment.  Flow momentum balance equation is then solved to calculate the local 

boundary shear stress. Tractive force and gravity force on a particle along the banks are balanced by 

friction force among the particles. The local boundary shear stress or tractive force is then limited to 

such that it is just sufficient to move the particles without scouring. Balance between the forces then 

provides relationship between flow depth, the maximum depth, side slopes and the friction angle. 

From these a stable channel with the cosine profile is obtained. 

One of the big limitations of the threshold channel theories iss that they did not allow sediment 

transport through the stable cross-section. The observations from field and laboratory experiments 

however show that a cross-section with stable banks transport sediment along the bed. Parker  [1978] 

derived the cross-section with stable banks and mobile beds by using the momentum balance equation 

proposed by Lundgren and Jonsson [1964], which allowed the turbulence diffusion of the momentum 

along the lateral direction, to compute the bed shear stress. The solution is only obtained in the bed 

region. The stress near the centre of the channel allow bed load transport and vanishes towards the 

direction of bank to the value close to critical shear stress for bed load transport. The bank profiles 

were solved separately, to obtain the stress conditions close to critical stress conditions, in a similar 

approach of the threshold channel theories to obtain a cosine profile. Parker [1978] model was further 

extended to assess the effect of sediment heterogeneity [Ikeda et al., 1988], bank vegetation [Ikeda 

and Izumi, 1990] and suspended sediment [Parker, 1978a; Ikeda and Izumi, 1991] on the geometry of 

the stable channel. Diplas and Vigilar [1992] used the approach similar to Parker  [1978] but solved 

the bank and bed profile numerically. The solution of Diplas and Vigilar [1992] resulted the channel 

cross-section profile defined by a fifth order polynomial. The channel was with larger top width 

compared to the cosine channel obtained by threshold channel theory.  

Pizzuto [1990] extended the model of Parker  [1978] including a heuristic bank failure model to 

simulate the evolution of stable channel cross-section starting from an unstable channel. Kovacs and 
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Parker [1994] further included a mechanistic vectorial bedload transport formulation on bed slopes, 

upto angle of repose, to simulate the time evolution of unstable channel cross-section to a stable cross-

section. Both Pizzuto [1990] and Kovacs and Parker [1994] models were able to simulate the time 

evolution of cross-section as observed in experiments of Ikeda [1981]. 

Mechanistic models discussed above were developed assuming channel to be in equilibrium, neither 

deposition nor erosion. Mechanistic models of Jansen et al.  [1979], Bolla Pittaluga et al. [2014] and 

Redolfi and Tubino [ 2014] can predict hydraulic characteristics at non-equilibrium conditions. 

However these models can only assess the change in longitudinal slope of a channel with known 

width. Tealdi et al. [2011] extended the model of Cantelli et al. [ 2007] to obtain a mechanistic model 

which can predict the change in reach averaged width and slope of channel, at non-equilibrium 

conditions, due to change in discharge and sediment regime. Tealdi et al. [2011] model is the only 

model known of its type which can predict the change in width and bed level/slope in response to 

change in sediment and discharge regime. 

Laboratory modelling 

Scaled laboratory experiments of real rivers require scaling of the bed sediment as well as the bank 

strength properties. The scaling of bank strength is very difficult to obtain at a reduced scale [Young 

and Warburton, 1996] because the cohesion properties of clay are scale independent [Peakall et al., 

1996]. So, small scaled laboratory experiments of real rivers with cohesive banks to investigate 

widening cannot be performed. Alternatively, it is a common practice to investigate morphodynamic 

processes and phenomena considering 1:1 scaling in physical experiments. 

Experiments have been commonly performed in the framework of studying evolution of channel 

patterns [Fredkin, 1945; Leopold and Wolman, 1957; Schumm and Khan, 1972], to develop empirical 

width predictors [e.g. Wolman and Brush, 1961], to validate the width predictors [e.g. Valentine et al., 

2001]. Channel width evolution is studied in some cases by conducting experiments in a channel with 

half trapezoidal cross-section to avoid sinuosity development [Ikeda, 1981; Diplas, 1990]. Fujita & 

Muramoto [1982] conducted experiments to study width and bed evolution of channel, with both 

erodible banks, at different discharges and sediment regimes. Byishimo [2014] carried experiments to 

study width evolution in different sediment types and discharge regimes. 

Numerical models 

Bank retreat and bank accretion are two important morphological processes leading to river width 

adjustment. These processes vary both in space and time resulting in longitudinal variation of channel 

width, which can be modelled using numerical models. Spatial variation of bank strength and 

geomorphic context of width adaptation mainly contribute to the variation of the river width [Thorne 

et al., 1998]. Rivers with multi thread channels show more longitudinal width variation compared to 

rivers with single thread channels. 

At process scale, bank retreat occurs due to the interaction between near bank processes: weathering, 

fluvial erosion and mass failure of banks [e.g. Leyland et al., 2015]. The fluvial erosion process 

contributes to the widening by i) eroding sediment near the bank and ii) triggering mass failure 

mechanism. Secondary flow structures near the banks play important role in bank erosion 

[Papanicolaou et al., 2007]. The intensity of secondary flow velocities are very high along the curved 

channels [Blanckaert and de Vriend, 2003]. The total boundary shear stress near the banks can be 

divided into two components: flow stress on the surface called “skin drag”, and an additional shear 

stress due to irregularities along natural banks called “form drag” [Kean and Smith, 2006a, 2006b]. 

Former contributes to bank erosion and latter contributes to bank stabilization [Darby et al., 2010; 
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Leyland et al., 2015]. The form drag shows temporal variation as a function of bank erosion [Leyland 

et al., 2015]. The fluvial entrainment at the bank occurs if the flow shear stress (skin drag) is higher 

than the critical shear stress required for the entrainment [Leyland et al., 2015].  Fluvial erosion 

process, near the banks, triggers the mass failure by increasing the height of the banks or by 

increasing the slope of the banks [Thorne et al., 1998]. 

Mass failure is a geotechnical process which is governed by the balance between the driving forces 

and resisting forces, which are summarized in table 2. Bank fails if the driving forces exceed the 

resisting forces. Bank failure by mass failure mechanism occurs by i) rotational failure, ii) toppling 

failure or iii) cantilever failure. 

Rotational failures occurs both in the non-cohesive and cohesive banks. In non-cohesive materials the 

failure occurs along shallow curved surface compared to cohesive materials. Toppling and cantilever 

failures occur only in the case of very steep cohesive banks. The bank failure progresses further if the 

flow is able to erode all the accumulated material near the toe of the bank, due to bank erosion, and 

continue to erode the toe of the bank. If the flow is not able to erode the accumulated material the 

berm or bench of the failed material forms thus protecting banks from further erosion [Thorne et al., 

1998]. 

Table 3. Summary of driving forces and stabilizing forces contributing to mass failure process 

SN Components Forces Remarks References 

Driving  Stabilizing 

1 Weight of bank 

material 

   
[Osman and 

Thorne, 1988] 
2 Frictional force     

3 Pore water 

a) Increase in unit 

weight of soil 

   

[Rinaldi and 

Darby, 2007] 

b) Shear strength 

reduction 

   

c) Negative seepage   Direction towards flood 

plain 

d) Positive seepage   Direction towards river 

channel 

4 Vegetation 

a) Weight   Stabilizing: increase in 

normal stress [Rinaldi and 

Darby, 2007] b) Root 

reinforcement 

   

c) Hydrologic effect   Soil moisture regulations [Simon and 

Collison, 2002; 

Rinaldi and Darby, 

2007] 

d) Roughness    [Crosato and 

Saleh, 2011] 
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Based upon the complexity of the process included, the numerical modelling approach can be 

classified into two different types of models.  

 Bank erosion process model 

Bank erosion process models are mainly developed for cohesive banks and include only the 

geotechnical processes to model the bank failure process. The models perform the stability analysis of 

the slide failures by using a Limit Equilibrium Method. In Limit Equilibrium Method factor of safety 

is computed as the ratio between the resisting forces to the driving forces. If the factor of safety is less 

than one, the bank failure occurs along the assumed failure plain. The methods have improved 

significantly from simple forms (Thorne et al, 1981) to including more realistic bank 

geometry[Osman and Thorne, 1988], including more processes influencing both driving and resisting 

forces like pore water pressure, vegetation [Simon et al., 1991; Rinaldi and Casagli, 1999; Simon and 

Collison, 2002] and including more complexities to analyze rotational and cantilever failiures 

[Dapporto et al., 2001; Simon et al., 2002]. Rinaldi and Darby [2007] provide detail summary of the 

developments on the bank erosion process models. 

 Flow model with coupled bank stability model 

At longer time scales, the hydraulic erosion at the toe of the bank is the dominant process governing 

the bank erosion rate [Leyland et al., 2015]. However, it is not necessarily the cause of bank erosion. 

The geomorphic context of width adjustment dominant role in controlling the bank erosion process 

[Thorne et al., 1998]. So, morphodynamic models coupled with bank stability model are used to 

simulate the temporal evolution of width, slope and depth of channels. 

In such models, the flow continuity and momentum equations are solved in one dimension [Alonso 

and Combs, 1986; Borah and Bordoloi, 1989; Darby et al., 2007; Langendoen and Alonso, 2008] and 

quasi two dimensions [Simon et al., 1991; Darby and Thorne, 1996] in detailed bank erosion models 

at depth scale which neglects the planform effects on bank erosion. Solution in two dimensions depth 

averaged [Mosselman, 1998; Jang and Shimizu, 2005a] and three dimensions [e.g. Jia et al., 2010] are 

implemented in modeling width evolution at reach scale where bank erosion model is implemented in 

less detail but the effects of planforms in bank erosions can be modelled. Bed load and suspended 

sediment transport are modelled separately. Sediment continuity is modelled by using the Exner 

equation accounting the sediment influx from bank erosion.  

In reach scale modeling, mass failure of the cohesive banks is modelled using bank erosion process 

sub models. Bank erosion is non-cohesive banks are modelled using heuristic or rule based approach. 

In the heuristic approach the bank erosion is modelled based upon friction angle of particles (angle of 

repose). The bank failure occurs if the bank becomes steeper than the angle of repose of the bank 

material [Jang and Shimizu, 2005a]. In rule based approach models the bank erosion is implemented 

in a crude form and is based upon some set of rules which are prescribed to distribute the amount of 

toe erosion to the adjacent bank cells [Wang et al., 2010; Crosato and Saleh, 2011; Nicholas et al., 

2013]. The failed mass is then moved to the river bed where it is reworked entirely by fluvial erosion. 

The accumulated mass should be eroded and toe erosion should continue to trigger the next mass 

failure of the banks. 

2.2 Channel bed formation 
The flow over alluvial beds causes morphodynamic instability, resulting in bed waves at different 

scales, depending on width-to-depth ratio and flow characteristics [Colombini and Stocchino, 2012]. 

Morphodynamic instability is related due to the interaction between the flow-induced bed shear-stress 
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and gravity. The bed forms occurring due to morphodynamic instability are in the form of ripples, 

dunes and anti dunes, and bars, respectively in an increasing characteristics spatial scale. 

  

 

 

Sources: 

a) http://www.bedform.ac.um 

b) http://www.seddepseq.co.uk 

c) Parker’s e-book 

d) http://www.ualberta.ca/~jwaldron/images/sedC

D1024/03.jpg 

Figure 5, Images showing a) ripples, b) dunes, c) alternate bars in the Naka river, Japan and d) antidunes  

2.2.1 Processes  

Ripples, dunes and anti dunes 

Ripples are the smallest bed form waves, scaling with the sediment size, occurring due to 

morphodynamic instability at a very low transport rates, at smaller values of Shields number, in a 

hydraulically transitional flow regime (Figure 6). Ripples do not interact with the free water surface. 

Dunes and antidunes are larger bed form waves, scaling with the flow depth, occurring due to 

morphodynamic instability at a hydraulically transitional flow but at higher sediment transport rates, 

higher Shields number. Dunes occur at the lower Froude numbers and migrate downstream. 

Antidunes occur at Froude number close to 1 or higher and typically move upstream. Both dunes and 

antidunes interact with water surface with former out of phase with the free surface and latter in phase 

with the free surface waves (Figure 7).  

 

a) b) 

c) 

d) 
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Figure 6.  Shields diagram showing the regions of formation of ripples and dunes, [Colombini and Stocchino, 

2011] 

 

 

Figure 7. Illustrations of ripple, dunes and antidunes occurring at different flow regime characterized 

by the Froude number, [García, 2008]  

Bars 

Bars are the largest bed forms, scaling with the channel width, occurring due to morphodynamic 

stability at shallow water conditions: high width to depth ratio,  irrespective of the flow 

characteristics, sub critical or super critical [Tubino et al., 1999; Colombini and Stocchino, 2012]. 

They are large deposits of sediment contoured by channels that become exposed during low flow 

stages.  Bars have been classically classified as free and forced which has been subject of debate. Free 

bars originate by morphodynamic instability, and have a periodic character. They migrate in channel 

in downstream or upstream directions. Forced bars appear due to the forcing by local perturbations 

(e.g. downstream of a groyne, curvature of meanders) and do not show periodic character. Bars that 

form due to a combination of steady forcing and morphodynamic instability (forced-free interactions) 
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are classified as hybrid bars [Duró et al., 2015]. Hybrid bars have periodic characteristics. 

Morphodynamic instability governs their geometrical characteristics whereas steady forcing 

determines their spatial location and celerity (= 0). 

 

Figure 8 Illustration of free bar instability curve (black) and migration curve (blue) for alternate bars obtained at 

experimental conditions: shields stress equal to 0.072 and dimensionless sediment diameter equal to 0.017. The 

curves are derived from linear bar theory of Colombini et al. [1987]. (Courtesy: Luca Adami)    

Among the bed forms, bars strongly interact with the channel width. So within the framework of this 

thesis the scope is limited to the bars, in particular alternate bars, which are discussed in the following 

section. 

2.2.2 Prediction 

Alternate bars have been studied with combinations of analytical theories, experiments and numerical 

models.  

Analytical studies 

Alternate bars have been widely studied using analytical theories. Free bars have been studied since 

long by means of “bar instability theories “linearly [Callander, 1969; Engelund, 1970; Parker, 1976; 

Fredsøe, 1978] and weakly non-linear models [Colombini et al., 1987; Schielen et al., 1993]. Forced 

bars mostly occur by local forcing (e.g. groynes, bend) or boundary conditions (e.g. width variations). 

Hybrid bars have been studied using linear models [Struiksma et al., 1985; Struiksma and Crosato, 

1989] and weakly nonlinear bar models [Seminara and Tubino, 1992] as well. 

Morphodynamics of bars can be considered as “unit processes” to understand the dynamics of whole 

alluvial system [Zolezzi et al., 2012]. Although these analytical bar models are based upon simplified 

assumptions, they provide relevant knowledge on bar dynamics in single channels. They have been 

employed as reliable physics based tool to predict single and multi-thread channel patterns  based 

upon the calculation of the most likely number of bars in a cross-section represented by the number of 

transverse half bar wave lengths in the river cross-section, known as “bar mode m” [e.g. Tubino et al., 

1999; Crosato and Mosselman, 2009]. Meandering rivers are mostly characterized by point bars and 

alternate bars in their straight parts with typical bar modes (m) less than 1.5. Braided rivers are 

characterized by the presence of multiple bars (m>2.5). A single mid-channel bar (1.5<m<2.5) can be 

Upstream 

migrating 
Downstream 

migrating 

Free bars 

Zero growth rate 

curve Zero migration 

rate curve 

Plain bed 



CHAPTER 2 

36 

 

observed at transition planforms between meandering and braiding [Crosato and Mosselman, 2009]. 

The number of bars in rivers is crucially controlled by the width to depth ratio of the channel. Higher 

bar modes require higher width to depth ratios. Literature suggest that a river channel starts to braid at 

width to depth ratio between 40 [Fredsøe, 1978] and 50 [Crosato and Mosselman, 2009]. 

 

Figure 9 Growth rate of the fastest growing bars plotted against half width to depth ratio of the channel for 

experimental conditions: shields stress equal to 0.072 and dimensionless sediment diameter equal to 0.017. 

Mode =1 denotes alternate bars, mode = 2 and 3 denote multiple bars. The curves are derived from linear bar 

theory of Colombini et al. [1987]. (Courtesy: Luca Adami).  

Experimental studies 

Laboratory experiments models have been extensively used to study alternate bars. For instance, 

Jaeggi  [1984] carried out several experiments to derive the empirical relation on formation of 

alternate bars, Fujita and Muramoto [1985] studied the developments of alternate, Tubino [1991] 

studied development of alternate bars in varying discharge conditions, Lanzoni [2000a, 2000b] 

studied alternate bar formation in uniform and non-uniform sediment, Crosato et al. [2011] studied 

long-term development of alternate bars. Laboratory experiments have been widely used to validate 

the analytical theories and numerical models. 

Numerical studies 

Numerical studies have been carried out using two different types of models: a) physics based model 

and b) rule based models. Physics-based numerical models are based on established laws of physics 

and have been widely used to investigate morphodynamic process. This research has been designed 

integarating the laboratory experiments and Physics based models. So the scope of the review is 

limited to physics-based numerical models. However, rule based models are also briefly discussed. 

 Physics-based models 

Physics based morphological models solve Navier-Stokes equations (most commonly with shallow 

water approximations) to compute the flow field, and sediment transport equations and Exner 

equations for sediment mass balance to compute morphodynamic development. Physics-based models 

can be further classified as fully coupled and semi coupled on the basis of solving strategy of flow 

field and bed level updating. In fully-coupled model, flow-field equations and sediment transport 

equations are solved together in single time steps. Whereas in semi-coupled models, the sediment 

Meandering 

Braided 
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transport equation and flow-field equations are solved separately assuming that the bed level changes 

occuring at a small computational time steps is small and does not affect the flow field [Kassem and 

Chaudhry, 1998]. At trans-critical flow conditions the bed level change rates are higher affecting the 

flow field. The fully-coupled solution of flow field and sediment transport in a single time step allows 

incorporating the interaction between the flow field and the bed level changes establishing them as 

accurate tools in investigating morphodynamic phenomena in trans-critical flow conditions. Solving 

flow-field and sediment transport equations separately introduces errors in the semi-coupled models. 

GIAMT-2D model [Siviglia et al., 2013] is one of the scarce examples of the fully coupled model 

used to investigate morphodynamics of bars. Semi-coupled models for instance, Delft3D [Lesser et 

al., 2004] are widely used to investigate bar morphodynamics in single thread as well as multi-thread 

channels [Crosato et al., 2012; Schuurman et al., 2013; Duró et al., 2015].    

Linear analytical theories can approximate the characteristics of the bars during the early phase of 

their development. Nonlinear effects become dominant as the bar starts to grow higher. In particular, 

assumptions of fully transporting cross-section made in analytical models, may not be valid anymore 

as bars start to emerge from the water surface. Experiments have shown that complex alternate bar 

patterns can be observed in a channel after long-term evolution, despite the early stage of channel 

evolution is dominated by mid channel bars [Fujita, 1989]. The observed decrease in number of bars 

is due to bar merging during the evolution which can be attributed to the dominance of non-linear 

effects. 

Laboratory-scale morphological models are powerful tools to study morphological process as well. 

However, quantifying the effects of processes in experiments is often limited due to the difficulty in 

measurements, like flow characteristics and depth, at such small scales. Since the system evolves 

rapidly, the time scale in laboratory experiments is very short with respect to real rivers. The 

measurement of hydraulic parameters over space at a certain time, theoretically representing a state is 

very difficult in such cases.   

Physics-based numerical models are promising tools for the investigation of the long-term evolution 

of bars.  Although models often include a rather simplified description of the complex physical 

processes, they solve fully non-linear equations for flow field and bed evolution, which compared to 

analytical models allow to better understand the later stages of the bar evolution when the non-linear 

interactions are dominant. Numerical models also provide a great flexibility to investigate the bar 

morphodynamics for different boundary and initial conditions. They allow analysing morphological 

evolution almost continuous in space and time. Recent studies have shown that 2D numerical models 

are capable of simulating the plan-form dynamics of both single-thread and multi-thread channels 

[e.g. Nicholas, 2013], at least qualitatively. 

Alternate bars are studied less frequently using numerical compared to analytical theories and 

laboratory experiments. For instance, Nelson [1990] used model to explore growth of finite amplitude 

alternate bars. Defina [2003] and Bernini et al. [2006] investigate the bar evolution in a straight 

channel in light of analytical and empirical theories and provide sensitivity of the bar evolution to 

physical parameters. Takebayashi and Okabe [2008] studied alternate bars in non-uniform flow 

including the process of vegetations. Wu et al. [2011] investigated the effects of symmetric width 

variations on bar morphodynamics. Crosato et al. [2012] studied the long-term development of 

alternate bars. Verbruggen [2012] studied the upstream influence of bends in bars.  

Physics-based-numerical models have been used less to reproduce the alternate bars observed in the 

specific cases. When used in specific cases, physics-based modelling requires calibration of 
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parameters because several combinations of parameters may provide similar results. Sloff and 

Mosselman [2012] suggest that calibrating on different morphological processes can reduce the 

associated uncertainty.  Jang and Shimizu [2005] present one of the scarce examples where laboratory 

experiment data is used to calibrate a numerical model and quantitative comparison of the bar 

evolution is made. 

 Rule-based models 

Rule-based models are founded on simple rules, representing required physics, to route the discharge 

and sediment carried by the discharge. Such models were first introduced by Murray and Paola 

[1994] to simulate basic phenomena in braided rivers. Being computationally faster they are powerful 

exploratory tools for phenomena occurring at larger spatial scale (10
3
 km) over longer time scales 

(century scale) where the physics-based models cannot be applied due to their high computational 

cost [Coulthard and Van De Wiel, 2013]. Continued development in the rule based model which 

involve improvement of flow and sediment routing [e.g. Thomas and Nicholas, 2002], representing 

more physics, and addition of more complexities like lateral erosion in bends [Coulthard and Wiel, 

2006] have improved their predictability. As such one of the few examples of rule based model used 

to explore evolution of alternate bars is presented by Nicholas [2010]. 
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3 LABORATORY EXPERIMENTS OF ALLUVIAL CHANNEL 

ADJUSTMENT 

3.1 Introduction 
This chapter describes the results of flume experiments carried out at the laboratory of Fluid 

Mechanics of Delft University of Technology, Delft, the Netherlands, with the general aim to 

investigate the effects of several controlling factors on the evolution of the width and bed level of an 

alluvial channel. The specific objectives of the experiments were to investigate the role of initial 

width (initial condition), discharge and sediment supply regimes (boundary conditions) on the long-

term width and bed evolution of bedload dominated channels. The experiments were conducted by 

starting from different initial channel widths, with either constant or variable discharges at the 

upstream boundary under two different sediment regimes: i) with sediment feeding and ii) without 

sediment feeding. Sediment transport rate, channel width and bed levels at different locations where 

measured and analyzed during the experiments. The comparison between the measured data provide 

an increased knowledge on the role of the different controlling factors on channel evolution. 

3.2 Methodology 

3.2.1 Experimental setup 

The experiments were performed in a 5 m long, 1.24 m wide and 0.4 m deep wooden flume, setup in a 

horizontal position on top of a wooden frame (Figure 10).  At the upstream end of the flume, a 0.2 m 

wide notch was used as an inlet to the flume. The inlet notch is located in the middle of the width and 

the top level of the notch was set at 0.1 m above the bottom. At the downstream end of the flume, an 

overflow weir was provided throughout the width of the flume.  The top level of the weir was set at 

0.05 m from the bottom. The flume was filled with sand which was made moist to provide cohesion 

(apparent). A straight initial channel with rectangular cross-section, having the desired width and 

depth, was excavated at the centre of the flume, such that the bottom level of the channel started at the 

top level of the inlet notch and ended at the top level of the weir at the downstream end of the flume, 

providing 1% longitudinal bed slope to the initial channel. The initial cross-section of the channel was 

measured using a laser scanning device. A video recording camera was setup in a platform 

approximately 7 m higher than the flume. From this platform, the camera was able to record videos of 

the experiments along the entire length of the flume from a nearly orthogonal position. Control point 

targets were setup along both sides of the flume at 1m interval from the inlet. A meter long graphic 

scale and a digital clock were also setup on the flume. 

An electrical surface pump was used to supply the water discharge to the inlet of the flume. The flow 

rate of the pump was controlled by adjusting the frequency of the current supplied to the pump. The 

details of the calibration and setup of the pump are presented in Appendix-A. The flume was extended 

further upstream of the inlet by 0.3 m to provide a pool collecting the water from the pump and 

reducing the turbulence at the inlet so as to maintain uniform flow throughout the cross-section of the 

inlet notch. A hopper shaped sediment feeder was also setup at the inlet to supply the sediment at the 

desired rate during the experiments. A bucket was placed at the downstream end of the flume to 

collect the discharge flowing over the weir. The bucket comprised a submerged basket, placed 

beneath the overflow, to collect the sediments exiting the flume. The basket was made out of a plastic 

net with opening smaller than the size of the smallest fraction of the sediment used in the flume. It 

was suspended on a weighing machine which continuously measured the cumulative weight of the 

collected sediment. The water collected in the bucket, after exiting the basket, was free of sediment 
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and was re-circulated to the flume inlet by the pump. To ensure the same level of submergence of the 

sediment collection basket, even during the variable discharge experiments, the water level in the 

bucket has to be maintained at a constant level. A constant water level was maintained in the bucket 

by providing an over flow and a constant inflow of water from an external tap into the bucket.  

A potassium permanganate solution (purple colour) was fed at the flow inlet to distinguish the wet 

part of the channel bed topography from the dry part. The feeding rate was every 30 minutes for the 

constant flow case and at the end of each flow stage for the variable discharge cases.  

 

 

 

Figure 10. Details of the flume used in the experiment showing a) top view (above) and b) side view (below) 

To start the experiment, the bucket at the downstream end of the flume was first filled with water at 

the constant inflow rate. Meanwhile the frequency of the current supplied to the pump was set to the 
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value corresponding to the required discharge. As soon as the water started to overflow, the pump was 

switched on to circulate the discharge from the bucket to the inlet of the flume. The timer in the clock 

was set to zero. The cumulative weight of the sediment exiting the flume was continuously recorded. 

In the experiments with sediment feed, the sediment feeder was turned on to supply sediment at the 

desired rate. In the case of very low discharge the sediment was supplied manually. After 2 hours, the 

experiments were stopped to measure the cross-sections of the evolved channel. The cross-sections 

were measured approximately at every 0.5 m from the inlet of the flume using the laser device. 

Experiments were then restarted and the water levels were measured at each cross-sections by 

measuring the elevation of the point where the water level intersects the banks. The experiments were 

then finally stopped after 7 hours and the cross-section and water level measurements were repeated. 

The experiments had to be stopped earlier if the channel touched the sides of the flume because the 

width adaptation process in such cases is not fluvial anymore. 

3.2.2 Experiment design and test scenarios 

Several tests scenarios were designed to explore the effects of initial channel width in the long-term 

width adaptation of the bed-load dominated channel under different hydraulic and sediment supply 

regimes. The initial cross-section of the channel and the flow conditions were designed such that the 

hydraulically smooth regime is avoided to prevent ripple formations at least during the initial part of 

the experiments. The experimental conditions of constant flow cases were checked by plotting the 

initial experimental conditions on the modified shields diagram by Garcia [1999] (Figure 11).  

 

Figure 11. Shields diagram showing the experimental conditions of the constant flow experiments. Rp denotes 

the particle Reynolds number and θ denotes the Shields number. 

A first set of experiments (Table 4 and 5) was carried with four different initial widths, 0.04 m, 0.1 m, 

0.25 m and 0.4 m, and supplying a constant discharge of 0.4 l/s without sediment feed at the inlet. 

Three different rectangular, idealized discharge hydrographs, H1, H2 and H3, were then designed to 

explore the effects of the variable discharge regime (Figure 12). All hydrographs were designed such 

that during each cycle of the discharge hydrographs, the total water volume was the same as the total 

volume of water corresponding to the same duration of the constant flow case. Hydrograph H1 had 

low and high discharge of 0.3 l/s and 0.5 l/s (+/- 25% of constant flow), respectively. Hydrograph H2 
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had low and high discharge of 0.2 l/s and 0.6 l/s (+/- 50% of constant flow), respectively. The 

duration of both the high and low discharge was for 21 minutes, these discharge hydrographs differing 

only in the flow wave amplitude. For discharge hydrograph H3, the low discharge of 0.28 l/s had 

duration of 32 minutes and the high discharge of 0.8 l/s had duration of 10 minutes, such that this 

hydrograph represents a very intense high flow but with a relatively short duration (see Table 4 and 5 

and Figure 12).  

Table 4. Scenarios explored differed in initial channel width, discharge and sediment input. 

Width 

(m) 

No sediment feed Sediment feed 

Discharge regime Discharge regime 

UNI H1 H2 H3 UNI H1 H2 H3 

0.04 UNI-0.04 
   

UNI-0.04* 
   

0.1 UNI-0.10 H1-0.1 H2-0.1 H3-0.1 UNI-0.10* H1-0.10* H2-0.10* H3-0.10* 

0.25 UNI-0.25 
   

UNI-0.25* 
   

0.4 UNI-0.4 H1-0.4 H2-0.4 H3-0.4 UNI-0.4* H1-0.4* H2-0.4* H3-0.4* 

 

 

Figure 12. A cycle of the discharge regimes used in the experiments 

The experiments with variable discharge were carried only for the initial widths of 0.10 m and 0.4 m. 

The experiment sets were first carried out without sediment supply and then repeated with the 

sediment supply. The experiments are labelled with the discharge regime followed by initial channel 

width. “UNI” represents constant discharge and “H1”, “H2” and “H3” denote the hydrographs as 

shown in Figure 12. The experiments with sediment feed were then followed by “*”. Details of the 

experiments carried out are presented in Table 4 and Table 5. 
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Table 5. List of all experimental scenarios. 

E
x

p
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 (
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Low discharge  

(variable discharge runs) 

Constant 

discharge 

High discharge 

 (variable discharge runs) 

R
em
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Q
 (
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Q
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in
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) 

Q
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Q
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in
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Q
 (
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Q
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(g
/m

in
) 

T
 (

m
in
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UNI-0.04 0.04 - - - 0.4 - - - -  

UNI-0.1 0.1 - - - 0.4 - - - -  

UNI-0.25 0.25 - - - 0.4 - - - -  

UNI-0.4 0.4 - - - 0.4 - - - -  

UNI-0.04* 0.04 - - - 0.4 90 - - -  

UNI-0.1* 0.1 - - - 0.4 90 - - -  

UNI-0.25* 0.25 - - - 0.4 90 - - -  

UNI-0.4* 0.4 - - - 0.4 90 - - -  

H1-0.1 0.1 0.3 - 21 - - 0.5 - 21  

H2-0.1 0.1 0.2 - 21 - - 0.6 - 21  

H3-0.1 0.1 0.28 - 32 - - 0.8 - 10  

H1-0.1* 0.1 0.3 90 21 - - 0.5 90 21  

H2-0.1* 0.1 0.2 20 21 - - 0.6 20 21  

H3-0.1* 0.1 0.28 90 32 - - 0.8 90 10  

H1-0.4 0.4 0.3 - 21 - - 0.5 - 21  

H2-0.4 0.4 0.2 - 21 - - 0.6 - 21  

H3-0.4 0.4 0.28 - 32 - - 0.8 - 10  

H1-0.4* 0.4 0.3 90 21 - - 0.5 90 21  

H2-0.4* 0.4 0.2 20 21 - - 0.6 90 21  

H3-0.4* 0.4 0.28 90 32 - - 0.8 90 10  

Q = flow discharge (l/s), Qs = sediment supply rate (g/min), T= duration of flow during individual hydrograph 

cycle (min), an asterisk (*) denotes runs with upstream sediment supply. 

3.2.3 Measurement and data processing 

Several measurements were carried out before, during and after the experiments using standard and 

designed measurement techniques. Details of the design, calibration and measurement techniques are 

discussed in Appendix-A. The data were then processed to obtain a quantitative understanding of the 

width and bed level evolution of the channel averaged over the reach. The measurements included: 

Sediment properties 

Sediment properties were measured before setting up of the experiments. The grain size distribution 

of sediment used in the experiments was determined by performing the DIN-4188 standard sieve 

analysis. The granulometric distribution of the sediment size was determined using the data from the 

sieve analysis (Figure 13). The sediment resulted poorly sorted having bimodal distribution of sizes. 

The 10
th
, 50

th
 (median) and 90

th
 percentile of the sediment sizes were 0.27 mm, 1 mm and 1.48 mm 

respectively. The geometric mean and geometric standard deviation of the distribution is 0.78 mm and 

1.95 mm, respectively.  
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The grain density of the sand was 2365 kg/m
3
. A Quantachrome ultrapycnometer 1000 (version 2.12) 

was used to determine the grain density of the sand. The grain density of the sand is necessary to 

compute the volumetric sediment transport rate of the sand exiting the flume.  

Porosity of the sand needed to be computed as well, to convert the volumetric changes of the channel 

bed and banks (erosion and deposition) during channel formation, to weight of sand. Porosity is the 

measure of the amount of voids in the sand and is computed as the ratio between bulk density and 

grain density of sand. The bulk density of the sand is the density of the sand including the voids 

between sediment particles. The porosity depends upon the level of compaction of the sand. Since the 

level of compaction may vary between the experiments, both maximum and minimum porosity of the 

sand was determined using the Japanese standard test. The maximum and minimum porosity of the 

sand resulted 45.34% and 36.08%, respectively, for an average value of 40.71% ≈ 41%. 

 

Figure 13. Cumulative grain size distribution of the sediment used in the experiment 

Width 

The width of the channel is here defined as the distance between the opposite wet-area margins of the 

channel at a cross-section perpendicular to the flow direction (Figure 14). The temporal evolution of 

the channel width was computed from the images captured by the video camera. The images of the 

constant flow experiments were extracted at the interval of 30 minutes from the start of the 

experiments, whereas the images of the variable discharge experiments were extracted at the end of 

each low and high flow stages. The width was then extracted from the images using Arc GIS 9.1. The 

details are presented in Appendix-A. 

The images of the experiments showing the evolution after 2 hours and at the end of the experiments 

are presented in Appendix-A. 
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Figure 14. Extraction of channel width from the images showing the extent of the wet channel used for width 

computation. Flow is from left to right. 

Sediment transport rate 

The sediment exiting the flume was collected in a submerged basket. The weighing machine recorded 

weight of the basket in voltage at frequency of 1/10
th
 of second during the entire experiment. The 

voltage was then used to convert to weight using equation obtained from the calibration of the 

weighing device. The details of the sediment weight measurement device is presented in Appendix-A. 

Since the sand was collected in a basket, submerged at a constant level, the measured weight is the 

relative weight of the sand. The sediment transport rate was computed at a minute interval from the 

recorded cumulative weight of the sediment which is presented in Appendix-A. 

 

Figure 15. Example of cumulative weight measurement recorded during the experiment (M’), the filtered 

weight (M) signal and the sediment transport rate computed using the filtered weight signal, during an 

experiment. 

Cross-sections 

The evolution of the channel cross-sections was measured to have quantitative assessments of the 

change in width and bed level. A simple laser topography measuring device was designed to measure 

cross-sections of channel. The laser device measures distance between the target and the device in 

terms of voltage. The voltage was then converted to distance. Details on design and calibration of the 

laser device are presented in Appendix-A.  
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The cross-sections were measured at 0.28, 0.58, 1.08, 1.58, 2.08, 2.58, 3.15, 3.58, 4.08, 4.58 and 4.98 

m from the inlet of the flume. Cross-section measurements were carried out in the channel at 1) initial 

stage, 2) after 2 hours of evolution and 3) at the end of the experiments. The experiments were 

stopped for cross-section measurements. After the cross-sections were measured, the experiments 

were restarted and the water levels were recorded in each cross-section by using the laser device. A 

typical cross-section with marked water level is presented in Figure 16.  

 

Figure 16. A typical cross-section and water level measurement in experimental channel. BL0, BL2 and BL7 are 

bed level measured before and after 2 and 7 hours of experiments, respectively. WL2 and WL 7 are the water 

level measurements carried out at 2 and 7 hours, respectively. “y” is the lateral distance from the right wall of 

the flume and “z” is the depth with respect to the top level of the flume. 

A “bed portion” and a “bank portion” of the channel has been distinguished within each cross-section 

to analyze the width and bed evolution of the channel. The following algorithm has been used. The 

transverse slope was computed along the cross-section based on the surveyed topography. The Point 

where the highest change of the transverse slope occurs starting from the centre of the channel was 

marked along both left and the right bank of the cross-sections. The part of the cross-section between 

these points was considered as the bed and the rest as banks. The channel depth (not the wetted depth) 

was then computed as the elevation difference between the top of the banks and the average bed level 

of the channel. The average bed level of the channel was then subtracted from the average bed level of 

the initial channel to compute the average change in the bed level of the cross-section. The cross-

section average channel bed level was finally used to compute the longitudinal slope of the channel. 

Alternative criteria to distinguish between the bed and bank could be based upon the water level. The 

perimeter of the wetted area can be considered as bed, and the part above as bank. However, such 

criteria neglects the terraces of the channel bed formed due to channel incision, over estimating the 

cross-sectional average depth of the channel. 

The cross-sections data were then used to quantify the volume of sediment reworked during the 

experiment. The channel adjusts its width as well as its bed level during its development. A simple 

model was developed to quantify reworking of sediment from the banks and the bed of the channel 

which is presented in Appendix-A.   

-0.12 

-0.1 

-0.08 

-0.06 

-0.04 

-0.02 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 

z 
(m

) 

y (m) 

BL0 BL2 BL7 WL2 WL7 



CHAPTER 3 

47 

 

3.3 Results 

3.3.1 Channel width evolution 

The evolution of channel width was analysed from the pictures extracted from the video. The channel 

width had spatial as well as temporal variations during the evolution. Along the longitudinal direction, 

the channel closer to the upstream flow inlet was narrower compared to the reach of the channel near 

to the downstream boundary of the flume. To minimize the effects of the boundaries, the 

measurements were conducted on a 3 m long reach obtained by removing the first and the last meter 

of close to the boundaries. The reach-averaged channel width was computed by averaging channel 

width along longitudinal direction at 0.2 m interval for one instance of time during the evolution. 

Constant discharge conditions 

The width evolutions of the channels were computed every 30 minutes and are presented in Figure 17. 

Experiments without sediment feed evolved in narrower channels (Figure 17-a) compared to the 

respective experiments with sediment feed (Figure 17-b). Despite starting from different initial 

widths, the experiments without sediment feed evolved in single-thread channels with final reach 

averaged width close to 0.2 m (Figure 17-a). UNI-0.04 and UNI-0.10 represent cases with narrower 

initial width. UNI-0.25 and UNI-0.4 represent the cases with wider initial widths compared to the 

final width obtained for the respective cases. Experiments with narrower initial width rapidly widened 

in the first half an hour and continued to evolve with lower widening rate. The channels started to be 

slightly sinuous after 2 hours. The amplitude of the channel bend, closer to the downstream boundary, 

gradually increased. The rate of bank retreat was not completely followed by slightly lower bank 

advance rate (due to incision), causing the channel to widen but at a slower rate. 

In the UNI-0.25 case, the channel widened up to 0.3 m during the first 3.5 hours of evolution, and 

then eventually narrowed down to 0.2 m towards the end of the experiments  (Figure 17-a). Migrating 

alternate bars developed within the channel in the first half an hour, the weak deflection of flow 

towards the banks caused little bank erosion and thus slight widening of the channel. As the widening 

of the channel progressed at a lower rate, mid-channel bars also appeared within the channel. Growth 

of mid channel bars deflected the flow towards the banks enhancing bank erosion and widening of the 

channel (e.g. Thorne et al. 1998). After 2 hours, the channel started to widen in the downstream part 

of the flume whereas incision occurred at the upstream part of the flume. Eventually the channel 

incision advanced further downstream, which constricted the channel along the left bank leaving the 

area close to right bank dry forming a narrower channel. 

The channel in the UNI-0.4 case continued to narrow throughout its evolution. Due to the higher 

width to depth ratio, mid channel bars of low amplitude were developed during the first half an hour. 

The bars did not grow in amplitude. The channel close to the upstream inlet started to incise from the 

early stages of development (after 1 hour), resulting in a constricted channel closer to the right bank. 

Channel incision advanced further downstream forming a channel constricted along the right bank 

leaving the area close to left bank dry along most reach of the flume. Channel widening was observed 

close to the downstream boundary after 2 hours, due to the growth of a mid channel bar. However, 

channel narrowing was the dominant process along the most part of the flume (Figure 17-a). 

Experiments with sediment feed (Figure 17-b) all evolved into wider multi thread channels at the end 

of the experiments. UNI-0.04* and UNI-0.1* evolved with higher widening rates compared to UNI-

0.25* and UNI-0.4*. During first half an hour of the development UNI-0.04* and UNI-0.1* widened 

by rapid bank erosion. Alternate bars start to appear after half an hour, when the channel was wide 

enough to exceed the critical width to depth ratio, defining their formative conditions (e.g. Colombini, 



CHAPTER 3 

48 

 

Seminara, & Tubino, 1987). The bank erosion was observed along the pools, resulting in a sinuous 

and wider channel.  The evolution continued to increase the amplitude of the bends. The bank 

retreated at faster rate than the bank advance rate causing rapid widening of the channel. As the 

channel continued to widen, complex mid-channel bars formed. Both UNI-0.04* and UNI-0.1* 

experiments had to be terminated earlier because the channel margins touched the sides of the flume. 

 

 

Figure 17. Width evolution in time for the experiments with constant flow of 0.4 l/s but different initial channel 

widths, 0.04 m, 0.1 m, 0.25 m and 0.4 m a) without sediment feed and b) with sediment feed at the upstream 

boundary 

Since UNI-0.25* and UNI-0.4* cases had higher width to depth ration, the first half and hour were 

characterized by the development of alternate and mid-channel bars, respectively. The growth of bars 

caused deflection of flow towards the bank causing bank erosion, resulting in wider and multi-thread 

channels. Similar phenomena of channel widening was observed by Ashmore (1982) in laboratory 

channels and Jang & Shimizu (2005) in numerical simulations. As the widening of the channel 

progressed, complex mid-channel bars were observed migrating along the channel. UNI-0.25* 
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presented higher widening rate than UNI-0.4*, but after 4 hours both evolved at similar widening 

rates to resulting in channels with reach averaged widths of 0.6 m. 

The final channel width was predicted using some of the width prediction methods presented in 

chapter 2. Empirical approaches of Bray [1982] and Parker et al. [2007] and regime equations based 

upon extremal hypothesis [Millar, 2005] were chosen, because they were developed for the gravel bed 

rivers. Using the experimental conditions, as input, the channel width of 0.29 m, 0.22 m and 0.29 m 

was obtained respectively. Even though these methods were developed for gravel bed river channels 

under equilibrium conditions, they predict the width closer to the width of the channels without 

sediment supply. The channels obtained by sediment supply, instead, were much wider compared the 

results from the prediction methods. These channel prediction methods use bank-full discharge as the 

formative discharge. Since channels in the experiments had different initial widths, the initial bank-

full discharges would be different. The UNI-0.04 and UNI-0.04* cases represents almost the bank full 

condition at the start of the experiments. The final bankfull discharge would be much higher due to 

channel widening. 

Variable discharge conditions 

With variable discharge, the width was measured at the end of each discharge stages. Figure 18 

compares the width development for the scenarios with 0.1 m wide initial channel and different 

discharge regimes. Since the channel width consists of the extensions of the wet area at the margins, 

the spreading and the shrinking of the wet area during the high and low discharge stage is reflected in 

the computed width of the channel. Discharge regimes H2 and H3 have higher variation among the 

discharge stages so high width fluctuation were observed between the high and low discharge for 

these scenarios. 

The experiments without sediment feed (Figure 18-a) evolved into channels with a narrower width 

compared the respective experiments with sediment feed (Figure 18-b). All discharge regimes evolved 

into single thread channels without sediment feed and to multi-thread channels with sediment feed. 

The variable scenarios without sediment feed (Figure 18-a) evolved into wider channels compared to 

the constant discharge scenarios. Even though the constant and variable scenarios have the same total 

volume of flowing water, the discharge variation plays a role in the width evolution of the channels. 

The initial half an hour of evolution were characterized by rapid widening followed by slower 

widening rates in all scenarios. The long-term width development shows that H3-0.1 and H2-0.1 

scenarios are grouped together and result similar widths (0.35 m), towards the end of the experiment. 

H3-0.1 and H2-0.1 are the scenarios with the higher discharge amplitudes. UNI-0.1 and H1-0.1 show 

similar trends but the H1-0.1 results in a wider channel (0.25 m) compared to the UNI-0.1(0.2 m). 

The role of variable discharge was different at the early and later stages of the channel evolution. 

During the first four cycles of the discharge hydrographs, the channels mostly widened due to bank 

erosion at the high discharge stage. During the low flow stages, erosion occurred mostly in the 

channel bed and the flow was concentrated towards the centre of the channel. Bank erosion appeared 

to have ceased at the lower stage discharge during this period and no bars formed. The following 

adjacent high discharge stage during this period then eroded the banks and flattened the incised part of 

the channel bed. However, after 4 cycles of discharge hydrographs, the channel had widened 

sufficiently to allow for the formation of bars at lower discharge stage. Bars grew in amplitude 

deflecting the flow towards the banks (as observed in the constant discharge cases) so that the bank 

erosion was then also observed during the low-stage discharge. 
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Figure 18. Width evolution in time of experiments starting with initial channel width of 0.1m under discharge 

regime, Constant, H1, H2 and H3 a) without sediment feed and b) with sediment feed at the upstream boundary 

As widening progressed, the bank erosion rate at the high discharge stages also gradually decreased. 

Thus the difference in channel width between high and low discharge stages decreased as the channel 

evolution continued. In the H1-0.1 scenarios, the channel started to widen at a higher rate after 5 

hours. This was caused by the growth of a bar near the downstream part of the flume. 

For variable flow with sediment feed (Figure 18-b) the evolution trend of UNI-0.1* and H1-0.1* 

appear similar. The evolution trends of H2-0.1* and H3-0.1* scenarios appear also similarThe lower 

discharges also contributed to the widening of the channels and alternate bars formed already during 

the first cycle of high discharge stage. The following low discharge stage eroded the banks around the 

pools increasing the sinuosity of the channel. The following higher discharge then widened the 

channel and increased the amplitude of the channel bend. The low discharge then concentrated within 

the sinuous deeper part of the channel further eroding the banks and making channel more sinuous. 
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Experiments were terminated after 5 hours because the channel continued to widen and touched the 

sides of the flume. 

Since the evolved channel towards the end of the experiments is multi thread and very wide, the 

discharge during the low stage was concentrated among few channels. The variation among the 

discharge stage caused spreading and shrinking of the water surface extent within the channel. 

Scenarios with the highest discharge amplitude, H2-0.1* and H3-0.1*, showed high width variations 

between the high and low discharge stages towards the end of the experiments (Figure 18-b). 

Figure 19 shows the channel width starting from 0.4 m under different discharge regimes. Similar to 

the previous scenarios, experiments without sediment feed (Figure 19-a) evolved into narrower 

channels compared to the respective experiments with sediment feed (Figure 19-b). The evolution of 

channels without sediment feed show that the H1-0.4 and H3-0.4 scenarios evolved into wider 

channels following similar evolution trends. The H2-0.4 and UNI-0.4 scenarios, however, evolved 

into narrower channels. The width of channel formed in H2-0.4 case is wider than the channel formed 

in UNI-0.4 case. 

Experiments started with a wide channel, low amplitude migrating bars developed already in the first 

cycle of discharge hydrographs. During the growth stage of these migrating bars no significant 

erosion was observed along the banks. The H1-0.4 and H3-0.4 cases have similar lower discharge (0.3 

and 0.28 l/s respectively). The lower stage discharge was able to rework the bars formed during the 

high discharge stage and erode the banks along certain stretch of the channel. The following high 

discharge reworked the bed and eroded the banks in these regions, resulting in channel widening. 

Similar phenomena were repeated during the channel evolution in H1-0.4 and H3-0.4 scenarios, under 

each cycle of discharge hydrograph. Channel incision was observed at the upstream part. The 

discharge during the high stage spread almost along the entire width of the channel. However, the low 

flow discharge was confined within the narrow incised part of the channels. So the variation of 

channel width between the high and low discharge stage was mostly due to the expansion and 

shrinking of the water surface area within the channel, which is evident at the later stage of evolution. 

In H2-0.4 scenario, the lower discharge (0.2 l/s) was not sufficient to rework the bars formed during 

the high stage discharge. So, the low discharge eroded only some portion of the channel bed, 

confining the flow to the narrower width of the channel. The following higher discharge reworked the 

bed along the entire width of the flume but also further deepened the incised part of the channel. The 

channel incision started near the upstream boundaries and advanced further downstream with 

evolution, reducing the width of the channel. 

With sediment supply, all discharge regime scenarios starting from a 0.4 m wide channel widened 

even further (Figure 19-b). H1-0.4* scenario resulted in the widest channel and H2-0.4* in the 

narrowest channel. H3-0.4* and UNI-0.4* resulted in channels with similar width. A scour just 

downstream of the inlet was observed in scenarios H2-0.4* and H3-0.4*, which indicates that the 

supplied sediment was less than the transport capacity of the channel. This might have affected the 

channel evolution for scenarios H2-0.4* and H3-0.4*, resulting in the narrower channels compared to 

scenario H1-0.4*. 
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Figure 19. Width evolution in time of experiments starting with initial channel width of 0.4m under discharge 

regime, Constant, H1, H2 and H3 a) without sediment feed and b) with sediment feed at the upstream boundary 

Bars with higher amplitude formed within the channels starting from the early stage of the 

developments in all scenarios with sediment supply. The growth of bars deflected the flow towards 

the bank resulting in eroding banks and channel widening. All experiments evolved into multi-thread 

channels and remained multi-thread also during the low discharge stages, so there was no significant 

width variation observed among the low and high stage flows.  After about 5 hours, however, the low-

flow discharge was concentrated in one of the branches, leaving the other branch at the bifurcation 

dry, thus causing the sudden reduction of channel width in H3-0.4* scenario.  

3.3.2 Sediment transport rate evolution 

The measured sediment transport rate exiting the flume (output rate) is compared with the width and 

bed level evolution to understand the correlation between the change in sediment transport rate 

behaviour and width adjustment. The width evolution and sediment transport rates are shown in 
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Figure 20for experiments with different initial width at constant flow and without sediment supply 

condition. 

The trends of sediment output rate in the experiments starting with a narrower initial width, UNI-0.04 

and UNI-0.1, are similar (Figure 20-a and b). A high rate is observed in the early stage of the channel 

evolution which gradually decreases to a dynamic equilibrium value towards the end of the 

experiment. Towards the end of the experiments the average sediment output for these scenarios is 

0.16 kg/min and 0.14 kg/min, respectively. Both scenarios showed rapid widening during the first half 

an hour leading to a similar channel width. Since in UNI-0.04 the flow eroded more sediment from 

the banks than in UNI-0.1, the initial sediment output rate was higher. The sediment output rate after 

two hours of development showed a wave like pattern which was caused by bank erosion related to 

the increasing sinuosity near the downstream part of the channel. Since bank retreat was followed by 

bank advance, no significant channel widening is observed during this phase. 

 

Figure 20. Evolution of width and sediment transport rates exiting the flume for the scenarios a) UNI-0.04, b) 

UNI-0.1, c) UNI-0.25 and d) UNI-0.4. Continuous lines represent the sediment transport rate and the lines with 

filled symbols denote the width evolution in time. 

In the experiments with a wider initial width : UNI-0.25 and UNI-0.4, the sediment output rate was 

low at the beginning. After 1 hour the banks started to erode and widening progressed at a slow rate in 

UNI-0.25 scenario. The sediment output rate increased too because of the input from bank erosion. 

After 4.5 hours the incision became more dominant which is reflected in sediment output rate 

decrease. A brief increase in sediment output rate is observed after 6 hours, which is due to channel 

shifting, near the downstream boundary, from right to left. 

For the UNI-0.4 scenario, the sediment output rate starts to increase only after 1.5 hours. Even though, 

the incision was already evident near the upstream boundary, but the eroded material was deposited 

more downstream. The increase in sediment output rate after 2 hours is due to bank erosion, caused by 
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the evolution of the mid channel bar near the downstream boundary, as discussed in section a-1. Bank 

erosion stopped and the channel incision was also observed near the downstream boundary after 6.5 

hours. 

The width evolution and sediment output rate for experimental scenarios with constant flow and 

sediment supply are shown in Figure 21. The sediment output signal of UNI-0.04* case and UNI-0.1* 

case was not long enough to understand its behaviour during the width evolution (Figure 21-a and b). 

However it is worth to mention that the channels in both UNI-0.04* and UNI-0.1* remained single 

thread during the first hour after which they develop a braided planform. The high fluctuations of 

sediment output observed after 2 hours  is typical of a braided channel which is attributed to local 

degradation and aggradation within the channels (e.g. Ashmore 1991; Hoey & Sutherland 1991).         

 

Figure 21. Evolution of width and the sediment output rate exiting the flume for the scenarios a) UNI-0.04*, b) 

UNI-0.1* and c) UNI-0.4*.  Continuous lines represent the sediment output rate and the lines with filled 

symbols denote the width evolution in time. 

For UNI-0.4* (Figure 21-c), even though sediment was supplied, its initial sediment output rate was 

very small. The migrating bars developed from the beginning of the experiments, but the bars reached 

the downstream boundary only after half an hour. So, sediment output increased only after the initial 

period of time. The channel started to widen and form a braided pattern from the upstream boundary, 

but the reach near the downstream boundary did not widen for the first 2.5 hours. So the sediment 

output observed between 0.5 hours to 2.5 hours corresponds to the sediment output exiting the 

upstream braided reach. The reach of the channel near the downstream boundary started to widen and 

develop the braided planform after 2.5 hours. The channel continued to rework its bars and the banks 

maintaining the gradual rate of widening. 

The width evolution and sediment output rate for channels with 0.1 m initial width without sediment 

supply is shown in Figure 22. The difference between the sediment output rate during the high flow 
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stages and low flow stages is clearly observed for the variable discharge scenarios (Figure 22-b, c and 

d). Like in the case of UNI-0.1 (with constant flow), the average value of sediment output rate 

decreases asymptotically with the evolution. The average sediment output rate, towards the end of 

experiment (after 5 hours), in the cases UNI-0.1, H1-0.1, H2-0.1 and H3-0.1 is 0.14 kg/min, 0.12 

kg/min, 0.15 kg/min and 0.11 kg/min, respectively. The average sediment output rate is the lowest for 

H3-0.1 because the duration of low stage discharge is 3.2 times longer than the high stage discharge. 

 

Figure 22. Evolution of width and the sediment output rate exiting the flume for the scenarios UNI-0.1, H1-0.1, 

H2-0.1 and H3-0.1. Continuous lines represent the sediment output rate and the lines with filled symbols denote 

the width evolution in time.  

The trend of sediment output rate during the channel width evolution is similar in all variable 

discharge cases (H1-0.1, H2-0.1 and H3-0.1). The highest rate is observed during the first high stage 

discharge because of rapid widening. The sediment output rate correlates well with the rate of 

widening. H3-0.1 scenario has the highest sediment output rate at the first stage because of the highest 

widening rate. 

Among the variable discharge regimes, H1-0.1 has the smallest and H3-0.1 has the highest ratio 

between the high and the low discharges. So the ratio of sediment output rate between the high stage 

and low stage discharge was observed smallest for H1-0.1 and the highest for H3-0.1. The sediment 

output ratio is also affected by the rate of widening among the discharge stages. The ratio was 

minimum during the evolution of H1-0.1 between 3 and 5 hours, because the channel widened at a 

very small rate. The channel started to widen at a higher rate after 5 hours, which caused the increase 

in the ratio between the sediment output rate at high discharge stage and low discharge stage. For 

scenarios H2-0.1 and H3-0.1, the decrease in ratio of sediment output during the high and the low 

flow stage is correlated with the decrease in ratio between the high and low stage channel width 

observed during channel evolution. 
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The width evolution and sediment output rates for the experiments with 0.1 m initial width with 

sediment supply is shown in Figure 23. The experiments were not long enough to analyze the 

sediment output with the long-term width evolution. The sediment output rates followed the discharge 

hydrographs during the early stage of the development when the channel was still single thread 

(Figure 23-b, c and d). After the second cycle of the discharge hydrographs, the channels started to 

form a braided planform. After 2 hours, sediment output started to develop a temporal lag with the 

discharge hydrograph, which might be due to bed aggradation and degradation occurring during the 

morphodynamic evolution of the braided channels. 

 

Figure 23. Evolution of width and the sediment output rate exiting the flume for the scenarios a) UNI-0.1*, b) 

H1-0.1*, c) H2-0.1* and d) H3-0.1*.  Continuous lines represent the sediment output rate and the lines with 

filled symbols denote the width evolution in time. 

The width evolution and sediment output rates for the experiments with 0.4 m initial width without 

sediment supply condition is shown in Figure 24. Alternate high and low sediment output rates 

correspond to the high and low stage of the discharge hydrograph cycles. No significant sediment 

output rate was measured for the experiments UNI-0.4, H1-0.4 and H2-0.4 during the early stages 

until the developed low amplitude mid channel bars reached the downstream boundary of the flume. 

The sediment output rate was recorded after the high stage discharge for both the experiments. H3-0.4 

has the highest discharge amplitude, so significant amounts of sediment output were measured already 

during the first cycle of hydrograph. The magnitude of bank erosion decreased during the evolution of 

the channels for the scenarios H1-0.4 and H2-0.4 between 3 and 5 hours. More incision of the channel 

was observed between 3 and 5 hours, which greatly reduced the sediment output rate. Bank erosion 

resumed after 5 hours increasing the sediment output rate in both the scenarios. The bank erosion 

occurred towards the centre of the channel for H1-0.4 which contributed to increase the width. While 

for H2-0.4, bank erosion occurred close to the downstream boundary, increasing the sediment output. 

The central part of the channel continued to incise.  While for H3-0.4 even though the channel incised 
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near the upstream boundary, bank erosion continued during the high flow stage near the downstream 

boundary causing the sediment output rate to increase compared to the early stages of development. 

 

Figure 24. Evolution of width and the sediment output rate exiting the flume for the scenarios UNI-0.4, H1-0.4, 

H2-0.4 and H3-0.4. Continuous lines represent the sediment output rate and the lines with filled symbols denote 

the width evolution in time.  

 

3.3.3 Sediment reworking during channel evolution 

A fluvial channel evolves by reworking its bed and banks simultaneously. The channel evolution is 

better understood by identifying the dominant processes involved such as: bed erosion, sedimentation, 

bank erosion etc. A simple model based on the cross-section measurements was used to compute the 

volume of reworked bed sediment and the volume of sediment eroded from the banks during the 

channel evolution. The calculations were performed to study the first two hours of evolution and the 

subsequent five hours representing the early and the final stages of channel formation, respectively. 

The experiments with sediment feed were terminated earlier, so for these scenarios the analysis covers 

the initial stages only. The percentage of volume (Fs) reworking at the bed or bank was computed 

with respect to the total sediment volume reworking within each sub-reach (0.5 m long). The positive 

value of Fs denotes erosion and the negative value denotes deposition. Figure 25 summarizes the 

results for the constant-flow scenarios without sediment feed. The continuous lines and dashed lines 

are the results at 2 hours and 7 hours respectively and the black and grey lines are the sediment 

reworked along channel bank and bed, respectively.  

The experiments starting from narrower initial width (UNI-0.04 and UNI-0.1) show similar sediment 

reworking trends (Figure 25-a and b). The sediment reworked during the initial stage of the evolution 

is dominated by the bank erosion processes whereas in the middle part of the flume the bed aggraded. 

The later stage of the evolution show that both bed and bank erosion contribute to sediment 
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reworking. The amount of sediment reworked due to bed incision is the highest at the upstream 

boundary and decreases to zero at the downstream boundary, where the sediment is reworked entirely 

by bank erosion. Since scenarios UNI-0.04 and UNI-0.1 produced similar widths, the banks were 

reworked more for UNI-0.04 than for UNI-0.1, which means that bank erosion is higher in UNI-0.04 

scenario, during the complete evolution of the channel.     

The experiments starting from a wider initial channel width (UNI-0.25 and UNI-0.4) have similar 

sediment reworking trends (Figure 25-c and d). During the first stage of development the upstream 

part of the channel is characterized by channel bed erosion, whereas the downstream part is 

characterized by the bed aggradation. Sediments reworking by bank erosion is only observed in a 

reach starting 1.5 m after the inlet of the flume. During the later stage of the development, the channel 

incision advanced further downstream. In scenario UNI-0.4, the sediment reworking was dominated 

by the channel bed incision along 80% of the channel length. In scenario UNI-0.25, instead, sediment 

reworking is dominated by channel bed erosion at the upstream half of the channel and by bank 

erosion at the downstream half of the channel. 

Figure 25 shows the distribution of sediment reworked from channel banks and bed, for the 

experiments with constant flow and sediment supply. The distributions of reworked sediments are 

similar for the experiments starting with narrow initial channels (UNI-0.04* and UNI-0.1*). Sediment 

reworking is dominated by bank erosion along the entire length of the channel. Significant amounts of 

deposition are observed along most part of the flume (Figure 25-e and f). 

In scenario UNI-0.25*(Figure 25-g), the reworked sediment involves both bank erosion and bed 

deposition. The volumes of sediment deposited are higher than the volumes of sediment originating 

from bank erosion, except near the downstream boundary of the channel. In the scenario UNI-0.4* 

(Figure 25-h) deposited sediment volumes are larger than the volume of sediment eroded from the 

banks near the upstream and the downstream boundaries. The volume of the sediment eroded from the 

banks are nearly equal to the volume of sediment deposited along the middle portion of the channel.  

Sediment reworked during channel evolution of the experiments starting from 0.1m wide initial 

channel without sediment supply is presented in Figure 26. Sediment reworking in all of the scenarios 

were dominated by bank erosion during the early stage. Channel bed along the middle part of the 

flume aggraded. Scenario H3-0.1 had the most aggraded channel bed. Both bank erosion and bed 

incision contributed to the sediment reworking during the later stage of the development. Bank 

erosion had higher contribution compared to bed incision. Channel bed incised near the upstream 

boundary and magnitude of incision decreased moving towards the downstream boundary. Channel 

bed incision had the highest contribution to sediment reworking in scenario H3-0.1. 

Sediment reworking trend in the variable discharge scenarios (H1-0.4, H2-0.4 and H3-0.4) were 

different from the constant flow scenario (UNI-0.4) in the experiments starting from 0.4 m wide initial 

channel without sediment supply (Figure 26). Bank erosion occurred along the entire length of the 

flume in variable discharge scenarios during the early stage of development. Banks did not erode in 

the first 1.5 m reach of the flume in the UNI-0.4 scenario. Bed aggradation was dominant along the 

most part of the flume in all of the scenarios. The volumes of sediment deposited were higher than the 

volumes of sediment eroded from the banks along the reach. Channel bed incision occurred along a 

short reach close to the upstream boundary. Bed incision progressed further downstream during the 

later stage of development. 
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Figure 25. Distribution of sediment reworked from bank and bed along the length of the flume during the 

evolution of the channel between 0-2 hours and 2-7 hours for cases a) UNI-0.04, b) UNI-0.1, c) UNI-0.25, d) 

UNI-0.4, e) UNI-0.04*, f) UNI-0.1*, g) UNI-0.25* and h) UNI-0.4*. 
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Figure 26. Distribution of sediment reworked from bank and bed along the length of the flume during the 

evolution of the channel between 0-2 hours and 2-7 hours for cases a) UNI-0.1, b) H1-0.1, c) H2-0.1, d) H3-0.1, 

e) UNI-0.4, f) H1-0.4, g) H2-0.4 and h) H3-0.4. 

Bed incision occurred along first half followed by bed aggradation along the second half of the flume 

in the variable discharge scenarios. Incision occurred along most part of the flume in the constant-

discharge scenario. Bank erosion was negligible along first 1.5 m part of the flume in H1-0.4 and H2-

0.4 scenarios whereas banks eroded along the entire flume in H3-0.4 scenario. In constant flow 
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scenario bank erosion was negligible along most part of the flume except along the 1.5 m reach close 

to the downstream boundary.    

The accuracy of simple sediment reworking model was assessed by comparing the equivalent weight 

of the estimated net volume of the reworked sediment by the model with the weight of sediment 

collected at the downstream end of the flume. The percentage of the difference between the estimated 

and observed net sediment weight was computed. The negative and the positive values denote the 

lower and higher prediction of the net sediment volume changes, respectively. Figure 27 shows the 

estimation error in different scenarios. The model performed well for the scenarios where sediment 

reworking occurred with higher net erosion. Highest errors were observed during the early stage 

development of the scenarios starting from 0.4 wide initial channels. The resolution of the cross-

sections measurements were not fine enough to capture the observed small net change of sediment 

volume. Estimation error was less for H1-0.4 scenario because the bank erosion had higher 

contribution to sediment reworking along the entire length of the flume (Figure 26-f). The estimation 

significantly improved during the later stage of the development when the net change in sediment 

volume was higher. The model was capable to predict the net sediment reworking with reasonable 

accuracy despite using cross-section measured 0.5 m apart. The model performed well when channel 

evolution was dominated by bank erosion. 

 

Figure 27. Error in the estimation of net sediment budget from the flume by simple sediment budget model. 

Filled histograms are the estimation error and void histograms are the weight of sediment measured at the 

downstream end of the flume. 

3.3.4 Combined evolution of channel width and bed 

Channel width and bed evolution are simultaneous and interact during channel formation. Channel 

aggradation and incision result in widening or narrowing.  The measured cross-sections were 

compared to their initial configuration to analyze the change in width and bed level. Reach-averaged 

relative width change (ΔW) and relative bed-level change (Δη) were computed subtracting the 

evolved channel width and bed from initial width and bed, respectively. Plotting ΔW against Δη 

allows analyzing the combined evolution of channel width and bed. The threshold lines of the width 

change (ΔW = 0) and bed level change (Δη = 0) subdivide the plot in four parts (Figure 28). In 

anticlockwise direction, the upper right part represents widening and aggradation; the upper left part 

represents widening and incision; the lower left part represents narrowing and the incision; the lower 
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right part shows narrowing and aggradation. Due to the limited number of cross-sections 

measurements during the experiments, the combined evolution of channel width and channel bed can 

be analysed only for the conditions occurring after 2 hours and at the end of the experiments.   

Figure 28 shows the relative changes in width and bed elevation of the channels with constant flow 

and without sediment supply. After 2 hours, the channels with a narrower initial width (UNI-0.04 and 

UNI-0.10) widened and aggraded. Widening increases the sediment influx into the channel and 

reduces the sediment transport capacity at the same time, causing bed aggradations [Eaton and Millar, 

2004; Langendoen and Alonso, 2008]. Since rapid widening is observed in scenarios UNI-0.04 and 

UNI-0.1, these scenarios also have the most aggraded channels. Scenario UNI-0.25 also slightly 

widened (Figure 17-a) and slightly aggraded. Even though the width of the UNI-0.4 scenario has 

narrowed, the reach-average channel bed was still aggraded. This is because only the reach near the 

upstream boundary is incised, the major part of the channel is still aggraded (Figure 25-d) resulting 

the aggradation of the reach-average bed level.   

Since sediment is not supplied in all the scenarios, the channel bed level is incised compared to the 

respective channel bed levels after 2 hours (Figure 28). Channel narrowing also occurs due to the 

formation of higher terraces within channel during the incision [Thorne et al., 1998]. So, scenarios 

UNI-0.04, UNI-0.25 and UNI-04 resulted in narrower channels and only scenario UNI-0.1 resulted in 

wider channel compared to the respective channels after 2 hours. Even though bed incision is 

observed throughout the length of the channel during the evolution between 2 and 7 hours (Figure 25-

a, b, c and d), the reach-averaged channel bed level is slightly aggraded. The channel bed level at the 

upstream part is incised whereas it is aggraded more downstream, thus counter balancing the reach 

average channel bed level. Thus, at the end experiments UNI-0.04 and UNI-0.1 resulted in wider and 

slightly aggraded channels and UNI-0.25 and UNI-0.4 resulted in narrower channel that is slightly 

aggraded. 

Channels with sediment supply, all widened and aggraded after 2 hours (Figure 29). Channel bed 

aggradations leads to widening caused by an increase in the flow velocity due to steepening of bed 

(Ikeda, 1989) and flow deflection around bars [Simon and Thorne, 1996]. Thus the channel continued 

to widen and aggrade until the end of the experiments 

Figure 30 shows relative change in width and bed level of the channels starting from 0.1 m initial 

width without sediment supply. All of the scenarios resulted in wider and aggraded channel after 2 

hours. Scenario with the highest discharge intensity (H3-0.1) resulted in the widest and most aggraded 

channel. UNI-0.1 scenario resulted in the narrowest and the least aggraded channel. Since sediment 

was not supplied, channels incised but widened after 7 hours compared to the channels at 2 hours. 

Scenarios with higher discharge intensity: H3-0.1 and H2-0.1 resulted in channels with similar reach-

averaged width and bed level. These scenarios also resulted in the widest and most aggraded channels. 

UNI-0.1 scenario resulted in the narrowest channel that was slightly aggraded. 
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Figure 28. Relative channel-width and bed level changes in scenarios UNI-0.04, UNI-0.1, UNI-0.25 and UNI-

0.4 after 2 hours (void symbols) and 7 hours (filled symbols) of the experiments. 

 

Figure 29. Relative channel-width and bed level changes in scenarios UNI-0.04*, UNI-0.1*, UNI-0.25* and 

UNI-0.4* after 2 hours (void symbols) and end of the experiments (filled symbols). 

The experiments starting from 0.4 initial width without sediment supply resulted in narrower and 

aggraded channels after 2 hours (Figure 31). In the variable discharge scenarios (H1-0.4, H2-0.4 and 

H3-0.4) channel widths after 2 hours were measured during the low-stage discharge. So, narrowing of 

the channels is partly due to the shrinkage of the wetted perimeter during the low flow stages. After 7 

hours, scenarios H3-0.4 and H1-0.4 resulted in wider and aggraded channels. H1-0.4 and H3-0.4 had 

similar low-stage discharge 0.3 l/s and 0.28 l/s, respectively. Scenarios UNI-0.4 and H2-0.4 resulted 

in narrower and slightly aggraded channels.  
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Figure 30. Relative channel-width and bed level changes in scenarios UNI-0.1, H1-0.1, H2-0.1 and H3-0.1 after 

2 hours (void symbols) and 7 hours (filled symbols) of the experiments. 

 

Figure 31. Relative channel-width and bed level changes in scenarios UNI-0.4, H1-0.4, H2-0.4 and H3-0.4 after 

2 hours (void symbols) and 7 hours (filled symbols) of the experiments. 

3.4 Summary of results 
The objectives of this study are to understand the reach-averaged width and bed level evolution of 

bed-load dominated alluvial channels under different controlling factors. Controlling factors in this 

study refer to initial channel width, discharge regimes and sediment supply regimes. The results are 

interpreted to develop a general understanding on width evolution rather than reproducing 

characteristics of a specific bed-load dominated river. The results from the experimental 

investigations can be summarized as follows: 
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Effects of initial channel width 

The long-term equilibrium channel widths were independent of the initial channel width in the 

experiments with constant flow and without sediment supply regimes. The experiments starting from 

narrower initial width widened and the experiments starting from wider initial width narrowed by bed 

incision all resulting in similar long-term equilibrium width. With the sediment supply at the upstream 

boundary, the experiments starting from narrower initial channel widths were terminated earlier 

because they aggraded and widened rapidly touching the fixed side walls of the flume. The scenarios 

starting from wider initial channel widths could evolve for longer period of time before approaching 

the side walls. They resulted in similar long-term channel width despite of the differences during the 

early stage of the development. 

The long-term equilibrium channel widths were observed to be dependent on the initial channel width 

in variable discharge regimes. At similar variable regimes, the experiments starting from wider initial 

widths without sediment supply resulted in wider channels. The width evolution in channels with 

sediment supply could not be compared because the experiments starting from narrower initial 

channel had to be terminated before reaching an equilibrium condition. 

Effects of flow regime 

Channels evolved to different equilibrium widths under different flow regimes. Although all flow 

regimes conveyed same volume of water during the experiments, the variable discharges resulted in 

wider channels compared to constant flow. Flow regimes resulted in different channel widths 

depending upon the initial width of the channels. In the experiments starting from narrower initial 

channel width without sediment supply, regimes with the higher amplitude discharge variation 

resulted in similar channel width. Regime with the lower amplitude flow variations resulted in 

channel width similar to constant flow. Wider channels were obtained for the discharge regimes with 

higher amplitude of discharge variation. The experiments with sediment supply were not long enough 

to analyze the evolution trend. 

In the experiments starting from wider initial channel width without sediment supply, regimes with 

similar low stage flow resulted in similar width. The regime with higher low-stage flow resulted in 

wider channels. The channel widened mostly during the high flow stage but low flow stage had an 

important role in reworking of the channel bed which also controlled the path of the bank erosion 

during successive high flows. 

In the experiments with sediment supply, regime with higher amplitude discharge variation resulted in 

similar channel width compared to constant flow scenario. Bed scour was observed near the upstream 

boundary in these variable discharge scenarios which indicate less amount of sediment supplied 

compared to the sediment transport capacity of the channel at the upstream boundary. This might have 

caused less bed aggradation and widening of the channels. The variable discharge scenario where no 

upstream bed scour was observed resulted in wider channel than the constant flow. 

Effects of sediment supply regime 

Sediment supply from at the upstream boundary played a major role in the channel evolution. 

Experiments with sediment supply resulted in much wider channels compared to those without 

sediment supply. Channel predictors developed for gravel-bed rivers which were developed under the 

assumption of equilibrium conditions estimated widths that were closer to the constant flow 

experiments without sediment feed carried out in the framework of this study. 
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All experiments with sediment supply widened and aggraded rapidly resulting in braided channels. 

Most of the experiments were terminated earlier because they widened rapidly touching the sides of 

the flumes. So the long-term width evolutions could not be analysed in sediment supply scenarios. 

The trend of the measured sediment output rate from the flume correlated well with the observed 

width evolution when the channel was single thread. The correlation became weaker when multi-

thread channels started to evolve. 
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4 ANALYTICAL MODELLING OF ALLUVIAL CHANNEL FORMATION 

4.1 Introduction 
A simple mechanistic semi-analytical model of Tealdi et al. [2011] (here after referred as TCR model) 

was used to investigate the width evolution trend of channel using laboratory experimental conditions. 

It is the only analytical model which can quantitatively predict the change in width and bed 

level/slope in response to change in sediment and discharge regime (non-equilibrium conditions). 

Data of laboratory experiments reported in Chapter-3 were used to calibrate the model. Due to many 

simplified assumptions, the model could be used to investigate evolution of the experimental channel 

starting from 10 cm initial width. Experiment UNI-0.1 was used to calibrate the model. The calibrated 

model was then used to investigate the width evolution in channels starting from different initial 

channel widths. The width evolution was also analysed in non-uniform flow scenarios with reference 

to laboratory experiments H1-0.1, H2-0.1 and H3-0.1. Objective of the use of analytical model was to 

physically explain the evolution trend of the width rather than to closely reproduce the experiments in 

detail. 

4.2 Description of the model 
TCR model is derived by solving a 1D moment conservation equation and sediment continuity 

equation integrated over a channel cross-section. A bed load transport predictor and linearized bed 

shear stress formulations are used as closure relations to obtain analytical solutions. A second order 

governing ordinary differential equation system in time is obtained which relates the temporal rate of 

change of bed level and of channel width with the temporal variability of the input flow and sediment 

discharges, the sediment transport relation used, the bank and sediment properties which is illustrated 

by equation ( 18 ) and ( 19 ). The model is derived assuming a trapezoidal cross-section (Figure 32). 

  

Figure 32. Trapezoidal section showing the notations used in Tealdi model.  
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Where,     is the reach averaged bed level of the channel, m; ηt is the top level of the channel, m; Lx is 

the length of the reach, m; Bb is the bottom width of the channel, m; Ss is the side slope of the 

channel; H is the water depth, m; qbx sediment transport rate in bed along longitudinal directions 

obtained using Wong and Parker formulations (equation ( 20 )), m
3
/s/m; qsx is the sediment transport 

rate in side slopes along longitudinal direction obtained using Wong and Parker formulations 

(equation ( 21 )) m
3
/s/m;        is the sediment transport rate in the side slope integrated between yw 

and yb computed using equation ( 22 ), m
3
/s/m. 
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( 24 ) 

   

Where, θb and θs are shields stress in channel bed and side slopes, respectively; Ds is the sediment 

diameter, m; Qw is the discharge, m
3
/s; g is the acceleration due to gravity, m/s2; Vt is the transversal 

mean velocity along side walls, m/s; U is the mean flow velocity in the cross-section, m/s; r is the 

coefficient weighing the sediment transport in side slopes in the transverse direction;          is 

the roughness height, m, nk is the coefficient, D90 is the 90
th
 percentile sediment diameter, m; nr and 

αr are the exponents and exponents in the formulation of dimensional roughness coefficient    

   
  

  
   . Formulation of θb and θs illustrated in equation ( 23 ) and equation ( 24 ) respectively are 

obtained after linearising the formulation of shear stress in channel bed and banks.   

4.3 Choice of parameters 
To compute the channel evolution following physical parameters were prescribed in the model during 

the calibration: 
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Table 6. Values of parameters used in the analytical model. 

Parameters Value Remark 

Geometrical parameters 

Bb 0.05 Half initial channel bottom width 

Ss:1 1.2 Side slope of the banks (Vertical:Horizontal) 

Sb 0.01 Longitudinal bed slope of the channel 

Ηt 0.04 (m) Top level of the channel 

Hydraulic parameters 

nk 2.50 Coefficient weighing roughness height 

αr 8.50 Coefficient weighing dimensionless friction factor 

nr 0.167 Exponent of dimensionless friction factor 

Sediment parameters 

D90 1.48 (mm) 90
th
 percentile of grain size distribution 

D50 1 (mm) Median grain size diameter 

Ɵcr 0.047 Critical shields stress in bed load formula 

Δ 1.65 Relative density of sediment 

r 0.1 Coefficient weighing the lateral sediment transport on banks 

λp 0.4 Porosity of the bed 

Discharge 

Qw 0.4 (l/s) Uniform flow (calibration case) 

Values of hydraulic and sediment parameters required in the model were not directly measured in the 

experiments. The values used in the model were varied within the range reported in the literature to 

obtain the results closest to experimental observations. The combination of parameters listed in Table 

6 resulted in width evolution trend reasonably close to that observed in the experiment UNI-0.1. 

Values of the parameters were increased and decreased each at a time (keeping others constant) to 

assess the sensitivity in the results. The sensitivity analysis was carried out for nk, αr and r by 

increasing and their values by 10%. The calibrated model was then used to analyze the effects of 

initial channel widths and non-uniform discharge on the width evolution of the channel.  

4.4 Results 

Sensitivity analysis 

Figure 33 shows the width evolution in scenarios with different values of αr. The values αr equal to 

8.50 was chosen for the model setup. Width evolution in the model was sensitive to the value of αr. 

Higher value of αr resulted in narrower channels. Higher values of αr resulted in higher channel 

roughness which decreases the flow velocity. Decrease in flow velocity decreases the bed shear stress 

which reduces the sediment transport capacity thus resulting in narrower channels. Channels became 

wider with the smaller values of αr. Smaller values of αr resulted in lower channel roughness which 

increases the flow velocity. Increase in flow velocity increases the bed shear stress which increases 

the sediment transport capacity thus resulting in wider channels. 

 



CHAPTER 4 

70 

 

 

Figure 33. Channel width evolution with values of αr= 8.50, 9.35 and 7.65. 

The sensitivity of the model to the values of parameter “r” are presented in Figure 35. Since the 

parameter r controls the sediment transport rate along the bank slopes, the model results were 

sensitive to the choice. Increasing the value of “r” resulted in the widening of the channel because 

more sediment was transport along the side slope towards channel bed. The value of r equal to 0.1 

was used in the model setup.  

Figure 34 shows the width evolution with different values of nk. The values nk equal to 2.50 was 

chosen for the model setup. Width evolution in the model was less sensitive to the value of nk. The 

values of nk between 2.25 to 2.75 resulted in similar channel widths. 

 

Figure 34. Channel width evolution with values of nk= 2.5, 2.75 and 2.25. 
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Figure 35. Channel width evolution with values of r = 0.1, 0.11 and 0.09. 

 

Uniform flow 

Despite several simplifications, Tealdi model was able to compute the width evolution of a channel 

reasonably close to those observed in the experiments UNI-0.1 (Figure 36) using the values of the 

parameters listed in Table 6. Channel width evolution trend was computed for the scenarios starting 

from different initial channel widths. The scenario starting from narrowest initial channel (0.09 m) 

resulted in the widest channel whereas the channel starting from the widest initial channel (0.11 m) 

resulted in the narrowest channel. 

Non-uniform flow 

Channel width evolution computed by Tealdi model in non-uniform flow scenarios, using conditions 

of laboratory experiments H1-0.1, H2-0.1 and H3-0.1, were analyzed. Channel widths were computed 
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(Mod_high), low flow stage (Mod_low) and average discharge (Mod_uni). Width evolution computed 
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uniform flow using higher-stage discharge resulted in similar width to that of non-uniform flow after 

long-term development. Channel width during the intermediate development stage was higher for the 

uniform flow. This is because the Channel widening did not occur during the low-stage discharge of 

non-uniform flow scenario, thus lowering the rate of channel widening. Computations carried out at 
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uniform discharge regime using average discharge (Mod_uni) and low-stage discharge resulted in 

narrower channels. 

 

Figure 36. Channel width evolution in scenarios starting from initial channel width 0.1 m, 0.11 m and 0.09 m 

compared with the experiment UNI-0.1. 

 

 

Figure 37. Channel width evolution in the model for the experimental scenario of H1-0.1 (Mod), with high flow 

stage discharge (Mod_high), low flow stage discharge (Mod_low) and average discharge (Mod_uni). 
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Figure 38. Channel width evolution in the model for the experimental scenario of H2-0.1 (Mod), with constant 

high flow stage discharge (Mod_high), low flow stage discharge (Mod_low) and average discharge (Mod_uni). 

 

 

Figure 39. Channel width evolution in the model for the experimental scenario of H2-0.1 (Mod), with high flow 

stage discharge (Mod_high), low flow stage discharge (Mod_low) and average discharge (Mod_uni). 

Figure 38 shows the width evolution computed by Tealdi model for the experimental conditions of 

H2-0.1. In the non-uniform flow scenario the width evolution trend computed by the model is similar 

to that in the experiment. The channel computed by the model (Mod) was wider compared to the 

experiment. The computations at uniform flow using high stage discharge (Mod_high) resulted in the 

-0.1 

6E-16 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 1 2 3 4 5 6 7 

w
id

th
 (

m
) 

time (hrs) 

H2-0.1 Mod Mod_high 

Mod_low Mod_uni 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 1 2 3 4 5 6 7 

w
id

th
 (

m
) 

time (hrs) 

H3-0.1 Mod Mod_high 

Mod_low Mod_uni 



CHAPTER 4 

74 

 

long-term equilibrium width similar to the non-uniform flow. Channel widths computed at uniform 

flows using average (Mod_uni) and low stage discharge (Mod_low) were smaller. 

Figure 39 shows the width computed by Tealdi model using the experimental conditions of H3-0.1. 

The width in non uniform flow scenario during the early stage of the development was similar to the 

experiment. The computed channel was significantly wider at the later stage of the development. The 

computation carried out at uniform flow using high stage discharge (Mod_high) was similar to the 

non-uniform flow scenario after long-term development. The uniform flow using average (Mod_uni) 

and low stage discharge (Mod_low) resulted in narrower channels.      

4.5 Summary of the results 
The effects of controlling factors: Initial channel width and discharge were investigated using 

analytical model. The channel evolution was computed using the experimental data. The results from 

the investigations can be summarized in the following sections. 

Effects of initial channel width 

The long-term evolution of channel width in scenarios with uniform flow without sediment supply is 

affected by the initial channel width. Evolution of channels starting from narrower initial channels 

resulted in wider channels.  

Effects of discharge regimes 

The long-term width evolution is different for different discharge regimes. Channels evolving with 

higher amplitude discharge variations result in wider and more aggraded channels. Channel widening 

occurred mostly during the higher flow stage. The long-term equilibrium width of channels evolving 

in non-uniform flow scenarios could be predicted using high-stage discharge as uniform flow regime. 
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5 NUMERICAL MODELLING OF ALLUVIAL CHANNEL FORMATION 

5.1 Introduction 
This chapter presents results of the investigations on the effects of controlling factors on the alluvial 

channel formation carried out using numerical. The objectives of numerical modelling were to 

investigate the role of initial channel width, discharge and sediment supply regimes on the long-term 

width and bed evolution of bedload dominated channels. Numerical modelling allowed investigating 

channel evolution in a longer domain and for longer period of time which were not feasible due to 

smaller facility in the laboratory experiments presented in Chapter 3. It also allowed better 

understanding of variability of morphodynamic phenomena in both space and time which were 

difficult to quantify in experiments due to the difficulty in measurements, like flow characteristics and 

depth, at small scales. Numerical modelling allowed explanation of certain experimental observations 

on channel evolution based on established laws of physics (flow, sediment transport, bank erosion). 

5.2 Numerical modelling 
A two dimensional physics-based fully non-linear numerical model (Delft3D) was used to investigate 

the effects of different controlling factors on channel evolution of a field scale gravel-bed river with 

(River Severn). Data of the experiments on channel evolution carried out in this study (Chapter 3) 

were not used because the experimental channels evolved very fast due to rapid widening which 

caused the instability in the model. Standing surface waves were also observed during the channel 

evolutions which indicate the occurrence of super-critical flow. The model used is more accurate to 

study the morphological phenomena at sub-critical flows. Choice of the field scale study allowed 

having slower evolution of the channel (width and bed) in the model avoiding sudden changes causing 

model instabilities. The flow characteristics used in the model were similar to those in the 

experiments at the start up condition. 

5.2.1 Model description 

Delft3D (open source version - 3.28.50.01) was used for the investigation. Delft3D is a fully nonlinear 

numerical model that solves the unsteady shallow-water equations with hydrostatic approximation in 

two dimensions. The bed evolution is modelled by solving sediment transport equations and Exner’s 

sediment balance equations [Lesser et al., 2004]. Channel bed evolutions occur at much slower time 

scale compared to flow time scale which immediately adapts to the changes in the channel bed. To 

reduce the computational cost during long-term simulations, the bed development were accelerated by 

using a coefficient, Morphological Acceleration Factor (MF), to multiply the bed level updates after 

each flow time-step [Lesser et al., 2004]. 

A heuristic bank erosion numerical scheme based upon angle of repose, defining critical-failure slope, 

is implemented which allows to simulated channel widening phenomena. Bank erosion occurs when 

the lateral slope of the banks exceed the angle of repose. Evolution of channel with erodible banks 

have been simulated using similar bank erosion scheme by Jang and Shimizu [2005]. Detail features 

of flow model and morphological model in Delft3D are presented in Appendix B. 

5.2.2 Model setup 

Twelve numerical runs have been performed, according to the conditions summarized in Table 4. The 

runs differ in discharges and sediment supply regimes, and sediment sizes. The details of the 

numerical simulation settings are provided in the sections below. 
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Choice of model river 

River Severn was chosen for the model setup because of its data availability and its size which 

allowed studying its channel evolution at a reasonable amount of computational time. Topographic, 

flow and sediment characteristics of a 2km meandering reach of the River Severn near Fron (Figure 

40), about 2 km downstream of Abermule was used to setup the model. The selected reach of River 

Severn is single-thread with an average width of 30 m and longitudinal slope of 0.14%. A 2m 

resolution Lidar topographic data made available by UK Environmental Agency was used to compute 

the longitudinal slope. The cross-section measured in 1990 was used to calculate the average width of 

the river. Mean annual flood of the river was computed as 217 m3/s using annual peak flow data 

monitored at Abermule gauging station between 1962 and 2013. Median grain size sediment diameter 

(D50) in river bed of the reach near Abermule is 40 mm [Couperthwaite, 1997]. 

 

Figure 40. Reach of River Severn near Fron showing locations of measured cross-sections (Source: Google 

Earth). 

Model domain and grid size 

Two different model domains with rectangular shape were used to simulate channel evolution (Figure 

41). The first domain (SD) was 1000 m long and 120 m wide including flood plains. The second 

domain (LD) was 2000 m long and 300 m wide. Both domains were discretized using rectangular grid 

cells 1 m long in lateral direction and 5 m long in longitudinal directions. The lateral dimensions of 

the grids were chosen based upon the sensitivity analysis.  

Smaller dimension of grids along lateral directions allowed representing bank slopes higher than the 

critical value required for bank erosion, thus allowing continuous width evolution in the model. A 5 m 

deep initial channel with trapezoidal cross-section of desired width and longitudinal slope of 0.0014 

was provided at the centre of the domain. Model domains and width of the initial channels used in 

different scenarios are presented in Table 4. Computational time step was chosen as 0.3 seconds 

which ensured the stability in the model. 

 

 

 

100 m 
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Figure 41. Computational domain used in the model setup showing details of the grid cells. 

Hydrodynamics 

Channel bed roughness and turbulence diffusion coefficient were prescribed to model the flow field. 

Chezy’s roughness coefficient based upon Colebrook and White roughness formulation was used in 

the model (equation ( 25 )). 

 12
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 ( 25 ) 

   

Where, C is the Chezy’s roughness, m
1/2

/s; h is the water depth, m; ks≈6.8 D50 is the roughness height, 

m, computed  using formulation suggested by Julien [2002]; D50 is the median sediment diameter, m. 

The roughness formulation is water depth dependent representing shallower parts rougher than the 

deeper parts. Turbulence diffusion is modeled using eddy viscosity coefficient. The value depends 

upon grid size and flow characteristics. The value of 0.1 m
2
/s was chosen based upon the values 

reported in the hydrodynamic modelling studies carried out in the field scale rivers [Williams et al., 

2013].   

Boundary conditions 

The effects of different discharge and sediment supply regime on the channel evolution were 

explored. Different discharge and sediment regimes were prescribed along the initial channel cross-

section at the upstream boundary. Discharge regimes used in the model for different scenarios are 

presented in Figure 42 and Table 4. In sediment supply scenarios the sediment transport rate capacity 

of the flow at upstream boundary was supplied. A constant water level corresponding to normal depth 

of the discharge imposed at the upstream boundary, computed using the initial channel (width) 

configuration, was prescribed at the downstream boundary. 

Sediment transport and morphodynamic 

Sediment transport rate in the model was computed using Wong and Parker [2006] formulation 

(equation ( 26 )). 

 3 1.64.93 ( 0.047)s sq gD     ( 26 ) 

   

Where, qs is the sediment transport rate, m
3
/s/m;             is the relative sediment density in 

which ρs is the density of sediment and ρ is the density of water, kg/m
3
; Ds is the sediment diameter, 

m; g is the acceleration due to gravity, m/s
2
;              is the Shields stress, u is the depth-

averaged velocity (m/s), C is the Chezy’s roughness coefficient ( m
1/2

/s). 
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Sediment transport rate in the channel was very low when sediment diameter of 40 mm, 

corresponding to the mean sediment diameter of the river bed, was used. Channel widening was very 

small due to low sediment mobility. So the sediment diameter was reduced to increase widening rate 

in the model. Sediment diameter of 30 mm and 10 mm were used in different scenarios (Table 4). 

The transverse-bed slope effect on the direction of bed-load transport is modelled using Ikeda [1982] 

formulation modified by van Rijn [1993], which is presented in equation ( 27 ).   
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Where, qs,n is the bed load transport on lateral direction (m3/s/m); αbn is the calibration parameter; θcr 

is the critical Shield’s stress; θ is the Shield’s stress and       is the transverse bed slope. Bed 

topography in the model is sensitive to the transverse bed slope effects on the direction of bed load 

transport [Nicholas et al., 2013; Schuurman et al., 2013]. Nicholas et al. [2013] argue that the general 

evolution trend of the channel bed is less affected by the value of the parameter. αbn equal 1.5 (default 

value in the model) was used in the model setup. 

To accelerate the bed evolution in long-term simulations, Morphological Acceleration Factor (MF) 

equal to 10 was used in the model setup which was chosen based on the sensitivity analysis. 

Bank erosion 

A bank erosion numerical scheme based on angle of repose is used in the model setup. Angle of 

repose is the limiting lateral slope, above which bank failure occurs. The formulation focuses to 

compute the slope along each side of a computational cell. Bank erosion occurs if the slope along any 

of the sides exceeds the angle of repose. The new slope value after bank failure is set equal to the 

angle of repose. The volume of eroded sediment previously stored in the bank and representing the 

excess bank volume when compared to the angle of repose, was computed and multiplied by the 

Morphological-Acceleration-Factor (MF) value to obtain the total volume of sediment associated with 

bank failure. The total volume of failed sediments was then moved to the adjoining cell in the 

downstream direction of the slope [personal communication with Richard Measures, NIWA].  

The angle of repose is generally assumed equal to the frictional angle of the sediment. Li and Millar  

[2011] report the value of 40° for loose gravel banks. In numerical models, bank erosion is controlled 

by the value of angle of repose and size of grid cells. Angle of repose equal to 35.6° was implemented 

in the model which in combination with 1m grid cells allowed continuous widening of channel. The 

choice was based on the results of the sensitivity analysis, which is described in detail in the following 

section.  

5.2.3 Sensitivity analysis 

Sensitivity analyses were performed to assess the effects of MF, grid size and angle of repose on the 

channel evolution. The effects were analyzed in terms of channel width evolution. A model with 

smaller domain was setup to perform simulations at less computational time. 

5.2.4 Analysis of model simulation outcomes 

Evolution of the channel was analysed along the reach within the centre area of domain (half of the 

total domain) at 15 hours (0.625 days) interval. One fourth of the domain each close to the upstream 

and the downstream boundaries were excluded to minimize the boundary effects on channel 
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evolution. The effects of controlling factors on the channel evolution were assessed by analysing 

evolutions of channel width, bed level, water depth and sediment transport rate.     

Channel width 

Channel width has been computed as the width of the wetted part of the channel in a cross-section. 

Widths were computed in channel cross-sections 5m apart. Computed widths were then averaged 

along the reach to obtain a reach averaged channel width. Channel width change was computed by 

subtracting the initial channel width from the reach averaged channel width at any examined time 

step. 

Bed level 

Channel bed has to be distinguished from its banks to compute the changes in the bed level. The 

criteria explained in Chapter 3(section 3.2.3) were used to distinguish between the bed and banks. The 

point with the highest change of the transverse slope along both banks was used as thresholds to 

define channel bed and banks. The part of the cross-section between these points in opposite banks 

was considered as the bed and the rest as banks. The average level of the evolved channel bed was 

computed and subtracted from the initial bed level to obtain the average bed level change in a cross-

section. The average bed level changes in the cross-sections were then averaged along the reach to 

obtain the reach averaged bed level changes. The reach average bed level changes were also plotted 

against the reach averaged change in width to obtain the combined evolution of channel width and 

bed level. 

Water depth 

Water depth in a cross-section was defined as the difference between water surface level and average 

bed level, the water surface being almost horizontal along the transverse direction. Water depths in 

cross-sections were averaged along the reach to obtain the reach averaged water depth. 

Sediment transport rate 

The evolution of total sediment transport rate through a cross-section, at the end of the 3/4
th
 of the 

computational domain, was analysed. The chosen cross-section was the downstream end of the 

domain used to analyze the channel evolution. 

5.2.5 Model scenarios 

The summary of experimental conditions of the explored scenarios is presented in Table 4. Initial 

channel width, discharge and sediment supply regime, and sediment sizes were varied among the 

scenarios. Bed width of initial channels were varied as 20 m (W0), 10 m (W1) and 40 m (W2) to 

study the effects of initial channel width on the channel evolution. Sediment size were varied as 30 

mm (P) and 10 mm (S) to study the evolution of channel with higher and lower sediment mobility. 

Uniform and non-uniform idealized hydrographs (H1 and H2) were used to investigate the effects of 

flow magnitude and of flow unsteadiness on the channel evolution. In the uniform-flow runs, a 

constant discharge of 217 m3/s was used which corresponds to the mean annual flood of River 

Severn. Hydrographs H1 and H2 were designed to explore the effects of the amplitude of non-uniform 

flow regime keeping the same duration of high and low flow stages (Figure 42). Both hydrographs 

during each cycle convey an equal total volume of water to the constant flow, under the same 

duration. Hydrograph H1 had low and high discharge of 163 m3/s and 271 m3/s (+/- 25% of uniform 

flow), respectively. Hydrograph H2 had low and high discharge of 108 m
3
/s and 325 m

3
/s (+/- 50% of 

uniform flow), respectively. Both high and low discharges had duration of 3.75 days. Scenarios were 



CHAPTER 5 

80 

 

explored without upstream supply of sediments and with upstream supply of sediments (*) to 

investigate the effects of sediment supply regime on channel evolution. 

Table 7. List of modelled scenarios and related hydraulic, sediment and geometric characteristics. 

Simulations 

Bed 

Width 
Low flow 

(Non-uniform 

runs) 

Constant 

flow 

(Uniform 

runs) 

High flow 

(Non-uniform 

runs) 

Ds 
Sediment 

feed 
Domain* 

(m) 
Q 

(m3/s) 

T 

(days) 

Q 

(m3/s) 

Q 

(m3/s) 

T 

(days) 
(mm) 

P-W0 20 - - 217   30 No SD 

P-W1 10   217   30 No SD 

P-W2 40   217   30 No SD 

          

P-W0* 20   217   30 Yes SD 

P-W1* 10   217   30 Yes SD 

P-W2* 40   217   30 Yes SD 

          

H1-W0* 20 271 3.75  163 3.75 30 Yes LD 

H2-W0* 10 325 3.75  108 3.75 30 Yes LD 

H2-W2* 40 325 3.75  108 3.75 30 Yes LD 

          

S-W0 20   217   10 No LD 

S-W1 10   217   10 No LD 

S-W2 40   217   10 No LD 

          

S-W0* 20   217   10 Yes LD 

S-W1* 10   217   10 Yes LD 

S-W2* 40   217   10 Yes LD 

*SD = Short domain, LD = Long domain 
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Figure 42. An illustration of the shape of the different flow hydrographs used for the numerical simulations 

5.2.6 Results 

Sensitivity analysis 

Width evolution of the channel in the scenarios without morfac (MF ==1) and MF equal to 10 are 

presented in Figure 43. The simulations with MF equal to 10 resulted in a slightly narrower channel 

compared to the scenario without MF. The trends of width evolution in both scenarios are similar. 

This suggested that the value of MF equal to 10 was a reasonable choice for the modelling study on 

channel evolution allowing a reasonable computational cost. 

Figure 44 shows the width evolution of channels with 1m, 2m and 5m wide grid cells. Simulations in 

all scenarios were carried out with an angle of repose equal to 26.5°. Scenario with the smallest grid 

cells (Δy = 1 m) showed a rather consistent trend in the width evolution. Scenarios with larger grids 

had stages where the bank erosion stopped during the width evolution. The channel width in the 

widest grid (Δy = 5 m) scenario was constant after a brief stage occurring at the beginning of channel 

evolution. The scenario with 2m wide grid cells continued to widen with some intermediate stages 

without bank erosion. The reason behind such difference is that wider grid cells could not represent 

slopes steeper than the critical slope required for bank erosion. So, higher volume of the sediment had 

to be eroded from the channel bed, closer to the banks, to steepen the bank slopes for initiating bank 

erosion. In the scenarios with wider grid cells, the areas close to the banks were represented by few 

cells. Since topography variations of channel bed close to the banks cannot be properly represented by 

coarse grid cells, the flow field was modelled less accurately The banks stopped to widen in the 

coarsest grid case because the flow near the bank was not able to erode sediments from the near bank 

bed cells to cause bank erosion. 
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Figure 43. Effect of the Morphological-Acceleration-Factor coefficient on channel evolution. Channel width 

evolution in scenarios without Morphological-Acceleration-Factor (MF=1) and with MF equal to 10. 

Width evolution of the channel in scenarios with angle of repose equal to 26.5°, 40° and 60° are 

presented in Figure 45. Simulations in all the scenarios were carried out with 1 m wide grid cells. 

Wider channels were obtained for smaller angle of repose scenarios. 

 

Figure 44. Effect of the transverse grid size Δy on simulated channel evolution. Channel width evolution in 

model descretized with 1m, 2m and 5m wide grids. 
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Figure 45. Effect of the angle of repose value chaosen for bank erosion simulations. Channel width evolution in 

scenarios with angle of repose of 26.5°, 40° and 60°. 

Width evolution in scenarios with angle of repose 26.5° and 40° showed a consistent monotone 

behaviour, having similar evolution trend with the latter resulting in a narrower channel. Banks in 

scenario with the highest angle of repose (αr = 60°) did not erode. Grids were too wide to represent the 

bank slope higher than 60° required for bank erosion. 

Sensitivity analyses show that bank erosion formulation based on angle of repose is sensitive to both 

grid cell size and the value of angle of repose.  In this sense, the angle of repose has the role of a 

numerical parameter rather than actually reflecting a physical property of a bank in the reach scale 

modelling of rivers where the sizes of computational grid size of several meters are used. 

Planform development 

Channels in all of the scenarios (Table 4) evolved to straight single thread channels. Scenarios with 

reduced sediment size (10 mm) resulted in wider channels. Channel width also varied along the reach 

always with upstream part of the reach narrower than the downstream part. Channel bed in the 

upstream part of the reach was plain but migrating alternate bars were observed along the downstream 

part of the reach. Scenarios with larger sediment diameter (30 mm) resulted in plain channel bed 

throughout the evolution except for scenarios with H-2 discharge hydrograph where migrating 

alternate bars were observed during the low flow stage.  

The channel evolution in different scenarios starting from initial channel with 20 m bottom width is 

presented in Figure 46 as an example of planform evolution in the model. Scenarios starting from 

other initial channel widths resulted in similar qualitative planform. Changes in morphological 

features like channel width, depth, bed level and sediment transport rate during channel evolution in 

individual scenarios are described in the following sections.   
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Initial channel 

  

 

P-W0 after 255 days of evolution 

  

 

P-W0* after 464 days of evolution 

  

 

H1-W0* after 255 days of evolution 

  

 

S-W0 after 70 days of evolution 

  

 

S-W0* after 94 days of evolution 

 

 
 

    

Figure 46. Two-dimensional plot of the simulated channel bed level computed after removing longitudinal slope 

in scenarios starting from 20 m wide initial channel. “P” runs have coarser sediment compared to “S” runs. The 

asterisk denotes the presence of upstream sediment supply, assumed to be at capacity with the local conditions 

in the inlet section.  

250 m 
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Width evolution 

Width evolution of channels starting from different initial channel width at uniform flow and without 

sediment supply is presented in Figure 47. Scenarios with narrower initial width (P-W0 and P-W1) 

rapidly widened during the early stage but narrowed at slower rate during the later stage of 

development. Both scenarios resulted in similar channel widths. Scenario starting from the widest 

initial channel width (P-W2) narrowed after 30 days of development. Channel beds in all of the 

scenarios were flat so the channel bed throughout the cross-section needs to be eroded to reduce 

channel width. Since P-W2 started from the widest channel, more amount of sediment needs to be 

eroded from its channel bed to result in similar width as in scenarios P-W1 and P-W2. P-W2 had 

smallest flow velocities so it had the lowest bed erosion rate which restrict its narrowing rate resulting 

in the widest channel among the scenarios. 

 

Figure 47. Channel width evolution in scenarios P-W0, P-W1 and P-W2. Uniform flow without upstream 

sediment supply. 

Figure 48 shows the width evolution of channels starting from different initial width, uniform flow 

and with upstream sediment supply. The channels are wider than their counterparts without sediment 

supply. Scenarios starting from the narrower initial channel width (P-W0* and P-W1*) widened 

rapidly during the early stage of development (15 days) and continued to widen at a slower rate. P-

W2* scenario did not widen and maintained its initial channel width. Scenario P-W0* resulted in the 

width similar to P-W2* scenario after 50 days of the evolution and continued to widen. Channel in 

P1-W1* scenario evolved by widening but resulted in narrower channel width than P-W0* and P-

W2* scenarios. 

Evolution of channels starting from different initial channel width, at non-uniform flow regimes with 

sediment supply is presented in Figure 49. Scenarios H1-W0* and H2-W0* start from same initial 

channel width but differ in flow regime. Scenario H2-W0* which had higher amplitude of flow 

variation than H1-W0* scenario resulted in wider channel. Scenario H2-W0* and H2-W2* were 

supplied with same discharge regime but started from different initial channel widths. Despite starting 

from narrower initial channel, H2-W0* scenarios result in wider channel than H2-W2* scenario at the 

later stage of the development. The widening and narrowing due to spreading and shrinking of the 
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water surface between the high and the low stage discharges was evident throughout the width 

evolution. 

             

 

Figure 48. Channel width evolution in scenarios P-W0*, P-W1* and P-W2*. Uniform flow without upstream 

sediment supply. 

 

 

Figure 49. Channel width evolution in scenarios H1-W0*, H2-W0* and H2-W2*. Non-uniform flow regime 

with upstream sediment supply. 
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Figure 50. Channel width evolution in scenarios S-W1, S-W0 and S-W2. Uniform flow without upstream 

sediment supply. 

 

Figure 51. Channel width evolution in scenarios S-W1*, S-W0* and S-W2*. Uniform flow with upstream 

sediment supply. 

Sediment size was reduced to 10 mm to investigate width evolution in a channel with higher widening 

rate. Earlier investigations were carried out with sediment diameter of 30 mm. The width evolutions 

in scenarios starting from different initial channel width, uniform flow at different sediment supply 

regime were analyzed. Width evolutions of channels starting from same initial width were similar in 

both sediment supply and without sediment supply regime (Figure 50 and Figure 51). This is because 

the higher rate of widening of the reach closer to the upstream boundary supplied sediment to the 

downstream reach preventing the incision. The effects of lack of sediment supply may become 
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prominent in the channel evolution at much longer time when the incision starts near the upstream 

boundary and advances further downstream.  All scenarios widened rapidly during the early stage of 

the development and continued to widen at different rates. Scenarios with narrowest width (W1) 

resulted in the widest channel and continued to widen at highest rate. Scenario starting from the 

widest initial channel width resulted in the narrowest channel. 

Channel width and bed level evolution 

Bed level of the channel evolves simultaneously with its width. Change in channel width (ΔW) 

“relative width” is plotted against the change in bed level (Δη) “relative bed level” to analyze the 

combined evolution of channel width and bed. Positive and negative value of ΔW denote channel 

widening and narrowing, respectively. Positive and negative values of Δη signify bed aggradation and 

erosion, respectively. Evolution of relative channel width and bed level in scenarios starting from 

different inital channel width at uniform flow without sediment supply is presented in Figure 52. 

Scenarios starting from narrower initial width (P-W0 and P-W1) widen and aggraded during the early 

stage of the development. Both P-W0 and P-W1 scenarios resulted in similar channel widths. 

Scenario P-W1 widened and aggraded the most because it started from the narrowest initial width. 

Both scenarios show incision and narrowing trend during the later stage of the development. P-W2 

scenario which started from the widest initial channel showed a brief aggradation during the early 

stage of development and continued to incise. Change in width was negligible until the channel 

incised by 0.5 m after which the channel started to narrow. 

 

Figure 52. Relative changes in channel width and bed level during the channel evolution in scenarios P-W0, P-

W1 and P-W2. Uniform flow without upstream sediment supply. 

Figure 53 shows the relative channel width and bed evolution for scenarios starting from different 

initial widths at uniform flow with sediment supply. Scenarios P-W0* and P-W1* which started from 

narrower initial channel rapidly widened and aggraded during the early stage of the development. 

Aggradation rate was higher in P-W1* scenario. Bed aggradation rate decreased during the later stage 

of the development where the channel evolved mostly by widening. Scenario starting from the widest 

initial width (P-W2*) showed little bed aggradation even though it maintained its initial channel width 

throughout the development. 
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Relative width and bed level evolution of channels starting from different initial channel width, at 

non-uniform flow regimes with sediment supply is presented in Figure 54. Scenarios H1-W0* and 

H2-W0* start from same initial channel width but were supplied with non-uniform flow with different 

amplitude of discharge variations.  Scenario with higher amplitude of flow variation (H2-W0*) 

resulted in wider and aggraded channel. Both high and low discharges widened and aggraded channel 

during the early stage of the development. The effect of the high and the low flow stage was evident 

during the later stage of the channel evolution. Channel width increased and bed level decreased 

during the rising limb of discharge hydrograph and channel width decreased but bed level increased 

during the falling limb of the discharge hydrograph. This resulted in a hysteresis characteristic of the 

relative channel width and bed evolution. The area of the hysteresis loop decreased during the later 

stage of the development. 

Scenarios H2-W0* and H2-W2* were supplied with similar discharge hydrograph but start from 

different initial channel widths. Scenario starting from narrower initial channel width (H2-W0*) 

resulted in aggraded channel which is attributed to the higher width change. H2-W2* scenario, which 

started from the wider initial channel, showed irregular patterns without a clear hysteresis 

characteristics during the evolution. 

The scenarios starting from different initial channel width at uniform flow are compared among the 

cases with smaller sediment diameter (S scenarios) and cases with the bigger sediment diameter (P 

scenarios). The cases with reduced sediment diameter all resulted in wider and aggraded channel 

compared to respective scenarios in the case with the bigger sediment diameter. In the case with 

smaller sediment size, the evolution trend of relative width and channel bed level were not affected by 

the sediment supply regime (Figure 55 and Figure 56). Scenario starting from the narrowest initial 

channel resulted in most widening and aggradation. Least widening and aggradation was observed in 

the scenario starting from the widest initial channel.    

    

Figure 53. Relative changes in channel width and bed level during the channel evolution in scenarios P-W0*, P-

W1* and P-W2*. Uniform flow with upstream sediment supply. The circled portion highlights the results in P-

W2* scenario. 
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Figure 54. Relative changes in channel width and bed level during the channel evolution in scenarios H1-W0*, 

H2-W1* and H2-W2*. Non-uniform flow with upstream sediment supply. 

 

 

Figure 55. Relative changes in channel width and bed level during the channel evolution in scenarios a) S-W0, 

S-W1 and S-W2. Uniform flow without upstream sediment supply. 
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Figure 56. Relative changes in channel width and bed level during the channel evolution in scenarios a) S-W0*, 

S-W1* and S-W2*. Uniform flow with upstream sediment supply. 

Depth evolution 

Water depth evolution in the scenarios starting from different initial channel width at uniform flow 

without sediment supply is presented in Figure 57. Scenarios starting from narrower initial channel 

width (P-W0 and P-W1) which evolved to similar channel width also resulted in similar water depth. 

The decrease in water depth during the early stage of development is attributed to the widening of the 

channel. The water depth then gradually started to increase due to channel incision. Channel bed 

incised without changing its width during the early stage development in P-W2 scenario which caused 

increase in water depth. The rate of increase in water depth changed when the channel started to 

narrow. P-W2 scenario had wider channel so it resulted in shallower channels compared to P-W0 and 

P-W1 scenarios. 

Figure 58 shows water depth evolution in the scenarios starting from different initial channel width 

without sediment supply. Scenarios P-W0* and P-W1* rapidly widened and aggraded during the early 

stage of the development which resulted in a rapid decrease of the water depth. Water depth was 

almost constant during the later stage of the development. Water depth in P-W2* scenario did not 

change because the channel did not change its width throughout the development. Scenarios P-W0* 

and P-W2* resulted in similar water depth because they evolved to similar channel width at the later 

stage of the development. Channel was narrower in P-W1# scenario which resulted in higher water 

depth. 

Water depth evolution in scenarios starting from different initial channel width at non-uniform flow 

with sediment supply is presented in Figure 59. The variation in water depth due to discharge 

variation wass observed throughout the development. Scenario H1-W0* resulted in highest water 

depth because it evolved to the narrowest channel. Scenarios H2-W0* evolved to wider channel 

which resulted in slightly lower water depth compared to H2-W2* scenario. 

Water depth evolution in smaller sediment size case for scenarios starting from same initial channel 

were similar in both sediment supply and the without supply regime (Figure 60 and Figure 61). Water 
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depth decreased during the initial stage of the development because of rapid widening and 

aggradation of the channel. Water depth continued to decrease during the later stage of the 

development. Scenario S-W2 evolved to narrowest channel so it resulted in the highest water depth. 

Scenarios S-W0 and S-W1 resulted in similar water depth despite evolving into channels with 

different widths.   

 

Figure 57. Water depth evolution in scenarios P-W1, P-W0 and P-W2. Uniform flow without upstream sediment 

supply. 

 

Figure 58. Water depth evolution in scenarios P-W1*, P-W0* and P-W2*. Uniform flow without upstream 

sediment supply. 
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Figure 59. Water depth evolution in scenarios H1-W0*, H2-W0* and H2-W2*. Non-uniform flow with 

upstream sediment supply. 

 

 

Figure 60. Water depth evolution in scenarios S-W0, S-W1 and S-W2. Uniform flow without upstream sediment 

supply. 
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Figure 61. Water depth evolution in scenarios S-W0*, S-W1* and S-W2*. Uniform flow with upstream 

sediment supply. 

Sediment transport rate evolution 

Sediment transport rate exiting the reach for the scenarios starting from different initial channel 

widths at uniform flow without sediment supply is presented in Figure 62. High sediment transport 

rate occurred during the early stage of the development in scenarios P-W0 and P-W1 because they 

widened rapidly during this stage. Highest widening rate was observed in P-W1 scenario which 

resulted in the highest sediment transport rate. Bank erosion did not occur in scenario P-W2 so the 

sediment transport rate exiting the reach is entirely contributed by the bed incision. Since no sediment 

was supplied from the upstream boundary, sediment transport rate in all the scenarios approaches to 

zero at the later stage of the development. 

Figure 63 shows the sediment transport exiting the reach for the scenarios starting with different 

initial channel widths at uniform flow with sediment supply. Scenario P-W0* evolved to the widest 

channel and also resulted in the highest sediment transport rate. Scenarios P-W1* and P-W2* resulted 

in similar sediment transport at the later stage of the development despite evolving into channels with 

different  widths and water depths. Channel width and depths were similar in P-W0* and P-W2* 

scenarios but they result in different sediment transport rate. Rapid widening of channels during early 

stage of evolution resulted in higher sediment transport rate in scenarios P-W0* and P-W1*. Sediment 

transport rate increased in scenario P-W2* even though its width remained constant throughout the 

development. 

Sediment transport exiting the reach for the scenarios starting with different initial channel widths at 

non-uniform flow with sediment supply is presented in Figure 64. Scenario with higher discharge 

amplitude (H2-W0* and H2-W2*) resulted in higher and lower sediment transport rate at high and 

low flow respectively compared to the scenario with lower discharge amplitude (H1-W0*). Negligible 

sediment transport rate was observed during the lower discharge stage in scenario H2-W2* indicate 

the channel evolution is entirely contributed by the high stage discharge.  
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Sediment transport exiting the reach in smaller sediment size case for the scenarios starting with 

different initial channel with sediment supply and without sediment supply are presented in Figure 65 

and Figure 66, respectively. Higher sediment transport rate were observed during early stage 

development in the scenarios starting from narrower initial channel widths (W0 and W1). Scenario 

SW0 showed higher sediment transport rate compared to SW1 scenario. Sediment transport rate were 

similar in scenarios SW0* and SW1*. Scenarios starting from widest initial channel showed lowest 

sediment transport rate in the early stage of the development but resulted in the highest sediment 

transport rate at the later stage of the development. 

 

Figure 62. Sediment transport rate exiting the reach in scenarios P-W1, P-W0 and P-W2. Uniform flow without 

upstream sediment supply. 

 

Figure 63. Sediment transport rate exiting the reach in scenarios P-W1*, P-W0* and P-W2*. Uniform flow with 

upstream sediment supply. 
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Figure 64. Sediment transport rate exiting the reach in scenarios H1-W0*, H2-W0* and H2-W2*. Non-uniform 

flow with upstream sediment supply. 

 

Figure 65. Sediment transport rate exiting the reach in scenarios S-W0, S-W1 and S-W2. Uniform flow without 

upstream sediment supply. 
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Figure 66. Sediment transport rate exiting the reach in scenarios S-W0*, S-W1* and S-W2*. Uniform flow with 

upstream sediment supply. 

5.3 Summary of the results 
The effects of controlling factors: Initial channel width, discharge and sediment regime, were 

investigated using numerical model and analytical model. Numerical model was used to simulated 

channel evolution of a gravel bed river at the field scale. The simulations were carried at scenarios 

similar to those explored in the experiments reported in Chpater-3. Analytical model was used to 

compute the channel evolution using the experimental data. The results from the investigations can be 

summarized in the following sections. 

Effects of initial channel width 

Results from the numerical model show that the long-term evolution of channel width in scenarios 

with uniform flow without sediment supply is less affected by the initial channel width. Channels 

starting from narrower initial width resulted in similar widths and water depth. Channel starting from 

widest initial channel however still resulted in wider channels compared to the channels starting from 

narrower initial channels. The bed levels of the channels starting from narrower channels were higher 

than those of the channels starting from wider initial channels. 

Width evolution of channels in scenarios with uniform flow and sediment supply did not show clear 

relation with the initial channel width. The channel starting from the narrowest initial channel resulted 

in narrowest width and most aggraded bed levels with low sediment transport rate. Lower sediment 

transport rate in the channel despite being narrowest and most aggraded bed suggest the channel 

evolution is affected by the downstream boundary. A constant water level corresponding to the 

normal water depth at initial conditions in the channel is prescribed at the downstream boundary. 

Channel starting from narrowest initial width would have the highest water level for a same discharge. 

The narrowest channel also evolves rapidly to the largest width during the initial stage of the 

development resulting in rapid lowering of the water level in the channel. However the water level at 

the downstream boundary is fixed and very high compared to the water level in the evolved channel 

creating back water curve in a reach close to the downstream boundary. Since the domain used in this 
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scenario was short (1000 m) the back water curve propagated further upstream affecting the evolution 

of the channel.    

Long-term channel evolutions in scenarios with higher sediment mobility at uniform flow were 

affected by the initial channel width. These simulations were carried out using longer domain (2000 

m) to avoid boundary effects. Channels starting from narrow initial channel resulted in wider and 

more aggraded channels compared to the channels starting from wider channels. Higher rate of 

channel widening resulted in higher sediment transport rates in the narrower channels during the early 

stage of the development. The sediment transport rates were higher in the channels starting from 

wider initial channel after the long-term development. 

Channels evolving at non-uniform flow with sediment supply were also showed that the channels 

starting from narrower initial width result in wider and more aggraded channels.  

Effects of discharge regimes 

Results from both numerical model show that the long-term width evolution is different for different 

discharge regimes. Channels evolving with higher amplitude discharge variations result in wider and 

more aggraded channels. Channel widening occurred mostly during the higher flow stage. 

Effects of sediment supply regime 

Sediment supply regime affected the channel evolution simulated in a shorter domain with lower 

sediment mobility. In scenarios without sediment supply, the channel incision at the upstream 

boundary, due to lack of sediment supply, propagated downstream resulting in incised and narrow 

channels. Channels evolving in the scenarios with sediment supply were wider compared to the 

channels in without sediment supply scenario. 

The channels evolving in a longer domain with higher sediment mobility were less affected by the 

sediment supply regime. Evolutions of channel width and bed level were similar in sediment supply 

and without sediment supply scenarios. The sediment transport rate in the channel was observed lower 

in the without sediment supply scenario. Higher sediment mobility resulted in higher bank erosion 

which supplied more sediments into the channel. The widening and incision in the reach of the 

channel close to the upstream boundary, which is excluded from the analysis, supplied the sediment to 

more downstream reach preventing them from incision. The effect of lack of sediment supply might 

be evident in the channel evolution at much longer time scales when the channel bed incision 

occurring close to the upstream boundary progresses into a longer reach downstream. 
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6 RIVER BED TOPOGRAPHY ADAPTATIONS TO SMALL AMPLITUDE 

WIDTH VARIATIONS  

6.1 Introduction 
Previous chapters (3 and 4) investigate the evolution of the river channel width under different 

controlling factors, such as flow and sediment supply regime viewed as upstream boundary 

conditions, as well as of an initially imposed channel width viewed as an initial condition, using 

experimental, numerical and analytical approaches. The channel adjustment was a result of 

interactions between the evolutions of channel width, slope, depth and bed topography at the river 

reach scale. The variation of width along the channel and in time was strongly interacting with the 

topographic evolution. 

Under the unifying topic of the key role of channel width, this chapter explores the response of the 

riverbed to an imposed small-amplitude, irregular width variability in space using a fully non-linear 

numerical morphodynamic model. The analysis aims to address two inter-related research gaps. The 

first is the reproducibility of alternate bars observed in laboratory flume experiments on straight 

channels through numerical morphodynamic models. The second is about the required amplitude of 

planform forcing to actually condition the dynamics of the resulting “hybrid” bars that reflect a mixed 

behavior between free and forced bars. The link between the two issues is related to the nature itself 

of the planform forcing consisting of small-amplitude width variations: is it possible to quantify a 

lower threshold amplitude below which the forcing effect is negligible, i.e. it does not represent a 

planform forcing anymore? Is such effect actually relevant in reproducing laboratory experiments on 

river bars? And what is its specific role? 

 The numerical model was setup using data of laboratory experiments. The emphasis of the 

investigation is on small-scale spatial width variations which has been suggested from an unexpected 

mismatch between the properties of alternate bars observed in the laboratory experiments and those 

reproduced in the numerical model. Small width variations, at the scale of cross-sectional averaged 

water depth, are imposed along one of the banks but keeping the reach averaged width and slope 

constant. The analysis reveals the unexpected role of apparently small spatial irregular oscillation of 

the channel width and to interpret such role into the conceptual framework of the free and forced 

morphodynamic response of the channel. 

6.2 Methodology 

6.2.1 Model description 

Delft3D (open source version - 3.28.50.01) was used for the investigation. Delft3D is a fully nonlinear 

numerical model that includes a bed evolution component and a flow field component that are “semi 

coupled”. The flow field is implemented by solving the unsteady shallow-water equations with 

hydrostatic approximation in two dimensions. The bed evolution component is implemented by 

solving sediment transport equations and Exner’s sediment balance equations [Lesser et al., 2004]. In 

semi-coupled approaches, the sediment transport equation and flow-field equations are solved 

separately assuming that the bed level changes occurring at a small computational time steps is small 

and does not affect the flow [Kassem and Chaudhry, 1998]. The choice of the model was based on the 

comparison between a fully coupled (GIAMT-2D) and semi-coupled model (Delft3D). Such 

comparison has been developed because of the hydraulic conditions of the target laboratory 

experiments, which fall very close to the super critical range. Under such conditions, semi-coupled 
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models often develop numerical errors that may be large enough to mask the physical solution. The 

comparison was made by investigating the ability of both models to reproduce the alternate bars 

observed in the experiments of Garcia Lugo et al., [2015].  The comparison between the models show 

that Delft3D is capable to reproduce the alternate bars similar to GIAMT-2D, despite the semi-

coupled nature of the model, which may lead to numerical errors close to Froude-critical conditions. 

More details about such comparison between GIAMT-2D and Delft3D models are presented in 

Appendix B. 

Delft3D has been used to investigate bars in alluvial channels in wide range of scales, from laboratory 

experiments to real rivers [Crosato and Saleh, 2011; Crosato et al., 2011; Schuurman et al., 2012; 

Verbruggen, 2012] though most often far from the Froude-critical range. The description of the model 

is provided is Appendix B. 

6.2.2 Model setup 

Experiments 

The model was setup in Delft3D code using data of the Garcia Lugo et al., [2015] experiments. This 

allowed a choice of realistic values of the model parameters and to compare between the topography 

evolved in numerical models and in the experiments. Experiment Run# 11 of Garcia Lugo et al. 

[2015] was chosen to investigate the effects of small width variations on the evolution of alternate 

bars. The experiment carried out in 0.4 m wide channel with longitudinal slope of 1% and discharge 

of 2 l/s was selected for the investigation. Alternate bars were observed in the experiment at 4 hours 

of development. The width along the channels had small variations, up to 4% of the reach averaged 

channel width, due to the bulging of the plastic material used to construct non-erodible banks (Figure 

67). The evolved channel bed was measured within a 15 m long reach at the centre of the flume. The 

measurements were carried out at two instances of time 16 minutes apart at the end of the 

experiments. The sediment transport rate at the downstream end of the flume was continuously 

recorded during the entire duration of the experiments. The spatial extensions of the dry areas were 

measured along the channel before the experiments were stopped for bed level measurements. 

Three more experiments were chosen to study effects of small width variations on bed topography at 

different flow width-to-depth ratio. The experimental conditions of the simulated runs are summarized 

in Table 8. In Table 8 Run# refers to the Run ID of Garcia Lugo et al. [2015]; W is the width of the 

channel, m; Q is the discharge, l/s; H is the average flow depth, m; Ds is the sediment diameter, mm; S 

is the longitudinal bed slope; β denotes the flow width to depth ratio in the channel; βcr denotes the 

critical value of the flow width to depth ratio required for the instability of free bars. The value of 

critical width-to-depth ratio is computed for the experimental conditions using the analytical linear bar 

theory of Colombini et al. [1987]. βcr corresponds to twice the value of the computed critical width-

to-depth ratio. More details about the experiments can be found in Garcia Lugo et al. [2015]. 

Table 8- Details of the experiments used for investigations by numerical model 

Run #  
W Q H Ds S β β/βcr 

Bed form 
(m) (l/s) (m) (mm) (-) (-) (-) 

3 0.15 2.5 0.028 1 0.01 5.4 0.5 No bars 

7 0.3 1.5 0.013 1 0.01 23.1 3 Alternate 

bar 

9 0.3 2.5 0.023 1 0.01 13 2 Alternate 

bar 

11 0.4 2 0.013 1 0.01 30.8 5 Alternate 

bar 
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Figure 67. Image showing the alternate bars formed in the experiment and close up view illustrating the width 

variations near the banks. 

Model domain and grid size 

A 35 m long rectangular domain with 1% longitudinal slope and fixed banks were setup. A longer 

computational domain compared to the experimental flume is adapted to minimize the effects of 

errors propagating from the boundaries on a 15 long reach at the centre of the flume. Domains having 

0.4 m, 0.3 m and 0.15 m width were used for the investigations. A random perturbation of 0.1% of 

sediment size (1mm) was imposed in the initial bed topography to trigger the development of bars. 

The computational domain was spatially discretized using rectangular grid cells. Schuurman and 

Kleinhans [2011] show that the reach averaged bar characteristics, in numerical simulations of 

braided rivers, are largely independent of grid sizes. Shapes of bars were better obtained using finer 

grids, which however required much higher computational time. Computation grids 0.02 m wide in 

lateral direction and 0.05 m long in longitudinal directions were used. In the 0.4 m wide channel case, 

the computational domain would have 20 grid cells in the lateral direction, resulting in a 

representation of bars with reasonable spatial resolution while optimizing the computational time. 

Computation grids with the same cell dimensions were used to discretize 0.3 m and 0.15 m wide 

domains. 

Small amplitude width variations measured along the bank lines in the experiments and a set of 

idealised width variations of prescribed dimension were implemented along the bank lines. Few grid 

cells close to each bank were locally added to further refine the grid to 0.005m in the lateral direction. 

Grid refinement below 0.005m was not possible because of the high computational cost and the 

numerical stability requirement of the model. Such local refinement allowed implementing smaller 

amplitude width variations along the banks. The new bank lines defined the extent of the 

computational domain in the lateral directions. The computational time step was chosen as 0.06 

seconds, which ensured the stability in the model. 
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Boundary conditions 

Discharge was prescribed along every cell at the upstream boundary.  Discharge was varied in time 

and among each cell by adding random perturbations between -1% and 1% of the uniform discharge. 

Sediment transport rate in equilibrium with the local hydraulic conditions were imposed at the 

upstream boundary. A constant water level corresponding to normal water depth was prescribed at the 

downstream boundary. A no slip boundary condition was used along the lateral boundary of the 

domain. The partial-slip boundary condition in Delft3D is implemented in an explicit way which 

would require very small computational time step for the stability of the numerical model. This would 

largely increase the computational time of the model.  

Hydrodynamic modelling 

The hydrodynamic modelling in Delft3D solves continuity and horizontal momentum equations of 

water flow and a turbulence closure model. It requires choice of appropriate bed roughness, 

turbulence parameters and parameterization of spiral flow. Manning’s roughness formulation with 

roughness coefficient equal to 0.014 m
1/3

/s was used in the model. The equivalent Chezy’s roughness 

is computed by the model as C = (h
1/6

)/n , where C is the Chezy’s roughness coefficient, h is the local 

water depth (m) and n is the Manning’s roughness coefficient. Manning’s roughness formulation 

allowed having depth dependent roughness, where deeper channels have low roughness and shallow 

channels have higher roughness. Information on flow depth and velocity were not available from the 

experiments to calibrate the roughness coefficient in the model. The measured extents of dry areas in 

the experiments were used to choose reasonable values of the Manning’s roughness. A fixed bed 

hydrodynamic model was carried out on a bed topography obtained from the experiment. Manning’s 

roughness coefficient was varied to reproduce the extent of measured dry areas. The coefficient which 

reproduced most extent of the dry areas was chosen. The details on the choice of roughness parameter 

are presented in Appendix B. 

The diffusion due to turbulence was modelled by prescribing coefficient of horizontal eddy viscosity 

[Lesser et al., 2004]. Horizontal eddy viscosity largely depends upon the grid size and the flow 

condition being modelled. Verbruggen [2012] used the value of 0.01 m
2
/s to model alternate bars in 

the laboratory scale. Their choice was based upon the value which ensured stability in the model 

although they argue that the realistic value is two orders of magnitude less than the chosen value. The 

value of 0.001 m
2
/s was used in model setup which ensured computational stability within the model. 

Spiral flow produced by local streamline curvature plays an important role in modelling the realistic 

equilibrium shapes of alternate bars [Nelson, 1990]. The effect of spiral flow in Delft3D is 

implemented to correct the direction of the bed shear stress with respect to the direction of the depth 

averaged velocity as shown in equation ( 28 ). The intensity of the spiral flow motion is computed 

based upon the stream line curvatures as shown in equation ( 29 ).  
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Where, ατ is the corrected angle of bed shear stress with respect to the direction of depth averaged 

velocity; u and v are the depth averaged velocity in stream wise (x) and transverse (y) direction 

respectively, m/s; κ is the Von Karman’s constant; Espir is the calibration parameter weighing the 
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intensity of spiral flow motion; g is the acceleration due to gravity, m/s
2
; C is the dimensional Chezy’s 

roughness coefficient, m
1/2

/s. 

The value of Espir was chosen as 0.5 based upon previous numerical modeling studies of laboratory 

experiments [Verbruggen, 2012].   

Sediment transport modelling 

Sediment transport modelling directly affects the bed evolution through the Exner sediment balance 

equation. Here the temporal bed evolution depends on the horizontal divergence of the sediment 

transport rate vector. The later is modelled in terms of its intensity and of its direction with respect to 

the depth-averaged flow field. Uniform sediment size of 1 mm was used in the modelling. The 

sediment transport in the experiments was bed- load dominated because of the relatively low shields 

stress conditions (0.072 – 0.16). A Meyer-Peter and Muller [1948] type bed load formula was used to 

model sediment transport. Such general form of Meyer-Peter and Muller bed load transport formula is 

presented in equation ( 25 ). 

 3 ( )b

s s crq a gD      ( 30 ) 

   

where, qs is the sediment transport per unit width, m
3
/s/m;            is the relative sediment 

density,    is the density of sediment, kg/m
3
, and   is the density of water, kg/m

3
; Ds is the sediment 

diameter, m;              is the Shields stress, u is the module of the depth-averaged velocity 

vector, m/s, C is the dimensional Chezy’s roughness coefficient, m
1/2

/s; θcr is the threshold Shields 

stress for sediment motion (widely used as 0.047); a and b denote coefficients that can be calibrated to 

match the sediment transport rate observed in a specific situation. The classical Meyer-Peter and 

Muller bed load formula uses the values of coefficient a, θcr and b as 8, 0.047 and 3 respectively.  

Meyer-Peter and Muller bed load formula has been successively modified [Hunziker and Jaeggi, 

2002; Wong and Parker, 2006; Huang, 2010], with different modifications suggest different values of 

the above coefficients. In the model, the values of coefficient θcr and c were adopted as 0.047 and 3.2 

[Wong and Parker, 2006] respectively and the coefficient a was varied to achieve the best matching 

between the reach progressive averaged sediment transport predicted by the model close with the one 

observed in the experiments. The results of sediment transport modelling are presented in section 6.3.   

Direction of the bed load particles being transported along a sloping bed is affected by the influence 

of the gravity which acts according to the sloping bed surface [Ikeda, 1982]. The local bed slope 

effect plays an important role in modelling topography of the channel bed. Higher bed slope effect 

would direct more sediment particles along sloping bed, downwards to the channel, and lower bed 

slope effect would result in deviating less sediment particles to the channels. Consistently, higher 

transverse bed slope effects result in smoother bed topography with low amplitude bars [Defina, 2003; 

Bernini et al., 2006; Nicholas, 2010]. Schuurman et al. [2013] show that modelling channel without 

transverse bed slope effects yields bed topographies with unrealistic pattern of bars having very steep 

side slopes. The transverse bed slope effects on the sediment transport direction were used to adjust 

the amplitude of the bed topography in the numerical model to match with the one observed in the 

experiments.  

The transverse-bed slope effect on the direction of bed-load transport is modelled using Ikeda [1982] 

formulation modified by van Rijn [1993], which is presented in equation ( 27 ).   
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Where, qs,n is the unit bed load transport component in the lateral direction (m3/s/m); αbn is a 

calibration parameter; θcr is the critical Shield’s stress; θ is the Shield’s stress and       is the 

transverse bed slope. Increasing the value of the αbn coefficient corresponds to increase the transverse 

bed slope effect on the direction of bed load transport.  The αbn coefficient in the van Rijn [1993] is 

equivalent to        in the Ikeda [1982] formulation. 

6.2.3 Data analysis methods 

To assess the effects of small amplitude width variations on the channel bed development, the 

evolution of the following features were analysed. 

Sediment transport 

The reach averaged sediment transport rates observed during the numerical evolution of channel bed 

were compared with those observed in the experiments. It cannot be expected that the modelled 

sediment transport rate time series could be entirely compared with that observed in the experiments. 

Realistically, a closer correspondence can be aimed at between ensemble metrics, rather than 

instantaneous values of the sediment transport time series. For this reason, a progressive average 

(herein after “PA”) of the sediment transport rate was compared between the numerical model and 

experiment. The PA sediment transport over a period T was calculated using equation ( 32 ). 
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Where, qs(T) is the progressive averaged sediment transport rate, m
3
/s, over the period T; qs(t) denotes 

the instantaneous value of the sediment transport rate, m3/s, which varies in time. 

Analysis of the progressive averaged sediment transport time series allowed determining if the 

duration of the experiment and of the simulations were long enough to make an estimate of the 

average sediment transport rate characterizing each run. The choice of appropriate value of 

coefficients “a” in the sediment transport formula (equation 3) was also based upon the PA sediment 

transport rate comparison between the model and the experiment.  

Bed topography statistics 

The statistical distribution of the bed level was characterised by hypsometric curves. Hypsometric 

curves are the plot of bed level versus the bed surface area exceeding that value of the bed level. The 

spatial distribution of the bed level, obtained after removing the reach averaged longitudinal channel 

bed slope (detrended bed level) was used to compute the hypsometric curves. The areas with higher 

bed level corresponds to the bars (deposition surface) lumped together and the lower level areas 

denote the channels are lumped together. The bars are separated from channels by bed level close to 

zero. Hypsometric curves are commonly used to characterise the morphodynamic developments in 

tidal systems [e.g. Marciano et al., 2005; Wang et al., 2002]. One of the few cases of their use to 

characterize fluvial bed topography is reported by Bertoldi et al., [2013].  

Harmonic analysis of the bed topography 

To assess the effects of amplitude of width variations on bed topography, width was varied at a 

desired amplitude and wavelength along left bank of the domain. To detect the bar wavelength, a 

longitudinal section of the channel was obtained close to the banks where the width variations have 
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been imposed. The reach-averaged channel bed slope was subtracted from such longitudinal bed 

profile. Harmonic analysis was carried out by performing Fast Fourier Transform (FFT) on the 

longitudinal section. The amplitude and wavelength of the three most dominating Fourier harmonics 

were analysed. 

Wave length of bars can be one of the criteria to distinguish between the alternate bars resulting from 

free instability and those resulting from some external forcing. Alternate bars formed by free 

instability are mostly migrating, except at the resonance conditions where they are theoretically 

steady. Alternate bars as the result of forced instability are steady. In straight channels, forced 

alternate bars are also part of the intrinsic response of the system, but they are triggered by a local 

persistent perturbation of the channel geometry that acts as a forcing term in the longitudinal 

boundary conditions. Their amplitude in space can be growing (amplifying), decreasing (damping) 

and constant [Mosselman et al., 2006]. The migrating bars in general are shorter than the steady bars. 

So, forced alternate bars are in general longer than the free alternate bars [Blondeaux and Seminara, 

1985; Lanzoni, 2000a]. 

A non dimensional bar wave-length (Lb) was computed as the ratio between the wave-length (Lb*) 

and width of the channel (Wb). Similarly a non dimensional amplitude (Ab) was computed as the ratio 

between the bar amplitude (Ab*) and depth of the channel. Relative wave-length (Lb,r) and amplitude 

(Ab,r) were also computed as the ratio of the wave-length and amplitude respectively between the 

width variation cases and without width variation case. Factors F = Lb x Ab and Fr = Lb,r x Ab,r were 

computed to assess the effect of width variations on the channel bed topography. 

6.2.4 Design of the numerical runs 

The scenarios are named broadly based on the width of the channel and the type of width variations 

used along the banks (Figure 68).  

Scenario Channel configuration 

S 

(“Straight”) 

 

SW 

(“Small width variations”) 

 

HW 

(“High width variations”) 

 

Figure 68. Channel configurations corresponding to different scenarios. 

Scenarios S represent test cases in channels without width variations. Scenario Scenarios SW 

represent test cases with relatively small width variations along the left bank, having an amplitude of 

2.5 mm. Scenarios  HW were carried out by implementing varying width with an amplitude of 1cm 

along the left bank. The width was varied in the form of rectangular wave with 2 m wavelength. 

Suffixes 1, 2 and 3 in each scenario represent the channel width of 0.4, 0.3 and 0.15 m respectively. 

Scenarios with suffix 2’ were also carried out in 0.3 m wide channel but at lower width to depth ratio 

(higher discharge) compared to scenarios with suffix 2. Scenario S1I was simulated using 

2 m Reach averaged width 

(Table 9) 

2 m 

5 mm 

2 cm 
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experimental conditions of S1 scenario after implementing measured width variations along the 

banks. Scenario S1G and S1B  were both simulated using experimental conditions of S1 scenario after 

implementing small groyne near upstream and increasing the roughness of narrow strip close to the 

banks, respectively. Numerical simulations were grouped under 3 major cases based upon the 

objectives of the simulations. 

Effects of small irregular width variations 

Two different scenarios were explored to assess the effects of small irregular width variations on the 

evolution of alternate bars in the flume experiments. Laboratory conditions of experiment-1(Table 8) 

were used to setup the model. The first scenario (S1) was setup using a reach averaged width of the 

channel without implementing small amplitude width variations (Figure 68). The second scenario 

(S1I) was setup by implementing the measured width variations along the bank lines of the channel 

(Figure 69). Width variations in the experimental channel were irregular with their highest amplitude 

up to 4% of the channel width. The effects of small irregular width variations on evolution of bed 

topographies were then assessed by comparing the results of both scenarios with the observed bed 

evolution in the experiment-1. 

 

Figure 69. Irregular bank lines implemented in S1I scenario. The vertical scale is distorted on purpose for the 

sake of better visualization. 

 Effects of amplitude of width variations on bed topography  

The objective of this case was to investigate the effects of different amplitude of width variations on 

the bed topography at different formative conditions of alternate bars. For each scenario regular width 

variations in space with amplitude 2.5 mm (SW runs in Table 9) and 5 cm (HW runs in Table 9) were 

imposed along one of the banks. The width variations were created through an idealized left bank 

where small-amplitude groyne-like structures having the same amplitude were placed at a regular 

spacing that corresponded to their longitudinal extension of 2 m (Figure 68). Wu et al. [2011] report 

that the amplitude of the width variations have more influences in the bed topography evolution more 

than the wavelength.  The wave length of such imposed width variations were therefore 4 m in all the 

scenarios.  

Potential parameterization of small amplitude width variations 

It may not be convenient to include small amplitude width variations along the banks in the numerical 

modelling studies. Reach scale modelling is often carried out using larger computational grids for 

faster computation. In such cases the small amplitude width variations along the banks are at a sub-

grid scale. This would require local refinement of grids which may not be desired from the 
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computational cost and model stability requirement. The parameterization of these variations would 

help to take into account their effects without geometrically implementing them in the model. Small 

amplitude width variations can behave as obstructions along the banks or can also be viewed in terms 

of an increase of the hydraulic roughness within a zone close to the banks. On this line of reasoning, 

two additional scenarios were investigated in a straight channel without geometrically implementing 

the small irregular width variations. The first scenario (S1G) was setup implementing one 0.02 m long 

groyne along the right bank close to the upstream boundary. The second scenario (S1B) was setup by 

increasing the roughness of a 2 cm wide strip close to the banks arbitrarily by 30%. The effects of 

obstruction and roughness variations on evolution of alternate bars were then assessed by comparing 

the results with the bed evolution in S1 scenario and in the lab experiments. 

The details of all the numerical runs are presented in Table 9. The scenarios explored cover wide 

range of width to depth ratio (β) values. The ratio β/βcr > 1 indicates formative conditions of free 

alternate bars are met. βcr is the critical width-to-depth ratio value required for the formation of free 

alternate bars in straight channels. 

Table 9. Scenarios explored to assess the effects of amplitude of width variation on bed topography  

W  Q D Amplitude of width variation (Aw x W) β β/βcr 

(m) (l/s) (m) 0 0.0025 0.01 Measured   

0.4 2 0.013 S1, S1G, S1B SW1 HW1 S1I 30.8 4 

0.3 1.5 0.013 S2 SW2 HW2  23.1 3 

0.3 2.5 0.023 S2’ SW2’ HW2’  13 2 

0.15 2.5 0.028 S3 SW3 HW3  5.4 0.5 

  

6.3 Results 
Appropriate parameters of the sediment transport rate formula (equation ( 25 )) had to be selected to 

model the average sediment transport rate measured in the experiments. The PA sediment transport 

rate in the model were computed for 300 cross-sections which is represented by grey band in Figure 

70. The fluctuation in the sediment transport mainly corresponds to the development of the bars in the 

model. PA sediment transport rate in the S1 numerical run was modelled close to PA sediment 

transport rate in experiment using value of coefficient a (equation ( 25 )) as 7 (Figure 70-a). 

 

Figure 70. PA sediment transport observed in the experiment compared with PA sediment transport rate in 

numerical model for a) S1 and b) S1I scenarios. 

 

a) b) 
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Using the same value of the coefficient a, after implementing the irregular width variations in scenario 

S1I, showed lower PA sediment transport rate. So, the value of the coefficient a was increased to 8 in 

run S1I which resulted in a PA sediment transport rate closer to the experiment (Figure 70-b). 

The coefficient αbn in transverse slope effect in the direction of bed-load transport (equation ( 27 )) 

was adjusted for the modelled amplitude of bars to match at best that in the experiments. 

6.3.1 Effect of small amplitude width variations 

Bars in the S1 scenario were observed as the result of the free instability caused by flow over the 

mobile channel bed. The instability was triggered by the random perturbation provided in the channel 

bed and the flow at the upstream boundary. Defina [2003] and Wu et al., [2011] used localised 

sediment bump to trigger the alternate bars in their models. Random disturbance of ± 1% in the flow 

rate at the upstream boundary varying both in time and in the lateral direction was used in the model. 

Such small disturbances were needed to continuously trigger alternate bars at the upstream boundary 

as the alternate bars continued to move downstream. Without the flow disturbances, the bars at the 

upstream boundary migrated downstream leaving the bed flat coherently with the convective nature of 

bar instability [Federici and Seminara, 2003] and the bars remained along a small reach close to the 

downstream boundary. Small disturbance in flow also exist in the flume experiments due to 

fluctuation in the pumping rates. 

Small amplitude mid channel bars first appeared in the upstream part of the domain and started to 

migrate downstream. As the mid-channel bars continuously migrated downstream, alternate bars 

suddenly appeared along the remaining part of the flume. The mid channel bars merged to form larger 

alternate bars which continued to lengthen and migrate downstream. The bars were of diagonal shape 

with the downstream faces much steeper than the upstream faces (Figure 71-b and Figure 73-a). After 

two hours of development the bars stopped to lengthen and bars of similar wavelength were observed 

migrating at a constant celerity in the model. The bar evolution trends were similar to the trends of 

free alternate bars reported in the literature [e.g. Defina, 2003; Bernini et al., 2006]. The wavelengths 

of bars in the model were almost half of the wavelength of bars observed in the experiments (Figure 

73-a). The comparison of the statistical distribution of the bed level also shows that the pools were 

shallower and the bars were lower in the model compared to the experiment (Figure 74-a). 

 

 

 

 

 

Figure 71. Bed topography in a) flume experiment, b) S1 scenario (straight channel with smooth banks) and c) 

S1I scenario (actual irregular width variations). Graphic scale represents longitudinal scale. The lateral scale is 

distorted by factor 2 to show details of topographic variation on later direction. 

The early stage evolution trends of the bars in the S1I scenario were similar to the S1 scenario. As the 

development progressed, the bars became longer and steady starting from the upstream boundary. 

Evolution of the average wavelengths of the first three dominating Fourier harmonics in longitudinal 

m 
1 m 
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sections along left and right banks for scenarios S1 and S1I are presented in Figure 72. The evolution 

at the initial stage is similar for both scenarios. The evolution-trend started to deviate after half an 

hour when the wavelength of bars in S1I scenario start to grow longer. Steady bars were observed 

throughout the domain in S1I scenario after the 4 hours of development. The wave-lengths of the bars 

at the end of the S1I scenario were much closer to the experiments (Figure 71-c and Figure 73-b) 

compared to those in the run S1, with smooth banks. Also, bars at the end of run S1 were still 

migrating, while at the end of run S1I the longer bars were steady. It may be noted that some spikes of 

deposition are observed on few bar tops (Figure 73-b). Such spikes might be due to the numerical 

instability caused by the occurrence of trans-critical flow when bars start to emerge and dry, as also 

reported by Verbruggen [2012]. 

The comparison of statistical distribution of the bed topography (Figure 74-b) shows that the areas of 

bars and pools were modelled reasonably well compared to the experiments using the value of αbn = 

0.5. Pools in the model were still shallower. Figure 74 also highlights that the comparison between 

numerical and experimental bed topography distribution is improved when the small amplitude width 

variations are accounted for in the computational domain. 

 

 

Figure 72. Evolution of average wavelength of the three most dominating Fourier harmonics in longitudinal 

section along left and right banks for a) S1 scenario (straight channel with smooth banks) and b) S1I scenario 

(actual irregular width variations). 
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Figure 73. Longitudinal section along the left bank, center and right bank of the bed topography obtained in the 

model compared with flume experiment for a) S1 (without width variation) and b) S1I scenarios (actual 

irregular width variations) 

 

Figure 74. Bed elevation distribution in numerical model compared with the bed elevation distribution in the 

laboratory experiment: a) S1 scenario (without width variation) and b) S1I scenario (actual irregular width 

variations). 

6.3.2 Effects of amplitude of width variations on bed topography 

Effects of amplitude of width variations were determined by performing harmonics analysis of the 

longitudinal section of the channel bed close to the banks with varying width. The bed topography in 

scenario “S” is developed as the free instability and is referred as free scenario. Scenarios S3 and S2’ 

did not develop alternate bars. Width to depth ratio (β) in scenario S3 was lower than the critical 

width to depth ratio required for the bar formation (β/βcr < 1). Bedform waves with wavelength much 

smaller than the channel width were observed along the channel bed (Figure 76). Width to depth ratio 

in scenario S2’ was higher than the critical width to depth ratio required for the bar formation (β/βcr = 

2). Bedform wave with dominating longitudinal wavelength of 6.7 m was observed along the channel 

bed (Figure 76) but with negligible amplitude (Figure 77). Bars with wavelength of 1.5 m were 

observed in the laboratory experiments at similar settings. Bars might have been suppressed in the 

model due to the additional diffusion induced by numerical schemes. Verbruggen et al.[2012] also 

reported that the numerical model predicted higher value of resonance width to depth ratio (βr) than 

analytical theory which they attribute to the numerical diffusion present in the model. Scenario S1 and 

S2 developed alternate bars with dominating longitudinal wavelengths 2.86m and 3.33 m, 

respectively. 

a) 

a) S1 b) S1I 
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Longitudinal wavelengths as well as the amplitude of the bed forms were different in scenarios SW 

and HW compared to S scenario (free scenario). So a factor F was computed as the product of 

dimensionless wave length (Lb) and dimensionless amplitude (Ab) of the Fourier harmonics to analyse 

the combined effects of the width variations. The amplitude of first 3 dominating harmonics in most 

of the cases had a small difference. So an average of factor F was computed for the first 3 dominating 

Fourier harmonics (Figure 77). Similarly average of the relative factor Fr was computed with respect 

to respective free scenarios for the first 3 dominating harmonics (Figure 78).  

The width variation amplitude is 2.5 mm in all SW scenarios. The non-dimensional width variation 

amplitude (Aw) varies due to the channel-width difference among different scenarios (Figure 75). 

SW4 and SW1 have the highest and lowest Aw respectively. The dominating longitudinal wavelength 

is 5 m in both SW1 and SW2 scenarios which is significantly longer compared to S1 and S2 

scenarios. Both F and relative Fr are higher in SW2 scenario compared to SW1 scenario. This might 

be because SW2 scenario as higher non dimensional amplitude of width variation (Aw) compared to 

SW1 scenario. 

The dominating longitudinal wavelength in SW2’ scenario is 1.8 m which is similar to half the 

wavelength of the imposed width variation. The decrease in F and Fr in SW2’ scenario was observed 

because the magnitude of the decrease in the longitudinal wavelengths of bedforms were greater than 

the increase in their amplitudes, compared to the S2’ scenario. The dominating longitudinal 

wavelength, F and Fr have increased in the SW3 scenario compared to S3 scenario. 

Scenarios HW had higher amplitude of width variations compared to SW scenarios. The dominating 

longitudinal wavelengths in both HW1 and HW2 scenarios are 5 m which are similar to SW1 and 

SW2 scenarios. Similarly the dominating longitudinal wavelengths in both HW2’ and HW3 scenarios 

are 1.8 m which is close to half the wavelength of the imposed width variations. All HW scenarios 

show increase in F and Fr compared to SW scenarios because Aw is higher in HW scenarios. The Fr 

decreases with the increase in β/βcr ratio among HW scenarios. The effect of width variations is 

observed higher in the scenarios with higher Aw. 

S1 SW1   HW1   4 

β
/β

c 

S2  SW2   HW2  3 

S2’  SW2’   HW2’  2 

S3   SW3   HW3 0.5 

0 0.006 0.008 0.017 0.025 0.033 0.067  

Aw 

Figure 75. Diagram illustrating the simulated combinations of the relative amplitude of width variations Aw and 

the width-to-depth ratio β relative to the critical value for free bar instability βc. The run IDs are reported for the 

sake of clarity (see also Table 9). 
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Figure 76. First dominating longitudinal wavelength in channel in different experimental condition and 

amplitude of width variations. Circled values are close to the half of wavelength of imposed width variations. 

 

 

Figure 77. Average Product of Ab and Lb (F) of the 3 highest dominating harmonics in the channel bed along 

longitudinal direction at different experimental conditions and amplitude of width variations 
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Figure 78. Average Product of relative Ab and relative Lb (Fr) of the 3 highest dominating harmonics in the 

channel bed along longitudinal direction at different experimental conditions and amplitude of width variations  

6.3.3 Parameterization of the small amplitude width variations 

In S1G scenario bar first appeared just downstream of the small groyne. The width of the bar was 

equal to the length of the groyne (0.02 m). Development of the first bar triggered the development of 

free bars within the domain which migrated in the downstream direction. The bars started to become 

longer and steady starting from the upstream boundary. After 4 hours the entire domain contained 

steady alternate bars. The PA sediment transport rate (Figure 79-a) and the wave-length of the 

alternate bars were similar to the experiment (Figure 80-b).  The statistical distribution of the bed 

topography (Figure 81) shows that the area of the bars are well represented in the model however the 

area of the pools are much shallower compared to the experiments. 

 

Figure 79. PA sediment transport observed in the experiment compared with PA sediment transport rate in 

numerical model for a) S1G and b) S1B scenarios. 

Free bars in S1B scenario were triggered by the small flow variations at the upstream boundary. The 
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bars grew in amplitude and length as they migrated in downstream direction. The bars close to the 

upstream boundary stopped elongating and migrating and developed into steady bars. The 

development of the steady bars moved further downstream of the domain. After 4 hours steady bars 

were observed along the entire domain. The sediment transport in the model was observed slightly 

higher than the experiments (Figure 79-b). The wave-length of the bars were observed shorter than the 

experiments but 50% longer than the bars in S1 scenario (Figure 80-c). The comparison of the 

statistical distribution of the bed topography shows that the highest areas of the bars were predicted 

higher and the area of the pools shallower compared to the experiment (Figure 81). 

a) 
 

b) 
 

c) 
 

d) 
 

 

 

Figure 80. Bed topography in a) S1, b) S1G, c) S1B scenarios; and d) laboratory experiments. Flow is from left 

to right. Graphic scale represents longitudinal scale. The lateral scale is distorted by factor 2 to show details of 

topographic variation on later direction. 

 

 

Figure 81. Statistical distribution of channel bed elevation in scenarios S1G, S1B compared with scenario S1 

and the experiment 
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6.4 Summary of results 
Alternate bars observed in the laboratory experiments of Garcia Lugo et al. [2015] were reproduced 

using a 2D-depth-averaged morphodynamic model. The first step in numerical modeling of alternate 

bars involved the choice of roughness values to model the flow field with reasonable accuracy. In the 

absence of flow depth measurements in the experiments, the value of the roughness coefficient was 

estimated through an alternative, indirect method based on the comparison of of dry areas measured in 

the experiments and simulated with the hydraulic model under conditions of the fixed bed geometry 

measured at the end of the experiment. The second step involved calibration of the sediment transport 

rate predictor to achieve a reasonable reproduction of the sediment transport measured in the 

experiment.  The final step involved adjusting the coefficient of transverse bed slope effects on the 

direction of the bed load transport to accurately model the amplitude of the bed forms in the 

experiments. 

The channel in the experiments had small amplitude width variations (amplitude less than 4% of 

channel width) whose effects were never analyzed previously and that was initially assumed to have a 

negligible effect. In a first attempt alternate bars were modeled using constant reach-averaged channel 

width. Despite the reasonable choice of the roughness parameter value and modeling the average 

sediment transport rate, the properties of alternate bars in the model were unexpectedly different 

compared the experiments. Bars in the numerical model were much shorter (half of the observed 

wavelength) and had steep downstream slope compared to those in experiments. They were migrating 

in the downstream direction. In the second approach, the actual, small-amplitude width variations 

present in the experiment were implemented in the numerical model.  Alternate bars developed in the 

second simulations set were steady and longer compared to those in the first approach. However with 

the same sediment transport formula, the sediment transport rate were modeled 25% less in the second 

approach. This suggested that the sediment transport rate is higher in channels with migrating 

alternate bars compared to the channels with steady alternate bars. The coefficient in the sediment 

transport predictor had to be increased to model the sediment transport rate closer to that observed in 

the experiment. The length and amplitude of the alternate bars were modeled similar to the 

experiments. Although the width varied in small amplitudes (less than 4% of channel width), it was 

sufficient to accelerate the development of steady alternate bars whose wavelength and amplitude 

were similar to the bars in the experiment. This suggested that, despite appearing as “small” the 

irregular width variations might provide a forcing effect able to affect the dynamics of the free 

migrating bars and to promote a markedly different morphological development of the river bed. It 

was therefore necessary to investigate more systematically the effect of such width oscillations by 

isolating the role of their amplitude, symmetry and also to understand to which extent they could be 

viewed as an additional near-bank roughness in a numerical model. 

To study the effects of amplitude of width variations on bed topography, several scenarios were then 

explored by implementing varying amplitude of regular, idealized width variations along one bank of 

the channel, keeping their wavelength constant. Channel width-to-depth ratios were varied to study 

the effects on scenarios with characterized by the presence of morphodynamic instability of “free” 

alternate bars. The results show that the amplitude of width variations as small as 0.6 % is sufficient 

to influence the alternate bar characteristics and to produce “hybrid” bar patterns between purely free 

and forced. They increased wavelength and amplitude of the alternate bars compared to the free 

alternate bars. The effects were stronger when the amplitude of the width variations was increased. In 

the channels without alternate bars, the width variations forced bed forms with wavelengths similar to 

half the wavelengths of width variations.  
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The possibility of parameterising the effects of small amplitude width variations in the numerical 

model were explored by two additional scenarios: i) increasing the near-bank roughness and ii) 

implementing a small obstruction along the banks. Despite adopting the arbitrary values of increased 

roughness of the cells closer to the banks, steady bars were observed in the model. Wavelength of the 

bars were shorter compared to the experiment. The bars were represented higher and the channels 

were represented shallower. Similarly implementing a small groyne, equal to 5% of the channel 

width, near the upstream boundary also accelerated the development of steady bars in the model. The 

wavelengths of alternate bars were observed longer and similar to the experiment. Bars in the model 

were represented similar to the experiment but the channels were represented shallower. It is 

concluded that the effect of spatially distributed, irregular width variations can be to a certain extent 

captured also by parameterizing them in the form of increased roughness close to the banks or as 

small obstructions along the banks. 

Despite alternate bars being widely studied, this study presents one of few cases where alternate bars 

observed in the specific experiments are reproduced using numerical. To reproduce alternate bars in 

the experiments the model was calibrated on different morphological processes that were measured by 

direct or indirect methods during the measurement. This allowed us to adjust the parameters in the 

numerical model in a controlled and structured manner. Modelling also required realistic information 

on the lateral banks which contained small amplitude oscillations. The statistical comparison of the 

bed level distribution allowed validation of the evolved topography in both longitudinal and lateral 

directions. Previous studies for instance, Defina [2003] used experimental data of Lanzoni [2000a] to 

qualitatively compare the evolution trend. Their objectives were to rather explore evolution trend of 

alternate bars using numerical model, otherwise studied conducting laboratory experiments, and 

assess the sensitivity of the parameters and initial conditions in bar evolution. Jang and Shimizu 

[2005b] and Wu et al.[2011] show examples of bars in numerical models in fair agreement with 

experimental observations, comapring the longitudinal and cross-sectional profiles. This study 

strengthens their findings by reproducing the three-dimensional topographic features as well as the 

sediment transport transport rate in good agreement with those observed in the experiments.      
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7 CONCLUSIONS AND DISCUSSIONS 

A self-formed river flowing through an alluvium adapts its width, depth and slope based on 

hydrological conditions, sediment characteristics, riparian vegetation and bank material [Parker et al., 

2007]. The flow over alluvial beds at higher width to depth causes morphodynamic instability, 

resulting in bars which scale with the cross-section of the river [Tubino et al., 1999; Colombini and 

Stocchino, 2012]. Bars are largest of the bedforms which strongly interact with the width during the 

planimetric evolution of the river. 

The practical and engineering interest on stable cross-section of alluvial channels has attracted a 

considerable amount of research since late 19
th
 century [Kennedy, 1895]. Much of the research has 

focused in development of the width predictor methods mostly based on empirical approaches and 

methods based on extremal hypothesis and to lesser extent on mechanistic methods. In past two 

decades, research has advanced in development of models including geotechnical as well as fluvial 

processes to simulate bank failure mechanism more accurately. Despite significant development on 

the width predictors, research in controls on width evolution of channel cannot still be considered a 

fully settled issue. The effect of spatial width variability on river bars has mainly been based on 

assessing the role of such planform forcing effect to the bed topography, both in case of straight and 

meandering river channels. The amplitude of with variability has been related to fundamental 

questions as those behind the transition between single- and multi-thread river morphologies, and 

most studies consider regular spatial variations of the channel width. The limits of what can actually 

be considered a “planform forcing” effect, or has instead a too small variability have never been 

clarified, as well as its role on the resulting channel morphodynamics. For instance, the effects of 

small amplitude width variations on straight channels, which may be due to imperfect bank lines or 

protrusion due to vegetations, on morphodynamics of river bed has been neglected so far. 

The first aim of the thesis is to analyse the effects of controlling factors on the channel evolution of 

bed-load dominated river focusing on the channel width. The investigations were carried out by 

conducting laboratory experiments (Chapter 3), analytical modelling (Chapter 4) and numerical 

modelling (Chapter 5). 

The second aim of the thesis is to analyse the effects of small width variation on the morphodynamics 

response of the channel bed focusing on alternate bars. The investigations were carried out using two 

dimensional fully non-linear numerical model. 

Based on the research outcomes following conclusions can be drawn:  

7.1 Conclusions 
Hydro-morphological controls on reach-averaged evolution of alluvial channel geometry 

Regarding the effects of the initial channel width, the results from the experiments have shown that 

the long-term equilibrium channel widths were independent of the initial channel width in the 

experiments with constant discharge and without upstream sediment supply. The experiments starting 

from narrower initial width first widened during the early stage followed by narrowing and the 

experiments starting from wider initial width narrowed by bed incision, all eventually resulting in 

similar long-term equilibrium width. Similar trends were observed in the numerical simulations 

starting from narrower channels carried in a shorter domain. 
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The results from both numerical modelling (Chapter 5) and laboratory experiments (Chapter 3) have 

shown that the width evolution is affected by the initial channel width in the scenarios with constant 

discharge and upstream sediment supply. The channel starting from the narrowest initial channel 

resulted in the widest and the most aggraded channels. The equilibrium amount of sediment supplied 

from the upstream allowed the channel bed to remain aggraded. Though these scenarios could not be 

investigated for long-term in the experiments but the initial development trends are in line with the 

results of the numerical model. 

Results from laboratory experiments have shown that at similar variable discharge regimes without 

sediment supply, the experiments starting from a wider channel resulted in wider channels compared 

to the ones starting from the narrower channels. However, in the scenarios with similar variable 

discharge with sediment supply, numerical model results show that channels starting from narrower 

initial width eventually results in wider channels. These scenarios could not be investigated for long-

term in the experiments but the initial development trends are in agreement with the results of the 

numerical model.   

Regarding the effects of discharge regimes, all flow regimes explored supplied same volume of water 

in the experiments during each cycle. Results from experiments carried out without upstream 

sediment supply show that the channels evolved at variable discharge are wider compared to those 

formed at constant discharge. Channels with higher amplitude of flow variability resulted in the 

largest final width in the experiments starting from narrower initial conditions. The trend of evolution 

of same sets of experiments computed by analytical model show similar results. In the experiments 

starting from wider initial channel, the evolution at variable discharge was different from that of 

channel starting from narrower initial channel. For instance, channels evolved under variable 

discharges with similar low discharge resulted in similar channel widths. Results from numerical 

modelling have shown in the scenarios starting from narrower initial channel at variable discharge 

with sediment supply, channels are obtained wider with higher amplitude of flow variations.   

Effects of small width variations on the bed morphodynamics of alluvial channels 

Alternate bars observed in the laboratory experiments were reproduced on the numerical model 

reasonably well at a similar time scale. This required accounting for the presence of small amplitude 

width variations along the banks. The first step of the modelling involved the choice of reasonable 

roughness value. The second step involved implementing the minor width variations measured along 

the banks of the experiments (< 4% of channel width) which were not initially expected to play a 

relevant control. The third step involved calibrating the sediment transport formula based on the 

sediment transport rate exiting the flume. The final step involved the choice of appropriate coefficient 

to adjust the transverse bed slope effects on the sediment transport direction. Results from the 

numerical modelling have shown that small width variations present along the banks of the 

experiments accelerated the development of steady bars in the flume experiments. The sediment 

transport rate is greatly affected by the type of bed forms. At similar flow and sediment 

characteristics, channels with migrating alternate bars transport more sediment than the channels with 

steady alternate bars. 

Further investigation shows that even small width variations, less than 0.6% of the channel width is 

sufficient to develop steady bars in the channels. The width variations, though very small, provide a 

continuous forcing which interact with the free bars in the channel bed to eventually result in steady 

bars which are longer than the free bars. The effects are more dominating for the scenarios with width 

to depth ratio closer to critical width to depth ratio. In the scenario of weak instability or below the 
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formative conditions of bars, the width variations impose bed forms. The effects of width variation 

increase with the increase in amplitude of width variations. 

7.2 Discussion and recommendation 
Hydro-morphological controls of reach-averaged evolution of alluvial channel geometry 

The Shields stress during the initial conditions of uniform flow experiments, computed using median 

grain size, ranged between 0.05 and 0.1. These values of Shields stress corresponding to median grain 

size of sediment at bank full conditions are common in gravel bed rivers [Garcia, 1999]. The natural 

sand-bed rivers usually have Shields stresses an order of magnitude higher than those observed in 

gravel-bed rivers. The bed and banks of the experimental channels were composed of the same non-

cohesive material. So the banks and the bed had same degree of erodibility.  In most natural gravel-

bed rivers, the bank  materials differ from the to the material forming the bed. The bank material may 

contain fine cohesive sediment or composite layers of different materials which make them less 

erodible compared to the channel bed [Hey and Thorne, 1986; Leyland et al., 2015]. In addition, in 

real rivers the presence of vegetation greatly influences the erodibility of the banks [Rinaldi and 

Darby, 2007]. So, the channel in our experiments would correspond to natural gravel-bed rivers with 

bed and banks composed of similar materials and without riparian vegetation. Such conditions are 

commonly found in pro-glacial streams [Chew and Ashmore, 2001] The aim is however, not to 

reproduce any specific type of river but to study channel evolution processes considering it as 1:1 

scale experiments. Numerical simulations were also carried out at the initial Shields stress equal to 

0.09. 

The size of the laboratory experiments imposed several restrictions during the investigation. The 

experiments especially with the sediment feed could not be carried out for a longer period of time. 

The reach of the channel is shorter and can be easily influenced by the processes at the upstream and 

the downstream boundary. The experiments carried out on a larger experimental flume might allow 

investigation on channel evolution at longer time scale with less effects from the imperfections at the 

boundaries.  

Laboratory experiments were conducted using non-uniform sediment. Sediment of uniform size was 

used in the numerical model. Processes like armouring, selective transport occurring in the non-

uniform sediment might have effects on the channel evolution in the experiments which were not 

represented in the numerical model. Sun et al. [2015] show that bed armouring near the banks 

influence the width evolution of a braided channel. Numerical modelling with graded sediments could 

allow reproducing processes similar to those observed in the experiments. 

Bars were observed in the experiments which played an important role in the channel evolution. 

Channel widening occurred at higher rate in the experiments with sediment feed because of the 

growth of bars in the channels.  Channel narrowing occurred at higher rate in the experiments starting 

with wide channels due to channel incision along the deeper parts leaving area of the bars dry. Bars 

did not form in the channels in the numerical model. So the channel narrowing in the numerical model 

occurs by lowering entire bed level. On the other hand lack of bars in the model resulted in symmetric 

widening of the channel caused by bank erosion on both banks. The numerical modelling in scenarios 

allowing bar developments could allow simulating incision and bank erosion process closer to those 

in the experiments. 

A constant water level corresponding normal flow depth of a discharge in an initial channel was 

provided at the downstream boundary. The widening of the channel causes decrease in the water level 
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in the channel. The fixed water level induces a back water effect in the channel. The back water will 

affect longer reach close to the downstream boundary in the scenario starting from narrower initial 

channel. The influence of the back water effect can be avoided using a longer domain. The use of 

small grid cells to simulate bank erosion process is already computationally expensive. Increasing the 

length of the domain will tremendously increase the computational time making the long-term 

investigation on channel evolution practically not feasible. Numerical modelling allowing flow depth 

at the downstream boundary would allow having better results at lower computational cost.      

Results from the analytical model suggest that the channel width in the variable discharge conditions 

can be represented by using constant discharge corresponding to the peak flow conditions. The model 

is based on simplified physical processes so the experimental and numerical investigations can 

explain the validity of the findings and shed light on the representation of the non-uniform discharge 

with a uniform discharge.  

Effects of small width variations on the bed morphodynamics of alluvial channels 

Results from the numerical model show that bank irregularities accelerate the development of non 

migrating bars suggesting that they have affected the dynamics of alternate bars in the experiments. 

The two dimensional numerical model used for the investigation in the framework of this study does 

not model the sub grid scale phenomena like turbulence (although the diffusion due to turbulence is 

taken into account). Very often eddies occur near the disturbances causing flow separation and 

smoothening the effect of disturbances. Numerical modeling including the modeling turbulence 

structure in the flow field would further improve the understanding on the effects of small amplitude 

width variations. A flume experiment under similar conditions but with constant width (straights 

banks) would also verify the findings from this study. 

The numerical investigation also suggest that increasing roughness close to the banks and 

implementing small obstruction along the bank can simulate the steady bars with properties closer to 

those observed in the experiments. The roughness value was arbitrarily chosen so the investigation 

varying the roughness values could verify if the small width variations could be represented in the 

model increasing the roughness close to the banks. The small width variations may act as the forcing 

equivalent to small groynes distributed along the space. The investigations implementing several 

small groynes along the channels can improve the understanding on the effects of the small width 

variations on channel bed topography. 

The effects of width variations were investigated by imposing a width variation of certain amplitude 

and wave length along one of the banks of the channel. Investigations were carried out in the channels 

with different width. The use of similar amplitude of width variation resulted in different relative 

amplitude of width variations, with respect to the channel width, among different scenarios. This 

caused difficulty in the analysis since both relative amplitude of width variations and width to depth 

ratio were varying among the scenarios. The investigations at similar relative amplitude of width 

variation among the scenarios can allow better understanding. 
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List of Symbols 
 
 
a and b Coefficients 

Bb  Bottom width of the channel 

C  Chezy’s roughness coefficient 

D  Sediment diameter 

D i,0 / D i+1,0 Initial depth of the channel at adjacent cross-section i/ cross-section i+1 (m) 

D i / D i+1  Depth of the channel at adjacent cross-section i/ cross-section i+1after time T (m) 

Ds  Sediment diameter (mm) 

D90  90
th
 percentile sediment diameter 

E Error of the estimation of net volume of the sediment (%) 

Espir  Calibration parameter weighing the intensity of spiral flow motion 

Fs,bed,i  Relative volume of the sediments reworked in the channel bed within the sub-reach i (%) 

Fs,bank,i  Relative volume of the sediments reworked from the channel banks within the sub-reach i 

(%) 

g  Acceleration due to gravity (m/s
2
) 

h  Local water depth (m) 

H Average flow depth (m) 

ks Roughness height 

Li Longitudinal distance between cross-section i/ cross-section i+1 (m) 

Lx  Length of the reach 

M  Absolute weight of dry sand 

Mr  Relative weight 

MT  Weight of basket at time T (kg) 

MT+1 Weight of the basket at time T+1(kg) 

n  Manning’s roughness coefficient 

nr Exponents and coefficient in the formulation of dimensional roughness coefficient 

nk  Coefficient 

N  Number of sub reaches 

qs  Sediment transport per unit width 

qs,n  Unit bed load transport component in the lateral direction (m
3
/s/m) 

q bx  Sediment transport rate in bed along longitudinal directions 

qsx  Sediment transport rate in side slopes along longitudinal directions 

qs(t) Instantaneous value of the sediment transport rate (m
3
/s) 

qs(T)  Progressive averaged sediment transport rate (m
3
/s) 

q s,n  Bed load transport on lateral direction (m
3
/s/m); 

Q Discharge (l/s) 

Qs  Sediment transport rate (kg/ min) 

r  Coefficient weighing the sediment transport in side slopes in the transverse direction 

S  Longitudinal bed slope 

Ss  Side slope of the channel 

u  Module of the depth-averaged velocity vector (m/s) 

u  Depth averaged velocity in stream wise (x) direction 

u  Depth-averaged velocity (m/s) 

U  Mean flow velocity in the cross-section 

v Depth averaged velocity in stream transverse (y) direction 

V   Voltage (volts) 

Vt  Transversal mean velocity along side walls 

ws,i  Net change of sediment in cross-section i (kg) 

W Width of the channel (m) 

W i,0 /W i+1,0  Initial width of the channel at adjacent cross-section i/ cross-section i+1 (m) 
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W i /W i+1 Width of the channel at adjacent cross-section i/ cross-section i+1, after time T (m) 

Ws  Computed total net change of sediment in flume (kg) 

W s,obs  Weight of the sediment collected at the downstream end of the flume (kg) 

z   distance (m) 

αbn  Calibration parameter 

αr Coefficient in the formulation of dimensional roughness coefficient 

ατ  Corrected angle of bed shear stress with respect to the direction of depth averaged velocity 

β  Flow width to depth ratio in the channel 

βcr  Critical value of the flow width to depth ratio required for the instability of free bars 

       Transverse bed slope 

Δ Relative sediment density 

κ  Von Karman’s constant 

      Reach averaged bed level of the channel 

η t  Top level of the channel 

θ  Shield’s stress 

θb  Shields stress in channel bed 

θcr  Critical Shield’s stress 

θs  Shields stress in side slopes 

 s  Density of sediment (kg/m
3
) 

   Density of water (kg) 

       Sediment transport rate in the side slope integrated between yw and yb 

ΔT  Time interval (min) 

ΔVs,i  Total change of the sediment volume in a sub-reach i (m) 

ΔVs,bank,i  Total change of the sediment volume in a sub-reach contributed by channel banks (m) 

ΔVs,bed,i Total change of the sediment volume in a sub-reach contributed by channel bed (m) 
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APPENDIX A 
 
A-1 Pump calibration 

 
Pump calibration was performed to derive pumping rate with respect to the frequency of the current 

provided to the pump. Following steps were carried out to calibrate the pump: 

Step 1: Pumping rate is determined by the head difference between the pump inlet and the pump 

outlet. The inlet level was fixed by maintaining the water level in the bucket at the downstream end of 

the flow by providing a overflow and continous supply of discharge into the bucket. The pump outlet 

was fixed at a level at the upstream part of the flume. Same pump inlet and outlet level were used in 

all of the experiments carried out. 

Step 2: Sand from the flume was emptied to carry out pump calibration in a fixed bed. 

Step 3: A known frequency of the current was supplied to the pump and the pump was started. The 

pump supplied discharge from the bucket at the downstream end of the flume to the inlet of the flume. 

After 5 minutes of pumping, a bucket with volume marked at 10 litres was used to collect discharge 

exiting the flume. The time required to fill the bucket upto 10 liters mark was noted. The procedure 

was repeated two more times and average time was computed. The pumping rate was computed by 

dividing the volume collected (10 litres) by average time. 

Step 4: The current frequency was varied increasing by 2.5 Hz and the procedures in step 3 were 

repeated for each increament. 

Step 5: The pumping rate was plotted against current frequency. A best fit curve was obtained from 

the scattered plot. The equation of the best fit curved defined the relation between the pumping rate 

and the current frequency. 

Table A-1 Pump calibration 

SN Freqency vol (l) time (s) 

 

Discharge (l/s) 

   

t1 t2 t3 t avg Q1 Q2 Q3 Qavg 

1 15 10 50.25 49.16 52.39 50.6 0.20 0.20 0.19 0.20 

2 17.5 10 34.43 34.52 34.57 34.50667 0.29 0.29 0.29 0.29 

3 20 10 27.72 27.64 27.6 27.65333 0.36 0.36 0.36 0.36 

4 22.5 10 22.52 22.29 21.76 22.19 0.44 0.45 0.46 0.45 

5 25 10 20.63 20.54 20.99 20.72 0.48 0.49 0.48 0.48 

6 30 10 16.77 17.13 17.07 16.99 0.60 0.58 0.59 0.59 

7 35 10 13.69 14.38 14.42 14.16333 0.73 0.70 0.69 0.71 

8 40 10 13.04 13.03 13.25 13.10667 0.77 0.77 0.75 0.76 

9 45 10 11.96 12.26 12.33 12.18333 0.84 0.82 0.81 0.82 

10 50 10 12.16 12.09 11.89 12.04667 0.82 0.83 0.84 0.83 
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Figure A-1 Average pumping rate plotted against supplied frequency. 

 The relationship between the pumping rate (Q) and the supplied current frequency (F) is obtained as: 

Q = -0.00043883F
2
 + 0,0466F – 0.395 

 

A-2  Sediment weighing calibration 
 
A weighing sensor was used to weigh the collected sediment in the basket. The output of 
the weighing sensor is in voltage. A voltage weight relation has to be determined to 
convert the voltage data into weight. The relation was obtained as follows: 
 
Step 1: The weighing sensor was connected to the voltmeter and the measuring voltage 
was set at 0.5 V. 
Step 2: A known weight was hung on the weight sensor and the voltage reading was 
noted. 
Step 3: The weight was increased by adding known weight and the voltage reading was 
noted. 
Step 3:  The weight was plotted against output voltage. A best fit curve was obtained from the 

scattered plot. The equation of the best fit curved defined the relation between the weight and the 

voltage output. 
Table A-2 Weighing machine callibration 

Weight Voltage 

(g) (V) 

1891 756.4 

1972 788.8 

3863 1545.2 

4863 1945.2 

y = -0.0004x2 + 0.0466x - 0.395 
R² = 0.9975 
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Figure A-2 Average pumping rate plotted against supplied frequency. 

 

The relationship between weight (M) and voltage (V) was obtained as: 

 

Mr = (2512.7V + 16.37)/1000 

Weight of the sediments measured in the experiments are the submerged weight of the sediment. The 

absolute weight was computed as: 

   

 
2635

1635
rM M   

Where M = Absolute weight of dry sand (kg), Mr = Relative weight (kg), V = Volts (V) 

The temporal variation of the weight is affected by noises due to the turbulence in the bucket caused 

by the overflowing water. Due to the noise the recorded cumulative weight signal shows frequent 

reduction in value at short time interval, even progressing forward in time. So, a low pass filter was 

used to remove the high frequency noise from the temporal weight signal. The sediment transport rate 

is then computed from the filtered signal as follows. 

 1T T

s

M M
Q

T





  

   

Where, 

 ΔT = the time interval (min), MT = weight of basket at time T (kg), MT+1 = weight of the basket at 

time T+1(kg) and Qs = sediment transport rate (kg/ min). 

The low pass filter is still not able to reduce the noise completely from the weight signal. The 

sediment transport rate computed at very small interval (in the order of seconds) would still result, 

y = 2512.7x + 16.37 
R² = 1 
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unrealistic, negative sediment transport rate. So sediment transport rate is computed per minute time 

interval avoids the negative values in the sediment transport rate. 

A-3 Width computation 
The temporal evolution of the channel width was computed from the images captured by the video 

camera. The images of uniform flow experiment were extracted at the interval of 30 minutes from the 

start of the experiments. Whereas, images of non-uniform discharge experiments were extracted at the 

end of each low and high flow stages. Width was then extracted from the images using Arc GIS 9.1 as 

follows: 

Step 1: Images were geo-referenced assigning the known coordinates of the control points installed 

within the flume.  

Step 2: The right bank and left bank of the wet part of the channel were digitized  

Step 3: The center line of the channel was traced as the midpoint between the left and the right bank 

of the channel  

Step 4: Cross-section line perpendicular to the center line of the channel was drawn every 20 cm from 

the inlet of the flume 

Step 5: The distance between the intersection point of the perpendicular line at the left and the right 

bank is defined as the width of the channel at that cross-section. 

Step 6: The width of the channel was then averaged within a reach between 1m and 4 m from the inlet 

of the flume to obtain a reach averaged width from the image. 

Step 7: The relative change in width was then computed by subtracting with the initial width of the 

channel. 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX A 

A(v) 

 

A-4 Width evolution  
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Figure A-4.1 Width evolution in UNI-0.04 scenario after 2 hours and 7 hours 
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Figure A-4.2 Width evolution in UNI-0.1 scenario after 2 hours and 7 hours 
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Figure A-4.3 Width evolution in UNI-0.25 scenario after 2 hours and 7 hours 
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Figure A-4.4 Width evolution in UNI-0.4 scenario after 2 hours and 7 hours 
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Figure A-4.5 Width evolution in UNI-0.04* scenario after 2 hours and 3.5 hours 
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Figure A-4.6 Width evolution in UNI-0.1* scenario after 2 hours and 5 hours 
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Figure A-4.7 Width evolution in UNI-0.25* scenario after 2 hours and 7 hours 
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Figure A-4.8 Width evolution in UNI-0.4* scenario after 2 hours and 7 hours 
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Figure A-4.9 Width evolution in H1-0.1 scenario after 2 hours and 7 hours 
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Figure A-4.10 Width evolution in H1-0.1* scenario after 2 hours and 5 hours 
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Figure A-4.11 Width evolution in H2-0.1 scenario after 2 hours and 7 hours 
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Figure A-4.12 Width evolution in H2-0.1* scenario after 2 hours and 4.5 hours 
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Figure A-4.13 Width evolution in H3-0.1 scenario after 2 hours and 7 hours 
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Figure A-4.14 Width evolution in H3-0.1* scenario after 2 hours and 4.5 hours 
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Figure A-4.15 Width evolution in H1-0.4 scenario after 2 hours and 7 hours 
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Figure A-4.16 Width evolution in H1-0.4* scenario after 2 hours and 7 hours 
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Figure A-4.17 Width evolution in H2-0.4 scenario after 2 hours and 7 hours 
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Figure A-4.18 Width evolution in H2-0.4* scenario after 2 hours and 7 hours 
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Figure A-4.19 Width evolution in H3-0.4 scenario after 2 hours and 7 hours 
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Figure A-4.20 Width evolution in H3-0.4* scenario after 2 hours and 7 hours 
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A-5 Topography measurement 
 
Topographic measurement were carried out in cross-sections at an interval of 0.5 m from the 

discharge inlet of the flume. The measurement was carried out using a laser scanner. The device 

measures distance in terms of voltage (V), The voltage-distance relation for the device is: 

 

Z = (2.5 V+ 1)/100 

Where, Z is the distance measured between tip of the laser to the target, V is the voltage output from 

the device. 

The measured topography was then used to determine the volume of sediment reworked from the 

bank and the bed of the channel which is explained as follows: 

Sediment reworking model: 

A simple model, was developed to quantify reworking of sediment from the banks and the bed of the 

channel. Entire flume was first subdivided into sub reaches. Sub reaches were defined by the reach 

between two adjacent measured cross-sections. The volume was computed using following relations: 

 

 
, , , , ,s i s bed i s bank iV V V       
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2

i i i i
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   
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1 1

, ,
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i i i i

s bank i i
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V L   

     

   

 
,0i i iD D D     

   

 
,0i i iD D D     

   

 
1 1 1,0i i iD D D       

   

 
,0i i iW W W     

   

 
1 1 1,0i i iW W W       

 

Where, 

ΔVs,i = Total change of the sediment volume in a sub-reach i (m
3
) 

ΔVs,bed,i = Total change of the sediment volume in a sub-reach contributed by channel bed (m
3
) 

ΔVs,bank,i = Total change of the sediment volume in a sub-reach contributed by channel banks (m
3
) 



APPENDIX A 

A(xvi) 

 

Wi,0/Wi+1,0 = Initial width of the channel at adjacent cross-section i/ cross-section i+1 (m) 

Wi/Wi+1 = Width of the channel at adjacent cross-section i/ cross-section i+1, after time T (m) 

Di,0/ Di+1,0 = Initial depth of the channel at adjacent cross-section i/ cross-section i+1 (m) 

Di/ Di+1 = Depth of the channel at adjacent cross-section i/ cross-section i+1after time T (m) 

Li = Longitudinal distance between cross-section i/ cross-section i+1 (m) 

Since we are analyzing the volume of the reworked sediment, the width of the channel for this model 

is computed as distance between the left and the right bank at a level half of the depth of the channel. 

The relative volumes of sediment reworked from bed and banks, along each sub-reach of the channel, 

was then computed as:  

 
, ,

, ,

, , , ,

100
s bed i

s bed i

s bed i s bank i

V
F

V V


 
  

  

   

 
, ,

, ,

, , , ,

100
s bank i

s bank i

s bed i s bank i

V
F

V V


 
  

  

 

Where  

Fs,bed,i = Relative volume of the sediments reworked in the channel bed within the sub-reach i (%) 

Fs,bank,i = Relative volume of the sediments reworked from the channel banks within the sub-reach i 

(%) 

To assess the accuracy of the method, the computed net amount of sediment exiting the flume was 

compared to the amount of sediment collected at the downstream end of the flume. For the 

comparison, the change in volume of sediment within a sub reach was converted to weight using 

equation Error! Reference source not found. and Error! Reference source not found..  

 
, , (1 0.41) 2635s i s i

porosity

w V      
 

   

 

,

1

N

s s i

i

W w


   

Where, 

ws,i = net change of sediment in cross-section i (kg) 

Ws = computed total net change of sediment in flume (kg) 

N = number of sub reaches.  

The error in the estimation of the net volume of the sediment is computed as. 
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Where, 

E = error of the estimation of net volume of the sediment (%) 

Ws,obs = Weight of the sediment collected at the downstream end of the flume (kg) 

 

 

 

 

 

Figure A-5.1. Schematic diagram showing the definition of depth and width used in the simple sediment budget 

model 
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MODELLING OF ALTERNATE BARS IN STRAIGHT CHANNEL USING 

DIFFERENT MORPHODYNAMIC MODELS 

 

1 INTRODUCTION 

The objectives of this research is to investigate the morphodynamics of alternate bars using differnt 

physics based numerical models. Physics-based numerical models potentially provide a powerful tool 

to support the investigation of the temporal evolution of bars in a single (e.g. Defina, 2003) and multi-

thread channels (e.g. Schuurman et. al, 2013) in a controlled manner.  Although models include a 

simplified description of the complex physical processes, they provide the flexibility to investigate 

morphodynamics under variable forcing and initial conditions. Recently Nicholas (2013) has shown 

that physics based numerical model coupled with vegetation and bank dynamics is able to reproduce 

spectrum of realistic channel planforms from meandering to braided. The models are based upon data 

of flume experiments carried out by Garcia et al (2014).  

The major numerical tools adopted in this work are two different numerical models, one semi-coupled 

(Delft3D) and another fully-coupled (GIAMT2D). In semi-coupled models, the sediment transport 

equation and flow-field equations are solved seperately  assuming that the bed level changes occuring 

at a small computational time steps is small and does not affect the flow field. Whereas, in the case of 

fully-coupled model, flow-field equations and sediment transport equations are solved together in 

single time steps (Kaseem and Chaudhary, 1998). At higher froude number (>1), the time scale of the 

bed level change is comparable to the time scale of hydrodynamics changes, so the fully-coupled 

model is more robust and stable to simulate morphodynamic processes during super critical flows. 

This chapter presents the investigation of bar dynamics in single-thread channels.  The chapter is 

organized in three different sections: methodology, results and conclusion and discussion. The 

methodology section explains the experiments, numerical models and the model setup. The results 

section elaborates the comparison between results of two different numerical models and the 

experiments and finally the conclusion and discussion section elaborates the context of validity of 

results. 

2 METHODOLOGY 

2.1 General methodology 

The research methodology is based upon physics-based numerical modeling. The morphodynamics of 

alternate bars were investigated using two-dimensional physics based numerical models.  Numerical 

models were rigorously calibrated using the laboratory experiment data of Garcia (2014) to reproduce 

the characteristics of alternate bars observed in the experiments. In the first approach we used a well 

validated and robust semi-coupled model, based on the DELFT3D code designed for small Froude 

numbers (<0.8). In the second approach we used a fully-coupled model (GIAMT2D) that can handle 

supercritical flows (Fr>1). The results of both models are then compared with the experiments to 

make a choice of the numerical model for the detail investigation of the morphodynamics of alternate 

bars observed in the experiments. 

2.2 Laboratory Experiments 
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Experiments of Garcia (2014) were used to construct numerical models to simulate realistic dynamics 

of bars. The experiments were carried out in a flume facility, 2.90 m wide and 25 m long, at the 

University of Trento. Details of the flume facility are explained in Bertoldi et al, (2009).  The 

experiments were conducted within a narrower width than the width of the flume facility. The channel 

of desired width was excavated at the centre of the flume.  A plastic sheet was then laid on the 

excavated channel and layer of sand of desired thickness was then laid on the plastic bed (figure 1). 

Thus the constructed channels have mobile bed with non-erodible banks. The experiments consist of a 

series of runs performed at many different configurations characterized by different value of channel 

width with three different discharge values for each planform configuration. Increasing channel width 

has allowed obtaining a series of channel morphologies ranging from single-thread with alternate bars 

to braiding planforms with different braiding intensities.   

The development of the channel bed is influenced by the boundary conditions of the flume. To avoid 

the influence of the boundaries, the bed topography of 15 m reach in the center of the flume was 

measured using the laser scanner, at two times during the experiments (figure 2a and 2b). The 

measurements were made at the resolution of 5 mm in lateral direction and 50 mm in longitudinal 

directions. Some parts of the channel were dry due to the bars emerging above the water level. The 

dry areas were measured from the still photographs taken before the measurement of the bed 

topography. The time-series data of the sediment transport was also measured at downstream end of 

the flume (figure 3). 

 

 

 

 

Figure -1  Flume experiments showing alternate bars and the plastic banks with irregularities 

 

These data were used to setup numerical model reproducing realistic alternate bar dynamics and are 

discussed in the sections below. 

Assumed straight banks 

Flow 

Channe width 

Bank irreguraties 

Alternate bar 

Pool 

Plastic sheet 
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Figure -2 Bed topography showing alternate bars in experiment measured a) after 275 minutes and b) 

after 300 minutes (the bed topography is de-trended with the longitudinal slope) 

 

 

Figure – 3 Sediment transport rate signal observed at the downstream end of the flume 

We choose three different experimental runs: channel with alternate bars (single-thread channel), 

wandering channel (transition between single thread and multi-thread channel) and braided channel 

(multi-thread channel). Details of the experimental conditions for the three different configurations 

are presented in table 1. The alternate bar case was used for the investigation using numerical models. 

Since the flow depth and velocities were not measured during the experiments, the hydrodynamic 

calibration in the numerical models were performed by reproducing dry areas observed in the 

experiments (e.g. Zilliani et al, 2013,Williams et al,2013). The alternate bars in the experiment were 

submerged so wandering channel and braided channel cases, which had dry areas due to emergence of 

bars above the water surface, were used for the hydrodynamic calibration (figure 4a, 4b and 4c). 

 

 

 

 

a) 

b) 
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Table 1: Details of flume experiments selected for this study 

Q 

(l/s) 

W 

(cm) 

D 

(cm) 

Fr 

(-) 

β 

(-) 

ds50 

(mm) 

S 

(%) 

DA 

(%) 

T 

(min) 

Qs 

(g/s) 

Pattern 

2.0 40 1.25 1.14 16 1.05 1 0 320 3.568 Alternate 

1.5 60 0.85 1.08 35 1.05 1 2.5 900 1.568 Wandering 

2.0 125 0.7 1.04 90 1.05 1 18 3500 1.706 Braided 

Q = Liquid discharge provided at upstream boundary, W= width of the channel, D = water depth, Fr = 

Froude number, β = half width to depth ratio, ds50 = median sediment diameter, S = longitudinal slope 

of the channel, DA = Percentage of the dry bar area with respect to the total area of the channel, T = 

duration of the experiments and Qs = solid discharge measured at the downstream boundary of the 

flume. 

The experiments were run more than 10 times the Exner-time scale. The Exner-time scale estimates 

the time scale of the development of the channel bed considering the width scale of the flume. It is 

computed as: 

T = D x W/qs (1) 

Where, T = Exner time scale (min), D = water depth (m), W= channel width (m), qs=sediment 

transport rate per unit width (m
3
/m/s) 

a) 
 

b) 
 

c) 

 
Figure 4 Bed topography showing dry areas (in red) measured in the experiment for a) alternate bars 

case b) wandering case and c) after braided case. 

2.3 Model descriptions 

This section describes the semi-coupled model, Delft3D, and fully-coupled model, GIAMT2D, makes 

a comparison between different characteristics of the two models. 

 

2.3.1 Semi-coupled model (Delft3D) 

DELFT3D solves unsteady depth averaged shallow-water equations in two dimensions (2DH) with 

hydrostatic approximation, and sediment transport and bottom updating is calculated in an semi-

coupled way with respect to the flow-field. The differential equations are solved in semi-implicit way 

using finite difference based alternating direction implicit (ADI) method in structured computational 

grids. The model has been validated on several analytical solutions and series of laboratory 
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experiment tests. The details of the numerical aspects and validation of Delft3D code is explained 

well by Lesser et al., (2004) and van der Wegen and Roelvink, (2008). The hydrodynamic and 

morphodynamic model of Delft3D are explained as follows: 

a) Hydrodynamic model 

The hydrodynamic model of Delft3D solves the unsteady shallow-water equations in two dimensions 

(2DH) with hydrostatic approximations. The two dimensional form of conservation of momentum and 

continuity equations can be written as: 

2 2 2 2

0
2 2

zu u u u u v u uw
u v g c vf e

t x y x h x y

     
      

     

 
 
 

 (2) 

2 2 2 2

0
2 2

zv v v v u v v vw
u v g c vf e

t x y x h x y

     
      

     

 
 
 

 (3) 

0
z hu hvw

t x y

  
  

  

        (4) 

Where, 

2

3/2

n
cf g

h

          (5) 

In which, x is longitudinal coordinate (m), y is the lateral coordinate (m), t is the time (s), u is the 

depth averaged flow velocity in longitudinal direction (m/s), v is the depth averaged flow velocity in 

lateral direction (m/s), h is the water depth (m), zw is the free water surface level (m), g is the 

acceleration due to gravity (m
2
/s),  ve is the horizontal eddy viscosity (m

2
/s), cf is the friction 

coefficient (-) and n is mannings roughness coefficient  (m
-1/3

s). 

b) Morphodynamic model 

The flow velocity obtained from the hydrodynamic model is used to compute the sediment transport 

field in the morphodynamic model. The sediment transport can be computed using Meyer Peter 

Muller type formulas as follows: 

3( )
B

q A g dss cr          (6) 

Where, 

2 2

1/3
s

u n

h d



          (7) 
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s 




           (8) 

In which, qs is the magnitude of sediment transport rate per unti width (m
3
/s/m), A is the callibration 

coefficient (-), Ɵ is the dimensionless bed shear stress (-), Ɵcr is the critical dimensional bed shear 

stress for the sediment motion (0.047), B is the calibration exponent (-), ds is the sediment diameter 

(m), ∆ is the relative density of the sediment (2.65), ρs is the density of sediment (kg/m3)and  ρ is the 

density of water (kg/m3). 

The direction of sediment transport occurring on a transverse bed slope deviates due to gravity effects. 

The effect of transverse bed slope on direction of bed load transport is modeled using Ikeda (1982) 

formulation as presented by van Rijn(1993) as follows: 

'
bcr

y sx bn

z
q q

y










        (8) 

Where, q’y is the  additional bed-load transport vector and the direction is towards the down slope 

(m
3
/s/m)  , αbn is the callibration coefficient whose default value is 1.5, zb is the bed level (m). 

The sediment balance is then computed using Exner principle in two directions as follows: 

  01
syb sx

qz q

t x yp

 
 

  
         (9) 

Where, qsx is the sediment transport rate per unit width in x direction (m3/s/m) and qsy is th sediment 

transport rate per unit width in y direction (m3/s/m) and Λp is the porosity (40%). 

The bed level is then updated at each time step using a constant porosity and computed bed load 

transport gradient along the computational grid cell. 

2.3.2 Fully-coupled model 

GIAMT2D solves the momentum balance and continuity of water and sediment in coupled way. The 

model solves the differential equations in explicit way using finite volume based centered type with 

upwind biased method in unstructured triangular computational mesh. The model has been validated 

in several analytical test, including analytical model of free and forced bars in straight channel, and 

several experimental tests. The details of the numerical aspects and validation of GIAMT2D is 

explained well in Siviglia et al. (2013). Since the model solves the 2D shallow water equation and 

Exner equation in coupled way, the continuity equation of liquid discharge also contains the solid 

discharge (equation 10). The momentum balance equation of water and continuity of sediment and 

water in two dimensional can be written as: 

( ) ( ) 0
w

x sx y sy

z
q q q q

t x y

  
    

  
    (10) 
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Where, x is the coordinate in longitudinal direction (m), y is the coordinate in lateral direction (m), qx 

and qy are flow discharge per unit width in x and y direction respectively (m3/s/m), zw is the water 

surface elevation (m), zb is the bottom surface elevation (m), h is the water depth (m), qsx and qsy are 

sediment transport rate per unit width in x and y direction respectively (m3/s/m), Sfx and Sfy are 

dimensionless frictional term (-). 

The dimensional frictional terms are computed as: 

2

10/3

x
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q n
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h
          (14) 
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h
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Where n is the mannings roughness coefficient (m
-1/3

s). 

The sediment transport rate can be computed as the Myer-Peter like formula as: 

3( )

1
p

B
A g dscr

qs

  


 

      (16) 

Where, 
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In which, qs is the magnitude of sediment transport rate per unti width (m
3
/s/m), A is the callibration 

coefficient (-), Ɵ is the dimensionless bed shear stress (-), Ɵcr is the critical dimensional bed shear 

stress for the sediment motion (0.047), B is the calibration exponent (-), ds is the sediment diameter 

(m), ∆ is the relative density of the sediment (2.65). 

The direction of sediment transport along the transverse bed slope is adjusted using Ikeda(1983) 

formulation as follows: 
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      (18) 
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Where, q’sy is the additional sediment transport rate due to transverse bed slope effects, qn =(-

sinϒ,cosϒ) is the unit vector perpendicular to q, ϒ is the angle of bottom shear stress with respect to x 

direction, r is the callibration coefficient. 

2.3.3 Comparison of models 

The basic difference between the two models is the way how the shallow water equation and sediment 

continuity equations are solved. GIAMT2D solves with the coupled approach and Delft3D solves 

using semi-coupled approach. In addition to the coupling of shallow water and Exner equations, the 

models differ in several numerical aspects. The comparison between Delft3D and GIAMT2D is 

presented in table 2. 

 Delft3D is based upon finite difference semi-implicit numerical scheme and uses structured grids 

(cartesian or curvilinear grids) for the computation. GIAMT2D is build using finite volume explicit 

scheme and uses unstructured (triangular) grids for the computation. Transverse bed slope effect in 

both models can be modeled using Ikeda (1983) formulations. DELFT3D has parameterization of the 

effects of spiral flow in flow and sediment-transport direction and also has lateral bank erosion 

implementation which is not available in GIAMT2D. 

Both numerical models can handle the drying and wetting phenomenon and have been validated by 

reproducing sets of experiments having analytical solutions. GIAMT2D is validated for the free bar 

development at the initial case and the influence of obstruction on the morphodynamics of forced bars 

on the basis of analytical solutions. Detail descriptions of the tests are presented in Siviglia et al 

(2013). Both validation tests were performed in super critical flow conditions. Since we are studying 

bar dynamics using experimental data under super-critical flow condition, same validation tests were 

repeated with DELFT3D code to check the limitation of the code in simulating bar dynamics under 

super-critical flow conditions. The results of the test are explained later in the section 3.2.  

Table 2 Comparison of model characteristics between GIAMT2D and Delft3D models 

Model/ Characterisitcs GIAMT2D Delft3D 
Numerics Finite volume, fully-coupled, 

explicit scheme 

Finite difference, semi coupled, 

semi-implicit scheme 

Mesh Unstructured triangular mesh Structured, curvilinear mesh 

Spiral flow 

parameterization 

Not available Based upon stream line curvature 

Lateral bank erosion Not available Parameterised by simple factor 

Sediment transport Mayer Peter Muller like formulas, 

Parker (1990) 

Meyer Peter Muller like formulas, 

Englund and Hansen, van Rijn 

1984 & 1993, Bijker, Soulsby and 

Ashida Michue 

Transverse bed slope 

effects on direction of bed 

load 

Ikeda (1982) Ikeda (1982) modified by vajn 

Rijn (1993) 

2D-Roughness 

formulation 

Manning’s formulation Chezy, Manning and white-

Colebrook formulation. 

2D-Turbulence Not available Constant value assigned or 

turbulence closure models 

including algebraic forms can be 

used 

Wetting and drying Capable Capable 
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2.4 Model setup and calibration 

The models were setup in Delft3D code and GIAMT2D code using the physical parameters of the 

alternate bar case of the laboratory experiments shown in table 1. The physical and numerical 

parameters were kept as similar as possible to make a robust comparison between results of the two 

models. A 0.4 m wide and 35 m long channel was used for model setup in Delft3D. The domain was 

chosen longer to isolate 15m long reach,   the domain of interest, from the boundary effects. Cartesian 

rectangular grids of 2 cm wide (in lateral direction) and 5 cm long (in longitudinal direction) were 

used in DLEFT3D. So, the computational domain has 20 grids in lateral direction which is sufficient 

to properly capture the lateral features of alternate bars. In the case of GIAMT2D, the influence of 

boundary was stronger so the domain length had to be increased to 75 m (additional 30 m in each 

side).  

A 0.4 m wide and 75 m long channel was used for model setup in GIAMT2D. The longer domain was 

adopted to isolate the effects of the boundary, which were stronger in the case of GIAMT2D, from the 

reach of interest. GIAMT2D uses unstructured triangular meshes and is optimized for the Delaunay 

mesh generating algorithms. The algorithm generates equilateral triangular grid elements and the grid 

size cannot be refined in the lateral direction alone. The length of the channel in GIAMT2D is twice 

of the channel implemented in DELFT3D. The computational time requirement of the fully-coupled 

model is very high compared to the semi-coupled models and it is strongly determined by the number 

of grid elements in the domain. Thus, number of grid elements along the lateral direction was 

restricted to 10 to obtain reasonable computational time in the model.  

Flat channel bed with the slope of 1% along the longitudinal directions was provided as initial 

conditions in both the models. The bed was also randomly perturbed by noise of ± 10% of sediment 

diameter to trigger the bar development. Uniform discharge of 2 l/s was provided at the upstream 

boundary section and the fixed water level corresponding to normal water level was provided at the 

downstream boundary. The discharge at the upstream boundary was also randomly perturbed by ± 1% 

of uniform discharge in DELFT3D model. At the upstream boundary, sediment discharge equal to the 

local sediment transport capacity near the boundary was provided in both the models. The Manning’s 

roughness formulation was implemented in Delft3D and the corresponding value of Gaukler’s 

Strickler formulation was implemented in GIAMT2D. Since the bed-load process were dominant in 

the experiments the Wong and Parker (2006) transport formulations was used to compute the 

sediment transport rate in both the models. 

1.6
( 0.047)

s s
Qs d gd            (19) 

 3 ( )c
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Where, 

qs = sediment fraction transport per unit width (m
3
/s/m) 
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Δ =  relative sediment density 

s  = density of sediment (kg/m
3
) 

  = density of water (kg/m
3) 

Ds = sediment diameter ( m) 

Ɵ = Shields stress  

u = depth-averaged velocity (m/s) 

C = Chezy’s roughness coefficient ( m
1/2

/s 

b  = critical Shields stress for threshold of motion 

a and c = coefficients 

Where Qs = sediment transport rate per unit width (m
3
/s/m), ds = sediment diameter (m), ∆ = relative 

density of the sediment (1.65), g = acceleration due to gravity (9.81 m/s
2
), Ɵ= shields number, α = 

callibration coefficient. 

The consistent international standard practice does not exist on validation of morphological models 

(Mosselman, 2012). We perform model calibration in three different stages. The choice is based upon 

the data available from the experiments. The morphodynamics of bars are sensitive to the formulation 

and magnitude of roughness (e.g. Nicholas et al., 2013, Schuurman et al., 2013). The Manning’s 

roughness formulation is chosen to be consistent with both the models. So, the first stage of 

calibration was performed to make the choice of the magnitude of roughness parameter. The flow 

depth and velocity was not measured in the experiments which makes it difficult to estimate the value 

of roughness in the experiments. So the value of roughness was estimated indirectly based upon the 

estimation of measured dry areas. Alternate bars were submerged throughout the experiment, so the 

wandering and braided cases, having dry areas, were used for the analysis. A fixed bed hydrodynamic 

model, in DELFT3D code, was setup using the measured bed topography to investigate a reasonable 

value of the roughness coefficient in the experiments. The model was run with different values of 

roughness coefficient to reproduce the dry areas observed in the experiments. Both braided and 

wandering case resulted highest correlation with the measured dry areas of bars for the value of 

Manning’s coefficient of 0.014. Due to computational time limitations the first stage of calibration 

was not repeated for the GIAMT2D case. So, the Manning’s value of 0.014 was used in DELFT3D 

and the corresponding Gauckler’s stricklers value of 71.5 was used in GIAMT2D models. 

In the second stage, the calibration of sediment transport formula was performed to reproduce the 

average value of the sediment transport rate in the model close to the average value of sediment 

transport rate measured in the experiment. Value of α, in equation 19, was varied in the Delft3D 

model until the average transport rate in the model resulted close to the observed sediment transport 

rate at the downstream boundary of the experiments. The value of α was optimized at 7 in Delft3D. 

The value of α equal to 7 also resulted the average sediment transport rate in the GIAMT2D model 

close to the average value of observed sediment transport rate at the downstream boundary of the 

experiment. The results are presented later in the section 3.3. 

Effect of the transverse bed slope on the bed-load transport direction is a sensitive parameter in 

modeling of bars. Higher transverse bed slope effect results in smoother bed topography and lower 
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transverse bed slope effect results in unrealistic steep bed topography (Defina, 2003). So, the third 

stage of calibration is performed by varying αbn, equation 8, in Delft3D and varying r parameter, 

equation 18, in GIAMT2D to reproduce the topography observed in the experiments. Hypsometric 

curves were used to compare the observed and modeled bed topography. Hypsometric curve is a plot 

of sorted bed elevation and their respective cumulative area. Since channel has a longitudinal slope, 

the bed topography has to be detrended with the initial bed slope before performing such statistical 

analysis. Use of hypsometric curve is widely used to quantify the developed topography in 

morphodynamic studies (Marciano, et al., 2005, Wang, et al., 2002). The results are presented later in 

the section 3.3. 

3 RESULTS 

3.1 Two dimensional benchmark tests for Delft3D 

DELFT3D code simulated the initial development of free bars as predicted by the analytical free bar 

theories (figure 6), like GIAMT2D, as reported by Siviglia et al (2013). The code was also able to 

simulate the influence of obstruction in the sub-resonant case but failed to simulate the upstream 

influence of the obstruction for the super- resonant case. However, Verbrugen (2012) was able to 

simulate the upstream influence of obstruction on the morphodynamics of alternate bars under sub 

critical flow and super-resonant conditions using DELFT3D code.  

 

Figure – 5 Free bar instability tests performed by Siviglia et al (2013) for GIAMT2D 

3.2 Numerical models 

Results of the investigations of morphodynamics of alternate bars carried out using semi-coupled 

model and fully-coupled numerical models are presented in this section. After the choice of roughness 

parameter based upon reproduction of dry areas, the sediment transport rate measured at the 

downstream end of the flume is used to calibrate the Wong and Parker (2006) transport formula in the 

model. We adjusted values of coefficient α to reproduce the long-term average sediment transport 

observed at the downstream end of the flume. A progressive average of the observed sediment 

transport was compared with the progressive average of the modeled total sediment transport in cross-

sections at every 5 cm (longitudinal grid resolution) along the reach. The progressive average (PA)  

sediment transport is computed at each time step progressing from beginning to the end of the 
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sediment transport rate signal. At each progress along with the time, sediment transport rate observed 

form the beginning to that location in time is averaged. The progressive average allows us to analyze 

if the observed signal is long enough to determine the average value of the signal. Prog ressive 

average of sediment transport rate both in experiment and numerical model achieve constant value 

closer to 300 minutes which indicate that observation duration of the sediment transport rate is 

sufficient to compute the average sediment transport rate. Coefficient α equal to 7 reproduced closest 

average sediment transport rate in both numerical models compared to the average of the observed 

sediment transport rate in the experiment (figure 7 a and b). The sediment transport rate in the fully-

coupled model is slightly higher than the sediment transport rate in the semi-coupled model. 

 

Figure – 6 Comparison of sediment transport rate observed in the experiment and modeled using a) 

semi-coupled model (DELFT3D) and b) fully-coupled model (GIAMT2D) 

The topography of the channel bed was modeled in detail adjusting the coefficient of transverse bed 

slope effect on direction of bed load transport as discussed in the earlier section. Hypsometric curves 

were used to compare the modeled bed topography with the observed bed topography. The best 

resemblance was observed for the value of r = 0.108 (figure 8 a and b). The two dimensional 

topography, detrended with longitudinal slope, of bars modeled using semi-coupled and fully-coupled 

model are shown in figure 9, a and b. 

The percentage of area below and above zero level in the hypsometric curves represents the area of 

channels and bars respectively. The hypsometric curves show that both Delft3D and GIAMT2D 

models are not able to model the bed level distribution correctly as observed in the experiments. 

However, hypsometric curves from Delft3D model output shows that the model was able to reproduce 

areas of channels closer to experiments than GIAMT2D model. On the other hand the hypsometric 

curve from GIAMT2D model shows that it was able to reproduce bar areas closer to experiment than 

Delft3D model. 

Longitudinal profiles along the left bank center and the right bank of both numerical models are 

compared with those observed in the experimental runs (figure 10 a and b). The bars reproduced by 

both Delft3D and GIAMT2D models are shorter than those observed in the experiments. The bars 

reproduced by Delft3D model have steep downstream slope and mild upstream slope. It indicates that 

bars are migrating in downstream direction at faster rate. However, the heights of bars in Delft3D are 

closer to the bar heights in experiments which are also reflected in the hypsometric curve (figure 8a). 

The bars reproduced by GIAMT2D have similar slope both in upstream and downstream direction, 

a) b) 
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closer to the experiments, which indicates that the bars are migrating downstream at slower speed 

(figure 10b). The height of bars is however lower compared to those of experiments which is the 

reason why the hypsometric curve of bed topography modeled by GIAMT2D matches closer to that of 

experiments in the bar portion than in channel portion(figure 8b). 

I  

Figure – 7 Comparison of hypsometric curves of bed topography observed in the experiment and 

modeled using a) semi-coupled model (DELFT3D) and b) fully-coupled model (GIAMT2D) for 

straight bank case 

 

 

 

Figure – 8 Detrended bed topography modeled using a) DELFT3D and b) GIAMT2D, flow is from 

left to right 

 

a) b) 

a) 

b) 
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Figure – 9 Comparison of longitudinal profile, along the left bank, center and the right bank, between 

the experiment and modeled topography using a) DELFT3D and b) GIAMT2D, flow is from left to 

right 

 4 CONCLUSION AND DISCUSSION 

This study aims to study morphodynamics of alternate bars using different morphological models. We 

used two 2D numerical models, one semi-coupled and another fully-coupled for the investigation. The 

a) 

b) 
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semi-coupled model, based on the DELFT3D code designed for small Froude numbers (<0.8). A 

fully-coupled model based upon GIAMT2D code, which can handle supercritical flows (Fr>1) is also 

used for the investigation. The physical and numerical parameters in both numerical models are kept 

as similar as possible for the robust comparison between the results from both the numerical models. 

GIAMT2D does not have parameterization of spiral flow effects and lateral bank erosion compared to 

Delft3D. The stream line curvatures are relatively mild in the case of alternate bars (straight channels) 

due to the absence of sharp curves. So, spiral flow may have less effect on the alternate bar dynamics. 

Since the bank is non-erodible and no emerged bars are observed, the effect of lateral bank erosion on 

the dynamics of alternate bars is no more significant in our case. So, both parameters were not 

implemented also in Delft3D model. They may be relevant in modeling the wandering and braiding 

channels. Curvatures are relatively high due to the presence of the mid-channel bars which might 

increase the effect of spiral flow on the dynamics of bars. Bars were immersed from water surface for 

both the cases and the interface between the dry and wet part of the bar also behaves as a bank inside 

a channel. So, the effect of the lateral bank erosion can play an important role in the bar dynamics. 

Data of flume experiments were used to setup the numerical models to reproduce the observed 

experiments. Manning’s formulation was chosen to be consistent with both numerical models. 

However, Manning’s coefficient is converted to Chezy’s coefficient in DELFT3D code using water 

depth, which makes roughness depth dependent unlike in GIAMT2D where the Manning’s 

formulation is not depth dependent. The flow field and roughness parameters were not measured in 

the experiments. The value of roughness is the results of calibration based on the reproduction of the 

extension of dry areas measured in the final bed topography of the braided and the wandering case. 

Although the experiments were conducted using the same sediment, the value of the roughness may 

be different due to the presence of more mid channel bars (additional form roughness) and differences 

in water depth. The adopted method of hydrodynamic calibration is still a tentative estimation of the 

hydraulic roughness parameters because the flow velocity may deviate significantly even if the flow 

depth is modelled with a reasonable accuracy in a numerical model (Papanicolau et al., 2011).  

Linear bar theory shows that the width to depth ratio (β) of the experiments are high compared to the 

critical width to depth ratio for alternate bar instability.  The value of β in the analyzed experimental 

tests might also lie above the β critical value of higher bar modes. Indeed in the numerical runs we 

first observed small mid channel bars appearing within the domain. These small mid channel bars 

later merged to form larger alternate bars as the development progressed. Even thoguh β of the 

experiment is higher than the resonant value of β, the observed alternate bars fall in sub resonant 

region because alternate bars with wave number 1.04 are observed, which is higher than the resonant 

wave number. The bed topography in experiments measured at two different times (figure 2 a and b) 

also show the alternate bars elongating and migrating downstream.  

The bar properties in the numerical models were significantly different compared to those observed in 

laboratory experiments, even if the average sediment transport rate predicted in the model was quite 

close to the one observed in the laboratory experiment. Bars reproduced by both Delft3D and 

GIAMT2D had wave length between 3 to 5 m and were shorter compared to the bars in the laboratory 

experiments.  Bars in DELFT3D had longer wave lengths compared to bars simulated by GIAMT2D. 

DELFT3D bars had asymmetric shape with steeper slope at downstream part and were migrating 

downstream at higher speed in DELFT3D (figure 10 a). GIAMT2D bars had more symmetrical shape 

and had even slope both in upstream and downstream direction and were migrating downstream with 

a slower speed (figure 10 b) compared to Delft3D. Higher migration speed of bars in DELFT3D 

might be due to the imposed discharge perturbation at the upstream boundary in addition to the initial 

bed perturbation. The bed topography measured at two instances near the end of the experiments 



APPENDIX B 

B(xvi) 

 

show that the bars in the experiment were migrating downstream at slower rate than those observed in 

the experiments. The wavelengths of non-migrating bars are longer compared to those of free bars 

which indicate that the alternate bars in experiment are non-migrating alternate bars. 
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